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ABSTRACT

The applicability of the white-noise method to the identifica-
tion of a nonlinear system is investigated. Subsequently, the method
is applied to certain vertebrate retinal neuronal systems and nonlinear,
dynamic transfer functions are derived which describe quantitatively
the information transformations starting with the light-pattern stimulus
and culminating in the ganglion response which constitutes the visually-
derived input to the brain. The retina of the catfish, Ictalurus
punctatus, is used for the experiments.

The Wiener formulation of the white-noise theory is shown to be
impractical and difficult to apply to a physical system. A different
formulation based on crosscorrelation techniques is shown to be appli-
cable to a wide range of physical systems provided certain considerations
are taken into account. These considerations include the time-invariancy
of the system, an optimum choice of the white-noise input bandwidth,
nonlinearities that allow a representation in terms of a small number
of characterizing kernels, the memory of the system and the temporal
length of the characterizing experiment. Error analysis of the kernel
estimates is made taking into account various sources of error such
as noise at the input and output, bandwidth of white-noise input and
the truncation of the gaussian by the apparatus.

Nonlinear transfer functions are obtained, as sets of kernels,
for several neuronal systems: Light -+ Receptors, Light - Horizontal,
Horizontal -+ Ganglion, Light + Ganglion and Light > ERG. The derived

models can predict, with reasonable accuracy, the system response to
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any input. Comparison of model and physical system performance showed
close agreement for a great number of tests, the most stringent of
which is comparison of their responses to a white-noise input. Other
tests include step and sine responses and power spectra.

Many functional traits are revealed by these models. Some
are: (a) the receptor and horizontal cell systems are nearly linear
(small signal) with certain "small" nonlinearities, and become faster
(latency-wise and frequency-response-wise) at higher intensity levels,
(b) all ganglion systems are nonlinear (half-wave rectification), (c)
the receptive field center to ganglion system is slower (latency-wise
and frequency-response-wise) than the periphery to ganglion system,
(d) the lateral (eccentric) ganglion systems are just as fast (latency
and frequency response) as the concentric ones, (e) (bipolar response)
= (input from receptors) - (input from horizontal cell), (f) receptive
field center and periphery exert an antagonistic influence on the
ganglion response, (g) implications about the origin of ERG, and many
others.

An analytical solution is obtained for the spatial distribution
of potential in the S-space, which fits very well experimental data.
Different synaptic mechanisms of excitation for the external and

internal horizontal cells are implied.
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CHAPTER I

INTRODUCTION

The problem of identification of systems (also known as
"system characterization,'' "system measurement' and ''system
evaluation'") is one of the first problems that confronts scientists
in a great variety of fields. It is the task of determining the
input-output relationship of the system under study, in the form
of a mathematical representation (or model), that is, the determina-
tion of the system functional F (y=F(x)) where x is the system

input and y is the system output.

We may distinguish two different goals of the identification
process; one, we could call '"functional identification'" and corres-
ponds to finding what F is and the other, we could call "structural
identification" and corresponds to finding how F is computed by the
physical system. The second goal presupposes some a priori information
about the system's internal structure and it usually takes the form of
estimating the system parameters. The first goal treats the system
as a black box and is, therefore, a more primitive process in the
whole modeling procedure. For this purpose, we give the following
definition of the identification problem: Given a system y = F(x)
choose a set of inputs {x} such that the input-output pairs {xi,yi}
will allow you to determine F.

The identification problem was first formulated in connec-

tion with basic questions in the fields of adaptive control,
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filtering, prediction and estimation theory [1b,l6,32b,33b,42a,54a,54b,
100]. The basic theories that deal with system identification were
first developed in these fields and have since been applied in
virtually all fields of science. This generality of the applicability
of the system identification theory is due to our being used to study
systems in terms of '"cause-effect," "input-output,' '"stimulus-response,"
"y is related to x," etc.

The object of the theory is the derivation of a mathematical
(or otherwise concise) model/z:ncept that allows the prediction of the
output (or effect or response) for a given input (or cause or stimulus),
Such a model is desirable because, (a) it summarizes the functional
properties of the system under study, (b) it allows conceptualization
of the relevant information processing done by the system and its role
in a complex environment, (c) can be used as a guide in posing new
meaningful questions about the system's structure and (d) makes the
presence of the physical system unnecessary as far as performing
stimulus~response experiments. Point (d) is especially important for
the study of biological systems since experiments, in this case, are
very cumbersome and difficult. Many questions, then, could be answered
by use of the derived model (assuming it is a good model) instead of
performing a '"real'" experiment.

In the case of linear systems (i.e. the class of systems
that obey the principle of superposition) the identification procedure
is well established and straightforward since a linear system can be
identified by its response to any aperiodic input signal such as an

impulse or step function. In practice, however, a series of sine
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waves of different frequencies is used as the test input and Bode
plots of the system gain and phase are obtained.

Techniques of linear system theory have been used extensively
in the study of nonlinear systems. There are basically two reasons
for this: first is the simplicity and completeness of linear theory
and second 1is the near absence of powerful and general nonlinear
system theories. Often a nonlinear system has been studied through
linear techniques using "small signals'" or by making certain
"linearizing'" assumptions about its behavior. Biological systems,
however, seldom behave linearly even under '"'small signal'" conditions
(see, for example, [42b,781], papers on the pupillary-reflex system,
neural threshold systems and the many "unidirectional rate sensitivity"
biological systems in [12] among many others). In fact, for optimal
functioning of a biological system, nonlinearities are often essential.
Examples are the logarithmic transformation of the sensory input in
order to accommodate large ranges, the threshold mechanism of neuron
to increase reliability of the information processing, the unidirectional
rate sensitivity mechanism to distinguish direction and many others.

Linear and linearizing techniques have often been used yielding
useful results [12,22,23,78,79]. Certain specialized methods for
nonlinear system analysis exist such as the phase~plane and describing
function techniques and others [13,28,29,87,95,98]. However, all these
methods have serious limitations and are applicable to rather narrow
classes of nonlinear systems.

Starting with Wiener's original work in 1942 [92] a gengral

theory of nonlinear system analysis and synthesis has been in
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deve lopment [2,6,7,25,41,93,99]. The theory is applicable to all
systems that are time-invariant and have a finite memory and therefore
it covers a very wide range of physical systems. Wiener proposed that
a nonlinear system can be identified by its response to gaussian
white-noise, since with such an input, there is a non=zero probability
that any given function over a finite interval of time will be closely
represented by some sample of this noise, and therefore, the system
will effectively be tested with all possible inputs.

