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ABSTRACT

A set of coupled-channel differential equations based on a
rotationally distorted optical potential is used to calculate the
wave functions required to evaluate the gamma ray transition rate

3.

from the first excited state to the ground state in 130 and i
The bremsstrahlung differential cross section of low energy protons
is also calculated and compared with existing data. The marked
similarity between the potentials determined at each resonance
level in both nuclei supports the hypothesis of the charge symmetry

of nuclear forces by explaining the deviation of the ratios of the

experimental E1 transition strengths from unity.
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I. INTRODUCTION

As a consequence of the charge symmetry of nuclear forces,
corresponding El transitions in conjugate nuclei are expected to have
equal strengths [Warburton and Weneserl and references therein].

Recent data comp:[lationse_L‘L for nuclei with A = 15-L3 reveal that at
present the absolute strengths of 18 pairs of such El transitions are
available for comparison. The ratios of these El strengths in conjugate
nuclei (fig. 1) deviate from equality by appreciable factors - in
apparent disagreement with the charge symmetry hypothesis. This
conclusion must, however, be relaxed since the El1 transitions in all of

3 %o 10‘6

these nuclei are rather weak (E1 ~ 10 W.u.), and strong
cancellations may be taking place in the matrix elemen‘ts.5 The
largest deviation has been foundl’2 in the A = 15 system (factor > 160,

6 W.u.).

fig. 1) but here the El strengths are very small (E1 ~ 10~
Such big differences in corresponding El transitions should,

however, be less likely if the El strengths are large, as in the case
of the A = 13 system. The El transition from the first excited state
in Pc [r = 0.4k £ 0.05 eV; ref. 6] end L3y [T, = 0.64 + 0.07 &V;
weighted average of refs. T7-10] have exceptionally large strengths of
0.04 and 0.13 W.u., respectively. Thus, the observed strength ratio of
3.2 + 0.7 for these El transitions represents a more serious challenge
to the charge symmetry concept. The subject of the present work is a

theoretical investigation of this discrepancy in the A = 13 mirror

system.



The El1 transition rule guoted above is exact in the long-wavelength
approximation due to the vanishing of the isoscalar matrix element.l
The next correction term in the isoscalar matrix element is of the order
(kr)z, and hence the contribution to an isoscalar radiative width from
this term relative to a normal isovector radiative width will be of the

)h 2 3 x 10'6

order1 (kr for EY = 3 MeV and a nuclear radius of 2.8 fm.
This correction term is much too small to explain the observed
discrepancy.

The neutron-proton mass difference as well as the Coulomb forces
will cause isospin mixing of the predominantly T = 1/2 low-lying states
with T = 3/2 states at excitation emergies™™ E_ 2 15 MeV. In the

isobaric spin representation, the mixed states can be describedl2:

3/2>

|¥ =a | T=%>+B8 | T

low”

3/2>

and =B|'I'=1/2>—a|T

¥pian”
with a2 o 82 = 1, If the Hamiltonian is written as a charge-independent
(iscspin-conserving) part HO plus a charge-dependent part Hc’ then the
isospin-mixing element M = <T = 3/2|HC|T = %> is related to the
coefficients o and B and to the observed difference D in the excitation
energies of the two isospin states by the expression M = afD. For

D ~ 15 MeV and a conservative value12 of M 5 200 keV, the product of the
two coefficients is af ~ 10_2. Since the low-lying states have a
predominantly T = % isospin (i.e., o = 1), one obtains a mixing
coefficient B ~ 10_2 as an order of magnitude estimate. This

coefficient together with an assumed large intrinsic El-matrix element



of 1 W.u. for the T = 3/2° state to ground state decay leads to a
contribution of 10—LL W.u. in the E1 decay of the first excited
state. The contribution is still 2-3 orders of magnitude toc small
when compared with the observed strengths and hence cannot contribute
significantly to the explanation of the discrepancy. However, for the
A = 15-43 nuclei this contribution is of the same order as the observed
strengths and hence can play a significant role in their El-transitions.
We have found that a sizable component corresponding to a nucleon

coupled to the zero isospin first excited state of ldc in the wave

functions of both the ground and first excited states of 13C and 13N

appears to be responsible for the difference in the mirror El strengths

In the transition amplitude, this component in each of the levels

interferes destructively with the component associated with the 120

ground state. The resulting effect is to reduce the value of the 130

width and in the 13N cross section to lower the high energy tail of the

resonance.
As a further test of the model, we have calculated the bremsstrah-

lung differential cross section for protons on 1z¢ up to a beam energy

of 2 MeV in the laboratory system at BY = 0° and 900. In this case we

find that the reaction proceeds through a resonance in 13N which

interferes with the incoming distorted wave in the transition to the

13

first excited state of N. This resonance with energy 1.565 MeV in the

center of mass and total spin, parity JTT = 3/2° can be described as
i 12
consisting mainly of a proton coupled to the first excited state of ¢

because the F shell if filled in lZC(gs); thus, in the shell model ,cne

3/e

cannot add another P_, nucleon to 12C(gs). This results in the narrow

3/2



: O
resonance observed in the differential cross section at 8 = 0. A

second resonance at 6.976 MeV with JT = 1/2_ aids in modeling the
incoming wave and in conjunction with the previous resonance, the
differential cross sections at 8 = 0° and 6 = 90°.

