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ABSTRACT 

A set of coupled-channel differential equations based on a 

rotationally distorted optical potential is used to calculate the 

wave functions required to evaluate the gamma ray transition rate 

from the first excited state to the ground state in 13c and 13N. 

The bremsstrahlung differential cross section of low energy protons 

is also calculated and compared with existing data. The marked 

similarity between the potentials determined at each resonance 

level in both nuclei supports the hypothesis of the charge symmetry 

of nuclear forces by explaining the deviation of the ratios of the 

experimental El transition strengths from unity. 
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I. INTRODUCTION 

As a conse~uence of the charge symmetry of nuclear forces, 

corresponding El transitions in conjugate nuclei are expected to have 

1 
e~ual strengths [Warburton and Weneser and references therein ]. 

R t d t · 1 t · 2- 4 f 1 . "th A 15 43 1 th t t ecen a a compl a 1ons or nuc el Wl = - revea a a 

present the absolute strengths of 18 pairs of such El transitions are 

available for comparison. The ratios o f these El strengths in conjugate 

nuc l ei (fig . 1) deviate from equality by appreciable factors - in 

apparent disagreement with the charge symmetry hypothesis. This 

conclusion must , however , be relaxed since the El transitions in all of 

(El - 10- 3 to - 6 ) these nuclei are rather weak 10 W.u. , and strong 

cancellations may be taking place in the matrix elements. 5 The 

largest deviation has been found
1 ' 2 

in the A = 15 system (factor ~ 160 , 

fi g . 1) but here the El strengths are very small (El- 10-6 W. u .). 

Such big differences in corresponding El transitions should , 

however , be less likely if the El strengths are large, as in the case 

of the A = 13 system . The El transition from the first excited state 

in 13c [r = 0 .44 ± 0.05 eV; ref . 6 ] and 13N [r = 0 . 64 ± 0.07 eV; y y 

weighted average of refs. 7-10] h ave exceptionally large strengths of 

0 . 04 and 0 .13 W.u ., respectively . Thus, the observed strength rat i o of 

3 . 2 ± 0.7 for these El transitions represents a more serious challenge 

to the charge symmetry concept . The subject of the present work is a 

theoretical investigation of this discrepancy i n the A = 13 mirror 

system. 
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The El transition rule quoted above is exact in the long-wavelength 

approximation due to the vanishing of the isoscalar matrix element.
1 

The next correction term in the isoscalar matrix element is of the order 

(kr) 2 , and hence the contribution to an isoscalar radiative width from 

this term relative to a normal isovector radiative width will be of the 

1 ( ) 4 -6 order kr ~ 3 x 10 for E 
y 

= 3 MeV and a nuclear radius of 2.8 fm . 

This correction term is much too small to explain the observed 

discrepancy. 

The neutron-proton mass difference as well as the Coulomb force s 

will cause isospin mixing of the predominantly T = 1/2 low-lying states 

with T = 3/2 states at excitat i on energies
11 

E ~ 15 MeV. In the 
X 

isobaric spin representation, the mixed states can be described12 : 

T = 3/2> 

and I '!'high> = S I T = ~ > - a I T = 3/2> 

with a
2 + S2 = 1. If the Hamiltonian is written as a charge-independent 

(isospin-conserving ) part H plus a charge- dependent part H , then the 
0 c 

isospin-mixing element M = <T = 3/2 IH IT = ~> is related to the 
c 

coefficients a and S and to the observed difference D in the excitation 

energies of the two isospin states by the expression M = aSD. For 

D - 15 MeV and a conservative value
12 

of M ~ 200 keV, the product of the 

- 2 two coefficients is aS - 10 . Since the low-lying states have a 

predominantly T = ~ isospin (i.e., a~ 1 ), one obtains a mixing 

coefficient 8 - 10- 2 as an order of magnitude estimate. This 

coefficient together with an assumed large intrinsic El-matrix element 
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of 1 W. u. for the T = 3/2- state to ground state decay leads to a 

contribution of 10-
4 

W.u. in the El decay of the first excited 

state . The contribution is still 2-3 orders of magnitude too small 

when compared with the observed strengths and hence cannot contribute 

significantly to the explanation of the discrepancy . However, for the 

A = 15-43 nuclei this contribution is of the same order as the observed 

strengths and hence can play a significant role in their El- transitions . 

We have found that a sizable component corresponding to a nucleon 

coupled to the zero isospin first excited state of 
12

c in the wave 

functions of both the ground and first excited states of 
13

c and 13N 

appears to be responsible for the difference in the mirror El strengths 

In the t r ansition amplitude, this component in each of the levels 

interferes destructively with the component associated with the 
12

c 

ground state. 
13 

The resulting effect is to reduce the value of the C 

width and in the 
13N cross section to lower the high energy tail of the 

resonance . 

