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ABSTRACT

The concept of a "“projection function" in a finite-dimensional
real or complex normed linear space H (the function PM which carries
every element into the closest element of & given subspace M) is set

forth and examined.

If dim M = dim H - 1, then PH is linear. If PN is linear for
all k-dimensional subspaces N; where 1 £ k < dim M, then PM is
linear.

The projective bound 0, defined to be the supremum of the
operator norm of PM for all subspaces, is in the range 1 £ Q <2,
and these limits are the best possible. For norms with ¢ = 1,

PM is always linear, and a characterization of these norms is given.

If H also has an inner product (defined independently of the
norm), so that a dual nmorm can be defined, then when PM is linear
its adjoint PL? is the projection on (kernel PH)'L by the dual

norm. The projective bounds of a norm and itz dual are equal.

The notion of & pseudo-inverse F* of a linear trensformation F
is extended to non-BEuclidean norms. The distance from F to the set
of linear transformations G of lower rank (in the sense of the
operator norm I|IF - Gl ) is c/W|F+“, where ¢=1 if the range of F
fills its space, and 1 £ ¢ £ Q0 otherwise. The norms on both
+44

) = F for

every F. This condition is also sufficient to prove that we have

domain and range spaces have Q=1 if and only if (F

(F+)H = (FH)+, where the latter pseudo—inverse is taken using dual

norms.

In all results, the real apd complex cases are handled in a

comp letely parallel feshion.
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CHAPTER I
PRELIMINARY DEFINITIONS AND RESULTS

-‘Let Hn be an n-dimensicnal real or complex Hilbert space, where
n j.s a positive integer. The elements x,y of Hn may be thought of
as column vectors, end the inner product (x;y) may be thought of
n
as Ziu 1 ';Ei A For the fundamental properties of Hn’ see any
standard text (e.g., Halmos).

The real and complex cases will be handled in a completely
parallel fashion, although most treatments of this subject handle
the real case only, or handle the two cases separately. The term

"scalar" will therefore be used to denote either a real or a complex

number.

A function F:H - H , where H and H have the same scealar
n n m n

field, is called homogeneous if it is continuous and F(ecx) = cF(x)

for every xEHm and every scalar c. The homogeneous function F is

called linear if F(x+7y) = F(x)+F(y) for all X,y eH .

A real-valued function & on Hn is called & norm if x;é 0 =
Cafx) >0, «(ex) = |ela(x) end x(x+y) ¢ «x(x)+«(y) for all

x,yc—Hm and every scalar c.

We shall need the following concepts from convexity theory (see
also Householder pp. 38-45).

A set of the form B = {ern !tx(x) sc} s Vwhere « is a norm

and ¢ is a positive constant, is called an equilibrated convex body.

Since

«x(x) = inf {b] b>0, (c/b)xe‘B} "

B and ¢ determine « uniquely. It is sometimes convenient, especially



in illustrations, to use an equilibrated convex body to represent

a norm (see Fig. 1). \J *e

A k-dimensional flat (sometimes
called e linear manifold) in H ois a

subset of the form wu+M (that is,

the set {u+x| xE—M} ), where M is
8 k—-dimensional subspace of }In. If "

u'e€u+H,; then clearly u+M=u'+M

An (n~1) - dimensional flat is called
e hvperplane Fig. 1. Amn eguilibrated

2YPSYp _anc. convex body B and & support

hyperplane at u in real H_.

For v;t.( 0, a set of the form 2

Sx eHn| (vyx) = 1} is the hyperplane [v/(v,v)] + {v}l s, which does
not contain 0. Conversely, if the hyperplane u+ M does not contain
the point 0, then it is equal to the set {x (-Hn \ (v,x)= 1} s Wwhere

u, €M, u, €M and v = ug/(ua,u2).

u-_-ul-l-u 2

2’ i}

A hyperplane u+ M such that a{u)=c and «{x)> ¢ for all xeu+M

is called a support hyperplane for B at u, where B is the equili-

brated convex body described previously. (See Fig. 1.)

Theorem 1.1 Let B = {x eﬂnl x(x) £ «(u)} be an equilibrated
convex body. ILet u+ N be a flat of dimension <n-1 such that
a(x) 2 x(u) for every xéu+N. Then there exists a support hyper-

plane u+M for B at u such that u+N c u+M

Proof. If Hn is a real Hilbert space, convexity theory will

supply the proof (for example, see Eggleston'p. 19).

If Hn is complex, then Hn with the new inner product Re(x,y)
is a 2n- dimensional real Hilbert space, ® is still a norm, and
u+ N is a flat of dimension <2n-1. Hence there is a support hyper—
plane u+M' for B at u in this new space such that uw+N cu+M'.

