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Abstract

Studies in turbulence often focus on two flow conditions, both of which occur frequently in real-

world flows and are sought-after for their value in advancing turbulence theory. These are the

high Reynolds number regime and the effect of wall surface roughness. In this dissertation, a

Large-Eddy Simulation (LES) recreates both conditions over a wide range of Reynolds numbers

Reτ = O(102)−O(108) and accounts for roughness by locally modeling the statistical effects of

near-wall anisotropic fine scales in a thin layer immediately above the rough surface. A subgrid,

roughness-corrected wall model is introduced to dynamically transmit this modeled information

from the wall to the outer LES, which uses a stretched-vortex subgrid-scale model operating

in the bulk of the flow. Of primary interest is the Reynolds number and roughness depen-

dence of these flows in terms of first and second order statistics. The LES is first applied to a

fully turbulent uniformly-smooth/rough channel flow to capture the flow dynamics over smooth,

transitionally rough and fully rough regimes. Results include a Moody-like diagram for the wall

averaged friction factor, believed to be the first of its kind obtained from LES. Confirmation is

found for experimentally observed logarithmic behavior in the normalized stream-wise turbulent

intensities. Tight logarithmic collapse, scaled on the wall friction velocity, is found for smooth-

wall flows when Reτ ≥ O(106) and in fully rough cases. Since the wall model operates locally

and dynamically, the framework is used to investigate non-uniform roughness distribution cases

in a channel, where the flow adjustments to sudden surface changes are investigated. Recov-

ery of mean quantities and turbulent statistics after transitions are discussed qualitatively and

quantitatively at various roughness and Reynolds number levels. The internal boundary layer,

which is defined as the border between the flow affected by the new surface condition and the

unaffected part, is computed, and a collapse of the profiles on a length scale containing the loga-

rithm of friction Reynolds number is presented. Finally, we turn to the possibility of expanding

the present framework to accommodate more general geometries. As a first step, the whole LES

framework is modified for use in the curvilinear geometry of a fully-developed turbulent pipe

flow, with implementation carried out in a spectral element solver capable of handling complex

wall profiles. The friction factors have shown favorable agreement with the superpipe data, and

the LES estimates of the Kármán constant and additive constant of the log-law closely match

values obtained from experiment.
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Chapter 1

Introduction and Background

1.1 Dissertation Overview

Two conditions that are abundant in environmental and engineering fluid flows are those bounded

by solid walls with surface roughness and flows exhibiting high Reynolds number turbulence

[52, 68]. Both the study of turbulence and the study of roughness in fluid dynamics trace

back over a century and their widespread application has kept their respective fields under

continual advancement [81]. One of the most revealing research thrusts of late comes from

efforts seeking to achieve ever higher Reynolds number, and in doing so, shedding light on some

of the longstanding questions about the very nature of turbulence, including how rigorously our

present models match its incredibly complex motion [68] and – relevant to the present work – how

surface roughness may alter turbulent flow dynamics at high Reynolds number [71, 52]. Naval,

aerospace, and industrial communities have long maintained a vested interest in roughness due

to its effect on drag and heat transfer and it remains an essential component to meteorological

prediction [31, 109, 7].

Recent evidence points to situations in practice where high Reynolds number regimes are

significantly affected by the presence of roughness, even when wall surfaces are manufactured

such that they are considered highly smooth. Roughness in these cases becomes inseparable

from the analysis and inextricably connected to explaining flow phenomena. Consequently, the

involvement of advanced numerical simulation techniques that solve very high Reynolds number

flows requires taking into account surface roughness also. The present work is concerned with a

class of numerical strategies known as large-eddy simulation (LES) that is capable of creating

such very high Reynolds number environments, and therefore the correct modeling of roughness

effects in LES is of primary focus in this work.

The body of discourse for this dissertation begins with background material on turbulence

theory, high Reynolds number experiments, roughness effects, and computational advances in

the field, which is then followed by three main chapters. The first chapter introduces a novel

roughness modeling technique in LES using a grid that is based on a regular Cartesian coor-

dinate system. This model for roughness resides in a framework comprising a stretched vortex

subgrid scale model (SGS) and a wall model [19]. The spatially periodic flow through both
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smooth- and rough-wall channels is simulated and the results are compared. The second chap-

ter turns to exploring the dynamical behavior of flows encountering abrupt changes in surface

roughness at very high Reynolds numbers. Both the first and second chapters are based on a

finite difference-and-spectral-method Navier-Stokes solver. The third and final chapter embeds

the stretched vortex SGS model and wall model in a pipe flow geometry and extends them to

fit with curved-wall boundary conditions. Rather than a finite difference solver, on this occa-

sion a spectral element solver platform drives the wall-modeled LES implementation, and, while

it accommodates pipe flow geometries in this case, it has the capability of handling complex

boundary shapes beyond those of the canonical flows, thus setting the stage for future work.

1.2 Background

Introductory background material begins with a discussion of the Navier-Stokes equations, fol-

lowed by an overview of smooth-wall turbulence theory, including the merits of canonical flow

research and especially at high Reynolds number. This continues with a discussion of surface

roughness both from theoretical and experimental perspectives, and concludes with a brief sur-

vey of some computational studies in turbulence. Here, the computational discussion focuses

on two classes of solvers: direct numerical simulation (DNS) and large-eddy simulation (LES).

Since LES was originally pioneered by Smagorinsky [121] and Deardorff [26] specifically for flow

away from walls, contemporary computational approaches have required additional treatment

near walls – predominantly of wall-modeled or wall-resolved types – which are introduced.

1.2.1 Navier-Stokes Equations and Filtering Processes for LES

The governing equations for incompressible Newtonian flows are given by a set of partial differ-

ential equations that describe the continuity and momentum balance within the field; these are

known as the Navier-Stokes equations:

ρ
∂ui
∂t

+ ρui
∂uj
∂xi

= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

, (1.1)

∂ui
∂xi

= 0. (1.2)

where p and µ are pressure and viscosity respectively. We typically define kinematic viscosity as

ν = µ/ρ.

Real turbulent velocity fields satisfy the Navier-Stokes equations well under the incompress-

ible assumption when their Mach number M � 1. A turbulent velocity field is characterized by a

spectrum of rotational eddy motions at various scales. As further discussed in later chapters, the

main idea of large-eddy simulation (LES) is to solve dynamical equations for turbulent “eddy”

scales that are greater than a cutoff defined by some measure of the local grid size. The effect of

the finer, unresolved scales on the resolved scales is represented with statistical information com-
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puted under some subgrid-scale model. The filtering process can be either implicit or explicit,

where some of the common explicit filters are the box filter, Gaussion filter, and sharp spectral

filter [103]. Presently, we perform implicit filtering, with the only filtering parameter being the

cutoff length associated with the local grid-scale, ∆c and therefore, the filtered quantity φ̃ is

given by the convolution,

φ̃(xi) =

∫
G(xi − x′i; ∆c)φ(x′i)dx

′. (1.3)

Regardless of the choice of the filter, the full-scale velocity ui(t) is decomposed into the

resolved-scale velocity ũi(t) and fluctuating velocity u′i(t), i.e. ui(t) = ũi(t)+u′i(t). Accordingly,

the governing equations in Equation (1.1) and (1.2) can be re-cast in terms of filtered quantities

as well as the modeled stresses as shown in Equations (1.4)-(1.7).

∂ũi
∂t

+ ũi
∂ũj
∂xi

= −1

ρ

∂p̃

∂xi
+ ν

∂2ũi
∂xj∂xj

− ∂Tij
∂xj

, (1.4)

Tij = ũiuj + ũiũj (1.5)

= ˜̃uiũj + ˜̃ui ˜̃uj + ˜̃uiu′j + ũ′iũj + ũ′iu
′
j , (1.6)

∂ũi
∂xi

= 0. (1.7)

These modeled stresses are called subgrid stresses and denoted as Tij in tensor form. We presently

use the stretched vortex model as introduced in Chapter 2.

1.2.2 Canonical Wall-Bounded Flow

Turbulent flows past smooth wall boundaries have considerable complexity, even in canonical

geometries like the zero-pressure-gradient flat-plate turbulent boundary layer (ZPGFPTBL),

pipe flow, and channel flow. These three flows are considered “canonical” because their analysis

is greatly eased by having a simple wall geometry, and hence they have been favored by theoretical

researchers seeking to solve manageable portions of the larger unsolved problem of turbulence.

Indeed, there is a great likeness between the relations governing the mean velocities and turbulent

statistics among canonical flows (described below in Section 1.2.3).

Each canonical flow provides an investigator with distinct advantages over the other two.

Channel flows, for instance, have two periodic directions that make spectral-type numerical

methods doubly effective. They also lend themselves to regular Cartesian coordinates, avoiding

mathematical issues such as axis singularities found in cylindrical coordinates for pipes. Channels

share an advantageous property with pipe flow: given sufficient stream-wise extent, the flow be-

comes statistically independent of downstream location. From an implementation point of view,

pipe geometry adds one extra advantage in having periodicity along the azimuthal direction,

while a channel and ZPGFPTBL require that their infinite span-wise domains be approximated.
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1.2.3 Turbulence Structure and Scaling Over a Smooth Wall

In order that we appreciate the effect of wall roughness in context, a brief review of classical

wall-bounded turbulent scaling and structure is helpful for the case of a smooth wall. We refer

the reader to Clauser [21] and Coles & Hirst [24] for full and comprehensive reviews on this

topic. Here we provide basic scaling and flow structure details relevant to roughness modeling

in canonical environments.

Inner and Outer Scales

It was Prandtl who introduced the concept of a viscous boundary layer and an inviscid region of

flow outside of this. The idea has remained unchanged up to the present, and hence a classical

turbulent boundary layer will typically be presented as being composed of two principal regions

that follow distinct scalings; in contemporary nomenclature, there is said to be a near-wall region

where viscous effects are important and an outer region where they are not. Pipe and channel

flows scale in the same manner, although it has been suggested in Marusic et al. [68] that small

differences may exist.

In the near wall region, scaling quantities can be obtained by a number of approaches,

including basic dimensional analysis. Here, based on the mean momentum equation, we take the

velocity and length scales in the near-wall region to be uτ =
√
τw/ρ and ν/uτ respectively, where

τw is the total wall stress, ρ is the fluid density, and ν is the kinematic viscosity. Quantities

normalized by these wall units are henceforth identified by a + superscript. Prandtl postulated

that the mean stream-wise velocity near the wall is independent of δ, where δ is the boundary

layer thickness, which leads to the famed “law of the wall.” Written non-dimensionally, it becomes

U+ = F (y+), (1.8)

where F is a universal function [115]. On the other hand in the outer region, it is assumed

that the appropriate length scale δ is related to the boundary layer thickness while the friction

velocity uτ remains relevant, since uτ sets up the boundary condition for the outer flow [68].

For channel and pipe flows, δ becomes the channel half-height and pipe diameter respectively.

Based on outer scaling, von Kármán formulated the “velocity-defect law” in 1930 as

U+
e − U+ = G(η), (1.9)

where η = y/δ and the velocity at the outer edge of the boundary layer, Ue, is normalized to

U+
e = Ue/uτ . Townsend regarded uτ as a “slip” velocity condition felt by the outer flow [131].

Hence, uτ becomes a global velocity scale and we can define a new “friction” Reynolds number,

Reτ = uτδ
ν , or when written in wall unit notation, as δ+ for boundary layers. The friction

Reynolds number Reτ defines the scale separation between inner and outer length scales [52].
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Near-Wall Flow Structure

Within the near-wall region, two layers can be distinguished by the differences in their mean

velocity profiles: a viscous sub-layer below y+ ≈ 5, and a buffer layer between 10 ≤ y+ ≤ 100,

approximately. Below y+ ≈ 5, fluid viscosity is dominant and the inner scaled mean velocity

resembles a linear profile U+ = y+ for a smooth wall. Above this, the buffer region marks where

the gradual transition occurs between the viscosity-dominated and the turbulence-dominated

parts of the flow. It is this buffer region in which the flow is most active, being involved in a

nonlinear self-sustaining cycle known as the “near wall cycle” [53]. Hamilton et al. [40] and

Jiménez & Pinelli [54] have studied the mechanics of the buffer layer, finding that this is where

most of the turbulent energy is generated for moderate Reynolds number flow.

Above the buffer layer is the outer layer, but at high enough Reynolds number (δ+), an

overlap layer develops between the two wherein any wall distance scaled in wall units, y+, lies

beyond the dominant viscous region, yet y/δ is too small for δ to have an influence. Thus the

only remaining length scale is y itself. Millikan [77] proposed – by matching the velocity profiles

in the law of the wall (Equation (1.8)) and the velocity-defect law (Equation (1.9)) – that a

logarithmic velocity distribution results in the overlap region (ν/uτ � y � ∆) at sufficiently

high Reynolds number.

U+ =
1

κ
log(y+) +B, (1.10)

where κ is the von Kármán constant. In classical turbulence theory, the value of κ is thought to

be universal and often cited as having a value between 0.37 and 0.42 [68]. Equation (1.10) is valid

for y+ � 1 and has an upper limit at y/δ ≈ 0.15 [52]. The constant B should allow the profile to

satisfy the no-slip boundary condition and is affected by the viscous sub-layer and buffer layer.

In a way, it may be interpreted as measuring the influence of the viscous sub-layer on the flow.

Outer-layer dynamics between the log-law and the inviscid free stream can be incorporated by

including the Coles wake function W(y/δ) [23] as

∆U+ =
1

κ
log(y+) +B +

Π

κ
W(y/δ). (1.11)

For its form, W(y/δ) depends on the external flow outside of the boundary layer and the

convention is to haveW(0) = 0 andW(1) = 2. The non-dimensional Coles wake factor Π is flow

dependent and for the channel flow considered here, where there is no outer region like that of

a boundary layer, the wake term in Equation (1.11) has a small contribution.

1.2.4 High Reynolds Number

As previously stated, studies at ever higher Reynolds numbers are sought out as a way to ad-

dress longstanding questions about the character of turbulent flow and to settle some important

contemporary questions about accepted models of the mean and statistical behaviors of the flow
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motions. Recurring questions in the community include whether the correct mathematical ex-

pression is being utilized to describe the mean stream-wise velocity profile – is it a logarithm or a

weak power law? (Barrenblatt [9]; Marusic et al. [69]) – whether the Kármán constant is indeed

universally constant among canonical flows (Marusic et al. [68]), how best to obtain a fluid’s fric-

tional force at the wall, and which scaling factor might collapse the various statistical moments

describing fluid velocities and fluctuations (McKeon & Morrison [72]; Marusic et al. [68, 69]).

The answers to these sometimes subtle questions have far-reaching implications concerning our

ability to understand and accurately control or predict flow in turbulent environments.

One of the most recent studies that addresses these aforementioned questions about the

nature of turbulence is Marusic et al. [69]. They observe two universal logarithmic scalings,

one in mean velocity and the other in stream-wise turbulent intensity. Only when the friction

Reynolds number reaches a certain threshold is the logarithmic behavior noted over a full decade

of wall normal heights y+. Consequently, they have set a Reynolds number standard, Reτ >

40, 000, for acquiring enough data to discern logarithmic scaling. To do so, they note that in

the inertial region of their data, from 3Re
1/2
τ up to 0.15Reτ , turbulent intensities fit well with a

logarithmic profile having a slope given by the Townsend-Perry constant A1 = 1.26. The inertial

region is thought to begin at approximately 3Re
1/2
τ because Klewicki et al. [58] have shown that

the mean viscous force loses leading order influence above 2.6Re
1/2
τ . Also, the outer region of

the inertial layer has been noted in Pope [103] to end at y/δ ≈ 0.1. Based on these ranges, if

one seeks a decade or more of scaling data, one must select Reτ such that it exceeds 40, 000.

Yet, what constitutes a “large” Reynolds number is still open to debate. Another definition

might be that all important quantities have reached either their constant asymptotic state, or

else are well approximated by a function that accurately describes their asymptotic state at

arbitrarily large Reynolds numbers. This state of course, is expected to differ for smooth-wall

and for rough-wall turbulence. For smooth-wall, canonical wall-bounded flows such as channel

and pipe flow, and the ZPGTBL, Pullin et al. [106] suggest that a large Reynolds number means

that log(Reτ ) � 1. By this definition of “large Reynolds number,” smooth-wall bounded flows

do not exist in practice. There are no actual or laboratory wall-bounded flows that satisfy this

condition, nor are there likely to be any time soon. Further, any real-world attempt to establish

incompressible, smooth-wall turbulent flows for which log(Reτ ) � 1 would encounter other

important physics such as compressibility, the effects of the Earth’s curvature, or perhaps most

importantly, surface roughness. In this sense, the present work addresses moderate Reynolds

numbers up to Reτ = O(108).

The turbulence community is continually pushing towards reaching ever-higher Reynolds

numbers, although certain recurring limitations in our experimental and numerical proficiency

fall short of being able to address the above mentioned questions with full rigor. At Reτ >

40, 000, the fundamental experimental challenge is having instrumentation that can resolve the

tiny eddy scales. Two choices are available. One can either a) attempt to create a very large

facility to increase the characteristic length scale in the flow and make use of regular pitot or
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hotwire measurements[127, 75] or b) use nano-scale probes [132] or perhaps highly controlled

pitot tubes [8] in a relatively smaller facility. The highest known Reynolds number pipe flow

experiments as of this writing have been carried out in the Superpipe facility at Princeton,

reaching friction Reynolds numbers Reτ of up to 0.3× 106 [137, 71]. Hultmark et al. [44] have

resolved over a decade of data to an exceptional degree of accuracy up to Reτ = 98, 190 in

this facility. The highest canonical flow tests ever conducted have been for thermally-neutral

atmospheric boundary layers generated on the salt flats of Utah, SLTEST at Reτ = 0.63× 106

[76, 38]. This work does not specifically address geophysical flows viewed as rough surfaces and

their unique character despite them typically having the high Reynolds number and rough wall

characteristics relevant here (see Monin [80], Counihan [25], and Metzger & Klewicki [76]). We

presently concern ourselves only with the incompressible canonical flows without reference to

either transition from laminar to turbulent flow or thermal effects.

1.3 Roughness

As we look back into the history of experimental fluid dynamics, the early works of Hagen (1854)

and Darcy (1857), who examined pressure losses in conduits, stand out as some of the first to

demonstrate a key roughness phenomenon that led to the pervasiveness of smooth vs. rough

wall studies since then. Their data shows how rough-walled pressure losses become independent

of viscosity when the viscous length scale becomes small (i.e. high Reynolds number) in relation

to the roughness length scale. Both Hagen and Darcy had yet to appreciate the significance of

their finding, having made no attempt at a physical explanation at the time, but these Reynolds

number independent fully rough flows would receive constant interest from that time onward.

Almost a century later, roughness was studied in a famous set of pipe flow experiments

by Nikuradse [88], wherein he collected data over a Reynolds number range of many orders of

magnitude. His mentor, Ludwig Prandtl [104], had developed a theoretical analysis for smooth

wall turbulent flow in 1931 and subsequently used Nikuradse’s data and that of others to establish

the empirical constants in his relation for a smooth-wall friction factor,

1√
f

= 2.0 log10

(√
fRe

)
− 0.8, (1.12)

where f is the Darcy-Weisbach friction factor, hereafter referred to as “friction factor.” Later,

Theodore von Kármán [134] developed an expression of similar form to Prandtl’s for the fully

rough wall case, and hence independent of Reynolds number. From Schlichting [114], it is written

as,

1√
f

= 2.0 log10 (d/k) + 1.74. (1.13)

Evidently, a regime existed that bridged the gap between the smooth wall case (Equation (1.12))

and the fully rough wall case (Equation (1.13)) and it would come to be known as the transitional
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Figure 1.1: Moody Diagram - Darcy-Weisbach friction factor for pipe flow as a function of
centerline Reynolds number R and relative roughness ε/D (Moody 1944 [82])

regime, though it bears no relation to the transition from laminar to turbulent flow. Colebrook

[22] found an empirical formula by using the data of Nikuradse and others that fills the gap

while still agreeing with the two extremes of smooth and fully rough. Moody [82] then used

Colebrook’s formula to generate the celebrated Moody diagram (Figure 1.1) that illustrates the

dependence of the friction factor on both Reynolds number and relative roughness. This is a

compelling visual of the four stages required to reach the “fully rough” limit as Reynolds number

increases. Using current nomenclature, these are (in order) laminar flow, transition to turbulent

flow over a smooth wall, transitionally rough flow, and finally the fully rough asymptotic limit.

Here, “fully rough” means that the roughness height is small, k/d� 1, where k is some length-

scale measure of surface roughness and d is some outer length scale, and the Reynolds number

is sufficiently high.

Since the early studies of roughness, canonical flows have been extensively studied in the

context of roughness, vastly broadening our knowledge of surface roughness effects. Among many,

here we introduce two findings. First, at a sufficiently high Reynolds number, wall roughness

effects emerge in experiments. Of notable example are the experimental studies in the Princeton

Superpipe that are pushing their maximum Reynolds number above 35 × 105 [71, 68]. In this

facility, McKeon et al.[71] have confirmed that above Re = 20 × 106, roughness effects can be

detected even using advanced honing of pipes to create smooth-wall conditions. Second, the inner

layer experiences a complex effect from wall roughness, while the outer layer only experiences a
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change in boundary condition, that, given enough scale separation, i.e. high Reynolds number,

can be expressed as a roughness correction to friction velocity. This is known as Townsend’s

hypothesis of outer-layer similarity [131]. For smooth-wall flows, the velocity defect profile

U0 − U , where U0 is some outer variable, is known to collapse on uτ and outer length scale

δ for sufficiently high Reynolds number, as derived from the law of the wall by Millikan [68].

Townsend’s hypothesis then suggests that the same scalings should collapse this defect profile

when roughness is introduced. Schultz & Flack [116] support Townsend’s hypothesis through

their experiments in rough-walled boundary layers up to Reτ = 10, 100 while the experiments

with two-dimensional roughness tend to suggest otherwise. For example, Krogstad & Antonia

[59] conclude that the normal turbulent intensities and Reynolds shear stress hold evidence

against it, explaining their observations in conjunction with a quadrant analysis in which they

show increased strength and frequency of Q2 “ejection” and Q4 “sweep” events.

1.3.1 Roughness Types and Characterizations

A common choice for the roughness length scale k is to denote it as the root-mean-square (r.m.s.)

height krms of the physical surface profile k (x, z). Nikuradse developed another roughness length

scale used commonly in later studies; he defined a parameter ks to represent the sand grain

size that he used to roughen pipe surfaces. Several popular empirical models such as those of

Colebrook [22] and Cebeci & Bradshaw [17] that stem from Nikuradse’s data sets make use of ks

as an input, making it necessary that non-sand-grain rough surfaces also have an equivalent ks.

Thus, when experiments or simulations use rough walls that are coated or bounded with anything

other than single diameter sand grains, their roughness length scale is typically expressed as a

“geometric” or “equivalent” sand roughness denoted ks∞. It is generally possible a posteriori to

deduce ks∞ from a measured or simulated velocity profile by matching the value of their wall

shear stress in the fully rough regime to that of Nikuradse [52]. Measuring ks∞ in practice, as

it appears in Equation (1.14), requires the involvement of uτ estimates, which must also come

from measurement.

Skin friction can be straightforward to ascertain in the case of a smooth wall where one

typically makes use of oil-film interferometry [86], direct drag force measurement with a force

balance, Preston-tube [105, 42, 94], or the Clauser method [20, 21] to deduce the value of uτ .

Alternatively, in the case of internal canonical flows, we can measure the mean pressure gradient

to deduce the skin friction for both smooth and rough walls. To directly measure the skin

friction for rough surfaces, however, poses significant problems in measuring both uτ and ks∞.

Oil-film interferometry is highly accurate over smooth walls, often to with less than a percentage

point accuracy [91, 92], but the method can be sensitive to temperature variation and is in any

case incompatible with rough walls. Force balances like those used by Efros & Krogstad [27]

for rough wall skin friction measurement are a trade off between the high accuracy afforded by

direct measurement and their complexity to set up, which is perhaps why they are rare in the

literature. Both the Preston and Clauser methods are simple, and give similar results to one
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another over smooth walls, each relying on the assumption of a known universal scaling law.

Uncertainties in the Clauser method may be large at times and can be as high as 20% [57].

Since the Clauser method on its own does not resolve uτ and k+
s∞ in a rough wall flow yet can

be modified to a form that does so and is both popular and equally simple, we describe the use

of the modified Clauser method below [99]. Subsequently we touch on the connection between

ks∞ and physical measures of roughness like the roughness peak height kmax, the r.m.s. height

krms, and the distributional properties of roughness heights.

The Clauser method relies on the flow having a high enough Reynolds number to educe loga-

rithmic behavior in the velocity profile, thus conforming to the log-law, which can be rearranged

from Equation (1.10) to (1.14):

u(y)

u∞
=

uτ
u∞

1

κ
log
(yu∞

ν

)
+
uτ
u∞

1

κ
log

(
uτ
u∞

)
+
uτ
u∞

B +
uτ
u∞

Π

κ
Wc

(y
δ

)
. (1.14)

The unknown is uτ/u∞ for a smooth wall, so in selecting the correct uτ/u∞ such that

measured smooth wall velocity data best matches the scaling in the log-law in a least squares

sense, the skin friction can be approximated. Under rough wall scaling given by Equation (1.15),

as Perry & Joubert [98] discuss, the number of unknowns jumps to three, these being ∆U/uτ ,

uτ/u∞, and the error in origin.

u(y)

uτ
=

1

κ
log
(
y+
)

+B −∆U+ +
Π

κ
Wc

(
y′

δ

)
. (1.15)

The error in origin is also known in the atmospheric sciences as zero plane displacement or in

engineering as the offset in the virtual origin, which we denote d. Under the modified Clauser

method given by Equation (1.16), one runs through an iterative procedure by modifying three

unknowns, although this time they are uτ and d, and the Coles wake parameter Π [61].

u(y)

u∞
= 1+

uτ
u∞

1

κ
log

(
y′

δ∗

)
+
uτ
u∞

1

κ
log

(
uτ
u∞

)
+
uτ
u∞

1

κ

(
log (1 + Π)− 2Π− log (κ) + κWc

(
y′

δ

))
.

(1.16)

where y′ = y + d and the displacement thickness is denoted by δ∗:

δ∗ =

∫ δ

0

1− u(y)

u∞
dy. (1.17)

When the iterative procedure converges, ∆U+ is extracted from the relation in Equation (1.15)

based on the converged estimates for the three unknowns and thereafter k+
s∞ is obtained from

Equation (1.18) (See LeHew [61] for derivation),

k+
s∞ = exp

(
κ
(
∆U+ + 8.5−B

))
. (1.18)

A systematic approach is therefore available from experimental or simulation data that es-

timates the equivalent sand grain roughness with reasonable accuracy. On the other hand, as
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stressed in Schultz & Flack[116], to use only geometric properties of the surface height distri-

bution to predict ks∞ a priori remains an open question, a problem both challenging and of

significant importance.