As a further test of the model, we have calculated the bremsstrah-

lung differential cross section for protons on 12c up to a beam energy 

of 2 MeV in the laboratory system at 6 
y 

0 0 = 0 and 90 . In this case we 

find that the reaction proceeds through a resonance in 
1 3N which 

interferes with the incoming distorted wave in the transition to t he 

first excited state of 
13N. This resonance with energy 1.565 MeV in the 

center of mass and total spin, parity JTI = 3/2 can be described as 

consisting mainly of a proton coupled to the first excited state of 
12

c 

because the P
312

shell if filled in 
12

c( gs ); thus, in the shell model,one 

1 2 
cannot add another P

312
nucleon to C(gs). This results in the narrow 
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resonance observed in the differential cross section at 6 = 0° . A 

second resonance at 6 .976 MeV with Jn = 1/2- aids in modeling the 

incoming wave and in conjunction with the previous resonance, the 

differential cross sections at 6 = 0° and 6 = 90°. 

Section II presents the standard deformed spherical potential 

coupled- channel model . In addition, this section deals with the 

normalization problems that arise in defining spectroscopic factors . 

Section III outlines the changes in gamma ray matrix elements needed 

t.o compute transitions with multiple input spins and channels. Also 

included is a solution to the problem of computing the matrix elements 

between free (continuum) particle states. Section IV applies these 

ideas to understanding charge symmetry in mass 13 by computing the 

capture and bremsstrahlung cross sections. Section V is a discussion 

and interpretation of the models presented abo ve with suggestions for 

further study . The Appendix contains all the relevant information for 

creating and running the program on a high speed digital computer . 
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II. THE COUPLED-CHANNEL EQUATIONS 

A. The Rotational and Vibrational Model s 

Starting from an optical model potential of the Woods-Saxon form , 

Tamura
14 

derives the form of the o ff-diagonal potentials when s peci f ic 

assumptions are made concerni ng the shape o f the nuclear surface. The 

point o f v iew t aken i s that the nuclear potential is directl y proportion-

al t o the mass distribution within the core. Thus we can expand the 

r adius of the nuclear s urface i nto any f orm which allows easy insertion 

into the opt i cal potential and s ubsequent expansion to accommodate 

coupled channel modes. The u s u a l model s e mployed are t he vibrational 

model which expands the radius i n a full set of spherical harmonics and 

the r otational model which assumes an axially symmetric deformed nucleus 

expansion. It is u sual to neglect the higher order expans i ons of the 

spin-orbit potential and keep only the sphe rical term . In the discussion 

of Section V a brief analysis of t he spin-orbit p otent i al and its ori g i n 

will be presented i n an attempt to illuminate the proper procedure to 

follow . Similarly , for the Coulomb pot ential we have only inc l uded 

diagonal terms,as the off- diagonal terms a r e much smaller than t he 

corresponding nucl ear o f f - d iagonal terms . We first consider the t otal 

Hamiltonian , 

II . l 
+ + 

H = T + Ht + V(r, ~) 

where T i s the kinetic ene rgy of the proj ectile,Ht is the target 

+ + 
Hamiltonian, and V(r , ~) is a generalized potential describing the 
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interaction of the target with the projectile. The target Hamiltonian 

has Schroedinger equation solutions ~ given by 
InMn 

II. ~ w n 

where In•Mu are the core spin and it s projection and wn is the energy of 

the core state. One now writes the total wave function, 

II.3 
-l 

r E 
Jnt j 

n n 

E M (j I m M IJM)Yn . ~I M 
mj n n n j n ~nJnmj n n 

where X is the spin wave function of the projectile, RJ n . (r) is 
sms n~nJn 

the r adial wave function of the projectile with total spin and 

projection J,M, formed from coupling core spin I and projectile total 
n 

spin j . The t otal projectile spin j is formed from orbital angular 
n n 

momentum t and the particle intrinsic spin. 
n 

To get the coupled- channel equations we now insert the total wave 

function o/ into the full Schroedinger equation, multiply on the left by 

(Yt . 0 ~I )jMand integrate over all variables except r to obtain 
nJn n 
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rr.4 

< (Yn • ®~I )JMjvj(Yn . ~~I )JM > 
'" j ~n'Jn' n' ~nJn n n ~ ' ' n n 

where En= E1 - wn' and the matrix element is over all variables except 

r. The crux of the problem is now reflected in the evaluation of the 

matrix elements of the generalized potential. 

In general we can expand the potential as 

rr.5 V=r. v(t)(r)(Q(t)·Y,) 
A A " A,t 

where the subscript A denotes the potential of tenor rank A and the 

superscript t distinguishes terms of different character. YA is an 

angular momentum function of the projectile's angular variables and 

QA(t) operates only on the coordinates of the core. A calculation of 

the above matrix element yields 

rr.6 <tjijvjt'j'I'> = 

r. '\ (t) <Ill QA (t) II I'> A(tj i, t'j 'I' ;AJs) 
t,A 

where A(tji,t'j'I';AJs) is a completely geometrical factor given by 
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II.·7 

!.: !.: 
(2j+l) 2 (2j '+l) 2 (U 1 ool.\o)W(jij 'I' ;J.\)W(R.jR.'j' ;s.\) 

and the reduced matrix element is defined as 

In the r otational model the nuclear surface is expanded as 

II. 9 

where R = r Al/3 is the usual optical model radius formula,r0 =l.25fm,the 
0 0 

angle 8 1 refers to the body fixed system. This deformed radius parameter 

is now inserted into the Woods-Saxon potential shape and the p otential is 

expanded in spherical harmonics, 

II.lO v = 

,>.. 
where D is a rotation from the space fixed to the body fixed 

j.JO 

coordinates , 

Y, (8 ') = L D.\ (8 .) Y, (e,q,) 
AO j..l j.JO l Aj..l 

For the vibrational model the optical potential radius is expanded 

in a full set of spherical harmonics, 

II .li R = R (l +La, Y,]J(e,q,)) 
0 Aj..l Aj..l A 
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and a procedur e similar to the rotational model is followed to obtain 

the tensor potential expansion . 