Section II presents thé standérd deformed spherical potential
coupled-channel model. In addition, this section deals with the
normalization problems that arise in defining spectroscopic factors.
Section III outlines the changes in gamma ray matrix elements needed
to compute transitions with multiple input spins and channels. Also
included is a solution to the problem of computing the matrix elements
between free (continuum) particle states. Section IV applies these
ideas to understanding charge symmetry in mass 13 by computing the
capture and bremsstrahlung cross sections. Section V is a discussion
and interpretation of the models presented above with suggestions for

further study. The Appendix contains all the relevant information for

creating and running the program on a high speed digital computer.



II. THE COUPLED-CHANNEL EQUATIONS
A. The Rotational and Vibrational Models

Starting from an optical model potential of the Woods-Saxon form,
Tamuralu derives the form of the off-diagonal potentials when specific
assumptions are made concerning the shape of the nuclear surface. The
point of view taken is that the nuclear potential is directly proportion-
al to the mass distribution within the core. Thus we can expand the
radius of the nuclear surface into any form which allows easy insertion
into the optical potential and subsequent expansion to accommodate
coupled channel modes. The usual models employed are the vibrational
model which expands the radius in a full set of spherical harmonics and
the rotational model which assumes an axially symmetric deformed nucleus
expansion. It is usual to neglect the higher order expansions of the
spin-orbit potential and keep only the spherical term. In the discussion
of Section V a brief analysis of the spin-orbit potential and its origin
will be presented in an attempt to illuminate the proper procedure to
follow. Similarly, for the Coulomb potential we have only included
diagonal terms,as the off-diagonal terms are much smaller than the
corresponding nuclear off-diagonal terms. We first consider the total

Hamiltonian,
IT.3 H=T 4+ 8, # v(r, E)
where T 1s the kinetic energy of the projectile,}lt is the target

=%
Hamiltonian, and V(r, £) is a generalized potential describing the



interaction of the target with the projectile. The target Hamiltonian

has Schroedinger equation solutions @I M given by
nn

P

T1:2 H o = W
B InMn n InMn

where I,,M, are the core spin and its projection and W, is the energy of

the core state. One now writes the total wave function,

s 8
IT.8 Y =r I R () (Y, . e o0 )
annjn Innin o I,'dM

Z
(Y . e o_ ) = (3 ImM [JM)Y, . @
Redn I,'dM ijn n'n 3 nl annmj LMy
- Z . )
yﬂnjnmj B mgms(gsmzmlemj)l Ylnmz Xsms

where X_ is the spin wave function of the projectile, (r) is

s
the radial wave function of the projectile with total spin and

Brng in

projection J,M, formed from coupling core spin In and projectile total
spin jn' The total projectile spin jn is formed from orbital angular
momentum £n and the particle intrinsic spin.

To get the coupled-channel equations we now insert the total wave
function ¥ into the full Schroedinger equation, multiply on the left by

(v ® & )*Mand integrate over all variables except r to obtain
) Ta

an



II.h4 = — E )R (r) =
2m Gl 2m r2 n J ann
Eoey, L oeer o V(Y . ear )y
I8 A R n'dn' n' ndn n
n'%n
R " r
Jn*zn,Jn,( )
where En = El - W and the matrix element is over all variables except

r. The crux of the problem is now reflected in the evaluation of the
matrix elements of the generalized potential.
In generazl we can expand the potential as

IT 2 ¥ o= E vA(t)(r) (Qx(t) .Y

)
Aot .

where the subscript A denotes the potential of tenor rank A and the
superscript t distinguishes terms of different character. YA is an
angular momentum function of the projectile's angular variables and

(t)
QA

operates only on the coordinates of the core. A calculation of

the above matrix element yields

I1.6 <gjI|Vv]|eri'Ir> =

(t

5 v, (B <1|| Qk(t)III'> A(R3I, 2%3"I";AJs)

£,

where A(2jI,2'j'I';AJs) is a completely geocmetrical factor given by



o’ A ' Vi 1z 1
¢ A(R3T 5 T 52Ts) = (b)) 2(o)T-S-T R Ba(81=0) (51 yl550040 )
g A % - W
(23+1)2(23'+1) 2(22'00 | X0)W(FTI "I ;TA)W(RIRL I 381)

and the reduced matrix element is defined as

II.8 <IMI|Q§S)|I'MI,>:<IH Qit)III'> (2I+l)_%(I'AMiu|IMI)_

In the rotational model the nuclear surface is expanded as

T2 BB (1 %E R T, (6%)],

where R = r Al/3
o o

is the usual optical model radius formula,r,=1.25fm,the
angle 8' refers to the body fixed system. This deformed radius parameter
is now inserted into the Woods-Saxon potential shape and the potential is
expanded in spherical harmonics,