An a priori generalized theory is elusive, but a number of empirical connections have been

made in this regard that link one or two physical roughness measurements with ks∞. Simpson

[120] has explored the relevance of roughness density in turbulent boundary layers. Schultz [117]

has used multiple length scales by constructing nine pyramid-covered rough surfaces to seek

the effect of element slope as well as element height. Slope has been found to hold no effect

above a certain threshold, and they find in all cases a collapse in mean velocity, which exhibits

smooth wall behavior upon plotting in velocity-defect form. Gioia & Chakraborty [35] have

taken a theoretical approach to find an expression for friction factor that includes the general

roughness size. Finally, Mejia-Alvarez & Christensen, in an effort to understand different scales

associated with surface topology that may affect the turbulent boundary layer, have decomposed

an irregular surface topology into a set of basis functions via singular value decomposition and

have found that the effect of finer scale details of the surface is relevant within the roughness

sublayer, but largely invisible in the outer layer.

Roughness element peak height, kmax, appears to have less bearing on ks∞ than does krms.

LeHew [61], for example, observed that ks∞ measured in a rough-walled boundary layer with

sparse roughness elements was half the height of element peaks kmax, though it was just 1.3

times larger than krms, potentially suggesting a stronger correlation with the latter. Since

sparsity is known to affect wall shear stress, the observation makes sense if one considers the

extra information carried in krms pertaining to nominal spacing between elements, information

absent from kmax.

We digress briefly to note that much remains to be understood about sparsity and Jimenez

[52] reviews the ongoing debates among the two major roughness types, known as k-type and

d-type surfaces (see also Leonardi et al. [62]), which differ primarily in the spacing between

elements. Only k-surfaces are considered in the present work since in d-type surfaces, ks∞ is

found to be proportional not to physical roughness height but rather to boundary layer thickness.

Returning to empirical relationships, LeHew’s result described above of ks∞ = 1.3krms differs

from a result reached by Zagarola & Smits [137] of ks∞ = 3krms for Gaussian-distributed

pipe roughness, potentially as a result of distributional skewness. Flack & Schultz [30] have

identified surface geometry moments that are most relevant as scaling parameters, finding that

the strongest correlation exists using skewness sk and krms as expressed in the relation, ks∞ ≈
4.43krms(1 + sk)1.37. Anderson & Meneveau [3] have provided an overview of other proposed

empirical relationships and conclude that due to their variety, a simple relation with a universal

constant and a single roughness scale is unlikely to be successful. Empirical relations provide

needed insight, yet it is the uncertainty in their applicability for roughness element profiles

outside of their source experiment that drives us toward a theoretical foundation.
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1.3.2 Flow Response to Roughness

In Chapter 1.2 the scaling and structure of a turbulent flow bounded by smooth walls has been

described, and a brief overview of its response to the presence of roughness is now provided. Our

intuition tells us that flow is retarded more over a rough wall than a smooth one. It is known

experimentally that this extra skin friction is accompanied by changes to the mean velocity

profile, turbulence structure, and turbulent statistics [2]. There is, to date, continued debate as

to the other aspects of the flow that are affected [68], especially concerning roughness topologies

[62], but the present research will concentrate on the three mentioned explicitly above and we

provide details below.

Mean Velocity

At the surface of a rough wall, elements of the surface generate additional pressure drag that is

noticed as a momentum deficit in the mean velocity profile (Schultz & Flack[117]). There is a

corresponding downward shift in the mean velocity profiles, and to that end Hama[39] modified

the log-law to include a roughness function ∆U . Subsequent data sets have supported this

additive shift (e.g. Shockling et al.[119]) but not the functional dependence of ∆U . It is well

recognized that the height of roughness elements k+ plays a dominant role in the canonical

flows for determining the overall magnitude of ∆U (e.g. for boundary layers see Castro[16]),

but not which specific surface shapes determine the exact form[68]. At present, the literature

contains little extant work that comprehensively treats how roughness scales affect the nature of

structural changes in the flow, when they begin, or whether the changes depend on the nature

of the roughness[16]. However, there are certainly three distinct roughness regimes noted in this

work which differ markedly from one another in terms of the flow behaviors and which we now

define for use in the results to follow.

Roughness Height Regimes

Regime I: In the first regime, the flow behaves characteristically as if bounded by a smooth wall

due to a low Reynolds number and/or simply very small roughness lengths. There is thus a dual

dependence on both Reynolds number and roughness length scales, which can be consolidated

into a “roughness Reynolds number” (simply the roughness height written in wall units, k+)

and we define the first regime as representing those flows with small k+. Note that in flows

with sufficiently small k+, roughness is shown empirically to have no measurable effect on flow

resistance [88, 15]. As k+ grows larger, resistance does become detectable, although Bradshaw

[15] highlighted the ongoing debate as to which exact k+ represents the correct threshold for the

onset of roughness effects, known as transition, and if such a threshold even exists. Nikuradse,

for example, observed that for pipes with uniform graded-sand roughness, the flow initially

behaves as if it were a smooth wall up until when a sudden transition is detected for k+
s∞ ≥ 4

[52]. On the other hand, when studying industrial pipe surfaces, Colebrook[22] found a more
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gradual transition and consequently proposed that since multiple scales of roughness elements

are present, they transition at different critical Reynolds numbers and the integrated effect is

thus gradual.

A transition from smooth wall flow to one with measurable roughness effects hence defines

the upper limit of the first regime. In the present work, we require that no precise upper limit

definition of the first regime be set, imposing no exact threshold. Rather, we simply regard

smooth-walled flow as the height k+ smaller than that for which roughness effects are marked

(in a comparable experiment) by a departure of the friction factor from Prandtl’s hydraulically-

smooth turbulent flow expression and an accompanying shift in the logarithmic layer belonging

to the smooth wall.

Regime II: Typical roughness effects exist in the second regime due to sufficiently large

roughness elements at the wall or high Reynolds number. Flow begins as transitionally rough

and with increasing Reynolds numbers, fully rough flows are eventually expected. Most authors

illustrate the nature of the second regime by plotting ∆U+ against the single length scale k+.

Data for different surface shapes collapse in such a plot for both smooth-walled flow and fully

rough flow but not during transition, indicating that k+ alone is not sufficient to characterize

the complexity of all rough surface shapes [52]. As k+ grows further in the transitionally rough

regime, roughness Reynolds number must usually exceed O(1) for viscous scales to become less

relevant and thus for fully rough conditions to exist [124]. Roughness elements increase the drag

but do not affect the outer layer structure, in accord with Townsend’s hypothesis with exceptions

noted by Krogstad et al. [59].

Structurally speaking, the characteristic smooth wall viscous sub-layer transforms into a

roughness sub-layer that is 3 − 6k in height [31, 32]. Only above the roughness sub-layer

does outer layer similarity still hold. The log-law region is, in most cases, affected by a shift

downward in the additive constant B due to the increased wall drag. A few rough surfaces, like

those designed by Bechert [10], exist that decrease drag and would cause a upward shift, though

such specialized surfaces are not considered here.

Regime III: Finally, as the height of roughness elements k+ grows to be extremely large, to

a size more comparable with the height of near-wall viscous regions, the flow then differs from

flows in the second regime on condition that rough elements exceed a threshold suggested by

Jiménéz [52] of k/δ ≈ 1/40; their size is then large enough that they behave as discrete obstacles

to the flow and destroy the near-wall viscous structures. Thus, k/δ ≈ 1/40 defines the threshold

between the second and third regime. Where the roughness elements penetrate well into the

log-law region within the third regime k/δ > 1/40, the result is a breakdown of the similarity in

the outer-layers [16]. Presently we do not consider roughness of this final regime, but only the

smooth, transitional, and fully rough behavior of the first and second regimes.



14

Turbulent Statistics

For turbulence statistics, assuming a sufficient distance from the wall, single point measurements

over rough and smooth walls, such as Reynolds stresses, and higher order statistics are expected

to collapse in outer variables [116]. Studies by Raupach [109] and Kunkel [60] show support for

this, while Krogstad et al. [59] and Leonardi et al.[63] have concluded otherwise. Although there

is general literature consensus that the stream-wise Reynolds normal stress displays reasonable

similarity in the outer flow, with the exception of a few studies [126], the Reynolds normal stress

and Reynolds shear stress are often shown to increase due to surface roughness, as demonstrated

by Krogstad et al. [59].

1.4 Computational Framework

In the area of computational fluid dynamics, large-eddy simulation (LES) has shown success in

addressing the challenges of direct numerical simulation (DNS) associated with its high com-

putational requirements. As the Reynolds number is increased, the range of eddy length scales

existing in turbulent flows increases rapidly, requiring correspondingly higher resolutions for

DNS. The required grid points for DNS scales roughly as O(Re9/4), currently falling short of

computing power at engineering Reynolds numbers. LES takes a different approach by resolving

the larger scales while modeling the smaller scales. It generally involves four steps: filtering

the velocities, and consequently obtaining the Navier-Stokes equations with the residual stress

terms, obtaining closure in the equations by means of modeling, and finally solving the filtered

Navier-Stokes equations [103]. While LES of unbounded homogeneous and shear turbulence is

well established (e.g. Misra & Pullin[78], Ferrante et al.[29], Pitsch[102], Matheou et al.[70],

and Foysi & Sarkar[33]), LES of wall bounded flows has remained challenging, first, because the

existence of a wall causes the length scales to be progressively smaller towards the wall, and

second, owing to near-wall anisotropy. For near-wall resolved LES, nearly 99% of grid points are

used to resolve wall layers in channel flow [101] and therefore, the phenomena associated with

wall bounded flows tend to bring the required computing resources up to O(Re1.8), close to that

of DNS [100]. However, the development of near-wall modeled LES [19, 46, 100, 101, 129, 130]

has broadened the range of applications of LES for wall bounded flows. In near-wall modeled

LES, the statistical effects of the near-wall anisotropic fine scales are not resolved but modeled

via wall models that attempt to approximate near-wall physics.

Near-wall modeled LES is computationally more efficient than near-wall resolved LES because

only the outer layer is computed, with the required grid size determined by the outer flow

eddies [101]. Ideally, these approaches would use an outer layer grid that is Reynolds number

independent, although a weak dependence such as O(log(Re)) is also acceptable. Inoue & Pullin

[46] summarize several empirical approaches to wall modeling. These have focused on modeling

wall motions either empirically with the log-law, using the thin-boundary layer equations with

damped-mixing length eddy-viscosity, or by matching the LES eddy-viscosity to that in the
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Reynolds-averaged Navier-Stokes (RANS) equations. Other recent approaches include optimal-

control theory methods [130] and those that consider the physics of near wall vortices, like the

stretched spiral vortex model of Chung & Pullin [19]. For a given Reynolds number flow, all of

these wall models boast a smaller number of grid points compared to near-wall resolved LES,

making them faster to compute and hence more feasible as design tools.

Of interest in this research effort is the wall model of Chung & Pullin [19], which combines

elements of equilibrium-stress models and zonal approaches (see classification of Piomelli [101])

but falls into neither category completely. Their approach extends the SGS model of Misra &

Pullin [78] with a view to circumvent, as much as possible, the empiricism in RANS methods,

while offering the advantage of using the stretched spiral vortex model in both wall model and

outer LES [78]. The model is physical and only assumes near-wall vortices exist in a hierarchy of

sizes that scale with their distance from the wall [87], so that all other results are derived from

this. Hence it contains nothing further empirical except to match the location of intersection

between the viscous-sublayer and log-layer. Being only weakly dependent on Reynolds number,

this particular near-wall modeled LES has enabled simulation of wall-bounded flows up to at

least Reτ = 2 × 106 [46]. As such, the wall-model of Chung & Pullin is of great engineering

interest, because it enables the simulation of a category of flows in the high Reynolds number

regime.

When we combine our increased capability to simulate high Reynolds number turbulence by

using wall-modeled LES with the aforementioned evidence of non-negligible surface roughness

effects at high Reynolds number, the need for high Reynolds number LES to capture such

roughness effects becomes clear. This has prompted the present dissertation work, to further

wall modeled LES and, along with it, to furnish an appropriate roughness model. In our first

stage of discourse, channel flow is the geometry of choice for examining homogeneously rough and

smooth surfaces. The second stage examines the performance of the roughness model in a more

dynamic manner by orienting strips of roughness transverse to the flow direction, thus creating

repeated transitions of the flow from smooth-to-rough and rough-to-smooth. The analysis gains

for us an understanding of flow responses to such transitions in various quantities, including the

mean velocities, turbulent statistics, and internal boundary layer height growth rates. Finally,

in lieu of simulating high Reynolds number turbulent flows in arbitrary geometry while correctly

capturing surface roughness effects, the final stage of this work takes the first step towards such

a goal by simulating flow in a pipe geometry using a methodology that avoids common pole

singularity issues.
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Chapter 2

Large-Eddy Simulation of
Smooth-wall, Transitional and
Fully Rough-wall Channel Flow

2.1 Introduction

The body of this dissertation begins henceforth with the development of a roughness model to

be incorporated into wall modeled LES. As discussed in Chapter 1, we briefly reiterate that ex-

perimental evidence has incentivized us to consider roughness effects in our LES, which operates

at very high Reynolds numbers. The roughness corrected LES methodology is applied to fully

turbulent channel flow and the results are analyzed here to understand the Reynolds number

and roughness dependence of the flow.

In the computational literature, studies of fully-resolved roughness dynamics have typically

used direct techniques to understand flow near individual roughness elements as well as behaviors

further from the wall. There have been several DNS studies of rough-wall turbulent channel flows

[90, 63, 89, 32]. Orlandi et al. [90] have considered 2D- and 3D- roughness elements which are

20% of their half channel height and are fully characterized by grid points on the elements.

Their flow visualizations provided insight into the complex flow structure near the roughness

elements at Reτ of a few hundred. Flores et al. [32] have taken a different approach to Orlandi

et al.[90] by simulating rough channel flows at Reτ = 630, where they have replaced non-slip

wall boundary conditions of a smooth wall with zero-mean velocity disturbances and interpreted

such perturbed velocity boundary conditions as a roughness effect. Their one-point statistics

and spectral analysis of the flow properties, including the mean velocity profiles, has confirmed

Townsend’s outer layer similarity hypothesis with an exception of the very large scales, which

are known to correlate from the wall to the channel center. Additionally, they have examined

flows over an individual disturbance, revealing the extent of the roughness sublayer to be about

six times the roughness height, which is the equivalent of the buffer-layer of smooth-wall flows.

Only a few LES studies address surface roughness effects, e.g. Nakayama et al. [85] and

Anderson & Meneveau [3]. The former have compared post-filtered DNS with LES when both
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are performed on the same rough-wall geometry. Their results have suggested that unresolved

LES subgrid roughness can be accounted for with additional terms in the filtered momentum

equations. An associated consequence is added computational cost to evaluate the extra terms

at every grid point. This differs from our approach wherein the direct roughness effect is applied

only in the wall model, or equivalently only within a half to one percent of the half channel height

at the present resolution, while the rest of the flow responds to the rough surfaces through the

coupling between the outer LES and the wall model.

Anderson & Meneveau [3] have performed LES of open channel flow as a model of the atmo-

spheric surface layer with multi-scaled surface roughness in the fully rough regime, mimicking

naturally rough terrain. They search for a length scale parameter α such that the SGS rough-

ness height, z0,∆ is proportional to the local root-mean-square of the unresolved part of height

fluctuations, σ, by z0,∆ = ασ. An appropriate value of α is found by requiring resolution-

independence for the total drag force. Once the value of α is determined, it is used to calculate

the unresolved SGS part of the stress boundary conditions for the LES, which is then combined

with the resolved part of the stress boundary conditions. A scale-dependent Lagrangian dynamic

model is implemented, where the Smagorinsky constant is calculated dynamically. In contrast

to the traditional dynamic models, this model exhibits improved performance when applied to

high-Reynolds number wall-bounded flows without refining the mesh near the walls. We note

that since they tailor their simulations for geophysical flows over natural terrain, they maintain

interest only in the fully rough regime and neglect the viscous stress in the Navier-Stokes equa-

tions. On the other hand, our present interest extends to the capturing of the transitionally

rough regime as well. This work also contrasts with Anderson & Meneveau in that the viscosity

or equivalently Reynolds number is fully quantified.

In the present work, the roughness function ∆U+ is incorporated directly into the wall model

[19] without altering the SGS model [78], reflecting physically how the roughness is essentially

viewed as an additional force that modifies the wall boundary condition on the outer flow. In

particular, channel flows with subgrid roughness are simulated in the fully developed turbulent

regime. With a choice of the Colebrook formula for the roughness function, we capture the flow

in both transitionally and fully rough regimes in terms of the friction factors, mean velocity

profiles, turbulent statistics, and dissipations. From here on we will first present a summary of

the derivation of the stretched vortex model and the wall model [78, 19, 46] in §2.2, followed by

the extension of this approach to surface roughness in §2.2.4. Subsequent sections describe some

results of the LES, followed by a summary in §2.9.

2.2 SGS model and wall model with roughness

The implementation of the LES for a rough channel comprises two major parts: the stretched

vortex SGS model and the wall model. The former is unaffected by the introduction of roughness,

whereas the latter needs to be modified to incorporate the roughness model. In this section,
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an overview of the SGS model is laid out, followed by the extension of the wall model [19] to

include surface roughness. At this point, the roughness-corrected wall model is developed with

a generic form of roughness correction. We then proceed to discuss the selection of the specific

form of roughness function from numerous roughness functions available for other flows and

applications.

2.2.1 Stretched vortex SGS model

The stretched-vortex approach is a structural SGS model designed to represent the statistical

effect of subgrid motion by using information from resolved scale quantities [78]. It is assumed

that the subgrid vorticity in each cell comprises a superposition of stretched vortices, each

unidirectional and of “cylindrical” type. Upon coordinate transformation from the vortex-fixed

frame to the lab-fixed frame, the distribution of orientations of the vortex structures forms a

probability density function (PDF) which reflects the local anisotropy of the turbulence [107].

Extending the assumption that the ensemble dynamics of subgrid scale motion are dominated

by a vortex aligned with a unit vector ev, modeled via a delta-function PDF, the subgrid stress

tensor is given by [107, 19]

Tij =
(
δij − evi evj

)
K. (2.1)

Here in Equation (2.1), the subgrid stress tensor, Tij = ũiuj − ũiũj is expressed in terms of the

unit vector, ev, and the subgrid kinetic energy K, which is given by the integral of the subgrid

stress energy spectrum E(k) as

K =

∫ ∞

kc

E(k)dk, (2.2)

where kc = π/∆c is the cutoff wave number and ∆c = (∆x∆y∆z)
1/3

. In what follows, the

derivation of (2.1) is reviewed in some detail.

For subgrid stress closure, the subgrid kinetic energyK must be obtained as in Equation (2.2).

The energy spectrum for turbulent incompressible flow E(k), an essential part of calculating the

subgrid kinetic energy, is known to have the asymptotic solution of the form (2.3) below for large

wave number k, where ε is the dissipation rate per unit mass and η is the Kolmogorov length.

This relation was initially obtained by using dimensional reasoning by Kolmogorov, and later

derived from the Navier Stokes equations by Lundgren [64] in the form of Equation (2.4) for

stretched spiral type vortices, where a = evi e
v
jSij is the stretching along the subgrid vortex axis

exerted by the resolved scales, and Sij is the resolved strain-rate tensor.

E(k) = ε2/3k−5/3F (ηk). (2.3)

= K0ε
2/3k−5/3 exp

(
−2k2ν

3|a|

)
, (2.4)

Upon integration of Equation (2.4) in accordance to Equation (2.2), the subgrid kinetic energy is
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obtained as Equation (2.5) in terms of a group constant K′0 and an incomplete gamma function.

K =
1

2
K′0Γ[−1

3
, κ2
c ], where Γ[s, t] =

∫ ∞

t

us−1 exp(−u)du. (2.5)

Here, K′0 = K0ε
2/3λ

2/3
v , λv = (2ν/3|a|)1/2, and κc = kcλv. The approximation of Γ[s, t] and the

evaluation of K′0 are given in Chung & Pullin[19].

2.2.2 Wall Model with Roughness: Friction Velocity

The challenge in the LES of wall bounded flows is that the turbulent length scales become

progressively smaller towards the wall due to confinement of the near-wall eddies. In near-

wall resolved LES, this is addressed by introducing a non-uniform mesh that has higher mesh

refinement near the wall, and thus capturing the effect of near-wall fine scales. In wall-modeled

LES, the near-wall anisotropic fine scales are modeled via a wall model, thus eliminating the need

for higher grid refinement. At the interface between the wall model and outer flow region, i.e.

at a lifted virtual wall, Chung & Pullin [19] define a slip velocity, thus providing the outer LES

with slip Dirichlet boundary conditions. Here, roughness effects are included while retaining two

major features, first solving an ODE to obtain the friction velocity and subsequently evaluating

the slip velocity utilizing Townsend’s attached-eddy hypothesis. We have denoted x, y, and

z as stream-wise, wall-normal, and span-wise coordinates, respectively, and u, v, and w are

the corresponding velocity components. The wall-parallel filtering and wall-normal integration

operators are defined by

φ̃ (x, y, z, t) =

∫ ∫
φ (x′, y, z′, t)G (x− x′; ∆f )G (z − z′; ∆f ) dx′dz′, (2.6)

〈φ̃〉 (x, z) =
1

h− k (x, z)

∫ h

k(x,z)

φ̃ (x, y, z) dy, (2.7)

where φ̃ denotes wall-parallel filtering and 〈φ〉 denotes a wall-normal average.

We proceed to give a heuristic derivation of the ODE for the friction velocity uτ in the rough-

wall flow. Let the wall shape be y = k(x, z) with k(x, z) = 0 and define f(x, z) = k(x, z) − y.

Here, we denote ( ) as the average over the wall-parallel plane. The outward wall-normal (into

the wall) is n = ∇f/|∇f | on f = 0. We consider a local control volume at the channel wall with

x, z dimensions ∆x, ∆z (the local grid size), and y-dimension an arbitrary thickness h. It is

further assumed that ∆x, ∆z and h are all much larger than max|k(x, z)|. The four wall-normal

surfaces intersect the wall and the bottom surface is the wall itself. Applying top-hat filtering

and averaging as defined above to the momentum equations, we obtain an integral form of the

stream-wise momentum equation over the control volume

∂

∂t

y
udV = −

{
n.

(
u u +

p

ρ
I− τ

ρ

)
dS, (2.8)
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where τ = 2νS and S is the strain-rate tensor. The RHS of Equation (2.8) essentially represents

the flux of momentum through the planes defining the control volume, and exterior forces on the

control volume consists of the convective, pressure, and viscous terms, with each contribution

requiring special wall boundary treatment upon our inclusion of rough walls.

The pressure term evaluated at the rough wall is non-zero due to the variation of n. Since

the roughness geometry of interest is subgrid, this pressure contribution from the rough wall

introduces an unknown term in the filtered-averaged momentum equation. A similar situation is

found for the viscous contribution at the rough wall, which is also in the form of surface integral

over an unknown surface geometry. Collecting all the flux contributions, including unknown

terms, and approximating flux differences across wall-normal surfaces in terms of wall-parallel

derivatives, the cell-averaged stream-wise momentum equation for the control volume is rewritten

as

∂〈ũ〉
∂t

+
∂〈ũu〉
∂x

+
∂〈ũw〉
∂z

+
1

h
ũv|h = −∂p̃/ρ

∂x

∣∣∣∣
h

+
ν

h

∂ũ

∂y

∣∣∣∣
h

− 1

h

[
1

∆x∆z

x

w

p

ρ
nx dS −

ν

∆x∆z

x

w

n.∇u dS

]
,

(2.9)

where nx is the stream-wise component and the surface integral
s
w

denotes the integral over the

wall. The last two integral terms are the unknown pressure and viscous terms due to roughness.

To encapsulate the wall skin friction contributions, we define the friction velocity uτ as

u2
τ =

1

∆x∆z

x

w

p

ρ
nx dS −

ν

∆x∆z

x

w

n.∇u dS =
1

ρ
τw, (2.10)

where τw is the total surface drag force per unit area and ( ) refers to an average over the

intersection of the control volume (cell) and the wall. The differential equation (2.9) becomes

∂〈ũ〉
∂t

+
∂〈ũu〉
∂x

+
∂〈ũw〉
∂z

+
1

h
ũv|h = −1

ρ

∂p̃

∂x

∣∣∣∣
h

+
ν

h

∂ũ

∂y

∣∣∣∣
h

− 1

h
u2
τ . (2.11)

Equation (2.11) is identical to the smooth-wall case (see Chung & Pullin [19]), but contains a

generalized definition of the friction velocity to account for the additional pressure drag and

corrected viscous contributions to the total surface drag for rough walls. The smooth-wall case

with the conventional definition of uτ is recovered with k(x, y) ≡ 0 and n = (0, 1, 0).

2.2.3 Inner Scaling

The unsteady term of Equation (2.11) is treated with a general form of inner scaling. A classical

but empirical roughness correction to inner scaling can be used to account for an increased

momentum deficit due to the surface drag on the roughness elements, resulting in a downward

shift of the inner-scaled mean velocity profile [117]. Such a downward shift is quantified via

roughness function ∆U+, which is incorporated in the inner scaling as

ũ(x, y, z, t) = uτ (x, z, t)
(
F1

(
y+
)
−∆U+

(
k+
s∞
))
, (2.12)
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where y+ = yuτ/ν and k+
s∞ = uτks∞/ν. The first term F1 (y+) is the common term for both

smooth and rough walls, whilst ∆U+ (k+
s∞) is the roughness function expressed in terms of

equivalent sand roughness, ks∞ and k+
s∞ = ks∞uτ/ν. Applying the wall-normal average, and

temporal derivative, we obtain the expression given by

∂

∂t
〈ũ〉 =

d

dt

(
uτ
h

∫ h

0

F1

(
y+
)
−∆U+

(
k+
s∞
)
dy

)
, (2.13)

where the friction velocity is spatially and temporally variant, i.e. uτ = uτ (x, z, t). In order to

find an explicit expression for Equation (2.13), we differentiate Equation (2.12) with respect to

uτ and obtain

∂ũ

∂uτ
= F1(y+) + y+F ′1(y+)−∆U+

(
k+
s∞
)
− k+

s∞∆U ′+
(
k+
s∞
)

=
d(y+F )

dy+
− d(k+

s∞∆U+)

dk+
s∞

. (2.14)

We then apply the wall-normal averaging defined in Equation (2.7) to arrive at

∂〈ũ〉
∂uτ

=
u|h
uτ
− k+

s∞
∂∆U+

∂k+
s∞

. (2.15)

Therefore, Equation (2.13) can be re-expressed as

∂

∂t
〈ũ〉 =

∂〈ũ〉
∂uτ

∂uτ
∂t

=
∂uτ
∂t

(
ũ |h
uτ
− k+

s∞
∂∆U+

∂k+
s∞

)
. (2.16)

Equation (2.16) is an exact consequence of Equation (2.12) - (2.13) for arbitrary F1(y+) and

∆U+(k+
s∞). In particular we note that integrals of F1(y+) do not appear in Equation (2.16)

owing to cancellation.