In spite of Wiener's theory generality and power very few
attempts have been made to apply it to the analytical study of
nonlinear systems and the results obtained from such attempts have
not been quite satisfactory [31,37,81]. The difficulties in applying
the method to biological systems are: (a) conditions for convergence
of the Wiener series are not known, (b) computation time increases
almost exponentially with the order of the computed kernel and (c) the
low signal to noise ratio and high internal noise usually encountered
in biological systems. These difficulties can be minimized for biolo=-
gical systems for which the input and output variables can be measured
with accuracy (high signal to noise ratio), with low system internal
noise and whose nature of nonlinearity allows a fairly accurate repre=-
sentation by taking the first few terms of the Wiener series. An
attempt has been made to apply the Wiener theory on the pupillary-reflex
system by Stark [81]. Katzenelson and Gould adapted a variant of
the Wiener theory [36] which they applied to the pupillary-reflex
system [37]. The results of these attempts to characterize the

pupillary system using the Wiener theory were not satisfactory mainly
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because of the large internal noise (present in the pupil system)
which is independent of the input and therefore cannot be reduced by
filtering [37,80].

Harris has applied another variant of the Wiener theory
due to Bose [6] in which he characterized a continuous stirred-tank
reactor system which has a two=level input [31]. The system was
first simulated on a digital computer and then characterized. The
identification procedure was simplified by the fact that the input
switched only between two states and could therefore be treated as
a binary variable.

In this work we apply a variant of the Wiener theory due
to Lee and Schetzen [41] and characterize several neuronal systems
of the vertebrate (catfish) retina. These systems describe the
information transformations performed by the retina starting with
light patterns and ending with the ganglion cell outputs which cons-
titute the retina-transformed light pat;ern information that becomes

the neural input to the brain.
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CHAPTER II
THE WIENER THEORY OF NONLINEAR SYSTEM IDENTIFICATION

1. White-noise approach in nonlinear system characterization

One of the main concerns in the analysis-synthesis problem of
a nonlinear system is that of finding a proper mathematical represen-
tation of the system. This representation must be such that it is con-
venient to handle algebraically and computationally and it must reveal
certain basic functional characteristics of the system under study.
Without going further into the representation problem for nonlinear
systerms we note that, for these purposes, the concept of a functional
representation has been well established by a series of investigators
[2, 17, 25, 89, 92, 93, 97, 99, others].

Volterra [89] is credited with originally applying the concept
of a functional to expand the input-output relationship of a nonlinear
system in a power series with functionals as terms. A functional is a
function whose argument is a function and whose value is a number,.
For example, definite integration is a functional whose argument is
the integrand and whose value is the value of the definite integral.

Consider a system S with input x(t) and output y(t).

Input SYSTEM Output
x(t) S y(t)

At any time t, the system can be considered to be a functional whose
value is y(t) - the value of the output at this time - and whose argu-
ment is [x(1), T <t], a function that describes the whole past input to

the system. Therefore the system can be written mathematically as,
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(1) y(t) = S[t; x(#), T <t]
The well-known convolution integral for linear systems,
t

y(t) = [h{t-T)x(t)dT
0

is an example of a functional. In fact Volterra's functional series as
well as Wiener's representation for nonlinear systems [15, 92, 93]
are simply generalizations of the convolution integral representation
of a linear system. The Volterra series is,
w T 00
y(t) =hg+ [ h(6)x(t-T)dT +~{>oj hy (T, To)%(E-T | )%(t-T,)dT, dT,

(2) 0
+ [[] ha (T, Ty, To)%(E-T ) i(t-T, )k (t-T5)dT, AT, dT5 + ...
-0

where the integral kernels h1 (T), h2 ('rl, 'rz), ..., are zero for any of
their arguments being less than zero since a physical system must
satisfy the causality principle. From (2) it is easily seen that the
second term describes the linear behavior and that the higher order
terms are generalizations of the linear convolution integral.

Wiener constructed a hierarchy of functionalé of increasing
order which are orthogonal to each other with respect to a gaussian
white noise input and whose sum characterizes the system [93].
Wiener's approach is approximately as follows: The functional of zero

order is h. The functional of first order is
[ By (T)x(t-T)dT + K,
where x(t) is a gaussian white process. Then, he uses a method very

similar to the Gram-Schmidt orthogonalization procedure to make the

functional of the second order orthogonal to the functionals of zero
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order and first order. Then he makes the functional of third order
orthogonal to the functionals of second, first and zero orders and so
on. At each step he normalizes the resulting functional.
Finally, Wiener showed that the relationship between the input

x(t) and the output y(t) of system S can be written as
0
(3) y(t) =n§0 G, [h ,x(t)]

where {Gi}' is the set of orthogonal functionals derived by the process
described and {hi} is the set of Wiener kernels. Each h, is a sym-
metrical function with respect to its arguments. The first four Wiener

functionals are:

h

Gf)[hO' X(t)] 0

00
G, [hy, x(t)] [ by (T)x(t-T)dT
0

=]
G, [h,, x(t)] fof hy (T, To)x(t-T X(t-T,)dT, dT, -

2

o0
= {)hZ(Tl’ Ty a1

o
G,lh,, x(t)] fgf hy (T, Ty, To)x(t-T )X (k=T )xt-T,)dT, dT,dT, -

3

-3p [/ hy (T yx(t-7,)dr,,dT,

1* 72273

where the power density spectrum of white noise x(t) is @xx(f) = B,
Thus, system S is described by a set of kernels {hi} which

can be considered to be generalized "impulse responses' of the system.

To see this and also to get an insight as to the meaning of the kernels

let us consider the following example [81]. Consider a system S
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which is completely described by the linear and quadratic terms of
the series, that is

£ -~
Xl & )

00 jo.of <
— - .,f _ - 1y .
v = {) hy (Thx(t-T)dT + fd hy (T, 7, )Rl frl)if)(t T,)dr, dr,
The response of S to an impulse att = 0, i.e. x(t) = &(t), is

0 oC
y{t) = [h(T)8(t-DdT + fof h, (T4, T,)8(t-T,)8(t-7,)dT , dT,
0
or

y(t) = hy(t) + hy(t, t)
The response of S to an impulse at t = tg i.e. x(t) = 6(t-to), is

y(t) = hy(b-t,) + hyft-to, t-t )

The response of S to a stimulus consisting of an impulse at t = 0 and

an impulse at t = tO’ i.e. x(t) = &6(t) + 5(t-t0), is

o0
y@) = [ b (1)[8(t-T) + &(t-T-t;)]dT +
0

+ [Ty (1, T [8(-T )46 (k=T -t )I[8(t-T,)+8(t-T, -t ) ]dT/dT,

or

y(t) =h, () + b, (t-to) +h,(t, t) + hy(t, t-to) +

+ hy (b=t t) + By (t-tg, t-tg)

If we subtract algebraically from the response to the two impulses

the contributions (responses) of each impulse when each alone acted

upon the system, we have left
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hz(t, t—to) + h2 (t-to, t)
which, since h2 ('rl, '1'2) is a symmetric function, reduces to
2 hz(t, t-to)

Therefore it is seen that the second-order kernel hz('rl, TZ)
gives a quantitative measure of the nonlinear ''cross-talk' between

the two impulses as a function of time t for each separation, t,, be-

0’
tween the impulses. It is this term, 2 hz(t, t—to) which represents

the deviation from '"time superposition.! That is the deviation of the
system response to the two-pulse stimulus from the sum of the re-

sponses to each stimulus impulse separately. Note that this example
does not clearly interpret the meaning of hz('rl, 'rz) along the diagonal
LTy

pulses come very close together until they almost coincide. The value

= Ty ], even though we can get an idea of it by letting the two

of hz('r‘, 'rz) for Ty # T, gives the nonlinear deviation due to interaction

between portions of the input signal 7, and < seconds in the past.

