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ABSTRACT 

The concept of a ''projection function" in a finite-dimensional 

real or comple::r norrned line.ar space H (the function PM 1rhich carries 

every element int o the closest eleruen·t of a given subspace M} is set 

forth and examined. 

If dim M == dim R - 1, then PM is linear • . If PN i s linear for 

all k-dimensional subspaces N, where 1 ~ k < dim M, then PM is 

linear. 

The projective bound Q, defined to be the supremum of the 

operator norm of PM fo r all sub!:lpaces, is in the r ange 1 ~ Q < 2, 

and these limits are the best possible. For norms with Q = 1, 

PM is always linear, and a characterization of those norms is given. 

If H also has an inner product (defined independent ly of the 

norm), so that a dual norm can be defined, then when P11 is li.near 
H L 

its adjoint PM is the p r ojection on (kernel PM) by the dual 

norm. The projective bounds of a norm and its dual are equal. 

The notion of a pseudo-inverse F+ of a linea r transformation F 

is extended to non-Euclidean norms. The distance from F to the set 

of linear transformati ons G of lower rank (in the sense of the 

operator norm IIF - G II ) is c /!IF+ II, where c., 1 if the range of F 

fi Us its space, and 1 ~ c ~ Q otherwise. The norms on both 

domain and range spaces have Q~ 1 if and only if (F+)+ z F for 

every F. This condition is also sufficient to prove that we have 

(F+)H = (FH)+, h 1 w ere the. atter pseudo-inverse is taken using dual 

norms. 

In all results, the real and comp lex cases are handled in a. 

completely parallel f ashion. 
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CHAPTER I 

PRELIMINARY DEFINITIONS AND RESULTS 

Let H be an n-dimensiono.l real or complex Hilbert space, lrhere 
n 

n is a. positive integer. The elements x,y of H may be thought of 
n 

as column vectors, and the inner product (x,y) may be thought of 

as Ei: 1 For the fundamental properties of H , see any 
n 

standard text (e. g., Ha.lmos). 

The real and complex cases will be hand led in a completely 

parallel fashion, although most treatments of this subject handle 

the real case only, or handle the two cases separately. The term 

"scalar" will therefore be used to denote either a. real or a. complex 

number. 

A function F : H -.> H , where H and II have the same scalar 
m n m n 

field, is called homogeneous if it is continuous and F( c:x: ) = c F(x) 

for every x E H and every scalar c. The homogeneous function F is 
m 

called linear if F(x+y) = F(x)+F(y) fo·r all x,yEH. . m 

A real-valued function IX. on H is called a. norm if x/: 0 ~ 
n 

cx.(x) > 0, cx(cx) = lciiX.(x) and <X(x+ y) ~ O<(x) + e<.(y) for all 

x, y f: H and every s ca. lar c. 
m 

We shall need the follo,ring concepts from convexity theory {see 

also Householder pp. 38-45). 

A set of the form B == { x £: Hn l O<(x) ~ c} , where ex is a norm 

and c is a. positive constant, is called an equilibrated convex body. 

Since 

~(x) inf { b 1 b > o, 

B and c determine ~ uniquely. It is sometimes convenient, especially 
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in illustrations, to use an equilibrated convex body to 

a norm (see Fig. 1). 

A k-dl.mensional ~ (sometimes 

called a linear manifold) in H is a 
n 

subset of the form u+M (that is, 

the set {u+xlxE:MJ ), where M is 

a k-dimensional subspace of li • If n 
u' E u + M, then clearly u + M = u' + M. 

An (n- 1)- dimensional flat is called 

a. h:yperp lane. 

. For v / o, a. set of the fo rm 

ixE:Hn \ (v,x)= 1) is the hyperplane 

Fig. I. An equilibrated 
convex body B and e. support 
hyperplane at u in real H

2 
• 

[v/(v,v)] + {v}l., which does 

not contain 0. Conversely, if the hyperplane u + M does not contain 

the point 0, then it is equal to the set ~ X EHn \ (v, x )= 1} ' 
where 

u = ul + u2, u 1 E. M~ u 2 EM and v ::: u 2/(u
2
,u2 }. 

A hyperp hme u + M such that ex( u) =- c and cx(x) :} c for all x f u + M 

is called a. support hyperpla ne for B at u, where B is the equi li­

brated convex body described previously. (See Fig. 1.) 

Theorem 1. 1 l.et B = {x E:-Hn \ O<(x} ~ O<(u)} be an equilibrated 

convex body. Let u+N be a. flat of dimens ion ~n-1 such that 

cx(x) ~ O<(u) for every X~ u + N. Then there exists a support hyper-

plane u+ M for B at u such that u+ N c u+M. 

Proof. If H is a. real Hilbert space, convexity theory will 
n 

supply the proof (for exa mple, see Eggleston ·p. 19). 

If H is complex, then H with the new inner product ne(x,y) n n 
is a 2n-dimensional rea l Hilbert space,~ is still a norm, and 

u + N is a flat of dimension ~ 2n-l. Hence there is a support hyper­

plane u + M' for B at u in this ne1r space such that u + N c: u + M'. 