C . IDENTICAL PARTICLES AND SPECTROSCOPIC FACTORS 

There are counting and timing probl ems which arise when treating 

systems of many particles in real time . The single particle stationary 

state Schroedinger equation when used in a mul tiparticle , real time 

evolution p r ocess must be corrected for two phenomena . Some particles 

in the system c an interact quite strongly within the t i me limits gover n -

ing a particul ar process, while others may remain inert and noninteract-

ing . For example , in discussing single particle gamma ray transitions 

which occur in outer shells, as long as the time for the core to inter-

act with the extra particles i s l ong compared with transition lifetime, 

the core can b e considered to be inert and will enter into the process 

in only the most simple ways . Second , charge can be exchanged in the 

strong interactions between nucleons and hence all part i cles withi n a 

shel l, regardless of charge, must be included in computing spectr oscopic 

f actors . 

The statistics and confi gurations of the mass 1 3 states of interest 

will now be described so that some i ns i ght can be gained in understanding 

the results of secti on IV. The 
4

He core consisting of two protons and 

two neutrons in the ls - shell is very stable; its first excited state 

does not occur until nearly 20 MeV . Hence, in all that follows its only 

contribution is to mass and ch a r ge . 
12 

In the C ground state the next 
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eight particles are all i n ~=l states and are considered to form a semi ­

magic shell since they fill up the total angular momentum states 

j = 3/2 obtained by coupling spin and orbital angular momentum in 

parallel. In const ructing the mass 13 ground state the extra nucleon 

is put into the next ~=1 level which has j =l/2, antiparallel spin and 

orbital angular momentum. In this case however the excitation of the 

core mixes up the distinction between para llel and antiparallel spin 

and angular momentum, with the consequen ce that all p - shell nucleons 

are treated the same,giving a total spectroscopic factor of 9. 

Similar reasoning can be appl ied to the other bound states in the 

compound nuc leus. For all particle unbound channels the wave functions 

have been normalized to unit incoming flux. 
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III. GAMMA RAY TRANSITIONS 

A. TRANSITION PROBABILITIES FOR MULTIPLE CHANNELS 

The procedure which we outline here is presented in more detail by 

Johnson15 and is a modification of the Rose and Brink16 formulas for the 

angular distributions of gamma rays. The changes are a result of using 

more than one total spin state in the incident channel. 

+ 
The differential cross section for a photon of wave number k in 

y 
+ 

the direction e is given by p(k ) the probability of emission in the 
y ' 

direction e divided by the incident particle velocity. These probabil-

ities in turn can be written as being proportional to the absolute squares 

of amplitudes given by 

III.l 

where q is the polarization of the radiation and T~> is the interaction 

multipole operator of type L,n and V~q(R) is a rotation operator where 

the rotation R takes the z-axis to 
+ 
~· 

These amplitudes are simply summed over the possible total spin 

angular momentum states in the initial channel and the absolute value is 

squared to obtain the probability . By using the Wigner-Echart theorem 

and the reduction formula for a product of rotation matrices plus the 

usual Clebsch-Gordan and Racah algebra, we arrive at the angular 

distribution for photons of polarization q from states J
1 

and J
1

' leading 

to a state J
2

. 
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III.2 

where w(M
1

) is the incoming probability distributions over total angular 

momentum projections. The appendix contains the formulas used for the 

computations in a much more reduced form. 

B. FREE PARTICLE MATRIX ELEMENTS 

A. 
The r matrix element between free particle initial and final 

states can be evaluated using standard techniques from complex 

functional analysis~3 For the free particle wave functions we use an 

integral representation of an outgoing Coulomb wave. (With simple 

changes i n parameters, the matrix elements of zero charge and bound 

state wave functions can also be obtained.) The outgoing Coulomb wave 

is written in a way which illustrates its asymptotic form, 

III. 3 

where 

oL = arg r(L+l+in) 
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p = kr 

and L, k, n are the usual angular momentum, wave number, and dimensionless 

Coulomb potential strength, respectively. To evaluate the truncated 

matrix element (that is,the integral from a finite radius to infinity), 

the r-dependent terms are grouped together after a direct substitution. 