1 2
w
o -

\‘/ 1 |t Time
L5
-

It can easily be shown that if the system consists of a no-

Input

memory nonlinearity followed by a linear system then hz('rl, ’TZ) =0

for T # To and the system obeys ''time superposition'’;that is, in this
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case, the response of the system to the sum of two or more impulses

is equal to the sum of the responses of the system to each impulse
separately and the values of hy (T4, 'TZ} for Ty = T, 2re a continuous
series of impulses of varying strength. In conclusion, we see that

the magnitude of the kernels gives an indication of the nonlinear cross-
talk between different (in past time) portions of the input.

A system is completely characterized once its set of kernels
{hi} is determined. This method is applicable to a very large class
of systems. This is the class of systems that are time-invariant,
ha.vé a finite memory and whose inputs and outputs are bounded. Ex-
cluded are systems whose characteristics change with time and systems
with infinite memory such as oscillators. Therefore, compared with
other methods of nonlinear system analysis such as the phase
plane technique or the describing function technique [13, 28, 87] the
Wiener method has a much greater range of applicability and it can
describe nearly all physical systems.

The use of white noise, which is a random function of time, as
input in order to characterize a system is based on the following idea:
Given a long enough record of the system response to a white-noise
ensemble member there is a finite probability that any given function
of time will be represented arbitrarily closely over a finite interval of
time by some sample of this white-noise input function. In this way
the system is tested with every possible input time function and all
frequencies over which the noise has a flat spectrum. Thus, two sys-
tems are equivalent if and only if they respond identically to white

noise because then they will respond identically to any other input.
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This is the justification for deriving nonlinear transfer functions by
performing white noise experiments. The objective, then, becomes
to find a mathematical model that responds to white noise the same

way the physical system responds to white noise.

2. The Wiener formulation of the white-noise theory

Given a time -invariant, physical system S with input x(t) and
output y(t), the output at time t is a function of the present value and

past values of the input [6, 93],
(1) y) = S[x(T), T <t] ;

The function [x(T), T <t] can be expanded into a series of orthonormal
functions like the family of Laguerre functions, {cpi (T)3,

0
(2) x(-T) =nZ=>0 c @ (1), 120
The set of coefficients {ci} completely describes [x(T), T<t] and the
present is considered as £ = 0 and time going backwards. The Laguerre
functions form a complete orthonormal system in the interval (0, o) and
are defined by

t/2 n
e %(tne—t)’tzo,nzo’l’zl._.
n! dt

(3) o )=

We easily obtain the coefficients {Ci}’ by

©0
(4) e = 6fx(-T) ¢, (T)dT "
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Wiener chose the Laguerre family of functions to expand the
past of the system input because these functions have certain desirable
mathematical properties (we will describe later) and they can be
easily generated by analog equipment. The Laguerre coefficients

can be generated by the network shown below,

=L — 1 ——1-9 s -3 cnesel 8.~ %
s +% s+ % s +%
2

v

o8 e, (1) e, (&)
where s is the Laplace transform wvariable. Or, edquivalently,
the Laguerre coefficients are given as solutions of the following

set of linear differential equations:

dr 1 m-1
m = ~ 2 =
""H"t""' + E‘ rm = X(t) . Z ri(t) ] 1 O: 1) see, 1

ri(o) = 0 ] x = OJ 1:"': n

At each time t, the outputs of this network give the values of
the coefficients {ci} which completely describe the input x(t)
up to this time t. This can be shown very easily from equations

(3) and (4).
For x(t) being a gaussian white process it can be

shown that
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(a) Each c; has a gaussian distribution,
(b) e and c., are statistically independent random variables.
(c) All 5 have the same mean and variance.
Given these properties of the coefficients {ci} and after standardizing

them so that they have zero mean and unit variance, it is easily seen

that the joint probability distribution is

N

3 2
(5) p(co, cl,...,cn) = (2) exp[-%{c0+c12+...+cf)]

In practice we would use a finite number, n+l, of coefficients

c; to describe the past of the input. Then (1) becomes

©)  y(t) = Sleglt), cp(t), ..., c_(t)]

S is now a function of n+1 variables and it can be expanded in terms
of the class of Hermite functions which constitute an orthonormal
family over the interval (-, ©) [11]. The nth normalized Hermite
polynomial is defined as

- 2
) e — e

(S

1
2

n () = (-1 @Pntn

and the corresponding Hermite function is

Z

e ) nn(Z)

v, (2)

Expanding (6) we get

coO ©0 [o'e]
(7) y(t) =i=ZOjZ=>O. . .kzz)o aij. % \[fi(co)\],j (Cl)' . \yk(cn)
c0 o0 00 ' " .
1:%3-?6 v T Ay K mleghnylep) - ny ey, exp[Hegt it |
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The coefficients {a.i.. . .k} characterize system S completely
and the identification problem reduces to the problem of determining
these coefficients, That is, knowing the set of these coefficients for
a particular system we can compute the response of this system to

any input by use of equation (7). It can be shown [6] that the co-

efficients are given by

n

®) 2y = @00 E vt o). . mle)}

where 3.4'(1:) is the response of the system to 2 white noise input x(t) and
{co, Clrenes cn} the set of coefficients that characterize x(t) at each
time. Equation (8) is obtained by performing a minimum mean-
square-error fit between the actual response of the system, y(t),

and the response as given by (7) over the entire range of the input-
output record (where input x(t) is gaussian white noise).

After the system has been tested with white noise for a suffi-
ciently long time and both the input x(t) and the output y(t) have been
recorded we proceed as shown rdia.grammatically in Fig. 2. 1A in
order to determine the set of characterizing coefficients {aij. .. k}'

In this analysis procedure the coefficients are evaluated serially

and each time the whole length of the records has to be used. Once
these coefficients have been determined they can be used to synthesize
the nonlinear model of the system in terms of equation (7). The
synthesis procedure is shown diagramatically in Fig. 2.1B.

The application of the white-noise theory under this Weiner-
formulation is very impractical and very difficult for the following

reasons:
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white noise

stimulus Laguerre {ci} Hermite ni(co)"' k
o 1 Polynomial
x(t) Network Generator
4

Benponts Multiplier

> a
= & > 15, .k't
y(t) Averager

{215, .1} |
f A

Input {eq}
Laguerre > Hermite
x(t) Network Polynomial
.Generator |
> Multi- Response
11 >
r) P e Y(t)
h 4
Exponential
Generator
Fig. 2.1

Flow diagrams for the analysis (A) and synthesis (B) phases of the
Wiener formulation of the white-noise method of nonlinear system

identification.

