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ABSTRACT 

The applicability of the white-noise method to the identifica­

tion of a nonlinear system is investigated. Subsequently, the method 

is applied to certain vertebrate retinal neuronal systems and nonlinear, 

dynamic transfer functions are derived which describe quantitatively 

the information transformations starting with the light-pattern stimulus 

and culminating in the ganglion response which constitutes the visually­

derived input to the brain. The retina of the catfish, Ictalurus 

punctatus, is used for the experiments. 

The Wiener formulation of the white-noise theory is shown to be 

impractical and difficult to apply to a physical system. A different 

formulation based on crosscorrelation techniques is shown to be appli­

cable to a wide range of physical systems provided certain considerations 

are taken into account. These considerations include the time-invariancy 

of the system, an optimum choice of the white-noise input bandwidth, 

nonlinearities that allow a representation in terms of a small number 

of characterizing kernels, the memory of the system and the temporal 

length of the characterizing experiment. Error analysis of the kernel 

estimates is made taking into account various sources of error such 

as noise at the input and output, bandwidth of white-noise input and 

the truncation of the gaussian by the apparatus. 

Nonlinear transfer functions are obtained, as sets of kernels, 

for several neuronal systems: Light + Receptors, Light + Horizontal, 

Horizontal + Ganglion, Light + Ganglion and Light + ERG. The derived 

models can predict, with reasonable accuracy, the system response to 
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any input. Comparison of model and physical system performance showed 

close agreement for a great number of tests, the most stringent of 

which is comparison of their responses to a white-noise input. Other 

tests include step and sine responses and power spectra. 

Many functional traits are revealed by these models. Some 

are: (a) the receptor and horizontal cell systems are nearly linear 

(small signal) with certain "small" nonlinearities, and become faster 

(latency-wise and frequency-response-wise) at higher intensity levels, 

(b) all ganglion systems are nonlinear (half-wave rectification), (c) 

the receptive field center to ganglion system is slower (latency-wise 

and frequency-response-wise) than the periphery to ganglion system, 

(d) the lateral (eccentric) ganglion systems are just as fast (latency 

and frequency response) as the concentric ones, (e) (bipolar response) 

= (input from receptors) - (input from horizontal cell), (f) receptive 

field center and periphery exert an antagonistic influence on the 

ganglion response, (g) implications about the origin of ERG, and many 

others. 

An analytical solution is obtained for the spatial distribution 

of potential in the S-space, which fits very well experimental data. 

Different synaptic mechanisms of excitation for the external and 

internal horizontal cells are implied. 
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CHAPTER I 

INTRODUCTION 

The problem of identification of systems (also known as 

"system characterization," "system measurement" and "system 

evaluation") is one of the first problems that confronts scientists 

in a great variety of fields. It is the task of determining the 

input-output relationship of the system under study, in the form 

of a mathematical representation (or model), that is, the determina­

tion of the system functional F (y=F(x)) where x is the system 

input and y is the system output. 

_x --=::::.>,_, _F_]~y~> 
We may distinguish two different goals of the identification 

process; one, we could call "functional identification" and corres­

ponds to finding what I is and the other, we could call "structural 

identification" and corresponds to finding how I g computed by the 

physical system. The second goal presupposes some ~ priori information 

about the system's internal structure and it usually takes the form of 

estimating the system parameters. The first goal treats the system 

as a black box and is, therefore, a more primitive process in the 

whole modeling procedure. For this purpose, we give the following 

definition of the identification problem: ~ a system y = F(x) 

choose a set of inputs {x} such that the input-output pairs {xi,yi} 

will allow you to determine F. 

The identification problem was first formulated in connec­

tion with basic questions in the fields of adaptive control, 
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filtering, prediction and estimation theory [lb,l6,32b,33b,42a,54a,54b, 

100]. The basic theories that deal with system identification were 

first developed in these fields and have since been applied in 

virtually all fields of science. This generality of the applicability 

of the system identification theory is due to our being used to study 

systems in terms of "cause-effect," "input-output," "stimulus-response," 

"y is related to x," etc. 

The object of the theory is the derivation of a mathematical 
or 

(or otherwise concise) model/concept that allows the prediction of the 

output (or effect or response) for a given input (or cause or stimulus). 

Such a model is desirable because, (a) it summarizes the functional 

properties of the system under study, (b) it allows conceptualization 

of the relevant information processing done by the system and its role 

in a complex environment, (c) can be used as a guide in posing new 

meaningful questions about the system's structure and (d) makes the 

presence of the physical system unnecessary as far as performing 

stimulus-response experiments. Point (d) is especially important for 

the study of biological systems since experiments, in this case, are 

very cumbersome and difficult. Many questions, then, could be answered 

by use of the derived model (assuming it is a good model) instead of 

performing a "rea 1" experiment. 

In the case of linear systems (i.e. the class of systems 

that obey the principle of superposition) the identification procedure 

is well established and straightforward since a linear system can be 

identified by its response to any aperiodic input signal such as an 

impulse or step function. In practice, however, a series of sine 
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waves of different frequencies is used as the test input and Bode 

plots of the system gain and phase are obtained. 

Techniques of linear system theory have been used extensively 

in the study of nonlinear systems. There are basically two reasons 

for this: first is the simplicity and completeness of linear theory 

and second is the near absence of powerful and general nonlinear 

system theories. Often a nonlinear system has been studied through 

linear techniques using "small signals" or by making certain 

"linearizing" assumptions about its behavior. Biological systems, 

however, seldom behave linearly even under "small signal" conditions 

(see, for example, [42b,78], papers on the pupillary-reflex system, 

neural threshold systems and the many "unidirectional rate sensitivity" 

biological systems in [12] among many others). In fact, for optimal 

functioning of a biological system, nonlinearities are often essential. 

Examples are the logarithmic transformation of the sensory input in 

order to accommodate large ranges, the threshold mechanism of neuron 

to increase reliability of the information processing the unidirectional 

rate sensitivity mechanism to distinguish direction and many others. 

Linear and linearizing techniques have often been used yielding 

useful results [12,22,23,78,79]. Certain specialized methods for 

nonlinear system analysis exist such as the phase-plane and describing 

function techniques and others [13,28,29,87,95,98]. However, all these 

methods have serious limitations and are applicable to rather narrow 

classes of nonlinear systems. 

Starting with Wiener's original work in 1942 [92] a general 

theory of nonlinear system analysis and synthesis has been in 



-4-

development [2,6,7,25,41,93,99]. The theory is applicable to all 

systems that are time-invariant and have a finite memory and therefore 

it covers a very wide range of physical systems. Wiener proposed that 

a nonlinear system can be identified by its response to gaussian 

white-noise, since with such an input, there is a non-zero probability 

that any given function over a finite interval of time will be closely 

represented by some sample of this noise, and therefore, the system 

will effectively be tested with all possible inputs. 

In spite of Wiener's theory generality and power very few 

attempts have been made to apply it to the analytical study of 

nonlinear systems and the results obtained from such attempts have 

not been quite satisfactory [31,37,81]. The difficulties in applying 

the method to biological systems are: (a) conditions for convergence 

of the Wiener series are not known, (b) computation time increases 

almost exponentially with the order of the computed kernel and (c) the 

low signal to noise ratio and high internal noise usually encountered 

in biological systems. These difficulties can be minimized for biolo­

gical systems for which the input and output variables can be measured 

with accuracy (high signal to noise ratio), with low system internal 

noise and whose nature of nonlinearity allows a fairly accurate repre­

sentation by taki ng the first few terms of the Wiener series. An 

attempt has been made to apply the Wiener theory on the pupillary-reflex 

system by Stark [81]. Katzenelson and Gould adapted a variant of 

the Wiener theory [36] which they applied to the pupillary-reflex 

system [37]. The results of these attempts to characterize the 

pupillary system using the Wiener theory were not satisfactory mainly 



-5-

because of the large internal noise (present in the pupil system) 

which is independent of the input and therefore cannot be reduced by 

filtering [37,80]. 

Harris has applied another variant of the Wiener theory 

due to Bose [6] in which he characterized a continuous stirred-tank 

reactor system which has a two-level input [31]. The system was 

first simulated on a digital computer and then characterized. The 

identification procedure was simplified by the fact that the input 

switched only between two states and could therefore be treated as 

a binary variable. 

In this work we apply a variant of the Wiener theory due 

to Lee and Schetzen [41] and characterize several neuronal systems 

of the vertebrate (catfish) retina. These systems describe the 

information transformations performed by the retina starting with 

light patterns and ending with the ganglion cell outputs which cons­

titute the retina-transformed light pattern information that becomes 

the neural input to the brain. 
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CHAPTER II 

THE WIENER THEORY OF NONLINEAR SYSTEM IDENTIFICATION 

I. White-noise approach in nonlinear system characterization 

One of the main concerns in the analysis -synthesis problem of 

a nonlinear system is that of finding a proper mathematical represen-

tation of the system. This representation must be such that it is con-

venient to handle algebraically and computationally and it must reveal 

certain basic functional characteristics of the system under study. 

Without going further into the representation problem for nonlinear 

systems we note that, for these purposes, the concept of a functional 

representation has been well established by a series of investigators 

[2, 17, 25, 89, 92, 93, 97, 99, others]. 

Volterra [89] is credited with originally applying the concept 

of a functional to expand the input-output relationship of a nonlinear 

system in a power series with functionals as terms. A functional is a 

function whose argument is a function and whose value is a number. 

For example, definite integration is a functional whose argument is 

the integrand and whose value is the value of the definite integral. 

Consider a system S with input x(t) and output y(t). 

Input -x(t) 

SYSTEM 

s 
Output 

y(t) -

At any time t, the system can be considered to be a functional whose 

value is y(t) - the value of the output at this time - and whose argu-

mentis [x('T), T ~ t], a function that describes the whole past input to 

the system. Therefore the system can be written mathematically as, 
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(1) y(t) = S [t; x(t'), T ~ t] 

The well-known convolution integral for linear systems, 

t 
y(t) = f h(t-T)x(T)dT 

0 

is an example of a functional. In fact Volterra's functional series as 

well as Wiener's representation for nonlinear systems [15, 92, 93] 

are simply generalizations of the convolution integral representation 

of a linear system. The Volterra series is, 

(2) 

00 --<:: 00 

y(t) = ho + [00 h 1 (t)~(t-T)dT+ f f h 2 (T
1

, T 2 )x(t-T 1 )~(t-T2 )dTl dT
2 -oo 

00 

+ f f f h 3 (,. 1' ,. 2, ,. 3 )x (t-,. 1 ) x {t-,. 2 )x. {t-,. 
3 

)d,., d,. 2, d,. 
3 

+ . . .. 
-oo 

where the integral kernels h
1 

(T ), h 2 (T 
1

, T 
2 

), ... , are zero for any of 

their arguments being less than zero since a physical system must 

satisfy the causality principle. From (2) it is easily seen that the 

second term describes the linear behavior and that the higher orde·r 

terms are generalizations of the linear convolution integral. 

Wiener constructed a hierarchy of functionals of increasing 

order which are orthogonal to each other with respect to a gaussian 

white noise input and whose sum characterizes the system [93]. 

Wiener's approach is approximately as follows: The functional of zero 

order i s h 0 . The functional of first order is 

where x(t) is a gaussian white process. Then, he uses a method very 

similar to the Gram-Schmidt orthogonalization procedure to make the 

functional of the second order orthogonal to the functionals of zero 
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order and first order. Then he makes the functional of third order 

orthogonal to the functionals of second, first and zero orders and so 

on. At each step he normalizes the resulting functional. 

Finally, Wiener showed that the relationship between the input 

x(t) and the output y(t) of system S can be written as 

00 

(3) y(t) = :2: G [h ,x (t)] 
n=O n n 

where [G.J is the set of orthogonal functionals derived by the process 
1 

described and [hi} is the set of Wiener kernels. Each hk is a sym-

metrical function with respect to its arguments. The first four Wiener 

functionals are: 

00 

= f hl (T)x(t-T)dT 
0 

00 

= jjjh
3

(T 1, T2, T3 )x(t-T 1 )x(t-T 2 )x:t-T
3

)dTl dT
2

dT
3

-
0 

- 3P //h
3

(T
1
,T

2
,T

3
)x(t-T 1 )dT

1
, dT 2 

where the power density spectrum of white noise x(t) is ~ (f) = P. 
XX 

Thus, system S is described by a set of kernels [h.} which 
1 

can be considered to be generalized "impulse responses 11 of the system. 

To see this and also to get an insight as to the meaning of the kernels 

let us consider the following example [81 ]. Consider a system S 
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which is completely described by the linear and quadratic terms of 

the series, that is 

00 oo X(/: - IY) 

y(t) =I h1 (-r)x(t-'T")d,-+l/h2 (,- 1 ,,- 2 ),61t-,-1 ~(t-'T" 2 )d,- 1 d,-
2 0 0 

The response of S to an impulse at t = 0, i.e. x(t) = 6 (t), is 

00 00 

y(t) = lh1 (,-)6(t-'T)d,-+ II h 2 (,-l',- 2 )6(t--r 1 )6(t--r2 )d,- 1,d,- 2 0 0 
or 

y(t) = h 1 (t) + h 2 (t, t) 

The response of S to an impulse at t = t
0

, i.e. x(t) = 6(t-t
0

), is 

The response of S to a stimulus consisting of an impulse at t = 0 and 

an impulse at t = t 0, i.e. x(t) = 6 (t) + 5 (t-t0 ), is 

or 

00 

y(t) =I h
1 

('T")[o(t-'T") + 6(t-,--t
0

)]d,. + 
0 

If we subtract algebraically from the response to the two impulses 

the contributions (responses) of each impulse when each alone acted 

upon the system, we have left 
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which, since h 2 (T 1, T 2 ) is a symmetric function, reduces to 

Therefore it is seen that the second-order kernel h 2 (T 1, T
2

) 

gives a quantitative measure of t he nonlinear 11cross-talk" between 

t h e two impulses as a function of time t for each separation, t
0

, be­

tween the impulses. It is this term, 2 h 2 (t, t-t0 ) which represents 

the deviation from 11time superposition." That is the deviation of the 

system response to the two-pulse stimulus from the sum of the re­

sponses to each stimulus impulse separately. Note that this example 

does not clearly interpret the meaning of h 2 (,- 1, ,- 2 ) along the diagonal 

[T 
1 

= T 2 ], even though we can get an idea of it by letting the two 

pulses c ome very c lose together until they almost coincide. The value 

of h 2 (T" ,- 2 ) for ,- 1 f. ,- 2 gives the nonlinear deviation due to intel:"action 

b e tween portions of the input signal Tl and T
2 

seconds in the past. 

Input 

Time 

It can easily be shown that if the syste m consists of a no ­

m emory nonlinearit y followe d by a linea r syste m the n h 2 ( T 1, T 2 ) = 0 

for T 
1 

¥ T 
2 

and the system o be ys 11time s upe rposition'"'; that i s , in this 
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case, the response of the system to the sum of two or more impulses 

is equal to the sum of the responses of the system to each impulse 

separately and the values of h 2 (,- 1, 1" 2 ) for ,-
1 

= ,-
2 

are a continuous 

series of impulses of varying strength. In conclusion, we see that 

the magnitude of the kernels gives an indication of the nonlinear c ross-· 

talk betwe en different (in past time) portions of the input. 

A system is completely characterized once its set of kernels 

[h.} is determined. This method is applicable to a very large class 
l. 

of systems. This is the class of systems that are time-invariant, 

have a finite memory and whose inputs and outputs are bounded. Ex-

eluded are systems whose characte ristics change with time a nd systems 

with infinite memory such as oscillators. Therefore, compared with 

other methods of nonlinear system analysis such as the phase 

plane technique or the describing function technique [13, 28, 87] the 

Wiener method has a much greater range of applicability and it can 

describe nearly all physical systems. 

The use of white nois~ which is a random function of time, as 

input in order to characterize a system is based on the following idea: 

Given a long enough record of the system response to a white - noise 

e nsemble member there is a finite probability that any given function 

of time will be represented arbitrarily closely over a fini te interval of 

time by some sample of this white -noise input function . In this w ay 

the system is tested with e very possible input time function and all 

frequencies over which the noise has a flat E"pectrum. Thus, two sys-

tems are equivalent if and only if they respond identically to white 

noise be cause then they will respond identically to any other input. 
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This is the justification for derh.ring nonlinear transfer functions by 

performing white noise experiments. The objective, then, becomes 

to find a mathematical model that responds to white noise the same 

way the physical system responds to white noise. 

2. The Wiener formulation of the white-noise theory 

Given a time -invariant, physical systemS with input x(t) and 

output y(t), the output at time t is a function of the present value and 

past values of the input [6, 93], 

(1) y(t) = S[x(T), 1" ~t] 

The function [x(T ), 1" ~ t] can be expanded into a series of orthonormal 

functions like the family of Laguerre functions, [cp
1 

(T) }, 

(2) 
00 

x(-1") = ~ 
n=O 

C cp (1") 1 1" ~ 0 
n n 

The set of coefficients [c.} completely describes [x(T ), T~t] and the 
l. 

present is considered as t = 0 and time going backwards. The Laguerre 

functions form a complete orthonormal system in the interval (0, oo) and 

are defined by 

(3) 
t/2 

e cp (t) = 
n n! 

0, 1' 2, ... 

We easily obtain the coefficients [ ci), by 

00 

(4) c = / x(-1"} cp (T) dT 
n 

0 
n 
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Wiener chose the Laguerre family of functions to expand the 

past of the system input because these functions have certain desirable 

mathematical properties (we will describe later} and they can be 

easily generated by analog equipment. The Laguerre coefficients 

oan be generated by the network shown below, 

x(t) - 1 -p. - s + ~ 

\I 

s -~ 
s +~ 

I-

\II 

s - ~ 
s + ~ 

c (t) 
n 

where s is the Laplace transform variable. Or, equivalently, 

the Laguerre coefficients are given as solutions of the following 

set of linear differential equations: 

dr m 
Cit 

r. (0) 
1 

+ 

= 

1 
2 

0 

r = x(t) 
m 

m-1 

6 r. (t) 
1 i=O 

1 = 0, 1, ••• , n 

i = 0, 1, .•• , n 

At each time t, the outputs of this network give the values of 

the coefficients {c.} which completely describe the input x(t) 
1 

up to this time t. This can be shown very easily from equations 

(3) and (4}. 

For x(t) being a gaussian white process it can be 

shown that 
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(a) Each c. has a gaussian distribution, 
~ 

(b) cK and em are stati stically independent random variables. 

(c) All c. have the same mean and variance. 
~ 

Given these properties of the coefficients [c.} and after standardizing 
l. 

them so that they have zero mean and unit variance, it is easily seen 

that the joint probability distribution is 

In practice we would use a finite number, n+l, of coefficients 

c. to describe the past of the input. Then (1) becomes 
l. 

S is now a function of n + 1 variables and it can be expanded in terms 

of the class of Hermite functions which constitute an orthonormal 

family over the interval (-oo, oo) [ll ]. The nth normalized Hermite 

polynomial is defined as 

1 
n n 1. -z-

1l (z) = ( -1 ) (2 n! 1T z.) 
n dzn 

2 
-z 

e 

and the corresponding Hermite function is 
2 

z --z 
'fn(z) = e T)n(z) 

Expanding (6) we get 

00 00 00 

(7) y(t) = :6 :6 · · · :6 a.. k 'f. (c 0 Nr. (c 1 ) •.• 'fk(c ) 
i=Oj=O k=O l.J· • • 1 J n 
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The coefficients [a.. k} characterize systemS completely 
1J ••• 

and the identification problem reduces to the problem of determining 

these coefficients. That is, knowing the set of these coefficients for 

a particular system we can compute the response of this system to 

any input by use of equation (7). It can be shown [6] that the co-

efficients are given by 

(8) 

where y(t) is the response of the system to a white noise input x(t) and 

[c 0, cl' •••• en} the set of coefficients that characterize x(t) at each 

time. Equation (8} is obtained by performing a minimum mean-

square-error fit between the actual response of the system, y(t}, 

and the response as given by (7} over the entire range of the input-

output record (where input x(t} is gaussian white noise}. 

After the system has been tested with white noise for a suffi-

ciently long time and both the input x(t} and the output y(t} have been 

recorded we proceed as shown diagrammatically in Fig. 2. lA in 

order to determine the set of characterizing coefficients [a.. k}. 
:LJ ••• 

In this analysis procedure the coefficients are evaluated serially 

and each time the whole length of the records has to be used. Once 

these coefficients have been determined they can be used to synthesize 

the nonlinear model of the system in terms of equation (7). The 

synthesis procedure is shown diagramatically in Fig. 2. 1 B. 

The application of the white-noise theory under this Weiner-

formulation is very impractical and very difficult for the following 

reasons: 
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white noise 
stimulus Laguerre 

. {ci} 
Hermite ni<co) •.• k 

' ... --, Polynomial 
x(t) Network Generator 

\)I 

Response Multiplier .. .. 
{aij ••• k} & 

y(t) Averager 

j •• • k } A 
I 

'It Input {ci} 
' Laguerre .... ,.. "7' Hermite ,___ 

x(t) Network Polynomial 
_Generator 

4 Multi- Res pons~ 

,.-? 
plier y(t) 

'" 
!Exponential 
!Generator 

B 
Fig. 2.1 

Flow diagrams for the analysis (A) and synthesis (B) phases of the 
Wiener formulation of the white-noise method of nonlinear system 
identification. 

'? 

(c ) 
n 
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(a) The number of coefficients needed to characterize almost 

any system, linear or nonlinear, is extremely large. If n coefficients 

are used in the Laguerre expansion to describe the past of the input 

at any time and p coefficients are used to expand the system functional 

in terms of Hermite functions, then the number of coefficients needed 

to characterize the system is pn. Exploratory calculations showed 

that even for a simple nonlinear system such as a non-memory 

squarer p has to be approximately 10 to 20 and for a nonzero memory 

system n has to be also 10 to 20 giving the huge numbers of coefficients 

of 10 10 to 20
20 

to be evaluated 

(b) The computation required for the evaluation of the charac-

terizing coefficients is extremely long especially since the computation 

has to be performed serially (Fig. 2. lA). In the synthesis phase, 

when the response to a particular input is desired the computation is 

again very long because of the multitude of the coefficients and the 

repeated Laguerre and Hermite expansions, as shown in Fig. 2. lB. 

(c) It is desirable to be able to assign some meaning to the 

characterizing coefficients [a.. k} that would reveal some features 
1J ••• 

of the structure of the system. This is impossible under this form 

of the theory. The coefficients [a.. k} are purely formal mathe-
1J ••• 

matical quantities and it appears futile to attempt to draw an analogy 

between them and properties of the system which they characterize. 

(d) The method is basically a curve fitting procedure and not 

a descriptive algebra of systems that is desired in order to be able 

to manipulate systems as building blocks for more and more compli-

cated structures. This point is very crucial for the study of biological 
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systems and especially for the ambitious undertaking of the study of 

the very complicated structure of the brain. 

(e) A linear system which is characterized very simply by 

the classical linear theory is characterized very cumbersomely by 

this method. A vast number of coefficients [a.. k} are needed to 
l.J ••• 

identify a linear system. This is due to the fact that a very large 

number of Hermite polynomials is needed so that their sum would 

cancel out the effect of the highly nonlinear exponential transformation. 

(f) It is very difficult to incorporate into Wiener's method any 

a priori information about the system so as to plan the computation 

for shorter length and to reduce the number of the characterizing 

coefficients. Point (e) is an example of this serious shortcoming of 

this very general method: The method in being so very general fails 

to recognize a simple situation and treat it accordingly. 

(g) The derived nonlinear model is too cumbersome to use 

for prediction or comparison with experimental results even if a 

digital computer is available. 

All these difficulties encountered in the practical application 

of the theory point out that other formulations of the white-noise 

theory must be sought if it is to be made a working tool for identifying 

nonlinear systems. 

3. The Lee-Schetzen formulation 

The Lee-Schetzen approach of the nonlinear identification 

problem starts with the Wiener functional series and it shows how 

the set of Wiener kernels [h.} can be evaluated by use of eros s-
l. 

correlation techniques [ 41, 72]. 
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Specifically, given a systemS that has been subjected to a 

white-noise input x(t) and whose response to this input is y(t), Lee 

and Schetzen have shown that the Wiener kernels are given by 

( 1) h (o 1, ••• , a ) = n n 
1 

tpn n . 

where P is the power level of the white-noise signal. Fig. 2. 2A 

shows diagramatically the evaluation of the kernels by this method. 

Fig. 2. 2B shows how the derived model is constructed and used to 

predict the response of the system to any desired input. 

Equation (1) can be altered slightly to permit evaluation of 

the kernels along any diagonal a. = a. [ 41], 
1 J . 

n-1 
h (o-1, o 2, ••• , a \ = -

1
- ·E f[y (t)- ~ Gk[h_ ,x(t)j}x(t-o1) ... x(t-o )1. 

n n l n! pn l.. k=O -K n~ 

a formula which is valid for all (a 1' a 2, ••• , an). 

This formulation of the white-noise theory has several advan-

tages over the Wiener formulation and it makes it feasible (with some 

restrictions) to identify a physical nonlinear system by subjecting it 

to a white-noise stimulus. 

First, it directly estimates the kernels which, as we saw early 

in this chapter, have a definite physical meaning; they can reveal 

interesting properties and provide an insight to the structure of the 

system under study. 

Second, the cross correlation method is much simpler compu-

tationally because it does not involve the cumbersome Laguerre and 

Hermite transformations. 
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Third, a linear system is easily recognized by the eros s 

correlation method, the derived model takes a simple form and 

therefore the computational burden is reduced while the insight into 

the nature of the system is increased. 

Fourth, the synthesis problem is very simple. Estimating 

the response to a particular input involves only a few integrations. 

Fifth, it is very easy to construct alternative structural 

models once the kernels are known, such as structures consisting 

of linear filters (for which powerful theories exist) and multipliers. 

Sixth, in the Wiener formulation it can be considered that the 

kernels are expanded in terms of the orthogonal family of Laguerre 

functions, and since this expansion, for any practical application, has 

to be truncated there is an inherent approximation error in the Wiener 

formulation. This truncation error does not occur in the cross corre-

lation method. 

Seventh, a priori information about the system can be utilized 

to reduce the identification effort by reducing the computational 

burden. 

4. Other formulations of the white-noise theory 

There are other formulations of the white-noise theory 

[6, 36, 52, 76, 95, 97], each one of which may prove suitable for a 
an 

particular type of nonlinear system. Bose [6] uses/orthogonal class 

of functions, which he calls gate-functions, and which are simply 

square unit pulses in time, in order to partition the function space 

of the past of the input into nonoverlapping (orthogonality of the gate 
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functions) cells. This formulation of the theory would be most suitable 

for systems with strong saturating elements. Katzenelson and Gould 

[36] use the Volterra series to develop a systematic approach that 

leads to a set of simultaneous integral equations. An iteration pro-

cedure is given for their solution. This approach seems best for the 

synthesis of optimal nonlinear filters. In [52, 76, 97] combinations 

of one or more impulses are used to calculate characterizing coef-

ficients or functions. 

Starting with the basic notion of the functional as the mathe-

matical description of a system and utilizing the white-noise approach 

one can devise several schemata for system identification. A very 

simple one would be the following. A grid is superposed over the 

past of the input in such a way that it covers the whole memory of 

the system and the total range of amplitudes of the input. 

X 
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At any timet, the present input and its past are described by a 

vector of real numbers that give the ordinates of the g rid-squares 

at the fixed times (t0, tl' t 2, •••. , tn). This vector is put in 

correspondence with the value of the system output at this time, 

y
0

, thus forming the input-output vector (t0, t 1, ••• 1 tn, y 0 ). As the 

system is being tested with white-noise, new input-output vectors 

are formed. Eventually, the system will have been exhaustively 

tested for all combinations of values of the input sensors x 0, x 1, •.. ,xn. 

All these vectors could be easily stored in some form of auxiliary 

storage (disc, magnetic tape) of a digital computer and used as the 

"model" of the system. As an abstraction from this data base one 

could fit a function F (x0, x 1, ••• , xn) over the ~ole set of vectors 

which would then be the transfer function of the system. This function 

could be used to predict the response of the system to any input. 