Moreover, we can write 



for some v~H. 
n 

u + M' c:: 

3 

{ X t H n \ Re ( V, X) = 1l 

Since Re(v,u) = 1, (v,u} /. 0 and we can define u' = u/ (v,u). 

Then (v,u')= 1 and hence u' is on the support hyperplane u+Y'. 

Therefore 

et.(u) ~ C)((u') "" 
t~~.( u) 

l(v,u)\ 

which i mp lies tho.t I( v, u) \ ~ 1. Since Re( v, u) = 1, this imp lies 

tho.t ( v' u) = 1. 

Therefore, consider the set { :x: f Hn I ( v, x) = 1 J in the original 

Hilbert space. Since ( v, u) = 1, this set c e.n be represented as 

u+M. It is a support hyperplane forB at u because xfu+M => 
X t U + U 1 ::) ()( (X) ~ ()( ( U) • 

Now let :x: be an arbitrary element of u + N. Then x E: u + M 1 and 

hence Re( v, x) = 1. We can express x as X= u + x' ·'IYhere x' EN. 

Then 

1 = Re(v,x) = Re(v,u) + Re(v,x') 1 + Re(v,x'), 

and hence Re(v,x' )= 0 

Im(v,x')"" 0 also, and 

( v, x') = 1 and x € u + M. 

pletes the proof. 

for all x' f N. Therefore Re(v,-ix') = 
( v, x 1 ) = 0. Consequently ( v, x) = ( v, u) + 

This shows that u + N c. u + M, 1rhich com-

For the special cas e dim N = O, we have the follo~~ng im­

portant result. 

Corollary 1.2 An equilibrated convex body has at least one 

support hyperplane at each boundary point. 

The norm of a homogeneous function F' H ~ H m n 
norm ~ on Hn and the norm ~ on Hm is defined by 

induced by the 



= 
O«.(F(x)) 

s'}.~o _ ( ) X1'1 (!. :X 

... sup O<(F(x) ). 
p(x)=l 

The supremum is actua lly attained for some nonzero x, since the set 

\x E: Hm \ ~(x) r: 1! · is compact. 

If F: H -+ H is linear, FH will represent the adjoint of F, 
m n H 

is, (F(x), y) = (x,F (y)) for all. x E Hm' y €: Hn. that 
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CHAPTER II 

DEFINITION OF THE PROJECTION FUNCTION 

A norm ex: on H is ca lled strictly convex if 
n 

e<(cx+ (1-c )y) ~ · oc(x) = C<(y) 

for all scalars c implies that x= y. In terms of the equilibrated 

convex body B == [ x \ e<(x) ~ 1} , 0< is strictly convex if every one-

dimensiona l flat whi ch does not meet the interior of B meets B in 

only one point. 

Let M b e a subspace of Hn and let x E Hn. The ;erojection of x 

onto M by cx is the element YE M ·which is closest to x, i.e., such 

that 

cx(y- x) = i nf { 0< ( z - X) l z E M } • 

The existence and uniqueness of the projection are established by 

the following "theorem (see also Meinardus p. 2, Kothe p. 347 ). 

(1) 

Theorem 2.1 l€t o< be a strictly convex norm on H, let M be a 
n 

subspace of H , and let x E: II • Then there is a unique y E: M which n n 
satisfies (1). 

Proof. 

all zeM', 

• ex( 0- x), 

Consider the set M' = \ z EM \ ex( z) > 2 O<.(x)} • For 

e<(x)+cx{z-x) ~ O<(z) > 2 cx(x); hence <X(z-x) > <X(x) 

and the infimum in ( 1) is not approached on M'. Since 

M- M' is compact , the infimum in ( 1) is attained for some y eM. 

Now let y' e AI be such tha t cx(y'- x) = oc{y- x). Then for all 

scalars c, cy+ ( 1- c )y' E: M and hence 

ex( c(y-x) + ( 1-c )(y•-x) ) = cx( cy+ ( 1-c )y' - x ) 

~ oc(y-:x) = cx{y'-x). 
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Since ex is strictly convex, y- x = y'- X and y' = y. I 

The function PM,cx. which carries x into it.s projection on M 

by ~ is called the project.ion function. Henceforth, whenever t.he 

notat.ion P is used, it. "is presumed that ~ is strict.ly convex and Al,cx. 
M is a subspace of II or other appropriate Hi !bert space. 

n 
confusion result.s, the shorter forma P11 and P may be used. 

Where no 
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CHAPI'ER III 

BASIC PROPERTIES OF THE PROJECTION FUNCTION 

The follo1dng theorem shows that the projection function is 

"almost linear". 

Theorem 3.1 The function P is homogeneous, and P(x+ y} 
.M,O< 

P(x)+y if yEM. 

Proof. Assume, for purpos e of contradiction, that P is dis­

continuous at x. Then there wi 11 be a sequence \Jc.) such that 
1 

== X 

and lim . ,..,... P(x. ) = z j P(:x), 
1-i>......., 1 

or else ~P(xi)] is unbounded. However, the boundedness 

is implicit in the proof of Theorem 2.1. 

By the definition of P, we have 

«{P(x.)- x.) ~ 'X(P(x)- x. ) 
1 1 1 

for every i. Take limits as i-.> DO to obtain 

ex( z- x) ~ C<(P(x}- :x), 

which implies that z == P{x), a contradiction. 