%
.10 =
y | v ;i vk(r) Duo(ei)YAu(e’¢)

— +l 1 L}
we = 2m §_y V(RO(1+ §BAYA'0(9 )))YAO(B')d(cos e')

A

where DSO is a rotation from the space fixed to the body fixed

coordinates,
Y. (') = z D} (e,) Y. (6,4)
Ao g Tuo'Ti P ¥ i

For the vibrational model the optical potential radius is expanded

in a full set of spherical harmonics,

IT. 1% R = Ro(l-P;;aAu Ylu(e,¢))



and a procedure similar to the rotational model is followed to obtain

the tensor potential expansion.

C. IDENTICAL PARTICLES AND SPECTROSCOPIC FACTORS

There are counting and timing problems which arise when treating
systems of many particles in real time. The single particle stationary
state Schroedinger equation when used in a multiparticle, real time
evolution process must be corrected for two phenomena. Some particles
in the system can interact quite strongly within the time limits govern-
ing a particular process, while others may remain inert and noninteract-
ing. For example, in discussing single particle gamma ray transitions
which occur in outer shells, as long as the time for the core to inter-
act with the extra particles is long compared with transition lifetime,
the core can be considered to be inert and will enter into the process
in only the most simple ways. Second, charge can be exchanged in the
strong interactions between nucleons and hence all particles within a
shell, regardless of charge, must be included in computing spectroscopic
factors.

The statistics and configurations of the mass 13 states of interest
will now be described so that some insight can be gained in understanding
the results of section IV. The uHe core consisting of two protons and
two neutrons in the ls-shell is very stable; its first excited state
does not occur until nearly 20 MeV. Hence, in all that follows its only

contribution is to mass and charge. In the 120 ground state the next
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eight particles are all in =1 states and are considered to form a semi-
magic shell since they fill up the total angular momentum states

j=3/2 obtained by coupling spin and orbital angular momentum in
parallel. In constructing the mass 13 ground state the extra nucleon
is put into the next 2=1 level which has j=1/2, antiparallel spin and
orbital angular momentum. In this case however the excitation of the
core mixes up the distinction between parallel and antiparallel spin
and angular momentum, with the consequence that all p-shell nucleons
are treated the same,giving a total spectroscopic factor of 9.

Similar reasoning can be applied to the other bound states in the
compound nucleus. For all particle unbound channels the wave functions

have been normalized to unit incoming flux.
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ITII. GAMMA RAY TRANSITIONS

A. TRANSITION PROBABILITIES FOR MULTIPLE CHANNELS

The procedure which we outline here is presented in more detail by

15

Johnson and 1s a modification of the Rose and Brink16 formulas for the
angular distributions of gamma rays. The changes are a result of using
more than one total spin state in the incident channel.

The differential cross section for a photon of wave number ﬁ& in
the direction 6 is given by p(K&L the probability of emission in the
directlon 6 divided by the incident particle velocity. These probabil-
ities in turn can be written as being proportional to the absolute squares
of amplitudes given by
0 AMqM )~ £ "M |77 > OF (R)

1My Ty T 171'"1LM g 2 Mg
where g is the polarization of the radiation and T£;> is the interaction
multipole operator of type L,m and Dﬁq(R) is a rotation operator where
the rotation R takes the z-axis to ﬁ%,

These amplitudes are simply summed over the possible total spin
angular momentum states in the initial channel and the absolute value is
squared to obtain the probability. By using the Wigner-Echart theorem
and the reduction formula for a product of rotation matrices plus the
usual Clebsch-Gordan and Racah algebra, we arrive at the angular
distribution for photons of polarization g from states Jl and Jl' leading
to a state JE'
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- [ g
IIT.2 Pq(EY) (k /2mh) T B(3)) Py(cos § )= Ty Igth LK

KLL'nm!' K

. |yt 1 1.
(LL'g-q|KO) W(J,J, "LL'3KT,)

<r'>
T,

m+T

! <>
JCHER S |

 Mayp<a T

[,

J =M % %
' = B ' ' -
where B, (J,7,") i w(M ) (=)"1771 (27 41)%(23, "+1)*(3, 3, "M, -M, [KO)
1
] — -
BO(Jl,Jl ) =0, = W(Ml) Ly
"

where W(Ml) is the incoming probability distributions over total angular
momentum projections. The appendix contains the formulas used for the

computations in a much more reduced form.