III.4 

= 

Joo 
0 dt 

-(i(k.-kf)+u+t)r 
• e 1 

r(L.-in.+l) 
l l 

I~ duuLf+inf(l+iu/2kf)Lf-inf 

r(Lf+inf+l) 

After performing the integral over r, a change of variables 

(t = ipifsx, u = ipifs(l-x)) and a contour integral whose validity is 

justified by Cauchy's integral theorem and analytic continuation, we 

get 

III.5 

where 

L! 
(L-L)f 1 L+l L=O 
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L = A + Li + Lf + 2 

a = Lf + Li + 2 + i ( nf n.) 
l 

This last double integral can now be approximated by an asymptotic 

series in confluent hypergeometric functions after first expanding the 

two terms in the numerator. 

III.6 

where b = a- L 

N r(L.+in.+l) r(L.-in.+R-+1) r(Lf-inf+l) 
E { l 1 }{ 1 1 }{ } 

R-=O R-!r(L.-R-+in.+l) R-!r(L.-in.+l) j!r(Lf-j -inf+l) 
·-N o l l 1 1 J - -N 

U(a,b,z) is defined in Abramowitz and Stegun17 (13.1.3). 

The full (R=O) matrix element is obtained in a more straightforward 

manner by first expanding the two numerator terms as b e f ore . The 

integrals then reduce to nothing more than sums and products of r-

functions. This final series i s 

III. 7 



15 

IV . APPLICATION TO GAMMA TRANSITIONS IN MASS 13 

Figure 2 shows a nuclear energy level isobar diagram for mass 13 . 

We will be concerned with modeling the structure of these low-lying 

states. 

19 
Mikoshiba, et al . , find that an axially symmetric, rotational 

nucleus with large oblate deformation successfully reproduces the 

experimental phase shifts, cross sections, and polarizations of 

1 2 
elastic scattering of nucleons on C whereas the vibrational model 

cannot . The doctoral dissertation of Johnson15 extends the model to 

12 
include nucleon capture on C. 

Neither effort is successful at low energies as a result of 

problems in combining in a consistent fashion bound and unbound 

channels within the same total wave function. The rotational model 

will be used to calculate wave functions f or these low energy states 

and the resulting El transition rates b etween them in an attempt to 

illuminate some of these inconsistencies. 

The El strengths for the transition from the first excited J"~+ 

1f-l- . -state to the J -~ ground state in each nuclei will be predlcL.e<i arid 

ratio compared to the experiment al value. We will find that the 

computed ratio agrees quite well with the experimental ratio; hence, 

for this transition we find no violation of the charge symmetry of 

nuclear forces. In addition the bremsstrahlung radiation from protons 

on 
12c will be modeled as occurring through one resonance - the J"=3/2-

state at 3 .509 MeV- and the incoming plane wave modeled as the higher 
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JTI~~-state at 8.92 MeV- to the Jn=~+ first excited state at 2.366 MeV. 

From the calculations of Cohen and Kurath
18 

for single nucleon 

transfer reactions in the lp-shell, we obtain spectroscopi c factors for 

the two most important low-lying contributions to the mass 13 ground 

state. 

IV.l I + 112 + 112 + gs> = 8(0 ) C(g.s.) +nucleon> 8(2 ) C(2 ) + nucleon> 

+ + 
where 8(0 ) and 8(2 ) are the fractional parentage coefficients. The 

spectroscopic factors are given by the square of the fractional 

parentage coefficients times the number of extra core nucleons as 

explained in Section II B. Cohen and Kurath determine the spectra-

scopic factors, 

In coupling the 
12

c(g.s.) and 
12

c(2+) with single particles to 

form the 
13

c and 
13

N ground states we proceed as follows. The strength 

of the off-diagonal mixing potential is calculated using the rotational 

coupled-channel model. The diagonal nuclear optical potentials in each 

channe l are forc e d to be equal and this strength and that of the spin-

orbit potential are varied to put each ground state at the proper 

eigenenergy with the correct spectroscopic factors. These wave 

functions are then used i n the computation of the El matrix elements in 

conjunction with the first excited state wave functions. Variations of 

the diagonal and spi n-orbit potential strengths for the first excited 

state result in the reproduction of the 
1 2

c(p,y)
1 3

N capture cross 
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section (Figure 4) by estimating its value at the resonance energy and 

at proton energy . 700 Me V ( center of mas s ). The resulting norrnal i za-

+ + 
tion factor gives the ground state (0 and 2 states only) spectroscopic 

• 1T + 
factor s1nce the J =1/2 state is normalized to unit incoming flux. 

From this computation we also ob.tain estimates of the 
12c (p ,p )

12c 

S-wave phase shifts
20 

which are excellent over the enti re ener gy r egion 

of interest (Figure 3) 

Potential strengths identical to those used for the mixing and 

spin- orbit potentials in 
13

N, are then applied in computing the 
13c 

ground and first excited states . Again , the diagonal potential is 

varied to put the wave functions at the right eigenenergies. The El 

transition width i s computed and multiplied by the ground state 

spectroscopic factor estimated in the 
13

N computation . From the 

capture cross s ection in 
13

N a simple computation yields its gamma 

width. The peak is modeled as a Breit-Wigner form and the gamma 

width is computed assuming that the proton width i s approximately 

equal to the full width. 