Moreover, we can write



u + M' {ern \ Re(v,x) = 1}
for some ¥ EHn-

Since Re(v,u)=1, (v,u)£0 and ve can define u' = u/ (v,u).
Then (vy,u')=1 and hence u' is on the support hyperplane u+M'.
Therefore

«(u)

I(vsu)l 7
which implies that l(v,u)\ €1, Since Re(vyu)=1, +this implies
that (v,u):l.

x{u) < o&(u') =

;Iherefore, consider the set {x 3 | (v,x)= 1} in the original
Hilbert space. Since (v,u)=1, +this set cen be represented as
u+M. It is a support hyperplane for B at u because x€u+M =>
xeu+ M = O((X)Z(x(u).

Now let x be an arbitrary element of u+ N, Then xeu+M' and
hence Re(v,x)= 1. We can express x as x=u+x' where x'¢N.

Then

1 = Re(v,x) = Re(v,u) + Re(v,x') = 1 + Re(v,x'),
and hence Re{v,x')=0 for all x'e¢ N, Therefore Re(v,-ix') =
In(v,x') = 0 also, and (v,x')= 0. Comsequently (v,x) = (v,u)+

(vy=')= 1 and =x€u+M. This shows that u+N Cc u+M, which com—
pletes the proof. B

For the special case dim N = 0, we have the following im-

portant result.

Corollary 1.2 An equilibrated convex body has at least one

support hyperplane at each boundary point.

The norm of & homogeneous function F: Hm-> Hn induced by the

norm « on Hn and the norm § on Hm is defined by



«(F(x))
III‘“«@ = i;l% a(=) = p?l:;al x(F(x)).

The supremum is actually attained for some nonzero x, since the set
ix eHm\ p(x)n 1} is compact.

If F: H - H is 11near, F will represent the adjoint of F,
that is, (I‘(x),y) = (x,F (7)) for all xeH , yeH.
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CHAPTER II
DEFINITION OF THE PROJECTION FUNCTION

A norm « on Hn is called strictly convex if

a(cx+ (1-c)y) > o(x) = aly)

for all scalars ¢ implies that x=y. In terms of the equilibrated
convex body B = [x l o((x) < 1} y o is strictly convex if every one-
dimensional flat which does not meet the interior of B meets B in

only one point.

Let M be a subspace of Hn and let IEHn. The projection of x
onto M by o is the element ye M which is closest to x, i.e., such
that

&(y-x) = inf {Oc(z—x)lze}..{} " : (1)

The existence and uniqueness of the projection are esteblished by

the following theorem (see also Meivardus p. 2, Kéthe p. 3847).

Theorem 2.1 Iet &« be a strictly convex norm on Hn’ let M be a
subspace of Hn’ and let x eHn. Then there is a unique yeM which
satisfies (1).

Proof. Consider the set M' = §zeM|o(z)>2 «(x)} . For
all zeM', «(x)+ax(z~x) > «x(z) > 2 x(x); hence ofz-x) > x(x)
= «{0~-x), eand the infimum in (1) is not approached on M'. Since

M~ M' is compact, the infimum in (1) is attained for some yeM.

Now let y'e M be such that «(y'-x) = x(y-x). Then for all

scalars ¢, cy+ (1-c)y' € M and hence
o e(y=x)+ (1-c)(y'-x) ) = ol ey+(I-c)y'~x )

> «ly-x) = oy -x).



Since & is strictly convex, y-x=3y'—-x and y'=7y. B

The function PM ” which carries x into its projection on M
s :
by &k is called the projection function. Henceforth, whenever the

notation I}I is uged, it 'is presumed that X is sitrictly convex and
b
M is a subspace of Hn or other eppropriaste Hilbert space. Where no

confusion results, the shorter forms Pﬁ and P may be used.



CHAPTER IIIX
BASTIC PROPERTIES OF THE PROJECTION FUNCTION

The following theorem shows that the projection function is

g, Imost linear'.

Theorem 3.1 The function PM ” is homogeneous, and P{x+ y) =
:

P(x)+y if yeM

Proof. Assume, for purpose of contradiction, that P is dis=-

continuous at x. Then there will be a sequence {xi} such that
lim | X, = X
P(xi) = z f-[ P(I),

lim ,
and im . o

or else {P(xi )} is unbounded. However, the boundedness of {P(xi )}

is implicit in the proof of Theorem 2.1.
By the definition of P, we have
a(P(xi)—xi) < o((P(x)—xi)
for every i. Take limits as i-—>00 to obtain
«(z~x) < «(P(x)-x),
vhich implies that z = P(x), a contradiction.

Now let P(x)=u. Then «{u-x) < x(s-x) for all seM, and

for any nonzero scalar c,
%(cu—-cx) = lel a(u-x) s lel x(s~x) = «(ecs = cx),

which implies that (cu—-cx) € x(s—-cx) for all seM. Hence we

have P{ex)=cu. For c=0 this result is trivial.