Substitution of Equation (2.16) into the averaged-filtered momentum equation (2.11) and

approximations of the filtered-averaged nonlinear terms as values at y = h (one-point estimates),

we obtain an ordinary differential equation (ODE) for uτ as

duτ
dt

=

−∂ũu
∂x

∣∣∣∣
h

− ∂ũw

∂z

∣∣∣∣
h

− ∂P̃

∂x

∣∣∣∣
h

− 1

h
ũv |h +

ν

h

∂ũ

∂y

∣∣∣∣
h

− 1

h
u2
τ

ũ |h
uτ
− k+

s∞
∂∆U+

∂k+
s∞

. (2.17)

The height h protrudes to a distance corresponding to the first or second grid cell of the LES

domain and all filtered quantities on the right-hand side are provided by the LES itself. The

presence of surface roughness is apparent in the denominator of Equation (2.17) in the form of

the derivative of ∆U+, which indicates that the roughness function is dependent on the inner-

scaled roughness height and that the friction velocity is calculated dynamically at each wall

point. Equation (2.17) allows local and dynamical calculation of uτ . In practice, an equiva-

lent differential equation for η = u2
τ/ν is solved numerically, and synchronized with the time

steps occurring in the Navier-Stokes solver [19, 46]. While for the present channel flow, the

wall-averaged uτ can be calculated using an integrated pressure-gradient, wall-drag balance (es-
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sentially an extension of the above argument to the whole channel), Equation (2.17) is more

general and can be used for boundary layer flows in the presence of pressure gradient. Further

formal extensions of Equation (2.17) to three-dimensional boundary layers in the presence of

wall curvature are straightforward, as are the incorporation of more general roughness functions

which are functions of several roughness scales ∆U+(k
+(1)
s∞ , k

+(2)
s∞ , k

+(3)
s∞ , ......).

2.2.4 Wall Model with Roughness: Slip Velocity at a Lifted, Flat Vir-

tual Wall

Chung & Pullin [19] have defined three near-wall regions: (I) 0 < y < hν , essentially the viscous

sublayer and part of the buffer layer; (II) hν < y < h0, part of the overlap layer where the shear

stress is approximately constant and is modeled by the stretched vortex SGS model consisting

of attached vortices aligned with the stream-wise direction; (III) h0 < y, where non-universal

outer flow features are computed by LES coupled with the original stretched vortex SGS model

of detached subgrid vortices aligned with the most extensive strain-rate direction. The lifted

virtual wall refers to a plane at y = h0, somewhere within the overlap region. In region (I), the

velocity shows a linear profile, i.e. ũ+ = y+ where ũ+ = ũ/uτ and y+ = yuτ/ν. We take h+
ν to

be the intercept of the linear and empirical log-profile of the law of the wall, which is h+
ν ≈ 11

for a hydrodynamically smooth wall.

A summary of the derivation of the slip velocity is presented by Inoue & Pullin [46]. The

derivation begins by assuming that the total shear stress is approximately constant [131] and

that in the overlap region (region II) near-wall vortices are stream-wise aligned [41, 111]. Such

conditions allow us to reduce the Reynolds shear stress expressed in Equation (2.1) to

Txy = −1

2
γIIK

1/2∆c
dũ

dz
. (2.18)

Now, we further assume that the near-wall region can be modeled by a hierarchy of stream-wise

aligned vortices whose scales are proportional to the wall distance [19]. Along with Equation

(2.18), we arrive at
dũ

dy
=

1

K1

uτ
y
, where K1 = −γIIK

1/2

2Txy/uτ
. (2.19)

The idea behind this model is called attached eddies as opposed to detached eddies, which exist

in the outer part of the flow where the vortices are unaware of the wall [131, 97, 87]. Upon

integration of Equation (2.19) and setting the constant of integration by requiring that the

log-law intersects with the linear-relation near the wall at a particular distance from the wall,

y+ = h+
ν , a log-relation is obtained for the velocity in the overlap layer above smooth walls as

ũ = uτ

(
1

K1
log
(
y+
)

+B

)
, (2.20)

where B = h+
ν − K−1

1 log (h+
ν ) [19]. The extension of this relation to rough surfaces is carried
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out through the application of the roughness correction ∆U+ (k+
s∞) to this relation. Thus, we

obtain the velocity profile in the overlap layer above rough surfaces as

ũ = uτ

(
1

K1
log
(
y+
)

+B −∆U+
(
k+
s∞
))

. (2.21)

We now assume that we can apply a slip-velocity boundary condition at a flat, lifted virtual

wall at h0 > k(x, z). It is in this sense that the roughness is considered subgrid. The slip velocity

is obtained using Equation (2.21) evaluated at y = h0. Further, to simplify the expression for

K1, we recall the assumption that the total shear stress is approximately constant in the overlap

region, which allows for modeling the constant value of the total shear stress as the geometric

average of its value at the true wall and at the virtual wall, hence, we obtain

ũ |h0= uτ

(
1

K1
log
(
h+

0

)
+B −∆U+

(
k+
s∞
))

where K1 = − γIIK
1/2

2 (−Txy |es̃)
. (2.22)

Chung & Pullin [19] estimate the vertical momentum mixing constant as γII = 0.45 by matching

Townsend’s structure parameter –a measure of the relative amount of shear stress to vortex

kinetic energy– at the interface of region (I) and (II). Typically, the height of the virtual wall h0

is determined as some fraction of the first grid size, and presently h0 = 0.18∆y is used.

The use of the log-like relation in the wall model in Equation (2.22) could be interpreted

as bias introduced in the LES that leads to a log-variation in the mean velocities. However,

we point out a study on the influence of the inner-scaling laws on the LES results. Cheng &

Samtaney have implemented LES with the stretched vortex model and wall model, using both

the power-law and log-law for the wall model. They have shown that when a power-law wall

model is used instead, a log-profile in LES is still obtained.

In summary, the near-wall SGS model, for subgrid roughness, is implemented as follows: for

every cell adjacent to the walls, Equation (2.17) is solved for uτ and hence the friction velocity

is calculated dynamically. Then the log-relation in Equation (2.22) is used to obtain the slip

velocity at the lifted virtual wall at y = h0. These processes are coupled with the outer LES

in two ways: first, some terms in the RHS of the ODE in Equation (2.17), as well as the shear

stress Txy |es̃ necessary for evaluating K1, are supplied by the outer LES. The resultant slip

velocity at the lifted virtual wall provides the LES with the Dirichlet boundary conditions. The

roughness functions are left in the implicit form to accept any roughness type and empirical

formula appropriate to the specific use of the model. The explicit form of roughness function in

this work is discussed subsequently.

2.2.5 Wall-Normal Velocity Boundary Condition

We have thus far considered wall-parallel slip velocity to incorporate surface roughness effects,

yet it is also possible to account for wall-normal velocity at the virtual wall with roughness taken



24

into consideration. The filtered continuity equation is given by

∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z
= 0. (2.23)

By integrating this continuity equation from the actual wall to the virtual wall height and

assuming that the filtered span-wise velocity is zero, we obtain the vertical velocity at the

virtual wall as

ṽ |h0= −h0
∂〈ũ〉
∂x

. (2.24)

Utilizing an inner-scaling argument, which is similar to how Equation (2.16) is obtained for the

wall-parallel velocity boundary condition, leads to the expression for the wall-normal velocity

boundary condition,

ṽ |h0
= −h0

∂uτ
∂x

(
ũ |h0

uτ
− k+

s∞
∂∆U+

∂k+
s∞

)
. (2.25)

In the studies of Flores & Jiménez [32] and Orlandi et al. [89] where roughness effects are

modeled by finite velocity perturbation at wall boundaries, the wall-normal velocity is observed

to have influences on the flow. Flores & Jiménez have observed ∆U+ of 4.6 when the wall-normal

velocity alone is forced using a disturbance magnitude of v′+ = 0.72 at the wall. In contrast,

when the stream-wise velocity is disturbed in the same phase as the wall-normal velocity, the

resultant velocity shift has been shown to nearly double. Here, the wall-normal velocity has been

calculated passively in the simulation at each wall point to identify the relative magnitudes of

the wall-normal velocity to wall-parallel slip velocity. It has been found that the wall-normal

velocity is three to four orders of magnitude smaller than the wall-parallel slip velocity; thus,

the vertical velocity at the virtual wall is omitted in our simulations.

2.2.6 Roughness Function

The explicit forms of roughness functions have been of interest in theoretical, experimental, and

computational studies of wall bounded turbulent flows. The choice of roughness function should

be determined by specific surface type and is considered an input to the present model. The forms

of roughness functions are influenced by both universal roughness effects and potentially by the

individual choice of roughness types according to their topographical profile. A comprehensive

summary of roughness functions is presented by Jiménez [52]. Roughness is quantified in terms of

equivalent sand roughness ks∞, and the well established Colebrook empirical formula in Equation

(2.26) is used for the roughness function.

∆U+ = κ−1 log
(
1 + 0.26k+

s∞
)
. (2.26)
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The equivalent sand roughness in wall units can be expressed in terms of the Reynolds number

Reτ and relative roughness ε.

k+
s∞ = εReτ , ε ≡ ks∞

δ
, Reτ =

uτ δ

ν
(2.27)

In the present implementation, the roughness is strictly subgrid and hence the level of rough-

ness is characterized by ks∞ rather than alternatives, such as considering individual roughness

element shapes, fluvial-type topography [3], or with systematic methods such as morphometry

in urban landscapes [37, 65]. Accordingly, zero-plane displacement correction d is not germane

since all surfaces have a d = 0 designation in our coordinate system [48].

When the Colebrook formula is incorporated into our wall model, the second term of the

denominator in Equation (2.17) becomes

k+
s∞

∂∆U+

∂k+
s∞

=
1

K1

0.26 k+
s∞

1 + 0.26 k+
s∞

,

=
1

K1

0.26 ε δ uτ/ν

1 + 0.26 ε δ uτ/ν
. (2.28)

Here, the locally and dynamically determined value of friction velocity uτ is obtained from the

wall model. With the introduction of the Colebrook formula, the log-relation in Equation (2.22)

takes the following form:

ũ |h0
= uτ

(
1

K1
log
(
h+

0

)
+B − 1

K1
log
(
1 + 0.26 k+

s∞
))

. (2.29)

We remark that the roughness-corrected model is semi-empirical in the sense that the rough-

ness function is a model input supplied by experiment, theory, low Reynolds number DNS, or

some other means. Further, the flow obeying Townsend’s hypothesis may be interpreted as the

inevitable consequence of the LES directly setting the slip velocity according to the empirical

roughness function. However, such empiricism is applied to a thin layer immediately adjacent

to the wall; the use of a roughness function is confined to the wall model only, which presently

operates over 0.5 ∼ 1% of the half channel height δ, dependent on resolution. Additionally, the

present model calculates the slip velocity using the friction velocity that is calculated locally

and dynamically (see Equation (2.17)), and hence the slip velocity only partially relies on the

empiricism. Finally, Townsend’s hypothesis suggests that the wall surface information is trans-

mitted from the wall to the bulk of the flow through the friction velocity. However, the current

models operate via two-way coupling and hence the outer flow information also travels towards

the wall; this nature is not included in the hypothesis.

2.2.7 LES Summary

We have addressed two important components of the current LES framework, the wall model

and the stretched vortex SGS model. In short, in a typical time-step of the overall LES, the
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following three stages are implemented:

1. The friction velocity uτ is calculated by integration of Equation (2.17) locally and dynam-

ically over the time-step. The input to the ODE is supplied by the outer LES.

2. With an updated uτ now known at every point on the wall, a local slip velocity is calculated

using Equation (2.29) and is supplied to the outer LES as the boundary conditions at the

lifted virtual wall.

3. With the boundary condition at each grid point on the virtual wall now known, one time-

step of the LES equations is then performed using the fractional step method described

subsequently in §2.3, using the stretched-vortex SGS model described earlier to calculate

subgrid stresses via Equation (2.1).

In terms of assumptions, inputs and interactions, we can summarize the framework as follows.

The wall model assumes inner-scaling in calculating the friction velocity and slip velocity, given

by Equation (2.17) and (2.29), respectively; it is in this way that the wall model is designed to

be optimal for high Reynolds number flow, where such scaling is clearly identified. Operating

on smooth walls, the model requires two empirical values: the log-linear profile intersect, h+
ν

and virtual wall height, h0 = 0.18∆y. Upon inclusion of roughness, another measure of empiri-

cism, Hama’s roughness function is required; currently, we used the Colebrook formula, given

in Equation (2.26). The other inputs to the wall model are supplied by the outer LES at the

virtual wall.

The wall model supplies the boundary conditions for the outer LES via the slip velocity,

which is the singular mechanism for the LES to know of the wall roughness conditions. In

other words, the subgrid stresses, calculated by Equation (2.1), are entirely unmodified by the

inclusion of roughness effects, but are responsible for correctly transmitting the wall roughness

information towards the bulk of the flow as well as feeding back the bulk flow information to the

wall model.

Using this framework, we aim to first improve the predictive capability of LES for rough-

wall flows at large Reynolds number, and second to investigate the effects of roughness on the

bulk of a turbulent flow including the outer region, while less focus is placed on the details in

the near-wall region. As discussed in the remainder of this chapter and Chapter 3, the current

roughness corrected model is robust when applied to channel flows with uniform and nonuniform

roughness distributions at the wall. The application is not limited to channel flow, but can, in

principle, be applied to other flows such that the roughness distribution can be space dependent

as well as time dependent, so long as roughness elements are subgrid. Finally, the wall model

with roughness is entirely local, and hence in principle can be incorporated into any LES or DNS

code, for which arbitrary Dirichlet-like boundary conditions are admissible.
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2.3 Numerical Methods

The incompressible Navier Stokes equations given in Equation (2.30) are solved numerically

for a rough-wall channel of dimensions Lx × Ly × Lz (stream-wise, wall-normal, and span-wise

directions respectively).

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u−∇ ·T (2.30)

∇ · u = 0, (2.31)

where bold-face denotes tensors. The velocity vector and pressure are denoted by u and p

respectively. In the current implementation, we employ the skew-symmetric form of the non-

linear terms since, despite its higher computational cost, it handles the aliasing errors well. As

introduced in Perot [96], this set of equations can be discretized and set in matrix form,


A G

D 0




 un+1

pn+1


 =


 rn

0


+


 bc1

bc2


 , (2.32)

where the current time step is denoted by n. The operators A, D, and G are respectively

the advection-diffusion, divergence, and gradient operators. Denoted by rn is the explicit term

on the right-hand-side of the momentum equations. The specific forms for these operators

depend on the discretization schemes used in the simulation. The first boundary condition bc1 is

imposed on the momentum equation and the second boundary condition bc2 is imposed on the

continuity equation. In the span-wise and stream-wise direction, the boundary conditions are

periodic, while the wall-normal boundary condition is Dirichlet, as specified by the wall model

dynamically.

Through block LU factorization and first-order approximation of the advection-diffusion op-

erator, the matrix system in Equation (2.32) reduces to the following system of equations,

A un+1
∗ = rn + βmbc1, (2.33)

dt(αm + βm)D Gp′ = (D un+1
∗ + bc2), (2.34)

un+1 = un+1
∗ − dt(αm + βm)Gp′,

where

A = I− βmdt

Re
L,

rn = dt
[
−γmN un − ξmN un−1 + αm(L un + bcn1 ) +∇p

]
.

Here, the matrix I is the identity matrix and L is the Laplacian operator. We apply the mean
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pressure gradient in the stream-wise direction only. The subscript m denotes the index that fol-

lows the fractional steps. The discretizations resemble that of the second-order Adams-Bashforth

method for the explicit terms and Crank-Nicolson for the implicit terms, but the coefficients are

designed differently from these schemes in order to achieve third-order accuracy. The values of

coefficients, αm, βm, γm, and ξm are given in Spalart et al. [125]. The spatial discretization

employs a fourth-order finite difference method on a staggered grid in the stream-wise (x) and

wall-normal (y) directions and a pseudo-spectral method is applied in the span-wise direction

(z) with a p1th-order Fourier exponential filter, which mimics the 2/3 rule in order to prevent

aliasing errors [36, 19]. The boundary treatment, in part, follows Morinishi [83], where a ghost-

point scheme extends the grid points beyond the computational domain so that a consistent

stencil can be employed throughout. The ghost-point scheme is designed to globally conserve

mass and momentum and is effectively equivalent to a one-sided finite-difference scheme at the

walls [46]. The wall model uses the same numerical method as the Navier-Stokes equations for

time-integration and the boundary points have been extended in a smiler way via the ghost-point

scheme.

2.3.1 Helmholtz Equation for Pressure

Flow incompressibility is enforced by the pressure-Poisson equation. The three-dimensional

Helmholtz equation reduces to a series of two-dimensional equations and ultimately a series of

linear equations via Fourier transform in the span-wise direction, and cosine transforms in the

stream-wise direction as described in Inoue & Pullin [46]. Here, the basic steps are introduced.

In the current implementation, the field variables are Fourier-transformed in the span-wise

direction and discretized via fourth-order scheme in the other direction. Noting that since the

domain is also periodic in the stream-wise direction, a discrete cosine transform can be applied

to the flow variables and the pressure can be expressed as

p(xi, yj , kz) =
2

N

N−1∑

kx=0

p̃(kx, yj , kz) cos

(
πkx(i+ 1/2)

N

)
. (2.35)

Denoting the RHS of Equation (2.34) by f(x, y, k), the Helmholtz equation for pressure is ex-

pressed as

D Gp(xi, yj , kz) =
∂2p(xi, yj , kz)

∂x2
i

= f(xi, yj , kz), (2.36)

where the leading constant of the LHS of Equation (2.34) is neglected for simplicity. In the

Fourier and cosine-transformed space, Equation (2.36) is expressed as

2

N

N−1∑

kx=0

[
λi
∆x

+ δ2
y + k2

z

]
p̃(kx, yj , kz) cos

(
πkx(i+ 1/2)

N

)
=

2

N

N−1∑

kx=0

f̃(kx, yj , kz) cos

(
πkx(i+ 1/2)

N

)
,

(2.37)
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where δ2
y is the fourth-order finite difference operator and λi is an explicit operator based on the

fourth-order center difference given by

λi = 2

(
cos

(
3πkx(i+ 1/2)

N

)
− 54 cos

(
2πkx(i+ 1/2)

N

)
+ 783 cos

(
πkx(i+ 1/2)

N

)
− 730

)
.

(2.38)

Finally, Equation (2.37) is simplified to

[
λi
∆x

+ δ2
y + k2

z

]
p̃(kx, yj , kz) = f̃(kx, yj , kz). (2.39)

Note that if the application of this numerical method is to be limited to channel flow, the field

variables could be transformed into Fourier space in the stream-wise direction as well. However,

since such an operation would not be valid in an important canonical flow, the boundary layer,

the cosine transform has been selected to keep the numerical method general.

2.4 Model Validation

Prior to discussing the present high Reynolds number LES, we make contact with the DNS

results of Hoyas & Jiménez [43] for smooth-wall channel flow at Reτ ∼ 2, 000 and Flores &

Jiménez [32], who have performed channel-flow DNS at Reτ ∼ 630 where the non-slip and

impermeability velocity boundary conditions are perturbed by zero-mean fluctuations in order

to model the effect of roughness. The mean velocity profiles and stream-wise turbulent intensities

are shown in Figure 2.1. For the rough-wall cases, the DNS profile at Reτ = 632 and k+
s∞ = 129

was obtained by perturbing both the stream-wise and wall-normal velocities. We remark that

this technique could be adapted to the present LES approach as an alternative wall-model

for roughness but is not explored presently. Also shown in Figure 2.1 is our LES profile at

k+
s∞ = 129. Only a few LES data points overlap the DNS. This is because our LES has the

requirement that the roughness be subgrid. Since k+
s∞ = εReτ , then k+

s∞ = 129 and Reτ = 632

would give ε ≈ 0.20, which violates this condition with the present uniform grid. Our LES

uses Reτ = 2.58 × 104 and ε = 5 × 10−3. Also included on the plot is the Colebrook-corrected

log-law. The DNS result at k+
s∞ = 129 lies close to the LES results and the associated Colebrook

corrected log-law expressed as

u+ = κ−1 log
(
y+
)

+B − κ−1 log
(
1 + 0.26k+

s∞
)
. (2.40)

The comparison of the stream-wise intensity (Figure 2.1-b) features only the rough-wall

cases and shows reasonable agreement between the DNS result of Flores & Jiménez and our LES

results. A relatively large discrepancy is observed closer to the wall and is attributed to the

present wall-modeled LES, which does not resolve the near-wall region.
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Figure 2.1: Comparison between LES and DNS[43, 32] (a) Mean velocity profiles, (b) stream-
wise turbulence intensity. 2 : LES ε = 0 (Smooth), 5 : LES k+

s∞ = 129, Dash-dot line: DNS
smooth, Solid line: DNS k+

s∞ = 129, Dotted line: log-law with the Colebrook formula associated
with LES with κ = 0.37 and B = 4.5.

2.5 Results

Large-eddy simulations are implemented with two different resolutions over a range of the relative

roughness ε = ks∞/δ as well as the Reynolds number from Reτ = 650 − 2 × 108. The upper

limit of the roughness ε is imposed by the assumption that the roughness of interest is subgrid,

and hence it should not exceed the height of the lifted virtual wall, ks∞ < h0. This implies that

the upper limit of the relative roughness is resolution dependent. With the current wall model,

this upper limit of the relative roughness is estimated as ε < 0.18∆y/δ. After a summary of the

simulation conditions, some major results are discussed, including friction factor, mean velocity

profile, universal asymptotic velocity defect profile, turbulent statistics, and dissipation.

2.5.1 LES Performed

A summary of the simulation conditions is given in Table 2.1. Most of the simulations have

been implemented at two different resolutions to ensure the consistency of the results, which is

discussed later in §2.5.2. The range of Reynolds number based on the friction velocity, Reτ =

650−2×108, corresponds to the bulk-velocity based Reynolds number of Reb = O(104)−O(1010).

This bulk velocity is a simulation constant and fixed in time, while the mean stream-wise

pressure gradient is time-varying and calculated such that the bulk velocity stays constant.

In addition to the first sub-step of the time integration (Equation (2.33)), we solve the same

equation with the RHS replaced by unity. The solution to the former problem, u1, represents

the intermediate velocity without the mean pressure gradient at all, while the solution to the

latter, u2, represents the intermediate velocity with only the pressure gradient being applied.

The bulk velocity of u1 is then compared to the desired bulk velocity with respect to that of u2,

and through this comparison we obtain the coefficient α that represents the amount of pressure

gradient necessary to achieve the mass flux desired. Finally, due to the linearity of Equation

(2.33), the intermediate velocity is corrected as un+1
∗ = u1 + αu2. Whether the simulation

is implemented with the mean pressure gradient or bulk velocity fixed makes no discernible
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Table 2.1: Summary of LES simulations. The first letter of each case indicates the resolution
(high or low). The first and second number of each case indicate different realizations of ε and
Reτ , respectively.

Case Reτ Lx/δ Ly/δ Lz/δ Nx Ny Nz ε εReτ

L0.1− L0.6 650− 2× 106 32 2 8 192 48 48 0 0
L1.1− L1.6 650− 2× 106 32 2 8 192 48 48 1× 10−4 0.065− 200
L2.1− L2.6 650− 2× 106 32 2 8 192 48 48 5× 10−4 0.325− 1000
L3.1− L3.6 650− 2× 106 32 2 8 192 48 48 1× 10−3 0.65− 2000
L4.1− L4.6 650− 2× 106 32 2 8 192 48 48 2× 10−3 1.3− 4000
L5.1− L5.6 650− 2× 106 32 2 8 192 48 48 5× 10−3 3.25− 10000

H0.1−H0.9 650− 2× 108 32 2 8 384 96 96 0 0
H1.6 2× 106 32 2 8 384 96 96 1× 10−6 2
H2.6 2× 106 32 2 8 384 96 96 5× 10−6 10

H3.5−H3.6 2× 105 − 2× 106 32 2 8 384 96 96 1× 10−5 2− 20
H4.5 2× 105 32 2 8 384 96 96 5× 10−5 10

H5.1−H5.9 650− 2× 108 32 2 8 384 96 96 1× 10−4 0.065− 200
H6.1−H6.9 650− 2× 108 32 2 8 384 96 96 5× 10−4 0.325− 1000
H7.1−H7.9 650− 2× 108 32 2 8 384 96 96 1× 10−3 0.65− 2000
H8.1−H8.6 650− 2× 106 32 2 8 384 96 96 2× 10−3 1.3− 4000
H9.1−H9.9 650− 2× 108 32 2 8 384 96 96 5× 10−3 3.25− 10000

difference in the resultant statistics.

Typically, the simulation requires 15−20 convection times for the statistics up to second order

to settle. With an exception of the data for the flow visualization, the data for any statistical

quantity is first averaged in time and second in space. One-dimensional statistics use the spatial

average in all three directions, while two-dimensional statistics such as the wall-normal profiles

use the planar average.

2.5.2 Friction Factor from LES

Channel flows are driven by their mean pressure gradient. One way of measuring this is to

define the friction factor. For both channel and pipe flows, friction factor is defined as the mean

pressure gradient scaled by the dynamic pressure, which can be written using the friction velocity

as

f ≡ −2 δ dp/dx

ρ u2
b

=
2 τw
ρ u2

b

, (2.41)

= 2
u2
τ

u2
b

, (2.42)

where ub denotes the channel bulk velocity, and τw is the wall-averaged shear stress. We have

used −dp/dx = τw/δ for the channel flow and τw = ρu2
τ , where uτ is the wall-time-averaged

square friction velocity.

From each LES the friction factor f is calculated in accordance with Equation (2.42), where

the time-average of the ratio of wall-averaged u2
τ to bulk velocity u2

b at every instance is calcu-

lated. Defining the bulk Reynolds number as Reb = δub/ν then defines LES-generated points

for the function f = f(ε, Reb). These are shown in Figure 2.2 against Reb for various ε. The
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Figure 2.2: Friction factor as a function of Reb at various roughness ε. Open symbols, high
resolution H5.1-H9.6. Solid symbols, low resolution L0.1-L5.6. Symbols indicate 2 : ε = 0 ,
# : ε = 1 × 10−4 , 4 : ε = 5 × 10−4 , 5 : ε = 1 × 10−3, � : ε = 2 × 10−3, D : ε = 5 × 10−3.
Dashed line, empirical results from §2.5.3. Solid line, theoretical laminar result f = 12/Reb.

open and solid symbols distinguish the high resolution cases (H5.1-H9.9) and low resolution cases

(L0.1-L5.6), respectively. These results can be viewed as a Moody-like diagram obtained from

LES for the given ∆U(k+
s∞). Our results cover the fully turbulent regime consisting of smooth,

transitionally rough and fully rough flows. For the smooth-wall case ε = 0, the friction factor

continuously decreases with Reynolds number. In contrast, at fixed ε > 0, the friction factor

decreases with Reynolds number, passing through a Reynolds number dependent phase in the

hydrodynamically smooth regime and the transitional regime, and finally approaches a Reynolds

number independent phase in the fully rough regime. This asymptotic rough-wall limit is not

built into either the wall model or the LES, but results from the overall LES-wall-model dynamic

calculation.

2.5.3 Empirical Equivalent Moody Diagram

The original Moody diagram is a representation of friction factor in a pipe as a function of

Reynolds number and roughness as introduced by Moody [82]. It is a graphical representation of

an empiricism developed by Colebrook [22]. Presently we obtain an empirical Moody-diagram

for channel flow for comparison with the LES results. We utilize an empirical log-law corrected

for roughness with the Colebrook formula as

ũ(y)

uτ
=

1

κ
log
(yuτ
ν

)
+B +

Π

κ
W
(y
δ

)
− 1

κ
log (1 + 0.26εReτ ), (2.43)
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Figure 2.3: High Reynolds number limit of friction factor for rough walls. Open symbols, fully
rough regime (H5.6, H6.6, H7.6, H8.6, H9.6). Solid symbols, fully rough regime (L1.6, L2.6,
L3.6, L4.6, L5.6). Dashed line, mathematical limit of empirical result obtained by Equation
(2.47) with κ = 0.37 and B = 4.5.

where here κ is the Kármán constant, B is the constant term of the log-law, Π is the Coles

wake factor, W (y/δ) is the universal wake function, and uτ is here interpreted as an average

(wall or time-averaged or both) friction velocity. Presently, for simplicity we neglect the wake

contribution since it is small for channel flow.