B. FREE PARTICLE MATRIX ELEMENTS

The rx matrix element between free particle initial and final
states can be evaluated using standard techniques from complex
functional analysis:.]'3 For the free particle wave functions we use an
integral representation of an outgoing Coulomb wave. (With simple
changes in parameters, the matrix elements of zero charge and bound
state wave functions can also be obtained.) The outgoing Coulomb wave

is written in a way which illustrates its asymptotic form,

o ot Lin, L-i
165,(n.p) foat e CEM N (2rib/20) "

TTL.3 OL(n,p) = GL(n,p) 4 o FL(n,p) = e ;
T(L+in+1)
= - s
where BL(n,p) = p-n log (2p) - L 5+ oy

o, = arg T(L+1+in)
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p = kr
and L, k, n are the usual angular momentum, wave number, and dimensionless
Coulomb potential strength, respectively. To evaluate the truncated
matrix element (that is,the integral from a finite radius to infinity),

the r-dependent terms are grouped together after a direct substitution.

A ey PR * A
III.L <OLi|r IOLf>R = iy ae OLi(ni,kir)r OLf(nf,kfr)

+Ls +Lo+
i(nilog zki-nfznzkf+(L-—Lf)fécf-c-);w dr o TLiFLpe
e 1 2 i R

. e—(i(kinkf)+u+t)r

1% at M (1oat /2K )P T gu o METINE (1egu/ok,) METINE

T(Li—lni+1) F(Lf+1nf+l)

After performing the integral over r, a change of variables
(t = ipifsx, u = ipifs(lnx)) and a contour integral whose validity is

Justified by Cauchy's integral theorem and analytic continuation, we

get
III.5 <0 |¥Mo, > = 1(8y,_(npskgR)-67, (ng.k;R))pA+1 é LI -
. Li LR - ° T Lo DT 141
where
= (i a-(L+1) g ~ipips 5 (X504 £y Ly+ing
Iy (485 o , ds e (1+S)L+l(lT 20, i e
(l_(l—X)Spif)Lf—inf
2pf
c=1In. +4
it a K17 (1x)PET N

o “F T(L -in +1)T(Lo+in +1)



1h

L=x+1L. +L.+2

i 5 i
a=Lf+Li+2+1(nf—ni)
py= kyRs  Pyp =Py - Py

This last double integral can now be approximated by an asymptotic
series in confluent hypergeometric functions after first expanding the

two terms in the numerator.

b-1

@ N
- ’ 3 . -
TII.6 Treq Nzo N! i CN(pi’pf)(lpif) U(a,b,lpif)
where b =g =0>L
N P(Li+ini+1) F(Li—ini+£+l) F(Lf—inf+l)
CN(pi,pf) = r { H H }
2=0 R!T(Li—2+ini+l) E!F(Li—ini+l) j!F(Lf—j—inf+l)
j=N-2
{F(Lf+1nf+3+l)} g0 1,801
N! 205’ ‘2p¢

s ’ -
J.T(Lf+1nf+l)

U(a,b,z) is defined in Abramowitz and Steguan (13.1.3).

The full (R=0) matrix element is obtained in a more straightforward
manner by first expanding the two numerator terms as before. The
integrals then reduce to nothing more than sums and products of TI'-
functions. This final series is

ying s 4
(2kl)- 1 elz{Li—Lf)el(of—oi)
(2kf)lnf

A
TEL 7 <0Li|r |0Lf>

r(A+1+i(nf-ni))(51;5£)~(A+l+i(nf-ni))

T AT (A-N+1(E (np-ny

)) N
N=0 F(A+l+i(nf-ni)) } CN(ki’kf) ki

f
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IV. APPLICATION TO GAMMA TRANSITIONS IN MASS 13

Figure 2 shows a nuclear energy level isobar diagram for mass 13.
We will be concerned with modeling the structure of these low-lying
states.

Mikoshiba, et al.>”

, find that an axially symmetric, rotational
nucleus with large oblate deformation successfully reproduces the
experimental phase shifts, cross sections, and polarizations of
elastic scattering of nucleons on 1gc whereas the vibrational model
cannot. The doctoral dissertation of Johnson15 extends the model to
include nucleon capture on 120.

Neither effort is successful at low energies as a result of
problems in combining in a consistent fashion bound and unbound
channels within the same total wave function. The rotational model
will be used to calculate wave functions for these low energy states
and the resultingE1l transition rates hetween them in an attempt to
illuminate some of these inconsistencies.

The El1 strengths for the transition from the first excited Jﬁ=%+
state to the Jﬁ¥%— ground state in each nuclei will be ﬁredlcted and
ratio compared to the experimental value. We will find that the
computed ratio agrees quite well with the experimental ratio; hence,
for this transition we find no violation of the charge symmetry of
nuclear forces. In addition the bremsstrahlung radiation from protons