In performing the bremsstrahl ung calculation a similar procedure 

is followed . 
1T + 

The J =1 /2 excited s tate potential value s computed in 

the previous calculation are used to generate what will b e the final 

state wave functions in this problem. Using the mixing potential 

values predicted by the rotational model we then construct the JTI=3/2-

TI - 7T -and J =1/2 e xcited states. The J =1/2 state is u sed only to simulate 
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the PJ. piece of the incoming plane wave. 
~ 

'1T - . 
The J =3/2 potential values 

are then varied to arrive at the best fi t to the 6 = 0° bremsstrahlung 

cross section , using the El bremsstrahlung differential cross section 

formul a from Appendix B. A factor for the final state phase space 

densi ty and a simple integr al of the Breit- Wigner resonanc e shape for 

the J'!T =l/2+ final state were also included. 
0 

The 6 = 90 cross section 

was also determined , and is the dotted line of Figure 6 . As can be 

seen from the figure the fi t is qualitatively c orrect but missed some 

data badly . An examination of the experimental photon l ine shapes 

r eveals the reasons for the problem. The backgroundfluctuations at l ow 

energies are quite large , typi cally ten to fifteen percent of the 

resonance peak values , and secondly, the line shapes deviate qui t e 

severely from a Breit-Wigner form. To correct this problem we have 

computed the line shapes over the f i nal state resonance region for 

selected values o f the incident proton energy. The areas of the 

resulting peaks are numericall y computed after lower limits to the 

peaks are inserted. Figure 7 shows a set of these peaks for a range 

of incident proton energi es . The resulting final cross sections can 

be seen as the solid line i n Figure 6 for 6 = 90° . The lower limits 

to the peaks were determined u sing two rules of thumb . First, the 

line shapes should look closel y like a Breit- Wigner resonance, hence 

the asymmetry of the peaks reduces the area. Second, the background 

noise results in making the placement of lower limits uncertain. The 

experimental line shapes had lower limits less than three half widths 
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wide. Even assuming a pure Breit-Wigner form for the peak, cutting 

off the base at three half widths yields a large reduction in area. 

The sol i d line of Figure 6 shows quite vividly the large changes to the 

90° differential cross section. 

Again the 
13

N potential strengths are applied to the 
1 3c mirror 

transition states and the equivalent gamma widths are computed . 

iT + 
Table 1 contains a l isting of these widths for the J =l/2 state 

iT - iT -
transition to the J =1/2 ground state and the J =3/2 state transition 

iT + 
to J =1/2 state in both nuclei as well as a compari son with the 

experimental values . Table 2 contains a listing of the potential 

values for all states corresponding to the widths computed in Table 1. 

It should b e noted that the infrared divergence i n the 

bremsstrahlung cross section seen at low energies as the dashed curve 

in Figure 6 is a result of the breakdown of perturbation theory for 

small photon energies. The perturbation term i s a l inear appr oximation 

to the matrix element of a complex valued exponential function of the 

perturbation potential between the initial and final states. Even 

though this lineari zed term goes to infinity for small photon energies 

as do all higher terms in the perturbation expansion, the exact term 

remains finite; high e r order terms don't help the expansion converge. 

Summing the peaks as done here to correct the bremsstrahlung cross 

section also yields the added bonus of the d i sappearance of this 

divergence. As can be seen by examining Figure 7, as one goes to 

smaller photon energi es the Breit-Wigner part of the peak grows smaller 
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even though the total area under the peaks goes to infinity. 
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V. DISCUSSION 

A cursory examination of Table 2 reveals two significant features 

of the potential strength values. The first conclusion is that the spin-

orbit strength varies quite widely across states. In performing the 

calculations the mixing potentials were fixed by the rotational model 

and we have truncated the full channel expansion to only two excited 

12 
states of C. Hence we shouldn ' t really expect any great consistency 

in the spin- orbit strength across states. The second major feature is 

t he differences between the diagonal potentials in even and odd angular 

momentum states. The S and D shell potentials are approximately 54 MeV 

strong, whereas the P- waves are bound somewhat more weakly , approximately 

42 MeV . One can only speculate as to the origin of this effect, but 

again the truncation of exc i ted core states may play an important role . 

In the standard derivation of the existence of the spin-orbit force 

a Dirac equation is derived from principles of relativist ic i nvariance. 

The resulting spinor wave function is approximated by a scalar wave 

function with the Dirac equation being transformed from a coupled first 

order differential equation to a scalar second order Schroedinger equation 

with a spin-orbit potent ial and higher order terms. That is we ' ve 

reduced a coupled wave function to a scalar wave function . For this 

r eason it is probably correct not to distort the spin- orbit force; in 

fact the correct approach to deriving a coupled-channel model should 

s t art with a Dirac equation, the inclusion of core wave functions, and 
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a model of the excitation process. Such a procedure is beyond the 

scope of this paper. 

As mentioned earlier, the failure of current models to adequately 

model the low energy states is most probably explained by the converse 

success of the niodels in consistently reproducing higher energy states. 

Conservation of energy and flux fix the amplitudes of all unbound 

channels whereas bound states can take on any normalization. Thus all 

that the standard models do at higher energies is determine the phase 

rel-ationships between wave functions; at lower energies when bound 

states exist we must also mix in the proper amplitudes. 