Now let P{ x) == u. Then oc{ u- x) ~ ex{ s- :x) for all s E: lf, and 

for any nonzero scalar c, 

oc{cu- c:x) = lc\ cx{u- x) ~ \c\ C<{s- :x) == o<(cs- ex), 

which imp lies that «( cu- c.x) ~ O<(s- ex) for all s E-M. Hence we 

have P(cx)= cu. For C= 0 this result is trivial. 
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Now let y E-M. We have 

cx(P(x)- x) ~ <X{s- x), 

(X(P(x) + y- .( x + y)) ~ D<(s + y- (x+ y)) 

for all s E-M. Since s-:- y also runs over all of M, the last inequality 

implies that, P(x+ y) = P( x ) + y. [J 

Theorem 3.2 

''here PM(y) = 0 

Every x E-H can be expressed uniqu ely as 
n 

and z E-M. Furthermore, z = PM(x). 

X = y+ z, 

Proof. We have x = (x - P(x)) + P(x), and by Theorem 3. 1, 

P(x- P( x )) = P( x )- P( x ) = 0, so the representation exists. If we 

have x .,. y+ z, then P(x) = P(y) + z = z, so the representation is 

unique. 

Theorem 3. 3 For every p r oj ection function l\P11, rxi\O<cx <. 2. 

Proof. Let x b e such that IIP\I<X« = cx.(P( x )) and cx.( x )= 1. 

If P(x)= 0, the resu lt is trivial. If not, then 

1 = O<(x) = <X( 0- x) > O<(P(x)- x) 

and 11 PII 01 1X = cx(P(x)) ~ cx{P(x)- x) + cx(x), 

which imply that 1\Pl\o:<X <. 2. 

It will be shown later (Chapter 5) that this inequality is the 

best possible. 
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CHAPrER IV 

LINEARITY OF THE PROJECTION FUNCTION 

The projection function is not linear for every norm and sub­

space. For example, consider the norm 0< on real n3 given by 

and determine kernel PM,cx.' where M is the one-dimensional subspace 

spanned by y~ {y
1
,y

2
,y

3
). Minimizing cx(x- cy) over all real c by 

ordinary variational techniques gives the resu lt 

= 

which is not a. subspace for all y. 

all y. 

Hence P is not linea r for M,cx 

This example suggests the follo1ri.ng characterization of linearity. 

Theorem 4.1 The function 

kernel P11 ·~ is a subspace. 

' 

P is linear if and only if M,O<. 

Proof. The necessity of the stated condition is obvious. 

Let x,ye. H and decompose them as x~ x' + P(x), Y= y' + P(y), n 
according to Theorem 3.2. Then by Theorem 3.1, 

P(x+y} = P(x' +y' +P(x)+P(y)) = P(x' +y') + P(x) + P(y). 

Since x',y' ~kernel P, x' + y' E kernel P, and P(x+ y) ... P(x) + P(y). 

Hence P is linear. {l 

Theorem 4.2 If dim M ~ n-1, then PM o< is linear. 

' 
Proof. Let xE:Hn-M' andlet y=x-P(x). Theny.JOandby 

Theorem 3. 2, y € kernel P. Let L be the subspace of all scalar 

multiples of y. Then it is clear that L c: kernel P, since by 
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Theorem 3•1 P{cy) = cP{y) == 0 for all scalars c. 

Now let z e kernel P. Since dim M= n-1, H is a direct sum 
n 

of 11 and L, and z = z 1 + z
2

, 1rhere z 1 e L and z
2 

E: M. By Theorem 3. 1, 

P(z) = P(z1 )+ z 2 = z2 • But P(z)= 0; hence z2 = 0 and z= z 1 E: L. 

Therefore L= kerne l P and P is linear by Theorem 4. 1. 

Theorem 4. 3 If PM <X is linea r for all r-dimensional subspaces 

' M, where r? 1, then it is linear for all subspaces of higher dimen-

sion. 

Proof. Let N be a subspace with dim N > r, and assume, for 

purpose of contradiction, that PN is not linear . Then by Theorem 4. 1 

its kernel is not closed under addition, i.e., there exist two 

elements xi' x 2 of kerne 1 PN such that PN(x1 + x 2 ) = y /= o. 

Now choos e an r-dimensional subspace M of N which contains y. 

Then x 1,x2 E kernel P.M' but P11(x1 + x
2

) = y /. 0, 1rhich violates 

the hypothesis. 0 
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CHAPl'ER V 

THE PROJECTiVE BOUND 

The real number Q{~) defined by 

Q{<X) sup 
M 

is c a lled the project ive bou11;,d. of <X. The following theorem shows 

that the supremum i s finite, and that for 1 ~ k ~ n- 1 the supremum 

is attained for some Ic- dirnen sional subspace M. 

Theorem 5.1 The sets of real numbers 

= { cx(PM O((x)) I oc( :x ) = 1, M is k-dimensional} 

' 
fork= 1,2, ••• ,n-1 are identica l. Further more, Skis bounded and 

contains its supremum Q(<X). 