(c))
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(a) The number of coefficients needed to characterize almost
any system, linear or nonlinear, is extremely large. If n coefficients
are used in the Laguerre expansion to describe the past of the input
at any time and p coefficients are used to expand the system functional
in terms of Hermite functions, then the number of coefficients needed
to characterize the system is pn. Exploratory calculations showed
that even for a simple nonlinear system such as a non-memory
squarer p has to be approximately 10 to 20 and for a nonzero memory
system n has to be also 10 to 20 giving the huge numbers of coefficients
of 1010 to 2020 to be evaluated

(b) The computation required for the evaluation of the charac-
terizing coefficients is extremely long especially since the computation
has to be performed serially (Fig. 2.1A). In the synthesis phase,
when the response to a particular input is desired the computation is
again very long because of the multitude of the coefficients and the
repeated Laguerre and Hermite expansions, as shown in Fig. 2.1B.

(c) It is desirable to be able to assign some meaning to the

characterizing coefficients {aij k} that would reveal some features

of the structure of the system. This is impossible under this form
of the theory. The coefficients {aij. .. k} are purely formal mathe-
matical quantities and it appears futile to attempt to draw an analogy
between them and properties of the system which they characterize.
(d) The method is basically a curve fitting procedure and not
a descriptive algebra of systems that is desired in order to be able

to manipulate systems as building blocks for more and more compli-

cated structures. This point is very crucial for the study of biological
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systems and especially for the ambitious undertaking of the study of
the very complicated structure of the brain.

(e) A linear system which is characterized very simply by
the classical linear theory is characterized very cumbersomely by

this method. A vast number of coefficients {ai.

Je ve

k} are needed to
identify a linear system. This is due to the fact that a very large
number of Hermite polynomials is needed so that their sum would
cancel out the effect of the highly nonlinear exponential transformation.

(f) It is very difficult to incorporate into Wiener's method any
a priori information about the system so as to plan the computation
for shorter length and to reduce the number of the characterizing
coefficients. Point (e) is an example of this serious shortcoming of
this very general method: The method in being so very general fails
to recognize a simple situation and treat it accordingly.

(g) The derived nonlinear model is too cumbersome to use
for prediction or comparison with experimental results even if a
digital computer is available.

All these difficulties encountered in the practical application
of the theory point out that other formulations of the white-noise
theory must be sought if it is to be made a working tool for identifying

nonlinear systems.

3. The Lee-Schetzen formulation

The Lee-Schetzen approach of the nonlinear identification
problem starts with the Wiener functional series and it shows how
the set of Wiener kernels {hi} can be evaluated by use of cross-

correlation techniques [41, 72].
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Output y(t)

. Delay
5,

'
white Dela n'Pnhn
noise = s Average >

x(t) %2
v
L
[ ]
Delay
On !\
THgHE 6. [h.,x] Output
2,527 t)
x(t) e
L ]
[ ]
[ J

GnEhn,XJ ‘ B

Fig. 2

Kernel estimation (A) and final model (B).
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Specifically, given a system S that has been subjected to a
white-noise input x(t) and whose response to this input is y(t), Lee

and Schetzen have shown that the Wiener kernels are given by

1
n

(1) b B wpes @ J =
n' 1 n Al P

E {y ) x(t-0)). . . x(t-0_)}, o) # o,

where P is the power level of the white-noise signal. Fig. 2.2A
shows diagramatically the evaluation of the kernels by this method.
Fig. 2.2B shows how the derived model is constructed and used to
predict the response of the system to any desired input.

Equation (1) can be altered slightly to permit evaluation of

the kernels along any diagonal o, = Gj 411,

a

1

n!Pn

n-1
E {[}’ (t)- kZ:OGk[hk,X(t)fﬂX(t-ol)... x(t-on)}

hn(crl, Opseees 0 )=

a formula which is valid for all (01, YRR crn).

This formulation of the white-noise theory has several advan-
tages over the Wiener formulation and it makes it feasible (with some
restrictions) to identify a physical nonlinear system by subjecting it
to a white-noise stimulus.

First, it directly estimates the kernels which, as we saw early
in this chapter, have a definite physical meaning; they can reveal
interesting properties and provide an insight to the structure of the
system under study.

Second, the cross correlation method is much simpler compu-
tationally because it does not involve the cumbersome Laguerre and

Hermite transformations.
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Third, a linear system is easily recognized by the cross
correlation method, the derived model takes a simple form and
therefore the computational burden is reduced while the insight into
the nature of the system is increased.

Fourth, the synthesis problem is very simple. Estimating
the response to a particular input involves only a few integrations.

Fifth, it is very easy to construct alternative structural
models once the kernels are known, such as structures consisting
of linear filters (for which powerful theories exist) and multipliers.

Sixth, in the Wiener formulation it can be considered that the
kernels are expanded in terms of the orthogonal family of Laguerre
functions, and since this expansion, for any practical application, has
to be truncated there is an inherent approximation error in the Wiener
formulation. This truncation error does not occur in the cr.oss corre-
lation method.

Seventh, a priori information about the system can be utilized
to reduce the identification effort by reducing the computational

burden.

4, Other formulations of the white-noise theory

There are other formulations of the white-noise theory
6, 36, 52, 76, 95, 97], each one of which may prove suitable for a
particular type of nonlinear system. Bose [6] uses/grzl‘thogonal class
of functions, which he calls gate-functions, and which are simply

square unit pulses in time, in order to partition the function space

of the past of the input into nonoverlapping (orthogonality of the gate
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functions) cells. This formulation of the theory would be most suitable
for systems with strong saturating elements. Katzenelson and Gould
[36] use the Volterra series to develop a systematic approach that
leads to a set of simultaneous integral equations. An iteration pro-
cedure is given for their solution. This approach seems best for the
synthesis of optimal nonlinear filters. In [52, 76, 97] combinations
of one or more impulses are used to calculate characterizing coef-
ficients or functions.

Starting with the basic notion of the functional as the mathe-
matical description of a system and utilizing the white~-noise approach
one can devise several schemata for system identification. A very
simple one would be the following. A grid is superposed over the
past of the input in such a way that it covers the whole memory of
the system and the total range of amplitudes of the input. |

Xn X2 xl xo

yam

//
/
/ Time ~
\ Input x(t) /
\\L/ tO
tn t3 t2 tl
< Past :

Présent
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At any time t, the present input and its past are described by a
vector of real numbers that give the ordinates of the grid-squares
at the fixed times (to, tl, tz, o tn). This vector is put in
correspondence with the value of the system output at this time,
Yor thus forming the input-output vector (tO, tlaeeest,, yo). As the
system is being tested with white-noise, new input-output vectors
are formed. Eventually, the system will have been exhaustively
tested for all combinations of values of the input sensors LR STRRRr S
All these vectors could be easily stored in some form of auxiliary
storage (disc, magnetic tape) of a digital computer and used as the
"model'" of the system. As an abstraction from this data base one
could fit a function F (xo, e SPEREP xn) over the whole set of vectors
which would then be the transfer function of the system. This function
could be used to predict the response of the system to any input.