In integrating Equation (2.43) to obtain ub, an approximation to the velocity profile below

the log-region is required. Three possible approximations are : (I) The log-law is assumed to

extend to the wall at y+
0 = 0, which is the lower integration limit. (II) The log-law is solved for

y+
0 assuming u+(y+

0 ) = 0, and this result is substituted as the lower integration limit y0 such that

the inner scaled velocity is zero at the lower integration limit. (III) The piecewise integral of the

linear and log-profiles of the velocity with intercept h+
ν . For rough walls, this intercept depends

on roughness and hence it requires solving a relation equating the linear and log-profiles of the

velocity, which does not have real solutions for k+
s∞ > 14 approximately. The three methods of

computing ub were all implemented and found to give similar results to plotting accuracy. In

practice, Method (I) is used for its simplicity, for which

ub
uτ

= Re−1
τ

[∫ Reτ

0

(
κ−1 log y+ +B −∆U+

)
dy+

]
,

=
1

κ
(log (Reτ )− 1) +B −∆U+. (2.44)

Substituting Equation (2.44) into Equation (2.42) together with the Colebrook formula then

gives an empirical function f = f(ε, Reτ ). If we further note that the bulk Reynolds number

and friction Reynolds number are related via

Reb = Reτ
ub
uτ

= Reτ

√
2

f
, (2.45)
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then an implicit expression involving the friction factor and other parameters is obtained as

f = 2

[
1

κ

(
log
(
Reb

√
f/2

)
− 1
)

+B − 1

κ
log
(

1 + 0.26εReb
√
f/2

)]−2

. (2.46)

The value of the Kármán constant and additive constant B of the log-law are computed by

least-square fitting our high resolution LES data to Equation (2.46) and taking the average across

different roughness levels; this fitting gives κ = 0.37 and B = 4.5. In taking the average, the data

below Reynolds number Reτ = 2 × 104 has been excluded, since this regime is not considered

high enough Reynolds number to have sufficient scale-separation for obtaining accurate values

of the log-law constants. Using these values, the empirical predictions with Equation (2.46) are

shown in Figure 2.2, in addition to the LES results. The empirical predictions and LES results

are well matched, with some difference for low Reb. For the highest relative roughness case of

ε = 5 × 10−3, the equivalent sand roughness height actually exceeds the virtual wall height,

thus violating one of the assumptions of subgrid roughness. Nonetheless, the friction factors

are robustly calculated and match the empirical curve reasonably well. The values at the lower

resolution are somewhat below the higher resolution cases but the differences are small. We use

the higher resolution grid in the remainder of the LES studies since the larger number of data

points provides more detailed insights, while the higher resolution grid is still computationally

affordable. To the best of our knowledge Figure 2.2 is the first attempt to calculate a Moody-like

diagram for rough-wall channel flows using either LES or DNS.

The limiting case of the empirical friction factor in the fully rough asymptotic regime can be

obtained by taking the limit of Equation (2.44) when Reτ →∞ with ε fixed. This gives

lim
Reτ→∞

f = lim
Reτ→∞

2

[
1

κ
(log (Reτ )− 1) +B − 1

κ
log (1 + 0.26εReτ )

]−2

,

=





2

(B − κ−1 (log (0.26 ε ) + 1))
2 for ε 6= 0

0 for ε = 0.

(2.47)

For ε > 0, this limit is shown in Figure (2.3) together with the LES estimate obtained at

Reb = 2× 106 with good agreement for our high-resolution LES.

2.5.4 Mean Velocity Profiles

The inner-scaled, mean velocity profiles from the LES results show collapse on constant values of

εReτ ranging from 2 to 2000 as illustrated in Figure 2.4 for {ε : 0, 1×10−6, 5×10−6, 1×10−5, 5×
10−5, 1 × 10−4, 1 × 10−3} and {Reτ : 2 × 104, 2 × 105, 2 × 106 2 × 107, 2 × 108}. At each value

of Reynolds number, the inner-scaled mean velocity profile is shifted downwards as the relative

roughness is increased, and this is expected in rough-wall flows where surface drag is increased

by roughness elements. Since we have applied Colebrook’s velocity deficit to the inner scaling in

the region below the virtual wall, the observed downward shift of the mean velocity profiles are

partially expected; the wall model reduces the boundary condition by the amount suggested by
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Figure 2.4: Mean velocity profiles. Open symbolds, LES results × : εReτ = 0, 2 : εReτ = 2 ,
# : εReτ = 10 , 4 : εReτ = 20 , 5 : εReτ = 100, � : εReτ = 200, D : εReτ = 2000. Dashed
lines, empirical log-law with Colebrook’s formula.

the Colebrook’s formula. However, the region below the virtual wall, where the velocity deficit

due to roughness is directly imposed by the model corresponds to only 0.4% of δ and the rest

of the flow must pick up the roughness information through the information transmitted by the

wall model.

The wall effect is visible, although it is relatively small. The sensitivity of the LES to the

height of the virtual wall, i.e. the value of h0/∆y, has been investigated for 0.09 < h0/∆y < 0.36.

It has been shown that the centerline velocity of each case does not depart from the case with

the currently adopted value of 0.18 by more than 5%, as is consistent with the observation of

Chung & Pullin [19].

Also plotted in Figure 2.4 are the log-law and the Colebrook based velocity profiles with the

Kármán constant κ = 0.37 as computed by fitting the friction factor data of the LES in §2.5.3.

We recall from Equation (2.43) that with a roughness correction, the log-law intercepts are

shifted downwards, and that the amount of the shift solely depends on the value of k+
s∞ = εReτ .

This is consistent with the LES results in Figure 2.4. For the smooth-wall cases (ε = 0), the

LES fits well with the empirical results with its intercept B = 4.5. This value of the intercept is

in agreement with our wall model definition in Equation (2.19) and, due to our higher Reynolds

number regime, is consequently lower than the classic value of ≈ 5 (as in the numerical study

at Reτ = 620 conducted by Moin & Kim [79]). For rough walls, the LES results also closely

align themselves with the empirical profiles having intercept 4.5−κ−1 log(1+0.26εReτ ) for each

value of εReτ , thus providing a quantification of the momentum loss due to roughness from the

perspective of an inner-scaled mean velocity profile. We note that the LES profiles span the

entire transitionally rough regime.
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2.5.5 Universal Asymptotic Velocity Deficit Profile

When wall surfaces are rough there exists a universal asymptotic velocity profile in the limit of

Reτ → ∞. To demonstrate this, we take the limit of the empirical log-law with Colebrook’s

roughness correction by allowing Reτ → ∞ and we arrive at a universal, asymptotic velocity-

deficit profile for rough walls. Our analysis starts by considering the ratio of the mean velocity

to the centerline velocity, ũ(y)/uc where uc is the channel centerline velocity. We write this as

Equation (2.48) and consider both ratios on the RHS separately.

ũ (y)

uc
=
ũ (y)

uτ

uτ
uc
. (2.48)

The first ratio ũ(y)/uτ is given by the empirical log-law, with Colebrook’s roughness correc-

tion (Equation (2.43)) and its limit is expressed in terms of the wall-normal distance and relative

roughness ε in the limit of large Reynolds number as

lim
Reτ→∞

ũ (y)

uτ
= lim

Reτ→∞
1

κ
log
(
y+
)

+B − 1

κ
log (1 + 0.26 εReτ ) ,

=
1

κ
log
(y
δ

)
+B − 1

κ
log (0.26 ε) . (2.49)

The second ratio uτ/uc is given by the log-law with Colebrook formula evaluated at the centerline

y = δ, whose limit of high Reynolds number is obtained as

lim
Reτ→∞

ũ (δ)

uτ
= lim
Reτ→∞

uc
uτ

= lim
Reτ→∞

1

κ
log

(
δuτ
ν

)
+B − 1

κ
log (1 + 0.26εReτ ) ,

= B − 1

κ
log (0.26ε) . (2.50)

Using these two ratios (Equation (2.49) and (2.50)) in Equation (2.48) then gives the ratio

of ũ(y)/uc in the high Reynolds number limit as

ũ(y)

uc
=
κ−1 log (y/δ) +B − κ−1 log (0.26 ε)

B − κ−1 log (0.26 ε)
, (2.51)

which can then be rearranged to obtain the deficit form

K

(
1− ũ(y)

uc

)
= − 1

κ
log
(y
δ

)
where K = B − κ−1 log (0.26 ε) . (2.52)

Figure 2.5 shows the LES results plotted in the form of the LHS of Equation (2.52) that are to

be compared with the RHS of Equation (2.52) using κ = 0.37. The left figure (Figure 2.5-a)

includes all LES data regardless of the Reynolds number or roughness level (H5.1-H9.6). These

cases include profiles for the transitionally rough regime up to the fully rough regime, and they

are observed to deviate from the log-profile suggested by Equation (2.52). In Figure 2.5-b,

the profiles are limited to those that show collapse on the RHS of Equation (2.52), including

the most rough case of ε = 5 × 10−3 at Reτ = 2, 000 as well as the least rough cases of
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ε = 1 × 10−4 at Reτ = 2 × 106. Physically, the collapse can be explained by Townsend’s

hypothesis, noting that the LHS of Equation (2.52) recovers the standard defect form in the

limit of high Reynolds number. Commonly true for the collapsed profiles is that the values of

k+
s∞ are above the order of unity, which approximately corresponds to the fully rough regime in

our friction factor plot (Figure 2.2). This supports that given a sufficiently large value of k+
s∞,

the high-Reynolds-number-asymptotic-limit is in fact universal with a Colebrook-type roughness

characterization in the sense that the flow at all Reynolds number and roughness satisfies the

deficit profile given sufficiently high k+
s∞. Presently, we have used an empirical roughness function

with ∆U+ ∼ κ−1 log(εReτ ) with ε = ks∞/δ. Equation (2.52) suggests an empirical method for

determining an equivalent geometrical roughness for a given surface defined as ks∞, obtained by

determining the value of K that gives the best fit for the experimental velocity profile. Values

for B and κ would be required.
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Figure 2.5: Universal asymptotic velocity profiles. (a) K(1 − ũ(y)/uc) for H5.1-H9.6 , (b)
K(1 − ũ(y)/uc) for H5.5-H5.6, H6.4-H6.6, H7.4-H7.6, H8.3-H8.6, and H9.2-H9.6. Solid line,
κ−1 log (y/δ). Symbols, LES results.

2.5.6 Turbulent Statistics

We now examine turbulent statistics to explore roughness and Reynolds number effects on sta-

tistical quantities scaled on the outer length scale δ and friction velocity uτ . We consider single

point statistics above the virtual wall, including fluctuations of velocity and Reynolds shear

stress, while distinguishing between the subgrid and total components of these quantities. First,

we examine a set of data where the entire range of Reτ and ε is present, i.e. smooth, trasition-

ally rough, and fully rough regimes, shown in Figure 2.6. A common observation in all these

statistical quantities is their uniform collapse upon scaling with uτ , although a weak dependence

on Reτ and ε over the range of Reτ from 2× 103 to 2× 108 is noted except at Reτ = 650, since

the wall model is designed for higher Reynolds number. Also notable in Figure 2.6 is that the

subgrid components of the fluctuations in the span-wise and wall-normal direction, as well as

in the Reynolds shear stress, illustrate an inherent feature of the stretched vortex SGS model,

that being that the subgrid components are dominant near the wall while their effect is felt to a

lesser extent as we approach the centerline. Statistics for smooth-wall cases are examined below,
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followed by the rough-wall cases.
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Figure 2.6: Turbulent statistics for both smooth and rough walls over full range of Reynolds
number. Solid lines, total components. Dashed lines, subgrid components. Reynolds number
and relative roughness ranges are 650 ≤ Reτ ≤ 2× 108 and 0 ≤ ε ≤ 5× 10−3.

Smooth-wall cases: ε = 0

A subset of data in Figure 2.6 corresponding to the statistics of smooth-wall cases is discussed.

Over the full range of Reynolds number (650 ≤ Reτ ≤ 2× 108), we observe at least some degree

of Reynolds number dependence, yet it is only when the higher Reynolds number cases are

considered, as in Figure 2.7, that a remarkable improvement in collapse is observed. In addition

to their collapse, Reynolds stresses show linear profiles ranging from zero at the channel centerline

to unity at the wall.

Recent studies of smooth-wall flows (e.g. Marusic & Kunkel [67]) suggest that the stream-

wise intensities show a log-profile for the outer part of smooth flat-plate boundary layer flow.

The stream-wise intensities from our smooth-wall LES are plotted on semi-log axes in Figure 2.8.

While the profiles show variations for small Reynolds numbers (Reτ ≤ 2× 105) as we observe in

Figure 2.8-a, those at high Reynolds numbers (Reτ ≥ 2 × 106) collapse well on log(y/δ) in the

outer flow in Figure 2.8-b. The LES cannot probe the near-wall region and so we expect our

results to be accurate only for y/δ ≥ 0.1. Here the stream-wise fluctuations are bounded above

by the sum of a log-profile plus an additional term T (y/δ) introduced to represent the departure
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Figure 2.7: Turbulent statistics for smooth-wall at high Reynolds number. Open symbols, total
components. Solid symbols, subgrid components. 2 : Reτ = 2 × 106 , # : Reτ = 1 × 107 ,
4 : Reτ = 2× 107, � : Reτ = 2× 108.

of the profile from the logarithmic line near the centerline

u′2

u2
τ

= α log
(y
δ

)
+ β + T (y/δ) , (2.53)

Clearly, T (y/δ) → 0, as y/δ → 0. In Equation(2.53), ( ) denotes the temporal-planar average,

and ( )′ denotes the fluctuating quantities. Allowing adequate distance from the wall and center-

line, where T (y/δ) is very small, the coefficients in each case are determined by a least-squares

regression, which are then averaged across the range of Reτ to obtain (α, β) = (−1.82, 0.433).

The implications of this result are explored in §2.8.

Rough-wall cases : ε ≥ 0

Smooth-wall data makes up one end of the εReτ range, while at the other end is the rough-wall

data, shown in the fully rough regime in Figure 2.9 at Reynolds numbers above Reτ > 2× 105.

In comparison to the all-encompassing plot of Figure 2.6 where smooth, transitionally rough,

and fully rough cases are included, the collapse of exclusively fully rough cases improves, with

persisting weak dependencies on Reynolds number and roughness. Note that, for the total

components of Reynolds stress in the fully rough regime, the plots of higher values of ε tends to

lie nearer the origin.

We seek further insight into the logarithmic nature of stream-wise fluctuations by fitting



40

 0

 2

 4

 6

 8

 10

10
-2

10
-1

10
0

y/δ

u′2

u2
τ

(a)

 0

 2

 4

 6

 8

 10

10
-2

10
-1

10
0

y/δ

u′2

u2
τ

(b)

Figure 2.8: Stream-wise velocity fluctuations on log-scaled wall-normal distance for smooth-wall
cases. (a) Over full range of Reynolds numbers (H0.1-H0.9), (b) At high Reynolds number.
Open symbols, total components. Solid symbols, subgrid components. ∗ : Reτ = 650 , × :
Reτ = 2×103, 2 : Reτ = 2×104 , # : Reτ = 2×105 , 4 : Reτ = 2×106 , 5 : Reτ = 1×107,
� : Reτ = 2 × 107, D : Reτ = 2 × 108. Dashed lines indicate the fitted line according to
Equation (2.53).

rough-wall cases with the functional form in Equation (2.53), shown in Figure 2.10. The left

pane (Figure 2.10-a) shows cases including smooth, transitional, and fully rough cases, and the

right pane (Figure 2.10-b) emphasizes the asymptotic regime by retaining only fully rough data.

The collapse is observed to be improved for fully rough cases. When including all the cases,

the coefficients of Equation (2.53) are calculated to be (α, β) = (−1.63, 0.315), and (α, β) =

(−1.65, 0.322) when only fully rough cases are included.

2.6 Dissipation

To discuss the dissipation ε we use 〈Q〉, Q, and Q̂ to denote a volume-average over the flow

domain, a plane-average over an (x − z) plane and a time-average, respectively. We consider

the full Navier-Stokes equations for rough-wall channel flow. It is assumed that the bottom wall

shape is y = kl(x, z) and the top wall is y = 2δ + ku(x, z), where both kl(x, z), ku(x, z) are

periodic in x and z with kl(x, z) = ku(x, z) = 0. It is further assumed that any cross section

of the channel normal to the x-axis has area Ax = Lx Lz that is independent of x so that the

channel volume is V = 2 δ Lx Lz. The pressure is expressed as

p = Gj(t)xj + p′(x1, x2, x3, t), (2.54)

∂p

∂xi
= Gj(t)δij +

∂p′

∂xi
, (2.55)

where x1 ≡ x, x2 ≡ y, x3 ≡ z, Gi(t) is the time-fluctuating mean pressure gradient and

P ′(x1, x2, x3, t) is periodic in x1 and x3. It is further assumed that there is no span-wise mean

pressure gradient G2(t) = 0, which was enforced in the present code.
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Figure 2.9: Turbulence statistics in fully rough regime at Reynolds numbers above Reτ > 2×105.
Open symbols, total components. Solid symbols, subgrid components. 4 : ε = 1 × 10−4 ,
5 : ε = 5× 10−4, � : ε = 1× 10−3, D : ε = 2× 10−3, # : ε = 5× 10−3.

Let us take the volume-average of the Navier-Stokes momentum equations at fixed time t,

∂

∂t
〈ui〉+

1

V

y

V

∂

∂xj
uiujdV = − 1

V

y

V

∂p/ρ

∂xi
dV +

ν

V

y

V

∂2ui
∂x2

j

dV. (2.56)

Via the divergence theorem, i.e.
t

V

∂Fi
∂xi

dV =
v
S
ni.FidS, convert the volume integrals to

surface integrals (except for the unsteady term) and using the periodic and no-slip boundary

conditions, the above equation simplifies to

∂

∂t
〈ui〉 = −Gj

ρ
δij −

1

V

x

wall

p′

ρ
nidS +

1

V

x

wall

∂ui
∂xj

njdS. (2.57)

Here, the mean shear stress u2
τ = τw/ρ is defined as the drag force per unit area averaged

over both walls in the sense of Equation (2.10), but the integral domain is extended to a plane-

average over both complete channel walls. Consequently, the stream-wise momentum equation

simplifies to
∂〈u1〉
∂t

= −G1(t)

ρ
− u2

τ

δ
. (2.58)

The dissipation can be obtained by multiplying the Navier Stokes equations by ui, taking a
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Figure 2.10: Stream-wise velocity fluctuation on log-scaled wall-normal distance. (a) Smooth,
transitionally rough, and fully rough regime over full range of Reynolds number, (b)Fully rough
regime. Open symbols, total components. Solid symbols, subgrid components. 4 : ε = 5×10−4

, 5 : ε = 1 × 10−3, � : ε = 2 × 10−3, D : ε = 5 × 10−3. Dashed lines indicate the fitted line
according to Equation (2.53).

volume integral, and again converting volume to surface integrals:

∂

∂t
〈1
2
u2
i 〉+

1

V

{
nj

(
1

2
u2
iuj

)
dS = − 1

V

{
niui

p

ρ
dS +

ν

V

y
ui
∂2ui
∂x2

j

dV. (2.59)

Applying boundary conditions and stream-wise periodicity then leads to

∂〈 12ui
2〉

∂t
= −G1(t)

ρ
u

(in)
1 − ε(t), (2.60)

where u
(in)
1 and u

(out)
1 are the mean inlet and outlet stream-wise velocity respectively (equal

owing to periodicity), and where ε(t) = 2 ν〈S.S〉 is the volume-averaged dissipation. The first

term on the right-hand side is the pressure work and we note that there is no contribution to this

from the generally non-zero but fluctuating mean span-wise velocity at the channel side planes

since G2 = 0, and no contribution from the wall-normal motions owing to the wall boundary

conditions and the co-ordinate-normal side planes.

Since A1(x) is constant then from continuity and periodicity of u3, 〈u1〉 ≡ ub(t) = u
(in)
1 =

u
(out)
1 . Eliminating G1(t) from (2.58) and (2.60) gives

∂

∂t

(
〈1
2
u2〉 − 1

2
〈u1〉2

)
= ub(t)

u2
τ (t)

δ
− ε(t). (2.61)

We now assume that the channel flow is statistically stationary. The present LES is performed

using constant mass flow, in which case ub is independent of time but G1 is time-varying and

fluctuates about a non-zero mean that, from (2.58), balances the time-averaged wall drag. On

taking a long time average of (2.61) we obtain

δ ε̂(t)

ub û2
τ

= 1, (2.62)
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or alternatively

δ ε̂(t)

u3
b

=
f

2
. (2.63)

Equation (2.62) also applies to the LES equations if ε(t) is replaced by

ε(t) = 〈−Tij S̃ij + 2 ν S̃ij S̃ij〉, (2.64)

where the first and second terms are the subgrid and resolved terms respectively. Figure 2.11

shows the left-hand side (LHS) of (2.62) plotted against Reb, which has been computed from

the LES results for various values of Reynolds number and relative roughness. Included are

curves based on the total averaged dissipation and also those based only on the resolved-scale

contribution.

The total averaged dissipation term in (2.64) accounts for contributions from regions (I-II),

between the actual no-slip walls and the virtual walls, and region (III), the interior LES; see

§2.2.4. In region (III), equation (2.64) is used pointwise and integrated over the channel volume.

In regions (I-II) below the virtual wall, ε is estimated by approximating the strain-rate tensor S̃ij

and SGS stress Tij as dũ/dy and −u2
τ , respectively, leading to the total dissipation contribution

from this region, for one wall

∫ h0

0

(
−Tij S̃ij + 2 ν S̃ij S̃ij

)
dy =

∫ h0

0

(
u2
τ

d ũ

d y
+ ν

(
d ũ

d y

)2
)
dy. (2.65)

While the first term of the integral in the RHS of Equation (2.65) has the closed form u2
τ u |h0

,

the second term is calculated by performing piece-wise integrals over the extent of the linear

and log-profiles of mean velocity. The integrands are calculated from the LES using dynamically

calculated values of the slip velocity and friction velocity at each wall point. The integrals share

a common integration bound, which is calculated as the intercept of the two profiles. Since the

log-profile is based on the log-law with Colebrook formula, the intercept varies with ε and Reτ ,

and thus it is computed through a process of equating the linear relation and the log-relation

for each combination of ε and Reτ . In cases where the intercept does not have real solutions

(k+ > 14 approximately), the location where the linear and log-profiles are tangent to each other

is used as the common integration bound value.

While the region under the virtual wall occupies only 0.5% of δ, it in fact accounts for some

60− 70% of the total dissipation. In Figure 2.11, the total calculated dissipation scaled on ubû2
τ

is approximately independent of Reb for all smooth and rough-wall cases. When scaled on u3
b ,

agreement with (2.63) is similar to that displayed in Figure 2.11. If the limit Reτ →∞ is taken

holding ub fixed with ν → 0 then, since the LES and the empirical Moody diagram both support

f → 0 for ε = 0, it follows that ε̂(t)→ 0 in this limit.
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Figure 2.11: Left hand side of Equation (2.62) at various values of roughness ε and Reynolds
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2.7 Flow Visualizations

Figure 2.12 illustrates a visualization of the local normalized velocity ũ(x, y)/Uc on a wall-normal

x−y plane at different roughness heights and at Reτ = 2×106. Similarly, Figure 2.13 shows the

modified velocity deficit K (1− ũ (x, y) /uc). Notable in Figure 2.12 is that, while the normalized

velocities appear similar near the centerline for all the roughness levels, they are distinctly lower

towards the wall when larger roughness is present. This is indicative of increased wall shear

stress due to wall roughness. In contrast, this reduction is absent from Figure 2.13, in which the

roughness-corrected velocity deficit appears largely independent of ε. Recall from §2.5.5 that the

velocity deficit profiles collapse in the high Reynolds number asymptotic limit.

Again at Reτ = 2× 106, Figure 2.14 shows the instantaneous and locally determined square

of the friction velocity u2
τ (x, z, t)/u2

τ plotted on the bottom physical wall. Note that the color-

bar legends are distinct for each plot. By choosing the color-bars to be centered at the mean of

each sub-plot data set, the upper and lower bounds can be selected to represent two standard

deviations on either side of the mean to highlight the spread of the data. The probability density

function (PDF) of u2
τ (x, y)/u2

τ is shown in Figure 2.15-a, where we observe that the spread of the

data broadens with increasing roughness. In addition, the long stream-wise oriented streak-like

structures in the smooth-wall case (lowest pane) are shortened with increasing roughness. The

DNS results of Orlandi & Leonardi [89] have shown a shortening of near-wall (y+ ≈ 12) vorticity

streaks for several wall roughness types of a 2D and 3D nature. They attribute this effect to the

increased intensity of turbulent disturbances produced by the roughness compared to a smooth

wall. Despite this qualitative agreement of our results with Orlandi & Leonardi, their roughness

height is 20% of the half channel height, with k+ ≈ 10, making it difficult to make any direct
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Figure 2.12: Local velocity normalized by centerline velocity ũ(x, y)/uc, Reτ = 2× 106. Rough-
ness heights from the lower to upper panes are respectively ε/δ = 0, 1× 10−4, 1× 10−3, 5× 10−3.

comparisons with the present results. In a separate DNS study, Flores and Jiménez [32] have

observed length-reduction of near-wall streaks and explained the phenomenon as a result of the

disturbed near-wall cycle in the buffer-layer caused by the dynamics of the roughness sublayer,

where the layer typically extends to 2-5 times the roughness height. However, our virtual wall

locates above the buffer layer and we have no direct access to information between the actual

wall and virtual wall. Further, the near-wall streaks are known to have span-wise spacing of

approximately 100 wall units while the observed friction velocity streaks have significantly larger

span-wise spacing, and hence the relation of the observed streak-like structures to the near-wall

cycle is unclear. Finally, the instantaneous friction factor fields, f(x, y) = 2u2
τ (x, y)/u2

b on the

bottom wall are discussed. Owing to our simulation conditions, wherein the mass flow is kept

constant, the instantaneous contours of friction factor (not shown) and u2
τ (x, z)/u2

τ (Figure 2.14)

show inherent differences in their contour levels but otherwise identical profiles at each roughness

level. However, it is apparent in the PDF of the friction factor shown in Figure 2.15-b that the

mean value of friction factor is not constant and increases with ε, which is expected of the

rough-wall cases, as seen in the friction factor plot (Figure 2.2).

2.8 Discussion

The results of the present LES agree with empirical models of the mean-flow velocity and skin

friction at large Reτ and support a stream-wise turbulence intensity that scales on u2
τ , with

logarithmic variation in the outer flow (y/δ) for both the smooth and rough-wall cases, as

consistent with Townsend’s hypothesis [131]. We therefore use these results to explore the limit

Reτ →∞ for both rough and smooth-wall channel flow. For the mean velocity, using Equation
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Figure 2.13: Local velocity deficit K (1− ũ (x, y) /uc), Reτ = 2 × 106. Roughness heights from
the lower to upper panes are respectively k/δ = 1× 10−4, 1× 10−3, 5× 10−3.