The resulting effects on matrix elements are unknown; it may be 

fruitful to pursue just what happens at these important thresholds. 

Further insight can also be obtained by examining the role of complex 

valued potentials. It is well known that the use of an imaginary 

valued potential results in the loss of flux from open channels because 

the Hamiltonian becomes non- Hermetian . Further investigation into the 

use of complex valued wave funct i ons and potentials and their proper 

interpretations would be of invaluable help in unraveling the mysteries 

of the nucleus . 
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APPENDIX 

A. Numerical Solution of Coupled Second Order Differential EQuation 
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1. Solution by iteration of coupled eQuations 

2. Boundary conditions and solution search routines 

3. Computation of external matching functions 

B. Gamma Ray Transition Differential Cross Section Formulas 

C. Nuclear and Coulomb Potential Shapes 

D. Computer Program Information 



24 

A. NUMERICAL SOLUTION OF SECOND ORDER COUPLED 

DIFFERENTIAL EQUATION SYSTEM 

l. SOLUTION BY ITERATION OF COUPLED EQUATIONS 

The system of second order coupled differential equations is given 

by 

(l) 

where A is a matrix specified by the particular model used. Diagonal 

elements of A are the energy eigenvalues and central potentials of 

each channel. The off-diagonal elements are the mixing potentials. In 

the standard 3-point integration formula, 

(2) 
-+ = 2y 

n 

-+ -+ 
where his the step size and yn = y(r=nh). We substitute (l) in for the 

second derivatives obtaining 

(3) = (12X-l - 10) X +y 
n n n 

h2 

-+ 
X y 

n-1 n-1 

where Xn = I - 12 An. At the origin our starting conditions are 

-+ -+ -+ -+ 
X

0
y

0 
= 0, and at step l we arbitrarily set x

1
y

1 
= a and define 

-+ -+ -+ 
X y - Z a After dropping a from all equations, we are left 
n+l n+l n+l · 

with a set of matrix equations to iterate, 

( 4) 

with Z
0 

= O, z
1 

I. 
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We use equation set (4) when we search for the eigenvalue or 

resonance and equation set (3) when our desired solution is found. The 

usual error analysis and behavior is carried over from the one-

22 
dimensional case and can be found in Melkanoff, et al. 

2. BOUNDARY CONDITIONS AND SOLUTION SEARCH ROUTINES 

For the case when all channels are bound, we must have only 

exponentially decreasing wave functions at infinity, the Whittacker 

function, and these are easily matched to the iterated solution in each 

channel. In all other cases we must have outgoing waves in at least 

one channel, so our outgoing wave function must behave asymptotically 

like 

( 5) '¥ s (GR. +iF£ )) 
s s 

where s is any channel, i is the incident channel, k. the wave number in 
l 

the incident channel, F£ and G£ are the regular and irregular Coulomb 

functions, respectively, but can be replaced by sphErical Bessel 

functions in the case of no charge interactions; or if a channel is 

bound, G£ + iF£ is replaced by a Whittaker function. Cs contains 
s s 

amplitude and phase shift information about the outgoing state. For 

the entrance channel C. = eio sin o where cS is the commonly defined phase 
l 

shift, and o£ is the Coulomb phase shift in channel s. 
s 

In the case where at least one channel is open, we integrate our 

system of equations starting from the origin so as not to introduce 

numerical errors from the irregular solution. The iterated wave 
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funct i ons are matched to standard functions at two points for large 

values of r. That is, 

z ;::: 
(47r)~ 

a a k . 
~ 

io · 
F £. (a) + c . ei0i(G.~~, . (a) + "F (a)) e ~ ~ R, 0 

~ 
~ ~ ~ 

(6) c ei0S(G.~~, (cd + "F (a)) 
s ~ R, 

s s 

for a ;:::l,2 , the functions all evaluated at the matching points . We can 

-+ -+ 
write this in matrix notat i on and easily solve f or the vectors a and c ;::: 

( . .. ,c, ... ). 
s 

zl 

(7) 

z2 

n· [ ios (Gl +"Fl ~ag e £ ~ £ 
s 

D" [ ioS (G2 +"F2 ~ag e £ ~ R, 
s 

) ] 
-+ 
a 

s 

;, 
{47r) 2-+ 

) ] k. c 
s ~ 

io. Fl e ~ 
£. 

1 Q ~ 

;::: 
(4TI)>2 

0 k . io. F2 l e ~ 
£ . 

0 l 

0 

For the case where all channels are bound, we must integrate from 

the ends toward the middle of the i nterval because of the numerical errors 

i ntroduced by the irregular solutions to the differential equations. From 

the origin out we have the solution matrices ZK '' ZK+l and from infinity in 

-+ 
we have ZK' ZK+l ' For arbitrary start i n g vectors a from the origin and 

-+ 
b from i nfinity we have the solutions at the points K and K+l, 

-r , - 1 '-r -r, -1 -+ 

YK 
;::: 

~ ZKa YK+l 
;::: 

~+1 ZK+l a 

(8) and 

-+ -1 -+ -+ -1 -+ 

YK 
;::: 

~ ZKb YK+l 
;::: 

~+1 ZK+lb 
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We have a proper solution to the differential equations when the 

values at each poi nt are the same. This impli es that we solve the 

matr ix equation 

(9) 
A [ !] = 

Z' 
K 

- Z 
K 

-+ 
a 

-+ = 0 

When the determinant of A is zero, then we have found a good 

-+ 
solution to the system of equations . To find the starting vectors a and 

-+ 
b, simply set a

1 
= 1 and solve the resulting system of equations. 