There are several noteworthy features of this formulation of
the white-noise theory. First, it does not require a white-noise
input from the statistical point of view since the method simply
enumerates ‘input—output correspondences. Instead, a more expedient
way would be to put the input under computer control and enumerate
all the possible combinations of sensor values (xo, PR xn). This
would drastically cut down the testing time required for identifying
the system. This is very important in view of the nature of the experi-
ments on the nervous system (short experiment-life, drift). Second,
the grid square size can be varied depending on its position, thus
more heavily weighing the more important regions of the signal. For

example, it would usually be desired to have the sensors more



-2l

densely placed near t, than t since the immediate past usually
affects the present output more than the remote past. Also, the
horizontal grid lines could be more densely spaced near the non-
linearity of the system, e. g.v where saturation might occur. Third,
this formulation is conceptually very simple and it can readily be
amended to fit any system peculiarities. Fourth, it can answer
many questions about properties of the system under study provided
a suitable computer system exists to manipulate and abstract infor-
mation from the resulting data base of input-output vectors. Such
a system partially exists in our laboratory (Phase II) [18, 24, 44, 48, 50]
and it is now being greatly extended. It appears that the new version
would be very appropriate for this kind of manipulation and abstraction,
thus making this formulation of the white-noise theory an attractive
tool for studying neuronal systems.

In this work the cross-correlation formulation of the white-
noise theory is used to obtain nonlinear dynamic transfer functions
for several neuronal chains that play an important role in the organi-
zation of the receptive field of the vertebrate retina and whose outputs
constitute the retina-transformed information contained in the stimu—

lating light patterns that becomes the input to the brain.

5. Discussion of the white-noise theory

There are several considerations to be made and techniques
to be used for the successful practical application of the white-noise
method of identifying a nonlinear system. All of these are examined

in the next chapter.
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The idea of using white-noise to derive a transfer function
for a nonlinear system is a very ingenuous one because it tests a
system exhaustively with a very large variety of inputs and it forms
a transfer characteristic which takes into account the response of
the system to all these inputs. In a sense, the ''average!'' transfer
characteristic is formed. Especially, if it is considered that there
has been a habit (left over because of the beauty of linear theory)
among bio-scientists to use steps, pulses and sine waves to derive
transfer functions of obviously nonlinear systems, the white-noise
approach offers a tremendous improvement. It should also be stressed
that a biological system seldom behaves linearly. In fact, from the
functional point of view, nonlinearities in biological systems appear
to be a necessity as is, for example, the logarithmic transformation
of the sensory input in order to accommodate large ranges of input.

At this point a simplified analogy may be helpful to understand
the difference between the two kinds of approach. The analogy is a
game in which one is presented with a picture completely covered with

sand and he is given the task of finding what the picture under the sand

looks like. The traditional bioscientist removes a little square

Case A Case B
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(Case A) of the sand and from what he sees in that square he tries
to guess the content of the whole picture. This corresponds very
aptly to testing a nonlinear system with steps or sines and from the
response to such inputs deriving transfer functions for any other
kind of input. In the white-noise approach holes are poked randomly
over the entire area of the picture (Case B) and the content of the
picture is guessed from what is found in all these holes. This is so
because the system is tested with a very large variety of inputs
randomly (or nonra.ndc;mly) selected from the input function space.

This kind of approach is preferable to the classical apprcach
and should prove very usefull for research in the living nervous
system., It is a realization of the concepts suggested for new re-
search strategies by McCann [51], who points out the need toward
. ... the development of more complex experiments that will simul-
taneously gather more information both within one of the traditional
areas of experimentation and across these areas' in order to study

successfully the informational relationships in living neuronal systems.
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CHAPTER I

CONSIDERATIONS FOR THE APPLICATION
OF THE WHITE-NOISE METHOD

1. Introduction

The application of the white-noise method for the character-
ization of a physical system is difficult and involved. The amount
of difficulty depends on the nature of the nonlinearities of the system
and the degree of accuracy which we require from the derived model.
In certain cases the application of the theory will produce poor re-
sults after long experimental procedures and digital computations.
Therefore, it is desirable to develop certain preliminary criteria
and simple experiments which would give an indication of how com-
plex the problem is and how successful the white-noise method can
be expected to be in a particular case.

In developing these criteria and tests we should take into
account the characteristics of the system and the limitations imposed
by the tools available to us for its study.

First, we should decide the conditions under which the exper-~
iment should be conducted, such as the amplitude range and frequency
bandwidth of the stimulating noise, the temporal length of the exper-
iment and several others.

Second, we should estimate the computational length and
complexity which is required to derive the desired nonlinear model
within a certain degree of accuracy.

Third, we should estimate the errors resulting from various

sources and how they affect the results.
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Fourth, we should be able to interpret the derived model and

draw some conclusions about the system characteristics.

2, Preliminary conditions of the white-noise experiment

Once a particular system has been chosen for study by the
white-noise method several preliminary decisions have to be made.
The input and output of the system have to be clearly defined. It
must be shown that the system receives no other time-varying
inputs during the experiment.

The time-invariancy of the system must be proved. A system
is time-invariant if the form of the system response is independent
of the particular time at which the input is applied. This can be
easily checked by performing several simple experiments repeatedly
at different intervals of time and comparing the system responses.

The amplitude range of the stimulus must be chosen such that
it covers the most ""interesting'' region of operation. This could
depend on the location of amplitude-dependent nonlinearities and the
range of inputs encountered during the natural operation of the system.
This choice determines the validity range of the model.

Biological (neuronal) systems are usually sensitive over large
ranges of the stimulus amplitude (4 log units of sensitivity are very
common). The dynamic range of the instruments that produce the
stimulus and record the response rarely exceeds two orders of mag-
nitude. Therefore the choice of the stimulus range must be made
very carefully to reveal the "interesting' properties of the system.
Sometimes it will be necessary to perform more than a single white-

noise experiment in order to cover the whole operational range of
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the system.

The white-noise theory has been formulated for an input that
is ideal white-noise. In practice, of course, white-noise sources
exhibit a flat power spectrum only over a certain range of frequencies
with cutoffs at high frequencies; It was found that if the bandwidth of
the white-noise extends too much beyond the system bandwidth (at the
high frequency end) then undesirable effects take place in the compu-
tation of the kernels (see section 4). However, the input noise
bandwidth should cover the system bandwidth completely so that the
system becomes tested with all frequencies of interest.

Let g(1) be the impulse response of the low-pass filter that
transforms ideal white-noise X, (t) to the real white-noise X (t) used
in the experiment for the system identification. Then

00
(1) x,(t) = / g(T) %, (t-T)drT :
=00
Let us consider for purposes of illustration, the calculation of the
second degree kernel. The arguments can be readily generalized
to the nth degree kernel.