(2.43) and (2.44):

(
ub
uc

)
=
− log(1 + α εReτ ) + κ (B +K1) + log(Reτ )− 1

− log(1 + α εReτ ) + κ (B +K2) + log(Reτ )
, (2.66)

K1 =
Π

κ

∫ 1

0

W(ξ) dξ, K2 =
Π

κ
W(1), (2.67)

where uc is the mean centerline velocity. If ε is fixed and Reτ →∞, this has the limit

lim
Reτ→∞

(
ub
uc

)
=





κ (B +K1)− 1− log(α ε)

κ (B +K2)− log(α ε)
for ε 6= 0

1 for ε = 0,

(2.68)

which suggests limiting plug-flow for the smooth-wall case.

If it is further assumed that, for 0 ≤ ε << 1, the planar-time averaged stream-wise turbulence

intensity is bounded above by Equation (2.53) for 0 ≤ y/δ ≤ 1, that is, u′2/u2
τ nowhere in

the channel exceeds the right-side of Equation (2.53), then the ratio of the total stream-wise

turbulence intensity to the square of the bulk velocity in the channel flow is bounded by

〈u′2〉
u2
b

=
〈u′2〉
u2
τ

u2
τ

u2
b

=
f

2

(
β + |α|+

∫ 1

0

T (η) dη

)
. (2.69)

Here, we use 〈 〉 to denote the temporal and volumetric average over the flow domain. Since, for

ε = 0, f → 0 when Reτ →∞ and the integral is expected to be finite, then this is asymptotically

zero for ε = 0. For any small but finite ε the volume-averaged, stream-wise turbulence intensity

is expected to remain finite and to scale on f . Substituting Equation (2.47) into the right-hand

side of (2.69) gives an approximation for the limiting, average stream-wise turbulent intensity

directly in terms of ε.
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Figure 2.14: Distribution of u2
τ/u

2
τ on the bottom wall. (a) ε = 5× 10−3, (b) ε = 1× 10−3, (c)

ε = 1× 10−4, (d) Smooth (ε = 0).

We note that the present LES cannot resolve the near wall region. The above discussion does

not preclude that for ε = 0, there exists an inner layer of small thickness, where, for example,

u′2/u2
b could remain finite. When ε = 0 in wall-bounded turbulent flow, it is well known that

u′2/u2
τ has a maximum at around y+ = 15. Experimental studies have indicated, at sufficiently

large Reτ in pipe flow, a second maximum for u′2/u2
τ further from the wall [84, 68]. McKeon &

Sharma [73] use a critical-layer argument to infer y+
II ∼ Re

2/3
τ for pipe flow, while Alfredson et

al. [1] suggest y+
II = Re0.56

τ .

Let us assume a second peak at y+
II = A1Re

a
τ , where A1 is constant and 0 ≤ a < 1. It then

follows that yII/δ = A1Re
a−1
τ , so that yII/δ → 0, for Reτ →∞ with ε = 0. This is not resolved

by the present LES. If, however, it is assumed that this peak peels off below Equation (2.53) at

y ∼ yII , then a simple calculation gives the stream-wise turbulent intensity at the second peak

as
u′2II
u2
τ

= A2 log(Reτ ) +B2, (2.70)

where A2 and B2 are constants. According to Equation (2.44), the ratio of ub/uτ is proportional

to ub/uτ ∼ κ−1 log(Reτ ) + O(1), which is supported by the present LES in Figure 2.2 up to
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Figure 2.15: Probability density function of (a) friction velocity and (b) friction factor for Reτ =
2× 105 and 2× 106 and ε = 0, 1× 10−4, 1× 10−3, and 5× 10−3.

Reb = O(1010). Therefore, the ratio of u′2II/u
2
τ is proportional to:

u′2II
u2
b

∼ 1/ log(Reτ ). (2.71)

Therefore, the ratio approaches zero when Reτ →∞. This simple analysis suggests that, when

Reτ → ∞, even though the maximum stream-wise intensity (assuming that this is at yII)

becomes unbounded relative to uτ , it is asymptotically zero relative to the outer bulk motion.

For rough-wall flow ε > 0, when Reτ → ∞, k+
s∞ → ∞ and all quantities approach finite

limits that depend on f and are independent of Reτ . The present LES, however, uses the Hama

roughness function within the wall model. We cannot rule out the possibility, for resolved-scale

wall shapes of small slopes for which ε > 0 and k+
s∞ →∞ but there is no local separation, that

a smooth-wall-like limit at Reτ →∞ may be appropriate.

2.9 Summary

Our approach to simulate rough-wall channel flows in LES, with subgrid roughness, has been

to implement the stretched vortex SGS model in the outer region, and the wall model [19] has

been extended using the Hama roughness correction in the near-wall region. The outer LES

calculation has been subject to no direct modifications, while the wall model has been directly

modified by the inclusion of roughness. First, the stream-wise momentum equation has been

combined with roughness-corrected inner scaling, leading to an ODE to be solved numerically

and dynamically for the local uτ at each point on the wall. Thus, both uτ and k+
s∞ have been

determined dynamically. With uτ available and assuming that the near-wall region contains

attached eddies [87], the velocity profile in the near-wall region has been obtained as a log-

relation for smooth walls, which has been corrected for roughness to finally be evaluated at the

flat lifted virtual wall and used as a wall boundary condition for the outer LES. When applied

to both the ODE and log-relation, these roughness corrections have employed the Colebrook

formula, which expresses the downward shift of velocity profiles as a function of equivalent sand
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roughness using wall units. The explicit form of the roughness function in this simulation is a

model input, and it is possible to employ any given roughness function of the form ∆U+(k+
s∞)

or that which can take discrete multi-scale roughness as inputs, that is, ∆U+(k+
s1, k

+
s2, k

+
s3, ...).

Our LES has captured fully developed rough-channel flow in both transitionally rough and

fully rough regimes, reaching a maximum bulk velocity based Reynolds number Reb of order 1010.

Our LES results have produced a Moody-like diagram for fully developed channel flow, which

has shown favorable agreement with an empirical formula obtained from the log-law, also with

the Colebrook roughness correction. The inner-scaled mean velocity profiles have shown collapse

on constant values of εReτ and have exhibited a downward shift compared to the smooth-wall

case by an amount depending on k+
s∞. The LES and empirical relation (Equation (2.43)) have

been found to be in agreement for each value of εReτ . The mean velocity profiles have also been

plotted in outer-scaled deficit form; in the fully rough regime, it has been shown to collapse onto

the universal velocity deficit profile obtained by taking the high Reynolds number limit of the

empirical relation, providing a means of empirically acquiring ks∞ in a given geometry.

Our analysis of the turbulent statistics has considered the mean fluctuations of each velocity

component as well as the Reynolds shear stress. When including both transitionally and fully

rough regimes, weak dependencies on Reynolds number have been observed for all cases. Within

the fully rough regime, however, improvements in collapse have been observed for the velocity

fluctuations. At very large Reynolds number, it has been observed that the stream-wise tur-

bulence intensities scale on u2
τ and δ for both smooth and rough-wall flows, with particularly

good collapse for the smooth-wall cases. This is in broad agreement with Townsend’s hypoth-

esis. Further more, for both smooth-wall and rough-wall flow in the fully rough regime, the

stream-wise turbulence intensities have been noted to follow a log(y/δ)-profile across almost all

of the resolved, outer part of the channel flow. An assumption that these intensities are bounded

everywhere by a logarithmic profile has led to the argument that the average stream-wise turbu-

lence intensity is proportional to the friction factor. Based on this argument, we have discussed

an infinite Reynolds number flow scenario: when Reb is extremely large, the aforementioned

argument suggests that the total turbulence intensity approaches a finite value, approximated

by Equation (2.47) for finite roughness, and zero for smooth-wall flow. The dissipation is also

proportional to the friction factor and, when scaled with outer variables, becomes independent

of Reb when Reb is extremely large. The constant of proportionality is asymptotically zero for

smooth-wall flow.

The above suggests that, for smooth-wall flow, the infinite Reb limit is inviscid slip flow

without turbulence across almost the whole channel. In this scenario, the near-wall motion

associated with uτ and its fluctuations decline relative to the centerline velocity as the Reynolds

number increases. The detailed small-scale physics of this attenuation are certainly of interest,

but are beyond the scope of this work. The indicated infinite Reynolds number limit for rough-

wall channel flow shows a universal, roughness corrected, mean velocity deficit profile together

with stream-wise turbulence intensities and total energy dissipation that all scale on a finite
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friction factor.

Although the present channel setup treats only homogeneous roughness levels at wall sur-

faces, being smooth everywhere or rough everywhere, owing to the ability of the wall model to

assign a roughness level locally and have it be calculated dynamically, it is possible to simulate

flows with spatially and temporally varying roughness levels. This sets the stage for the next

chapter, wherein the flows over infinitely many transitions between rough and smooth walls are

investigated.
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Chapter 3

Large-Eddy Simulations of
Smooth-Rough-Smooth
Transitions in Turbulent Channel
Flows

3.1 Introduction

As discussed in Chapter 1, recent experimental evidence of roughness effects appearing in high-

Reynolds number canonical wall-bounded turbulent flow has prompted Saito et al. [113] to

conclude that roughness effects become significant to large-eddy simulation (LES) operating at

sufficiently high Reynolds number. Consequently, Chapter 2 studied the roughness and Reynolds

number dependence of friction factor and thus produced a Moody-like diagram for channel flow,

by incorporating a semi-empirical roughness model into a wall-modeled channel flow LES, which

allowed simulations up to Reδ = O(1010). In this chapter, the present work builds on Chapter

2 by exploring step transitions from smooth-to-rough (S → R) followed by rough-to-smooth

(R→ S) surfaces in a fully developed turbulent channel flow. Wall geometries such as these are

important in areas of micro-meteorology [4, 34], in spoiling of heat exchangers, and in turbine

blades with surface degradation or deposits [13, 12, 136]. We refer to these alternating transverse

step changes in roughness as roughness “strips,” and take advantage of the high Reynolds number

capability of our numerical method in a channel flow in order to examine flow responses and

trends when various levels of Reynolds number and roughness are encountered by the flow.

In the literature, treatment of a single step change in roughness has traditionally relied on

a thermally neutral zero-pressure-gradient, flat plate turbulent boundary layer (ZPGFPTBL),

rather than a channel flow, to elucidate the structure and response rates of the perturbed flow.

Boundary layer field experiments [14] and wind tunnel work [5, 6, 95, 18] under steady-state

conditions reveal that flow encountering a sudden loss of momentum due to a roughness change

then sees the formation of an internal boundary layer (IBL) that grows immediately from the

location of this change. The height of the IBL δi can be determined either through the stream-

wise mean velocity [5, 108, 18], stress [118], or through stream-wise turbulent intensities [27].
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Detailed findings from several of these studies, including modeled equations for the IBL growth

rate, are given in §3.3.4. For the case of a ZPGFPTBL, at any given wall-normal height above

the IBL, the flow appears statistically as it would for the upstream wall condition alone except

for a slight upward shift of streamlines [6]. Within the IBL, two further layers are observable: a

transition layer and an equilibrium layer. The transition layer immediately below δi is where flow

is affected by both upstream and downstream wall surfaces and where turbulent conditions are

transitioning gradually from one equilibrium flow to another. An equilibrium layer is adjacent

to the wall up to the height δeq, wherein the flow is fully adjusted to the new wall state.

Many workers have examined the rates and distances required for flow to adjust towards

equilibrium after a step. Quantitatively, an adjustment rate can be examined in a number of

direct flow variables such as wall shear stress, mean velocity and turbulent statistics, or indirect

quantities such as δi, δeq, or log-law constants. When enough of the direct variables reach a

state that no longer has any memory of the upstream step change, a flow can be considered to

be fully relaxed. Indeed, one must quantitatively but subjectively select how many variables to

consider and what constitutes the signature of transition to this relaxed state in each variable.

Relaxation rates and distances may be quite sensitive to the selection of the threshold made, as

discussed by Cheng & Castro [18]. The present study reaches consistent trends when exploring

each of the following variables: friction velocity, inner- and outer- scaled mean velocity (§1.3.2),

and internal boundary layer growth (§3.3.3, §3.3.4).

Several observations in the literature demonstrate firstly that flow after a step and very near

the wall relaxes towards equilibrium almost immediately (e.g. Antonia & Luxton[5, 6]; Cheng &

Castro[18]; Efros & Krogstad[27]) and secondly, that S→R transitions result in flows that relax

more rapidly than R→S flows. A possible exception is Makita [66], who has recorded Reynolds

shear stress in both cases as having not relaxed after a distance of 20 δ in a channel flow [128, 14].

Antonia & Luxton [5, 6] have found that boundary layer flows encountering a step from R→S

adjust towards equilibrium less rapidly than S→R at U∞δ/ν = 1.9 × 104 and 3.1 × 104, where

U∞ is the free stream velocity. They have shown that the S→R case requires less than 20δ for

equilibrium and self-similarity to be restored in the mean flow integral parameters and turbulent

intensities, while for their R→S case at U∞δ/ν = 2.6× 104 and 4.8× 104, within the extent of

their test section of length 16δ, the flow never fully reestablishes equilibrium or similarity. They

have suggested that a possible reason for this long “memory” is that in the rough wall flow,

a greater proportion of the turbulent energy resides in the larger scale turbulence in the outer

layer that is then advected into the flow above the smooth wall. Away from the wall, Jacobs

[51] has found that shear stress distributions obtained in the outer part of a channel flow adjust

more slowly than those near the wall. This observation is indicative of the slower growth of the

equilibrium layer in the outer parts of the flow.

Rather few authors have considered more than one roughness step change. Weng et al. [135]

have numerically modeled 2-D flow over multiple short strips of roughness. Two transitions, both

S→R and R→S transitions, can be created within one flow by introducing a short/impulsive
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roughness strip in the flow, which results in two IBL developing after the strip, as demonstrated

by Andreopoulos & Wood [4] and Jacobi & McKeon [50, 49]. In between the two IBL’s is “stress

bore,” where the influence of the roughness in the Reynolds shear and normal stresses is found

and where the flow is in non-equilibrium [123, 4, 50, 49]. Jacobi & McKeon [50], through their

study of static impulsive roughness, have suggested the potential use of impulsive roughness as

a tool for flow control, noting that the impulsive roughness affects the spectral energy of the

smaller wavelength only. Later, the study has been extended to dynamic impulsive roughness,

where the role of the temporal frequency of the impulse has been shown significant [49].

In contrast, the present channel LES utilizes a roughness strip of considerably longer ex-

tent (64δ) than the aforementioned studies and this length invites a relaxation towards equi-

librium. The majority of workers have examined relaxation rates at only one or two relatively

low Reynolds numbers, with many of them being concerned with the non-equilibrium zone im-

mediately after a step and close to the wall. In the present LES we consider a wider range of

considerably larger Reynolds numbers and focus on flow responses over the entire domain. The

present numerical approach implements spectral techniques that rely on the span-wise period-

icity of the channel, and therefore, for given computational resources, the simulation receives

a computational benefit such that it allows for a longer stream-wise computational domain to

be used. The overall channel flow geometry is advantageous because, far enough downstream

from any change in surface roughness, the flow plateaus towards a state that is statistically

independent of downstream distance (except close to a downstream transition), making for a

more straightforward identification of the relaxed state. We also note that due to the partic-

ular numerical wall treatment in our LES, the value of the local wall shear stress is directly

available and no further uncertainty is introduced by sampling location or through any indirect

calculation.

This chapter investigates sudden roughness changes in channel flow in three main sections.

First, the present LES method is expounded briefly in §3.2. This is followed by results and

discussion of the mean flow velocity in §3.3.1 and friction velocity in §3.3.2. The stream-wise

turbulent intensities and IBL growth rate are discussed in §3.3.3 and §3.3.4. Finally, we present

a summary in §3.4.

3.2 Stretched Vortex SGS Model and Roughness-Corrected

Wall Model in Spatially Varying Surface Conditions

The full workings of the stretched vortex SGS model and roughness corrected wall model have

already been reviewed in Chapter 2, and we refer the reader there for comprehension. In brief,

the present strip-roughness channel LES uses the stretched vortex subgrid scale (SGS) model

to calculate flow dynamics away from the wall, a region we have thus far been referring to as

the “outer” LES. This is distinct from flow dynamics near the wall that are captured by the

wall model with roughness correction. Inclusion of surface roughness modifies only the present
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wall model, which is responsible for the effect of near-wall fine scales and sets the boundary

conditions for the outer LES. Therefore, the flow behaviors observed in the outer LES under

rough surface conditions are solely the result of the change in the boundary conditions, which is

consistent with the physical picture of flow over rough surfaces.

The numerical implementation relies on the same methodology as before, where the time-

integration of the Navier-Stokes, as well as the wall-model ODE, employ a low-storage third-order

semi-implicit Runge-Kutta method [125] with a fractional step method at each stage [96, 46].

In what follows, the use of the present LES framework to capture sudden surface-condition

changes is discussed. The details of the simulation conditions are given thereafter.

3.2.1 Wall Model with Sudden Roughness Changes

The use of the wall model over abrupt surface condition changes relies on the assumption that

the flow up to the first grid adjusts to the new surface condition almost immediately, within

one stream-wise grid cell ∆x/δ = 0.083. This is supported by the findings of Antonia & Luxton

[6], who have observed the immediate establishment of a logarithmic velocity profile after the

step change from the smooth to rough surface condition. The findings of Cheng & Castro [18]

also provide more quantitative support for the assumption. They have observed the equilibrium

layer to grow to the top of the roughness sublayer within 166z0. Here z0 is the aerodynamic

roughness length scale that satisfies the following equation,

u+ = κ−1 log
(
y+
)

+B − κ−1 log
(
1 + 0.26k+

s∞
)

= κ−1 log

(
y

z0

)
. (3.1)

Using this relation, the largest value of z0/δ for our study is approximately 5.0×10−5. According

to the empirical relation found by Cheng & Castro, this value of z0 gives us the estimated stream-

wise distance until the equilibrium layer reaches the roughness sublayer as x/δ ≈ 0.0084, ten

times smaller than the smallest stream-wise grid size.

3.2.2 Strip Roughness Domain and Simulation Conditions

A schematic of our strip-roughness channel is shown in Figure 3.1. The x−, y − , and z− direc-

tions are stream-wise, wall-normal, and span-wise, respectively. The dimensions and resolutions

of the computational domain are (lx, ly, lz) = (128, 2, 8)δ and (nx, ny, nz) = (1536, 96, 96) re-

spectively. The utility of this resolution has been verified in Chapter 2 in the LES for uniformly

rough- and uniformly smooth-wall channel flows at this resolution and also at half this resolu-

tion in all three directions. It has been therein demonstrated that, for all Reynolds number and

roughness levels considered (including the case of zero-roughness, i.e. smooth), the friction factor

obtained in the LES is not sensitive to the LES resolution. A further discussion of resolution

effects in the current strip-roughness channel is given in the context of the mean velocity profiles

in §1.3.2.

The stream-wise length of each smooth or rough strip is 64δ. The choice of this length aims
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0 nx/4 3nx/4 nx

Figure 3.1: Schematic of strip-roughness channel for the LES (Not to scale)

to keep the simulation within computational resource restrictions, and yet facilitate a full flow

recovery after each transition. Both top and bottom walls have identical surface conditions

consisting of smooth and rough strips. The computational domain is periodic in the stream-wise

direction and hence requires a single roughness strip placed at the center of the stream-wise

extent, which places the S → R transition at x/δ = 32 and the R→ S transition at x/δ = 96.

A summary of the simulations is given in Table 3.1. Five channel flows with the aforemen-

tioned stream-wise strips are simulated over a range of roughness levels and Reynolds numbers

in order to investigate various flow responses to surface changes. The relative roughness, defined

as ε = ks∞/δ, takes the values of ε = 1 × 10−4, 5 × 10−4, and 1 × 10−3. The Reynolds number

ranges from Reτ = 2 × 104 to 2.4 × 106. Here, the nominal Reynolds number Reτ is defined

as Reτ = 〈uτ 〉δ/ν, where 〈uτ 〉 is the temporal and planar-averaged friction velocity, as will be

formally defined subsequently in Equation (3.3). In addition, we include uniformly smooth and

rough simulations as “reference” cases [113]. These reference cases have the same bulk velocity

ub as the corresponding roughness strip cases. Note that the bulk velocity ub is equivalent to

the mean stream-wise velocity over any yz-plane, owing to continuity for incompressible flow in

a constant yz-plane area channel. The definitions of Reynolds numbers based on 〈uτ 〉 and ub

respectively are

Reτ =
〈uτ 〉δ
ν

where 〈uτ 〉 =
1

T lx lz

∫ T

0

∫ lx

0

∫ lz

0

uτ (x, z, t) dz dx dt, (3.2)

Reb =
ubδ

ν
where ub = const.

Here, we also define the temporal- and span-wise averaged quantity:

( ) =
1

T lz

∫ T

0

∫ lz

0

( ) dz dt. (3.3)
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Reτ ε (Lx, Ly, Lz)/δ (nx, ny, nz) z0

SRS.1.3 2× 104 1× 10−3 (128, 2, 8) (1536, 96, 96) 4.60× 10−5

SRS.2.3 2× 105 1× 10−3 (128, 2, 8) (1536, 96, 96) 3.95× 10−5

SRS.3.1 2× 106 1× 10−4 (128, 2, 8) (1536, 96, 96) 3.96× 10−6

SRS.3.2 2× 106 5× 10−4 (128, 2, 8) (1536, 96, 96) 1.95× 10−5

SRS.3.3 2× 106 1× 10−3 (128, 2, 8) (1536, 96, 96) 3.90× 10−5

SRS.3.1.L 2× 106 1× 10−4 (128, 2, 8) (1024, 64, 64) 3.96× 10−6

SRS.3.3.L 2× 106 1× 10−3 (128, 2, 8) (1024, 64, 64) 3.90× 10−5

US.3.0 1.4× 106 0 (32, 2, 8) (384, 96, 96) N/A
UR.3.1 2.0× 106 1× 10−4 (32, 2, 8) (384, 96, 96) N/A
UR.3.2 2.1× 106 5× 10−4 (32, 2, 8) (384, 96, 96) N/A
UR.3.3 2.4× 106 1× 10−3 (32, 2, 8) (384, 96, 96) N/A

US.3.0.L 1.4× 106 0 (32, 2, 8) (256, 64, 64) N/A
UR.3.3.L 2.4× 106 1× 10−3 (32, 2, 8) (256, 64, 64) N/A

Table 3.1: Simulation conditions: First letters stand for “Smooth Rough Smooth”
(SRS),“Uniformly Smooth” (US), and “Uniformly rough” (UR). The number after the first dot
indicates the level of Reynolds number and the second number indicates the level of roughness.
The last letter “L” indicates the lower resolution. The value of z0 is associated with the rough
region for the strip-roughness simulations.

3.3 Results and Discussion

3.3.1 Velocity Profiles

In general, flow within the channel responds to a step by undergoing a rapid alteration of its

flow field, especially in the vicinity of the wall, and also a propagation of surface effects into

the bulk of the flow. Velocity profiles under inner scaling, i.e. u+(x, y) = u(x, y)/uτ (x), are

considered in the first subsection below in order to address characteristics of the response near

the wall, with the outer region being considered thereafter. The discussion of the mean velocity

in the outer region includes a flow visualization of the instantaneous velocity to give a sense of

the details found within the flow field and a relaxation length analysis indicating its dependence

on roughness and Reynolds number.

Velocity Profiles in the Inner Region

The velocity profiles u+(x, y) are shown at different stream-wise locations in Figure 3.2. We

emphasize that u+(x, y) is defined as normalized against the local uτ (x). Here, the over-bar is

defined as the span-wise and temporal averaging, according to Equation (3.3). In each figure,

all the profiles are equally spaced 5.3δ apart. At each location, the profile is compared to

the uniformly-smooth and uniformly-rough profiles. These reference profiles are obtained in

separate uniformly-smooth and uniformly-rough simulations, with the same bulk velocity and

hence the same bulk Reynolds number Reb as the strip-roughness LES. Although the actual

computational domain is divided into three regions (upstream smooth (32δ), middle rough (64δ),

and downstream smooth (32δ) regions) in Figure 3.2 the two smooth regions are concatenated

by making use of the stream-wise periodicity of the domain. The top panel shows profiles in

the combined smooth strip and the bottom panel shows those of the rough strip. To show the
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most rapid stage of the transition in each panel of the figure, the first profile of panel (a) and

the last profile of (b) are separated by one grid cell, i.e. dx = 0.083δ, with the R→ S transition

in-between. Similarly, the first profile of the panel (b) and the last of panel (a) are separated by

one grid cell and have the S → R in-between.

First, looking at the profiles in the smooth region, we observe a large deviation of the profile

immediately after the R → S transition except in the vicinity of the wall due to the sudden

increase in friction velocity. As discussed in the next section, the mean velocity profile normalized

by the bulk velocity at the same location, i.e. profile with no direct effect of the friction velocity,

departs from the reference profiles by much less of an amount, which suggests that much of

the deviation of the inner scaled mean velocity here is attributed to the change in the friction

velocity. This deviation decreases but remains visible downstream until approximately midway

into the smooth region. After the midpoint of the strip, the profiles plateau to the uniformly

smooth state suggested by the reference profile, and just before the S → R step, they begin to

be affected by the downstream rough region, which causes the profile in the smooth region to

be lower than the completely smooth state. Shifting attention to the rough region, the profiles

initially have a smaller relative deviation from the reference state than that in the smooth region,

although the maximum still occurs immediately after the S → R transition. Towards the middle

of the rough region, the profiles gradually relax and settle down completely to the reference

state. Further downstream, it is then affected by the upcoming smooth region, which causes the

profile to be higher than the reference profile.

We investigate the effect of resolution on the results by comparing the mean velocity profiles

right after each transition, as well as at the center of each region. Shown in Figure 3.3 are the

mean velocity profiles at the current resolution and 2/3 of the current resolution. Log-law fits

are also included in the plots, with the Karman constant obtained via a linear least squares fit of

the profiles at the relaxed states: κ = 0.37 and B = 4.5. A comparison is made at four different

points in the domain: right after the S → R, at the center of the rough region, right after the

R → S transition, and at the center of the smooth region. Overall, close agreement is found

between the current and lower resolutions at all of the four locations. The maximum discrepancy

is found between the profiles right after the R → S transition, which can be explained by the

fact that the differences in the resolution is related to the strength of the discontinuity in the

surface transition, and the flow right after the transition is most significantly affected by the

discontinuity.

Velocity Profiles in the Outer Region

For the outer flow dynamics, we examine the response of the normalized velocity ū(y)/ub vs. y/δ

over the transitions, as shown in Figure 3.4. The velocity profiles after both S → R and R→ S

transitions recover to match the reference profiles towards the middle of each strip. Compared to

the inner scaled velocity u(x, y)/uτ (x) in Figure 3.2, these outer scaled velocity profiles ū(x, y)/ub

exhibit to a lesser extent the effect of the downstream surface condition traveling upstream. This
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Figure 3.3: Comparison of mean velocity profiles at the current resolution and at 2/3 of the
current resolution. Panel (a) shows the profiles right after each transition and panel (b) shows
the profiles at the center of each region. Top profiles are in the smooth region and bottom
profiles are in the rough region. Open circles: current resolution; squares: 2/3 of the resolution;
dashed line: log-law. Flow conditions are Reτ = 2× 106 and ε = 1× 10−3.
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is because ub is not affected by roughness transitions.