3. COMPUTATION OF EXTERNAL MATCHING FUNCTIONS 

The asymptotic values of the bound channel wave functions for both 

charged and uncharged states were computed using a 20- point Laguerre 

quadrature formul a on the integral representation of the Whittaker 

funct i on 

(10) w( n , t + ~ . 2p) = exp( - p- n tn 2p) 
r(l+£+ n) 

23 
The nodes and weights are given by Stroud and Secrest . The error in 

the quadrature can be limited to the boundedness of the fortieth 

derivative of the integrand times the error coefficient of 0 . 7254E- ll . 

Representative values of these functions have been checked against 

tables in Abramowitz and Stegun1 7 . 

The spherical Bessel functions are computed from formulas 10.1 . 2 

in Abramowitz and Stegun17 . The irregular solution can be recursed by 
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a three-point formula up in £-values,starting being facilitated by the 

analytic forms for £=0 and l. The regular solutions are started 

arbitrarily at high £-values and recurred downward. The Wronskian is 

then computed and used to correct the regular solutions. This routine 

has also been checked against tables. 

The Coulomb functions are computed by a program developed at the 

University of Minnesota. Representative values have been checked against 

tabl es in Abramowitz and Stegun
17 

and Arnold Tubis, Tables of Nonrela­

tivistic Coulomb Wave Funct i ons , Los Alamos Scientific Laboratory (1958). 

The irregular Couiomb wave and its derivative for £-values are obtained by 

recursion. The regular solutions are obtained by a downward recursion 

and these solutions are corrected by a Wronskian calculation. 
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B. GM~ RAY TRANSITION DIFFERENTIAL CROSS SECTION FORMULA 

The derivation of the formulas used in generating the cross sections 

of interest can be found in Johnson7
5 

(ll) 

For the El-bremsstrahlung differential cross section, we obtain 

dcr(e) 

dS"l = 

+ {4 Re(<~-~~ T~ll ~+>*<3/2-ll T~~~ ~+> 

-21< 3/2- II T~ II ~ + >1
2 

} p 2 (cos 8)] 

The El-capture involves an integration over angle and is given by 

(12) cr py 

2k 
= ___L { 2j< ~+II Te II ~- >1 2 } 

1 3hv. 
l 

where k is wave number of the outgoing photon, v. is the velocity of 
y l 

the incoming proton in the center-of-mass, and 

(13) 

where J
1

, J
2 

are the total spin of the core plus nucleon system for the 

initial and final states, I is the spin of the core, and the 
n 

W(J
2 

1 Injl; J
1

j
2

) are Racah coefficients. The reduced matrix element 



(14) 

and OV(n) roo 
0 

and 
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k 
£ -£ +1 j -~ (2. +1) 2 

= i 1 2 (-1) 1 _J;;..o2 __ 

13 

. ( j 1 j 2~-~ l1o) eeffky OV(n) 

Jl J2 
w * u £ . 
n£ljl 

eEl(r) 
n 2J2 2 

r dr 
r r 

where e is the proton charge and (Zp,Ap), (ZT, ~) are the charge and 

mass number of the projectile and target, respectively, the 

(j
1

j
2 
~-~110) are Clebsch-Gordan coefficients, eE

1
(r) is the electric 

dipole operator which reduces to r in the long wavelength approximation, 

J J2 w 1 . , u n • are the nth channel initial and final state wave 
n~lJl n""2J2 

functions of a nucleon with orbital angular momentum £ 2 ; and total 

angular momentum j., about the core state with total spin I to yield a 
l n 

total angular momentum J .. 
l 

The bremsstrahlung differential cross section is multiplied by a 

density of states to correct for all the continuum final states. This 

factor consists of two parts: the usual density of momentum in phase 

space and the area under the final state resonance assuming a Breit-

Wigner shape. 

The Clebsch-Gordan and Racah coefficients were evaluated using 

Rotenberg, Bivens, Metropolis, and Wooten, The 3-J and 6-J Symbols, The 

Technology Press, MIT (1959). 
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C • NUCLEAR AND COULOMB POTENTI AL SHAPES 

The u sual diagonal central p otential is a Woods - Saxon d i ffuse edge 

well form 

(15) f = [ l + e xp( [R- R ] /a) ]-l 
0 

where a is a par&~eter which measures the diffuseness of the edge and 

R is the nuclear r adi us usually given by R 
0 0 

. Al/3 r . 
0 

The off-diagonal and spi n - orbi t potential are g i ven in ter ms of the 

deri vative o f t he central pot ential 

dr 
(16) df 

-=-

The spi n- or bit force picks u p an addit i onal 1/r dependence as presented 

in Table l. The Coulomb potential i s the usu a l uniform sphere 

val ue inside the nuclear r adiu s and the standar d 1/r dependence outsi de , 

={ 
ZZ ' e 2 2 

(3 -
r 

R 
2R R2 

r 5 
(17) V (r) 

0 
0 

c 0 

ZZ' e 2 
R r > 

r 0 
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D. COMPUTER PROGRAM INFORMATION 

The programs were run on the CDC 7600 high-speed digital computer 

at Berkeley through the remote terminal in the Downs-Lauritsen physics 

building. The programs can be contained in two boxes of cards, but 

testing and production were done using the program storage system at 

Berkeley. The high speeds and inexpensive costs in running the programs 

make any timing estimates superfluous. 