There are several noteworthy features of this formulation of 

the white-noise theory. First, it does not require a white-noise 

input from the statistical point of view since the method simply 

enumerates input-output correspondences. Instead, a more expedient 

way would be to put the input under computer control and enumerate 

all the possible combinations of sensor values (x0, x 1, ••• , xn). This 

would drastically cut down the testing time required for identifying 

the system. This is very important in view of the nature of the experi­

ments on the nervous system (short experiment-life, drift). Second, 

the grid square size can be varied depending on its position, thus 

more heavily weighing the more important regions of the signal. For 

example, it would usually be desired to have the sensors more 
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densely placed near t 0 than tn s ince the immediate past usually 

affects the present output more than the remote past. Also, the 

horizontal grid lines could be more densely spaced near the non­

linearity of the system, e. g. where saturation might occur. Third, 

this formulation is conceptually very simple and it can readily be 

amended to fit any system peculiarities. Fourth, it can answer 

many questions about properties of the system under study provided 

a suitable computer system exists to manipulate and abstract infor­

mation from the resulting data base of input-output vectors. Such 

a system partially exists in our laboratory (Phase II) [ 18, 24, 44, 48, 50] 

and it is now being greatly extended. It appears that the new version 

would be very appropriate for this kind of manipulation and abstraction, 

thus making this formulation of the white-noise theory an attractive 

tool for studying neuronal systems. 

In this work the eros s -correlation formulation of the white­

noise theory is used to obtain nonlinear dynamic transfer functions 

for several neuronal chains that play an important role in the organi­

zation of the receptive field of the vertebrate retina and whose outputs 

constitute the retina-transformed information contained in the stimu­

lating light patterns that becomes the input to the brain. 

5. Discussion of the white-noise theory 

There are several considerations to be made and techniques 

to be used for the successful practical application of the white-noise 

method of identifying a nonlinear system. All of these are examined 

in the next chapter. 
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The idea of using white-noise to derive a transfer function 

for a nonlinear system is a very ingenuous one because it tests a 

system exhaustively with a very large variety of inputs and it forms 

a transfer characteristic which takes into account the response of 

the system to all these inputs. In a sense, the 11average 11 transfer 

characteristic is formed. Especially, if it is considered that there 

has been a habit {left over because of the beauty of linear theory) 

among bio-scientists to use steps, pulses and sine waves to derive 

transfer functions of obviously nonlinear systems, the white-noise 

approach offers a tremendous improvement. It should also be stressed 

that a biological system seldom behaves linearly. In fact, from the 

functional point of view, nonlinearities in biological systems appear 

to be a necessity as is, for example, the logarithmic transformation 

of the sensory input in order to accommodate large ranges of input. 

At this point a simplified analogy may be helpful to understand 

the difference between the two kinds of approach. The analogy is a 

game in which one is presented with a picture completely covered with 

sand and he is given the task of finding what the picture under the sand 

looks like. The traditional bioscientist removes a little square 

Case A Case B 
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{Case A) of the sand and from what he sees in that square he tries 

to guess the content of the whole picture. This corresponds very 

aptly to testing a nonlinear system with steps or sines and from the 

response to such inputs deriving transfer functions for any other 

kind of input. In the white-noise approach holes are poked randomly 

over the entire area of the picture (Case B) and the content of the 

picture is guessed from what is found in all these holes. This is so 

because the system is tested with a very large variety of inputs 

randomly (or nonrandomly) selected from the input function space. 

This kind of approach is preferable to the classical approach 

and should prove very usefull for research in the living nervous 

system. It is a realization of the concepts suggested for new re­

search strategies by McCann [51], who points out the need toward 

"· ..• the development of more complex experiments that will simul­

taneously gather more information both within one of the traditional 

areas of experimentation and across these areas 11 in order to study 

successfully the informational relationships in living neuronal systems. 
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CHAPTERIII 

CONSIDERATIONS FOR THE APPLICATION 

OF THE WHITE-NOISE METHOD 

I. Introduction 

The application of the white-noise method for the character­

ization of a physical system is difficult and involved. The amount 

of difficulty depends on the nature of the nonlinearities of the system 

and the degree of accuracy which we require from the derived model. 

In certain cases the application of the theory will produce poor re­

sults after long experimental procedures and digital computations. 

Therefore, it is desirable to develop certain preliminary criteria 

and simple experiments which would give an indication of how com­

plex the problem is and how successful the white-noise method can 

be expected to be in a particular cas e. 

In developing these criteria and tests we should take into 

account the characteristics of the system and the limitations imposed 

by the tools available to us for its study. 

First, we should decide the conditions under which the exper­

iment should be conducted, such as the amplitude range and frequency 

bandwidth of the stimulating noise, the temporal length of the exper­

iment and several others. 

Second, we should estimate the computational length and 

complexity which is required to derive the desired nonlinear model 

within a certain degree of accuracy. 

Third, we should estimate the errors resulting from various 

sources and how they affect the results. 
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Fourth, we should be able to interpret the derived model and 

draw some conclusions about the system characteristics . 

2. Preliminary conditions of the white-noise experiment 

Once a particular system has been chosen for study by the 

white-noise method several preliminary decisions have to be made. 

The input and output of the system have to be clearly defined. It 

must be shown that the system receives no other time-varying 

inputs during the experiment. 

The time-invariancy of the system must be proved. A system 

is time-invariant if the form of the system response is independent 

of the particular time at which the input is applied. This can be 

easily checked by performing several simple experiments repeatedly 

at different intervals of time and comparing the system responses. 

The amplitude range of the stimulus must be chosen such that 

it covers the most ''interesting" region of operation. This could 

depend on the location of amplitude-dependent nonlinearities and the 

range of inputs encountered during the natural operation of the system. 

This choice determines the validity range of the model. 

Biological (neuronal) systems are usually sensitive over large 

ranges of the stimulus amplitude (4 log units of sensitivity are very 

common). The dynamic range of the instruments that produce the 

stimulus and record the response rarely exceeds two orders of mag­

nitude. Therefore the choice of the stimulus range must be made 

very carefully to reveal the "interesting" properties of the system. 

Sometimes it will be necessary to perform more than a single white­

noise experiment in order to cover the whole operational range of 
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the system. 

The white-noise theory has been formulated for an input that 

is ideal white-noise. In practice, of course, white-noise sources 

exhibit a flat power spectrum only over a certain range of frequencies 

with cutoffs at high frequencies. It was found that if the bandwidth of 

the white-noise extends too much beyond the system bandwidth (at the 

high frequency end) then undesirable effects take place in the compu-

tation of the kernels (see section 4). However, . the input noise 

bandwidth should cover the system bandwidth completely so that the 

system becomes tested with all frequencies of interest. 

Let g(-r) be the impulse response of the low-pass filter that 

transforms ideal white-noise x. (t) to the real white-noise x (t) used 
1 r 

in the experiment for the system identification. Then 

00 

(1) X (t) = I g (,. ) X. (t-,. )d,. 
r J. 

-oo 

Let us consider for purposes of illustration, the calculation of the 

second degree kernel. The arguments can be readily generalized 

to the nth degree kernel. 

To compute h 2 (-rl' -r 2 ), we compute the cross correlation 

cp x (-rl' 'r 2 ) between the system output and the real white-noise 
yxr r ,. 

which gives an estimate h 2 (-rl' 'f2 ). We have 

Using (1) we obtain 
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which finally becomes 

(Z) cpyx x ('11' '~z> = f! g(vl)g(vz) cpyx.x.('Tl+vl' '~z+vz)dvl dvz 
r r 1 1 

Taking Fourier transforms and recalling the relation between 

cp and h
2 

we get 
yxx 

(3) 

where G(w) is the Fourier transform of g('T) and H2 (~, Wz), B
2

(w
1

, Wz) 

are the two-dimensional Fourier transforms of h
2 

('1 1' 'T 
2 

), h
2 

('I 
1

, T 
2

) 

respectively. From (3) we note that if g('T) is assumed to be a low-

pass filter and if the noise bandwidth completely covers the system 
,.. 

bandwidth then h 2 (Tl' 'Tz) and h 2 (Tl' Tz) are very close and no addi-

tional computation is necessary to correct for the non-ideality of the 

white-noise. Nevertheless, it is possible from (3) or (2) (by numeri-

cally solving the integral equation) to correct the error introduced by 

using finite-bandwidth white noise. 

We note that the error will be large for the high frequencies 

for which the gain of low-pass filter G(w) is substantially different 

than I. Therefore, the input noise bandwidth should be large enough 

to cover the whole frequency range in which the system responds. 

Given a systemS, we need to decide how many kernels to 

compute to get a satisfactory model. We can get an idea of this 

number by performing a few simple preliminary experiments where 

the system is tested by sine inputs and the resulting response is 

analyzed as to its harmonic content. It is simple t o show that a model 
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that includes up to the nth order term of the Wiener series can pro-

duce at most an nth order harmonic. 

For almost all the systems studied in this work the harmonic 

content beyond the second harmonic is small and the series was trun-

cated after the second order term. We will investigate and justify 

this approximation as we discuss each system under study. 

The extent to which the kernels must be computed, that is 

how big should (T 
1

, ••• , T ) be for h (T 
1

, ••• , T ) to be zero, depends 
n n n 

solely on the memory of the system. The memory M of a system S 

can be loosely defined as that length of time that is required for the 

effect of the input on the output at time t-M to become zero at timet. 

A simple preliminary two-pulse experiment can be performed to 

measure M. The system is stimulated by an impulse at time t and 

an impulse at timet+ a. Delay a is increased until the response of 

the system to the second impulse is identical to the response to the 

first impulse. Then a is equal to M. Admittedly, such a determina-

tion of memory length does not account for the nonlinear interaction 

of many pulses that could, conceivably, shorten or lengthen the 

system memory but it is assumed that such an effect is small 

(especially, since for most systems under consideration here the 

effect of past input on present output attenuates exponentially}. In 

any case a safety factor can be employed in determining the extent 

to which the kernels are computed. The length of memory of the 

s ystem is also needed to determine the white-noise bandwidth a nd the 

length of the experiment (for reliable estimates of the kernels). 
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The bandwidth of the system should be estimated in order to 

determine the white-noise bandwidth and consequently the sampling 

rate of the input-output records. This can be done approximately 

from preliminary testing with sine inputs. 

Finally, the temporal length of the white-noise experiment 

should be decided. This depends on the variance we are willing to 

tolerate in the estimates of the statistical averages that the cross-

cor relations indicate. Since the finite record length introduces an 

error in the kernel estimates it is treated in detail in another section 

and a formula is derived for the determination of the record length. 

3. Computational Considerations 

In the analysis phase, the main difficulty in the computational 

process is the calculation of the high order correlation functions. 

The amount of computation increases with the order of the computed 

correlation, the length of the record and the extent to which each 

kernel is computed. 

Using a simple rectangular rule of integration we have 
N 

.;; y(t. ) x(t. + T
1

) .•. x(t.+T ) 
( ) 1.?1 l. l. l. n cp T 1, ••• ,T = 

yx .•• x n N 

where N is the number of points in the record. We could use more 

accurate numerical integration schemes but that would merely compli-

cate the discussion without increasing the generality in the basic 

results. 

The number of points m for which each kernel is c omputed 

depends on the memory M of the system and is given by 
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M 
t;t 
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where t.t is the sampling interval of the records. Considering that 

the kernels are symmetric functions of their arguments the number 

of points we have to calculate for the nth order kernel (for n < m) is 

given by 

(2) 
(m +n- 1 )(m +n- 2) . • • (m) 

n! 

Of more interest is the number of multiplications required 

for the computation of each kernel. This is so because multiplication 

is a time consuming operation for a digital computer. The number of 

multiplications for the calculation of the nth order kernel is given by 

__ n. N. { (m+n-1)(m+nn!-2) .•. (m)} Number of multiplications 

There is, of course, the usual tradeoff between computation 

time and storage space. Computing time (i.e. number of multiplica­

tions) can be reduced by storing in core intermediate results. As the 

storage requirements increase with the order of the computed kernel 

there will be a sharp increase in computing when we are forced to use 

auxiliary storage {disc, tapes) to hold the intermediate results or 

even to store the final result. 

Let a be a constant (dependent on the order n) which accounts 
n 

for time spent in addressing, storing, etc. Then the total computation 

time is approximately 

(3) T 
n = a • N. n. 

n [ 
(m+n-1 )(mn+

1
n. -2) • . . (m) J 
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where N is the total number of sample points in the record and m 

is given by (1 ). 

From (3) we have for the first four kernels, 

Tl = a
1

• N. m 

2 
Tz = a

2 
N(m +m) 

3 2 

T3 a3 N. 
.m +3m +2m 

= 2 

4 3 2 

T4 a4 N. 
m +6m +11m +6m 

= 

Therefore, computing time (for n < m) increases almost exponentially 

with the order of the kernel. This is a severe limitation on the order 

of the kernel that can be computed by conventional means. A digital 

computer, even though the best available tool for the job today, is not 

ideally suited for the computation of high order analog correlations. 

Analog electronic equipment would be more suitable for this purpose. 

In the synthesis phase t h e computation is straightforward. It involves 

the estimation of m ultidimensional i ntegrals for which there are 

standard tec hni ques. 

The computation of the power spectra involves several subtle-

ties (see Chapter IV). 

4. Error Analysis 

As shown in Chapter II the kernels are given by 

n-1 
h (,-1, ••• ,,-) = -

1
- E{fh(t)- :0 G [ h ,x(t)J]x(t-'T" 1 ) .•. x (t-T >} 

n n n!Pn I: m=O m m n 
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where [G.} are the Wiener orthogonal functionals. 
l. 

In the calculation of the kernels by cross correlation methods, 

there are several sources of error which coexist. We will examine 

the effect of each one separately, assuming at each stage that the 

other error sources do not exist. 

There is a statistical error (kernel values are statistical 

averages) in the kernel (crosscorrelation) evaluation associated with 

the finiteness of the record length (finite sample). The standard 

deviation of the computed average from the true average gives an 

estimate of the statistical error. 

Assume we are trying to measure h 1 ('r) which is the average 

of the random variable [y(t)x(t-'T)]. Let us call the computed estimate 

£. 1 ('r). Then, if we use M independent samples of this random variable 

(1) var{h('T)) = ~ var(y(t)x(t-'T)) 

where var{h('T)) is the variance of the computed average and 

var(y(t)x(t-'T)) is the standard deviation of the random variable whose 

average we want to estimate. 

As before, the record has N samples but only M of them 

(M < N) are independent. As we will see shortly, M depends on the 

noise bandwidth and the system memory. We get an estimate of 

var(y(t)x(t-'T)) from the record itself by computing 

var(y(t)x(t-'T)) = 
I N [_ N 2 
N :0 [!(t.)x(t.-'T)- :0 (y(t.)x(t.-'T)/N~ 

i=l l. l. i = l l. l. ~ 

which finally becomes 
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(2) var (y(t)x(t-T)) = 
1 N 2 

N 
:6 [y(t. )x(t. -T)] 

i=l l l 
[

l N 2 
N :6 y(t. )x(t. -T)J 

i=l l l 

Thus, from the record and using (2), we can obtain an estimate of 

var(y(t)x(t-'1" )). 

Then, to calculate the varch(T)) we need to know the number M 

of independent samples of (y{t)x(t-'1")) because the estimation of a 

statistical average for a certain accuracy requires a certain number 

of independent samples. In turn, this requires a knowledge of time 

interval (t2 -t1 ) for which (y(t2 )x(t2 -T)) and (y(t
1 

)x(t1 -T)) are independent. 

The quantity (t2 -t1 ) depends on the bandwidth fw of the noise and the 

system memory, p,. The time interval for which successive input 

noise samples are independent is 11,_£w. Then, if 

= 1 
max( f p,) 

w 

the quantity (t2 -t
1

) is equal to Za, and the length, R, of the required 

input-output record is 

(3) R = 

where M is chosen large enough (about 100) to produce a small vari­

ance of estimate hl (T) (see equation (1) ). Usually p, is 

much larger than 1 /f and therefore is the determining factor (except 
w 

for a no -memory system). 

The number of samples, N, of the record, on the other hand, 

is determined by the min(/ , p,) (because of aliasing) and therefore is 
w 

given by 
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(4) N = 2. M. max[ jw , J.L} /min [ L , J.L} 

Let us consider) now the question of statistical accuracy as 

related to the input noise bandwidth. First, there is an error due to 

aliasing since we use sampled records instead of continuous ones for 

the calculations. If the sampling rate is kept constant the aliasing 

error increases with increasing bandwidth [5,69]. 

Second, for a given number N of samples the variance of the 

correlation estimate will increase by increasing the noise bandwidth 

if we also increase the sampling rate to account for (no aliasing} 

the expanded bandwidth. This is due to the fact that for a given N 

the min rj-. J.L} is usually smaller for the larger bandwidth and there­
w 

fore M is smaller (since N is constant). 

Third, we will show that the variance of the correlation 

estimates increases with increasing the noise bandwidth. Again, we 

will consider h 1 (T) and the generalization to hn (T 1' ••• T n) can be made 

easily. The variance of h 1 (T) is given by 

a~ = var[y(t)x(t-T)] = var[x(t-T). / h(v)x(t-v)dv} 

assuming that the system is linear with impulse function h(v). 

(If higher order kernels existed in the system they would be treated 

in the same way). We have 

(5) a~ = E {Cx{t-·~·) /h(v)x{t-v)dvJ
2

} -{E[x(t-T) f h(v)x(t-v)dvJ}
2 

or 
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(6) a~= JJh(\l)h(!-L)·E{x(t-T)x(t-T)x(t-\l)x(t-!-L)}d\ld!-1-

t Jh(\I)E[x(t-T)x(t-\1)] d\1}
2 

. 

The average of the product of four gaussian variables can be written 

as 

Etx(t-T)x(t-T)x(t-\l)x(t-!-1)} = E[x(t-T)x(t-T)} • E{x(t-\l)x(t-!-1)} + 

+E {x(t- T )x(t- \1) } • E [x(t-T )x(t-!-1 )} + E [x(t-T )x(t-!-1)} · E [x(t-T }x(t-\1 )} 

and the second term of (6) can be written as 

J Jh( \1 )h(!-1)· E [x(t- T )x(t- \1)} • E [x(t- T )x(t-1-1)} • d\1 

Then, finally we can get 

(7) 

where 

00 

a~= var(x>JJh(!-L)h(\l)<j>(!-1-\l)d!-Ld\1 + [ J h(\l)<j>(T-\I)d\1] 
0 

<j>(u} = 
w sin(w u) 

0 0 

7r · (w u) 
0 

is the autocorrelation of input noise x(t) and w is the bandwidth of 
0 

this noise. 

We propose that a~ increases as the noise bandwidth w
0 

in­

creases. Let us consider some typical systems. Assume h(\1) = 

e -0.\1 (i.e., the first-order linear system with Laplace transform 

1 I (s+a.) ). Then, from equation (7 ), we find that (after some approxi­

mations) the variance a~ increases at least as fast as arctg( w
0

/a.) 

with the noise bandwidth w (see [2 7 ], p. 489 ). 
0 

A revealing case is the identity system for which h(\1 ) = 6(\1}. 

Then, from (7 ), 
w w 2 

= var(x) • ___s: + ( ___s:) 
1T 1T 
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that is, the variance increases with the square of the noise band-

width w 
0 

Therefore, it is very plausible that the statistical error will 

increase if the input noise bandwidth increases. On the other hand, 

as shown in the previous section, the input noise bandwidth should 

cover completely the whole frequency range of the system response. 

We conclude that the input noise bandwidth should be larger than the 

system bandwidth but should not extend much (about one octave) be-

yond it. 

The power level of the flat portion of the input spectrum should 

be set equal to 1 (0 db). This normalization is necessary for the fol-

lowing reason. Kernel h (,-
1

, ..• , 1" ) and cross-correlation 
n n , 

n 
<P (1"

1
, ... , 'T" ) are related through factor 1/P where P is the 

yxx ... x n 

power level of the input noise. Let us examine the dependence of the 

per unit change of this factor on P . We have 

For n = 1 we note that P = 1 will result in a per unit change equal to 

-1 . Therefore, positive and negative errors in the value of P will 

get 1 amplified' the same amount and will tend to cancel out. For n = 

2 w e would have the same effect if P = 2. Therefore, a value of P 

between 1 and 2 will t e nd to minimize the error resulting from 

choosing a single value for P in evaluating the kernels. In all of 

this work we chose P to be 1 because the first-order kernel was 

deeme d the most important and therefore we desired good accuracy 

for it. 
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Noise present at the input or at the output or internally in the 

system could be a serious source of error. We investigate the ef-

feet of such noise on the cross-correlation estimates, starting with 

the case of noise at the output. 

y 

x(t) 
y(t) 

Assume x(t) is gaussian white noise and q, (T) = Po(T). Let us 
XX 

make P = 1. 

To estimate h 1 (1") we need to estimate q,yx(T) : 

¢ (T) = E[x(t-T)y(t)'T"} 
yx 

= E [x(t-1" )y 
1 

(t) }+ E [x(t-1" )y 
2 

(t) }+E [x(t-1" )y 
3 

(t) }+E [x(t-1" )e: (t)} 

= h
1

(T) + <j> (1") 
xe: 

Thus, in general, the error in h
1 

(1") for any T is 

(8) error= <j> (T). 
xe: 

Even if the system had higher order nonlinearities (h4 , h
5

, h
6

, 

... ) their contribution to <j> (T) would be zero because their corre-yx 

spending functionals would be orthogonal to a gaussian white x(t) . 
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If x(t) and e: (t) are independent, then 

<j> (T)=E{x(t)} ·E(e:(t)} =O, 
xe: 

and then 

Let us now consider a case of internal noise which can be 

considered to be "noise at the output. 11 Input e:(t) is added to the out-

put after it passes through a filter with impulse response g(T) . 

x(t) 1 s y(t) 
::> 

t 
e:( t) 

Then, 

y(t) = Jh
1 

(r)x(t-T)dT + Jg(r)e:(t-r)dr , 

which means that possibly the noise e: (t) follows a different path 

through the system than the input, in contaminating the output y(t). 

We assume this to be a linear path. We have: 

<j>yx(T) = E(x(t-T) [Jh
1 

(\J)x(t-\J)d\J + s g(\J)e:(t-\J)d\J]} 

= Jh
1 

(\J)<j>xx(r-\J)d\J + Jg(\J)<j>xe:(T-\J)d\J 

= hl (T) + s g(\J)<j>xe:(T-\J)d\J 

If x(t) and e:(t) are independent, then <j> (r) = E{x(t)}· E{e:(t)} = 0 . 
xe: 

Thus, we see that even in this case the error is zero if the 

input and the noise are independent. Otherwise, the error for any T 

is given by 

00 

(9) error = J g ( \J )<j> ( T- \J )d \J 
0 xe: 
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If the system under study is linear (only h
1 

('T') is nonzero) , 

then it is seen that the determination of the impulse response by the 

white-noise method has a serious advantage over the conventional 

methods. Provided that the contaminating noise is independent of the 

input white noise, the determination of the impulse response is unaf-

fected by the presence of such internal or external noise. 

Let us now compute h 2 ( 'T' 
1

, ,. 2 ) . First, we need to compute 

the linear response of the system due to h
1 

('T') and subtract it from 

the total response. Assume that, as shown before, we computed 

h ~:' (,.) = hl (,.) + 01 (,.) 

where h
1 

('T') is the true h
1 

and o
1 

( 'T') is the error for any ,. . Then, 

Ylinear = J[hl(T)+ol(T)]x(t-T)d,- = yl(t)+yo(t) . 

To find h 2 (,-
1

, T
2

) we compute the second-order cross-corre-

1ation 

"' (,-
1

, 1'2 ) = E{[y(t)-y
1

. (t)lx(t-1'
1

)x(t-T2 )} 
'~'yxx 1near -

= E { [E: (t)+y
2 

(t)+y 
3 

(t)-y 
6 

(t)Jx(t-1' 
1 

)x(t-,. 
2

)} 
;;......-

Consider each term separately: 

r2 = - E { y 
0 

( t )x ( t - T 
1 

)x ( t- 'T' 2 ) } 

= - E { s o
1 

( \! )x ( t- \) )d \! X ( t- 'i l ) X ( t- T 2 ) } 

= -Jo
1 

(v)· E{x(t-v)x(t-T
1 

)x(t-T2 )}dv 

The expected value of the product of an odd number of gaussian vari-

ables is zero. Therefore, 
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13 = E{ Jj'h
2

(v
1

, v
2

)x(t-v1 )x(t-v2 )dv 1dv2 · x(t-,- 1 )x(t-'i2 } 

= S Jhz ( v 1' vz) [ 6 ( v 1- v2) 6 (,. 1-,. 2 )+ 6 ( v 1-,. 1 ) 6 ( v2-,. 2 )+ 

+o(v
1

-,-
2

)o(v2 -,-
1

)Jdv
1
dv

2 

= o(T1-,.2)Jh2(v1' v1)dv1+h2(,-1, ,.z)+h2(,.1' ,.2) 

But Jh
2 

(v
1

, v
1 

)dv
1 

= 0 because we made the constant h
0 

= 0 . 

Siinilarly, the term E[y
3
(t)x(t-'i

1
)x(t-,-

2
)} is zero because of 

the orthogonality of the Wiener 0-functionals. In fact, even if the 

system had higher order nonlinearities, their contribution to 

<j>yxx(,-
1

, ,.
2

) would be zero. 

So, clearly, the error term for <j>yxx('i 1, T 2 ) is <l>xx€ ('i 1, 'T" 2 ) 

for any ('i 
1

, ,-
2

) independent of the order of nonlinearity of the system. 

th 
In general, the error for then order cross-correlation 

<j> (,-1,,.2, ... ,'1") is 
yx ... x n 

( 10) error = <j> (1"
1

, ,-2 , ..• , ,- ) . 
xx ... xs n 

If x(t) and s(t) are independent, then we can decompose 

<j> = E[xx •.• x}· E{d, and the error becomes zero for odd-
xx ••. xe: 

order kernels. 

Let us now consider the error introduced by the contamination 

of the input by noise. 

Gl 
y1 

x-1< ( t ) = x ( t )+ £( t ) 
G2 

Yz 

G3 
y3 
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To estimate h
1 

(T) we need to calculate <j>yx( T) : 

<j>yx(T) = E[x':< (t- T)y(t)} = E[x* (t-T)[y
1

(t)+y
2

(t)+y
3

(t)] } . 

Let us consider each term separately. 

1
1 

= J x '\t- T )y
1 

(t)dt 

= J [ x (t- T )+e: (t- T ) JJh
1 

(\J )[x(t- 'f )+€{t- \J) ] dvdt 

= Jh
1

(\J)dv[<j> ('f-\J)+<j> (T-\J)+<j> (T-\J)+<j> ,.('1"-\J)] 
XX X€ €X €~ 

In the case that x(t) deviates considerably from white noise, 

and/ or the noise e(t) is significantly large, h
1 

(T) can be found more 

accurate ly by solving this integral equation using Fourier transforms 

or numerical methods. Considering that the right hand side is a sum 

of convolution integrals, the us e of Fourier transforms gives a simple 

solution. 

If x(t) does not deviate from whiteness, then 

r
2 

= E [x'\t-,. )y2 (t)} 

= E [[x(t- 'T )+ e: (t- T nSS hz (\Jl' \)2 )x * (t- \)1 )x ''\t- \)2 )d\J 1 d \)2 } 

which, after some manipulation, becomes 

+ <j> ( 'f - \J ' 'T - \)2 )+ <j> ( 'T - \) 1 ' 'f - \)2 )+<j> ( T- \) 1 ' '1"- \)2 ) x£ e: 1 e:xx e:xe: 

Note that it can be shown easily that 
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Therefore, we only need to measure one of these <P' s for any permu-

tation of {x, e:, e:) . 