Velocity Profiles and Flow Phenomena in the Outer Region

A step change of surface roughness for a turbulent boundary layer (TBL) is characterized by

slight deviations of mean streamlines throughout the flow’s vertical extent, in keeping with mass

conservation [5, 6, 34], but otherwise the mean velocity profile above the IBL of a TBL remains

virtually unaffected. This is not the case for an internal geometry such as the present channel

flow. To illustrate this, first consider a S → R transition in a TBL that abruptly experiences a

velocity deficit near the wall as it passes over a roughness step change. To maintain continuity

in an incompressible flow, this constitutes a loss of stream-wise mass flux near the wall that

requires an equal increase of stream-wise flux further away from the wall. Since the canonical

TBL has a semi-infinite vertical extent, such an increase in flux away from the wall is noted only

as a slight increase in velocity. Contrast this with a steady channel flow with bulk velocity ub

independent of stream-wise location x. The confined and constant vertical extent then limits the

vertical area available away from the wall for the required increase in stream-wise velocity flux.

Thus, velocity increases in the outer region are expected to be correspondingly more significant

in a channel than in a TBL as a result. We state that such an increase in near-centerline velocity

is clearly noted in outer-scaled velocity profiles, which will be discussed in relation to Figure 3.5

below.

The velocity field in the region away from the wall is now discussed by examining contours of
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Figure 3.5: Contour of u(x, y)/ub in the bottom half channel. Reτ = 2× 106 and ε = 1× 10−3.

the stream-wise velocity normalized by the bulk velocity, u(x, y)/ub, shown in Figure 3.5. The

contour plot identifies regions of positive/negative/zero values of ∂u(x, y)/∂x in the flow and

illustrates the aforementioned velocity surplus near the centerline. Due to the sensitivity of the

contour lines to very small velocity changes, even within the regions where the flow is identified

as completely recovered from the view point of the mean velocities, very small flow accelerations

and decelerations are still detectable.

In the flow above the rough wall, three regions, A, B, and C, are identified as follows. Region

A is where the velocity increases in relation to the velocity at the same vertical location before

the transition; Region B is where the velocity decreases; Region C is where the velocity gradient

is zero. Dashed lines in the figure have been overlaid to demarcate the boundary between these

three regions. We begin by defining the dashed lines marking region boundaries and discuss the

phenomena in each region thereafter, noting that similar arguments to those that follow may be

applied to the smooth wall case, with most conclusions being the converse.

There are three nearly vertical dashed lines in Figure 3.5 that originate at the wall, beginning

at the step changes, S → R (x = 32δ) and R→ S (x = 96δ), and following the start of noticeable

“kinks” in the velocity contours. Kinks indicate sharp deviations of velocity, experienced as the

flow nears the step. They are associated with high levels of average stream-wise flow gradients

∂u(x, y)/∂x and define the left most boundary of region A. Region B is strictly below region A

and separated by a dashed line that rises with distance downstream. It is identified as the locus

of points where ∂u(x, y)/∂x first becomes zero as we move downstream from the transition, thus

joining the “troughs” in velocity contours over the rough wall. Note that the same definition of

the dashed line between equivalent Region A and B applies in the smooth region, but the second



61

y/δ

x/δS→R trans. R→S trans.

Figure 3.6: Instantaneous stream-wise velocity on a x− y plane.

partial stream-wise derivative at the line is of opposite sign, i.e.

∂u(x, y)

∂x
= 0,

∂2u(x, y)

∂x2
< 0 for rough-wall region, (3.4)

∂u(x, y)

∂x
= 0,

∂2u(x, y)

∂x2
> 0 for smooth-wall region.

Region C is strictly below region B and separated by a dashed line that rises with downstream

distance. It is defined as the locus of points for which ∂u(x, y)/∂x becomes zero for a second

time as we move downstream. The gray shaded regions are where the inner scaled mean velocity

starts to be affected by the downstream change in surface condition as observed in Figure 3.2.

Returning to a discussion of phenomena in each region, in region B, the near-wall momentum

carried from the smooth region is lost due to an abrupt increase in roughness. This begins locally

near the wall but gradually fills the channel. Region C is where the flow has zero acceleration,

indicated by the flat contour lines. Faced with an increasingly pronounced velocity deficit across

region B and a zero acceleration in C, we are now able to directly observe the idea introduced

at the start of the subsection that, by conservation of mass, region A contains a velocity surplus

relative to the upstream state.

Velocity visualizations

A sample of instantaneous stream-wise velocity in the strip-roughness channel is shown on an

x−y plane in Figure 3.6. Here, the data is taken at Reτ = 2×106 and ε = 1×10−3 and normalized

by the span-wise-averaged centerline velocity uc(x, t) in order to emphasize the velocity deficit

near the wall relative to the centerline velocity due to roughness. That is, the instantaneous

velocity ratio u(x, y, t)/uc(x, t) is plotted on an x − y plane at a constant span-wise location

z. Notable in the figure is the increased amount of the near-wall velocity deficit in the rough

region, as expected of the rough surface condition. The plot reveals that the effect of the surface

condition is convected away from the walls by the flow, forming a larger velocity deficit area in

the process.

Relaxation length of the mean velocity

The mean velocity profiles, scaled on both inner and outer variables, reach full relaxation after

both S → R and R → S transitions. Quantitatively, we define a length scale ξ to express
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S → R R→ S
Reτ ε λ1 λ1

2× 106 1× 10−4 28.5 25.0
2× 106 5× 10−4 31.4 33.3
2× 106 1× 10−3 32.3 34.7

Table 3.2: Relaxation length of mean velocity λ1 at varying roughness level

S → R R→ S
Reτ ε λ1 λ1

2× 104 1× 10−3 13.2 15.2
2× 105 1× 10−3 25.8 27.6
2× 106 1× 10−3 32.3 34.7

Table 3.3: Relaxation length of mean velocity λ1 at varying Reynolds number

the deviation from the relaxed state by using a measure of the squared difference between the

velocity and reference profiles,

ξ(x) =

∫ δ

0

(
u(x, y)− uref (y)

ub

)2

dy. (3.5)

The quantity ξ(x) should approach zero as the flow after a transition relaxes to a uniformly-

rough or smooth condition. Its decay is shown in Figure 3.7, where the upstream and downstream

smooth regions are again concatenated. We observe that in both the smooth and rough region

the value of ξ decays to less than a few percent of unity right after the transition. Consequently,

we introduce a characterisic relaxation length λ1, defined as the stream-wise distance required for

the value of ξ(x) to fall to within a small error bound. Since the asymptotic value of ξ(x)→ 0 as

x→∞ and that in addition the normalized velocity integrates to unity, i.e.
∫ δ

0
uref (y)/ubdy = 1,

we regard the flow as fully-relaxed when ξ(x) reaches zero with an error bound of 0.2% of unity.

The values of λ1 are summarized for both smooth and rough regions in Table 3.2 and Table 3.3

at varying roughness level and Reynolds number, respectively. The flows after both S → R and

R → S transitions show similar trends in their mean velocity relaxation length. The tabulated

results indicate that the relaxation length is larger for larger roughness and Reynolds number.

Additionally, in general, the relaxation length is longer after the R→ S than S → R transition.

Further, the relaxation lengths are more heavily dependent on Reynolds number than roughness,

and across all the Reynolds number and roughness the relaxation lengths range between 10 to

40δ. These results validate our choice of the computational domain length – the stream-wise

extent of 64δ for each roughness strip – for achieving full recovery. Any significantly smaller

choice of a domain would result in incomplete recovery of the mean velocity within each strip,

and thus each time the flow encountered a surface change it would not be from an undisturbed

state. In fact, we have attempted to simulate flows encountering roughness strips of one half

and one quarter of the current size, i.e. 32δ and 16δ. The flows in shorter domains indeed never

reached a recovered state in terms of both the mean velocity and friction velocity.
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3.3.2 Friction velocity

The local friction velocity uτ = uτ (x, z, t) over the smooth-rough-smooth surface is examined.

The averaged friction velocity normalized by the bulk velocity uτ (x)/ub is considered. As previ-

ously defined, the over-bar ( ) denotes combined time- and span-wise-averaging. The temporal

averages are taken over some time period T , sufficiently long and typically 30-50 convection time

units.

The advantage of normalizing the friction velocity by the bulk velocity is that the bulk

velocity is constant throughout the channel regardless of the local surface conditions. Therefore,

the choice of the normalization factor as ub allows for isolating the behavior of the friction

velocity. The behaviors of uτ (x)/ub are discussed over the full range of Reynolds numbers and

roughness levels.

First, in Figure 3.8, the profiles of uτ (x)/ub are shown at various roughness levels, ε =

1 × 10−4, 5 × 10−4 and 1 × 10−3, keeping Reτ constant at Reτ = 2 × 106 (SRS.3.1-3). Also

included in the figure are the data from the uniformly smooth or rough simulations (US.3.0

and UR.3.1-3) for reference at the corresponding Reb and ε. In the smooth region, the profiles

of uτ/ub undershoot right after the R → S transitions, followed by relaxation to a plateaued

state. The profiles above the smooth wall collapse well across different levels of roughness in

the rough region except in the vicinity of transitions, because the flow is affected by the nearby

(downstream) rough regions, each of which has a different roughness level and hence a different

level of effect on the upstream flows. Upon encountering S → R transitions, the flows overshoot
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Figure 3.8: Ratio of friction velocity to bulk velocity at Reτ = 2 × 106 with varying rough-
ness level. Symbols: LES, dashed line: uniformly-smooth or uniformly-rough reference values.
Different colors represents different roughness; green: ε = 1 × 10−4, blue: ε = 5 × 10−4, red:
ε = 1× 10−3.

and relax to different values of uτ/ub depending on roughness. The collapse that occurred for

the smooth region is not observed for the rough region since the varying degrees of roughness

naturally result in varying degrees of shear stress at the wall, which has a direct effect on the

quantity uτ/ub.

The observed overshoot at the S → R transition and undershoot at the R → S transition

are the results of respectively, decelerating and accelerating the flow due to the surface change.

Overshoots of this nature at the S → R followed by gradual relaxation to the rough state are often

observed in local wall shear stress measurements in experimental studies, as noted in Elliot[28],

Panofsky & Townsend [93], Tani[128], Garratt[34], and Efros & Krogstad[27]. Pendergrass &

Arya[95] support both overshoot and undershoot observations, not only in the wall shear stress

but also the turbulent intensities. Measurements by Bradley [14] using drag plates indicate an

initial overshoot in the wall shear stress of more than double the final equilibrium shear stress

state in the S→R case, a result backed by the numerical data obtained by Rao et al. [108].

The profile of uτ/ub provides behavioral insights into the relaxation of the shear at the wall.

In Figure 3.8, a cursory investigation appears to indicate that a steeper gradient right after the

S → R transition is associated with a higher level of roughness. In order to quantify these ob-

servations, we consider another length scale that characterizes the uτ/ub profiles: characteristic

length λ2 for the immediate response of the flow to the step change. We investigate this quantity

in both the cases of a S → R and R→ S transition. In order to obtain the characteristic length

scales, the data of uτ/ub between the step and the plateaued state is fitted via least squares with

an exponential equation given by

uτ (x)

ub
≡ S(x) = S0 + (S∞ − S0) (1− exp (− (x− x0)/λ2)) , (3.6)
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Figure 3.9: Sample fit (red) and LES profile (blue) at Reτ = 2× 106 and ε = 1× 10−3.

S → R R→ S
Reτ ε λ2 λ2

2× 106 1× 10−4 2.86 3.85
2× 106 5× 10−4 2.38 3.33
2× 106 1× 10−3 2.17 3.13

Table 3.4: Constant of exponent λ2 for the ratios, uτ (x)/ub up on S → R transition and R→ S
transition at varying roughness levels

where the subscripts ( )0 and ( )∞ denote the normalized friction velocity at the transitions

and plateaued state, respectively. A sample fit line is shown along with the LES data line for

the case at Reτ = 2 × 106 and ε = 1 × 10−3 in Figure 3.9. Although the exponential does

not capture a secondary overshoot at the local minimum of the LES data, the initial descent of

the profiles are in agreement between the fit and LES data, indicating that λ2 is satisfactory

to first order in capturing the length scale of the initial wall shear response upon encountering

a S → R transition. Here, the constant exponent λ2 is interpreted as the length scale for the

initial response and hence a smaller value of this length scale suggests a fast initial response. The

values obtained from our LES are tabulated in Table 3.4. The monotonic decrease of the value

of λ2 with roughness is consistent with the observation found in Figure 3.8. The same process

has been applied to investigate the R → S case; decrease of λ2 with roughness is consistent in

our visual inspection of the plot as well as the quantified values in the table.

The results of the friction velocities, shown in Figure 3.8 are indicative of the wall friction’s

dependence on roughness level. A similar plot, Figure 3.10, is prepared to observe the Reynolds

number-dependence, where the roughness is kept constant at ε = 1 × 10−3 while the Reynolds

S → R R→ S
Reτ ε λ2 λ2

2× 104 1× 10−3 1.85 2.22
2× 105 1× 10−3 2.12 2.78
2× 106 1× 10−3 2.17 3.13

Table 3.5: Constant of exponent λ2 for the ratios, uτ (x)/ub up on S → R transition and R→ S
transition at varying Reynolds number
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Figure 3.10: Ratio of friction velocity to bulk velocity at ε = 1 × 10−3 with varying Reynolds
number. Symbols: LES, dashed line: uniformly-smooh or uniformly-rough reference values.
Different colors represents different Reynolds number; green: Reτ = 2×104, blue: Reτ = 2×105,
red: Reτ = 2× 106.

number is varied over the range Reτ = 2 × 104, 2 × 105, and 2 × 106. The associated reference

profiles are also included in the figure (US.1-3.0 and UR.1-3.3). While the friction velocity

profiles depend on Reynolds number in the smooth region, they plateau to approximately the

same value in the rough region. In Chapter 2, through LES studies of uniformly rough channel

flows, we have observed that at sufficiently high k+
s∞, in particular at values of k+

s∞ considered

in Figure 3.10, the flow reaches a fully rough state, exhibiting no Reynolds number dependence

in the friction factor. Therefore, the collapse of the profiles in the plateaued rough region of

Figure 3.10 suggests that the flow is exhibiting behavior that is characteristic of a fully rough

state, and thus should be Reynolds number independent.

In Table 3.5, variations in the length scale, as Reynolds number is increased, appear mono-

tonic for the given data and simulation conditions. For flow after both R → S and S → R

transitions, a slower initial response is noted when Reynolds numbers increase.

3.3.3 Stream-wise turbulent intensity

The steamwise turbulent intensity u′2, span-wise-averaged and normalized by the square of bulk

velocity u2
b , is plotted in Figure 3.11 on x − y plane. Each line represents the intensity at a

constant wall normal height. The first three points from the wall are absent from the figure

since the model does not capture the intensity accurately at points so close to the wall. The

choice of normalizing by ub rather than the local friction velocity uτ (x) is motivated by the

drastic change that occurs in uτ (x) over the stream-wise extent that would dominate the u′2

field and mask relevant flow features.

Overall, at a given y/δ, much stronger stream-wise fluctuations relative to ub are noted in the

rough region than the smooth region, especially near the wall. This observation is consistent with
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Figure 3.11: Stream-wise turbulent intensity u′2(x, y)/u2
b , span-wise and temporally averaged.

Reτ = 2 × 106 and ε = 1 × 10−3 in the rough region. Each line represents the intensity at a
constant wall normal height. The arrow indicates increasing distance from the wall.

Antonia & Luxton [5]. The u′2 response to the new surface condition initiates near the wall and

downstream of the step change and propagates towards the centerline with downstream distance.

However, in each region, the characteristic level of fluctuations, i.e. increased fluctuations in the

rough-wall region and decreased fluctuations in the smooth-wall region, becomes prominent only

after several channel half-heights downstream of the step change. In comparison to the first

order statistics, i.e. the mean velocity profiles, the turbulent intensities, which are a second

order statistic, appear to experience a slower adjustment to the step change in surface condition.

Similar observations are made by Andreopoulos & Wood [4], who use similar scaling, though a

considerably shorter roughness strip.

3.3.4 Internal boundary layer

The development of the IBL has been a key interest among studies of turbulent flows over step

changes in surface condition since it indicates the region of modified flow. While the IBL of

a TBL is typically defined based on identifying when the mean velocity deviates significantly

from upstream flow conditions, such a definition is not applicable for internal flows such as

channels and pipes. As discussed in §3.3.1, the outer region of internal flows experiences an

immediate velocity change above the step to maintain mass conservation, and the effect can be

noted throughout the flow rather than concentrated near the wall. Therefore, the IBL in this

study is defined using the stream-wise turbulent intensity u′2/u2
b by locating the start of the

“knee” in the curve formed by the sudden and large change in intensity. The method bears some

resemblance to the use of the stream-wise intensities by Efros & Krogstad[27] to locate the knee

in their vertical profile. Referring back to Figure 3.11, we notice that beyond a certain height

from the wall, the stream-wise intensity lines exhibit a minimum near the S → R transition.

Observing the very gradual decrease of the intensity before the transition and sudden rise in

the intensity after the transition, we can regard the minimum as occurring in the region where

a rapid change of flow condition occurs and one which provides a measure of the height of the

internal boundary layer. The reverse is true for the R → S transition with the knee identified

as a maximum of the intensity. Hence we define the height of the IBL δi(x) as the wall normal

height where
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In lieu of the fact that the entire u′2(x, y) field is available to us, we calculate the wall-parallel

gradient of the stream-wise intensity at each point in the domain. We then have that the first

grid point where the gradient is zero defines the knee.

In the literature, we find experimental evidence that an internal boundary layer will grow

proportionally with stream-wise distance raised to a constant power, i.e. δi/δ ∝ (x/δ)n. Efros &

Krogstad[27] report δi ∝ x0.73 for turbulent boundary layers over an S → R transition. Antonia

& Luxton[5] also report similar values for the growth rate, δi ∝ x0.72. Here, we use IBL height

data obtained by Equation (3.7) to obtain a best-fit power law of the form δi/δ = A(x/δ)n,

where x is the stream-wise distance from the step, and where n and A are determined constants.

In Figure 3.12, two IBLs based on our LES data at Reτ = 2× 106 and ε = 1× 10−3 are shown.

We find that the growth of the IBL is approximated by δi ∝ x0.70 over the S → R transition, a

close agreement with the experimental studies of the aforementioned authors.

For the R → S transition, this slows to δi ∝ x0.58. The exponent of the power law fit,

n = 0.58, indicates that the R → S case grows less rapidly compared with the S → R as

stream-wise distance grows asymptotically large, an observation that was also made by Antonia

& Luxton[6]. Garratt[34] points out that the amount by which the R → S case is slower than

the S → R case is less significant in atmospheric observations [47] and some semi-empirical

observations [118] than that noted in Antonia & Luxton’s data (δi,R→S ∝ x0.43). It is also noted

here that the shorter distance for the IBL, which is based on the stream-wise intensities, to reach
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S → R R→ S
Reτ ε A n A n

2× 106 1× 10−4 0.074 0.70 0.16 0.55
2× 106 5× 10−4 0.074 0.70 0.14 0.58
2× 106 1× 10−3 0.070 0.72 0.15 0.58

Table 3.6: Constants A and n for the power law fit δi/δ = A(x/δ)n of the internal boundary
layer defined with the stream-wise turbulent intensity at varying roughness level

S → R R→ S
Reτ ε A n A n

2× 104 1× 10−3 0.096 0.68 0.14 0.62
2× 105 1× 10−3 0.084 0.69 0.14 0.60
2× 106 1× 10−3 0.070 0.72 0.15 0.58

Table 3.7: Constants A and n for the power law fit δi/δ = A(x/δ)n of the internal boundary
layer defined with the stream-wise turbulent intensity at varying Reynolds number

the half channel height for the R → S is a reversed trend compared to the trend observed for

the relaxation lengths based on the mean velocities.

The IBL profiles for the remainder of our LES data are presented in Figure 3.13. In order

to highlight the Reynolds number and roughness dependence of the IBL growth, the left panel

shows the data with constant roughness at varying Reynolds number, while the right panel shows

the data with constant nominal Reynolds number and at varying roughness levels. Note that

the first several points from the wall are absent from the case at Reτ = 2×106 and ε = 1×10−4,

because the roughness level is so small that the change of the intensity is very gradual and thus

a unique minimum is difficult to distinguish. The values of the leading constant A and exponent

n associated with these results are tabulated in Table 3.6 and 3.7. From the plot, we observe a

stronger dependence of the IBL profile on the Reynolds number than the roughness, while the

table suggests that such a dependence is mainly due to the variation in the leading constant

rather than the constant of the exponent.

Motivated by these observations, several scaling factors are investigated in an effort to find

a collapse of the IBL profiles for S → R and R → S cases. It is found that a good collapse

is observed when both the IBL thickness and stream-wise distance are scaled by δ/ log(Re∗τ ),

as shown in Figure 3.14. Here, the Reynolds number Re∗τ ≡ (δuτ,settled)/ν denotes the local

Reynolds number at a point where the friction velocity profile has settled. This scaling factor

δ/ log(Re∗τ ) captures not only the nominal Reynolds number information, which characterizes

each simulation as a whole, but also the roughness variation, since uτ,settled and hence the local

Reynolds number in the rough region is dependent on the roughness level. The appearance of

scaling on a logarithmic of Reynolds number is common in developing wall-layers and is possibly

a dynamical consequence of near-wall structures whose size is roughly proportional to distance

from the wall [87].
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Figure 3.13: Remaining IBLs, open symbols: R → S and solid symbols: S → R. Left: varying
Reynolds numbers with a constant roughness level at ε = 1 × 10−3, circle: Reτ = 2 × 106,
up-facing triangle: Reτ = 2 × 105, diamonds: Reτ = 2 × 104. Right: varying roughness levels
at a constant Reynolds number at Reτ = 2 × 106, circle: ε = 1 × 10−3, square: ε = 5 × 10−4,
right-facing triangle: ε = 1× 10−4.
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Figure 3.14: Collapse of IBL height δi scaled on δ/ log(Re∗τ ). Symbols as in Figure 3.13

3.4 Summary and Discussion

We have used large-eddy simulation to examine high Reynolds number turbulent channel flows,

up to Reτ = 2.4× 106, that encounter wall boundaries with repeated transverse strips of rough-

and smooth-surface conditions. Measured stream-wise, strips are 64δ long in a 128δ long channel,

which has been shown to be of sufficient length to allow full relaxation of flow parameters to their

homogeneously smooth or rough values. Our numerical technique has comprised the stretched

vortex model in the outer LES and the wall model near the wall, which are coupled; the outer

LES provides the wall model with flow information and the wall model provides the outer LES

with a slip boundary condition. The wall model is capable of capturing the dynamics of near

wall anisotropic fine scales [19] and accounting for the surface roughness effects [113]. It operates

point-wise across wall surfaces, and hence changes in the outer flow can be viewed as a natural

response to any temporally and/or spatially variant roughness distribution specified at the wall.

Through the wall model, friction velocity uτ (x, z, t) is directly available from our computation

without the need for typical fitting methods that infer the local wall shear.
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Our LES results have indicated that both inner and outer scaled mean velocity profiles recover

by approximately the middle of each strip with the recovery length ranging between 10 and 40δ,

as obtained by the introduction of a characteristic recovery length scale λ1. The effects of the

downstream transition have been found less significant in the outer flow field, when compared

to the region near the wall. Owning to the confined geometry, the present channel has been

found to exhibit an initial response after a roughness step that is conditioned by the effect of

mass conservation. It has also been found that the mean velocity deficit near the wall due to a

rough surface is matched by a region of velocity surplus in the outer flow, and vice versa for the

smooth wall.

In the local friction velocity immediately after the step change we have found an overshoot

for S → R and an undershoot for R → S transitions, as noted in several previous studies

[28, 93, 128, 34, 27]. An exponential fit of the friction velocity in the region of flow immediately

after a step has been used to obtain a characteristic length scale λ2, which measures the initial

recovery rate of the friction velocity. The values of this length scale λ2 have been observed to

be 2-4 δ and to depend on Reynolds number and roughness.

One implication of a substantial velocity surplus away from the wall compared to the rela-

tively small change in the stream-wise turbulent intensity in the same region is that using the

mean velocity to define the boundary between modified and unmodified flow, i.e. the internal

boundary layer, is inappropriate for internal flows. Using a definition of the internal layer based

on the stream-wise changes in u′2, we have found for the S → R transition an excellent agreement

with the power law growth rates of Antonia & Luxton [5] and Efros & Krogstad [27].

We have noted two main differences between the IBL profiles of the S → R and R → S

transitions. First, the asymptotic growth rate is faster for the S → R transition than for the

R → S transition, although within the region that is observed in this study, the effect of the

leading constant in the power law fit dominates the growth rate and the IBL develops faster

after the R → S transition. Second, the variance in the value of the asymptotic growth rate

exponent for the R → S transition, though it is relatively small, is larger than the S → R

transition. We have also shown that when the IBL profiles with different Reynolds numbers

and roughness levels are scaled by δ/ log(Re∗τ ), the profiles collapse well for each of S → R and

R→ S transitions.

The results of the present study thus lend support to the capability of the present LES

framework to evaluate flows with increased complexity at the high Reynolds numbers encoun-

tered in the natural and industrial world. The ability of the wall model and stretched vortex

SGS model to evaluate wall roughness locally and hence accurately capture sudden changes in

subgrid roughness is a vital step towards realizing flows in generalized geometries. In the final

chapter to follow, we initiate an investigation that takes a further step towards this general

framework, by moving from a planar walled internal flow to one with cylindrical curvature.
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Chapter 4

Large-Eddy Simulation of Fully
Developed Turbulent Pipe Flow

4.1 Introduction

Thus far, our investigation of high Reynolds number turbulent flows has explored the effect of

surface roughness effects that emerge in practice for flows above a certain Reynolds number,

even for highly smoothed industrial surfaces. Here, our investigation takes a different direction;

in the future we see the stretched vortex model, wall model, and roughness model being applied

to high Reynolds number flows over arbitrary geometries in practice. As a first step towards

LES in complex wall shape profiles, we first make the models compatible with a non-planar wall

via appropriate coordinate transformations and subsequently introduce them into a pipe flow

simulation.

Both smooth and rough-walled pipes have long remained a subject of study, originating in the

seminal work of Osbourne Reynolds [110], who built a theoretical foundation for decomposing

the mean and fluctuating properties of fluid motion in pipes. Later, in the smooth and rough

pipe flow experiments of Nikuradse [88] and Moody [82], an empirical framework has been

created for wall skin friction in the presence of turbulence. Since then, turbulent pipe flows have

drawn continual attention from the experimental, theoretical, and computational fluid dynamics

communities.

Among empirical efforts to understand turbulence, the strong attraction towards pipe geom-

etry has led to much success in expanding knowledge in fully developed turbulent flows with

smooth and rough walls. On the other hand, computational efforts have been met with mixed

results; an accurate computation technique like direct numerical simulation is only capable of up

to Reτ = 2× 103 (Hoyas & Jimenez [43]) due to a need for greater computing power, suggesting

that DNS is years away from resolving more than a single decade of self-similar scaling behavior

[122]. At Reynolds numbers that are three orders of magnitude higher than this, a well validated

wall-modeled LES, such as that of Chung & Pullin [19], is one of the few alternatives to DNS

and wall-resolved LES that can begin to operate on flows encountered in nature and engineering.