Proof. Suppose c ESk; we must sholr that c E":Sj for any 

j= 1,2, ••• ,n-l. For some k-dimensional subspace M and some x EH , 
n 

c = 0(,( y)' 

y = PM(x), 

e<(x) = 1. 

If y= x, then c = 1 and e E S. is easily shown. 
J 

If y.j, x, then c<(z- x) ~O<(y- x) for all z EM, i.e., we have 

c<( z) ~ ~( y- x) for all z €: y- x + M. By Theorem 1. 1 there is a support 

hyperplane y-x+N for the equilibrated convex body {z!oc(z)~O<(y-x)} 
at y- x, such that y- x+ M c y- x+ N, tha t is, M C.N. Let L be 

any j-dimensional subspace of N which contains y. Then 0<( z) >.- O<(y-x) 

for all z E y- x + L, that is, ~( z- x) ~ cx(y- x) for all z E-L. Hence 

y = PL(x) and c E Sj. 
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Therefore, all the Sk are equal, and we need to prove the sec­

ond assertion only for s 1• 

Theorem 3.3 shows that s1 is bounded. Then either s1 contains 

its supremum or there would be two sequences {xi' and { yi \ such that 

~(x.) = ~(y.} = 1 for all i, and 
1 1 

lim i-> oO ~( PL. (xi) ) = Q(cx), 
1 

(1) 

where L. is the subspace spe.nned by y.. By taking o.ppropriate sub-
1 1 

sequences, we can also require that 

lim i-> 00 
x. 

1 = x, (2) 

lim i->OO y. = y, 
1 

lim 
i-+ 00 

PL (x.) = ,.... 
. 1 
l. 

(3) 

If L is the subspace spanned by y, then clea rly wE L. 

No·w· let z ~ L; then z= cy for some scalar c. By the definition 

of PL , 
i 

<X( xi- cyi ) ~ ex( xi -PL. (xi) ) 
1 

for every i. Taking limits as i -> 0() , we have OC(x- z) ~ O<(x- w). 

Since z EL was arbitrary, W= PL(x). From (2), <x(x)= 1; from (1) 

and (3), cx(v)= Q(O<); hence Q(e<) ~s1• B 

From Theorem 3.3, we have 

CorollarY 5.2 For any strictly convex norm ex, 

The upper limit is approached for strictly convex norms which 



approximate the "maximum norm" 

0( on real H
2 

given by 

(See Fig. 2.) The lower limit 

is attained by the norms 

described in the next chapter. 

13 

[t I O<.(~-xl:: 1] 

ex 

y = PM(x) 

e<(x) ~ 1 

or..{y) ~ 2 

XI 

Fig. 2. A strictly convex norm 

~for which Q(~) is close to 2. 
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CHAPI'ER VI 

PROJECTIVE NORMS 

A strictly convex norm IX on H for 'rhich Q(O() = 1 is called a. 

projective norm. The inner produc: norm (x,x)i is projective, a.nd 

so are the "elliptical" norms (x,T(x))t, where T is a positive­

definite self-adjoint linea r transformation of H • later we shall 
n 

give examples of non-elliptical projective norms on real H
2

• For 

spaces of dimension three or higher, all projective norms a.re 

elliptical, both in the real case (I~Irutani) and in the complex 

ca.se (Bohnenblust). 

then 

Lemma 6.1 Suppose ex is a projective norm, PM,o< is linear, and 

N c:: kerne l PM ex 
' 

M = kerne l PN <X 

' 
Proof. Suppose x <: 11 and y E: N. By Theorem 3.1, PM(x+ y) = x. 

The definitions of II PM 1\cr-o< and Q(c<) and the first hypothesis give 

0\(x) ~ 1\PMI\0(~ o<(x+ y) ~ Q(cx) cx(x+ y) = O<(x+ y) 

for all y E: N. Hence PN(x) = O, that is, x E: kernel PN. 

Now suppose x E kernel PN and 'rrite X=< x 1 + x
2

, where xi E-M and 

x
2 

E: N. By Theorem 3. 1, 

0 = PN(x) = PN(xi) + x 2 • 

By the previous paragraph, PN(x1 ) = 0. Hence x 2 :. 0 and x= xi E :M. 

Lemma 6. 2 If ~ is a. projective norm, then 

all subspa.ces M of H • 
n 

p 
li,O<. is linear for 

Proof. By Theorem 4.3, it is sufficient to prove PM is linear 

if M is one-dimensional. 

Let u be a nonzero element of lf, and let u + N be a support 
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hyperplane for the equilibrated convex body { x E Hn \ cx(x) ~ cx.(u}} at u. 

Then oc.(x)~O<(u) forevery xEu+N, tha.tis, cx(x+u}~cx(u) for 

every x EN. Hence u E: kernel PN. By Theorem 4.2, PN is linear. 

Since dim N = n-1, dim kerne 1 PN == 1, and therefore M == kerne 1 PN. 

By Lemma 6.1, N "" kernel PM and hence PM is linear by an appli-

cation of Theore~ 4.1. 

Lemma 6.3 Suppose i s linear and Theu 

M == kernel P < ) N,oc. = I. 