1
3 

has a similar expression. Skipping the calculus steps, 

13 = JJh3(\11' v2' v3)[<P ('1"-v1, '~"-v2' 'f-v3)+<P +<P +<!> + xxxx xxe:x xe:xx xe:e:x 

+"' +"' +"' +"' +"' +"' +"' +"' +"' + '~"xxxe: '~"xxe:e: '~"xe:xe: '~"xe:e:e: '~"e:xxx '~"e:xe:x '~"e:e:xx '~"e:e:e:x '~"e:xxe: 

+"' +"' +"' l-d\1 dv d\1 '~"e:xe:e: '~"e:e:xe: '~"e:e:e:e: 1 2 3 

We conclude that the error terms increase with the order of 

nonlinearity of the system, and they are given as convolutions of 

signal - error correlations with the Wiener kernels. This suggests 

that errors at the input are much more serious than errors at the 

output. 

Let us examine one such error that occurs naturally during 

a white-noise experiment. This is the error introduced by the trunca-

tion at the gaussian distribution at very low and very high input signal 

levels. 

e 

-k k 

2 
X 

2 

X 

That is, the input signal is not an ideal gaussian, but is defined by 



p (x) = 
r 

1 

,.j2; 

0 

e 

X 

-46-

2 
-y 

if \xI ~ K 

if \xI > K 

Then, we define the experimental input x':'(t) by x':<(t) = x(t)+e:(t) where 

x(t) is ideally gaussian and 

€ (t) = 

0 

K-x(t) 

-K-x(t) 

if \x(t) \ < K 

if x(t) > K 

if x(t) < -K 

Then, from the formulas just derived, we see that the error 

depends on terms such as <j> ('1") , <j> ., ('1") • We have 
XE: €o:. 

<j> (T) = E[x(t)· e:(t+-r)] , 
X€ 

and assuming x(t) to be ideal white noise (infinite bandwidth), we get 

where 

and 

where 

D = K 

2 
X 

00 2 --J (Kx-x )e 
2 

dx 
0 

2 
CO X 

2 s 2 --
- K(K-x) e 

2 
dx . ,j2rr 

Therefore (neglecting higher order kernels), the error in the estimate 

of h
1 

( T ) is of the order of 
2 

X 
00 --

J (K
2 

-Kx)e 
2 

dx 
K 
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The experimental apparatus produces a gaussian that is truncated at 

about three standard deviations (i. e., K = 3). Then the above inte-

gral gives 

error :::::. 0. 02 , 

which is, indeed, small compared to l. 

We conclude that the error introduced by the truncation of the 

gaussian signal is very small for truncations at about three devia-

tions or above. 
>{c 

In any case, we compute h
1 

(T) = h
1

(-r)+o
1

(T), where h
1

(T) is 

the true first- order kernel and o 
1 

( T) the error for any T • 

The response of the system due to the linear kernel is 

Subtracting the linear response from the total response, we obtain 

for the second order cross-correlation, 

Again, let us consider each term separately: 

r
1 

= -E[y
0

(t)[x(t-T
1

)+e:(t-T
1

)][x(t-T
2

)+e:(t-T
2

)]} 

= - E t s o l ( \)) [X ( t- \J )+ € ( t- \J)] [x ( t- T l )+ € ( t- T l)] [X ( t- T 2 )+ €( t- T 2 )J d \J} 

= -Jo
1

(v>f<l> (v--r 1 , v-T2 )+<1> +<!> +<!> ~ +<!> +<!> +<!> + 
. XXX XE:X €XX € vX XX€ X€ €: €X€ 

The expressions for 12 , 13 are similar. 

We notice that the number of error terms increases with the 

order of the computed kernel. The exact determination of the error 

depends solely on the correlations of x(t) with e: (t) which can be de-
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termined by investigating e(t) at the start of the experiment. 

In conclusion, errors occurring at the input are more serious 

than errors occurring at the output or internally and adding to the 

output. Errors at the input, in general, will produce error terms 

which tend to increase with the order of the computed kernel and with 

the order of the nonlinearity of the system. Errors at the output, in 

general, will produce error terms which do not increase with increas-

ing of either of the above-mentioned orders. 

There are additional errors due to the numerical approxima-

tion of the integrals and errors resulting from the un-Gaussianness 

and un-whiteness of the input. If the deviations from Gaussianness 

and whiteness are severe, then the kernesl must be found as solu-

tions of integral equations. 

5. Conclusions 

The experimental characterization of a system by the white-

noise method is possible, but some preliminary calculations and ex-
I 

periments should be made in order to plan the computation intelli-

gently and to reduce the effort required. 

The main difficulty is the fact that computation time increases 

almost exponentially with the order of the computed kernel. Given 

that we are willing to spend a certain amount of computing time, we 

can only treat systems whose nonlinearities allow a Wiener repre-

sentation using only the first few terms. This excludes systems 

with "sharp" nonlinearities such as thresholds, sharp limiters, etc., 

even though we can still treat these systems approximately, and in 
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many cases profitably. 

Since the terms of the Wiener series are orthogonal to each 

other, the model representation improves (in the mean error square 

sense) with the addition of each term. Moreover, as each new kernel 

is calculated and the corresponding term added to the series, it is not 

necessary to re-evaluate the previously determined kernels in order 

to improve the characterization because of the orthogonality of the 

model. In fact, it can be shown easily that if the series is truncated 

th th 
after the n term, the resulting approximation is the best n order 

characterization in the mean square error sense. 

Examination of the nonlinear kernels can reveal nonlinear 

characteristics of the system such as facilitation and refractoriness 

of neuron chains, saturation, rectification, and others. If there is 

structural evidence (which is sometimes the case in neuronal sys-

tems) as to the composition of the system in terms of a cascade com-

bination of two subsystems (linear and nonlinear), examination of the 

linear and nonlinear kernels can reveal the order of this sequence, 

that is, whether it is linear - nonlinear or nonlinear - linear [81 ]. 

The derived model is in the form of a truncated Wiener series. 

It can be put in several other forms according to one's inclinations or 

in order to serve a specific purpose. One such form is in terms of 

linear filters and multipliers [73 ]. In any case, the use of the model 

to predict the response to a certain input is simple, straightforward, 

and numerically quick and stable. 



-50-

CHAPTER IV 

MATERIALS AND METHODS 

1. Structure of the Retina 

The vertebrate retina has five building elements: the 

receptors, bipolar cells, horizontal cells, amacrine cells and ganglion 

cells. Although there are many sub-classifications, all neurons in 

the retina fall into one of these five classes. The vertebrate retina 

has a layered structure and these neurons form specific layers : the 

receptor nuclei form the external nuclear layer; the bipolar cell, 

horizontal cell and amacrine cells form the inner nuclear layer and 

the ganglion cells occupy the most proximal layer of the retina [85]. 

In the inner nuclear layer, the distal layers are occupied by 

the horizontal cells while the proximal layer is occupied by the somata 

of the amacrine cells. The neurons in these three nuclear layers form 

an extensive connecting network. The layers where complex contacts 

are made between the neurons in adjacent nuclear layers are called 

plexiform layers; the external plexiform layer is the site of connection 

of the receptors with the bipolar and horizontal cells, whereas the 

inner plexiform layer is the site of contact of the ganglion cells with 

the three classes of neurons in the inner nuclear layer [85]. 

During the last few years we have seen two breakthroughs which 

greatly facilitated the study of the retina; first, the advance made in 

the dye injection technique and second, the intra-retinal stimulation 

[4,34,35,62,63,83,91]. The use of these two techniques has clarified 

many issues which have been subjects of controversy. 
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We describe briefly the morphology and function of these five 

classes of neurons. 

2. The Receptors: 

These are neurons which convert the energy carried by light 

into electro-chemical energy. The receptors contain photosensitive 

pigments which absorb the incident photons [32a11]. Structurally, a 

receptor consists of three main parts: the outer segment where photons 

are caught, the cell body, and the receptor base where the signal 

produced by the receptor is relayed to the second order neurons. 

The most ubiquitous visual pigment is the rhodopsin or Vitamin 

A aldehyde coupled to the opsin. The retinal is in a form of 11-cis 

and the only action of light is to convert this form into a 11-transform 

[71]. 

The rhodopsin which has absorbed a photon splits into two 

elements, retinal and opsin, following a series of discrete steps. 

Somewhere in these series of transformations, it is coupled to a process 

which increases the impedance of the receptor membrane. This increase 

in the impedance gives rise to a hyperpolarization of the receptor cell 

membrane (it is accepted now that the receptor cell hyperpolarizes by 

photic stimulus [88]) . 

3. Bipolar Cells: 

The bipolar cells are the classical second order neurons which 

connect the receptors with the ganglion cells. The bipolar cells have 

a dendritic expansion which spreads laterally in the external plexiform 

layer. The axonal processes extend down to the inner plexiform layer 
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where arborizations are seen at several discrete levels. Rods are 

thought to be associated with the large field bipolar cell whereas 

cones are thought to be associated with the small field bipolar cells 

[85]. 

Recent studies with dye injecting electrodes have revealed 

that the bipolar cells give rise to a slow potential change in response 

to a stimulus. The polarity of the potential change is a function of 

the spatial distribution of light over the retina [34,64,91]. 

4. The Horizontal Cells 

There are one to four layers of horizontal cells in the verte­

brate retina and they form the distal layer of the inner nuclear layer. 

In an animal such as the frog or the cat the horizontal cells form a 

single layer while in some teleosts at least four layers can be seen. 

In this case, the horizontal cells occupy more than 2/3 of the entire 

inner nuclear layer. 

In the teleost, cones are connected to the cone horizontal 

cell while rods are connected to the rod horizontal cell [84]. In the 

mammal both rods and cones are connected to a single horizontal cell 

[39,82]. The horizontal cells are referred to as the external, inter­

mediate and internal horizontal cells according to their locations in 

the inner nuclear layer. In the teleost retina there is one more class 

of horizontal cells called 'snaky' or 'crazy' cells as no description 

of their nucleus or dendritic extension has yet been obtained [64,84,94]. 

The horizontal cells give rise to a slow potential change in 

response to stimulus [86]. In the case where light of any wavelength 

hyperpolarizes the cell, it is called L-type (or luminosity type) 
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horizontal cell. In the case where light of some wavelength depolar­

izes the cell while light of other wavelength hyperpolarizes the cell, 

it is called a C-type (or color type) horizontal cell [45]. The most 

outstanding functional feature of the horizontal cell is that its 

potential can spread across many cells over a large retinal area [26, 

58,68,83]. It was established that this spread was not due to spread 

of light. There are two schools of thought on the mechanism of the 

lateral spread of the horizontal cell potential; one school suggests 

that a chemical reaction is responsible for the lateral spread [65,66], 

while the other stipulates that the layer of horizontal cells can be 

approximated by a laminar structure of low resistivity in the intra­

laminar space through which the potential can propagate with little 

attenuation [58,64]. As in the receptors, an increase in the impedance 

of the horizontal cell membrane seems to be responsible for a hyper­

polarizing response. 

5. Amacrine Cells 

Amacrine cells are literally axon-less neurons located at the 

innermost layers of the inner nuclear layer. They send dendritic expan­

sions of various shapes into the inner plexiform layer. According to 

the shape of the extension the amacrine cell can be classified into 

groups such as the basket type, brush type or diffuse type. Polyah 

first suggested that the amacrine cells might be involved in the lateral 

transmission of signals in the retina. By dye injection it was revealed 

that the amacrine cells give rise to spike potentials superposed on a 

slow potential change. Not much is known about the amacrine cells 

[34,91). 
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6. Ganglion Cells 

The ganglion cells form t he last stage in the vertebrate 

retina. Their axons reach the lateral geniculate body wherefrom the 

signal is fed into the central nervous system. The ganglion axons 

carry spike discharges. The ganglion cells send their dendritic trees 

into the inner plexiform layer where they make complex contacts with 

the bipolar and amacrine processes. The ganglion cells are classified 

into several types according to the shape of their dendritic trees. The 

~ynaptic connections of the outer plexiform layer (among receptor, hori­

zontal and bipolar cells) have the following configuration. 

Each rod and cone forms a proximal terminal called a spherale and a 

pedicle respectively. Inside a spherale or a pedicle is a complex 

structure composed of the bipolar dendrites and horizontal cell dendrites. 

The simplest schematic model of this structure is as shown below [84,85], 

7. Receptive rield 

In 1940 Hartline [30] showed that a retinal ganglion cell 

receives signals from a very large retinal area. A spot of light placed 

l-2mm away from the spike recording site (presumably the location of the 

electrode) could still excite the ganglion cell. This sensitive area 

is called the receptive field of a ganglion cell and is roughly circular 
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in shape. 

In 1952 Kuffler [40] made another important observation. He 

showed (in the cat) that the receptive field is not a uniform area 

but is organized in two concentric discs, one called the receptive 

field center and the other the surround of the receptive field. In 

one type of unit a response is observed to the onset of a light 

stimulus a t the center, while the s ame stimulus causes a response at 

the offset of light if the stimulus is delivered to the surround. This 

is an 'ON-center' (OFF-surround) unit. There is a complementary unit 

called an 'OFF-center' (ON-surround) unit. The center and surround do 

interac t to give rise to a complex response pattern. Obviously a 

stimulus which give rise to an 'OFF' di scharge acts as a depressor. 

Later, various receptive field types such as a color coded or double 

opponent fields have been described [33~90]. However, the concentric 

field is the most basic unit in the visual pathways. It is easy to 

imagine that there are two concentric and overlapping areas, one 

excitatory and one inhibitory which give rise to a conc entric fie ld. 

This is the model proposed by Rodieck and Stone [70a]. 

During the past few years it has become possible to record 

responses from the bipolar cells. In all bipolar cells so far examined 

(except in the mudpuppy) it has been shown that they also possess a 

concentric receptive field, i.e. a central spot of light gives rise 

to a polarization of one polarity and a surround gives rise to a 

response of the oppos i t e polarity [34]. If a spot gives rise to a 

depolarization it is called an 'ON-center' bipolar cell. If a spot 

gives r i s e to a hyperpolarization it is called an 'OFF-center' bipolar 

cel l . 
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There is evidence to show that the amacrines form a complex 

receptive field. But the field is more complex and subtly organized. 

8. Catfish Retina 

The catfish is a teleost of older origin. They bear no scales 

and have a pair of whiskers. The catfish is a bottom feeder. The 

channel catfish inhibits clearer water and is known as the chick of 

the channel. 

Detwiler [14b] lists the dimensions of the layer of the verte-

brate retina. The catfish retina had the least developed inner plexiform 

layer suggesting a rather simple retinal transformation of the optical 

information. Morphologically the catfish retina does not differ 

drastically from the retinas so far examined . 

The catfish retina has cones and rods. There are three layers 

of horizontal cells in the retina [K. Naka, personal communication]. 

The external horizontal cells form the outermost layer. It has been 

shown functionally that the external horizontal cells receive signals 
~~ 

from 625 ym(cones [60,61]. The intermediate horizontal cells are very 

thin and inconspicuous. No electrical activity has been recorded from 

this class of horizontal cells. The third class - the 'snaky' horizontal 

cells - is not a true horizontal cell according to the morphological 

definition [84,85] . This horizontal cell runs between the layer of 

the true horizontal cells and the layer of amacrine cells. They do 

not take a straight course but often bend into the horizontal layers. 

Although its nucleus has been located no dendrite has been observed . 

The electrical responses have been recorded for the snaky horizontal 

cell [N . Ma tsumoto, personal communication]. 
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The catfish external plexiform layer is the thinnest one so 

far reported [14b]. No other structural details have yet been 

examined. 

9. Experimental Methods 

All experiments described in this thesis utilized the retina 

of the catfish (Ictalurus punctatus) and were performed by Dr. Ken Naka. 

The preparation of the retina and the recording techniques have been 

described by Naka and his associates [55,61,63]. In this work the 

following stimulus-response experiment were performed: 

Stimulus 

Light 

Light 

(Current injected into horizontal 
cell) 

Light 

Light 

Response 

(extracellular) receptors (mass 
response 

(intracellular) horizontal cell 

(extracellular) ganglion cell 

(extracellular) ganglion cell 

ERG 

Fig. 4.1 shows a schematic diagram of the catfish retinal neurons and 

indicates the stimulating and recording sites for the systems under 

study in this work. 

The stimulus and response data were recorded on magnetic tape 

(to be later transmitted to a digital computer) and also by a pen writer 

for preliminary screening of results. The optical system has been 

described by Naka and Nye [61]. The light source was a Sylvania glow 

modulator 1B59/R-1130B. 
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White-noise of limited bandwidth was obtained by the following 

process. A type 1390-B Random-Noise Generator (General Radio Company, 

West Concord, Mass.) was used which produces a gaussian random signal 

that has a flat power spectrum from 5Hz to 500 KHz (five decades of 

frequency). This electrical signal was recorded on magnetic tape 

(AMPEX FR-1300) and subsequently copied on another tape at a much 

slower speed. This process of copying at a slower speed was repeated 

until the bandwidth of the resulting signal was in the desired range 

for our systems (essentially d.c. up to 25 Hz or 50 Hz flat power 

spectrum). 

10. Data Processing 

The data processing system is shown in schematic form in Fig. 

4.2. This system has been developed at the California Institute of 

Technology and has been extensively used for processing biological data 

[1~18,24,48,49]. A detailed description can be found in [18,44,50]. 

LORI is basically a special-purpose computer and multi-channel 

A/D converter preprocessing the experimental data for on-line trans­

mission to the control computer (IBM 360/44). Continuous signals such 

as the white-noise inputs and slow potentials were sampled at a rate 

of 250Hz and transmitted to the central processor where they were stored 

in auxiliary memory (2314 disc units). Neural spike data such as the 

ganglion response were transmitted and stored in the TOE (Time of Event) 

mode which catalogs the time of occurrence of a neuron firing. TOE 

data were transmitted at a clock rate of 50KHz corresponding to an 

accuracy of 20 microseconds. 
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The next step in the data processing procedure involved inter­

action with the central computer (IBM 360/44) through the IBM 2250 

display terminal. This interaction included "eyeballing" of the 

data and qualitative determination of some features of the input and 

output records (drift of the average value, nonlinearities, etc.). 

Preliminary analysis such as auto and cross-correlations and histo­

gramming were also performed at this stage. In general, the interactive 

nature of the system proved a valuable system feature at this stage. 

In the case of the TOE data obtained from the ganglion response 

the following procedure was followed in order to convert these records 

into continuous functions of time. The white-noise stimulus record 

was formed by concatenating ten i dentical white-noise records. The 

ganglion responses to the ten runs of identical white-noise were super­

imposed and histogrammed in time to produce a PST (post-stimulus time) 

histogram of the ganglion discharge in response to this white-noise 

input. Thus the ganglion response was converted to a continuous func­

tion of time and the difficulty of dealing with the discrete spike 

events was overcome. Such a procedure resulted in a waveform with 

some artificially introduced high frequencies which were subsequently 

filtered out (smoothing) through the use of an appropriate Hanning 

window [5]. Specifically, 

The input and output data were then treated for reduction of 

long-term drifts. This was accomplished first through 'eyeballing' 

which indicated the type of drift and second through subtracting the 
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appropriate mean square curve. Such curves, variably used, included 

2 linear trends (a. + bt), parabolas (a+ bt + ct) and exponentials 

(e-a(t +b)). 

Power spectra for the input and output records were subsequently 

computed. Based on the results of these computations the input data 

were multiplied by a constant in order to normalize the power level of 

the flat portion of the input spectrum equal to one (0 db) (see Chapter 

III). Similarly, the response data were multiplied by a constant to 

produce an output power spectrum whose power level at intermediate 

frequencies (3Hz to 7Hz) was equal to one (0 db). This normalization 

was necessary in order to be able to make meaningful comparisons of 

the response power spectra for the different systems under study. 

Following these normalizations of the input and output records 

the system kernels {hi} were computed. Starting with the zeroth order 

kernel (h ) the system response (described by that kernel) to the white­
o 

noise input was calculated and subtracted from the total response 

before the next higher order kernel was computed [41]. The responses of 

the derived model to the same white-noise input (as used in the experi-

ment) were calculated for both the linear and nonlinear models as well 

as their corresponding power spectra. Often, model responses to 

specialized inputs such as steps and sine waves were also computed. All 

this processing was done utilizing both computers shown in Fig. 4.2 

(IMB 360/44, IBM 360/75) and peripheral devices. 

The kernels were computed from cross-correlation between input 

x(t) and the system response z(t) that remained at each stage (after 

subtracting), by use of a simple rectangular rule, 



¢ (K,~t, •.• ,K ~t) 
zx ••. x n 
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N 

-
1
--- L z(i~t)x(i~t- K1~t)•••x(i~t- Kn~t) 
,pn 

u . i=l.. 

where N is the number of samples in the record, 1.. = max{K
1

, ... ,Kn} and 

· {K
1

, ... ,Kn} are between 0 and m (m~t is the ex tent to which the kernels 

are computed). 

The convolution integrals involved in the computation of the 

model response were calculated using Simpson's rule. 

The computation of the power spectra was done taking into 

a ccount many of the subtleties and difficulties of this procedure [5,69] . 

The computational procedure used is outlined below: 

The data are in terms of array {xi, i=l, • • • ,N} of the signal 

samples given every ~t. To reduce the variance of the statistical 

estimates [5,69 ], the record is broken into three segments, each of 

duration (N~t)/3, the power spectrum of each segment is calculated and 

the three power spectra are averaged to produce the final estimate. For 

each segment the power spectrum is calculated as follows. The mean 

and autocovariance estimates are, 

c 
m 

x=..!. 
N 

1 
(N-m) 

N-m 

I 
i=l 

where m = O,l,2, ••• ,M and M ~ 100. The initial spectral estimates are 

given by 



A = m 

M-1 

co + 2 I 
i=l 
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+ ~ cos(m7r) - (l1t) 

where m = 0,1,2 ... ,M. These spectral estimates are, in turn, smoothed 

by a Hanning window, to produce the final estimates 

S = 0.5 A + 0.25 (A +l + A 1 ) m m m m-
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CHAPTER V 

TRANSFER FUNCTIONS OF LIGHT ..... RECEPTOR SYSTEMS 

1. Introduction 

The receptors (rods and cones} are transducers which 

convert the energy carried by photons into an electrical signal 

[ 71, 88] , specifically, a hyperpolarization of the receptor cell 

membrane. This scheme is supported by a large amount of data 

obtained during the last few years [ 3, 4, 91 J . 

Although no direct evidence has been presented to indicate 

that the hyperpolarization of the receptor membrane is the only 

instrument in the information transmission to the next neuronal 

layer, all circumferential evidence indicates that this potential 

controls the liberation of the transmitter substance at the 

receptor terminals [ 9, 10]. 

Intracellular recording for the receptors has been reported 

by several authors [3, 4, 91] • The stability of recording which is 

essential to detailed analysis has not been satisfactory except, 

possibly, in the case of the turtle eye [ 3, 4 J. Therefore, in this 

work, we avoid the torturous path of intracellular recording from 

the receptors and base our analysis on the mass receptor 

response obtained through stable extracellular recordings. 

Sillman et. al. [ 74, 7 5] have presented convincing evidence that 

the mass response (or ERG) obtained after treating the retaina 

with sodium aspartate is indeed the late receptor potential which 

reflects the receptor membrane hyperpolarization. 
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Presently, there is enough additional evidence obtained from 

the carp retina (Witkovsky & Ripps, personal communication) and 

the skate retina [ 20] to show that this extracellularly recorded 

potential is due to the receptor potential. We noticed that within 

a limited intensity range, the response of the receptor to a step 

input appears to be a linear transformation of the input ( 74, 75 J . 

This conjecture is also supported by results of (linear) analysis in 

the cat retina [ 70b J. 

A recent report by Baylor, Fuortes and O'Bryan [ 4 J 

suggests that there is (in turtle) a receptor-to-receptor interaction 

possibly through the teledendrone. In our Golgi study of the cat-

fish retina we failed to impregnate such a process [unpublished 

results]. Although we have no evidence supporting or not supporting a 

receptor-to-receptor interaction, we feel that the catfish receptors 

are simpler in their organization than the ones in the turtle. 

In this chapter we obtain nonlinear dynamic transfer 

functions of the receptor response due to light patterns which we 

shall extensively use to study the receptive field behavior of the 

ganglion cells. These light stimuli are spots (0. 3 mm diameter), 

annuli (0. 5 mm inner diameter, 5 mm outer diameter) and uniform 

light intensity over the whole retina. The transfer functions are 

obtained by modulating the stimulating light intensity, in each case, 

in a white-noise fashion and following procedures described in 

previous chapters to obtain the nonlinear, dynamic characterization 

of the system in terms of a series of Wiener kernels. 
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The receptor field is of the order of 5 microns in diameter 

and therefore several thousand receptors are being stimulated in 

each stimulus case considered here. The recordings are extra­

cellular and they indicate the mass behavior of the surrounding 

receptor cells. The contributions of other cells besides the 

receptors are being supressed with the addition of sodium 

aspartate to the preparation. 
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2. The White-Noise-Derived Models 

The procedure to be followed in obtaining the system non-

linear models through white-noise stimulation has already been 

described in previous chapters. 

Preliminary harmonic analysis of the system response to 

white-noise of 50 Hz bandwidth revealed a cutoff of about 10 Hz 

(with some variation of this value for the different cases of 

stimulus and intensity levels). In view of these findings, the white-

noise bandwidth chosen to perform the characterizing experiments 

was 25 Hz. The system memory is of the order of 200 msec and the 

record length, therefore, necessary for a statistical error of 5 tf.. 

(standard deviation) is approximately 40 sec. This was calculated 

following the formulas derived in Chapter I I I. 

Consequently. the white-noise experiments were performed 

for all stimulus cases; spot, annulus and uniform light. The 

average intensity level was fixed for each experiment. Two such 

average light levels were used; one was a high level of average 

11 2 
intensity of 1. 5 x 10 photons/mm • sec and the other a low 

10 2 
level of 2. 5 x 10 photons/rmn •sec. This average intensity 

level was modulated in a white-noise fashion, over a dynamic 

range of approximately 1. 8 logarithmic units. Thus, considering 

that the system has an operating range of about 3-4 log units, we 

tested the system over its entire range (for two widely different 

"bias points" by performing two characterizing white-noise tests. 

one in the low operating range (near cut-off) and the other in the 

high operating range (near saturation). 
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The data obtained from these experiments were then treated 

for slow drift removal (as described in Chapter IV). The input­

output records were sampled every 8 msec, a high enough rate to 

produce a Nyquist folding frequency of 62. 5 Hz which is sufficient 

to describe white-noise of 25 Hz bandwidth. Consequently the first 

order (linear) and second order (nonlinear) kernels were computed. 

Figure 5 . 1 shows the first order kernels for each case and 

for both low and high average intensity levels (the latter for spot 

and uniform light only). The latency is about 15 msec in the case 

of uniform light of low average intensity and decreases to about 

10 msec for high average intensity. In the case of spot 

stimulation the latency is about 15 msec for high levels and 12 msec 

for low intensity levels. For annulus stimulation (low level) the 

latency is about 14 msec. 

From these first order kernels we note that all systems 

under study are underdamped and that the final recovery is 

larger (longer memory) for system annulus- receptor than it is for 

systems spot- receptor or uniform-receptor. The characteristics 

of the latter two systems are, as expected, very similar. 

Tables 5. 1, 5. 2, 5. 3, 5. 4, 5. 5 describe the second order 

(nonlinear) kernels for all systems under consideration. We will 

see later that the response contribution of these kernels is small and 

that the system, within the tested range of 1.8 log-units, is nearly 

linear. The interpretation of these kernels has been presented in 

Chapter I I in terms of how past portions of the input signal interact 
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RECEPTOR RESPONSE 

. (!} 
(!} . (!} 

(!}~ 
10 

UNIF~RM LIGHT 

I I 
0.08 SEC 

ANNULUS 

C2 SP(jT 

Cl 0.48 
SEC 

Fig. 5.1. First order kernels for several Light+ Receptors systems. 
Al: high mean intensity, A2: low mean intensity, B: low mean intensity, 

L ~ Cl: low mean intensity, C2: high mean intensity. Low mean intensity 
\ is 2.5 x 1010 photons/mm2•sec and high mean intensity is 1.5 x 10

1
1 

photons/mm2•sec. 
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STIMULUS <WHITE NOISE) 

RECEPTOR RESPONSE 

FIRST ORDER MODEL <LINEAR) 0.~ SEC 

0 
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1-
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<n ' 
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LIGHT SP!H 
CLa~ MEAN INTENSITY) 

. . 
't .. .._ """'fh 

• ~ 1!1 e tIC!) 1!1 e 1:!:1 I!Je t!I!Je l!ltJ 

• 
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e STIMULUS (WHITE NOISE) 

• RECEPTOR RESPONSE 

• FIRST ORDER MODEL <LINEAR ) 

I " " 
It '" 

•• • ·** 
• I 

• I 

• I 

.. 
"'* ·. 