Now let yeM. Ve have
O((P(x)—x) £ oc(s-x),
«(P(x)+y-(x+7)) s x(s+y-(x+7))

for all seM. Since s+ y also runs over all of M, the last inequality

implies that P(x+7y) = P(x)+y. , §

Theorem 3.2 Every x eHn can be expressed uniquely as x = y+ z,

where PM(y)=0 and =z eM. TFurthermore, z=PM(x).

]

(x-P(x))+ P{(x), end by Theorem 3. 1,

0, so the representotion exists., If we

Proof. We have x
P(x-P(x)) = P(x)-P(x)

have x = y+ z, then P(x) = P(y)+ z = %, 80 the representation is

unique. ’ E
Theorem 3.3 For every projection function “PM,N”‘W < 2.

Proof. Let x be such that WPl = «(P(x)) and «(x)=1.
If P(x)=0, the result is trivial. If not, then

1= ox(x) = «(0~x) > «(P(x)-x)
and Pl = «(P(x)) s «(P(x)-x) + x(x),
which imply that ||P]|,, < 2. 8

It will be shown later (Chapter 5) that this inequality is the
best possible.



CHAPTER IV
LINEARITY OF THE PROJECTION FUNCTION

The projection function is not linear for every norm and sub-

space. For example, consider the norm « on real }13 given by

B 4 4 4+
cx(xl,xg,xa) = (xl +X, +Xg )

and determine kermnel PL! «? where M is the one~dimensional subspace
2
spanned by y= (yl,yz,ya). Minimizing «{x— cy) over all real ¢ by

ordinary variational techniques gives the resuld
_ 3 3 3
kernel PM’“ = {(xl, x2,x3) I F1¥) + ¥y +Vg¥g = 0},

which is not a subspace for all y. Hence P is not linear for

My
all y.

This example suggests the following characterization of linearity.

Theorem 4.1 The funetion PLX » is linear if and only if

9y
kernel P

is a subspace.
M, p

Proof. The necessity of the stated condition is obvious.
Let x,ye¢H and decompose them as x=x'+ P(x), y=7'+2P(y),
according to Theorem 3.2. Then by Theorem 3.1,

P(x+y) = P(x'+3' +P(x)+P(y)) = P(x'+3') + P(x) + P(¥).

Since x',y'e kernel P, x'+ y'e kernel P, and P(x+y) = P(x)+ P(y).

Hence P is linear. ﬂ
Theorem 4.2 If dim M= n-1, then PM o is linear.
-9

Proof. Let ern-—M, and let y=x-P(x). Then y;! 0 and by
Theorem 3.2, Yy é€kernel P, Let L be the subspace of all scalar
multiples of y. Then it is clear that L ckernel P, since by
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Theorem 3.1 P(ey)=c¢P(y)=0 for all scalars c.

Now let z e kernel P. Since dim M= n-1, Hn is a direct sum
of M and L, and z= Zy + Zg» where z; € L and zaehl. By Theorem 8.1,
P(z) = P(z1)+ z, = Zge DBut P(z)= 03 hence Zo= 0 and z= z; € L.
Therefore L= kernel P and P is linear by Theorem 4.1. B

Theorem 4.3 If PM’“

M, where r 21, then it is linear for all subspaces of higher dimen-

ig linear for all r—dimensional subspaces

sion.

Proof. Let N be a subspace with dim N>r, and assume, for
purpose of contradiction, that PN is not linear. Then by Theorem 4.1
" its kernel is not closed under addition, i.e., there exist two

elements Xys Xg of kernel PN such that PN(Il+x2) =y ,1. 0.

Now choose an r-dimensional subspace M of N which contains y.
Then x;,X, € kernel B, but PM(xl+x2) = y £ 0, which violates
the hypothesis. B
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CHAPTER V
THE PROJECTIVE BOUND

The real number Q(o() defined by

is called the projective bound of X. The following theorem shows

that the supremum is finite, and that for 1 sk £n-1 the supremum

is atteined for some Lk-dimensional subspace M.
Theorem 5.1 The sets of real numbers
8, = {cx(l’u’d(x)) ‘ o(x)=1, M is k—¢imensional}

for k=1,2,...,n~1 are identical. Furthermore, S _ is bounded and

k
contains its supremum ().

Proof. Suppose ¢ ESR; we must show that ¢ eSJ. for any

j=1,25.0.4n~-1. For some k-dimensional subspace M and some x eHn,

¢ = O‘(Y)s
F = PM(X):

O((X) = 10
If y=x, then ¢=1 and ¢ eSj is easily shown.