Proof. First. assume M = kernel PN' let x E H be arbitrary n and 

express it as X= x 1 + x 2 , where x 1 e M and x 2 E N. Then the application 

of both sides of PM + PN == I to xl + x2 gives an ide ntity. 

Nov assume PM + PN = I. If X E:M, then PM(x) -1- PN(x) = 

X + PN(x) = :x:, so x € kernel PN. On the other hand, if we have 

x e Iternel PN' then PM(x) = x and x eM. D 
Theorem 6.4 Let oc. be a. projective norm. Then P M,cx is linear 

for every subspace M of Iln' and if N = kerne 1 P then 
M,tle.' 

and 

M = kernel P.._1 ~.,ex 

I. 

Proof. This follows directly from Lemmas 6.1, 6.2 and 6.3. 0 

Theorem 6.5 Suppose 1 ~ k ~ n- I, and for every k-dimensional 

subspace M of H , P is linear and either 
n M,C1.. 

li "" kernel p or, equivalently, PM~+ PN <X. = I, ( 1} N,e< 
' ' 

where N = kernel PM,OI.• Then ~ is projective. 

Proof. Assume, for purpose of contradiction, that Q{cx) > 1. 

Then there wi 11 be a k-dimensional subspace M and x, y E H such that 
n 
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y = PM(x), 

O<(y) = IIPMIIt~-t~- o<(x) ·= Q(cx) O((x) > O<(x). (2) 

Clearly y /: x. Let N = I{ erne 1 PU. By Theorem 3. 2 and ( 2), 

0 f. y- x t N, £X(x) c cx(y- (y-x )) < D<(y) (3) 

By Lennna 6.3 the two conditions in (1) are equivalent. We use the 

latter condition and app ly both sides of it to y, obtaining the 

relation y + PN(y) = y, or PN(y) c O, which contradict s {3). fl 

We can now exhibit examples of non-elliptical projective norms 

on real H2 • Consider the norm 

{ ( lx11 P + lx
2
\p )1/p 

o<(xl' x2 ) = 
( l X I q 1 + lx I q ) 1/q 

2 

where 1 1 1. -+-= p q 

We shall show that 0<. satisfies 

the hypotheses of Theorem 6.5 with 

k= 1. By Theorem 4. 2, PM « is 
' linear for all one- dimensional 

subspaces M. 

Following the notation of 

Theorem 6.5, we let u span M and 

let v span N = kerne 1 P~.1• By 

examination of the unit b a ll (see 

Fig. 3 ), we see that if u = ( 1, 0) or 

Fig. 3. Example of a non­
elliptical projective norm. 

(0,1), then the hypotheses of 

Theorem 6.5 are satisfied. In other cas es, u and v are in adjacent 

quadrants, and we can also demand, without loss of generality, 

that u 1 = v 1 = 1. 
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Since v E kerne 1 PM' 0< ( v + cu) is minimal for c -= 0. For 

sufficiently small c, v+ cu is in the same quadrant with v. Hence 

if v is in the first quadrant, 

(4) 

(The same ar~tment can be used, mutatis mutandis, if v is in the 

fourth quadrant.) 

We can minimize (4) by differentiating (O<.(v+cu))P 'nth respect 

to c. Since the minimum occurs at C= 0, this gives 

Since u and v are in adjacent quadrants, sgn u 2 sgn v 2 = - 1, and 

hence 

This gives 

w== ( l,rr
2

) 

v, which spans N = I'ernel PM. Similarly, 1re find the 

which spans kerne 1 PN. We compute (note p+q = pq) 
1 

Jw21 ~ ( ,:21) q-1 = ::: 

which shows that M = kernel PN. 
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CHAPTER VII 

DUAL NORMS AJ-."'D PROJECT! ON 

If ex is n norm on Hn' the duo. l norm O(D is defined by 

\(x,y)\ 

cx(y) 

If uf. 0 and vis such tha t l xI {v,x)= 1} i s a support hyperplnne 

for the equilibra t ed convex body ~ x \ cx( x ) ~ O<(u)} at u, then v is 

calle d a dua l of u vrith r e spect to e<. Corolla ry 1.2 shows tha t e a ch 

nonze ro u ha s at least one dual. 

We s ha ll nee d some elementary r e sults about the dua l norm and 

the dual. 

Propos ition 7.1 If uf. 0 and v is a dua l of u with r espect to ex, 

then cxD(v) = 1/~(u) and u is a dual of v with res pect to O<D. 

Proof. For (v,x) I 0, {v, x/(v,x)) = 1. Therefore, by hypoth-

esis, ex( x/(v,x) ) = cx(x} /I ("'·,x)\ ~ ()((u), that is, 

1 

cx(u) 

l(v,x)l 
cx(x) 

which holds even for (v,x) = 0, and with equality for x= u. There­

fore cxD(v) = 1/~(u). 

Now assume (u,x)= I. Then 

"" sup 
y/.0 

\(x,y)\ 

cx(y) 

l(x,u)l 
cx(u) 

and hence u is a dual of v with respect t.o ~· 

= 

Corollary 7. 2 For all x E Hn' . O(DD(x) = O<(x). 