.. .. 

• SECOND ORDER MODEL ( NONLINEAR ) .. .. .. 
~ .. ._ . . .. .. . 

+ .,. 

"' 
., ... ., .. ' ., 

'""' 
"'""" "' " "8· 

" ) 

lll 
o:s~--------~~~.~;-------~2~.5~----~5~.~o--~7.~5--~to~.7o--~~~~--~~~~~.o 

FREQUENCY HZ 

Fig. 5.2. Experimental and model responses to white-noise and corres­
ponding power spectra. System Spot + Receptors. Mean intensity 
2.5 x 1010 photons/mm2•sec. 
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SINUSOIDAL RESP~NSES RECEPTOR LIGHT SPOT 

R2 
Rl 

A 

82 

81 

8 

C2 

Cl 

c 

<LD~ MEAN INTENSITY) 
EXPERIMENTAL 

MODEL 

7 HZ 

4 HZ 

Fig. 5.3. Experimental and model sinusoidal responses. System Spot + 

REceptors. Mean intensity 2.5 x 10 10 photons/mm2 •sec. For model, 
A: stimulus, Al: linear-model response, A2: nonlinear-model response, 

etc. 
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STIMULUS CWHITE NOISE) 

RECEPTOR RESPONSE 

FIRST ORDER HODEL CLINEAR ) D.ll SEC 

LIGHT SP~T 
CHIGH MEA~.INTENSITY)~ ~~ 
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Fig. 5.4. Experimental and model responses to white-noise and corres­
ponding power spectra. System Spot ~ Receptors. Mean intensity 
1.5 x 1oll photons/rnm2•sec. 
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RECEPTOR 

MODEL 

LIGHT SPOT 
CHIGH MEAN INTENSITY) 

13 HZ 

17 HZ 

21 HZ 

Fig. 5.5. Model sinusoidal response s. System Spot ~ Receptors. Mean 
i ntensity, 1.5 x loll photons/mm2•sec. A: stimulus, Al: linear-model 
response, A2: nonlinear model response, etc. 



SE
CO

ND
 

OR
DE

R 
KE

RN
EL

 

0 
8 

16
 

2
lt 

32
 

40
 

48
 

5
6

 
(:

4 
72

 
80

 
88

 
~
6
 

1
0

4
 

11
2 

12
0 

12
8 

13
6 

14
lt

 
15

2 
16

0 

()
 

1
4

 
8 

10
 

1
6

 
16

 
-1

 
1

0
 

16
 

24
 

-a
 

0 
11

 
1

t 
3

2
 

-7
 

-8
 

0 
11

 
1

6
 

40
 

-1
 

-6
 

-a
 

0 
10

 
16

 
48

 
3 

-1
 

-6
 

-a
 

-1
 

H
l 

1
5

 
5

6
 

4 
4 

c 
-6

 
-
9

 
-2

 
9 

1
5

 
~
4
 

4 
5 

5 
0 

-7
 -

1
0

 
-3

 
9 

1
4

 
7

2
 

2 
4 

6 
6 

0 
-a

 -
1

1
 

-3
 

8 
13

 
80

 
1 

2 
4 

6 
6 

-1
 

-9
 -

1
2

 
-4

 
7 

11
 

88
 

1 
1 

2 
4 

6 
5 

-3
 -

1
0

 -
1

2
 

-4
 

5 
9 

I 

S
6

 
1 

1 
1 

2 
4 

6 
3 

-4
 -

1
1

 -
1

2
 

-4
 

4 
8 

-.
.J

 
-..

J 

1
0

4
 

0 
1 

1 
0 

1 
4 

5 
2 

-5
 -

1
0

 -
1

0
 

-3
 

4 
6 

I 

11
2 

-2
 

c 
1 

0 
0 

1 
3 

3 
-1

 
-4

 
-a

 
-7

 
._

1 
3 

4 
1

2
0

 
-2

 
-2

 
0 

1 
0 

-1
 

1 
3 

2 
0 

-3
 

-4
 

-3
 

1 
2 

2 
1

2
a 

-1
 

-2
 

-2
 

-1
 

0 
-1

 
-1

 
0 

2 
1 

0 
-1

 
-1

 
0 

2 
1 

0 
13

6 
0 

-2
 

-3
 

-2
 

-1
 

0 
-1

 
-1

 
-1

 
0 

0 
0 

1 
2 

3 
2 

G
 

-2
 

l'
t4

 
1 

0 
-2

 
-3

 
-2

 
-1

 
-1

 
-1

 
-2

 
-1

 
-1

 
-1

 
1 

3 
5 

5 
3 

-1
 

-3
 

1
!2

 
0 

1 
0 

-2
 

-3
 

-
.3

 
-2

 
-1

 
-2

 
-2

 
-2

 
-1

 
-1

 
1 

4 
6 

6 
3 

-2
 

-4
 

1
6

0
 

c 
1 

1 
0

. 
-2

 
-4

 
-3

 
-2

 
-1

 
-1

 
-2

 
-2

 
-2

 
. -

2
 

0 
4 

7 
6 

3 
-3

 
-5

 

T
ab

le
 5

.3
 

V
al

ue
s 

o
f 

h 2
(T

1
,T

2).
 

A
nn

ul
us

 +
 

R
ec

ep
to

rs
. 

10
 

2 
M

ea
n 

in
te

n
si

ty
, 

2
.5

 x
 1

0 
ph

ot
on

s/
ro

m
 

•s
ec

. 
A

xe
s 

in
 m

se
c.

 



-78-

R STIMULUS <WHITE NOISE) 

0 

"? 

[DO 

DO" 
cr a: 
I-
u 
UJ"' a..-
rn ' 
a: 
UJ 
::<: 

ie~ 

7 

li;! 

Ill 
o:s 

RECEPTOR RESPONSE 

fIRST ORDER MODEL C LINEAR ) D.ll SEC 

SECOND ORDER HODEL <NONLINEAR) 

• 

I!J 
I!J 

1.25 

LIGHT ANNULUS 
C L~W MEAN INTENSITY) . . .. 

I!J .. 

., STIMULUS (WHITE NOISE> 

• RECEPTOR RESPONSE 

• FIRST ORDER HODEL CLINEAR ) 

·* t 
.. "'* * . ·.' 

' . ' 
•t 

·' 
1: .. 
• 
·~ . . .. 

• + 

.. 
I!J 

I!J 

"' .. I!J 

'!t .. 
I!J I!J .. 
"~',.c .. 

I!J ..... 
I!J • 

.. 
~· 

z SECOND ORDER HODEL CNONLINERR ) • • . • . .. 

2 .5 5.0 7 .5 10.0 
FREQUENCY HZ 

. . 
·~ 
• s -· . . . \ 

•• ..... ; "1-. • 
I a •a 

15.0 20 .0 30.0 50.0 

Fig. 5.6. Experimental and model responses to white-noise and corres­
ponding ~8wer spectra. System Annulus ~ Receptors. Mean i ntensity, 
2.5 x 10 photons/mm2·sec. 



R2 

Rl 

R 

82 

81 

8 

C2 

Cl 

c 

SINUSOIDAL RESPONSES 

10 HZ 

7 HZ 

ll HZ 

-79-

RECEPTOR LIGHT ANNULUS 
CLOW MEAN INTENSITY) 

MODEL 

13 HZ 

17 HZ 

21 HZ 
Fig. 5.7. Model sinusoigal responses. System Annulus+ Receptors. 
Mean intensity 2.5 x 10 1 photons/ mm2•sec. A: stimulus, Al: linear­
model response , A2: nonlinear model response, etc. 



SE
CC

N
D

 
OR

DE
R 

KE
RN

EL
 

0 
8 

16
 

2
4

 
3

2
 

4
0

 
4

8
 

5
6

 
6

4
 

12
 

8
0

 
8

8
 

~
6
 

1
0

4
 

1
1

2
 

1
2

0
 

1
2

8
 

1
3

6
 

1
4

4
 

1
5

2
 

1
6

0
 

0 
1 

8 
1 

2 
1

6
 

0 
1 

2 
2

4
 

-1
 

c 
2 

3 
32

 
-2

 
-2

 
0 

2 
2 

4U
 

-2
 

-2
 

-
l 

c 
1 

1 
4

8
 

-1
 

-1
 

-2
 

-2
 

-2
 

-1
 

-2
 

56
 

1 
0 

0 
-2

 
-3

 
-4

 
-4

 
-5

 
6

4
 

2 
2 

1 
0 

-3
 

-5
 

·-7
 

-6
 

-7
 

7
2

 
3 

2 
2 

2 
0 

-4
 

-1
 

-a
 

-a
 

-1
 

8
0

 
2 

3 
3 

3 
2 

-1
 

-5
 

-s
 

-9
 

-7
 

-6
 

8
8

 
1 

2 
2 

3 
3 

2 
c 

-4
 

-1
 

-1
 

-5
 

-4
 

I 

S
6

 
-2

 
1 

2 
3 

3 
1 

-3
 

-5
 

-5
 

-2
 

0
0

 
0 

4 
-3

 
0 I 

lC
4

 
-3

 
-2

 
0 

1 
2 

3 
4 

4 
2 

-1
 

-3
 

-3
 

-2
 

-1
 

1
1

2
 

-3
 

-3
 

-1
 

i)
 

2 
3 

4 
4 

4 
2 

0 
-2

 
-2

 
-1

 
0 

1
2

0
 

-1
 

-3
 

-3
 

-1
 

1 
2 

3 
4 

4 
4 

2 
0 

-2
 

-2
 

0 
1 

1
2

8
 

1 
-1

 
-3

 
-2

 
0 

2 
3 

3 
3 

3 
2 

1 
-1

 
-2

 
-1

 
1 

2 
1

3
6

 
1 

0 
-2

 
-3

 
-2

 
0 

2 
3 

3 
2 

1 
0 

-1
 

-2
 

-2
 

-1
 

2 
4 

14
4 

0 
1 

0 
-2

 
-3

 
-1

 
1 

2 
3 

2 
0 

-1
 

-2
 

-2
 

-2
 

-2
 

0 
3 

5 
1

5
2

 
0 

0 
1 

0 
-2

 
-2

 
-1

 
1 

2 
2 

0 
-2

 
-3

 
-3

 
-2

 
-2

 
-1

 
1 

4 
6 

1
6

0
 

1 
0 

1 
1 

0 
-1

 
-2

 
-1

 
1 

2 
1 

-1
 

-4
 

-4
 

-3
 

-2
 

-1
 

-1
 

2 
5 

6 

T
ab

le
 

5
.4

 

V
al

ue
s 

o
f 

h 2
(T

1
,T

2).
 

U
n

if
o

rm
+

 R
ec

ep
to

rs
. 

10
 

2 
M

ea
n 

in
te

n
si

ty
, 

2
.5

 x
 1

0 
ph

ot
on

s/
ro

m
 

•s
ec

. 
A

xe
s 

in
 m

se
c.

 



-81-

R STII1ULUS (WHITE NOISE) 

FIRST ORDER MODEL CLINEAR) 

~ SEC<INO OflOEf\ I<XIEL <•><LINEARJ 

CLClW 

• 9 
.. 

• • 

.. 

., STIMULUS (WHITE NCJJSE) 

• RECEPTOR RESPONSE 

+ FIRST ORDER MODEL CLINEAR> 

• SECOND ORDER MODEL C NONLINEAR> 

• 
I~ 

I 

• 
I 

O.ij SEC 

.. .. 
.. .. .. .. .. .. • ... " .. .. 

• 
.... ... ... .. .. 

.. 
..... ~ .., .. 

.. .. ... .. .. .. , • 

Fig. 5.8. Experimental and model responses to white-noise and corres­
ponding powe r spectra. System Uniform ~Receptors. Mean intens i ty, 
2.5 X wlO photons/nnn2 •sec. 
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Fig. 5.10. Experimental and model responses to white-noise and corres­
ponding power s pectra. System Uniform+ Receptors. Mean intensity, 
1.5 x 1011 photons/rnm2•sec. 
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model responses , A: stimulus, Al: linear-model response, A2: nonlinear­
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to produce a nonlinear "correction" at the output of the system 

at present t ime. 

The rest of the figures show white-noise r e sponses of all 

systems , both experimentally obtained and model-predicted {for 

both linear a nd nonlinear models) for a portion of the white-noise 

used in the characterizing experiment. Also, these figures show 

power spectra for both experimental and model responses as well 

as some sinusoidal responses predicted by the model and a few 

obtained experimentally. 

From the experimental and model white-noise responses we 

note that these systems are almost linear since it appears that the 

addition of the nonlinear terms changes very little the linear model 

response. Actually, the nonlinear model response does improve the 

model performance if one carefully considers peak-to-valley ratios 

and other inconspicuous details. A measure of the goodness o f each 

model is obtained in terms of the mean square error over the entire 

white-noise record length for each model. These are given below, 

whe r e h {a constant) is just the average value of the sys tem 
0 

r esponse (i.e. , the zeroth order Wiener kernel). 



SYSTEM 

Spot ..... Receptor 

Low level 
High level 

Annulus-Receptor 

Low level 

Uniform-Receptor 

Low level 
High level 

{h } 
0. 

100 
100 

100 

100 
100 
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Model 

linear, {ho,hl} 

25 
22 

19 

21 
17 

nonlinear {h
0

, h
1

, h
2

} 

14 
12 

16 

15 
13 

The error for model { h
0

} is normalized to 100 ( orbitrary units) 

and then the errors for the linear and nonlinear models are measured 

with respect to it. We observe that the systems are, indeed, 

almost linear with some small nonlinearities as evidenced by the 

small decrease in error with the addition to the model of the nonlinear 

"correction" terms. 

The power spectra of the white -noise responses of both 

experimental and model signals show the frequency response for 

each system and the fact that the model frequency response agrees 

extremely well with the experimental one. 

The model (and some experimental) sinusoidal responses 

reveal certain interesting characteristics . For system uniform 

light .... receptor a saturation phenomenon is exhibited (as expected) 

at the high intensity level; also unsymmetrica 1 on-off characteristic 

(for positive and negative response slopes) and a shift of response 
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average value with a shift in frequency {for certain high frequencies). 

These nonlinear phenomena will also be observed for the horizontal 

cell response and will be discussed in the next chapter. The 

sinusoidal responses for the spot light-+ receptor system (high 

intensity level) show a strong saturation characteristic (Fig. 5. 5), 

while for low intensity level they are fairly linear. This behavior 

is fairly typical of retinal systems. 

Figure 5.12 shows the power spectra of the white-noise 

responses of all systems. The spot light-+ receptor and annulus 

light-receptor systems become much faster responding (rise time 

etc.) at high intensity levels. The cutoff frequencies for each 

system are (approximately): 

Spot .... receptor 

low level 
high level 

Uniform-receptor 

low level 
high level 

Annulus .... receptor 

low level 

6Hz 
11Hz 

7 Hz 
11Hz 

6Hz 

We have no high intensity level data for system annulus 

light-receptor from this same unit (and preparation). However, 

data from other units indicate that for this system, also, the 

frequency response cutoff increases with increasing the average 

level of intensity. We conclude that, for all systems considered 
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Fig. 5.12. Power spectra of experimental responses to white-noise 
for severa 1 Light+ Receptors systems. Low mean intensity is 
2.5 x 1010 photons/mm2•sec and high mean intensity is 1.5 x 10ll 
photons/mm2osec. 
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here, increasing the mean light intensity makes the system faster­

responding dynamically (i.e., shorter rise time, etc.). The high 

frequency asymptote has a slope of about 12 db/ octave indicating 

that the light--receptor system is of second order (to the extent 

that the system is considered linear). 
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3. Conclusions 

In this chapter we obtained nonlinear transfer functions for 

systems, light spot--receptor response, light annulus--receptor 

response and uniform light-- receptor response, and for two widely 

differing average intensity levels. The transfer functions obtained 

are very satisfactory in that they predict the system behavior 

accurately for a number of crucial tests. These tests are 

comparison of experimental and model white-noise responses, power 

spectra and sinusoidal tests. 

Some system characteristics revealed by these models are 

the following: 

1) The receptor responses evoked by the light stimuli used 

{spot, annulus and uniform) are nearly linear within the tested 

dynamic range. 

2) Small nonlinearities exist such as saturation at high intensity 

levels, unsymmetric positive a;ld negative response slopes to sinewave 

stimuli and a shift of average response level with a shift in stimulus 

frequency for the high frequency range {about 13 Hz). 

3) For all systems considered the latency decreases as the 

average light level is increased from a maximum of about 15 msec 

to a minimum of about 10 msec. 

4) All light-- receptor systems studied here become considerably 

faster at high intensity levels. The cutoff frequency varies from 

about 6 Hz at low levels to about 11 Hz at high mean intensity levels. 
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5) The high frequency asymptote for all light-receptor systems 

considered here is approximately 12 db/octave, indicating a second 

order system. 
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CHAPTER VI 

THE LIGHT ~ HORIZONTAL CELL SYSTEM 

1. Introduction 

In this chapter we examine the dynamic aspects of the S­

potential generating mechanism and we derive a model of the system that 

transforms uniform light intensity (varying in time) into the H-cell 

potential. This model satisfactorily predicts quantitatively the 

dynamic, nonlinear features of the physical system. The system trans­

fer function is derived by two different methods; one is the white­

noise method and the other is the traditional approach of guessing a 

set of (nonlinear) differential equations and shaping them so that 

they fit a certain set of data. 

In the first approach the system is subjected to a white-noise 

stimulating light, presented uniformly over a large retinal area (disc 

of Smm diameter), and the resulting potential of the H-cell is recorded. 

The appropriate mathematical model is derived which can describe the 

dynamic behavior of the system over a range of two log-units of input 

light intensity. The derived model is the dynamic input-output relation­

ship and it does not describe the underlying physicochemical processes 

that give rise to the S-potential. However, some insight on the system 

structure and internal mechanisms can be suggested by interpreting 

the derived Wiener kernels in conjunction with physiological and histo­

logical information available on the system (see Chapter III). 

In the second approach we use the usual approach of guessing 

the transfer function and trying to fit a limited set of data such as 
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step responses and sinusoidal responses. This alternative model is 

derived in terms of a set of nonlinear differential equations. These 

equations describe separately the behavior of each component system 

such as photoreceptors, synapses, adaptive and inhibitory mechanisms, 

etc. The form of the equations is determined from partial previous 

knowledge of the characteristics of these sub-systems and supplemented 

appropriately so as to correctly fit a set of experimental step and 

sine wave responses. Emphasis is placed on the nonlinearities of the 

system. The derived model, in this case, is valid for the total 

operating range of input light intensity (about four log-units). 

Finally, the performance of each model is evaluated and the 

two approaches (the white-noise and the conventional one) are compared. 

It should be mentioned that Spekreijse and Norton [79] have 

applied a linear analysis technique (sinusoidal excitation) to obtain a 

linear transfer function for the carp light + S-potential system. 

2. Horizontal Cell Responses to Pulse and Sine Inputs 

All S-potentials recorded from ·the catfish retina were hyper­

polarizing excursions of the H-cell membrane voltage. In the figures 

they are plotted upwards for the hyperpolarizing direction. 

Figure 6.1 shows three sets of pulse responses of the H-cell. 

In each of the three sets, the initial light level, on which the light 

pulses are superimposed, is different (being highest for C and lowest for 

A). In all three cases, after proper normalization, the experimental 

data follow the tanhlog curve for the maximum value of the H-potential 

as a function of the light intensity, as described by Naka and Rushton 
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STATE 
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Fig. 6.2 
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Experimental H-cell responses for dark-adapted (DA) and light-adapted 
(LA) cases. (Input steps are 0.4 log-units apart). 
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[55,56,57] and by Naka [60]. Details of this transfer function have 

been discussed by Lipetz [43). 

Figure 6.2 shows additional data recorded from a single unit 

both in the dark (DA) and light (LA) adapted cases. 

Examining the dynamic characteristics of these pulse responses 

we note the following: 

a) The on-slope of the H-potential is less steep than the 

off-slope. 

b) There is an overshoot in the on-phase which is greatest 

for intermediate values of the voltage. 

c) There is an undershoot in the off-phase in the light 

adapted case. 

d) There is a saturation effect for high light levels. 

e) The on-slope tends to be constant and independent of the 

levels of stimulus and response. 

f) For high stimulus levels there is an "overhung" effect in 

the off-phase. That is, the potential starts to turn off 

much later than the stimulus turns off. 

g) In the dark-adapted case there is an inflexion point in 

the off-slope which seems to depend on the voltage level. 

h) There is a higher response gain for the dark adapted system 

than the light adapted one. 

i) The response-intensity relation is the tanhlog function. 

These characteristics of response waveform can be seen in the H-cell 

responses recorded from other animals including cats and tench and they 

are not exclusive features of the catfish H-cell responses. 
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Figures 6.3 through 6.7 show H-cell responses to sinusoidally 

varying light intensities (and for various average light levels) for 

the range of frequencies to which the system responds. This covers the 

range from d.c. to about 20Hz. It shares a common feature of biological 

systems in that it acts as a low-pass filter with certain nonlinear 

characteristics. 

Figure 6.1 shows the different average light intensities with 

respect to the S-curve, which were sinusoidally modulated. Modulation 

depth, m, is defined as the ratio I /I • m av 

Cut-off 
Intensity 

Intensity 

The records in Fig. 6.3 were obtained by sine-wave light whose 

average intensity is at point K (Fig. 6.1) and with a modulation of about 

0.6. There are several prominent nonlinear dynamic features in these 

sinusoidal responses. 

a) At frequencies higher than about 3Hz there is a pronounced 

slow-on, fast-off effect. This effect is much less pronounced at frequen-

cies lower than 3Hz. The effect persists even for "small signals" 

without diminution. 

b) A saturation effect at low frequencies (Fig. 6.3A) for high 

response levels. 
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c) As the stimulus frequency shifts from a low frequency to a 

high frequency there is, consistently, an upward shift in the average 

(d.c.) value of the response. (Fig. 6.3, E,F,H) 

In Figure 6.4 the bias point is at K, as in Fig. 6.3, but the 

modulation depth is nearly 1.0. Again, we observe clearly the d.c. 

shift resulting from a change in frequency (Fig. 6.4, A,B,C) the 

slow-on, fast-off effect and a cutoff phenomenon at low frequencies 

(Fig. 6.4, F,G). 

In Fig. 6.5 the bias point is at L (Fig. 6.1) and the modulation 

depth is 0.8. We note that the slow-on, fast-off effect is less pro­

nounced. The response d.c. shift with a stimulus frequency shift is 

also diminished greatly. Thus, it appears that both these phenomena 

occur mainly at higher average light levels (level of point K (Fig. 

6.1)). Figure 6.5, F,G,H show only the H-cell responses to sinusoidal 

stimuli (the stimulus signal is not shown). 

In Fig. 6.6 the responses were recorded by sinusoidal light 

with the bias level at L (Fig. 6.1) and modulation depth nearly 1.0. 

Again, we note that the slow-on, fast~off effect is less pronounced 

than that at higher light levels. Also, the d.c. shift of the response 

with frequency is greatly reduced. At ~ow frequencies, where the gain 

is high, there is a saturation effect for the high swing and a cutoff 

effect for the low swing. 

In Fig. 6.7 the bias level is at K (Fig. 6.1) and the modulation 

depth is 0.8. We note the phenomena of slow-on, fast-off and d.c. 

shift with frequency. In addition, in the frequency range of 15-18 Hz 

there is another nonlinear phenomenon of alternately big and small 
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negative swings. This shows the presence of a strong second subharmonic 

component in the response. This phenomenon was observed only in the 

frequency range of 15 to 18 Hz and disappeared for the rest of the 

frequencies. This effect was noticed several times during the course 

of the experiments but not always. The exact conditions for the 

existence of this phenomenon are not known but it was noticed that it 

occurred at high average light levels. Naka has reported this effect 

[59]. It was not reported by Spekreijse and Norton [79]. 

All these dynamic features have been observed consistently 

throughout the course of the experiments. They are nonlinearities 

which we will incorporate in the differential equation model. These 

nonlinearities can suggest very useful insights to the underlying 

structure of the system, as will be seen. 

3. Model Derived from White-Noise Test 

A nonlinear dynamic model of the light + S-potential system 

was derived by performing a white-noise experiment. It was found that 

this model, inside its range of validity, predicted quite well all 

the dynamic features we discussed in the previous section. 

The stimulus was a uniform light given uniformly upon the 

retina and modulated in time in a gaussian-white-noise fashion. The 

average intensity was at point K (Fig. 6.1). The bandwidth of the 

white-noise was 50Hz. The dynamic range of the light stimulus was 

about 1.8 log units. This means that 

I + 3cr 
~a~v ______ = 1.8 

I - 3cr av 
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where I is the average light intensity and cr is the standard av 

deviation of the gaussianly distributed amplitude of the input 

signal. Clearly this dynamic range of the input covers only part of 

the total operating range of this system. Therefore, we expect the 

derived model to be valid only within this limited range. 

Preliminary harmonic analysis of the catfish H-cell response 

showed that the system has a cutoff frequency at around 9Hz. There-

fore, a white-noise bandwidth of 50Hz was chosen in order to cover 

completely the system bandwidth. From the H-cell sine responses, 

by performing Fourier analysis, the number of terms in the Wiener 

series was decided. These responses with their slow-on, fast-off 

characteristic, 

T 

3 
4T 

have the following harmonic content 

A 
n = 1 

2 
n 

sin(n7T • ~) 

where A is the normalized coefficient of the nth harmonic. The follow­
n 

ing table gives the amplitude values for the first five harmonics with 

the fundamental normalized to one. 
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Table 

n 1~1 

1 1.0 

2 .35 

3 .11 

4 0 

5 .04 

It is suggested from this preliminary analysis that we only 

need to compute up to the third order kernel in order to get a 

satisfactory model. 

Applying the results of Chapter III we estimated the memory of 

the system at about 150 msec and the length of the needed record to 

about 1 minute. This record length would give a statistical error of 

less than 5% in the estimation of the kernel values. 

Figure 6.8 shows the computed first order kernel h
1

(T). This 

kernel represents the impulse response of the linear system which is 

the best fit (in the mean square sense) for the white noise input-output 

record. From h
1

(T) we deduce that the system has a delay of about 

15 msec and it is slightly underdamped. h1 (T) also gives an estimate 

of the response rise time, and therefore an estimate of the frequency 

response. 

Table 6.1 lists the values of the second order kernel h2 (T
1

,T2). 

This is interpreted, as in Chapter III, to signify the deviations from 

linearity due to interaction between different (in past time) portions 
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Fig. 6.8 

Plot of first order kernel h
1

(T) for Light~ Horizontal system. The 
ordinate units are (normalized) mv/(photons/mm2 sec) sec). The average 
light level is at K (Fig. 6.1) and corresponds to about 1.5 x 1011 
photons/mm2 sec. 
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of the input. The values of the third order kernel h
3

(T
1

,T
2

,T
3

) are 

not easily tabulated but they were computed. 

These three kernels completely specify the Wiener functional 

series up to the third order term. In effect, the set {h1 ,h2 ,h
3

} is 

the nonlinear dynamic model of the system under study. 

At this point the following questions arise: How good is 

this model? How does one measure "goodness" of a nonlinear model for 

which the principle of superposition does not apply? 

According to the Wiener theory and the white-noise philosophy, 

which we have discussed in Chapter III, the criterion of goodness of 

a nonlinear model is how well it performs when tested with a white-noise 

input. Such an input tests a system with a great variety of input 

functions and is therefore a general and stringent test of "goodness" 

of a given model. In fact, Wiener showed that two systems are equiva­

lent if and only if they respond identically to a white-noise input. 

Therefore, "goodness" of model is measured by obtaining the white-noise 

response of the model and comparing it to the response of the system 

under study when it is excited by the same random noise. Such a com­

parison can be partially made in terms of measuring the power spectra 

of the responses of the two systems (model and physical) to white 

noise as well as measuring the agreement of the waveshape of these 

responses in terms of the mean square deviation. 