The Chung & Pullin model is successful in high Reynolds number environments, such as
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the fully developed rough and smooth channel flow environments presented in Chapter 2 and

fully developed boundary layer environments [46]. Presently we expand its applicability to the

remaining canonical flow: the fully developed turbulent pipe flow. The model runs optimally at

higher Reynolds numbers, and experimental data from the Superpipe facility is readily available

in this regime for comparison. Furthermore, the local dynamic friction factor uτ is directly

available from the computation without any need for data fitting or measurement corrections.

Drawing on the wall-modeled LES methodology introduced in Chapter 2, implementation of the

LES is achieved in a pipe geometry. While the Cartesian-based code used in Chapter 2 and 3

is suitable for planar wall geometries like a channel and TBL, it it cannot be directly applied to

pipes or more complex geometries without adaptation. In this chapter, the simulation platform

chosen is based on the spectral element method due to superior handling of more general shape

of wall-boundaries [56].

The discussion begins with a description of the simulation platform SEMTEX and its spectral

element technique, §4.2. Subsequently, preliminary studies in turbulent channel flow in SEMTEX

are provided in §4.4 as a proof of concept for the wall-modeled LES within SEMTEX’s spectral

element solver environment. Assisted by lessons learned in the channel simulations, we then

map out our approach to solving the geometry of interest, a pipe flow in §4.5, with results given

in §4.6.

4.2 Simulation Platform

Unlike channel flow and boundary layer geometries, which have used the finite difference method

with spectral solvers in periodic directions, the pipe LES and wall model are now introduced

into a spectral element Navier-Stokes solver, called SEMTEX developed by Blackburn & Sherwin

[11].

Previously, Rudman & Blackburn [112] used the SEMTEX system for LES of a pipe flow at

Reynolds number Reτ = 1, 920. Its utility lies in its ability to piece together complex geometries

that fall outside of the scope of many numerical solvers, all the while carrying low numerical

diffusion and dissipation errors. The only requirement of the system is that the geometry contain

at least one periodic direction to be used as the Fourier direction. SEMTEX also maintains

advantage over some spectral element solvers by being amenable to parallel computation.

The building blocks of a spectral geometry are convex spectral elements that adopt standard

Gauss-Lobatto-Legendre nodal basis expansions of nth order. Elements are placed adjacent to

one another in a single 2D flat plane [11]. To make up the third dimension, a number of these

flat planes containing spectral elements are chosen and stacked equidistant along the Fourier

direction.

The reader is referred to the present appendix and also to Blackburn & Sherwin [11] for tech-

nical detail on the numerical methods employed to solve the Navier-Stokes equations for spectral

geometries. We note that our LES is distinct from theirs in that they use the Smagorinsky SGS
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model [121] as well as mesh refinements near the wall that resolve the fine scales. Consequently,

they require a van Driest damped turbulent mixing length model to restrict the effects of the

SGS model near the wall model. This wall-resolved LES cannot be extended to large Reynolds

number. In our LES, we use the stretched vortex SGS model on approximately uniform ele-

ments, requiring no empirical wall functions but rather the use of the wall model adapted to a

pipe geometry. Further details are expounded in §4.5.1.

With current computing power, any practical implementation of LES at the high Reynolds

numbers considered here and on a uniform grid runs under-resolved near the wall and is thus

prone to non-negligible discretization errors. In particular, divergence errors are inherent in

spectral element discretizations that are used to simulate under-resolved flows, because only C0

continuity is enforced for field quantities at element edges. This means that, in general, C1 or

higher-order continuity is not guaranteed. Therefore, the derivatives of the field quantities may

be discontinuous along element boundaries, an effect amplified at higher Reynolds numbers since

the flow gradients in the turbulent flow fields are more intense. Due to low numerical dissipation

in spectral element methods in general, oscillations are more intense at element boundaries than

at finite difference grid points, and local Reynolds numbers can become artificially raised [11].

Rudman & Blackburn [112] have noted that this can induce spurious eddy viscosity or precipitate

other unnatural phenomena. While the errors associated with the lack of C1 continuity lessens as

the flow is more fully resolved, it would defeat the purpose of LES; in LES, where full resolution

is not achieved, the absence of C1 continuity at element boundaries can lead to substantial

divergence errors particularly near the wall region. We demonstrate the performance of our wall

model and stretched vortex SGS model in the wake of these inevitable divergence errors.

Simulating turbulent pipe flow in practice has required several incremental development

stages within the SEMTEX computational environment: in order to ensure the compatibility

and validity of the models with the spectral element algorithm, turbulent channel flows have

been simulated first, since the models have previously been well validated in this geometry.

Subsequently, pipe flows simulation runs have been conducted. Conceptually speaking, the

incorporation of the SGS model and the wall model is the same in both channel and pipe

geometries, although their actual mathematical development in a pipe geometry differs markedly

from that of a channel. While the primary focus of this chapter is turbulent pipe flows, one section

is devoted to discussing relevant lessons learned from our channel flow simulations.

4.3 Extension of SEMTEX for LES using the Stretched

Vortex SGS Model and Wall Model

The Navier-Stokes solver SEMTEX has been originally developed to conduct DNS and, although

it has LES capability, the default configuration is limited to the Smagorinsky SGS model with

temporally static boundary conditions. As such, the original code has been further developed

to have dynamic boundary conditions that are imposed at the level of the virtual wall. The
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stretched vortex SGS model and wall model calculations have been added. Changes to the

original code therefore comprise three key modules: subgrid-scale stress calculation, slip velocity

calculation and application of the resultant slip boundary conditions. In order to keep the

software simultaneously compatible with both DNS and LES implementations, new classes have

been created to calculate each of the SGS stresses and slip velocities, and in addition, a new

boundary condition applicator class has been developed that is capable of updating boundary

conditions at each time step and at any location along the wall surface. In this section, each of

these modules is addressed in detail.

4.3.1 Class: Stretched Vortex Model

The stretched vortex SGS model calculation of subgrid stresses is independent of the underlying

numerical method, as demonstrated in Chapter 2. A new class named SGS has been created

to compute the stresses efficiently in a spectral fashion, without losing the capability of running

DNS simulations.

An important step towards computing these stresses is to evaluate the second order structure

functions by integrating across global coordinate information to obtain the group constant K′.
While the implementation of the stretched vortex model requires global information, the spec-

tral element method requires no such information to solve the Navier-Stokes PDE, and hence

one is not by default provided access to global coordinates. The solver relies entirely on the

information local to each element, and thus the global coordinate information must be acquired

as an additional input to the simulation and it is done within the constructor to minimize com-

putational overhead. Additionally, the constructor pre-defines all the other necessary vectors

and matrices that do not change throughout the time-stepping, such as finding the indices of

neighboring points. This operation adds particular complexity when pipe flow is implemented

via Cartesian formulation, where the mesh is no longer structured. We address this point in

detail in §4.5.1.

The remainder of the stretched vortex calculation is done at each time step to compute the

subgrid stress matrix T(x) dynamically. The divergence of this matrix is incorporated into the

nonlinear Navier-Stokes term, which results in the time-iterating scheme given by the following

sub-steps:

ru∗ = −
J∑

q=1

αqru
n−q −∆t

J−1∑

q=0

βqr
(
N
(
un−q

)
+∇ ·T

)
(4.1)

r∇2pn+1 =
ρ

∆t
r∇ · u∗, (4.2)

ru∗∗ − ru∗ = −r∆t
ρ
∇pn+1, (4.3)
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r∇2un+1 − rα0

ν∆t
un+1 = − r

ν∆t
u∗∗, (4.4)

where the pressure boundary condition is given by

r∂np
n+1 = −rρn ·

J−1∑

q=0

βq
(
N
(
un−q

)
+ ν∇×∇× un−q + ∂tu

n−q) . (4.5)

Here, J is the order of accuracy of the scheme, and the constants αq and βq are the discrete

weights associated with the current order of accuracy J = 2. The nonlinear terms are denoted

as N(u) and defined as the skew-symmetric form, i.e. N(u) = (u · ∇u +∇ · uu)/2. A complete

discussion of the numerical methods for DNS cases is given in Blackburn & Sherwin [11], as well

as in the appendices of Chapter 6.

4.3.2 Class: Wall Model

A new class Wall Model houses the computation of slip velocities using the wall model ODE

and log-relation. Presently we use the same local wall model, Equations (2.17) and (2.21), used

for the previous channel flow LES but without the roughness correction, and adapted here for

the pipe-flow geometry. Rather than the formulation for the ODE (2.17) for uτ , however, it is

presently convenient to utilize the equivalent ODE form originally used by Chung & Pullin [19]

in terms of the wall-normal shear stress at the wall.

ũ|h
2η0

∂η0

∂t
+
∂〈ũu〉
∂x

∣∣∣∣
h

+
∂〈ũw〉
∂z

∣∣∣∣
h

+
1

h
ũv|h = −∂P̃

∂x

∣∣∣∣
h

+
ν

h

(
∂ũ

∂y

∣∣∣∣
h

− η0

)
, (4.6)

ũ |h0
= uτ

(
1

K1
log
(
h+

0

)
+B

)
, (4.7)

where we recall that u2
τ = νη0. Here, the stream-wise, wall-normal, and span-wise directions

are set as x−, y−, z−directions, which reflects the actual implementation of channel flow in

SEMTEX. In the channel flow simulations of Chapter 2 and 3, the wall model is implemented

in a synchronized manner with the Navier-Stokes time-stepping because it uses the third-order

Runge Kutta method for time-integration, thus providing complete flow information at three sub-

steps within each time increment. This allows for integrating the wall model ODE numerically

with third-order accuracy. In contrast, the time-stepping scheme used in SEMTEX provides

flow information only once in each time-step, resulting in a first order approximation to the

ODE if solved numerically. Due to highly fluctuating behaviors of the near-wall flows, the use

of this first order numerical solution to solve the ODE has caused unstable behaviors to emerge

in solutions. Therefore, we have used an approximate analytic solution of first order to the wall

ODE [19]. For the Cartesian coordinate system, the ODE in Equation (4.6) can be rewritten in

the form:
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∂η0

∂t
= Λη0 (γ − η0) , (4.8)

where Λ(t) and γ(t) are defined as

Λ(t) =
2ν

hw|h
, (4.9)

γ(t) = −h
ν

(
∂〈ũu〉
∂x

∣∣∣∣
h

+
∂〈ũw〉
∂z

∣∣∣∣
h

+
1

h
uv|h +

∂P̃

∂y

∣∣∣∣
h

)
− ∂u

∂y

∣∣∣∣
h

. (4.10)

The formal analytic solution to Equation (4.8) is (Chung & Pullin, 2009)

1

η0(t)
=

I(t)

η0(0)
+ I(t)

∫ t

0

Λ(s)

I(s)
ds, (4.11)

where

I(t) = exp

(
−
∫ t

0

Λ(s)γ(s)ds

)
. (4.12)

For the purposes of solving the ODE, the function Λ(t) and γ(t) can be considered functions

of time sourced from information supplied by the LES at y=h. Equation (4.11) is approximated

to first order to obtain Equation (4.13) in the implementation:

1

η0(t)
=

1

η0(0)
e−tΛ(0)γ(0) − 1

γ(0)

(
1 + e−tΛ(0)γ(0)

)
. (4.13)

4.3.3 Adaption of Wall Model to Cylindrical Geometry

For the cylindrical coordinate system, the wall model ODE, as well as the analytic solution,

must be modified through coordinate transformation. This involves calculating the wall-normal

components and wall-normal derivatives of variables at each wall point. Since the transformation

takes place at each wall point and at each time step, and evaluates many trigonometric func-

tions, it increases the computational cost substantially. However, all the multiplication factors

associated with the transformation are computed only once when objects are constructed and

stored as a private member of the class before time stepping begins.

As will be introduced in §4.5.1, we implement the turbulent pipe flow simulation with the

stream-wise direction being the Fourier direction, making the pipe transverse-cross-section the

Fourier plane. Fourier planes are meshed in Cartesian coordinates, and hence the ODE must be

rewritten in cylindrical coordinates. First, wall-parallel filtering and wall-normal averaging are

re-defined in cylindrical coordinates as,

φ̃ (z, r, θ, t) =

∫ ∫
φ (z′, r, θ′, t)G (z − z′; ∆f )G (θ − θ′; ∆f ) dx′dθ′, (4.14)

〈φ̃〉 (z, θ) =
1

h

∫ R

R−h
φ̃ (z, r, θ) dr. (4.15)

Here, the stream-wise, radial, and azimuthal directions are denoted by z−, r−, θ− directions,

again to be consistent with the coordinate system used in the current pipe flow simulation.
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Applying the above filtering and averaging processes to the stream-wise momentum equation in

cylindrical coordinates, the following ODE of the stream-wise velocity is obtained:

∂〈w̃〉
∂t

+
∂〈w̃w〉
∂z

∣∣∣∣
R−h

+
1

R

∂〈w̃uθ〉
∂θ

∣∣∣∣
R−h

+(
1

R
− 1

h
)wur|R−h = −∂p̃

∂z

∣∣∣∣
R−h

+
ν

h

(
∂w̃

∂r

∣∣∣∣
R

− ∂w̃

∂r

∣∣∣∣
R−h
− 1

R
w|R−h

)
.

(4.16)

Note that since the outer LES runs on Cartesian coordinates, most terms in Equation (4.16)

must be transformed from Cartesian to cylindrical coordinates. Through several stages of alge-

bra, we obtain the wall model ODE in cylindrical coordinates,

∂η0

∂t
=

2η0

u|R−h

[
−∂〈w̃w〉

∂z

∣∣∣∣
R−h

− 1

R
(r sin2 θ

∂wu

∂x
− r sin θ cos θ

∂wu

∂y
− r sin θ cos θ

∂wv

∂x
+ r cos2 θ

∂wv

∂y
)

∣∣∣∣
R−h

+
1

h
(wu cos θ + wv sin θ)

∣∣∣∣
R−h

− ∂p̃

∂z
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R−h

+
ν

h

(
−η0 − (

∂w

∂x
cos θ +

∂w

∂y
sin θ)
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R−h
− w|R−h

R

)]
.

(4.17)

The ODE can be written as in Equation (4.18) by defining Λ(t) and γ(t) as Equation (4.19)

and (4.20) respectively.

∂η0

∂t
= Λη0 (γ − η0) , (4.18)

where

Λ(t) =
2ν

hw|R−h
, (4.19)

γ(t) = −h
ν

(
∂〈w̃w〉
∂z

∣∣∣∣
R−h

+
1

R

∂〈w̃uθ〉
∂θ

∣∣∣∣
R−h

+ (
1

R
− 1

h
)wur|R−h +

∂P̃

∂z

∣∣∣∣
R−h

)
− ∂w
∂r
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R−h
−w|R−h

R
.

(4.20)

The approximated analytic solution to this ODE is obtained via first order approximations.

1

η(t)
=

1

η(0)
e−tΛ(0)γ(0) +

1

γ(0)
(1− e−tΛ(0)γ(0)). (4.21)

4.3.4 Temporally and Spatially Varying Dirichlet Boundary Condi-

tions

The slip velocity is calculated locally and dynamically, which requires the ability to apply the

time- and space-varying Dirichlet boundary conditions. While the original implementation of
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SEMTEX allows various boundary conditions, such as constant Neumann or Dirichlet boundary

conditions, a new boundary applicator to allow for variations in time and space has been devel-

oped for the purpose of implementing the wall model. To achieve this, we have created a new

boundary condition type as well as a new boundary condition manager.

The boundary condition type, such as Neumann and Dirichlet boundary conditions, is spec-

ified for each element adjacent to the boundaries in the session file; for a complete description

of the session file, the readers are referred to the SEMTEX documentation. With the original

platform, based on input information about boundary condition type and values, the boundary

conditions are specified at the beginning of the simulation since there is no mechanism for up-

dating the boundary conditions during the time-stepping. With the modified platform, if the

boundary condition type is specified as type “T” for “time and space varying,” the boundary

value assignment takes place during the simulation via“Slip Velocity Boundary Condition Man-

ager,” which is responsible for taking in the slip velocity to be applied, updating the boundary

condition storage and assigning each element with the updated slip velocity. The utility of the

temporally and spatially varying boundary conditions is not limited to a particular type of wall

modeling or the use of wall modeling at all. For example, if the wall model is replaced with

another model, only the class Wall Model must be altered; the resultant slip velocity can be fed

into the slip velocity boundary condition manager and application of the slip velocity is correctly

carried out. As we have demonstrated in Chapter 3, the user may wish to have spatially and/or

temporally varying boundary conditions built into the design, in which case such changes can

be easily reflected via the new boundary condition type.

4.4 Test Case: Fully Turbulent Channel Flow in SEMTEX

4.4.1 Channel Flow Simulation Conditions

We have simulated fully developed smooth wall turbulent channel flow with the stretched vortex

model and wall model in SEMTEX using the same formulation as presented in Chapter 2. This

provides the opportunity to verify that the models function well when used with the spectral

element method. Results are presented for Reτ = 2 × 103 − 2 × 106. The domain size is

(lx, ly, lz) = (15, 2, 8)δ, where δ is the half channel height and x, y, z−directions are the stream-

wise, wall-normal, and span-wise directions, respectively. The Fourier direction is chosen as

the span-wise direction and in contrast with regular grid-based methods, the resolutions are

characterized not simply by the number of grid points, but firstly via the number of planes in

the Fourier direction, secondly by the number of elements in each x − z-plane, and finally on

the chosen order of polynomials basis functions. We have used 48 Fourier planes, each with four

elements in the wall-normal direction and 30 elements in the stream-wise direction. Each element

is represented in both wall normal and stream-wise directions with a 9th order polynomial basis.
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Figure 4.1: Mean velocity profiles of channel flow with SEMTEX. Squares: LES, triangles: DNS
of Hoyas & Jimenez [43], dashed line: log-law with κ = 0.37 and B = 4.5, obtained from Chapter
2.

4.4.2 Channel Flow Results

The mean velocity profiles obtained at Reynolds number Reτ = 2 × 103 − 2 × 106 are shown

in Figure 4.1. An agreement is observed between LES and DNS results, while the log-law also

supports our LES results. For the log-law reference profile, the values of the Kármán constant

κ and additive constant B are κ = 0.37 and B = 4.5, which have been obtained from Chapter

2. At Reτ = 2× 106, we start to see a deviation of the LES profiles from the log-law, suggesting

the onset of non-negligible effects from divergence errors.

The stream-wise turbulent intensities over the same range of Reynolds number are shown in

Figure 4.2. The scolloping effect observed in the profiles coincides with the locations of element

edges and is believed to be an effect of divergence error, to be discussed subsequently. Although

there are some variations across different Reynolds numbers, overall the profiles agree well with

the experimental results of Hoyas & Jiménez [43].

A crucial finding of this high Reynolds number channel simulation test case is the significant

effect of domain size. Initially, a domain size of (lx, ly, lz) = (2π, 2, π)δ had been used. However,

the flow fields developed an asymmetry in the mean profiles when the expectation was for them

to be symmetrical across the centerline. In such cases, we found a large spike in the pressure

field at the “highest pressure node.” Its presence may be understood by recalling that one of

the fundamental flow assumptions here is that of incompressibility. The continuity condition in

incompressible flow sets up the pressure Poisson equation with Neumann boundary conditions,

and solutions of such problems are generally non-unique. Consequently, the local value of the

pressure is undetermined and only the local pressure gradient has meaning. In order to resolve

this non-uniqueness of the pressure, a small amount of Dirichlet boundary condition is introduced

by fixing the pressure at one point in the domain boundary, the “highest pressure node.” It is

thought that pinning the pressure at the highest pressure node and imposing periodicity within
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Figure 4.2: Turbulent statistics normalized by uτ and δ. Solid symbols: total component, open
symbols: subgrid component, line: DNS data of Hoyas and Jiménez 2006. Square: Reτ =
2× 103, circle: Reτ = 2× 104, up-pointing triangle: Reτ = 2× 105, and down-pointing triangle:
Reτ = 2× 106.

such a small domain resulted in unphysical phenomena, ultimately manifesting in an asymmetric

profile across the centerline, although the exact mechanism of it is not clear. This observation

has formed the basis for choosing a longer domain for both the channel and pipe flow, which

immediately resolved the issue.

As a final diagnostic step, the divergence within the computational domain is examined by

defining the normalized divergence as Equation (4.22). A detailed discussion of this quantity

associated with C1 discontinuity is given in the discussion of the pipe flows in §4.6.5.

D =
Sii√
SijSji

, (4.22)

where Sij denotes the strain rate tensor. Note that the normalizing factor
√
SijSji is invariant

under coordinate transformations. This quantity is calculated locally and dynamically, and

is then averaged over time and the stream-wise direction. Consequently, the distribution of

the divergence over the channel cross-section is obtained as shown in Figure 4.3. The plot

has a limited colormap legend range to elucidate the divergence error along the wall, of which

the maximum divergence is found to be 4 × 10−4. Although we observe elevated levels of

the divergence error along element edges, the maximum value of the normalized divergence is

O(10−4) and hence the error should not largely affect the computational results.

4.5 Pipe Flow LES with SEMTEX

Our pipe LES requires several modifications to fit with the spectral formulation used in SEMTEX

and the pipe geometry. We begin with a discussion of the appropriate choice of the Fourier

direction, which finalizes the geometry and coordinate system for the simulation. We then
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Figure 4.3: Distribution of divergence error on channel cross-section. The maximum level of the
divergence is 4× 10−4 while the colormap is limited to elucidate the element edge behaviors.

continue on to discuss the mathematical adjustments necessary for the stretched vortex SGS

model and wall model to conform to a spectral element simulation platform. Finally, a summary

of simulation conditions is presented before leading into the results of the numerical study in

§4.6.

4.5.1 Cylindrical Formulation and Cartesian Formulation

SEMTEX implements spectral element methods to solve the Navier-Stokes equations on geome-

tries that have at least one periodic direction. In the case of fully developed turbulent pipe flow,

this can be either the azimuthal or stream-wise direction. Here, we will consider each formulation

separately.

Cylindrical Formulation

The choice of azimuthal direction as the Fourier direction corresponds to solving the Navier-

Stokes equations in cylindrical coordinates, and henceforth we refer to the pipe-domain setting

with an azimuthal Fourier direction as the “cylindrical formulation.” The global coordinates

of the cylindrical formation are defined by the radial, azimuthal, and stream-wise directions,

which are denoted by r, θ, and z, respectively. Choosing the azimuthal direction as the Fourier

direction necessarily results in having the r− z plane as the Fourier plane. These Fourier planes

are rectangular-shaped with a rectangular mesh, which is preferred for the stretched vortex model

because the neighboring points used to calculate the structure functions, an essential part of the

SGS stress calculations, are well defined. Furthermore, the wall normal direction coincides with

one of the global axes (r−direction) and hence, it requires no coordinate transformations when

implementing the wall model. However, in the end the azimuthal Fourier direction has not been

not selected since the resulting simulation outputs for mean velocity have shown that profiles

are systematically underestimated near the centerline. It is thought that having an increasingly

small azimuthal spacing towards the centerline is an issue because of the observed sensitivity of

the near-center velocity to how we take the azimuthal contribution to the structure function.
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Figure 4.4: Meshed cross section with Cartesian formulation. Currently, forty-eight elements
comprise the plane.

Cartesian Formulation

If we instead choose the stream-wise direction as the Fourier direction, the Navier-Stokes equa-

tions are solved in Cartesian coordinates, and hence this setup is referred to as Cartesian for-

mulation. With the stream-wise direction chosen as the Fourier direction, the Fourier planes

on which the spectral-element methodology is implemented lie in the r − θ plane and the flow

domain is then bounded by the circle r = R. The organization of the elements within a Fourier

plane is shown in Figure 4.4. This formulation avoids the issue of diminishing angular grid

spacing in the cylindrical formulation. The aforementioned under-estimating behavior of the

mean velocities associated with the cylindrical formulation is absent, although some additional

changes to the stretched vortex SGS model arise, two of which are discussed below.

(A) Neighboring Points: an advantage associated with the cylindrical formulation is the

aforementioned rectangular geometry of the Fourier planes, since the local coordinates defined

in each element (i, j) are aligned with the global (r, z) coordinates in physical space. Therefore,

this geometry has well defined neighboring points that make calculating the structure functions

in global coordinates for the SGS model simple. In the Cartesian formulation, this simple

calculation is no longer available as elements are no longer structured. Instead of calculating

neighboring points in the global system (x, y) similar to the cylindrical formulation, they are

evaluated in the local (i, j) coordinate system of each element. An illustration of an element

under the Cartesian formulation is given in Figure 4.5, indicating the local coordinate system.

In spite of the complexity of finding the indices for each neighboring point among all elements,

this is done only once before the simulation begins stepping forward in time, therefore causing

little computation overhead.

(B) Cutoff Length ∆c: The definition of the cutoff length ∆c also requires modification. The

following definition is arrived at.

∆c,ijk = (ri+1ri−1rj+1rj−1rk+1rk−1)
1/6

, (4.23)
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Figure 4.5: Local and global coordinates within the Fourier plane for the Cartesian formulation.

where ri+1 = ((xi+1,jk − xijk) (yi+1,jk − yijk) (zi+1,jk − zc,ijk))
1/3

rj+1 = ((xi,j+1,k − xijk) (yi,j+1,k − yijk) (zi,j+1,k − zijk))
1/3

rk+1 = ((xij,k+1 − xijk) (yij,k+1 − yijk) (zij,k+1 − zijk))
1/3

.

Other definitions of ∆c include one based on the volume of an equivalent cube. In a uniform

grid, this is defined as ∆c = (rxryrz)
1/3

. Here, rx, ry, and rz are the grid spacings in x, y, and z

coordinates, respectively. Note that a cube with each side having length ∆c would have the same

volume as that of each grid, rx × ry × rz. This definition is used in the channel flows discussed

in Chapter 2 and 3. Note that this volume-based definition produces the same equation for ∆c

as Equation (4.23) in the case of uniform grids. It is possible to use a similar definition of ∆c in

nonuniform grids. The corresponding expression for ∆c in a nonuniform grid is

∆c,ijk =

(
ri+1 + ri−1

2

rj+1 + rj−1

2

rk+1 + rk−1

2

)1/3

, (4.24)

where the definition of ri+1 and the others follow that of Equation (4.23) . However, in this

definition, the flow field information from the difference in grid spacings on either side of the node

is blurred because of averaging. Nonetheless, we have run some simulations with this definition

and found no significant difference in results.

4.5.2 Simulation Conditions for Pipe Flow

We consider a relatively long pipe of roughly the same dimensions as those of the channel

flow presented in Chapter 2 and 3. The present domain is set to have dimensions (R, θ, lz) =
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(0.5, 2π, 2π/0.4 ≈ 15.7) and uses approximately 1,500,000 node points. Using the Cartesian for-

mulation, we take the stream-wise (z−) direction as the Fourier direction and use 320 z−planes.

Each plane consists of 48 elements, as shown in Figure 4.4. Elements are organized into four

layers in the radial (r−) direction, with the two outer-most layers having 16 elements around

the circumferential (θ−) direction. Along with the 320 z−planes and 10th order polynomials,

we aim to have an effective grid size ratio of dr : dz = 1 : 4, based on our previous experience in

using the stretched vortex SGS model and wall model.