If y£ x, then &«(z=x)>»x(y=~x) for all z €M, i.e., we have
o((z)am(y-x) for all zey—-x+ M. By Theorem 1.1 there is a support
hyperplane y— x+ N for the equilibrated convex body {z | oc(z) s oc(y—x)}
at y—x, such that y-x+M € y-x+N, that is, M<N. 1Ilet L be
any j-dimensional subspace of N which contains y. Then &(z) 2 &{y~x)
for all zéy-x+L, that is, «x(z~-x)2&(y~-x) for all z €L, Hence
¥y = PL(x) and ¢ ESJ..
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Therefore, all the Sk are equal, and we need to prove the sec-
ond assertion only for Sl'

Theorem 3.3 shows that Sl is bounded. Then either S, contains
its supremum or there would be two sequences {xi); and {y:.& such that

u(xi) & o((yi) = 1 for all i, and
lim ;oo o« PLi(xi) ) = ol«), - (1)

where Li is the subspace spanned by Ve By talking eppropriate sub-

sequences, we can also require that

im, X = % (2)
Um ;o peo 73 = T
lim (x.) = w. 7 {3)

i-»o00 PL. i
i
If L is the subspace spanned by ¥y, then clearly we€L.

Now let z €Lj then z= ¢y for some scalar ¢. By the definition

0(( xi - cyi ) = u( xi - PLi(xi) )

for every i. Taking limits as i-»>c0, we have o(x=-2z) > tx(x-w).
Since z €L was arbitrary, w= PL(x). From (2), «x(x)= 13 from (1)
and (8), x(w)= 0(x); hence Q(O()GSI.

fowe

From Theorem 3.3, we have

Corollary 5.2 For any strictly convex norm «,

1 ¢ olx) < 2.

The upper limit is epproached for strictly convex norms which



approximate the "maximum norm"

& on real H  given by

2
(g xp) = mex(lxyl I, ).

(See Fig. 2.) The lower limit
is attained by the norms

described in the next chapter.

[t\m(t-x)ﬂ}

/—I

Fig. 2. A strictly convex norm
o for vhich Q(tx) is close to 2.

= PM(I)
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CHAPTER VI
PROJECTIVE NORAS

A strictly convex norm X on Hn for which 0(x)=1 is called a
projective norm. The inner product norm (x,x)° is projective, and
so are the "elliptical" norms (x,T(x))®, where T is a positive-
definite self-adjoint linear transformation of Hn. Iater we shall
give examples of non-elliptical projective norms on real H2.
spaces of dimension three or higher, all projective norms are

For

elliptical, both in the real case (Kakutani) and in the complex
case (Bohnenblust).

Lemma 6.1 Suppose & is a projective norm, PM & is linear, and
H
N = kernel PM,O& §
then M = kernel PN’“ .

Proof. Suppose xeM and yeN. By Theorem 3.1, PH(x+ ¥) = x.
The definitions of ||PM[\W< and 0{x) and the first hypothesis give

#(x) ¢ WPyl x(x+7) & 0(x) x(x+y) = %(x+7¥)

for all yeN. Hence PN(I)= 0, that is, x ekermel PN’

Now suppose x ¢ kernel PN and write x= X, + X, where xy eM and

2

x, € N. By Theorem 8.1,

0 = PN(x) = PN(xl) +x2.

By the previous paragraph, PN(xl) = 0. Hence x,=0 and x= x; €M

Lenma 6.2 If « is & projective norm, then PM i is linear for
L]
all subspaces M of Hn'

Proof. By Theorem 4.3, it is sufficient to prove PM is linear

if M is one~dimensional.

Let u be a nonzero element of M, and let u+ N be a support
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hyperplane for the equilibrated convex body {x €eH ‘ x(x) son(u)} at u.
Then o(x)2 «(u) for every xe€u+N, that is, &(x+u)2&(u) for
every x € N. Hence ue kernel PN‘ By Theorem 4.2, PN is linear.

Since dim N=n-1, dim kernel P = 1, and therefore M = kernel P,.

N N
By lemma 6.1, N = kernel PM and hence PH is linear by an appli-
cation of Theorem 4.1. §
Lemma 6.3 Suppose PM,o( ig linear and N = Lkernel Pll,or.' Then
M = kernel PN,oc i=> Pm,m + PN,cx = T.

Proof. First assume M = kernel PN’ let x eHn be erbitrary and
express it as x= x; + Xg where xleM and xaeN. Then the application
of both sides of PL' + PN = I +to X3+ %, gives an identity.

Now assume Py + Py = I. If xel, then PM(x) + PN(x) =

x 4+ PN(x) = x, so xe&kernel Py. On the other hand, if we have

x € kernel Py, then PM(x)m x end xeM. B
Theorem 6.4 Let « be & projective norm., Then PM - is linear
9
for every subspace M of Hn, and if N= kernel PM «? then
b ]
M = kernel PN,O(
and P}i,o& + PN,tx w I,

Proof. This follows directly from Lemmas 6.1, 6.2 and 6,3. D

Theorem 6.5 Suppose 1 £ k £ n-1, and for every k-dimensional

subspace M of Hn, PM,U. is linear and either
M = kernel PN,o( or, equivalently, PM,m + PN,O( = I, (1)

wvhere N = kernel PM «° Then & is projective.
?