Other criteria of "goodness" of the model consist in comparing 

the model responses to such specialized inputs as pulses and sine 

waves to the response of the actual system to the same inputs. 

Figure 6.9 shows samples of white-noise responses of the H-cell 
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Fig. 6.9. Experimental and model white-noise responses. A: light 
stimulus, B: experimental H-cell response, C: first order model response, 
D: second order model response, E: third order model response. Average 
light level is at K (Fig. 6.1). 
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and a sequence of model responses to the same input for the first, 

second and third order Wiener models. We note that the first order 

model, which is the linear model is quite good in duplicating the 

H-cell response. This indicates that for this limited dynamic range 

of the input the system is almost linear. This suggestion is not 

quite correct if one carefully examines rise and fall slopes and peak 

to valley relationships. 

The second order model appears to be almost the same as the 

first order one with slight differences. Let us examine the mean 

square error for the different model cases. The zeroth order model 

{h0} is just a constant equal to the average value of the response. 

The mean square error for this model is normalized to be 100 (arbitrary) 

units. The error is measured over the entire length of the white-noise 

record. The mean square error for the first order model is 26 units 

and the error for the second order model is 18 units. There is, 

therefore, substantial improvement by adding the second order nonlinear 

term. The improvement is mainly due to correcting rise and fall times 

of the response and peak to valley relationships. This will become 

clear when we examine the sine and step responses for this sequence of 

models. 

We should have expected that the third order model would provide 

even better agreement with the experimental response. In fact, the 

mean square error, in this case, is 68 units. The reason for this 

worsening of the model is the following: The system is almost linear 

and therefore when the linear and quadratic responses are subtracted 

from the total response the remainder has a very high content of noise. 
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This very low signal to noise ratio introduces a large error in the 

computation of the third order crosscorrelation. 

The second order model is sufficiently good as far as the white-

noise test is concerned. Moreover, the computation of a third order 

kernel and its subsequent use in the Wiener model series takes incon-

veniently long computational times. Therefore, in all the following 

work, we computed the Wiener series up to the second order term. This, 

in almost all cases, has produced a satisfactory nonlinear model. 

Figure 6.10 shows the power spectra of the white nois.e stimulus, 

the H-cell response, and the first, second and third order kernels . 

It is seen that the system has a cutoff frequency around 9Hz. The 

second order model improves the performance of the linear model 

significantly in the high frequency region. The third order model 

deviates considerably in the low frequencies but seems to improve the 

performance for the high frequencies. This can also be noticed from 

the white noise response records (Fig. 6.9). 

Figure 6.11 shows the (light adapted) linear and nonlinear 

model responses to pulse inputs of different strengths. The intensity 

of the strongest pulse is outside the range of validity of the model 

and it is expected to deviate considerably from experimental results. 

The general characteristics of the experimental pulse responses are 

present in these model responses such as the overshoot, undershoot, 

rise time and fall time. Moreover, the nonlinear model responses (Fig. 

6.ll,A2) follow the tanhlog curve as shown (Fig. 6.ll,C,B), have 

sharper overshoots and exhibit the slow-on, fast-off effect at the 

higher response levels. Even though in these general features the 
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Power spectra for experimental and model white-noise responses for 
Light~ Horizontal system. Average light level at K (Fig. 6.1). 
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A2 

INTENSIT Y I 

LOG I 

100 MSEC 
L.__J 

o linear model 
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Fig. 6.11. Model step responses for (light-adapted) Light ~ Horizontal 
system. Stimulus pulse levels are 0.4 log-units apart (highest pulse 
is outside the range of validity of the model). Al: linear model 
responses, A2: nonlinear model responses, B: H-cell (peak) response vs. 
log (intensity), C: H-cell (peak) response vs. intensity. 
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model characteristics agree well with the experimental ones, if consid-

ered in more detail the model responses to step inputs are not quite 

satisfactory. This is due to the fact that the higher harmonics, 

which are essential for sharp input changes such as steps, are not 

present in the second order model. 

Figures 6.12 and 6.13 show sinusoidal model responses for a 

range of frequencies that covers the system bandwidth. The average 

stimulus level is higher in Fig. 6.12 and lower in Fig. 6.13 than 

the average stimulus level of the white noise test but the modulation 

ranges of both are within the range of validity of the model. 

I< Range of validity of model 
~t 

lA t B I C ,o IE .,.. 
Fij• 6. 12 

Input 

< > Intensity 

I~ Fi9.. 6.13 >'f 
The average input level of the white noise is at C and the validity 

range extends from A to E. The sinusoidal responses of Fig. 6.12 are 
which 

produced by a stimulus whose average/is at B and is modulated between A 

and D. The responses of Fig. 6.13 are due to a stimulus whose average 

is at point D and whose range of modulation extends from B to E. 

Figure 6.12 shows clearly the improvement of the model response 

that the addition of the nonlinear term produces (trace W2) over the 

linear model (trace Wl). All the nonlinear features we observed in 

the experimental sinusoidal responses (previous section) are present in 

the nonlinear model responses. These include, 
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Fig. 6.12. Model sinusoidal responses for Light~ Horizontal system. 
L: stimulus, Wl: linear model response, W2: nonlinear model response. 
Average stimulus level is higher thanK (Fig. 6 .1). 
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~ig. 6.13. Model sinusoidal responses for Light ~ Horizontal system. 
L: stimulus, Wl: linear model response, W2: nonlinear model response. 
Average stimulus level is lower thanK (Fig. 6.1). 
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a) A saturation phenomenon at low frequencies. 

b) A slow-on, fast-off effect (for frequencies higher than 

4Hz) persistent even for "small signals." 

c) A shift upwards of the response d.c. level as the frequency 

is increased. 

d) The correct gain and phase characteristics. 

In Fig. 6.13 where the average level is lower but the modulation 

range the same, the gain is higher due to the logarithmic transforma­

tion of the input. Moreover, the nonlinear effects of slow-on, fast-off 

and response d.c. shift with frequency are less pronounced at this 

lower level. This is in good agreement with the experimental results 

discussed in the previous section of this chapter. 

In conclusion, the white-noise derived nonlinear model can 

predict quantitatively within its range of validity, all the nonlinear 

dynamic effects of the light-to-horizontal cell system satisfactorily. 

Therefore, the set of kernels (h1 ,h2) is taken to be a reasonably 

good model of this system. 

Figure 6.14 shows power spectra of H-cell responses obtained by 

stimulating the system with white-noise light of 25Hz bandwidth. The 

two ca ses correspond to two widely different average intensity levels, 

1 log-unit apart, the low one being near the lower flat portion of 

the S-curve and the high one being near the higher flat portion of the 

S-curve. We note that, by increasing the mean light level, the system 

becomes f aster-responding (cutoff frequency changes from about 8Hz to 

about 12Hz) and also it becomes more underdamped. 
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4. Structural Model of the Light + S-potential System 

The model derived by the white-noise method is valid within a 

limited operational range. Moreover, it reveals little about the 

system cellular structure. It is mainly a mathematical description 

of the dynamic input-output transfer characteristic. Nevertheless, 

the white-noise method is a systematic approach to characterizing a 

nonlinear system; it can provide some information about the system 

internal mechanisms; it is uncomplicated to apply once certain pre­

liminary decisions (Chapter III) are made; and it gives good results. 

On the other hand, the classical approach to nonlinear model 

building consists of the following: A set of differential equations 

is chosen which is assumed to describe the different processes taking 

place within the system ; this set is picked on the basis of limited 

information about these subsystems and in order to provide for some of 

the system features; a set of experimental system responses is chosen, 

usually step and/or sinusoidal responses; the differential equation 

model responses to these same inputs (step and/or sines) are then 

compared with the experimental ones; based on this comparison the para­

meters and/or the form of the equations or the equations themselves 

are changed trying to obtain a better fit to the data; the process 

terminates when the. modeler decides that a satisfactory fit has been 

obtained. This approach has been very popular among modelers of 

biological systems [cf. DeVoe, 14c]. 

The whole procequre (and its outcome) depends solely on the 

skill andimagination of the modeler and it is not systematic beyond what 

is described above. In general, it tends to be time-consuming. The 
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resulting model is usually good only for the chosen set of responses 

(steps/sines) and not satisfactory for other types of input. Often, 

as new information about the system is found by the experimenter, it 

is necessary to change radically all the equations and start the modeling 

process from the beginning . 

In this section we follow the classical approach and obtain a 

model for the Light + Horizontal cell system. The set of equations is 

fitted to the step and sine responses of this system and they cover the 

total operating range of the system (about 4 log units of input range). 

The main subsystems are shown below in their functional order 

along with inhibitory and adaptive paths 

Light Phot 
------------;.~ chemi 

Proce 

o-
cal 
sses 

t 
~ 

Photo-
receptor 
Membrane 

tl\i:_nhibi 

~" EJ Hori-
Synapse ~~..~~~---~----~;.~ zontal 

Cell 

adapt 

There is evidence (N. Matsumoto, personal communication) that the 

horizontal cell membrane can be modeled by 

r -c 
2 

where resistance r increases during excitation, and the photoreceptor 

membrane can also be modeled by 
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I 
-c 

1 
v 

p 

where resistance R increases during excitation [4] . Resistive path 
p 

~ was added in order to take account of possible inter-receptor 

interaction, receptor-horizontal cell interaction and negative feed-

back mechanism within the photoreceptor [cf. 4 and Joe Brown, personal 

communication]. ~is controlled by the photoreceptor voltage Vp and 

R is controlled by the photochemical processes. 
p 

These membrane models give the tanhlog characteristic for both 

the photoreceptor [3] and horizontal cell steady state responses [58], 

since, 

(1) 
eJ•R.nlO 1 

eJ•R.nlO + 1 = 2 1 + tanh R.nlO •J 
2 

r 
where J = log10 R and it is assumed that the excitation is related 

linearly to the change in r. 

It has been assumed in the literature [71] that the light 

intensity undergoes a logarithmic transformation almost instantaneously 

in order to accommodate a large range of input. We note, however, that 

if the existence of a low pass filter (with an appropriately small 

cutoff frequency) is stipulated preceding this log device (or tanhlog 

device, to account for cutoff and saturation which are present in all 
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physical systems) then the experimentally observed d.c. shift of 

response with frequency is conveniently explained. In fact, by noting 

the magnitude of shift as a function of frequency the characteristics 

of this low pass filter can be estimated. On the other hand, if the 

input is log-transformed instantaneously we would need to stipulate 

additional nonlinear mechanisms to account for the d.c. shift of the 

response (see Fig. 6.15). 

Figure 6.15 shows how the cascade combination of a low pass 

filter and a logarithmic device produces a d.c. shift of the output 

as the frequency changes. This is due to the fact that the slope of 

the logarithmic function changes rapidly and monotonically and therefore 

the negative-going swing of the larger~amplitude low frequency gets 

amplified more than the smaller-amplitude high frequency. Figure 6.15 

shows graphically how this effect occurs. In the model the filter 

transfer function is chosen such that the experimentally observed 

shifts as a function of frequency are obtained. 

Let us consider how the resistance of the horizontal cell membrane 

changes when excited by the photoreceptor. Naka and Rushton [58] have 

modeled this resistance as a parallel combination of conductances, gi, 

horizontal cell 
membrane 

• • • . . .. 

which are switched on the network as excitation is received (thus 

increasing the membrane conductance). For our modeling purposes we can 
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Fig. 6.15. Subsystem configuration that explains the response d. c. shift 
with a change of frequency (Light~ Horizontal system). The tanh-log 
characteristic is plooted and it is shown how the d.c. shift results for 
two different input frequencies (one low and on e high). 
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stipulate either an increase or a decrease of the membrane conductance 

and obtain the same effect (tanhlog relationship). Here we assume 

that conductance decreases with excitation as is the case for the 

receptor membrane. We will stipulate a dynamic equation for this 

process which is physiological and explains very naturally the slow-on, 

fast-off phenomenon which we observe in the experimental records. 

Conductance gi can be thought of as being a transmembrane 

channel which in the open state has conductance gi and in the closed 

state has zero conductance. Let the total number of channels of the 

membrane be N and the number of closed channels be n. In the case of 

~ excitation the total membrane resistance is 

1 1 ri -- = --- = (darkness membrane resistance) 
gO Ngi N 

while in the case of some excitation the membrane resistance becomes 

(2) 
1 1 ri 

r = - = ---==.,--- = -- • 
g (N-n)gi N 

Letting 

p 

1 

1 - n 
N 

n 
N 

where by our definitions, follows that 0 < p < 1, and 

(3) 

We note that p is the proportion of closed channels. Letting Q 

be the forcing agent that acts upon the channels to close them and which 

is proportional to the photoreceptor action on the horizontal cell 
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membrane, we stipulate the following dynamic equation for the closing 

of the channels: 

(4) ~ = (Q - p) . (1 - p) dt ...__,_.. ...__,_.. ~ 

Rate of Unused Proportion 
channel agent of open 
closing channels 

This equation has a definite physical meaning. It says that the 

rate at which channels are closing is proportional to the amount of 

unused agent that is present and to the proportion of open channels. 

It is an expression similar to the well known formula of conditional 

probabilities for the occurrence of a composite event. 

Equation (4) successfully produces for the model the slow-on, 

fast-off characteristic. This is, effectively, done by changing the 

time constant of the system appropriately (term ~-p) in the equation). 

We list the differential equations that describe the photo-

chemical processes, the photoreceptor, the synapse and the horizontal 

cell. Input intensity is R, output horizontal cell voltage is VH, 

and photoreceptor voltage is V • p 

(5) 
0 

u 

0 

s 

ELECTROCHEMICAL PROCESSES 

w2 (R-S) - 2J w 
e e e 

s 

H tanh (u/H) where J e 

J 
eo 

(1-V )V 
p p 



(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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PHOTORECEPTOR 

0 

T7 RpO PO + Fp0 (Vp - Vpr) - RpO 

Rp is equal to S unless S < RpO' in which case Rp = RpO 

1 
-= GL R 

L 

where 

SYNAPSE 
0 

Ql2 = vP + Tl2 v p 

0 

Tbp (Ql2 - p) (l - p) 

0 

Q24 = p + T24P 

HORIZONTAL CELL 

Equations (5) and (6) describe the dynamics of the photochemical 

reactions caused by incident light R. The output of these reactions, 

S, acts upon the photoreceptor membrane to change (increase) resistance 

R . This initial stage is described by a second order system whose 
p 
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damping ratio J , is a function of the photoreceptor output voltage, e 

V • The function for J is chosen such that J is lowest for the p e e 

intermediate range of V • Output S can be thought of as a substance 
p 

whose production is caused by the incident light R and which acts upon 

the photoreceptor membrane to change its resistance . The rate of 

0 

production, S, of this substance has saturation and cutoff levels as 

expected of any physical process. This is depicted by equation (6). 

The dynamics of the photoreceptor membrane model, which was 

proposed earlier, are given by equation (9). Resistance R at the 
p 

absence of excitation, that is the "darkness resistance" of R , is 
p 

R We assume that this resistance changes as a function of the po 

membrane voltage V (equation (7)) but, at any time, R cannot be less 
p p 

than R po Such a control of the "darkness resistance" was found 

necessary in order to produce the experimentally observed inflexion 

point of the off-response to pulses (dark adapted system). This formu-

lation also accounts for photoreceptor adaptation. V is the resting pr 

voltage of the photoreceptor membrane and P is the dark-adapted 
0 

"darkness resistance" of R • Equation (8) describes the inhibitory 
p 

feedback on the photoreceptor as a change of resistance ~ controlled 

by the membrane voltage. 

The dynamic characteristics of the synapse have been modeled 

simply by equation (11) which has been explained earlier as describing 

the rate of channel-closing of the horizontal cell membrane. The input 

to this process is Q12 which is proportional to the photoreceptor 

voltage V and its rate of change (equation (10)). Similarly the output 
p 

of the synaptic process is proportional top and its rate (equation (12)). 



-130-

This dependence of the input and output of the synaptic mechanism was 

introduced in order to obtain the correct frequency response for the 

overall system. 

Equation (13) describes the dynamics of the resistance change 

of the H-cell membrane. A second order system is used whose damping 

is controlled by the membrane voltage VH. The damping as a function 

of VH is chosen such that the damping is lowest for the intermediate 

range, in accordance with the experimental observations. Resistance 

r is changed by agent Q24 and at steady state is given by 

where R is the no-excitation resistance (in accordance with the con­o 

ductance-channel model described above). 

Equation (14) describes the dynamics of the H-cell membrane 

that has been proposed earlier. The horizontal cell voltage, VH is 

the final output of the system. 

The parameter values are: 

27T(l5) -1 
Jeo 0.06 H 5000. w = sec = = e 

T7 = 1 
27T(3) sec Po 0.5 F = 10.0 po 

Tll= 0.04 GA = 0.16 G = 0.7 
B 

R = 12.0 T 1 = 27T(30) sec. 1 p 

1 1 1 
T1z= sec Tb = 27T(30) sec ' Tz4 = 27T(l4) sec 27T(l4) 

27T(l5)sec -1 
JHo= 0.05 1 

WH TH 27T(l3) 

Rz 5.0 R = 
0 1.0 
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The photoreceptor potential Vp and the horizontal cell potential VH 

are normalized from zero to one. 

We call the model described by these equations a 'structural 

model' because it depicts an organization of interacting subsystems. 

The parameter values of the equations were adjusted so that we would 

obtain a good fit of the experimental responses to pulse and sine 

stimuli. 

Figures 6.1 and 6.2 show experimental responses of the H-cell 

potential to pulses of light whose strength increases successively by 

0.4 log-units. Both the dark adapted (DA) and light adapted (LA) cases 

are shown. Plots of the steady state response and transient peak as 

a function of the logarithm of the intensity are shown. 

Figure 6.16 shows the responses of the structural model to 

pulses whose strength increases by 0.4 log units. Both the model 

photoreceptor (A',B') and horizontal cell (A,B) responses are shown for 

the dark adapted (A,A') and light adapted (B,B') cases. It is noted 

that the agreement between model and experiment is extremely good. All 

the dynamic features discussed earlier are present in the model 

responses. These include: 

a) The response-intensity relation being the tanhlog function 

(graph at bottom of Fig. 6.16). 

b) Overshoot for the on response which is maximum for the 

intermediate response range. 

c) Slow-on, fast-off phenomenon. 

d) Overhang effect for high intensity levels. 

e) Slope inflexion of the off-response in the dark adapted case. 
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A HORIZONTAL CELL 
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fig . 6.16. Structural model step responses (photoreceptor and H-cell). 
Stimulus steps are 0.4 log-units apart in magnitude. Plots A' ,A are 
~or the dark-adapted and B,B' for the light-adapted system. A plot of 
response vs. log (intensity), for both the dark-adapted and light­
adapted cases, is also shown. 
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f) Undershoot of the off-response for the light adapted case. 

g) Higher response gain for the dark adapted system than the 

light adapted one (due to the logarithmic transformation). 

h) Saturation effect for high response levels. 

i) The on-slope tends to be constant and independent of the 

levels of stimulus and response. 

The photoreceptor responses predicted by the model cannot be 

checked because of lack of any intracellular photoreceptor data from 

the catfish. When such data become available the model equations can 

be changed so that these responses will also be fitted. For the time 

being the photoreceptor output of the structural model is simply an 

hypothesis. Some comparison can be made with the results of Chapter V. 

Figure 6.17 shows the model sinusoidal responses for the system 

frequency bandwidth range. Trace L is the input light, trace S is 

the output S-potential and trace P is the photoreceptor response. The 

photoreceptor response is speculative, as explained, and can be ignored 

(nevertheless, compare with results of Chapter V). The model responses 

clearly mimic well the experimental responses to the same stimuli. In 

particular, we note: 

a) The slow-on, fast-off effect for frequencies higher than 4Hz 

present even for "small signals." 

b) The d.c. response shift as the frequency changes. 

c) The correct gain and phase characteristics. 

Figure 6.18 shows the model response (trace C) to a white noise 

input (trace A) and the experimental response (trace B) to this same 

input. Trace D is the photoreceptor response and can be ignored. 
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4 Hz 22Hz 

6 Hz 20Hz 

8 Hz 18 Hz 

10Hz 16 Hz 

12 Hz 14 Hz 

Fig. 6.17. Structural model sinusoidal responses (photoreceptor and 
H-cell). L: light stimulus, S: H-cell response, P: photoreceptor 
r esponse. 
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c 
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A 

Fig. 6.18. Structural model and experimental responses to white-noise 
(photoreceptor and H-cell). A: light stimulus, B: H-cell response 
(experimental), C: H-cell response (structural model), D: photoreceptor 
response (structural model). 
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Fig. 6.19. Power spectra for experimental and structural model 
white-noise responses. 
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0bviously the model response for a white noise input is not satisfactory. 

One reason is that for the particular run shown in Fig. 6.18 the 

model is more light adapted (hence an obvious saturation effect for 

the positive peaks in the model response) than the physical system 

itself. This unsatisfactory model response to white-noise is not un­

expected since this structural model was designed to fit step and sine 

responses. This must be contrasted with the white-noise derived model 

which produced excellent results for white-noise stimuli and less 

satisfactory results for the step stimuli (the sinusoidal responses of 

the white-noise derived model were excellent). 

Figure 6.19 shows the power spectrum densities of the white-noise 

stimulus, the experimental response and the model response for the 

structural model. The agreement between model and experimental spectra 

is good. This indicates that the model has the correct frequency response. 

5. Discussion of the ~ Models 

Figure 6.20 shows gain and phase characteristics of the sinus­

oidal responses for the physical system, the white-noise-derived model 

(Wiener model) and the structural model. The phase characteristic of 

the structural model is different (approaches asymptotically -2TI at 

high frequencies, indicating a fourth-order system) because we have 

not incorporated the system latency (delay) in this model. If this 

delay (about 15 msec.) is added to the structural model the phase 

characteristic agrees well with the experimental one. 

From the high frequency asymptotic slope of the phase character­

istic of the experimental (or Wiener model) curve we can calculate the 

system latency. The phase shift $ due to a latency T, as a function of 
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A STRUCTURAL MODEL (WITHOUT DELAY) 

Fig. 6 •. 20. Gain and phase plots of Light -+ Horizontal system obt<'l.i.ned 
from experiments and from the two types of model; the white-noise-derived 
(Wiener) model and the structural model. There is no transit delay 
incorporated in the structural model (phase plot). 
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frequency f, is 

and T = M_ 
/J.f 

We obtain IJ.¢ = 7r for IJ.f ~ 30Hz and therefore 

7f 1 
T = 30 • 27r = 0.016 sec 

1 . -
27f 

which is in agreement with the latency measured from the first order 

kernel in a previous section (15 msec.) . 

Gain and phase measurements on a nonlinear system such as this 

do not have a clear meaning since superposition does not apply and the 

harmonic content at any frequency is high. The measurement of phase, 

especially, is a matter of the individual's choice and should be 

interpreted very carefully and with reservation. 

It is obvious from the description presented so far that the 

white-noise derived model is superior from the functional point of 

view. That is, assuming that we are interested only in the input-output 

relationship, this model is a much more accurate descriptor of the 

system behavior. Its drawbacks are that it is valid only for a limited 

operational range and it does not account for the internal structure 

of the system. These two disadvantages are not present in the struc-

tural model which in turn is simply not a very good model for any 

other input besides pulses and sines. Moreover, the structural model 

is extremely time consuming in its design and it may have to be com-

pletely torn down in the light of new experimental information about 

the system. 
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In the rest of this work we utilize the white noise theory 

exclusively and derive very satisfactory models for several 

neuronal systems that contribute to the functional organization of 

the catfish retinal stages. 

6. Conclusions 

In this chapter we have derived nonlinear dynamic transfer 

functions for system LIGHT+ HORIZONTAL. Two models were derived; 

one, using the white-noise approach and the other using the conventional 

method of fitting a set of equations to a set of data (step and sine 

res ponses). The "goodness" of each model was tested with a variety of 

tests including steps, sine waves, white-noise, power spectra, gain and 

phase characteristics. Within its range of validity the white-noise­

derived model produced much more satisfactory results overall than the 

''structural" model. The structural model has a good performance for 

the set of data for which it was designed (steps and sines) but poor 

performance for other stimuli (white-noise). The main additional 

conclusions about the LIGHT+ HORIZONTAL system are: 

(1) The system within a limited range (1.8 log units) is nearly 

linear (with some "small" nonlinearities). 

(2) There are several nonlinearities persistent even under small 

signal conditions, which include: 

(a) Slow-on and fast-off response slopes for high frequencies 

and high mean intensity levels. 

(b) An upward d.c. shift of the response with an increase 

in frequency. This nonlinearity also is more prominent 

at high mean intensity levels. 
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In addition, there are several "large signal" nonlinearities 

such as saturation, cutoff and others (see previous 

sections). 

(3) The system becomes considerably faster-responding as the 

mean light level is increased (cutoff frequency of about 

8Hz at low levels and about 12Hz at high levels). Also 

the system becomes more underdamped as the mean intensity 

level is increased. 

(4) The high frequency asymptote has a slope of about 24 db/octave 

indicating (to the extent that the system is considered 

linear) a fourth order system. 

(5) The system has a latency that decreases from about 20 msec 

at low intensity levels to about 15 msec at high levels. 

Since we have found the same change in latency with mean 

light level for the LIGHT ~ RECEPTOR system, it is suggested 

that the RECEPTOR ~ HORIZONTAL latency does not change 

with mean light level. It is further suggested that the 

RECEPTOR~ HORIZONTAL system has a latency of about 5 msec. 
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CH.APTER VII 

SPATIAL DISTRIBUTION OF HORIZONTAL CELL POTENTIAL 

1. Introduction 

It was noticed by early investigators that the amplitude of the 

horizontal cell response (a potential usually referred to as S -poten­

tial) to a fixed intensity flash increased as the illuminated area of the 

retina was expanded [26, 68]. This phenomenon was referred to as 

the 'area effect' and it served to distinguish the receptor response 

from the horizontal cell response. Although the waveform of the re­

ceptor response is very similar to that of the horizontal cell response 

[3, 91 J the amplitude of the receptor response is practically independ­

ent of the size of area illuminated [cf. Baylor, et al., 4 ]. 

Naka and Rushton [58] have described in detail the lateral 

spread of the horizontal cell response in a fish, the tench. They ar­

rived at two conclusions; first, the spread of the potential was not due 

to scatter of stimulus light but was due to spread of potential inside 

the retina and, second, the structure responsible for the lateral 

spread of the potential could be approximated by a laminar structure 

which they referred to as the S-space (as it gives rise to the S-poten­

tial). Later, it was confirmed by dye injection experiments that the 

S - space corresponds to a layer of horizontal cells [Werblin and Dow­

ling, 91; Kaneko, 34-35]. 

In the analysis of the horizontal cell response in the tench, it 

was assumed, based on experimental facts, that the decay of the po ­

tential inside the S- space could be approximated by a single exponen-
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tial function. However, during the last few years, working with the 

catfish horizontal cells, we have noticed that the decay of potential in 

the S-space cannot be fitted by a simple exponential function. Pub­

lished records by Negishi and Sutija [66] have also shown consider­

able deviation from this simple function. 

Furthermore, the diameter of the receptive field of a teleost 

retinal ganglion cell extends up to 5 mm [cf. 33~ and Naka and Nye 

[61] have concluded that the signal was transmitted laterally by the 

S- space. However, if the potential decays exponentially from the 

site of excitation (as it was assumed for the tench S-space), a signal 

produced at large distances (such as Z. 5 mm away) can hardly show 

its effect at the receptive field center (assuming that the decay con­

stant is similar to that observed in the tench) .. 

Therefore, the question arises whether such a geometry as 

that of the horizontal cell layer (as modeled by the S- space) and the 

physiological passive electrical properties of the membrane and in­

tracellular media could indeed account for such a large spread of the 

S-potential. Although the electrical properties of a cable or axon 

have been a subject of extensive theoretical treatment, a similar 

study of the electrical properties of a flat cell has not been done ex­

cept in two papers [21, 53]. 