To compute h, (T, T,), we compute the cross correlation

® (Tl, T, ) between the system output and the real white-noise

VX% .
which gives an estimate hZ(Tl’ '1'2) . We have

® L o E_{y(t)xr(t-'rl)xr(t-'rz} ‘

V¥ *r
Using (1) we obtain

Py x (112 T2) = E&® fex -m-vdv, - / BV (E=T 5 v,)av,
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which finally becomes

(2) prxrxr(Tl: Tz) = ff g(\)l)g (Vz) prxixi('rl-!'vl’ T2+V2)d\)l dVZ

Taking Fourier transforms and recalling the relation between
pr-xx and hZ we get

HZ (wl, 0-32)
G (w,) * Glw,)

(3) H, (), wy) =

where G(w) is the Fourier transform of g(7) and H2 (wl, wz), I:IZ(wl’ wz)
are the two-dimensional Fourier transforms of h2 ('rl, 'rz), flz('rl, rrz)
respectively. From (3) we note that if g(7) is assumed to be a low-
pass filter and if the noise bandwidth completely covers the system
bandwidth then }{;2('1'1, 'rz) and h2 (‘Tl, 'rz) are very close and no addi-
tional computation is necessary to correct for the non-ideality of the
white-noise. Nevertheless, it is possible from (3) or (2) (by numeri-
cally solving the integral equation) to correct the error introduced by
using finite-bandwidth white noise.

We note that the error will be large for the high frequencies
for which the gain of low-pass filter G(w) is substantially different
than 1. Therefore, the input noise bandwidth should be large enough
to cover the whole frequency range in which the system responds.

Given a system S, we need to decide how many kernels to
compute to get a satisfactory model. We can get an idea of this
number by performing a few simple preliminary experiments where
the system is tested by sine inputs and the resulting response is

analyzed as to its harmonic content. It is simple to show that 2 model
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that includes up to the nth order term of the Wiener series can pro-
duce at most an nth order harmonic.

For almost all the systems studied in this work the harmonic
content beyond the second harmonic is small and the series was trun-
cated after the second order term. We will investigate and justify
this approximation as we discuss each system under study.

The extent to which the kernels must be computed, that is
how big should (Tyseees 'Tn) be for hn(Tl’ s mE 'rn) to be zero, depends
solely on the memory of the system. The memory M of a system S
can be loosely defined as that length of time that is required for the
effect of the input on the output at time t-M to become zero at time t.
A simple preliminary two-pulse experiment can be performed to
measure M, The system is stimulated by an impulse at time t and
an impulse at time t + @. Delay a is increased until the response of
the system to the second impulse is identical to the response to the
first impulse. Then o is equal to M. Admittedly, such a determina -
tion of memory length does not account for the nonlinear interaction
of many pulses that could, conceivably, shorten or lengthen the
system memory but it is assumed that such an effect is small
(especially, since for most systems under consideration here the
effect of past input on present output attenuates exponentially). In
any case a safety factor can be employed in determining the extent
to which the kernels are computed. The length of memory of the
system is also needed to determine the white-noise bandwidth and the

length of the experiment (for reliable estimates of the kernels).
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The bandwidth of the system should be estimated in order to
determine the white-noise bandwidth and consequently the sampling
rate of the input-output records. This can be done approximately
from preliminary testing with sine inputs.

Finally, the temporal length of the white-noise experiment
should be decided. This depends on the variance we are willing to
tolerate in the estimates of the statistical averages that the cross-
correlations indicate. Since the finite record length introduces an
error in the kernel estimates it is treated in detail in another section

and a formula is derived for the determination of the record length.

3. Computational Considerations

In the analysis phase, the main difficulty in the computationa.l'
process is the calculation of the high order correlation functions.
The amount of computation increases with the order of the computed
correlation, the length of the record and the extent to which each
kernel is computed.

Using a simple rectangular rule of integration we have

N

i>=31 yit) 2t 47 )e oo xlE 4T )

cpYic...x('rl""’rrn) - N

where N is the number of points in the record. We could use more
accurate numerical integration schemes but that would merely compli-
cate the discussion without increasing the generality in the basic
results.

The number of points m for which each kernel is computed

depends on the memory M of the system and is given by
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M

m  om ¥t

1l

where At is the sampling interval of the records. Considering that
the kernels are symmetric functions of their arguments the number
of points we have to calculate for the nth order kernel (for n < m) is

given by

(2)

(n-!-m-l) _ (mtn-1)(m+n-2) ... (m)

- n!

Of more interest is the number of multiplications required
for the computation of each kernel. This is so because multiplication

is a time consuming operation for a digital computer. The number of

multiplications for the calculation of the nth order kernel is given by

Number of multiplications = n.N. { e l)(m+n 2) - =» () }

There is, of course, the usual tradeoff between computation
time and storage space. Computing time (i. e. number of multiplica -
tions) can be reduced by storing in core intermediate results. As the
storage requirements increase with the order of the computed kernel
there will be a sharp increase in computing when we are forced to use
auxiliary storage (disc, tapes) to hold the intermediate results or
even to store the final result.

Let @ be a2 constant (dependent on the order n) which accounts
for time spent in addressing, storing, etc. Then the total computation

time is approximately

m+n-1)(m+n-2) ... (m)]

(3) g = @ .N.n. [( =

n
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where N is the total number of sample points in the record and m

is given by (1).

From (3) we have for the first four kernels,

Tl — al.N.m

2
Tz = a, Nm +m)

: 3 2
_ m +3m +2m
T3 = 013 N. >
T = o N m4+6m3+1 1m2+6m
4 T T4 6

Therefore, computing time (for n < m) increases almost exponentially
with the order of the kernel. This is a severe limitation on the order
of the kernel that can be computed by conventional means. A digital
computer, even though the best available tool for the job today, is not
ideally suited for the computation of high order analog correlations.
Analog electronic equipment would be more suitable for this purpose.
In the synthesis phase the computation is straightforward. It involves
the estimation of multidimensional integrals for which there are
standard techniques.

The computation of the power spectra involves several subtle-

ties (see Chapter 1IV).

4, Error Analysis

As shown in Chapter II the kernels are given by

n-1
b (T),een,T ) = ;,IP—n E{b®- 2 G b, x0)]Jxte-r ). o xte-r )}
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where {Gi} are the Wiener orthogonal functionals.

In the calculation of the kernels by cross correlation methods,
there are several sources of error which coexist. We will examine
the effect of each one separately, assuming at each stage that the
other error sources do not exist.

There is a statistical error (kernel values are statistical
averages) in the kernel (crosscorrelation) evaluation associated with
the finiteness of the record length (finite sample). The standard
deviation of the computed average from the true average gives an
estimate of the statistical error.

Assume we are trying to measure h1 (T) which is the average
of the random variable [y(t)x(t-T)]. Let us call the computed estimate

fml('r). Then, if we use M independent samples of this random variable

(1) var(lr)) = -11\-4 var (y(t)x(t-T))

where va.r(ﬂ(’r) ) is the variance of the computed average and
var(y(t)x({t-T)) is the standard deviation of the random variable whose
average we want to estimate.

As before, the record has N samples but only M of them
(M < N) are independent. As we will see shortly, M depends on the
noise bandwidth and the system memory. We get an estimate of

var(y(t)x(t-71)) from the record itself by computing

1 N N 2
EryExe-n) = {2 [yttt ) - b2} (y (t; (e, =) /N)|
g B q =

which finally becomes
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. 1 N 2 1 X 2
@) vAryexE-m) = g T Iyl -[-ﬁ_Elv(ti)x(ti-'r)]
9= 15

Thus, from the record and using (2), we can obtain an estimate of
var(y(t)x(t-T)).