1 

cx(u) 

(j 
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Proof. Let. y be a dual of x with respect. to ex (if x/ 0). Then 

O{(x) = 1/ocD(y). But. x is also a dual of y wit.~ respect to IXD' and 

hence CXDD(x) = 1/0<D(y). () 

We can also apply Proposition 7.1 to show tha t. if u and v are 

duals, then they give equality in the generalized IWlder inequality 

I()( ( u )cxD( v )I ~ 1. This fact is sometimes used to define duals. 

Propos ition 7.3 If CXD is strictly convex, then every nonzero u 

has a unique dun. l w-ith respect to ex. 

Proof . Let. v 1 and v 2 be duals of u with respect. to ex. Then 

(v1,u) = (v
2
,u} = 1 and for any scalar c, 

= 

\ c(vpn) + (1-c) (v2 ,u) \ 

1 

o<(u) = 

O((u) 

Since «n is strictly convex, v 1 == v 2 • 

Theorem 7 •1 Suppose u/ O. Then u ~kernel P if and only 
M,e< .1. 

if there is a dual v of u wi t.h respect to 0< such that. v (: M • 

Proof. First. a.ssUllle v E M1 and v is a dual of u with respect. 

to cx.. Then for any x ~ M, (v,u-x} = (v,u}- (v,x} = 1; hence 

cx(u-x) ~ cx(u) and u E kernel P. 

Now assume u f kerne 1 P. 

Then ()((u+x)~«(u) for all x(:M. 

By Theorem 1.1, there is a sup­

port. hyperplane {xI (v,x)= 1} 
for the body { x I oc:(x} ~ 0<( u)} 

at. u which contains the flat. 

u + M. By definition, v is a Fig. 4. Illustration of the 
proof of Theorem 7.4. 

u 
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dual of u with respect to ~. Also, for 

hyperplane, that is, (v,u) + {v,x) = 1. 

and v E MJ.. 

every x EM, u + x is on the 

Since · (v,u) ... l, (v,x)=O 

n 
Theorem 7.5 Suppose ~ and ~D are both strictly convex, p 

M,~ 
is 

linear, and 

N = kernel p 
M,or. 

then :MJ. = kernel p l. 

N '«n 
(1) 

and h ence P 4 is linear. 
N 'O<.D 

Proof. By Proposi-tion 7., 4, for every v E: H there is a unique 
n 

dual u with respect to cxD' and v is the unique dual of u with 

respect to~. By Theorem 7.4, 

v t: kernel PN1 <.=> u E N. 
,cxD 

J.. By a second application of Theorem 7 .4, u EN< > v ~!I , since 

N= kernel PM ex. • These two equivalences prove (1). 0 
' 

Theorem 7.6 Suppose ~ and cxD are both strictly convex, PM,« is 

linear, and 

N ,.. 

then p l. 
N ,e<.D 

kernel P 
M,OI. 

= 
H 

( PM ex. ) 
' 

Proof. By Theorem 7.5, P J. is linear. 
N 'cx.D 

to show that for arbitrary x,y~H , 
n 

PNJ. 0( (y) - (PM cx. )H(y)) 
' D ' 

0 

It is sufficient 
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= (2) 

Let x= x
1 

+ x
2

, where x 1 EM, x 2 EN, and let Y= y 1 + y 2 , where 

y
1 

E. N1, y
2 
~ Ml.. Then, by using Theorem 7. 5, ( 2) can be demonstrated 

easily. g 

Theorem 7. 7 If ()(. e.nd CXD are both strictly convex, Q(oc:) = Q(ocD). 

Proof. Let M b e an (n- 1)- dimens iona l subspace of H such 
n 

that Q(O<) = IIPM,()(\\OI.OP and let N = kernel PM,~. Then by 

Theorem 4. 2, PM,Q(.. is linear , and by Theorem 7. 6, PNt,ocD = (PM,~ )H. 

Hence 

= 

e<D( ( H PM<l'.) (x) ) 
1:: :{o <XD(x) 

\(x, PMe<(y))\ 
= sup 

x,y;to o<D(x) CX'.( y) 

( o]y) ~ \ (x, PM,e<( y}) \ ) = sup 
y~O O(D(x) 

sup 
y/:o 

cx(PAi,O( ( y)) 

cx(y) 
Q(oc). 

To establish the reverse inequality Q(~) ~ Q(ocD)' interchange the 

roles of 0( and O<n· a 
Theorem 7.8 If ex is a projective norm, then ~Dis strictly 

convex. 

Proof. Let v 1 and v
2 

be two vect~rs such that 

O<D( cvl + (l-c)v2 ) ~ O<D(vl) = 1XD(v2) (3) 
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for all scalars c. We must prove that v 1 =v2 • If v 1 =v
2

=o, this 

result is trivial; therefore "-e asswne v 1 ~ 0 /= v 2 • 

The set K c \cv1 +(1-c)v
2 

I cis a scalar) is a. flat contain­

ing v
1 

and v
2 

and such tha t· x E K =) CX"D(x) ~ cxD(v1 ) by (3). By 

Theorem 1. I, there is a support hyperplane { x I ( u, x ) = 1} contain­

ing K. 