In this chapter, the electrical field problem posed by this ge­

ometry and these conditions is solved and the solution is compared 

with experimental results obtained from the catfish horizontal cells. 

We will conclude that the decay is not a simple exponential and that 

due to the geometry of a large flat cell like the S-space, signals can 
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be integrated over a far larger area than the area over which inte-

gration could take place if signals decayed exponentially in the S-

space. Thus, the particular geometry of the S-space is exactly the 

feature which allows it to exhibit its functional characteri stics. 

The effect of the membrane capacitance on the S-potential 

spread is briefly examined. 

2. Problem Definition and Boundary Conditions 

The layer of horizontal cells is modeled by a flat cell of finite 

width and extending infinitely in the other two dimensions. 

z=O 

z=h 

The cell is bounded by two infinite plane parallel membranes 

2 
of high resistivity R (0 -mm ) and between them there is a medium 

m 

of low resistivity R. (0 -mm) . 
1 

I Po I 
z=O 

I 
I 

z=h I 
I 
I v 
z 

R e 

R. 
~ 

R 
e 

= 0 

R 
m 

R 
m 

0 
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The resistivity of the external medium is taken to be zero 

s1nce it is usually much smaller than the internal medium resistivity 

and membrane resistivity. This simplifies the mathematical formu-

lation and solution of the problem. 

The excitation of an H-cell site by the receptors is modeled in 

terms of an ideal conducting flat disc injecting constant current J in 

the intracellular space. The disc is placed against the inside surface 

of the top membrane. 

We seek the potential distribution in the intracellular space. 

A cylindrical system of coordinates is introduced in a way such that 

the center of the disc is at point (p = 0, z = 0) and the z- axis is per-

pendicular to the membrane surfaces. 

The potential, V(p, z, 9 ), is found as the solution of Laplace's 

equation in cylindrical coordinates in the intracellular space. Be-

cause of the symmetry in the geometry of the problem the potential 

is not a function of e and the equation reduces to 

(1) 
1 a a2 

+ - - · + --2 ) v (p. z) = 
p op az 

0 . 

It can easily be checked that the solution of equation (l) is of the form 

00 

S r \JZ -\)ZJ (2) V(p, z) = t.<I>(\J)e + ~(\J)e J
0

(\Jp)d\J 
0 

where J
0

(\Jp) is the Bessel function of zero order and <j>('V), \lr(\1) are 

functions which will be determined by the boundary conditions. 

The first boundary condition expresses the continuity of cur-

rent flow from the intracellular medium through the membrane and 

perpendicular to the plane z = h. We ignore any current flowing 
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through the membrane at other than a right angle to it. This boundary 

condition is expressed by 

(B.C.I.) 
V(p, z) 

1 - R 
m z=h 

The boundary condition at the plane z = 0 is a mixed one. 

For the portion outside the charged disc it expresses the continuity of 

current flow through the membrane, 

(B. C. Ila) 1 av I = R. oz 0 
1 z= 

v 
-I't I m z=O 

p S:p<co 
0 

It can be shown [cf. Sneddon, 77] that, in the case of a 

charged conducting disc immersed in a homogeneous medium of re-

sistivity R. , the current density on the surface of the disc is given 
1 

by 

av I oz disc surface 
OS:p<p 

0 

where J is the current flowing from the disc and p 
0 

is the disc ra-

dius. 

In the case of the disc of our problem, we approximate the 

current density by a similar dependence on p , 

(B.C. lib) av \ = 
az z=O 

0 s; p < p 
0 

where the constant K (where units are ohms) is introduced to account 

for the approximation made. In general, K is a function of h, p 
0

, 

R., R and can be picked after we have solved for V(p, z) in 
1 m 

order to make the total current flowing through the membrane into 

the exte rnal medium equal to J. 
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Thus, in conclusion, the potential should satisfy the following 

two boundary conditions: 

(I) 1 av I v I R. oz h = -~ h 
1 z= m z= 

(II) 

3. Solution of the Problem 

0 ~ p < p 
0 

p ~p<co 
0 

We seek the solution of Laplace's equation in the intracellular 

space in the form 

( 1 ) V(p, z) 

From the boundary condition (I) we have 

co · co 
1 J [ vh - v h 1 J [ vh - vh -R v_ <j>(v)e - ll.r (v)e ]J (vp)dv = --R . <j>(v)e +1\f(v)e ]J (vp)dv 
i 0 ° m 0 ° 

Letting R./R = 13 we have 
1 m 

co . 

J [(v+{3)<j>(v)evh_(\1-{3) 1\f (v)e-vh]J (vp)dv = 0 
0 0 

(2) 

Since (2) must hold for all p, we must have 

(3) 

Substituting in (1) w e get, 

(4) co J v- -2vh vh -vh 
V(p, z) = J r~+P. e e +e l\t ( v )J0 (vp)dv 

0 '-· \1 ,.., 
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Boundary condition II, in principle, determines ~(\1). Trying 

to determine ~(\1) from boundary condition (II) results in the follow-

ing dual integral equations: 

(Sa) 

(Sb) 
00 

S -2\lh 
('J+i))(e -1)~(\I)J (\lp)d\1 = 0 , 

0 0 

OS:p<p 
0 

p S:p<oo 
0 

In general, the solution of such dual equations is difficult and in-

volved. 

We solve ~.e pair (Sa) and (Sb) by making some approxima-

' tions. First, we make the following normalizations and changes of 

variables: 

r - _£_ - ' Po 
z 

z=-
Po 

h 
0 = - , '{ = i)p • p

0 
o 

Then, equations (4 ), (Sa), and (5b) become 

(6) 

(7 a) 

(7b) 

where 
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To solve the dual integral equations (7a) and {7b) we make 

some approximations in order to simplify them. 

Consider, 

written 

\..l >> '{ , 
0 

say, 

K· J• p • 
0 

1-l = 10'{ • 
0 

1 

Then (7 a) can be 

OS:r<l 

On the left hand side, we add and subtract the term 

and then collect terms to get 

u 
· 

0 2 21-lo 00 2 o J ~\..l e- • ~l (\..l)J
0

(\..lr)d\..l+ J \.l(l-e- IJ. )w
1 

(\..l)J
0

(\..lr)d\.l = 
0 l...l '{ 0 

K· J· p 
0 

1 
OS:r<l 

Now we add and subtract (on the left hand side) the term 

to obtain 

(7 a') 

OS:r < l. 

We assume that the sum of the first two terms is small compared 
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to the third term (or the total on the right hand side, which is 

1/;;7 ). We will justify this assumption shortly. 

Neglecting the first two terms of {7a') and recalling the equa-

tion, 
1 0 s p < 1 

00 s sins· J (ps )ds = 
0 0 {~ lSp<oo 

we find that the resulting dual integral equations (7a') and (7b) have 

the solution, 

and the expression for the potential becomes 

where (as stated before) the arbitrary constant K can be fixed from 

the additional condition that the total current flowing through the mem-

brane into the external medium should be equal t o J. 

Now, let us justify the assumption made above about the small-

ness of the sum of the first two terms of (7 a'). The value s of the 

parameters "{ and o are of the order 

-1 "{ ,....._ 10 

The first integral (let us call it 11 ) is 

\J.o 
I l = JO (~l~) e-2\-.lo. sinl-.l -2\-.lo Jo(\-.lr)d\-.l 

r-'l (1-.l-h(){l-e ) 
OSr < l, 

and, considering that 1-.l = k · "{ (k "'2 0) and 0 s r < l , we can get an 
0 

estimate of integral 11 from integral 
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and considering sin!J./ 1-J. for 0 < 1-1 < 1-1 , we finally get a rough esti-o 

mate of 11 as 

I - _y_ 
1 4o 

The second integral (let us call it 12 ) is 

00 

12 = J v s in!J. J ( r )d 
0 I !J. +y 0 !J. !J. 

which we can write as 

or 
1-l 

0 1 1 00 . 
r

2 
= -y J [ +y - -] s in!J. J (!J.r )d!J. +y J s lll!J. J (!J.r )d!J. , 0 ~ r < 1 • 

0 1-l 1-l 0 0 1-l 0 

The second term of this expression is equal to -y • ; (see [27 ], p. 744 ). 

The first term can be roughly approximated by 

1-10 
.!. J -=Y. . s in!J. d!J. :::::: - ~4 
2 0 !J. +-y 1-l 

Then 1
2 

is approximately 

and the sum of the neglected terms is roughly approximated (within 

the parameter range considered) by 

- y_ ( 1 ) 
e: = 11-12 - 4 6 - 3 ' 

-1 which is of the order of 10 , and this i s, i ndeed, s mall c ompa r e d 

with 1 I p- (0 ~ r < l ) • 
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-1 
The error is of the same order (10 ) for o somewhat larger 

than 1. If o is much larger than 1 , the approximations used in 

evaluating integral I
1 

are not quite valid, but the error is still of 

the same order ("" 0. 1 ). This can be deduced by roughly approxi-

mating I
1 

for large o. It will be noted that I
1 

has a smaller value . 

In the case of the catfish horizontal cell, the maximum spot 

diameter of interest (where saturation occurs) is about 3 mm, and h 

is about 0. 05 mm. 

Clearly, for large o , that is, small spot radii, the error is 

of the order of '{ , and therefore very small. For very small o, how-

eve r, the error can become large. This corresponds to the case of 

very large diameter spots. However, in this case the approxima-

tions used to estimate integrals I 1 and I 2 are not valid, and there ­

fore (':' ) cannot be used to estimate the error. Numerical approxima-

tions done by computer have shown that quantity (I
1
-I

2
) is small com­

pared to { 1/~, 0 < r < 1 } for the horizontal cell parameter 

values up to diameters of 5 mm. For larger (than 5 mm) diameters, 

the solution will have some error which may be significant. 

Therefore, we conclude that within a large range of parame-

ter values the posed problem of the potential distribution within a flat 

cell has the solution 

00 

v(r,z) = K· J· S 
0 

where, as defined previously, r = p/ p , z = z/ p , and K is a 
0 0 

cons t ant. 
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4. Experimental Method 

The eyecup preparation of the channel catfish, Ictarulus 

punctatus , was used for the experiment. Details of preparation and 

experimental procedure have already been described in a previous 

chapter. The horizontal cells from which responses were obtained 

were identified by injecting a Procion dye. Responses were regis­

tered on a penwriter and measured by a pencil and ruler. 

5. Results and Discussion 

An experiment was performed in which the spatial summation 

of the horizontal cell response was examined under a condition such 

that it does not involve the effect of spatial decay. The stimulus used 

was a segment of an annulus which was expanded in steps to form a 

complete annulus. As the recording electrode was placed at the cen­

ter of the expanding annular segment, the attenuation function is just 

a proportional constant and the amplitude of the response depends 

only on the stimulus area. It was found that the amplitude of the re­

sponse is a linear function of the illuminated area (as the annular seg­

ment is expanded), and that this relationship holds for three widely 

different intensity levels. This demonstrates the integrating (over an 

area) function that the S-space performs. 

We proceed next to m experiment in which a small spot of 

light is moved away from the tip of the recording electrode to ex­

amine the decay of potential in the layer of horizontal cells. It should 

be mentioned that both the shape and dimensions of the hori:l!ontal 

cells are such that the lateral spread of potential, as described here, 
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spans many individual cells (cf. Matsumoto, Admomian and Naka, 1n 

preparation). 

The results of these experiments fall into two distinct groups 

which are shown in Fig. 7. 1. One set of data points, exhibiting a 

faster potential decay with distance was found (by dye injection) to 

originate from the external horizontal cells; while the other set of 

points, exhibiting a slower decay, was recorded from the internal 

horizontal cells. The initial parts of both potential decay curves can 

be approximated by an exponential decay (down to about 40 per cent of 

the maximum), but the decay for larger distances showed consider-

able deviation from the exponential decay. This is shown in Fig. 7. 1. 

Figure 7. l,A shows the potential decay inside a flat cell, calculated 

from equation(* ) (solid curve) and also an exponential decay c urve 

(dashed line with circles) picked with a space constant such that it 

would fit the initial decay portion. It is seen that the exponential de-

cays much faster for large distances. We recall that the potential de-

cays exponentially in the case of a cable structure. 

h, 

The solid curve of Fig. 7. 1, A is the same curve (i.e., same 

a.= R /R . parameter values) as the curve in Fig. 7. 1, B which 
m 1 

fits the data for the external horizontal cell. Thus, if one attempts to 

fit the data with a simple exponential function he will be making a 

considerable error for large distances even though he accurately fits 

the initial decay portion of the curve. It is exactly this slow decay for 

large distances (characteristic of a flat cell structure) that allows the 

S- space to perform its integrating function over large receptive fields. 
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Fig. 7 .1. A: Potential decay curves computed from equation ( * ) (solid 
~ine, h=0.005 mm, a=2 mm, p0 =0.025 mm) and from an exponential, e-x/A 
(circles, a=Q.6 mm). B: Data of potential decay from external and inter­
na 1 horizonta 1 cells fitted by equation (''<). 
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Figure 7. 1, B shows potential decay data recorded from the 

external and internal horizontal cells and the theoretical decay func-

tions (for a flat cell) calculated from equation ( >:' ) and used to fit 

these data. The fit is indeed very good. The data were obtained 

using light spots of 0. 5 mm in diameter, and this is exactly the disc 

d i ameter used in the calculations of equation ( >:< ). The parame ter 

values for which these fits were obtained are: 

h = 0. 0 5 mm, a = 6. 2 mm (internal H-cell) 

and 

h = 0. 0 5 mm, a. = l. 7 mm (external H-cell) 

For small distances we note a potential plateau which is a 

consequence of the disc dimensions. This plateau also exists in the 

experimental data (see Fig. 7. 1, B). 

All curves, shown here and computed from equation (,:, ), were 

h 
for x = 2 , (i.e. , the potential is calculated at the mid-plane between 

the two membranes). Preliminary calculations have shown that, for 

the range of h' s (about 0. 05 mm) and a.'s in which we are interested, 

the potential variation in the z-direction is very small (at most about 

5 per cent) for distances less than the disc radius and almost zero 

for distances greater than the disc radius. 

Figure 7. 2, B shows the extent of the potential variation in the 

z-direction for two extreme cases; one for a. equal to 1 mm, and the 

other fo r a. equal to 8 mm. For the higher a. , the de c ay in the z-

direction i s larger, but still only about 5 per cent, considering the 

potential at the top and bottom membranes. The potential variation 

in the z-direc tion becomes negligible for distances larger than the 
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Fig. 7.3. A: Potential decay curves for various thicknesses, h, as com­
puted from equation (*). Smallest h, (a), is 0.075 mm and each subsequent 
thickness is twice the previous one. B: The decay curves of (a) normal­
ized. h 3 is 2 mm and h

0 
is 0.25 rmn. For h :::_ h 0 the curves are almost 

identical to the one for h = h0 • 
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disc radius. 

Figure 7. 2, A shows the potential decay curves for different 

disc radii. Each successive curve is calculated for a disc whose 

radius is twice the previous one. 

Figure 7.3,A shows potential decay curves for flat cells of dif-

ferent thickness, h. We note that the potential increases for de-

creasing thickness h. Figure 7. 3, B is a plot of such curves with 

the maximum potential value normalized. We conclude that, for the 

range of h' s that the horizontal cells exhibit (,...., 30 IJ) and the range 

of a. in which we are interested, the spatial decay is fairly independ-

ent of thickness h. Only for very large h' s does the spatial decay 

slow down, as shown in Fig. 7. 3, B. Therefore, we conclude that the 

difference in spatial decay (found experimentally) between the internal 

and external horizontal cells is not due to a different cell thickness, 

but is solely due to different values for (R /R.) [i. e., a]. m 1 

Figure 7. 4, A shows the results of experiments in which the 

potential was recorded at the center of a light spot for several spot 

radii and at several intensity levels. The recordings were from the 

external horizontal cell. The solid curves are calculated using equa-

tion (':') for the same range of spot radii. It is found that the data are 

well fitted by curves obtained for different values of cr. . In fact, in-

creasing ex., which corresponds to an increase in the membrane re-

sistance, suffices to fit the data for increasing intensity levels. For 

small values of ex. , saturation occurs at small distances; while for 

larger values of a saturation occurs at larger distances, as would be 

expected from a mechanism th.at i:Q.tegrates signals over a large area. 
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Fig. 7.4 

External horizontal cell. Data points (circles and crosses) and 
predictions (solid lines) of equation (*) for different intensity 
levels (A,B,C). Both unnormalized and normalized curves are 
shown. The response is computed for p = 0, z = h/2. 
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In Fig. 7. 4, B the data and model curves of Fig. 7. 4, A are 

normalized so that the amplitude of the response caused by the largest 

light spot is set to unity for all the different intensity levels. This 

shows more clearly the extent of area integration performed by the 

external horizontal cell for the different intensity levels. 

Curves a , b , c , and d correspond to the following values 

of(R /R.): 
m 1 

c 1. 0 mm, 

b 3. 0 mm, 

a 7. 0 mm, 

d 10.0 mm. 

Since curves C' and D' are nearly identical, we conclude that 

increasing ex. beyond the value of about 7 mm does not change the in-

tegrating characteristic of a flat cell for spots of radius within a 

certain fixed range. This is, again, a natural consequence of a 

mechanism that integrates signals over a large area. 

We have found, by fitting the potential decay data from the in-

ternal H-cell, that ex. in this case is about 6. 2 mm. Therefore, we 

expect (because of the argument just made) that the normalized decay 

data (and calculated model curves) will show no difference for diffe r-

ent intensity levels by further increasing a.. In fact, they would ex-

hibit the same characteristics as curves C' and D' of Fig. 7. 4, B. 

This is indeed the case, as shown in Fig. 7. 5, B. 

In the case of the internal H-cell, the model fit for small spot 

radii is not as good as for the exte rnal H-cell. Ther e may be many 

r e asons for this, whic h will not b e discuss e d her e . Figur e 7. 5 , A 
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Fig. 7.5 

Internal horizontal cell. Data points (circles and crosses) and 
predictions (solid lines) of equation (*) for different intensity 
levels (A,B,C). Both unno rmalized and normalized curves are shown. 
The response is computed for p = O, z = h/2. 
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shows the unnormalized dat a for the internal H-cell. Since, in this 

case , a variation in a. will not fit the data for the different intensity 

levels, we assume that by varying the intensity the (synaptic) current 

J [see equation (>:•)] varies. In fact, the effect of the different in­

tensity level seems to introduce just a multiplicative constant in the 

data. From equation ( >:< )we see that J is also just a multiplicativ e 

constant for the potential. The solid curves of Fig. 7. 5, A are ob­

tained for different values of J, corresponding to diffe rent intensity 

levels. 

Although the spread of potential along a cable structure has 

been a subject of extensive study in neurophysiology, spread of po­

tential inside a large flat cell or a laminar structure has b een given 

little attention. Exceptions can be found in two recent theoretical 

treatments by Minor and Maksimov [53 ] and Eisenberg and Johnson 

[ 21 ]. In the first, a point current source is placed at the midplane 

between the two parallel membranes as the source of excitation. Such 

a formulation allows a simplification of the boundary conditions be­

caus e of symmetry. Our model assumes a disc on one side of the two 

parallel membranes. This is a more realistic assumption as, what­

e ver the generating mechanism may be, it is reasonable to postulate 

that the dendritic portion of the H- c ell receives the signal from the 

photo-rece ptors and is the site of current generation. In [ 21 ], the 

problem is solved for point sources of current, and the d e r i ved formu­

las are harde r to compute than the one derived by our formulation of 

the proble m. The model proposed here makesno a priori assumptions, 

such as the exponential d e cay in the N aka-Rus hton mode l, and i s 
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based solely on the geometry of a flat cell (or a layer of horizontal 

cells) and the electrical properties of the membrane and intracellular 

media. 

Spatial spread of the horizontal cell response has been a sub­

ject of several papers. Norton, et al. [67] and Dowling and Ripps 

[20] have treated the subject trying to establish physiological mech­

anisms for Ricco's law, which states that: Area X Intensity = constant. 

Naka and Rushton [58] and Negishi and Sutija [66] have placed their 

emphasis on the decay of laterally spreading potential. The aim of the 

latter approach was to establish a model to account for the spread of 

potential. Negishi and Sutija stipulated the existence of chemical re­

actions to account for the large spread, while Naka and Rushton pro­

posed a simple laminar conducting medium. There are, however, 

two independent observations which favor the view held by Naka and 

Rushton: first, morphologically the horizontal cells are coupled by 

'gap' junctions, implying a low resistance electrical passage between 

cells [Yamada and Ishikawa, 96; Witkovsky and Dowling, 94 ]; and 

second, it was shown functionally that the dogfish horizontal cells are 

coupled electrically [Kaneko, 35 ]. 

Thus, our assumed model of two parallel plane membranes 

separated by a medium of lower resistivity seems justified (as it is 

essentially the Naka-Rushton concept of the S-space). Our mathe­

matical formulation has advantages over the one presented for the 

tench data in that it can fit better the results obtained in the catfish 

as well as results obtained by Negishi and Sutija. Moreover, our 

analysis has shown the diffences in signal integration between the in-
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ternal and external H- cells and it has suggested a difference in the 

synaptic forms of excitation for these two kinds of H-eel!. 

6. Effect of Membrane Capacitance on Potential Spread 

In calculating the potential spread, so far, we have obtained 

the steady- state solution for an applied disc current of constant mag-

nitude. This allowed us to neglect the capacitance of the membrane 

and to simplify the posed problem. If the applied excitation is time-

varying, the membrane capacity comes into play and affects the po-

tential spread. We assume the membrane model to be a resistance 

in parallel with a capacitance, thus presenting a membrane impedance 

MEMBRANE MODEL 

quite different from the purely resistive one. In fact, we expect the 

potential to attenuate faster with increasing frequency of excitation, 

because the capacitive impedance decreases, thus effectively shorting 

the membrane. 

We have shown that the extent of potential spread increases 

with both the ratio (R /R . ) and cell thickness h. Thus, we define 
m 1 

the quantity A , 

to indicate in a sense, the ''space constant" with which the potential 

decays. This definition of a "space constant" is also made in analogy 

with the space constant in the case of a cable (see also [ 53l ). 
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Let AD be the space constant in the dynamic case. Then AD 

is, in general, a function of frequency. Making an analogy with trans-

mission line theory [38], it can be shown that AD = 1/ a. where y = 

a.+ jl3 and y is the propagation constant. The propagation constant, y , 

can be found from the d. c., steady-state space constant by substituting 

the d. c. membrane impedance, R , by the dynamic impedance of the m 

membrane, Z 
m 

Thus, 

R 
m z = R II c = m m · m 1 + jwR C m m 

where w is the frequency in radians, and 

1 1 
'{ = A* = 

from which, after some complex number algebra, we obtain (let A = 

R /R. ) 
m 1 

1 

= _1 [-1 j _I )2 (WRiCm)2 ]2 
a. ,;z he + (he + h 

1 

13 = _I [ J ( 1 )2 + ( wRi C m )2 1 ]2 
,.;2 h]" h - he 

In transmission line theory it is shown [38 J that a. is the at-

tenuation constant with distance and 13 gives i nformation about how the 

phase varies with distance. Both quantities are a function of f requency. 

Thus, we obtain the dyna..-rnic space constant, AD, 

AD = [ 
hie +/(hie )2 + ( wR~Cm)2 

2 
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We normalized the dynaxnic space constant by the d. c. steady- state 

space constant, 

( 6) = 

to obtain the per unit change in space constant as a function of fre-

quency. Figure 7. 6 shows a plot of equation (6) for several values of 

the paraxneter '1" = R C . By performing the appropriate experi -m m m 

ment such a curve could be obtained and fitted by equation (6 ). This 

would measure, indirectly, the value of the membrane capacitance, 

C This frequency dependence of the space constant also indicates 
m 

the limit of spatial integration in the dynaxnic (time-varying) case. 

7. Physiological Inferences 

In the channel catfish there are three classes of horizontal 

cells; the external, intermediate, and internal horizontal cells 

[Matsumoto, Adomian and Naka, unpublished results]. The external 

horizontal cells send very short processes to the receptor terminals 

(presumably the cone pedicles) to receive inputs whereas the thin-

ner, more proximally located intermediate horizontal cells send 

numerous processes (5 to 15 microns) toward the receptor terminals 

(presumably to make contact with the rode spherales [cf. Stell, 84, 

85 ]. Stell [ 85l has classified them as the true horizontal cells. The 

internal horizontal cells have no apparent distal processes and their 

tubular structure ( 10 to 20 microns in the channel catfish) runs over a 

distance of nearly 500 microns. So far, studies made in the catfish 

and in other teleost fish failed to locate any synaptic contact made by 
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this cell. 

In goldfish, the S-potentials arise from two classes of hori­

zontal cells; one from the internal and the other from the external 

horizontal cells [Kaneko, 34 ] , both of which possess structure very 

similar to those observed in the catfish. It was further noted that the 

internal horizontal cells integrate potentials from a larger area than 

the external horizontal cells, an observation confirmed in the pres­

ent study. 

The analysis made so far allows us to make several infer­

ences on the physiology of the receptor-horizontal cell synapses in the 

catfish. ( 1) The decay of the potential induced by a small spot of 

light can be equally well predicated whether, in the S-space mem­

brane model, we adapt a voltage source or a current source, as the 

synaptic form of excitation. However, the voltage source model fails 

to predict the results of the experiment in which the diameter of the 

spot was increased, while the model based on a current source (for a 

given intensity) fits well the experimental results. (2) In the ex­

ternal horizontal cells, an increase in the membrane resistance could 

a c count for the increase in the integration area with a brighter light. 

This agrees well with the observation that the resistance incr e ases in 

proportion to the amplitude of the horizontal cell response. (3 ) In 

the internal horizontal cells, a simple in crease in the resistance 

could not a c count for the data in whic h the spot diameter was in­

creased. However, a reasonable fit could be obtained by assuming an 

increase in the magnitude of the synaptic current with increasing in­

tensity. 
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The last point is very significant because so far we have 

failed to detect any functional difference between the external and in-

ternal horizontal cells, although morphologically they markedly dif-

fer from each other. The external horizontal cell has a clear synap-

tic input, while the internal horizontal cell does not seem to receive 

any input. 

It is worth noting here that a formal analysis such as that 

performed in this chapter could make several qualifications on the 

receptor-horizontal cell synapses on the nature of which no c oncrete 

evidence has been obtained through a 1 direct analysis. 1 

8. Conclusions 

In this chapter we examined the potential distribution inside a 

flat cell, such as the horizontal cell, as a function of its geometry 

and electrical properties. We found that, within a very large range 

of parameter values, the potential is given by 

where 

00 

V(r, z) = K· J J 
0 

( ) _,,(z 6-z> -''Z 
~-~ e ~ +(~+y)e ~ 

sin!J. J (~r )d!-1 
0 

r = p/ p ' 
0 

z = z/ p , 
0 

6 = h/ p 
0 

K, J are constants; p, z are cylindrical coordinates; p is the radius 
0 

of the spot that excites the flat cell; h is the cell thickness; and R., 
1 

R are the intrac ellular and membrane 
m 

resistivitie s respectively. 

Formula ( :1.<) closely fitted the spatial decay of potential data 

obtained from the internal and external horizontal cells. Equation (':' ) 
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predicts a decay which is exponential down to about 40 per c ent of the 

maximum potential but is much slower than exponential below that 

level. Such a feature in the decay mode allows signal integration 

over the large retinal areas which have been observed experimentally. 

This slowing up of the decay for large distances is also exhibited by 

the data. 