Then, to calculate the var (fl('r)) we need to know the number M
of independent samples of (y(t)x(ﬁ-'r)) because the estimation of a
statistical average for a certain accuracy requires a certain number
of independent samples. In turn, this requires a knowledge of time
interval (tz-tl) for which (y(tz)x(tz-'r)) and (y(tl)x(tl-'r)) are independent.
The quantity (tZ, —1:1) depends on the bandwidth fw of the noise and the
system memory, . The time interval for which successive input

noise samples are independent is 1!;_fw- Then, if
a = max( 3 )
o+ H
w

the quantity (t, -tl) is equal to 2¢, and the length, R, of the required

input-output record is
(3) R = 2ea*M

where M is chosen large enough (about 100) to produce a small vari-
ance of estimate By (T) (see equation (1)). Usually p is
much larger than l/fw and therefore is the determining factor (except
for 2 no-memory system).

The number of samples, N, of the record, on the other hand,

is determined by the min(f-l— , 1) (because of aliasing) and therefore is
w

given by



w37=

4) N = Z.M.max{fl—,,u.} /min{-f:v—,,u} :
w

Let us consider_g/ now the question of statistical accuracy as
related to the input noise bandwidth. First, there is an error due to
aliasing since we use sampled records instead of continuous ones for
the calculations. If the sampling rate is kept constant the aliasing
error increases with increasing bandwidth [5,69].

Second, for a given number N of samples the variance of the
correlation estimate will increase by increasing the noise bandwidth
if we also increase the sampling rate to account for (no aliasing)
the expanded bandwidth. This is due to the fact that for a given N
the min {—;1;, i} is usually smaller for the larger bandwidth and there-
fore M is smaller (since N is constant).

Third, we will show that the variance of the correlation
estimates increases with increasing the noise bandwidth., Again, we
will consider h1 (T) and the generalization to hn(’rl, - 'rn) can be made

easily. The variance of hl('r) is given by

Gﬁ = wvar[y@t)x(t-7)] = var[x(t-7). [ h(V)x(t-v)dv]
assuming that the system is linear with impulse function h(v).

(If higher order kernels existed in the system they would be treated

in the same way). We have

5 2 2
(5) o = E {lx(t-r) /av)x(t-v)dv] } ~{Elx(t-7) fh(\))x(t-v)dv]}

or
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(6) 013 = ffh(v)h(u)- E{x(t—T)x.(t-"r)x(t-\))x(t—p)}d\)dp. -
{ [h(v) Elx(t-1 e (t-v)] dv}

The average of the product of four gaussian variables can be written
as

E {x(t-7)x(t-m)x(t-v)x(t-u)} = E{x(t-7)x(t-7)} - E{x(t-v)x(t-u)} +

+E {x(t-)x(t-v)}- E{x(t-1)xt-u)} + E{x(t-T)x(t-u)} E{x(t-7)x(t-v)}
and the second term of (6) can be written as

[[hvh(u) E Gxe(t-m)x(t-v)3- E {x(t-7)x(t-p)}- dv
Then, finally we can get

2 oo
(7)  of = var(x)[[h@h(v)ew-v)dudv + [ [ h(v)¢(r-v)dv]
0 :
where
wo sin(wou)
o) = = ww
o
is the autocorrelation of input noise x(t) and wo is the bandwidth of

this noise.
2
We propose that oy increases as the noise bandwidth W, in-

creases. Let us consider some typical systems. Assume h(v) =

g (i. e., the first-order linear system with Laplace transform

1/(s+a)). Then, from equation (7), we find that (after some approxi-

mations) the variance 0, increases at least as fast as arctg( wo/a)

h
with the noise bandwidth W (see [27], p. 489).

A revealing case is the identity system for which h(v) = &6(v).

Then, from (7),
w w 2

2 o o)
O'h = var(x)-—Tr—+ (?) ’
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that is, the variance increases with the square of the noise band-
width w_ .

o

Therefore, it is very plausible that the statistical error will
increase if the input noise bandwidth increases. On the other hand,
as shown in the previous section, the input noise bandwidth should
cover completely the whole frequency range of the system response.
We conclude that the input noise bandwidth should be larger than the
system bandwidth but should not extend much (about one octave) be-
yond it.

The power level of the flat portion of the input spectrum should
be set equal to 1 (0 db). This normalization is necessary for the fol-
lowing reason. Kernel hn('rl, B—_— 'Tn) and cross-correlation
¢ (T,,-.., T ) are related through factor 1/P” where P is the

YXX. » o X 1 n
power level of the input noise. Let us examine the dependence of the

per unit change of this factor on P . We have

d n
E(I/P) _

it
1/P"? =
For n =1 we note that P = 1 will result in a per unit change equal to
-1 . Therefore, positive and negative errors in the value of P will
get 'amplified' the same amount and will tend to cancel out. For n =
2 we would have the same effect if P = 2. Therefore, a value of P
between 1 and 2 will tend to minimize the error resulting from
choosing a single value for P in evaluating the kernels. In all of
this work we chose P to be 1 because the first-order kernel was

deemed the most important and therefore we desired good accuracy

for it.
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Noise present at the input or at the output or internally in the
system could be a serious source of error. We investigate the ef-
fect of such noise on the cross-correlation estimates, starting with

the case of noise at the output.

Yy e(t)
¢
b4
23423 > & - 3 > y(t)
y
G3 3

Assume x(t) is gaussian white noise and ¢xx('r) = P&8(t). Let us
make P =1.

To estimate hl('r) we need to estimate ¢Yx('r) :

¢ (T) E{x(t-T)y(t)T}

yx

E {x(t-7)ly, (t}y, (t)Hy,(t)+e()]]

= Elx(t-1)y, () HE{x(t-1)y, )+ E{x(t-T)y, () HE{x(t-T)e(t)]
= hy(T)+ ¢ _ ()

Thus, in general, the error in hl('T) for any T is

(8) error = ¢X€(T)

Even if the system had higher order nonlinearities (h4, h5, h6’
... ) their contribution to ¢YX(T) would be zero because their corre-

sponding functionals would be orthogonal to a gaussian white x(t) .
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If x(t) and €(t) are independent, then
¢ (1) = E{x(t)}-Efet)} =0 ,
and then
¢yx('r) = hy(7)
Let us now consider a case of internal noise which can be
considered to be ''noise at the output. " Input e(t) is added to the out-

put after it passes through a filter with impulse response g(T).

x(t) S y(t) =

i

e(t)

Then,

y(t) = [h (Tx(t-7)dT + [g(r)e(t-r)ar
which means that possibly the noise €(t) follows a different path
through the system than the input, in contaminating the output y(t).