12

on C will be modeled as occurring through one resonance - the J“=3/2—

state at 3.509 MeV - and the incoming plane wave modeled as the higher
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J'=%"state at 8.92 MeV - to the J“=%+ first excited state at 2.366 MeV.
From the calculations of Cohen and Kurath18 for single nucleon
transfer reactions in the lp-shell, we obtain spectroscopic factors for

the two most important low-lying contributions to the mass 13 ground

state.
+ + +
Iv.1 lgs> = 6(0 )Ilgc(g.s.) * nucleon> 6(2 )IlQC(E ) + nucleon>

where 8(O+) and e(2+) are the fractional parentage coefficients. The
spectroscopic factors are given by the square of the fractional
parentage coefficients times the number of extra core nucleons as
explained in Section II B. Cohen and Kurath determine the spectro-

scopic factors,
+ +
(0 ) = 0.6132 and S(2') = 1.1218

In coupling the 12C(g.s.) and 120(2+) with single particles to
form the 130 and 13N ground states we proceed as follows. The strength
of the off-diagonal mixing potential is calculated using the rotational
coupled-channel model. The diagonal nuclear optical potentials in each
channel are forced to be equal and this strength and that of the spin-
orbit potential are varied to put each ground state at the proper
eigenenergy with the correct spectroscopic factors. These wave
functions are then used in the computation of the El matrix elements in
conjunction with the first excited state wave functions. Variations of

the diagonal and spin-orbit potential strengths for the first excited

state result in the reproduction of the lgc(p,Y)IBN capture cross
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section (Figure 4) by estimating its value at the resonance energy and
at proton energy .700 MeV (center of mass). The resulting normaliza-
tion factor gives the ground state (O+ and 2+ states only) spectroscopic
factor since the JTT=1/2+ state is normalized to unit incoming flux.
From this computation we also obtain estimates of the 12C(p,p)lgc
S-wave phase shiftsgo which are excellent over the entire energy region
of interest (Figure 3)

Potential strengths identical to those used for the mixing and

13C

spin-orbit potentials in 13N, are then applied in computing the
ground and first excited states. Again, the diagonal potential is
varied to put the wave functions at the right eigenenergies. The E1
transition width is computed and multiplied by the ground state

13

spectrosceopic factor estimated in the N computation. From the
capture cross section in 13N a simple computation yields its gamma
width. The peak is modeled as a Breit-Wigner form and the gamma
width is computed assuming that the proton width is approximately
equal to the full width.

In performing the bremsstrahlung calculation a similar procedure
is followed. The Jﬂ=1/2+ excited state potential values computed in
the previous calculation are used to generate what will be the final
state wave functions in this problem. Using the mixing potential

values predicted by the rotational model we then construct the JW=3/2_

and J'=1/2" excited states. The J'=1/2  state is used only to simulate
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the Pl/2 piece of the incoming plane wave. The Jﬂ=3/2“ potential values
are then varied to arrive at the best fit to the 6 = 0° bremsstrahlung
cross section, using the E1l bremsstrahlung differential cross section
formula from Appendix B. A factor for the final state phase space
density and a simple integral of the Breit-Wigner resonance shape for
the Jﬂ=l/2+ final state were also included. The 6 = 90O cross section
was also determined, and is the dotted line of Figure 6. As can be
seen from the figure the fit is qualitatively correct but missed some
data badly. An examination of the experimental photon line shapes
reveals the reasons for the problem. The backgrcund fluctuations at low
energies afe quite large, typically ten to fifteen percent of the
resonance peak values, and secondly, the line shapes deviate quite
severely from a Breit-Wigner form. To correct this problem we have
computed the line shapes over the final state resonance region for
selected values of the incident proton energy. The areas of the
resulting peaks are numerically computed after lower limits to the
peaks are inserted. Figure T shows a set of these peaks for a range
of incident proton energies. The resulting final cross sections can
be seen as the solid line in Figure 6 for 6 = 900. The lower limits
to the peaks were determined using two rules of thumb. First, the
line shapes should look closely like a Breit-Wigner resonance, hence
the asymmetry of the peaks reduces the area. Second, the background
noise results in making the placement of lower limits uncertain. The

experimental line shapes had lower limits less than three half widths
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wide. Even assuming a pure Breit-Wigner form for the peak, cutting
off the base at three half widths yields a large reduction in area.
The solid line of Figure 6 shows quite vividly the large changes to the
90O differential cross section.

Again the l3N potential strengths are applied to the 13C mirror
transition states and the equivalent gamma widths are computed.
Table 1 contains a listing of these widths for the J“=l/2+ state
transition to the J'=1/2" ground state and the J '=3/2  state transition
to JTT=1/2+ state in both nuclei as well as a comparison with the
experimental values. Table 2 contains a listing of the potential
values for all states corresponding to the widths computed in Table 1.