For the range of cell thicknesses of the horizontal cells (about 

50 I.J.) it was found that the decay rate does not change appreciably as 

a function of cell thickness. Cell thickness h does have an effect on 

decay rate for very large thicknesses . However, for H-cell thick-

nesses the decay rate was found to d e pend solely on the ratio (R /R. ). m 1 

Data obtained from both types of horizontal cells by v arying 

the diameter of the stimulating spot and for three widely different in-

tensity levels were closely fitted by e quation (>:< ). The fit was better 

for the external horizontal cell data than for the internal horizontal 

cell data. In the first case {external H-cell) the fit for different in-

tensities was obtained by varying the rati o (R /R.); while in the s e e­
m 1 

ond case it was found nec essary in order to fit the different inte ns i t y 

data to vary the "synaptic " current J, whic h in( ':< ) is just amultipli-

cative constant. This suggests two different membrane mechanis ms 

of excitati on for the two types of H-cells; an in c rease in membrane 

resistanc e with increase of intensity for the e x t ernal H- cell, and an 

increas e of the synaptic c urr e nt w i th increas e in intensity for the i n -

ternal H-c e ll. 
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CHAPTER VIII 

GANGLION TRANSFER FUNCTIONS 

1. Introduction 

In 1940, Hartline [ 30] showed that a single retinal ganglion 

cell received signals from a large retinal area corresponding to 

thousands of receptors. This (geometrical} sensitive area has been 

known as the "receptive field" and has been the focal point of the 

physiological study of the vertebrate retina. 

Later, Kuffler [ 40 J showed that the typical receptive field is 

organized in concentric rings, in which the central disc is called the 

receptive field center and the outer ring or annullar area is c a lled the 

surround of the field. In this concentric field organization the center 

and the surround act antagonistically to a light stimulus; namely, if 

the center gives rise to an 'on' response the surround responds by 

an 'off' discharge and vice versa. Although this type of receptive 

field was originally found in the cat retina, the concentric field 

organization has been observed in every vertebrate retina studied 

thus far. The induced ganglion responses are reproduced at the 

level of the lateral geniculate body and, furthermore, the concentric 

field i s thought to be the building block of the more complex field 

organization found in the visual cortex [ 33a]. 

Although the receptive field organization has b e en a subject of 

extensi ve studies [ 14a, 33a, 46, 70a, 70b, 90 J, the dynamics of the 

ganglion cell discharge caused by the different components of the 

field are not known. An exception can be found in a recent study by 

Spekreijse [ 78]. 
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In this chapter the white-noise nonlinear analysis technique 

is applied to the different catfish retinal neuronal systems that 

contribute to the ganglion response and nonlinear dynamic transfer 

functions are derived. 

Two distinct advantages could be cited for choosing the cat­

fish retina for this study of the dynamic characteristics of the 

ganglion systems: 1) the catfish ganglion cell has the simplest 

type of receptive field so far studied and 2) the ganglion cell 

discharge can be elicited by extrinsic polarization of the horizontal 

cell. The later provision is very important as it enables us to 

exclude the processes that starting from the absorption photons 

result in the generation of the horizontal cell potential. This allows 

us to break up the system into two sub-systems connection in 

tandem and thus establish a sequence in the processing of the input 

light signal. 

Any formal analysis has to rely on a receptive field model. 

There are two principle receptive field models; one proposed by 

Rodieckand Stone [ 70a J and the other by Naka and Nye [ 61] for 

the catfish. In this chapter our analysis is based on the receptive 

field model proposed for the catfish retina. 
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2. Catfish Receptive Field 

The receptive field organization of the catfish ganglion cell 

and the cellular mechanisms that subserve the field have been 

reported in a series of papers [ Naka and Nye, 61, 62, 63 J. Two 

types of fields (type A and type B) can be found which are exactly 

complementary to each other in their organization. 

In the type A field, stimulation by a small spot of light 

produced a sustained ganglion discharge while a stimulating annulus 

gave rise to a transient ganglion response. In the type B field a 

transient ganglion discharge was obtained whenever the receptive 

field was stimulated by a spot of light while a sustained discharge 

resulted if the stimulus were an annulus. 

It was also shown [Naka, Naka and Nye J that current injected 

into the horizontal cell induced spike discharge patterns (of the 

ganglion cell) very similar to those elicited by spot or annulus 

stimulation (also [47 ]). Depolarization of the horizontal cell 

resulted in the same discharge pattern as stimulation by a spot 

of light while hyperpolarization of the horizontal cell produced the 

same discharge pattern as that elicited by a stimulating annulus. 

This was the case for both types of receptive field. 

In view of these findings it was suggested [ 64 J that two 

mechanisms are responsible for the receptive field organization. 

One is an "integrating" mechanism and the other a "local" 

mechanism. The "integrating" mechanism depends on the S-space 

to propagate and integrate stimuli over a large area (about 5 mm in 
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diameter} of the ganglion receptive field. This mechanism can be 

interpreted as measuring the average light present in the receptive 

field. The "local" mechanism responds to the peak local luminance. 

It was shown that in both types of field (A and B) the stimulus which 

gives rise to a transient discharge can suppress the sustained dis­

charge. It was observed that decentered spots can also inhibit 

·the sustained discharge thus implying the existence of a second 

lateral transmission system, besides the S-space, since a spot of 

light cannot sufficiently activate the S-space. 

In this chapter we determine quantitative dynamic transfer 

functions for the two mechanisms activated by a spot and an annulus 

and resulting in the ganglion discharge. In view of all the findings 

described in the previous paragraphs it is suggested that a light spot 

activates the neural pathway forrned by the chain Receptors-Bipolar­

Ganglion while an annulus of light activates the chain Receptors .... 

Horizontal- Bipolar-Ganglion, as depicted in Fig. 8. 1. Whether 

this is an accurate account on the cellular level of the two mechanisms 

or not, the derivation of the dynamic transfer functions by use of the 

white-noise method is valid since it only describes the input-output 

behavior of these retinal systems. 

The neural chain Horizontal--oBipolar ..... Ganglion is also studied 

as to its dynamic characteristics by injecting white-noise current into 

the S -space and recording ganglion cell discharges. 
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3. The Horizontal Cell- Ganglion Cell System 

The white-noise method will first be applied to the horizontal 

cell-ganglion cell neuronal chain to obtain its nonlinear dynamic 

transfer function. This neuron chain is part of the neuronal 

mechanisms which gives rise to the ganglion cell discharge upon 

absorption of protons by the receptors. In this analysis the horizontal 

cell potential was modulated by injecti ng extrinsic current inS-space. 

In turn, this H-cell potential modulation evoked the ganglion cell 

discharge. As the bipolar cell is the only neuronal element to connect 

the external plexiform layer to the internal plexiform layer, it was 

argued that the extrinsic polarization of the horizontal cell caused a 

change in the bipolar cell potential which, in turn, evoked the ganglion 

cell discharges. In essence, the system to be studied has an input 

which is extrinsic current injected into a horizontal cell and a output 

which is the ganglion cell discharge. 

From preliminary harmonic analysis the system was found to 

have a cut-of£ frequency around 12Hz. Accordingly, the white-noise 

input had a flat power spectrum from essentially d. c. up to 25 Hz. 

The input current produced a modulation of the horizontal cell potential 

whose average was the resting potential of the cell. Thus the system 

was tested for both the depolarized and hyperpolarized horizontal 

cell conditions. 

A white-noise signal, 35 seconds long, was used as the input 

and an electrical circuit was designed so that the magnitude of the 

injected current was proportional to the input signal (i. e. original 

white-noise signal). The stimulus record was formed by 
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concatenating on magnetic tape this same 35 sec long white-noise 

signal with itself, ten times, to form a stimulus of 350 sec 

duration. The ganglion responses to these ten runs of identical 

white-noise were then superimposed and histogrammed in time to 

form effectively a post-stimulus-time histogram of the ganglion 

discharge in response to this white-noise input. Thus the spike 

discharge is transformed into a continuous function of time that can 

be interpreted to signify the instantaneous spike discharge frequency. 

Thus, we avoid the difficulty of dealing with the discrete (spike) 

events. 

Fig. 8. 2 shows a short portion of the same white-noise 

current for four different runs along with the corresponding evoked 

ganglion responses. These records show that: 1) the white-noise 

current inputs reproduced were identical and 2) the ganglion cell 

responses from four different runs are almost identical, implying 

that the system is time-invariant under the conditions employed in 

this experiment. 

The ganglion cell discharge frequency becomes a smoother 

function of time as the number of (identical) runs is increased. 

However, as the life of the preparation is limited, the number of 

(identical) runs is also limited. In these experiments, 8 to 12 

runs were repeated for each case and the smoothness of the 

resulting frequency function was satisfactory (varying a little with 

the mean spike discharge frequency of each case). 
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These input-output data were then treated for reduction 

of long term drifts (as described in Chapter IV) and subsequently 

the first and second order kernels were computed. 

Figure 8. 3 shows a plot of h
1 

(T) which can be considered 

to be the impulse response of the "best" linear model of the 

system. We mean "best" in the sense that, for the white-noise 

record with which the system is tested, h 1 (T) is the linear system 

that minimizes the mean square error over the entire length of the 

record. In general, if the Wiener series is truncated after the 

th 
n order term the resulting approximation to the system transfer 

function is the "best" among models of the nth order, as it was 

discussed in Chapter II. From h 1 (T) we can get an idea of the 

l~t:lCY (about_l__Q _ __msec) as well as how fast (response rise time, 

frequency response) and how damped (underdamped) is the 

system. In the same figure (Fig. 8. 3), superimposed on the same 

axes, is also shown an experimental response of the neuron chain 

to an impulse input. We note the agreement between h 1 and the 

neuron chain response in latency, response rise time, wave-

form and the complete absence of firing for the negative .portion 

The second order kernel h 2 (T1 , T2 ) has been interpreted as 

indicating the nonlinear interaction between portions of the input 

signal Tl and Tz seconds in the past in affecting the response of 

the system at the present (deviation from time superpo sition). 

Fig. 8. 4, A, B show three-dimensional plots of h 2 (T 1 , T 2 ). In p l o t A 
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20SPIKES/SEC J 

Fig . 8 . 3 

Firs t order k ernel (h
1

) of Horizontal +Gangl ion s ystem and exper i ­
mentally obtained response (R) of this system to an impulse 
(current) input. The ordinate for the h

1 
plot is (spikes/sec) / 

(nanoamp sec) a nd f or R it is (spikes /sec). 
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Rl 

50 MSEC 

81 

Fig. 8.5 

Two two-pulse experiments for system Horizontal Ganglion that show 
the nonlinear interaction predicted by h 2 (T 1 ,T2 ). 



-187-

mountains represent nonlinear facilitation while valleys represent 

nonlinear inhibition between different portions of the input signal. 

Plot B is plot A inverted and here the roles of mountains and 

valleys are reversed. Plot B allows a better view of the 

inhibitory portions which now appear as mountains. Table 8. 1 

gives numerical values for h 2 (T 1 , T 2). These plots of h 2(T 1 , T 2) 

suggest that pulses close together, about 10 msec, would produce 

a nonlinear interaction which initially (3-4 msec after the 

occurrence of the second input pulse) would tend to facilitate the 

ganglion response while pulses separated by about 40 msec 

would always tend to inhibit the ganglion response. 

Two-pulse experiments were performed with various 

spacings between the pulses. The results confirmed the 

predictions of the model. When two short electrical pulses of 

current were injected into the horizontal cell an initial 

facilitation of the resulting ganglion discharge was observed when 

the first pulse preceded the second by 5 to 10 msec while a 

depression of the discharge resulting from the second pulse could be 

seen when the first pulse preceded the second"by more than 40 

msec. Fig. 8. 5 shows two such experiments. 

Fig. 8. 6 shows the response of the system to a white-noise 

input and the corresponding model responses (first a nd s econd 

order) to this same input. White-noise current (trace A) was 

injected into the horizontal cell and caused t he response of the 

ganglion cell shown in trace 'B 1 (this response being in terms of 
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spike frequency). Trace 'C' is the first-order model (linear) 

response to this same white-noise input and trace 'D' is the second-

order model (nonlinear) response. It is obvious that the model 

response improves markedly with the addition of the second order 

nonlinearities as it is demonstrated in this figure. The mean square 

error for the sequence of Wiener models, where the error for the 

(constant) h model (zeroth order kernel, which is just the 
0 

average value of the output), is normalized to 100 (arbitrary} units, 

is as follows: 

Model Error 

constant [ho} 100 

linear [ho' hl} 43 

nonlinear [ho,hl,h2} 20 

Figure 8. 7 shows the power spectra for the four signal 

records from which a time-portion is shown in Fig. 8. 6. We note 

that the system has a cutoff around 12 Hz and that the nonlinear 

model spectrum improves significantly over the linear one 

especially in the high frequency region. The agreement between 

experimental response spectrum and nonlinear model s pectrum is 

extremely good. 

As discussed in Chapter I I I, examination of h 2 (T 1, T z> 
suggests that the system can be represented by a linear system 

followed by a nonli near one. The physiological inte rpretation of 

this implication is that the process taking plac e between the 
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horizontal and bipolar cells is essentially linear while the non­

linearity occurs when the bipolar cell output triggers the ganglion 

cell spikes. The facts that the bipolar cell produces a slow 

continuous voltage while spike activity results from a threshold 

mechanism support this inference. We will examine the nature 

of this nonlinearity further. 

Fig. 8. 8, Al, A2 shows the model system responses to 

two pulses of different magnitudes (the stronger one is 2. 5 times 

bigger in amplitude). Fig. 8. 8, Al shows the linear model 

response while Fig. 8. 8, A2 shows the nonlinear model res pons e. 

Fig. 8. 8, A3, A4 show the model responses to negative-going 

pulses. Fig. 8. 8, Bl, B2, B3, B4 show again model step responses 

for the complementary ganglion (Type B). These model 

predictions (for positive-going pulses) agree extremely well with 

the experimental step responses reported by (Naka and Nye 1971). 

Examining the model step responses we may conclude that 

the system responds mainly to the positive derivative of the input. 

Equivalently, we may say that the system could be represented 

by a low pass filter which responds to changes in the input followed 

by a half-wave rectifier. Examination of Fig. 8. 6 (traces B, C 

and D) reveals exactly these same characteristics. The system 

function of responding mainly to positive changes of the input is also 

exhibited by the sine responses shown in Fig. 8. 9. The question 

arises whether the system kernels indicate these functional traits. 

Assuming that the rectifying nonlinearity is almost a no-memory 

non-lineari ty we can easily show that the system second order 
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M~DEL STEP RESP~NSES 
GANGLI~N RESP~NSE 

LINEAR 

u 
I.LJ 
(f) 

]~ 
Bl 

0 
0 _..., 

~-

CURRENT INJECTI~N IN H-CELL 
NCJNLINERR 

I I 
0.2 SEC 

Fig. 8.8 

Model-derived step responses for system Horizontal ~Ganglion. In each 
case, two input step levels are applied which are 0.4 log-units apart in 
magnitude. Responses are shown for both positive andnegative pulses. 
Al,A3 are linear-model responses while A2,A4 are nonlinear-model responses 
for the type A ganglion. Bl,B2,B3,B4 are similarly for the type B ganglion. 
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IH 

1.0 Hz 3.0 Hz 

H 

5.0 Hz 7.0 Hz 

9 .0 Hz 10.0 Hz 

G 

20.0 Hz 

Fig. 8.9 

Experimental sinusoidal responses for system Horizontal ~ Ganglion. 
H: input current, G: ganglion response (spikes/sec). 
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kernel should have, approximately, the form: 

where a. is a constant. Examination of h 1 and h 2 indicates that 

this is, inded, the case. 

In view of all these comparisons between model and 

experiment, we conclude that the white-noise-derived model, in 

this case, is very satisfactory. 
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4. Nonlinear, Dynamic Transfer Functions for Light-Ganglion 

Systems 

In this section we derive transfer functions for the following 

neuronal chains that contribute to the ganglion receptive field 

organization: 

(a) Receptor-Bipolar-Ganglion (System S) 

(b) Receptor-Horizontal- Bipolar- Ganglion (System A) 

as well as the transfer function between light intensity and ganglion 

response (System U) which results when both chains (a) and (b) 

are activiated simultaneously by the same signal. From earlier 

arguments we have concluded that chain (a) is tested by a small 

spot of light at the center of the receptive field while chain (b) is 

activated by an annulus of light. The third transfer function (light 

intensity to ganglion response) is obtained through stimulation with 

uniform light over the entire receptive field. These three systems 

are characterized by their response to a white-noise input and the 

resulting kernels for each case. 

In each case, light (spot or annulus or uniform) was 

moduluated in white-noise fashion and used as the input. Its 

power spectrum was flat from essentially d. c. up to 25 Hz. This 

was judged to be adequate because these systems have cutoffs 

around 7 Hz. The identification procedure (data treatment and 

computations) is essentially the same as described in the previous 

section for the H-cell->Ganglion system and in Chapte r IV. 

Therefore, it will not be repeated here. 
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Fig. 8. 10 shows the first order kernels for all these systems. 

In addition, the kernels for the H-cell-+Ganglion and Light-H-cell 

systems are shown. All kernels shown in Fig. 8. 10 were computed 

from white-noise experimental data that were obtained from the same 

unit in a single preparation! (Thanks to the skill of Dr. Ken Naka). 

There are several interesting functional features revealed 

in Fig. 8. 10. The latency for system S (i.e., chain: Receptor­

Bipolar-+ Ganglion which is activated by spot stimulation) is 

considerably larger than that of system A (i.e. , chain: Receptor­

Horizontal-Bipolar-.Ganglion activated by annulus stimulaticn) or 

system U (uniform Light-.Ganglion system). 

The latencies are: 

SystemS 

System A 

System U 

55 msec. 

30 msec. 

30 msec. 

This rather surprising result implies that the receptor-to-bipolar 

synapse introduces a large delay. 

Considering the response rise time for these three systems 

we note that system S is much slower and more damped (less over­

shoot) than systems A and U which appear quite underdamped. 

System A and (even more so) system U exhilit the characteristics 

of a differentiator impulse response; a large positive impulse 

followed by a large negative impulse. Therefore, systems A and 

U act as differentiators, that is, they respond mainly to changes in 

the input rather than the input level. Since, for system A, the 
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negative portion is somewhat smaller than the positive one, this 

system also detects the magnitude of input leveL However, system 

U acts as a good differentiator (positive and negative portions are 

of the same magnitude). 

Since, as shown on the same figure (and in Chapter VI) 

the Light-+ H-cell system responds mainly to the magnitude of 

input level (notice h 1 for this system in Fig. 8. 6) we may 

conclude that the differentiating process takes place in the chain 

Horizontal ..... Bipolar-+Ganglion. This is in agreement with the 

results of the previous section where we found the system (chain: 

Horizontal-+ Bipolar-+Ganglion) acting as a differentiator followed 

by a half-wave rectifier. Later, when examining the non-

linearities (second order kernels h 2) of these systems, we will 

also discover the rectification process. Thus, it is well 

established that differentiation and rectification, as evidenced 

in the ganglion response, ta.ke place in the neuronal chain 

Horizontal-+ Bipolar_. Ganglion. 

Another important implication of Fig. 1 is the following: 

If (h1) t is slightly delayed by a simple filter (i.e., physical spo 

mechanism) then the following relation is true: 

This indicates the kind of interaction between the two mechanisms 

of the receptive field. This interaction, following previous 

arguments and morphological observations, takes place at the 

bipolar cell level. That is, the bipolar output is an almost-linear 
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function of the difference between the two inputs it receives from 

the receptors (as manifested by spot stimulation} and the horizontal 

cell (as manifested by annulus stimulation}. 

The first order kernels for the other two systems, which 

have already been described in other sections, are also shown in 

Fig. 8. 10. We note the latencies: 

System C 

System H 

12 msec 

20 msec 

whi ch checks the latency for system U ("'30 msec) which is a 

concatenation of system H and system C. 

Tables 8. 2 through 8. 5 describe the second order kernels of 

all these systems as computed from data obtained from the same 

unit and preparation. Following the same arguments as in the 

previous section we conclude that these nonlinear kernels describe 

a rectification process. 

The set of kernels [ h 1 , h 2 } , for each of the five systems, 

is the nonlinear, dynamic transfer function between the input and 

output of this neuronal chain. 

Figures 8, 11, 8.12, 8.14 show white-noise responses both 

experimental and for the linear and nonlinear models for all 

systems under study, as well as the corresponding power spectra 

for all signals in each case. We note that the rectification 

phenomenon is clearly exhibited in the nonlinear model response. 

The agreement between experimental response and nonlinear 

model response is extremely good, as can be seen in these figures. 
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Experimental and model responses to white-noise and corresponding power 
spectra for system Annulus + Ganglion. 
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Experimental and model responses to white-noise and corresponding power 
spectra for system Spot + Ganglion. 
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Fig. 8.13 

Mode 1 step responses for systems Spot+ Ganglion and Annulus+ Ganglion. 
Both positive (A1,A2,B1,B2) and negative (A3,A4,B3,B4) steps are con­
sidered. Both linear-model (A1,B1,A3 ,B3 ) are nonlinear-model (A2,B2, 
A4,B4) responses are shown. 
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M~DEL STEP RESP~NSES 
LINEAR 

Rl 
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Fig. 8.15 

N~NLINERR 

Model step responses for system Uniform + Ganglion. Both positive (Al, 
A2) and negative (A3,A4) steps are considered. Both linear-model 
(Al,A3) and nonlinear-model (A2,A4) responses are shown. Bl,B2,B3,B4 
are similarly for a different preparation. 



-208-

The mean square error, normalized so that for the model of zeroth 

order (just h , which is a constant equal to the average of the 
0 

output) is 100 arbitrary units, is reduced as follows: 

Mean Square Error 

System A SystemS System V Model 

100 100 a constant [h } 
0 

100 

41 45 38 linear [ho,hl} 

21 24 19 nonlinear [h
0

, h 1 , h 2 } 

The power spectra show the close agreement between 

experimental and model frequency response. We note again that 

the nonlinear system improves the model performance, especially 

for high frequencies. In addition, these spectra reveal a cutoff 

frequency of about 5 Hz for system S and a cutoff of about 9 Hz 

for system A and system U. Also, systemS is very slightly 

underdamped while system A and system U are quite underdamped. 

Fig. 8. 13 shows model step responses for systems A 

and S. We note that {for positive steps) spot stimulation gives rise to 

a "sustained" response {subfigure A2) while annulus stimulation gives 

rise to a transient "ON-OFF" response {subfigure B2). These model 

predictions are well in agreement with experimental data for step 

responses [ Naka, 62 J • There are no available data for negative 

step responses. The model predictions for negative steps show 

"ON-OFF" behavior for system A and ''sustained+ OFF" response 

for system S. Thus, we again observe the phenomenon of 
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J. CURRENT INJECTICJN IN H-CELL 

0 

0 

0 

0 

Fig. 8.16. Power spectra of experimental responses to white-noise 
for certain ganglion sys tems. 
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differentiation and rectification. Moreover, we note that for this 

ganglion type (Type A) system A responds only to changes in the 

input while system S responds to both the input level and positive 

changes of it. 

Fig. 8. 15 shows model step responses for system U. We 

note that this system responds mainly to positive changes of its 

input. 

Fig. 8. 16 shows power spectra (of the same unit and 

preparation) for systems A, S, U and C for the same white-noise 

input stimulus. As expected. system C is the fastest one and 

system S is considerably slower than systems A and U. For 

high frequencies the gain of system S, A and U attenuates at about the 

same rate. 

Thus far we have examined the behavior of the ganglion 

response for spot (annulus) stimulation while the annulus {spot) 

was kept at darkness. Also, in all cases so far studied, the 

stimulus was concentric with the ganglion receptive field. Now, we 

examine some additional cases: 

a) eccentric spot stimulation {system SE) 

b) concentric spot + steady annulus stimulation {system SAC) 

c) eccentric spot+ steady annulus stimulation (system SAE) 

Fig. 8. 17 shows a schematic description of the experiment 

for each case as well as the resulting first order kernel h • There 
1 

are several interesting implications. Considering subfigures A 

and B {Fig. 8. 1 7) we see that an eccentric spot produced a ganglion 

response of the opposite sign from a concentric spot. Noting also 
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FIRST ORDER KERNELS 
GANGLION RESPONSF 

SPOT 
C CONCENTRIC ) 

~.oe s•i ] 

SPOT AND ANNULUS 
C CONCENTRIC) 

Fig. 8.17 

SPOT 
(ECCENTRIC) 

D 

SPOT AND ANNULUS 
<ECCENTRIC) 

First order kernels. A: Spot (concentric) Ganglion, B: Spot 
(eccentric) Ganglion, C: Spot & Steady Annulus (concentric)~ 
Ganglion, D: Spot & Steady Annulus (eccentric) ~ Ganglion. The 
ordinate units are (output units)/(input units sec). 
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that the latency is the same in both cases, we conclude the existence 

of a lateral pathway that is capable of affecting the ganglion 

response by quickly transmitting signals from the periphery to the 

center of the receptive field. This function could conceivably be 

performed by the S-space, since, as we have shown in Chapter VII, 

a spot of 0. 3 mm diameter produces considerable excitation at a 

distance of 0. 45 mm away from its center. Therefore, i t is 

suggested that for case A (Fig. 8. 1 7) the neuronal path utilized to 

excite the ganglion is mainly Receptor--+Bipolar--+Ganglion while for 

case B (Fig. 8. 1 7) it is Receptor-+ Horizontal--+Bipolar--+Ganglion. 

Earlier we stipulated that a spot stimulation and an annulus stimulus 

interact at the bipolar with the following functional relationship: 

(>:<) (bipolar output) = (center excitation) - (periphery excitation) 

or equivalently, 

(bipolar output) = (input received from receptors) -

- (input received from horizontal cell) 

for a Type A ganglion field. The results for cases A and B (Fig. 8.1 7) 

verify relation (>t<) since for case A we would have 

(bipolar output) = (center excitation) 

whil e for case B we have 

(bipolar output) = - (periphery excitation). 

Considering cases C and D (Fig. 8. 1 7) we note that the 

inhibitory influence of the annulus is greater in case D (as would 

be expected) as evidenced by the large negative undershoots of the 

kernel of case D and the fact that the positive peak occurs at the 
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same time as in case C. This is, again, in support of relation 

( >!<). 

Considering cases B and D we note that the addition of the 

steady annulus illumination (corresponding to a change of "bias 

point") changes drastically the dynamic characteristics of the 

system. In case D, the system is very underdamped and it 

exhibits (considering case B) an additional excitatory (positive peak) 

component. 

Tables 8. 6 through 8. 9 describe the second order (non-

linear) kernels for all systems under consideration here. 

Figures 8. 18, 8. 19, 8. 21, 8. 22, show responses (both 

experimental and model-derived) to a portion of the white-noise 

input used to stimulate these systems. The nonlinear model 

responses, indeed, agree very well with the experimental ones. 

These same figures also show the power spectra for the stimulus, 

experimental response, linear model response and nonlinear model 

response. 

The mean square error (normalized to 100 arbitrary units 
A., ·· 'l,.·. 

for the model which is just h ) is as follows: 
0 

Mean Square Error 

SystemS System SE System SAC System SAE 

100 100 100 100 

49 41 38 45 

26 20 17 22 

Model 

a constant {h } 
0 

linear {h
0

, h 1 1 

nonlinear {h
0

, h 1 , h 2 } 
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Fig. 8. 20 shows model step responses (for both positive and 

negative steps) for systems S and SAC. The change of "bias point", 

caused by the addition of a steady annulus, has the following effect; 

it raises the sustained firing level while the system still exhibits 

the same transient behavior of responding mainly to a positive 

change of the input. 

Fig. 8. 23 shows model step responses for systems SE and 

SAE. In this case, the change of "bias" has the effect of changing the 

system from one which responds only to positive input changes 

(half-wave rectification) to one which responds to both positive and 

negative changes in the input (full-wave rectification). 

Fig. 8. 24 shows power spectra of white-noise responses for 

systems S, SE, SAC SAE. We note that, 

a) The frequency characteristics of systems S and SC are the 

same, 

b) System SAC is faster than system S, (a change brought by 

the "biasi\/~ change of steady annulus illumination), 

c) System SAE is faster than system SE (again due to "bias" 

change by the steady annulus), 

d) System SAC and SAE have approximately the same frequency 

characteristics. 