Then u is a dual of both v 1 and v 2 with respect to cxD' and 

hence v
1 

o.nd v
2 

are both duals of u 1\'"ith resp e ct to ex. I..et 11= tv
1

}J_ 

and N= \v 2)l.; then by Theorem 7.4, u €I,erne l PM,o< and uE kernel PN,0(· 

Since the Icerne l s are one-dimensional, both are equal to the subspe,c e 

L spanned by u. By Theorem 6.4, U::: N= kerne l PL,o:.• Hence v 1 and v 2 
are linearly dependent, and v 1 = bv2 for some scalar b. We substi­

tute into (3) to obtain 

()(D ( ((b-l)c + l)v
2

) 

Hence \ (b-l)c + 1\ ~ 1 for all scalars c, 1rhi ch imp lies that b = 1 

and v 1 = v
2

• Therefore t<D is strictly convex . 

Theorems 7.7 and 7.8 together give 

Corollary 7.9 If o<. is a projective norm, so is O(D. 
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CHAPrER VI I I 

THE GENERALIZED RECIPROCAL 

Suppose th~t throughout this chapter 

Then let 

~ is a strictly convex norm on H , 
n 

~ is a strictly convex norm on Hm' 

F : II -> II is a linear function, m n 

R = range F, 

K = kernel F. 

x E H be · arbi tre.ry, n 

y E: Hm be such that F(y) = PR,c<(x), 

x' -= y- PK,~(y), that is, the point on the flat y+ K 

which is closest to the origin. 

Fig. 5. The geometric definition of the generalized 
reciprocal of a linear function. 
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Now x' is independent of the choice of y, for a different choice 

of y would merely give another point on the flat y+ K. Therefore, 

there is a well-defined function F+o<p vhich carries x into x'. It 

is called the generalized reciprocal ofF with respect to~ andp. 

~bere the norms are understood, the notation F+ will be used instead. 

If ex. and (3 are the inner product norms, then F+ is the Moore­

Penrose reciprocal of F. Many properties of the. Moore-Penrose 

reciprocal are specializations of the properties which we are about 

to derive. (See also Ben-Israel.) 

The following properties of F+ are consequences of the defi- · 

nition: 

(i) 

(i-i) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 

F+ is a homoge11eous function, 

if PR ex and PK,~ are linear, so 

' 
kernel F+ = kernel PR cx ' 

' + kernel PK,P range F = ' 
F+F = I p 

K,cx. ' 
FF+ : PR,f3 ' 
if F+ . 1S linear, + rank F = rank F, 

if F is nonsingular, 

for nonzero scalars c, 

Properties (i) and (ii) are obvious. 

is F+ 
' 

If x E kernel PR , ,o< then x'= 0 (following our previous nota-

tion). If x f. kerne 1 PR,O<., then 

and x' /= 0. Hence we have (iii). 

the flat Y+ K does not contain 0, 

By Theorem 3.1, PK7 ~(x') = PK,~(y-PK7~(y)) = 0. If PK7 ~{z)= 0 

then z = y- PK,f (y) for some y, and z = F+(F(y)). Hence we have 



25 

property (iv ). 

To evaluate F+(F(z)) we can use Y= z. Then F+(F(z)) = 
z- PK,p(z) and ,.,..e have {v). 

By the definition, F(F+(x)) = F(x') = F(y- PK,~ {y)) = F(y) 

= PR 0<. (x), and we have (vi). 

' 
If F+ is linear, then by (v) PK,P is linear . By (iv) 're have 

rank F+ :a dim kernel PK,,6 = m- dim K = rank F, "Vrhich proves (vii). 

Properties (vii i) and (i :x: ) are obvious. 

~roperties (v), (vi) and (vii) can be used as an alternate 

definition of F+ in some cases, as the following theorem shows. 

Theorem 8. 1 If G: H -> II is a. linear function such that n m 

+ then G = F • 

GF "" 

FG = 

rank G = rank F , 

Proof. .Let x E R; then x = ~( y) for some y E H , and 
m 

G(x) ~ G(F(y)) = (I- PK,p ){y) = F+(F(y)) = F+(x), 

by (1) and property {v). 

For any v E H , 
n 

(1) 

(2) 

(3) 

by (3) with X= PR,~(w) and the definition ofF+. Therefore, we 

have range F+ c range G. The projection functionB in (1) and (2) 

are linear, and hence F+ is linear by property (ii ). Then by 
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property {vii) and hypothesis, 
+ 

+ rank F = rank F = rank G. There-

fore range F = range G. 

Now let xEkernel PROC.. Then F+(x)=O by property (iii), 
' . G(x) ~ range G = range p+, and by (2), 

F(G(x)) - PR ~(x) = 0. 

' 
Hence G(x) ~K also. Since by property (iv) and Theorem 3.2, range F+ 

and K have only 0 in common, G( x) = 0 = F+(x). 

Since R and kernel PR,OC together span Hn' the fact that Tre 

have G(x) = F+(x) for x on these two sets shows that G= F+. [] 

Lemma 8.2 IfM and N are subspaces of H 
n and dim N ~ dim M, 

then there is at least one nonzero x E- N (I kerne l PM • 
'()( 

Proof. Let S be the sphere ~ X E- N I ( x, X) == 1 3 • Then p gives 

a continuous mapping from S to M. By the Borsuk-Ulam Theorem (see 

Spanier, p. 266 ), there is e.n xES such that P(x) = P( -x). Since 

Pis a homogeneous function, P(x)= 0. 