The linear equation solver package LINIT is a Berkeley computing 

center program. 

All numerical and physical constants values are from F . Ajzenberg­

Selone and C. L . Busch, Nuclear "Wallet Cards", University of Pennsyl­

vania, Philadelphia (1971). 
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TABLE 1 

WIDTHS 

THEORY EXPERIMENTAL 

1/2+ + 1/2 r (13c) .617 eV .44 ± .05 
y 

r ( 13N) .701 eV .64 ± .07 
y 

Ratio of Strengths 2.52 3.2 ± 0.7 

3/2 - 1/2+ 
r <13c) 2.5 meV 6.6 meV 

-+ y 

r 
y 

(13N) 4.2 meV 4.4 meV 

Ratio of Strengths .240 .095 

It should b e noted that the 3/2- to 1/2+ transit i on widths 

are in millielectron volts ( l 0- 3ev) . In this transition strong 

inte rference between channels yields a large error in the 

theoretica l width values. 

eV 

eV 



STATE 

13 
C(g.s.) 

13 N(g.s.) 

13c(l/2+) 

13N(l/2+) 

13c(3/2-) 

13N(3/2-) 

MIXING 

2.22 

2.22 

2.73 

2.73 

1.6 

1.6 

36 

TABLE 2 

POI'ENTIAI.S 
SPJN-QRBIT 

.93 

.93 

.31 

.31 

0. 

0. 

CENTRAL (MeV) 

40.207 

40.257 

53.304 

54.263 

42.557 

43.355 

SPECI'ROSCOPIC 
FACI'ORS 

(.8252, 1.6091) 

( • 88121 l. 5531) 

(.905, .095) 

( .922, .078) 

(.142, .858) 

( .136, . 864) 

The full mixing potential is a prcxluct of the factor given above 

times (hc/2mc2 ) , the Ccmpton wave length of the reduced mass, t.irres the 

derivative of the central Wcxrls-Saxon fonn. Similarly the spin-orbit 

potential is a product of the above factor times (h2c 2 /2rrc2) times 

(-;·L)/r t.irres the derivative of the Wcxrls-Saxon fonn. The matching 

radius is 22.35 :Em. The mixing strength corresponds to a rotational 

JTKXlel with s=-l/2 . 
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Figure 1. Ratio of corresponding El strengths in light mirror nuclei. 

The data have been obtainErl from the data canpilations of 

refs. 2-4. 'Ihe indicatErl ratio for A = 15 is an upper limit. 



ll.
. 

0 0:
: w
 

(l
) 

~
 

12
 

::>
 

4 
z 

2 

I 
E

I-S
TR

E
N

G
TH

S
 I

N 
M

IR
R

O
R

 N
U

C
LE

I 

A=
 IS

 
(E

I 
-l

o
-6

w
.u

.) 

+
 

A
= 

17
-4

3 

(E
I-

I0
-3 

-l
o

-6
w

.u
.) 

I I I
~
E
X
P
E
C
T
E
u
 

I 
R

A
TI

O
 

A
=

l3
 

(E
I-

0.
1 

W
.u

.) 

~ 

0.
1 

I 

R
A

TI
O

 O
F 

E
I-S

TR
E

N
G

TH
S

 

w
 

O
J 



39 

Figure 2. Isobar energy level diagram for A = 13. 

Note that no correction is made for the Coulomb energy difference 

between 
13c and 

13
N. 
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Figure 3. Comparison of the experlinental S!:! phase shifts with the 

12 12 . 
rrodel calculations for the C(p,p) C reaction. The data are 

taken from ref. 20. 
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Figure 4 . Capture cross section near the resonance peak. 

Dots are data of Rolfs10 . The solid curve is the theoretical fit. 
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Figure 5. S-factor given by S = oE exp (21Tn) • 

Solid curve is theoretical fit. The circles are the data of 

Rolfs10 . The plus signs are the data of Vogl 
8 

The dashed 

curve is a single channel fit with no mixing. 
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Figure 6. Differential cross sections for bremsstrahlung at 0° and 90°. 

10 The data are from Rolfs . The dashed curve is the preliminary fit 

using a Brei t-Wigner form to represent line shape. 'Ihe solid 

curves are the result of integration over the calculated line 

shape. 
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Figure 7. The garrma ray line shapes for bremsstrahlung at 90°. The 

dashed lines are the lower limits for integration over the peaks. 
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