These findings suggest that the "lateral mechanism" involved in 

systems SE and SAE is extremely fast (from both the frequency 

response and latency points of view). Moreover, in all cases the 

addition of a steady annulus makes the system much faster-respo:rxling. 
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Experimenta 1 and mode 1 responses :to white-noise and co n : e sponding power 
spectra for system Spot (concentric) ~ Ganglion. 
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Experimental and model responses to white-noise and corresponding power 
spectra for system Spot & Steady Annulus ( concentric) + Ganglion. 
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M~DEL STEP RESP~NSES 
LINEAR GANGLION RESPONSE N~NLINERR 
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~ 
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82 g 81 

63 
~~~~~~~-----~ 

Fig. 8.20 

Sys tems Spot (concentric) ~ Ganglion and Spot & Steady Annulus 
(concentric) ~ Ganglion. Both positive and negative steps are 
considered. Both linear-model and nonlinear-model responses 
are shown. 
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Experimental and model responses to white-noise and corresponding power 
spectra for system Spot (eccentric) + Ganglion. 
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STIMULUS <WHITE NOISE> 

FIRST ORDER MODEL <LINEAR> 

SECOND ORDER MODEL <NONLINEAR> 
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-· "' STIMULUS <WHITE NOISE> 

GRNGl!ON RESPONSE 
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• SECOND ORDER MODEL <NONLINEAR> 
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Fig. 8.22 Experimental and model responses to white-noise and corres­
ponding power spectra for system Spot & Steady Annulus 
(eccentric) ~Ganglion. 
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M~DEL STEP RESP~NSES 
LINEAR GANGLION RESPONSE N~NLINEAR 
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Fig. 8.23 

Systems Spot (eccentric) ~ Ganglion and Spot & Steady Annalus 
(eccentric) ~ Ganglion. Both positive and negative steps are 
considered. Both linear-mode l and nonlinear-model responses 
are shown. 
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Fig. 8.24. Power spectra of experimental responses to white-noise 
for certain ganglion systems. 
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5. Conclusions 

In this chapter we have derived transfer functions for the 

following system: 

Horizontal - Ganglion (system C) 

Light spot - Ganglion (system S) 

Light annulus - Ganglion (system A) 

Light uniform - Ganglion (system U) 

Eccentric light spot Ganglion (system SE) 

(Light spot) + (steady annulus) -Ganglion (system SAC) 

Eccentric (Light spot) + (steady annulus)-Ganglion (system SAE) 

These nonlinear, dynamic models can predict the system behavior 

with small error for a great number of tests, the most stringent 

of which is the test with the same white-noise with which the 

physical system was tested. Other tests include step responses 

and power spectra. 

The main additional results of thi s chapter are the following: 

(a) System Horiztonal-Ganglion has the following 

c haracte ri stic s: 

(1) It is nonlinear, exhibiting strong half-wave 

rectification. 

(2) Functionally, it acts as a low-pass differentiator 

followed by a rectifier. 

(3) It is suggested (by the derived kernels and 

morphology) that the bipolar cell processes the signal 
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linearly while the nonlinearity occurs at the ganglion 

stage. 

{ 4) It has a cutoff frequency of about 12 Hz. and 

a high frequency attenuation of about 12 db/ octave. 

(5) It has a latency of about 10 msec. 

{6) It is underdamped. 

{b) Systems A, S, U have the following characteristics : 

{1) They are nonlinear (half-wave rectification). 

{2) They act like differentiators followed by rectifiers. 

System S also responds to the level of input stimulus 

while systems A, U respond mainly to (positive) changes 

in the input magnitude. 

(c) System S is much slower (latency-wise) than systems 

A and U. The latencies are: 

system S 

system A 

system U 

55 msec 

30 msec 

30 msec 

{d) System S is much slower-responding (frequency 

response) than systems A and U. The cutoff frequencies 

are: 

system S 

system A 

system U 

6 Hz 

10 Hz 

10 Hz 
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(e) Examination of the kernels suggests [ c£. 19 J that 

(bipolar output) .:::::.:: (spot excitation) - (annulus excitation) 

(bipolar output) ~ (input from receptors) - (input from H-cell) 

(f) Examining systems SE and S we concluded that the 

periphery of the receptive field exerts an antagonistic 

influence to that of the receptive field center (as to the 

ganglion response). 

(g) Examining the frequency response of systems S, SE, 

SAC and SAE we conclude: 

( 1) The eccentric system has the same frequency 

response as the concentric one. 

(2) The addition of a steady annulus to the stimulus 

increases considerably the system response figure 

making it faster-responding (frequency response}. 

(h) Examining the latency of systems S, SE and SAC, 

SAE we conclude that the eccentric system is just as fast 

(latency-wise} as the concentric one. 

(i) Conclusions (g) and (h) suggest the existence of a 

lateral mechanism (to communicate the influence of the 

periphery on the center of the receptive field} which is 

extremely fast both latency-wise and frequency-response­

wise. This mechanism is likely the layer of horizontal 

cells. 
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CHAPTERIX 

TRANSFER FUNCTIONS OF LIGHT - ERG SYSTEM 

1. Introduction 

The ERG is a continuous potential recorded extracellularly in 

the retina and indicating amass neural activity response. It is 

thought to derive from the electrical activity of several neuronal 

structures; one, from the receptors, is known as the late receptor 

potential (LRP) and . the other, from the pigment epithelium, is known 

as the L-wave. The rest of the ERG is thought to originate some­

where in the inner plexiform layer and inner nuclear layer [88 l . 

As it is a continuous function of time, and as it is easy to re­

cord, the ERG has been a subject of extensive (linear) analysis stud­

ies. In these studies, the system was tested either by a step function 

or by sine waves of various modulations and frequencies. Conclusions 

drawn are presented in several recent papers. A brief review follows. 

Rodieck and Ford [70b] recorded the cat local electroretino­

gram (LERG) and concluded that the component of the LERG arising 

from the LRP is linear and the nonlinearity is due to the L-wave 

arising from the pigment eipthelium. Therefore, their conclusion 

agrees well with our conclusions about the receptor potential in the 

catfish in being a nearly linear system (see Chapter V). 

Siinilarly, Poppe:Jeand Maffei [46b] , working on the cat, did 

not differentiate the different ERG components but concluded that the 

system was linear when the modulation was less than 50 per cent. 

They also noted that the system is essentially a low pass filter with a 
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ERG RESPONSE 

~[ 

SPaT 

0.08 SEC 
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~ ~~~L_~~~~~~~~~~~~~~ 
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Fig. 9.1. First order kernels for several Ligh t + ERG systems. Al: high 
mean intensity, A2: low mean i ntensity, Bl: low mean intensity, B2: high 
mean intensi ty, C: low mean intensity . Low mean intensity is 2.5 x 1010 
photons/mrn2 sec and h igh mean intensity is 1. 5 x 1011 photons/mm2•sec. 
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STIMULUS <WHITE NOISE> 

ERG RESPONSE 

FIRST ORDER MODEL <LINEAR> 

SECONO ORDER MODEL (NONLINEAR ) 

.. 
a 

INTENSITY) UNIF~RM LIGHT 

• 
• 

a 

a 

.. .. 

., STIMULUS <WHITE NOISE) 

• ERG RESPONSE 

+ FIRST ORDER MODEL <LINEAR) 

a SECOND ORDER MODEL <NONLINEAR> 

0.11 SEC 

.. .. .. 
• .. .. 
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+ ' • 

.. 

.... .. ... 

Fig. 9.2. Experimental and model responses to white-noise and corres­
ponding power spectra for system Uniform+ ERG (mean intensity, 
2.5 x 1010 photons/mm2•sec). 
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SINUSOIDAL RESPONSES ERG UNIFORM LIGHT 

R 
10 HZ 

82 

Bl 

B 
7 HZ 

C2 

CJ 

c 
Ll HZ 

<LOW MEAN INTENSITY) 
EXPERIMENTAL 

0.1~ SEC 

MODEL 

13 HZ 

17 HZ 

21 HZ 

Fig. 9.3. Experimental and model sinusoidal responses for system 
Uniform+ ERG (mean intensi t y 2.5 x 1010 photons/mm2•sec). For model 
responses, A: stimulus, Al: linear-model response, A2: nonlinear-model 
response, etc. 
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Fig. 9.4. Experimental and model responses to white-noise and corres­
ponding power spectra for system Annulus ~ ERG (mean intensity, 
2.5 x 1010 photons/mm2•sec). 
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Fig. 9.5. Experimental and model sinusoidal responses for system 
Annulus+ ERG (mean intensity, 2.5 x 1010 photons/rnrn2•sec). For model 
responses, A: stimulus, Al: linear-model response, A2: nonlinear-model 
response, etc. 
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Fig . 9 . 6 . Experimental and model responses to whi t e - noise and cor res­
pond ing power spect ra fo r sys tem Annu lus ~ ERG (mean intens i t y , 1 . 5 x l ol l 
pho t o n s / mm2 •sec). 
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Fig. 9.7. Experimental and model sinusoidal responses for system 
Annulus ~ ERG (mean intensity, 1.5 x 1011 photons/mm2•sec). For model 
responses, A: stimulus, Al: linear-model r esponse , A2: nonlinear-mo d e l 
r esponse, etc. 
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Fig. 9.8. Experimental and model responses to white-noise and corres­
ponding power spectra for system Spot + ERG (mean intensity, 2.5 x 1010 
photons/mm2•sec). 
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Fig. 9.9. Experimental and model responses to white-noise and corres­
ponding power spectra for system Spot -+ERG (mean intensity, 1.5 x lOll 

photons/mm2•sec). 
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Fig. 9.10. Experimental and model sinusoidal responses for system Spot-+ 
ERG (low mean intensi ty, 2.5 1010 photons/mm2•sec). A: stimulus, Al: 
l inear model, A2: nonlinear model, etc. 
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8Hz cutoff. Brindley and Westheimer [8] implied that the baboon 

ERG is linear when the intensity of a step input is less than 1 I 3 of the 

background illumination. On the other hand, Levett [ 42l reported 

that the frog intra-retinal electroretinogram is nonlinear at low fre­

quencies, whatever the modulation depth, but it becomes linear for 

high frequency sine waves. 

2. Light -+ ERG Transfer Functions 

In this section we derive nonlinear, dynamic transfer func­

tions for systems whose input is light (spot, annulus, and uniform) 

and whose output is the evoked ERG potential. Two widely different 

average intensity levels are used. The procedure used to perform 

the experiment, analyze the data, and compute the transfer functions 

has already been described in detail in the previous chapters. In 

this chapter we will limit ourselves to presenting the results for the 

ERG systems considered. 

Figure 9. 1 shows the first order kernels for systems spot 

light _.ERG, annulus light -ERG, and uniform light-+ ERG, for both 

low and high average intensity levels (in the first two cases). Tables 

9. 1 through 9. 5 describe the second order kernels for each case. 

The set [h h
2

} for each system is effectively a description of its 

trans fer function. 

Figures 9. 2, 9. 4, 9. 6, 9. 8, 9. 9 show white-noise responses 

both experimental and model-predicted for a portion of the white­

noise input used in the characterization process. The agreement be­

tween experimental response and model response is obviously ex-
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tremely good, as can be seen from these figures. The mean square 

error reduction is as follows: 

SYSTEM 

SPOT- ERG 

low level 
high level 

ANNUL US - ERG 

low level 
high level 

UNIFORM .... ERG 

low level 

constant 
[h } 

0 

100 
100 

100 
100 

100 

MODEL 

linear 
(h ,h} 

o r 

43 
40 

25 
21 

22 

nonlinear 
(h ,h ,h} 

o r z 

19 
16 

19 
18 

15 

Noting the white-noise responses of these systems and the 

corresponding linear and nonlinear model white-noise responses, it 

is suggested that systems annulus light-+ ERG and uniform light ... 

ERG are almost linear, while system spot light- ERG is very non-

linear, exhibiting a rectification phenomenon reminiscent of the 

ganglion response. In view of this observation, we propose that the 

ERG induced by annulus and uniform light stimulation is mainly due to 

receptor (and possibly horizontal cell) excitation, while the ERG in-

duced by spot stimulation is mainly due to the neural activity in the 

inner plexiform and inner nuclear layers. This inference derives 

from the fact that we established (in previous chapters) the near line-

arity of systems light -horizontal cell and light- receptor and the 

rectifying nonlinearity of system bipolar-ganglion. We have also 

found that a spot stimulus can hardly excite the horizontal cell. 
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Moreover, the first-order kernel of spot -ERG system is very simi­

lar to the first-order kernel of spot - ganglion system, and the sec­

ond order kernels in the two cases are very similar (thus describing 

the same type of nonlinearity). 

Figures 9. 3, 9. 5, 9. 7, 9. 10 show sinusoidal responses 

both for the model and (a few) experimental ones. We note that our 

previous assumption of linearity for system annulus light _,ERG is 

not quite valid and the system becomes nonlinear (with a strong sec­

ond harmonic) for frequencies around 10 Hz. This nonlinearity is 

more prominent at low mean intensity levels. We note the remark­

able (! ) agreement between model prediction and experimental re­

sponse for sine waves. This is due to the fact that the system under 

study appears to be a second-order nonlinear system,and therefore 

it allows an accurate description in terms of the first two kernels of 

the Wiener series (i.e., h 1 and h 2 only). Sinusoidal responses of 

system uniform light_, ERG uphold our previous assumption of line­

arity for this system, while system spot light _, ERG exhibits the 

predicted nonlinearity of rectification. 

The power spectra of experimental and model (linear and non­

linear) white-noise responses show very good agreement. The non­

linear model improves the linear model performance (from the fre­

quency response point of view) considerably. 

Figure 9. 11 shows power spectra for the white-noise stimulus 

and the system response for all ERG systems considered. We note 

the following: 
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Fig. 9.11. Power spectra of experimental responses to white-noise 
for several Lighr+ERG systems. Low mean intensity is 2.5 x 10 1° 
photons/mm2•sec and high mean intensity is 1.5 x loll photons/mm2•sec. 
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1) System spot light .... ERG is the slowest one and its fre­

quency response does not change with mean intensity level. 

2) The cutoff frequency for spot .... ERG system is about 

7Hz. 

3) System annulus light ..... ERG has a cutoff of about 7 Hz at 

low mean intensity levels and 12 Hz at high mean intensity 

levels. 

4) The spectrum of annulus ..... ERG system reveals the ex­

istence of a strong 20 Hz frequency contribution (compare 

with sinusoidal response at 10 Hz) which decreases as the 

mean intensity level increases. 

5) System uniform light ..... ERG has a cutoff at about 10 Hz. 

For the spot ..... ERG system, the high-frequency asymptotic 

slope is about 18 db/ octave, indicating that the system is of third 

order. Systems annulus ..... ERG and uniform .... ERG have a high­

frequency asymptote of less steep slope (about 12 db/ octave). This 

difference supports our claim that the spot-induced ERG comes from 

the inner plexiform and inner nuclear layers, while the annulus or 

uniform light-evoked ERG originates in the receptors (and perhaps 

horizontal cells). Such a claim, of course, can be made only if the 

systems can be considered nearly linear (which is not the case for 

system spot ..... ERG). 

3. Conclusions 

In this chapter we derived nonlinear dynamic transfer func­

tions for several light .... ERG systems. The derived models were 
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very satisfactory in that they accurately predicted the experimental 

response for a number of strict tests. These tests were white-noise 

responses, sinusoidal responses, and power spectra. 

The additional main conclusions are: · 

(a) System uniform light .... ERG is nearly linear. 

(b) System annulus light -ERG is nonlinear around 10 Hz, ex­

hibiting a strong second harmonic (20 Hz). 

(c) System spot light .... ERG is very nonlinear, exhibiting the 

same type of nonlinear response as system spot light .... gan­

glion discharge (rectification). 

(d) It is proposed that in systems annulus .... ERG and uniform .... 

ERG the ERG is mainly due to receptor (and possibly hori­

zontal cell) activity, while in system spot .... ERG the ERG is 

mainly due to activity in the inner plexiform and inner nuclear 

layers. 

{e) System spot -+ERG has a cutoff around 7 Hz and the frequency 

response does not change with intensity level. System annu­

lus .... ERG has a cutoff of about 7 Hz at low levels and about 

12 Hz at high average intensity levels. System uniform light­

ERG has a cutoff frequency of about 10 Hz. 

(f) The high-frequency attenuation asy.tnptote is steeper ( ~ 18 db/ 

octave) in the spot --+ERG c ase than in the annulus -ERG and 

uniform--+ ERG cases ( ~ 12 ·db/ octave), thus supporting our 

proposition made in conclusion {d). 

(g) All systems have a latency of about 25 msec. 
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CHAPTER X 

SUMMARY AND DISCUSSION OF RESULTS 

1. Applicability of the White-Noise Method 

Wiener showed that a nonlinear syste m can be identifie d by its 

r e sponse to white noise, since, in this way, the syste m is tested 

uniformly over its entire input function space. Wiener's formulation 

(of the white noise theory), in terms of Laguerre and Hermite expan-

sions, is impractical and difficult to apply to a physical system for 

the following reasons: 

(a) The number of characterizing coefficients [ a.i ... k } is ex-

10 
tremely large (of the order of 10 ). 

(b) The computation time is very long. 

(c) It is very difficult to interpret the derived model [ a... k } in 
lJ ... 

terms of the physicaJ. characteristics of the system. 

(d) The method is essentially a curve-fitting proce dure and not a 

descriptive algebra of systems. 

(e) A,. linear system is very cumbersomely identified by this 

method. 

(f) A priori information about the system cannot be utilized to re-

duce the complexity of the identification procedure. 

(g) The derived model is too cumbersome to use for prediction. 

The Lee-Schetzen formulation of the Wiener theory removes al-

most all of these difficulties and makes the application pos sib1e (with 

few restrictions). This method, based on eros s- correlation tech-

n i ques, has the following advantages over Wie ner's formulation 
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(a) The derived model can be interpreted easily to reveal gross 

system features. 

(b) It is much simpler computationally. 

(c) A linear system is easily recognized, and a priori information 

is easily utilized to reduce the identification effort. 

(d) The derived model is easily used to pr e dict the system re-

sponse. 

(e) Alternative 11 structural" models are easily constructed from 

the initial model. 

(f) The approximation error i s smaller. 

Alternative formulations of the white-noise theory can easily 

be developed to account for peculiarities of a class of systems 1n a 

way that could drastically reduce the computational effort. 

In applying the white-noise theory (cross-correlation formula­

tion), several considerations have to be taken into account. 

(a) The time-invariancy of the system must be secured. 

(b) The bandwidth of the white-noise input should be chosen large 

enough to cover completely the system bandwidth but small 

enough in order to result in a small statistical variance of the 

cross-correlation estimates. The error introduced by too 

small or too large a bandwidth was analyzed. 

(c) The number of kernels to be c omputed can be decided by pre­

liminary harmonic analysis. 

(d) The memory of the system must be found in order to deter-
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mine the extent to which the kernels should be computed. 

(e) The temporal length of the white-noise experiment is deter-

mined by the acceptable variance in the estimates of the cross-

correlations and it depends on the white-noise bandwidth and 

the system memory. 

th The total computing time for the calculation of the n degree 

kernel is approximately 

T = n 
(m+n-1 )(m+n-2 ) . . . (m) 

a. • N· n· n n! 

where a. is a constant, N is the total number of samples in the 
n 

record, and m= (systemmemory)/(sampling interval). Thus, com-

puting time increases almost exponentially with the order of the 

kernel. Error analysis of the kernel estimates has shown the fol-

lowing: 

(a) The statistical error increases with increasing bandwidth of 

the white noise. 

(b) The statistical error increases by increasing the system mem-

ory for a record of constant length. 

(c) Noise present at the output introduces error terms which do 

not increase with increasing the order of system nonlinearity 

or the order of the computed kernel. 

(d) Noise present at the input is more serious than noise at the 

output. In this case, the error terms increase as the order 

of system nonlinearity or the order of computer kernel is in-

creased. In particular, it was shown that the error introduced 
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by the truncation of the gaussian signal is negligible if the 

truncation level is higher than 2.5 standard deviations. 

2. Neuronal Systems 

The white-noise method was used to obtain nonlinear, dynamic 

transfer functions for several neuronal systems of the catfish retina. 

These nonlinear models can predict, with reasonable accuracy, the 

response of the neuron systems to any input. Comparison of model 

responses with experimental responses for a great number of inputs 

showed close agreement. The most stringent of these tests was the 

comparison of model and experimental responses to the same white­

noise input. 

Transfer functions were obtained, for different average in­

tensity levels, for the following light-+ receptor systems: 

(SPOT) 

(ANNULUS) 

(UNIFORM) 

-+ 

RECEPTORS 

RECEPTORS 

RECEPTORS 

Each transfer function is in the form of a set of kernels [ h 
1 

( ,- ), 

h
2 

(,-
1

, ,-
2 

)} • Some of the system characteristics revealed by these 

models are: 

(a) The systems are nearly linear (within a range of l. 8 log-units) 

with small nonlinearities which are persistent even for "small 

signals. 11 

(b) Latency decreases with increasing average intensity (from 

about 15 to 10 msec). 

(c) The systems become faster-responding (frequency response) 
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with increasing average intensity. Cutoff frequency is 6 Hz 

at low levels and 11 Hz at high levels. 

(d) For high frequencies the response attenuates at 12 db/ octave. 

Dyncunic transfer functions were obtained, for different aver­

age intensity levels, for the system light_, horizontal by two differ­

ent methods; (l ) the white-noise method and (2 ) by fitting a set of 

equations to setp and sine response data. Considering overall per­

formanc e, the white-noise-derived model is much more satisfactory. 

Some system characteristics are the following: 

(a) The system i s nearly linear (within a range of 1. 8 log-units), 

with small nonlinearities which are persistent even for "small 

signals." These nonlinearities are very similar to those ex­

hibited by the receptor systems. 

(b) Latency decreases with increasing average intensity from 

about 20 to 15 msec. In view of the results for the light ..... 

receptor systems it was concluded that the receptor _, hori­

zontal system has a latenc y of about 5 msec which is inde­

pendent of the me an input level. 

(c) The system becomes faster-responding at higher mean light 

levels. Cutoff frequency is about 7 Hz at low levels and about 

12 Hz at high levels. In view of the results for the light .... 

receptor system it is suggested that the r e ceptor _,horizontal 

syste m has a cutoff frequency higher than 12 Hz and therefore 

does not introduce response time limitations on system light­

horizontal. 
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(d) For very high frequencies the response attenuates at 24 db/ 

octave. 

The spatial distribution of potential within a flat cell (horizontal 

c e ll laye r ) was determined as a solution of Laplace's equation w ith ap-

propriate boundary conditions. The membrane pote ntial V, as a func-

t i on of cylindrical c oordinates (p, z), is given by 

( >:< ) 

where 

<X> 

V(r, z) = K· J· J 
0 

(~-"1 )e -\..1(2 o-z)+(~+y )e -~z 
(~+y )2 (l- e -Z~ o) 

R 

· sin~. J (~r )d~ 
0 

r = p/ p ' 
0 

z = z/ p = "' - _j_ o - R 0- h/p . 
- 0 ' 

m 

K is a constant, J is the exciting current, p
0 

is the radius of the 

disc of excitation, h is the cell thickness, and R., R are the intra-
1 m 

c ell u1 ar, membrane resistivities, respectively. Potential decay 

data from both external and internal horizontal cells w ere closely 

predicted by equation (>:<). The decay rate predicted by equation (>:< ) is 

exponential for small distances but becomes much slower for larger 

distances, thus allowing the experimentally-observed spatial integra-

tion over large areas. The equation shows that the dec ay space con-

stant depends only on (R /R.) and not on thickness. Data obtained m 1 

from both types of H-cell by varying the diameter of the stimulating 

spot and for different intensity levels were well fitted by equation( >!< ). 

For the external H-cell data the fit was obtained by varying parameter 

(R /R.) for the different intensity levels, while for the data obtained 
m 1 

from the internal H-cell it was necessary to vary synaptic current J 
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to obtain a fit. This suggests two different synaptic mechanisms for 

the two types of horizontal cell; an increase of membrane resistance 

for the external H-cell and an increase of the synaptic current for the 

internal H- c ell, with increase in stiinulus intensity. 
transfer 

Nonlinear dynamic .{unctions have been obtained in terms of 

kernel s e ts [h
1

, h 2 } for the following systems: 

Horizontal Ganglion (system C) 

(Spot) ...... Ganglion (systemS) 

(Annulus) ...... Ganglion (system A) 

(Uniform) ...... Ganglion (system U) 

(Eccentric Spot) -+ Ganglion (system SE) 

(Spot + Steady Annulus) ...... Ganglion (system SAC) 

(Eccentric Spot + Steady Annulus) ...... Ganglion (system SAE) 

Some system characteristics revealed by these models are: 

(a) System C is strongly nonlinear, acting as a low-pass differen-

tiator followed by a half-wave rectifier. 

(b) It is suggested that the bipolar processes the· signal linearly, 

while the nonlinearity occurs at the ganglion stage. 

(c) System C is underdamped, has a latency of 10 msec, a cutoff 

frequency of 12 Hz, and a high frequency attenuation of 12 db/ 

octave. 

(d) Systems A, S, U are strongly nonlinear, acting as low-pass 

differentiator followed by rectifier (systemS, in addition, re-

sponds to input level magnitude). 

(e) Latency-wise, systemS is much slower (~55 msec) than 

systems A and U (~ 30 msec). 
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(£) Frequency response-wise, systemS 1s slower (cutoff f r e-

quency is 6Hz) than systems A and U (cutoff frequency i s 

10Hz). 

(g) It is suggested that 

(bipolar output) :::::::. (spot excitation) - (annulus excitation) 

or 

(bipolar output) (input from receptors) - (input from 
horizontal cell). 

(h) As to the ganglion response, the receptive field surround is 

antagonistic to the receptive field center. 

(i) The eccentric system has the same latency and frequency re-

sponse as the concentric system, thus implying that the lateral 

mechanism of the receptive field is extremely fast (both 

latency-wise and frequency response-wise). It is suggested 

that this function could be performed by the later of horizontal 

cells (S-space). 

(j) The addition of a steady annulus to the sti.Inulus increases 

considerably the frequency response (bandwidth) of the system. 

Nonlinear, dynamic transfer functions have been obtained for 

several Light _,ERG systems. These models are given in terms of 

kernel sets {h
1

, h 2 } . The following systems were studied: 

(Spot) _, ERG 

(Annulus) _, ERG 

(Uniform) _, ERG 

(system ERS) 

(system ERA) 

(system ERU) 

Some system characteristics, revealed by these models, are: 
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(a) System ERU is nearly linear. System ERA is nonlinear for a 

f requencies around 10Hz, exhibiting a strong second har­

monic. System ERS is very nonlinear, exhibiting the sru:ne 

kind of nonlinearity (rectification) as system (Spot)-+ Ganglion. 

(b) It i s suggested that for systems ERA and ERU the ERG re­

sponse is mainly due to receptor (and possibly horizontal cell) 

activity, while for system ERS it is mainly due to neural 

activity in the inner plexiform and inner nuclear layers. 

(c) System ERS has a c utoff fr e quency o f 7 Hz, which does not 

change with average intensity level. System ERA has a cut ­

off of 7 Hz at low levels and 12 Hz at high lev els. System 

ERU has a cutoff frequency of 10 Hz at high levels and 7 Hz 

at low levels. Hig h frequency atten uation is 18 db/ octave for 

system ERS and 12 db/octave for systems ERA and ERU. 

(d) All systems have a latency of 25 msec. 

The following table summarizes some of the results about 

latencies, cutoff frequencies, high frequency asymptotes and non­

linearities for the different systems. 

We conclude that the photo-receptor stages are the lir.niting 

subsystems as to the frequency response of the overall retinal pro­

cessing of the visual signal. Moreover, these stages (and the hori­

zontal and bipolar cells) process the signal almost linearly, while 

major nonlinearities occur only at the ganglion cell stage. 

Finally, it should be stressed that the derived models in 

t e rms of the set of kernels [ h
1

, h 2 } are global models that c an an-
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swer any question about the system input - output behavior, with 

reasonable accuracy. Therefore, the above-mentioned results are 

only a part of the information contained in the set {h
1

, h 2 } and have 

been stated here to show that results obtainable by classical methods 

are already included in the white-noise-derived models. An analogy 

can be made with the task of describing a man's appearance: it can 

be said that he is tall, thin, bow-legged, blond, etc. (corresponding 

to saying a system is underdamped, has 'f sec latency, 6 db/ octave 

high-frequency attenuation, etc. ). On the other hand, providing a 

photograph of the man can reveal all this information plus a lot more 

(corresponding to providing the kernel set {h
1

, h 2 } for the system). 
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