Theorem 8. 3 If F: H ~ H is a linear function of positive m n 
rank, then 

1 
~in£ tliG\\e<p \rank(F+G) < rankF~ 

b 

t\F+I\~p 
< 

where b = 1 if rank F = n, and b = Q(cx) otherwise. 

Proof. Suppose ra.nk(F + G) <.. rank F; then 

dim kerne l(F + G) > dim K. 

2 

By Lemma. 8.2, there is a. nonzero x E':- kernel(F+ G), i.e., 

(4) 
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F(x} + G(x) = o, 

-F+(F(x)) = F+( G(x)), (5) 

such that x E kernel PK,« •. Then by property {v), F+(F(x)) = x, 

o.nd (5) becomes 

-x = F+(G(x} ), 

wlli ch yi e lds 

and establishe s the first ine quality in (4). 

No'r let y,{ 0 be such that 

and let 

f3(l!.,+{y)) = \IF+II(3C( C((y), 

z = PR o<(y}. , 
From the definition of F+ we have 

(6) 

(7) 

Also, «(z) ~ \\PR ~~~~tl.~(y) ~ Q(O<) 1X{y). In the case where rank F= n 

' we haveR= H, z= y and cx.(z)=O<(y). lienee 
n 

O<.(z) ~ b cx(y), (9) 

where b is as in (4). Then (6), (8) and (9) together yield 

Now let w
1 

= F+(z); clearly w
1
.f 0. Then by property (iv) 

v 1 E- range F+ = kernel PK,~· Hence PK,p(w1 ) = 0, that is, 

( 10) 

p(w1 + v) ~ p .(w1 ) for all v E: K, that is, p(w) ~ ~(v1 ) for all v in 

the flat w
1

+K. By Theorem 1.1, there is a. support hyperplane for 
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the equilibrated convex body i "" t Hm \ ~ ( w) ~ 13 ( w 1) 1 e.t w
1 

which 

contains w1 + K. This hyperp'la.ne can be written a..s 

{wl m 
scalars} , + L' c

1 
w. c2, c3, ... ' c 

i=2 
. 1 m 

where w
2

, \r
3

, ••• , 1rm span e. subspace which includes K. 

No1r let G: ll -> H be the linear function for which m n 

= o, i= 2,3, ••• ,m. 

( 11) 

( 12) 

( 13) 

Since w
2

, w
3

, ••• , wm span all of K, (13) implies that (F+G)(w):: 0 

for all wE K. Also, for vrl' ,.,..hich does not belong to K, ..,.-e have, 

by (12), property (vi) and (7), 

PR C<(z)- z = 0. 

' 
Therefore, re.nk.(E' + G) <. rank F • 

For some nonzero w Eli , which ve can write as 1r = 
m 

we have 

= • 

( 14) 

d.,... ' 
1 1 

If d
1 

= 0 we would have an a.bsurdi ty, .since G /= 0 by ( 12). Therefore, 

we can divide: by ld1\ to obtain 

ex( z) 

= • 

The denominator is the norm of a. point on the support hyperplane { 11); 

Hence by (10) 

11 G \\~f ~ 
t~~.(z) 0(( z) b 

• ( 15) 
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The second inequality in (4) then follows from (14) and (15). 

The third inequality in (4) £ollovs from Corollary 5.2. I 

In the case where F is nonsingular, (4) reduces to 

inf \ II G \\Ol~ \ F + G singular 1 1 
= 

This result has also been proyed by others (see also Franck p. 1297, 

Kahan p. 775, and Maitre p. ~no). 

Theorem 8.4 A necessary and sufficient condition that (F+)+=F 

for every F is that ~and ~be projective norms. 

Proof. If ex. and (3 are projective norms, then all projections 

are linear by Theorem 6.4, and by property (ii ), so is F+. Let 
+ + 

R' =range F and K' =kernel F • Then by Theorem 6.4 and properties 

(iii ) , ( i v), ( v) and (vi ) , 

I - PK,p ' 
= 

Also, rank F+ =rank F by property (vii); hence F= (F+)+ by 

Theorem 8. 1. 

Conversely, if (F+)+ = F, then 

.I - PK,(3 

I 
' 

and ~and ~ are projective norms by Theorem 6.5. 

Theorem 8.5 If ·CX. and p are projective norms, then 

= ( 16) 
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Proof. By properties {vi) and {v), and by Theorem 6. 4, 

FF+ = p . 
R,OI. = I - PM,cx.' M== kernel p 

R,O< ' 
F+F = I - p p K, 

... PN,~ ' N = kernel PK,{J ' 
By Theorem 6.4, R = kernel PM, ~X and K = kernel PN,p. By 

Theorem 7.8, ~D end Pn are strictly convex. Then by Theorem 7.5, 

and 

J. H l H ( ) Since R == kernel F and K = range F , 16 follows by 

Theorem 8.1, with G replaced by (F+)H and F replaced by FH. 

It is conjectured that (16) is true even if 0< and pare not 

projective norms. 
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