It should be noted that the infrared divergence in the
bremsstrahlung cross section seen at low energies as the dashed curve
in Figure 6 is a result of the breakdown of perturbation theory for
small photon energies. The perturbation term is a linear approximation
to the matrix element of a complex valued exponential function of the
perturbation potential between the initial and final states. Even
though this linearized term goes to infinity for small photon energies
as do all higher terms in the perturbation expansion, the exact term
remains finite; higher order terms don't help the expansion converge.
Summing the peaks as done here to correct the bremsstrahlung cross
section also yields the added bonus of the disappearance of this
divergence. As can be seen by examining Figure T, as one goes to

smaller photon energies the Breit-Wigner part of the peak grows smaller
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even though the total area under the peaks goes to infinity.
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V. DISCUSSION

A cursory examination of Table 2 reveals two significant features
of the potential strength values. The first conclusion is that the spin-
orbit strength varies quite widely across states. In performing the
calculations the mixing potentials were fixed by the rotational model
and we have truncated the full channel expansicn toc only two excited
states of 12C. Hence we shouldn't really expect any great consistency
in the spin-orbit strength across states. The second major feature is
the differences between the diagonal potentials in even and odd angular
momentum states. The S and D shell potentials are approximately 54 MeV
strong, whereas the P-waves are bound somewhat more weakly, approximately
42 MeV. One can only speculate as to the origin of this effect, but
again the truncation of excited core states may play an important role.

In the standard derivation of the existence of the spin-orbit force
a Dirac equation is derived from principles of relativistic invariance.
The resulting spinor wave function is approximated by & scalar wave
function with the Dirac equation being transformed from a coupled first
order differential eguation to a scalar second order Schroedinger equation
with a spin-orbit potential and higher order terms. That is we've
reduced a coupled wave function to a scalar wave function. For this
reason it is probably correct not to distort the spin-orbit force; in
fact the correct approach to deriving a coupled-channel model should

start with a Dirac equation, the inclusion of core wave functions, and
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a model of the excitation process. Such a procedure is beyond the
scope of this paper.

As mentioned earlier, the failure of current models to adequately
model the low energy states is most probably explained by the converse
success of thé EOdels in consistently reproducing higher energy states.
Conservation of energy and flux fix the amplitudes of all unbound
channels whereas bound states can take on any normalization. Thus all
that the standard models do at higher energies is determine the phase
relationships between wave functions; at lower energies when bound
states exist we must also mix in the proper amplitudes.

The resulting effects on matrix elements are unknown; it may be
fruitful to pursue Just what happens at these important thresholds.
Further insight can also be obtained by examining the role of complex
valued potentials. It is well known that the use of an imaginary
valued potential results in the loss of flux from open channels because
the Hamiltonian becomes non-Hermetian. Further investigation into the
use of complex valued wave functions and potentials and their proper
interpretations would be of invaluable help in unraveling the mysteries

of the nucleus.
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A. NUMERICAL SOLUTION OF SECOND ORDER COUPLED
DIFFERENTIAL EQUATION SYSTEM

1. SOLUTION BY ITERATION OF COUPLED EQUATIONS

The system of second order coupled differential equations is given

by
= 5
(1) =L = Ay
dr

where A is a matrix specified by the particular model used. Diagonal
elements of A are the energy eigenvalues and central potentials of

each channel. The off-diagonal elements are the mixing potentials. In
the standard 3-point integration formula,

2

- h > - >
+ — " i1} 4 "
12 (yn+l + lOyn yn—l)

-
(2) Tops 2, = ¥on

where h is the step size and ;ﬁ = ;(r=nh). We substitute (1) in for the

second derivatives obtaining

(3) ¥ .. ¥ . =t 1w Xy -% ¥
3 n+19n+l n n’n T *n-1Vn-1
He
where Xn =T1- EE-An' At the origin our starting conditions are
> -> > ->
Xoyo = 0, and at step 1 we arbitrarily set lel = a and define

- - . - .
Xn+lyn+l = Zn+la. After dropping a from all equaticns, we are left

with a set of matrix equations to iterate,

_ ~1
(L) Z = (12xn -10) 2, = zn_l
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We use equation set (L4) when we search for the eigenvalue or
resonance and equation set (3) when our desired solution is found. The
usual error analysis and behavior is carried over from the one-

s 22
dimensional case and can be found in Melkanoff, et al.

2. BOUNDARY CONDITIONS AND SOLUTION SEARCH ROUTINES

For the case when all channels are bound, we must have only
exponentially decreasing wave functions at infinity, the Whittacker
function, and these are easily matched to the iterated solution in each
channel. In all other cases we must have outgoing waves in at least
one channel, so our outgoing wave function must behave asymptotically

like

i
br)=  do io .
(5) v, - LI (0 5wy, + o) g (6, +aF, )

S kl Lq s

where s is any channel, i is the incident channel, ki the wave number in
the incident channel, FQ and GR are the regular and irregular Coulomb
functions, respectively, but can be replaced by spherical Bessel
funetions in the case of no charge interactions; or if a channel is

bound, G'Q + iF£ is replaced by a Whittaker function. CS contains
S s

amplitude and phase shift information about the outgoing state. For
the entrance channel Ci = e16 sin 6 where § is the commonly defined phase

shift, and o is the Coulomb phase shift in channel s.