Proof. Assume, for purpose of contradiction, that 0(x) > 1.

Then there will be & k-dimensional subhspace M end x,yeHn such that
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Yy = Pm(x)!
o(y) = B llgw «(x) = (&) x(x) > «(x). (2)

Clearly yylx. Let N= Lkernel PM' By Theorem 3.2 and (2),

B youre B, wlx)= oly={yal) < sly) (3)

By Lemma 6.3 the two conditions in (1) ere equivalent. We use the
latter condition and apply both sides of it to Yy, obtaining the
relation y + PN(y) =y, or PN(y) = 0, which contradicts (3). [J

We cen pow exhibit examples of non-elliptical projective norms

on real H.. Consider the norm

2
P P 41 g
(=17 + Ixp) )/p if x;x, » 0,
) ~ q q y1/q
( lxll + l32| ) if X)Xy < 0,
where i + 2 = 1.
p 4 M 1 Xo
We shall show that « satisfies
the hypotheses of Theorem 6.5 with
v,
k= 1. By Theorem 4.2, PM,“ is —
linear for all one-~dimensional \ 1
subspaces M.
u
Following the notation of
Theorem 6.5, we let u span M and
let v span N = kernel PM' By Fig. 3. Example of & pon-

examination of the unit ball (see elliptical projective norm.

Fig. 3), we see that if u=(1,0) or (0,1), then the hypotheses of
Theorem 6.5 are satisfied. In other cases, u and v are in adjacent
quadrants, and we can also demand, without loss of generality,

that Uy =Vy= 1.



. )

Since ve kernel PM’ {v+cu) is minimal for c= 0. For
sufficiently small ¢, v+ cu is in the same quadrant with v. Hence

if v is in the first guadrant,
%(v+ecu) = ( |1+clP + lvzé-cug\p )l/p' (4)

(The same argument can be used, mutatis mutendis, if v is in the

fourth quadrant. )

We can minimize (4) by differentiating (o{v+ cu))’ with respect

to ¢. Since the minimum occurs at ¢= 0, this gives
P+ plu2\ \v2\ sgn w, sgn v, = 0

Sinece u and v are in adjscent quadrants, s8gn u, sgn v, = =1, and

2 2
hence : 1
1 p-1
(vl = [ v .
2 jusl

This gives v, which spans N = kernel PM' Similerly, we find the

w= (1,172) which spans kernel P Ve compute (note p+q=pq)

N
1 \o=1 R N
L, ( )q = (lu\"‘1 Lab Y
2 V2l 2 ot 2

which shows that M = kernel }?N.
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CHAPTER VII
DUAL NORMS AND PROJECTION

If x is a norm on Hn’ the dual norm %p is defined by

D Ml
pE = = e "

If u;! 0 and v is such that { x | (v,x)= 1} is a support hyperplane
for the equilibrated convex body ix lm(x)sa(u)} at u, then v is
called & dual of u with respect to . Corollary 1.2 shows that each

nonzero u has at least one dual.

We shall need some elementery results about the dual norm and
the dual.

Proposition 7.1 If u# 0 end v is a dual of u with respect to «,

then O(D(v) = 1/0((11) and u is a dual of v with respect to O(D.

Proof. For (v,x),l. 0, (v, x/(v,x)) = 1. Therefore, by hypoth-
esis, «&(x/(v,x)) =«(x)/ |(v,x)| 3 x(u), that is,

_1 [ (v, x)I
«(u) o o (x) :

which holds even for (v,x)= 0, and with equality for x=u. There-
fore otD(v) = 1/%(u).

Now assume (u,x).-.-. 1. Then

ol w2

un(x) = sup m = “D(V) s

o «(z) 7 «(u)

and hence u is a dual of v with respect to %pe B

Corollary 7.2 For all xeH , O(DD(x) = &(x).
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Proof. Let y be a dual of x with respect to & (if x#£ 0). Then
*(x) = l/aD(y). But x is also a dual of ¥ with respect to &,
hence & (x) = /o (y). 8

end

We can also apply Proposition 7.1 to show that if u and v are
duals, then they give equality in the generalized HYlder inequality

l&(u)fxD(v)l ¢ 1. This fact is sometimes used to define duals,

Proposition 7.3 If rxD is strictly comvex, then every nonzero u

has a unique dual with respect to X,

Proof. ILet vi and vy be duals of u with respect to X, Then

(vl,u)= (vg,u)= 1 end for any scalar c,

| e(vyon) + (1-c) (vyu)}

o ( evy + (1~c)v, ) 2

o (u)
. BT e
O((u) D' 1 b* 2
Since %p is strictly convex, Vi=Vge a
Theorem 7.4 Suppose u;l 0. Then u €kernel P if and only

M,
if there is a dual v of u with respect to X such that ve M".