The simulation conditions of pipe LES are summarized in Table 4.1. The Reynolds number

based on the pipe radius and friction velocity is varied from approximately Reτ = 2 × 103

to Reτ = 2 × 106. Defining the ReD = ubD/ν, where D denotes the pipe diameter, the

corresponding values are from ReD = 9.18 × 104 and 1.65 × 108, respectively, according to

the Blasius correlation. The mean pressure gradient in the stream-wise direction is denoted

dp/dz in the table. Also, in the table, the mesh and resolution combination described above is

called “regular,” while the one with Laplacian smoothing for improved uniformity of the mesh

is called “Laplacian Smoothing.” This Laplacian smoothing is applied to the mesh, aiming to

make the elements more uniform. It acts on the interior vertices of the mesh while leaving the

boundary vertices as is. The algorithm re-locates each interior vertex at the average location

of the neighboring vertices. The re-location process is repeated iteratively until a satisfactory

mesh is achieved.[133] Finally, the case with additional elements near the wall to improve mesh

refinement is called “High Resolution.”

Reτ ν dp/dz Mesh/Resolution

R1 2× 103 1.09× 10−5 7.59× 10−3 Regular
R2 2× 104 8.27× 10−7 4.37× 10−3 Regular
R3 2× 105 7.04× 10−8 3.17× 10−3 Regular
R4 2× 106 6.06× 10−9 2.34× 10−3 Regular

L1 2× 104 8.27× 10−7 4.37× 10−3 Laplacian
Smoothing

H1 2× 104 8.27× 10−7 4.37× 10−3 High Resolution

Table 4.1: Simulation conditions for turbulent pipe flows

4.5.3 Element Edge Treatment in the Wall Model

The aforementioned divergence error develops along element edges, which affects both the

resolved-scale LES and, indirectly, the solution of the ODE at the wall to obtain uτ . This

tendency is particularly notable at Reynolds numbers above Reτ = 2× 105. It is expected that

azimuthal distributions of uτ should be uniform, with both time-wise and z − θ fluctuations

superimposed. While the distributions of friction velocity at Reτ = 2 × 103 and 2 × 104 have

been found to be relatively uniform across the wall surface, at Reτ = 2 × 105 the distribution

has shown that the values of friction velocity along element edges are much smaller than the

interior points of each element. When the Reynolds number is 2× 106, the element edge points

have larger values of uτ compared to those at the interior points. Although this behavior is
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rather non-systematic, it is believed to be a consequence of large divergence errors produced by

SEMTEX at the wall as the Reynolds number increases. To correct this within SEMTEX itself

would require developing a version of SEMTEX that guarantees C1-continuity at element edges.

This is beyond the scope of the present work. As an alternative, we explore strategies for the

treatment of the SGS model at element edges that alleviate the divergence-error effect. Three

possible techniques to address this issue are discussed here:

(a) No treatment. The wall ODE for uτ at element-edge nodes are treated the same as any

other point along the wall.

(b) The inputs to the wall model at element edge nodes are taken as the average of the interior

nodes on the either side of the edge.

(c) A combination of (a) and (b), where the simulations up to Reτ = 2× 104 use (a) and those

beyond that level use (b).

The results from these three techniques are given in §4.6.2 and a relevant discussion of divergence

errors is given in §4.6.5.

4.6 Pipe Flow Results in SEMTEX

4.6.1 Friction Factor in Pipe

The friction factor in turbulent pipe flow is defined in terms of the pressure gradient and dynamic

pressure based on the bulk velocity, as shown in Equation (4.25), which can also be expressed

in terms of friction velocity [103, 74].

f =
−dp/dz D

1/2ρu2
b

= 8
u2
τ

u2
b

, (4.25)

where dp/dz is the mean pressure gradient in the axial direction and D is the pipe diameter.

Over the full-range of Reynolds number from Reτ = 2 × 103 to 2 × 106 (R1-R4), the friction

factor is plotted against the Reynolds number based on the bulk velocity in Figure 4.6. We find

a close agreement of our LES results with empirical evidence.

Using the estimate of uτ/ub based on the log-law (see Chapter 2, Equation (2.44)) and

Equation (4.25), we can obtain an expression for friction factor. In order to calculate the

Kármán constant and additive constant of the log-law, the friction factor data is fit via least

squares. We find the values of Karman constant κ and B to be κ = 0.43 and B = 5.5. These

values are comparable to values obtained by McKeon et al. (2004A)[71], who report κ = 0.42

and B = 5.6.
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Figure 4.6: Friction factor with Reynolds number based on bulk velocity, based on Method (b).
Squares: LES; dashed line: experimental result of McKeon et al. (2004B)[74].

4.6.2 Mean Velocity Profiles

The mean velocity profiles of pipe flow simulations at Reτ = 2 × 103, 2 × 104, 2 × 105, and

2 × 106 (R1-R4) are shown in Figure 4.7, using method (b) from §4.5.3 for the wall model

calculation, since it demonstrates good performance. In order to obtain each profile, raw data is

first averaged over the stream-wise direction (Fourier direction). Then, the stream-wise-averaged

data is sampled at 40 evenly spaced points from the pipe center to the virtual wall. Should one

of these sample points not coincide with a knot point of the Gauss-Lobatto-Legendre basis

functions, a two-dimensional interpolation is carried out using the polynomials. This sample is

referred to as a “ray.” Sixteen of such rays are sampled around the circumferential direction with

equal angular spacing, and subsequently averaged to obtain the final profile. Recall that there

are sixteen elements along the circumference of the pipe and thus the sixteen sample rays can

be made to coincide with the center of each of the elements in order to minimize any spurious

element edge phenomena along their radial sides. The slip velocity at the virtual wall, which is

the lowest data point of the profile in the figure, is exempt from inclusion in the sample rays.

Rather than relying on interpolated data based on the basis polynomials, as above, the average

of the slip velocity data is taken using samples from the raw wall model output. Samples are

taken at the center of each element. This special treatment of the slip velocity attempts to show

the available results closest to the wall while avoiding over-interpolation of the data and the

over-active behavior at element edges.

Our LES indicates that the Kármán constant is κ = 0.43, as discussed in §4.6.1, resulting in

a good log-law fit for LES data. Although our LES data shows inconsistency at Reτ = 2× 104,

it captures the overall trend of the mean velocity profile as shown in Figure 4.7.

As discussed in §4.5.3, without any corrections, i.e. method (a), the element edge behaviors

on the wall remain largely affected by divergence error. To see why Method (b) is advocated in
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Figure 4.7: Pipe flow mean velocity profiles. Squares: LES using (b); solid line: experiment
McKeon et al. [71] at Reτ = 1.8× 103, 2.0× 104, 2.2× 105, 5.3× 105; dashed line: log-law with
κ = 0.43 and B = 5.5, obtained from LES.

the results presented above, Figures 4.8 and 4.9 are given for comparison, which show the mean

velocity profiles produced by methods (a) and (c), respectively. When using (a), the profiles are

uniformly overestimated, while using (c), they are nearly identical to (b). Because using the

same method across different Reynolds numbers is preferred, we have chosen our primary data

source for the results as (b), although the results based on (a) are also presented in the rest of

this chapter.

4.6.3 Flow Visualizations of Stream-wise Velocity

The instantaneous stream-wise velocity on a representative pipe cross-section is shown in Fig-

ure 4.10 at Reynolds numbers Reτ = 2 × 103 − 2 × 106. It is observed that with increasing

Reynolds number, the velocity profiles flatten, as expected of turbulent flow. Note that the

mesh does not change with Reynolds number, and hence increasing Reynolds number corre-

sponds to under-resolving the flow more. Consequently, the solution experiences stronger effects

of errors associated C1 discontinuity; evidentially, we observe clearer signs of numerical artifacts

along element edges with increasing Reynolds number.

4.6.4 Turbulent Intensities

The stream-wise turbulent intensities at all Reynolds numbers are compiled in Figure 4.11 using

method (b). Intensity profiles use the same averaging and uniformly distributed interpolation

points as the mean velocity profiles, with the only exception being for data points near the wall.

Due to large fluctuations in the turbulent intensities near the wall, the data is not interpolated

within the elements adjacent to the wall. Instead, the data at computational nodes are averaged
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Figure 4.8: Pipe flow mean velocity profiles. Squares: LES using (a); solid line: experiment
McKeon et al. [71] at Reτ = 1.8× 103, 2.0× 104, 2.2× 105, 5.3× 105; dashed line: log-law with
κ = 0.43 and B = 5.5, obtained from LES.
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Figure 4.9: Pipe flow mean velocity profiles. Squares: LES using (c); solid line: experiment
McKeon et al. [71] at Reτ = 1.8× 103, 2.0× 104, 2.2× 105, 5.3× 105; dashed line: log-law with
κ = 0.43 and B = 5.5, obtained from LES.
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Figure 4.10: Flow visualization of instantaneous stream-wise velocity at Reτ = 2 × 103, 2 ×
104, 2× 105, 2× 106

over the azimuthal direction while avoiding the element edges. A reasonable agreement with

the experimental results of Hultmark et al. [44] at Reτ = 20, 251 is observed, although all of

the profiles are slightly lower than the experimental results. When we use the wall model with

method (a), the turbulent intensity profiles are closer to the experimental results, as shown in

Figure 4.12.

4.6.5 Divergence Error and Reynolds Number

In order to examine the significance of the C1 discontinuity, we analyze the behavior of the strain

rate tensor Sij since it is one of the most directly affected quantities due to C1 discontinuity,

and yet it is an important variable that is included in the SGS stress calculation. Although

the true values of Sij are unavailable unless we perform a corresponding DNS simulations,

the computational requirement of which is unfeasibly high, we can infer the exact value of

an invariant property within the matrix, that the trace of Sij should be always zero due to

incompressibility. Therefore, while the error associated with C1 discontinuity is not confined to

the trace, but rather exists in all components of Sij , the analysis proceeds using the trace, which

is also known as the divergence error in the context of incompressible flow. In order to study

the development of divergence error, the normalized divergence as defined in Equation (4.22) is

examined across the pipe cross section. The distribution is shown in Figure 4.13 for the case

of Reτ = 2× 106; the maximum level of divergence error was 0.18. Again, the figure limits the

color legend scale to show the effect at element edges. The divergence error is prominent near

the element edges especially along the wall.

The maximum value of the normalized divergence error is tabulated in Table 4.2. We observe
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Figure 4.11: Turbulent intensity profiles using method (b). Solid symbols: LES data; circle:
Reτ = 2 × 103, up-pointing triangle: Reτ = 2 × 104, down-pointing triangle: Reτ = 2 × 105,
star: Reτ = 2× 106. Open square: experimental data of Hultmark et al. [44] at Reτ = 20, 251.
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Figure 4.12: Turbulent intensity profiles using method (a). Solid symbols: LES data; circle:
Reτ = 2 × 103, up-pointing triangle: Reτ = 2 × 104, down-pointing triangle: Reτ = 2 × 105,
star: Reτ = 2× 106. Open square: experimental data of Hultmark et al. [44] at Reτ = 20, 251
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Figure 4.13: Distribution of divergence on pipe cross-section at Reτ = 2 × 106. The maximum
level of the divergence is 0.18 while the colormap shown in the plot is limited to elucidate the
element edge behaviors.

a trend of increasing divergence errors with increasing Reynolds numbers except at the lowest

Reynolds number, where the error might also be affected by the less than optimal Reynolds

number. Compared to the magnitude of the divergence error in the channel flow case, the error in

the current pipe geometry is significant. Several attempts have been made to compensate for this

error, such as considering dynamic calculation of the cutoff wavelength. We have also increased

the near-wall resolution (H1 simulation) and tried to mesh with more uniform elements via

Laplacian smoothing (L1 simulation). These strategies, however, have produced no significant

improvements in the near-wall divergence error. The observed trend of the divergence error offers

possible explanations for the departure of the statistics from the empirical results, although the

extent to which it can be attributed to the divergence error is unquantifiable.

Geometry Reτ D
Channel 2× 106 4.2× 10−4

Pipe 2× 103 0.022
Pipe 2× 104 0.018
Pipe 2× 105 0.11
Pipe 2× 106 0.19

Table 4.2: Maximum divergence error, averaged and normalized.

4.7 Summary and Discussion

In the final chapter of this work, we have used the high Reynolds number LES framework of

Chung & Pullin [19], comprising the stretched vortex model and wall model, within a spectral

element software platform called SEMTEX, with a view of extending these models in the future

to more general geometries. Its numerical scheme has been selected for the advantage it extends

in having spectral accuracy when fully resolved and for accommodating complex wall boundaries.
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The Navier-Stokes solver that is internal to SEMTEX has been modified in two incremental

stages to initially certify the compatibility of the models with the numerical method by simu-

lating a channel flow in Stage 1 and thereafter to approach the full pipe flow problem in Stage

2. The first stage of development has successfully shown agreement of our channel flow results

from SEMTEX with those of DNS [43]. Both the SGS model and wall model have performed

according to expectations driven by our prior studies of channel flow LES built on finite dif-

ference and spectral methods in Chapter 2. The present channel mean velocity profiles have

correctly postdicted the log-law profiles and favorably agreed with DNS [43], and the turbulence

statistics, scaled on uτ , have shown collapse across Reynolds numbers and agreement with DNS.

A negligibly low level of divergence error has been detected throughout the channel.

The second stage of development has simulated pipe flow in a Cartesian coordinate system,

which eliminates pole singularities. The conversion from planar to curvilinear wall boundaries

has been presented and wall treatment has been covered. The performance of the spectral

element method in under-resolved conditions has initially caused mean velocity profiles to be

under-predicted by several percent when compared to the theoretically based log-law; turbu-

lence statistics have been shown to be systematically downward biased. By applying a special

treatment to the spectral element edge-nodes at the wall, this issue has been addressed and

only partly remedied. Nonetheless, in spite of these errors, the friction factors obtained from

the LES have shown agreement with those obtained in the experimental study of McKeon et al.

[74] and have been used to calculate the Kármán constant and additive constant as κ = 0.43

and B = 5.5. Other possible improvements have been attempted, such as the various ways to

calculate the LES cutoff wavelength, Laplacian smoothing of the grid spacing, and near-wall grid

refinement, although no entirely satisfactory and systematic solution has been found through

these approaches. An alternative appears to be grid refinement up to the level at which the flow

is fully resolved and hence the SGS model can be turned off near the wall. This would clearly

defeat the point of LES and hence is not pursued.

Looking forward, an alternative numerical method that is easily applied to complex geome-

tries and does not have C1 discontinuity would hold promise. Alternatively, the models can be

improved to handle flows with finite divergence errors. With either of these being achieved, the

stretched vortex model and wall model, as well as the roughness model, will see their potential

realized in broader application. It is hopeful they will recreate real fluid flow environments with

the necessary accuracy to capture roughness effects on complex wall profiles at the high Reynolds

numbers that are so prevalent in our world and yet still so inaccessible.
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Chapter 5

Conclusions

In Chapter 2, we have established a high Reynolds number roughness model that is incorporated

into the LES framework comprising the stretched vortex SGS model coupled to the wall model

[19]. Our current modeling framework is capable of handling a wide range of Reynolds numbers

and roughness levels, which are specified in terms of equivalent sand roughness within the subgrid

range. In the sense that our approach is capable of using any roughness function of the form of

Hama’s roughness function, i.e. ∆U+ = ∆U+(k+
s∞), the roughness function can be considered

a model input. Presently, the semi-empirical roughness model has employed the Colebrook

formula, directly modifying the wall model while the outer LES is affected only through the

information propagated from the slip boundary conditions. By way of a fourth-order central

difference and pseudo-spectral method in space and third-order Runge-Kutta method in time,

roughness corrected LES has been applied to fully turbulent channel flow over the range of

Reynolds number from Reτ = 650− 2× 108.

When used in large-eddy simulation, the roughness model has captured the transitionally

rough regime as well as the fully rough regime, giving us an insight into both Reynolds number

dependent and independent behaviors in these flows. The gradual plateauing of the flow from

the transitionally rough state to fully rough state has been most clearly observed in the friction

factor as both Reynolds number and roughness vary, which we have compiled into a chart for

channel flow that is analogous to the Moody diagram for a pipe flow. The inner scaled mean

velocity profiles have displayed the correct momentum deficit/downward shift due to roughness.

When plotted in the deficit form, the velocity profiles have demonstrated support of Townsend’s

hypothesis and we have detailed another way of finding the equivalent sand roughness given such

velocity data. In addition, the collapse of the turbulent statistics has appeared to vary depending

on the Reynolds number and roughness; improved collapse has been observed for higher Reynolds

numbers and in fully rough cases. These scaling properties for the turbulence statistics and

velocity profiles have provided the basis for a theoretical extension in our analysis that examines

the infinite Reynolds number limit. As the Reynolds number grows, smooth-walled channel flows

tend to plug-flow and rough-walled flows show a universal, roughness corrected mean-velocity

deficit profile, together with stream-wise turbulence intensities and total energy dissipation that

all scale on the friction factor, which is equivalent to inner scaling. In particular, for smooth-wall
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flow the LES has indicated that the second-order turbulent fluctuations over almost all of the

channel decline relative to the centerline or bulk velocity with increasing Reynolds number. This

is in broad agreement with the LES of a turbulent boundary layer by Inoue & Pullin [46]. While

the source of this attenuation from the very-near-wall flow physics cannot be directly captured

by the present LES methodology, we note that some progress in this direction can be made by

combining LES with near-wall flow models; see Inoue et al. [45].

In Chapter 3, our roughness corrected LES has been applied to a dynamic flow scenario

where the flow travels over repeated transitions between smooth and rough surface conditions,

hence taking advantage of the fact that the wall model operates point-wise across wall surfaces,

and so changes in the outer flow can be viewed as a natural response to any temporally and/or

spatially variant roughness distribution specified at the wall. The flow recovery to a completely-

smooth or -rough state has been shown to vary depending on the quantity of interest, wall

normal distance, and type of transition (i.e. smooth to rough or rough to smooth). The mean

velocity, as well as friction velocity, have reached full recovery within each strip of length 64δ.

The internal boundary layer, defined as the boundary between modified and unmodified flow,

has been found using stream-wise turbulent intensity. The growth rate of the internal layer

for a S → R transition has shown an excellent agreement with the power law growth rates of

Antonia & Luxton [5] and Efros & Krogstad [27]. We note two main differences in the IBL

profiles of S → R and R → S transitions. First, the asymptotic growth rate is faster for the

S → R transition than the R → S transition, although within the region that is observed in

this study, the effect of the leading constant in the power law fit dominates the growth rate, and

consequently, the IBL reaches the channel centerline after the R → S transition after than the

S → R transition. Second, the variance in the exponent for the R → S transition, though it is

relatively small, is larger than the S → R transition. We have also demonstrated the profiles

collapse well for each of S → R and R → S transitions, when the IBL profiles with different

Reynolds numbers and roughness levels are scaled by δ/ log(Re∗τ ).

Chapters 2 and 3 have demonstrated that our LES approach is capable of capturing the main

outer-flow features of turbulent wall-bounded flow past rough walls, where the length-scale of

the roughness is small compared with the outer length scale. Its application to more complex

flows – that may include flow transition, body curvature, and separation – remains an area for

future research.

The fourth chapter has represented our first step towards extending the models to run in

more complex geometry than simple channel flow. In doing so, we have first revisited the

numerical method, and in recognizing the flexibility of spectral element method to simulate flows

in nearly any geometry, the smooth wall turbulent channel flow results have been reproduced

by using the spectral element platform SEMTEX. After confirming the compatibility of the

models with the spectral element method in a channel, we have approached the fully developed

smooth wall turbulent pipe flow problem. Simulations have realized Reynolds numbers up to

Reτ = 2× 106. To the best of our knowledge this is the first LES of turbulent pipe flow to make
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direct contact with Superpipe data at high Reynolds number. The friction factor has shown

favorable agreement with empirical results of McKeon et al. [74] while the mean velocity and

turbulent statistics have captured the general trend, and yet the simulations have encountered an

unsolved C1 discontinuity error due to the very nature of LES, under-resolvedness in the context

of the present spectral-element numerical method. The analysis has revealed that the amount of

divergence error is especially pronounced near the element edges and along the wall. Despite the

numerous attempts to circumvent the error, the mean velocity profile and turbulent statistics at

the highest Reynolds numbers have shown some departure from the empirical results of McKeon

et al. and Hultmark et al. [71, 44]. One conclusion that can be drawn from this work is that

a numerical method that guarantees only C0 continuity is not optimal for the present LES and

wall-modeling methodology. In view of realizing the LES of wall-bounded flows in geometries of

intermediate complexity, such as pipes and airfoils, it seems clear that a numerical method that

provides at least C1 continuity for under-resolved numerical simulation typical of LES, and that

can handle complex geometry, is required.
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Chapter 6

Appendix

SEMTEX implements the Galerkin spectral element method to solve the incompressible Navier-

Stokes equations. The details are demonstrated in Blackburn & Sherwin [11], but here, we go

over the major features of this numerical scheme.

6.1 PDE Setup

The incompressible Navier Stokes equations and continuity equation are given by

∂u

∂t
+ N (u) = −1

ρ
∇p+ ν∇2u, (6.1)

∇ · u = 0 (6.2)

where the nonlinear term N (u) employs the skew-symmetric form:

N (u) = (u · ∇u +∇ · uu) /2. (6.3)

Although we have implemented the filtered Navier-Stokes equations with the subgrid-scale stress

tensor term in place, for simplicity, the description of the numerical methods is given for the

original Navier-Stokes equations as above.

When a problem is solved in cylindrical coordinates, the nonlinear term is diagonalized and

symmetrized such that the pole singularity is removed, except for the 1/r terms. In order to see

the consequence of these processes, the nonlinear term is first expressed explicitly as

N (u) = (u · ∇u +∇ · uu) /2 (6.4)

=

(
u
∂u

∂z
+ ur

∂u

∂r
+
∂uu

∂z
+
∂uur
∂r

+
1

r

(
uθ
∂u

∂θ
+
∂uuθ
∂θ

+ uur

))
,

(
u
∂ur
∂z

+ ur
∂ur
∂r

+
∂uur
∂z

+
∂urur
∂r

+
1

r

(
uθ
∂ur
∂θ

+
∂uruθ
∂θ

+ urur − 2uθuθ

))
,

(
u
∂uθ
∂z

+ ur
∂uθ
∂r

+
∂uuθ
∂z

+
∂uruθ
∂r

+
1

r

(
uθ
∂uθ
∂θ

+
∂uθuθ
∂θ

+ 3uruθ

))
.

In cylindrical coordinates, the azimuthal direction is 2π periodic and hence the azimuthal velocity
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can be expressed in Fourier frequency space as

u (z, r, θ, t) =

∞∑

k=−∞
ûk (z, r, t) eikθ, (6.5)

where ˆ( ) denotes a quantity in the Fourier space. If the geometry is in Cartesian coordinates,

the independent variable θ should be replaced by a relevant parameter that is periodic in the

domain of interest. Accordingly, the Navier-Stokes equations in Equation (6.1) can be rewritten

in Fourier space, which are subsequently diagonalized and symmetrized to arrive at

∂trûk + r[N (uz)]k̂ = −1

ρ
r∂z p̂k + ν

(
∂zr∂z + ∂rr∂r −

k2

r

)
ûk (6.6)

∂trũrk + r[N (ur)]k̃ = −1

ρ
(r∂r − k) ∂z p̂k + ν

(
∂zr∂z + ∂rr∂r −

(k + 1)
2

r

)
ũrk (6.7)

∂trũθk + r[N (uz)]k̃ = −1

ρ
(r∂r + k) ∂z p̂k + ν

(
∂zr∂z + ∂rr∂r −

(k − 1)
2

r

)
ũθk (6.8)

∂zrûk + ∂rrûrk + ikûθl = 0. (6.9)

Here, (̃ ) denotes the changes of variables associated with diagonalization [11]. The above equa-

tions are free of pole singularities except for 1/r terms. Residual 1/r terms impose constraints

in choosing the expansion bases; the expansion bases must have the property of being zero at

the axis for some variables and modes, but they must also have support along the axis whenever

the Fourier constant is zero. Currently, SEMTEX utilizes Gauss-Lobatto-Legendre polynomials,

although alternatives are available.

6.2 Time-integration scheme

The Navier-Stokes equations can be solved either as is or via a splitting method. By initially

separating the pressure contribution from the velocity and correcting the solution thereafter,

the splitting method leads to a unique solution for the pressure, given an appropriate boundary

condition. This method offers some advantages, including resilience against pressure decoupling.

Such an advantage becomes especially relevant at high Reynolds number, where, without split-

ting, a staggered grid may also offer a way around the issue but for increased computational

cost. Thus, the use of a splitting method keeps computational requirements relatively lower and

proves to be suitable for our implementation of high Reynolds number LES [55].

The incompressible Navier-Stokes equations and continuity equation are given by

∂u

∂t
= −1

ρ
∇p+ νL(u) + N(u), (6.10)

∇ · u = 0, (6.11)

where the nonlinear and Laplacian terms are denoted by N(u) and L(u), respectively. The
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time integration employs a stiffy-stable scheme for improved stability. By the use of backward-

differentiation, the time derivative at the new time level (n + 1) is approximated to Jth order

as

∂u

∂t
=

1

∆t

J−1∑

q=0

αqu
n−q+1 +O(∆tJ+1), (6.12)

The explicit contribution at the new time level is approximated from the previous steps via

N(un+1) =

J−1∑

q=0

βqN(un−q) +O(∆tJ), (6.13)

where αq are the discrete weights associated with the implicit stiffy stable scheme, and βq are the

weights associated with the explicit scheme. The values of the weights are given in Karniadakis et

al., Table IV [55]. Through these approximations, the Navier-Stokes equations can be expressed

as
α0u

n+1 −∑J−1
q=1 αqu

n−q+1

∆t
= −1

ρ
∇p+

J−1∑

q=0

βqN(un−q) + L(un+1), (6.14)

where the signs of αq is inverses for q > 0. We define two intermediate velocities, u∗ and u∗∗

and split Equation (6.14) into three substeps:

ru∗ −
J∑

q=1

αqru
n−q = ∆t

J−1∑

q=0

βqrN
(
un−q

)
(6.15)

ru∗∗ − ru∗ = −r∆t
ρ
∇pn+1, (6.16)

r∇2un+1 − rα0

ν∆t
un+1 = − r

ν∆t
u∗∗. (6.17)

Note that we have not thus far used the continuity condition yet. By requiring that the inter-

mediate velocity u∗∗ satisfies the continuity as well as the Dirichlet boundary conditions in the

direction normal to the boundary, we obtain the pressure Poisson equations:

r∇2pn+1 =
ρ

∆t
r∇ · u∗, (6.18)

r∂np
n+1 = −rρn ·

J−1∑

q=0

βq
(
N
(
un−q

)
+ ν∇×∇× un−q + ∂tu

n−q) . (6.19)

Note that if the problem is solved in Cartesian coordinates, such as in the case of channel

flows, the equations are identical except that the computations in Equations (6.15) - (6.19) are

performed without the factor of r on either side of the equations.
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[52] J. Jiménez. Turbulent flows over rough walls. Annual Review of Fluid Mechanics,

36(1):173–196, January 2004.
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