L
s

In the case where at least one channel is open, we integrate our
system of equations starting from the origin so as not to introduce

numerical errors from the irregular solution. The iterated wave
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functions are matched to standard functions at two points for large

values of r. That is,

L -
_ (bm)= iog i0; .
7 a = k, e ng(a) + 0, e l(G’li(d) + 1in(u))

(6) "ocg eiGS(GE

(@) + 47, (@)

L =

for o=1,2, the functions all evaluated at the matching points. We can

> >
write this in matrix notation and easily solve for the vectors a and ¢ =

s
z Diaglel%s(GY +iF’ )] z el%g pl
L £ 2 2.
5 s 1 0] 1
_ (lm)= :
i (L )% ki iog F2
. io 2 o > L.
s Asm)
Z, Diagle (GE +1FE )] 3 e 0 i
S S 1 6

For the case where all channels are bound, we must integrate from
the ends toward the middle of the interval because of the numerical errors
introduced by the irregular solutions to the differential equations. From

the origin out we have the solution matrices Z. ', and from infinity in

'
ZK+1

we have ZK’ Z For arbitrary starting vectors g from the origin and

K+1°

g from infinity we have the solutions at the points K and K+1,

¥y - —f T -, - —F . -+

e =% 2B o T = T Ppeg B
(8) and

- il - =

=+ =1
Y T X ZxP s Vg T Xgey Zgaa®
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We have a proper solution to the differential equations when the
values at each point are the same. This implies that we solve the

matrix equation

= = s =
' —
R Z ZK g
(9) Al 2= = 0
b -
' —
Zg1 Zgel L
L - - J

When the determinant of A is zero, then we have found a good
solution to the system of equations. To find the starting vectors g>and
_’.

b, simply set a. = 1 and solve the resulting system of equations.

i3

3. COMPUTATION OF EXTERNAL MATCHING FUNCTIONS

The asymptotic values of the bound channel wave functions for both
charged and uncharged states were computed using a 20-point Laguerre

quadrature formula on the integral representation of the Whittaker

function

%4 - exp(-p-n &n 2p) e &+n -t . 2-n
(10) Win, 2 + 3%, 2p) T(1F C+ 1) s BB (1L + t/2p) at
The nodes and weights are given by Stroud and Secrest23. The error in

the quadrature can be limited to the boundedness of the fortieth
derivative of the integrand times the error coefficient of 0.7254E-11.

Representative values of these functions have been checked against

tables in Abramowitz and Steguan.

The spherical Bessel functions are computed from formulas 10.1.2

1T

in Abramowitz and Stegun™ ' . The irregular solution can be recursed by




28

a three-point formula up in 2-valuess,starting being facilitated by the
analytic forms for £=0 and 1. The regular solutions are started

arbitrarily at high 2-~values and recurred downward. The Wronskian is

thén computed and used to correct the regular solutions. This routine
has also been checked against tables.

The Coulomb functions are computed by a program developed at the
University of Minnesota. Representative values have been checked against

tables in Abramowitz and Steguan and Arnold Tubis, Tables of Nonrela-

tivistic Coulomb Wave Functions, Los Alamos Scientific Laboratory (1958).

The irregular Coulomb wave and its derivative for 2-values are obtained by
recursion. The regular sclutions are obtained by a downward recursion

and these solutions are corrected by a Wronskian calculation.
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B. GAMMA RAY TRAWSITION DIFFERENTIAL CROSS SECTION FORMULA

The derivation of the formulas used in generating the cross sections

of interest can be found in Johnsonj."5

For the El-bremsstrahlung differential cross section, we obtain

(e)

k
= 2 2
(11) L - 67%vi ek || TSl 5™ 2 + wk3/2)|TS | 55" 1P _(cos @)

+ (b Re(<™ || 75| % >u<3/2T|| TS ) %>

2k 3/27[| 75| 5"4% 1 P (cos 8)]

The El-capture involves an integration over angle and is given by

2k 4 e -
(12) oy = — (k5 2| %72 )

pY 3hv,
i

where kY is wave number of the outgoing photon, vy is the wvelocity of

the incoming proton in the center-of-mass, and

e _ 5 ; 3 5 .
(13) <7 |l a,> = (25, + 1) nﬁzj(231+1) W, 1 I 3,5 J.3,)
171

C <n£ljl” Ti” n2232>

where Jl’ J. are the total spin of the core plus nucleon system for the

g

initial and final states, In is the spin of the core, and the

W(J2 1 Injlg Jlj2) are Racah coefficients. The reduced matrix element
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1
-2, +1 j.=% (2, +1)*
(14) cnt 3. || T ne i > =1t 2 (-t 2
15, 1 252 /§
i3 L
(3,3%%]10) e ok OV(n)
mJl ng
nf_Jj nl,.j
_ I 1°1 2vg 2
and ov(n) = 6El(r) = rar
7 - A
S e o = (ﬁT%”B) .
Ar T A

where e is the proton charge and (ZP,AP), (ZT, AT) are the charge and
mass number of the projectile and target, respectively, the
(jlj2 3-%]10) are Clebsch-Gordan coefficients, BEl(r) is the electric

dipcle operator which reduces to r in the long wavelength approximation,

J J TR <
W % ;s U 2 . are the nth channel initial and final state wave
ni_J nf.Jj o=
T 2-2
functions of a nucleon with orbital angular momentum 22; and total
angular momentum ji’ about the core state with total spin In to yield a
total angular momentum Ji'

The bremsstrahlung differential cross section is multiplied by a
density of states to correct for all the continuum final states. This
factor consists of two parts: the usual density of momentum in phase
space and the area under the final state resonance assuming a Breit-
Wigner shape.