Proof. First assume ve M' and v is a dual of u with respect
to ®. Then for any xeM, (v,u-x) = (v,u)—‘ (vyx) = 1; hence

&(u-x) 2 «(u) and u € kernel P.

Now assume u ¢ kernel P.

Then o(u+x) > «(u) for all x e},

Y

By Theorem 1.1, there is a sup-
port hyperplane {x | (vox)= 1}
for the body {x | ox(x) < o((u)}'
at u which contains the flat

u+ M, By definition, v is a Fig. 4. Illustration of the
‘ proof of Theorem 7.4.
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dual of u with respect to &%. Also, for every x€éM, u+x is on the

hyperplane, that is, (v,u)+ (v,x) = 1. Since (v,u)=1, (v,x)=0

and veM™% a
Theorem 7.5 Suppose X and O(D are both strictly convex, PM & is
]

linear, and

=
It

kernel P, £y 00 3

b
then Mt = kernel PN.L’ - " (1)

and hence P is linear.
N » X

Proof. By Proposition 7.4, for every v elIn there is a unique
dual u with respect to %nys and v is the unique dual of u with

respect to ®. By Theorem 7.4,

v € kernel PNL & =>» u € N,

'%D
By a second application of Theorem 7.4, uneN<{=v eML, since
N= kernel P, « These two equivalences prove (1). ]
M,
Theorem 7.6 Suppose « and %, are both strictly convex, PM = is
2
linear, and
N = kernel Pu,“ 3
H
“hen PNL, C T (Pu,u )
Proof. By Theorem 7.5, PNL & is linear. It is sufficient
D

to show that for arbitrary x,yeHn,

o = (=, pNi,NDm-(Pu,m)H(y))
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= (x, PNl’uD(y)) = (Pm,u(‘)’ y) - (2)

ILet =x= X3+ Xy where x; € M, x, € N, and let y= Y1+ Vo where
yleN'L, yge M“L. Then, by uéing Theorem 7.5, (2) can be demonstrated

easily. . ‘ B

Theorem 7.7 If « and &, are both strictly convex, 0(x) = Q(o;:D).

Proof. let M be an (n-1)- dimensional subspace of H such

that 0O(x) = uPu,o(“cW’ and let N=kernel P . Then by

M, ¥
Theorem 4.2, PM,D& is linear, and by Theorem 7.6, PNL’“D = (p, £ )H.
Hence _
0(xy) > “PN" x “a ®. "(PMoc)H”a &
™D "D°D s D7D

ol {8 ) (=) }
= sSu
x#% o p(x)
‘ (x, Phi,oc (¥)) \

530 ap(x) %(3)

n

l (I, PM_,O((Y))‘

1
= sSup su
# «(3Y o

¥#£0 “D(x)
(B, (7))
= ;;411(:; -——-j(l;g;:)——-— = “ PM,O‘ ”““ = Q(O().

To establish the reverse inequality Q(cx) > Q(o(D), interchange the
roles of « and &;. §]

Theorem 7.8 If &« is a projective norm, then O(D is strictly

conveX.

Proof. Let vl and 72 be two vectors such that

o&D( cv, + (l—c)vz ) P O(D(vl) = D(D(vg) (3)
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for all scalars c. We must prove that vy= v2. Iif vy= v2= ¢, this

result is trivial; therefore we assune vl;é 0;! v2.

The set K = {cvl-i— (l—c)v2 le is a sca.la.r} is a flat contain-—
ing v, and v, and such that xeK = O(D(x)BO‘D(vl) by (3). By
Theorem 1.1, there is a support hyperplane {x | (uyx) = 1} contain-
ing K.

Then u is a dual of both v, and v, with respect to &, and

2 D’ 1
hence v, ond v, are both duals of u with respect to &. ILet M= [vl} )
1
and N= {va} s then by Theorem 7.4, u € kernel P),I,o& and u € kernel PN,«'
Since the kernels are one-dimensional, both are equal to the subspace
L spanned by u. By Theorem 6.4, M= N= Ekernel PLO&' Hence v and Vg
3
are linearly dependent, and vy= bv2 for some scalar b. Ve substi-

tute into (3) to obtain

o« (((=1)e+1)v,) 2 wp(vy).

Hence |(b=1)c+ 11321 for all scalars ¢, which implies that b= 1

and v Therefore X, is strictly convex. g

i~ Ve D
Theorems8 7.7 and 7.8 together give

Corollary 7.9 If X is a projective mnorm, so is &

D.
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CHAPTER VIII
THE GENERALIZED RECIPROCAL

Suppose that throughout this chaptler

® is a strictly convex norm on Hn’
P is a strictly convex norm on Hm’
F‘:Bm-¢ Hn is a linear function,

R

[

range ¥,

1]

K kernel F.
Then 1let
x EHn be. arbitrary,

y-eﬂﬁ be such that F(y) = PR,m(x)’

x'=y-P_ (y), that is, the point on the flat y+K
K,g

which is closest to the origin.

Fig. 5. The geometric definition of the generalized
reciprocal of a linear function.
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Now x' is independent ef the choice of y, for a different choice
of y would merely give another point on the flat y+ K. Therefore,
there is a well-defined function F*;@ which carries x into x'. It

is called the generelized reciprocal of F with respect to & and g.

Where the norms are understood, the notation Pt will be used instead.

If « and g are the inner pr-oduct norms, then F is the Moore-—
Penrose reciprocal of F. Many properties of the Moore~Penrose
reciprocal are specializations of the properties which we are about

to derive. (See also Ben-Isroel.)

The following properties of F* are consequences of the defi-

nition:
(i) F' is e homogeneous function,
(ii) - PR,cx and PK,‘S are linear, so is FT,
(iii) Lkernel F¥ = kernel Pow ?
(iv) range F* = Lkernel PK;ﬁ ’
(v) F'p = I - Py o ?
(vi) FF* = Pp, e ?
(vii) if F' is linear, rank F' = rank F,
(viii if F is nonsingular, F¥ - F_l,
(ix) for nonzero scalars ¢, (cF)¥ = %-F+.

Properties (i) and (ii) are obvious.

If xekernel PR,o(’

tion). If xékernel Pp «» then the flat y+K does not contain 0,
b .

then x'=0 (following our previous nota-—

and x';£ 0. Hence we have (iii).

By Theorem-a.l, PK,F(::') = PK,P(y- PK,P(y)) = 0. If PK,‘g(z)= 0

then z = y-P F(y) for some y, and z = F (F(y)). Hence we have
s .
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property (iv).

To evaluate F+(F(z)) we can use y= z. Then F+(F(z)) =
z - PK’p(z) and we have (v).

By the definition, F(F'(x)) = F(x') = F(y- PK,F(Y)) = F(y)

= PB,“(x), and we have (vi).

1r ¥t ois linear, then by (v) PK 8 is linear. By (iv) we have
3

rank F+ = dim kernel P

X,p = " dim K = rank F, which proves (vii).
]

Properties (viii) and (ix) are obvious.

Properties (v), (vi) and (vii) can be used as an alternate

definition of Ft in some cases, as the following theorem shows.

Theorem 8.1 If G: Hn-> Hm is & linear funetion such that

GF = I - P}{,p " (1)
FG = PR,V\ ? (2)
rank G = rank F ,

then G = F+.
Proof. .Let x €¢R; then x=F(y) for some yeH , and
G(x) = G(F(y)) = (I-PK’p)(Y) = F7(F(y)) = Fi(x), (3)
by (1) and property (v).
For any weHn,
(P, (W) = F (P, .(v)) = F¥(w)
R, R, 0 ’

by (3) with x= P, m(w) and the definition of F'. Therefore, we
b
have range F' e range G. The projection functions in (1) and (2)

are linear, and hence F¥ is linear by property (ii). Then by
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property (vii) and hypothesis, renk F' = rank F = rank G. There-

fore range Ft = range G.

]

Now let x € kernel PR o ¥ Then F+(x).—_ 0 by property (iii),
i
G(x) € range G = renge F*, and by (2),

F(6(x)) = By (x) = o.

Hence G(x) €K also. Since by property (iv) and Theorem 3.2, range Ft

and K have only 0 in common, G{(x) = 0 = F'(x).

Since B and kernel PR o together span Hn, the fact that we
9
have G(x)=F+(x) for x on these two sets shows that G=F", D

Lemms 8.2 If M and N are subspaces of H end din N>dim M,

then there is at least one nonzero x &€ N Nkernel Pli o
b

Proof. Let S be the sphere sx eNl (x,x)=1} . Then P gives
a continuous mapping from S to M. By the Borsuk-Ulam Theorem (see
Spanier, p. 266), there is en x €S such that P(x) = P(-x). Since

P is & homogeneous funetion, P(x)= 0. , E

Theorem 8.3 If F: Hm-7 I—In is a linear function of positive

rank, then

1

m ¢ inf {" G”o(p ‘ra.nk(F+ G) < ra.nkF}

b "-‘< 2
g T

where b= 1 if rank F=n, and b= Q(x) otherwise.

IN

(4)

Proof. Suppose rank(F+ G) < rank F; then
dim kernel(F+G) > dim K.