The Clebsch-Gordan and Racah coefficients were evaluated using

Rotenberg, Bivens, Metropolis, and Wooten, The 3-J and 6-J Symbols, The

Technology Press, MIT (1959).
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C. NUCLEAR AND COULOMB POTENTIAL SHAPES

The usual diagonal central potential is a Woods-Saxon diffuse edge

well form
(15) =1+ exp({R-Ro]/a)]“l

where a is a parameter which measures the diffuseness of the edge and
RO is the nuclear radius usually given by RO = rOAl/S.

The off-diagonal and spin-orbit potential are given in terms of the

derivative of the central potential

(R-Ry)/a
&t X e Q
(16 dar (R-Ry) /a2

dr a i1
The spin-orbit force picks up an asdditional 1/r dependence as presented
in Table 1. The Coulomb potential is the usual uniform sphere

value inside the nuclear radius and the standard 1/r dependence outside,

1.2 2
Z%ﬁg_ (3 - 25 ) ® i

(17) ¥ le) = o2 R
7Z2'e > R

I O



32

D. COMPUTER PROGRAM INFORMATION

The programs were run on the CDC 7600 high-speed digital computer
at Berkeley through the remote terminal in the Downs-Lauritsen physics
building. The programs can be contained in two boxes of cards, but
testing and production were done using the program storage system at
Berkeley. The high speeds and inexpensive costs in running the programs
make any timing estimates superfluous.

The linear equation solver package LINIT is a Berkeley computing
center program.

All numerical and physical constants values are from F. Ajzenberg-

Selone and C. L. Busch, Nuclear "Wallet Cards", University of Pennsyl-

vania, Philadelphia (1971).
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TABLE 1
WIDTHS
THEORY  EXPERIMENTAL
154 = 143" FY(13C) 617 eV .44 * .05 eV
FY(lBN) .701 eV .64 + .07 eV
Ratio of Strengths 2.52 Ju2 £ 0.7
- + r (lBC) 2.5 meV 6.6 meV
3/2 =+ 1/2 Y
TY(13N) 4.2 meV 4.4 meV
Ratio of Strengths . 240 =095

It should be noted that the 3/2° to 1/2+ transition widths

3eV). In this transition strong

are in millielectron volts ( 10~
interference between channels yields a large error in the

theoretical width wvalues.
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TABLE 2
POTENTTALS SPECTROSCOPIC

STATE MIXING SPIN-ORBIT  CENTRAL (MeV) FACTORS
13

Clg.s.) 2.22 .93 40.207 (.8252, 1.6091)
3N(g.s.) 2.22 .93 40.257 (.8812, 1.5531)
130 (1/24) 2.73 .31 53.304 (.905, .095)
3¢ (1/24) 2.73 .31 54.263 (.922, .078)
13 -

c(3/27) 1.6 0. 42.557 (.142, .858)
13 -

N(3/27) 1.6 0. 43.355 (.136, .864)

The full mixing potential is a product of the factor given above
times (hc/2mcz) , the Compton wave lencgth of the reduced mass, times the
derivative of the central Woods—-Saxon form. Similarly the spin-orbit
potential is a product of the above factor times {h2c2/2mc2) times
(5-T) /r times the derivative of the Woods-Saxon form. The matching
radius is 22.35 fm. The mixing strength corresponds to a rotatiocnal

model with p=-1/2.
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Figure 1. Ratio of corresponding El strengths in light mirror nuclei.
The data have been obtained from the data compilations of

refs. 2-4. The indicated ratio for A = 15 is an upper limit.
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Figure 2. Iscbar energy level diagram for A = 13.

Note that no correction is made for the Coulomb energy difference

between 3'3C and 13N.
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Figure 3. Comparison of the experimental S;5 phase shifts with the
model calculations for the lzC(P.P)lZC reaction. The data are

taken from ref. 20.
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Figure 4. Capture cross section near the resonance peak.

Dots are data of Rolfslo. The solid curve is the theoretical fit.
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Figure 5. S-factor given by S = ¢E exp(2mn).
Solid curve is theoretical fit. The circles are the data of
ro1£s!?. The plus signs are the data of Vogl®. The dashed

curve is a single channel fit with no mixing.
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Figure 6. Differential cross sections for bremsstrahlung at 0 and 90°.
The data are from Rclfslo. The dashed curve is the preliminary fit
using a Breit-Wigner form to represent line shape. The solid

curves are the result of integration over the calculated line

shape.
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Figure 7. The gamma ray line shapes for bremsstrahlung at 90°. The

dashed lines are the lower limits for integration over the peaks.
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