By Lemma 8.2, there is a nonzero x € kernel(F+G), i.e.,
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F(I)+G(I) = 0,
FH(F(x)) = F'(6(x)), (5)

such that x € kermel Py .. Then by property (+), FHr(x)) = =,
4

and (5) becomes
-x = FH(6(x)),
which yields
p(x) = p(r™(6(x))) < Il al(x)) € NEHlge Hellyg pl),
end establishes the first inequality in (4).
Now let yif 0 be such that

P(l?+(3')) = “F.!-”p“O‘(T)r ()
and let z = PR,“(:Y)- . (7)
From the definition of F' we have

FH(z) = F¥(3). (8)

Also, «(z) ¢ “PR a”m@((y) < Q(cx) O((y). In the case where rank F=n
]
we have R=H , z=y and «fz)=x(y). Hence ‘

x(z) & bx(y), (9)
where b is as in (4). Then (6), (8) and (9) together yield
: + 1 +
B(r (=) 2 g IF"llg (=) (10)
Now let w, = F'(z); clearly wl,é 0. Then by property (iv)
+ - -
¥, € range F* = kernel PK,'?)' Hence PK,ﬁ(wl) = 0, that is,

ﬁ(w1+v) 3 @,(wl) for all ve¢K, that is, P(w) > p(wl) for all w in

the flat Wyt XK. By Theorem 1.1, there is a support hyperplane for
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the equilibrated convex body iveﬁm‘ p(w) ép(wl)} at vy wvhich

contains w1+K. This hyperplane can be written as

m
{wl + P ey vy l €gs Cgs esey C sca,ia.rs}, (11)

i=2

vhere v, 'v3, esy W span a subspace which includes K.
Now let G: IIm->~ Hn be the limear function for which

a(v,) = G(F'(z)) = -z, (12)

G(Wi) O’ i= 2,3,-oo’mo (13)

]

Since Wy, Wgy ees; W span all of K, (13) implies that (F+G)(w)=0
for all weX. Alse, for Wqs which does not belong to K, we have,

by (12), property (vi) and (7),

+
(r+ G)(wl) = F(Wl)-‘ z = F(F(z))~2z = PR,O((Z)_ z = 0.
Therefore, rank(F+G) < rank F , (14)
1]
For some nonzero weHm, which we can write as w = 2;1 di Voo
we have
0((— dl z)

okl Glw

| - = o .
el o p(z\'=1 9 “'i)

If d1= 0 wve would have an absurdity, since GLo by (12). Therefore,

we can divide by ldli to obtain

x(z)
xp = p(wl ¥ 2::2 (di/dl)vi)

The denominator is the norm of a point on the support hyperplane (11);
Hence by (10)

el

Il ofz) «(z) b .
§ — g e £ e 5
% ey) (=) Il




29

The second inequality in (4) then follows from (14) and (15).

The third inequality in (4) follows from Corollary 5.2. B

In the case where F is nonsingular, (4) reduces to

1
inf {\lc;rumf5 |F+G singular} = ‘-!-F—:l-l-;-“

This result has also been proved by others (see also Franck Pe 1297,
Kahan p. 775, and Maitre p. ©10).

Theorem 8.4 A necessary end sufficient comndition that (F+)+= F

for every F is that « end g be projective norms.

Proof. If & and g are projective norms, then all projections
are linear by Theorem 6.4, and by property (ii), =so is rt. Let
R' = range P' and K'= kernel F+. Then by Theorem 6.4 and properties
(iii), (iv), (v) ana (vi),

F+

Foo I-PBeg = Fog o

+
FF' = P = T-Py o -

Also, rank F'= rank F by property (vii); hence F= (F*)* by
Theorem 8.1.

Conversely, if (F+)+=F, then

+ + pa
I PK’p..FF=F(F) -_»PR,’p &
+ ' +14
PR,“ = FF" = (F7)'F = 1 _PK',tx ’
and o« and ‘3 are projective norms by Theorem 6.5.

Theorem 8.5 If & and g are projective norms, then

H)‘i‘

P

- (F;(S)H . (16)
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Proof. By properties (vi) and (v), and by Theorem 6.4,

FF' = PR,o& = I = PM,O(’ M = kernel PR,O( 5
" :
F F = I -P = P N = kernel P
K,f N, 67 Kf ’
By Theorem 6.4, R = kernel P and K = kernel P, ,. By
M, = N, @
Theoren 7.8, &g and pD are strictly convex. Then by Theorem 7.5,
FFPt - 1. (P, )Y,
*"D
+ H
F'F = ( P,y )
X "BD 2
and
+ H_H
P F = 1I-~P
(=) A RY0 7
H,  +\H
(T = P .

Since R"' = Ekermnel FH and b w range FH, (18) follows by
Theorem 8.1, with G replaced by (F"')H and F replaced by Fo,

It is conjectured that (16) is true even if x and P are not

projective norms,
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