We assume this to be a linear path. We have:

b (™) = Elx(t-7) [[hy(vx(t-vidv + [g(v)e(t-vav]}

Jhivie_(t-v)av + g(v)e_ (T-v)dv

hl(rr) + Ig(\))(})xe(’r—\))d\)

If x(t) and e(t) are independent, then ¢X€(T) = E{x(t)}- E{et)} = 0.
Thus, we see that even in this case the error is zero if the
input and the noise are independent. Otherwise, the error for any T

is given by

o
(%) error = fg(\))cj)xe('r-v)d\)
0
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If the system under study is linear (only hl('r) is nonzero) ,
then it is seen that the determination of the impulse response by the
white-noise method has a serious advantage over the conventional
methods. Provided that the contaminating noise is independent of the
input white noise, the determination of the impulse response is unaf-
fected by the presence of such internal or external noise.

Let us now compute hz(’rl, 'rz) . First, we need to compute
the linear response of the system due to hl('r) and subtract it from
the total response. Assume that, as shown before, we computed

h)(r) = Bylr)+8,(r)

where hl('r) is the true hl and 61('1') is the error for any 1. Then,

Yiinear = jr_hl(T)Jral(T)]x(t-T)dT =y (EHy () .

To find hz("rl, 'rz) we compute the second-order cross-corre-

lation

Yo E{ly(t)-vy;, opp () T(t-T Dx(t-1,)]

1

E{le(thy, (tHy5(t)-yg (6 Ix(t-7) px(t-7, )] .
Consider each term separately:

5 = fe(t)x(t-rl)x(t-Tz)dt = ¢ (T, 7T5)

I. = _E{yé(t)x(t—'rl)x(t—”rz)}
= -E{fal(v)x(t_v)dvx(t-¢1)x(t-fr2)}
o -Iﬁl(v)-E{x(t—\))x(t-'rl)x(t—'rz)}d\) .

The expected value of the product of an odd number of gaussian vari-

ables is zero. Therefore,
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I, = E{ [Ihy (v, vp)xlt-v) hx(t-v,)dv dv, - xlt-r ) Jx(t-7,)

» jfhz(vl,vz)[a(vl—v2)6(T1~T2)+6(v1-T1)é(vZ-T2)+
+6(v1—T2)6(v2—rl)]dv1dv2
= 8(r =Ty [y (v s vy v Hhy (1), Ty MRy (T, T,)

But fhz(vl, \Jl)d\)l = 0 because we made the constant ho =0,
Similarly, the term E{y3(t)x(t—'rl)x(t_72)} is zero because of
the orthogonality of the Wiener G-functionals. In fact, even if the
system had higher order nonlinearities, their contribution to
) (’rl, Tz) would be zero.
So, clearly, the error term for ¢ ('rl, 'rz) is ¢XX€(T1, 'rz)
for any (Tl, TZ) independent of the order of nonlinearity of the system.
In general, the error for the nth order cross-correlation

¢

_— .x(Tl’ Toseses ’Tn) is

(10) error = ¢ (Tl,'rz,...,'rn) ;

KX. . . XE
If x(t) and e(t) are independent, then we can decompose

& = E{xx...x}-E{e}, and the error becomes zero for odd-
XX. . . XE

order kernels.

Let us now consider the error introduced by the contamination

of the input by noise.

x*(t) = x(e)+=(t)
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To estimate hl('r) we need to calculate 4>Yx('r) 3
b (m) = Elx (t-1ly()) = Efx (t-7)ly; (thry, (Hy,(6)]]
Let us consider each term separately.

Jx"(t-1)y, (tat

—
I

Jrx(t-r)e(t-7)1fhy (v)[x(t-7)+e(t-v) dvat

Jajtviavie  (r-v)ite, (T-v)+é_ (T-V)Hé_ (T-V)]

In the case that x(t) deviates considerably from white noise,
and/or the noise €(t) is significantly large, hl('r) can be found more
accurately by solving this integral equation using Fourier transforms
or numerical methods. Considering that the right hand side is a sum
of convolution integrals, the use of Fourier transforms gives a simple
solution.

If x(t) does not deviate from whiteness, then

(11) I, = h(TH[h (VT (T-V)+é_ (T-V}é_(T-v)]dv

Efx (t-T)y,(t)]

=
1

E{Ix(t-m)e(t-1)1 [T By (v, vy b (6-v) ) (8-, )dv, dv, ]
which, after some manipulation, becomes
L, = ”'hz(vl, vz)[¢m(T—v1, T-v2)+¢xx€("r~\)1, T-V, )+¢X€x('r_vl, TV, )t
e TV TV B STy Tl B e TPy Tl
+¢66x(T"vl’ T—\J2)+¢1€€€(T—\Jl, T"’z”' dv,dv,

Note that it can be shown easily that

¢’ (Tl, Tz) = ¢ (_TI: TZ_Tl)

XEE exe
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Therefore, we only need to measure one of these ¢'s for any permu-
tation of (x,€,¢€).

I3 has a similar expression. Skipping the calculus steps,

Iy = '” by (Vg Vo, v3)[¢x5;xx(T_Vl’ L T_v3)+¢xxex+¢xexx+¢x€€x+

+¢XXJ§€+¢XX€ €+¢xex€+¢'x€€€+¢em+¢exex+¢e6xx+¢€e €X+¢€XX€+
+¢€x€ e+¢eexe+¢€ee€]' dvldvzdv3 -

We conclude that the error terms increase with the order of
nonlinearity of the system, and they are given as convolutions of
signal - error correlations with the Wiener kernels. This suggests
that errors at the input are much more serious than errors at the
output.

Let us examine one such error that occurs naturally during
a white-noise experiment. This is the error introduced by the trunca-
tion at the gaussian distribution at very low and very high input signal

levels.

-k

That is, the input signal is not an ideal gaussian, but is defined by
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o
-
*
vV
A

Then, we define the experimental input x*(t) by x*(t) = x(t)}+e(t) where
x(t) is ideally gaussian and
0 if |x(t)] <K
a(t) = K-x(t)  if x(t)>K

~K-x(t) if x(t) < -K

Then, from the formulas just derived, we see that the error

depends on terms such as ¢x€('r) , ©__(1). We have

€€
b (T) = Elx(t)e(t+T)] ,
and assuming x(t) to be ideal white noise (infinite bandwidth), we get
b o (T) = Cypr 8(r)

where 2

and

where 2

5 0 x
= —= 2 T2
DK Nl IK(K—X) e z dx
Therefore (neglecting higher order kernels), the error in the estimate

of hl('r) is of the order of .
2

x
2 g -2
error = CK+DK s f (K™ -Kx)e dx .
«/ZTr K
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The experimental apparatus produces a gaussian that is truncated at
about three standard deviations (i.e., XK = 3). Then the above inte-
gral gives
error = 0,02 ,
which is, indeed, small compared to 1.

We conclude that the error introduced by the truncation of the
gaussian signal is very small for truncations at about three devia-
tions or above.

In any case, we compute hl*('r) —~ hl('r}+61("r}, where hl('r) is
the true first-order kernel and 61('r) the error for any T.

The response of the system due to the linear kernel is

Viinear = JBy (The (e=7)dr = [Th (1)+6 (1) (t-1)AT = y;(t)by4(t) -

Subtracting the linear response from the total response, we obtain

for the second order cross-correlation,
Pl Tyr Tl = E{ly, (tHy,(t)-y (£)]x (t-7 b (t-75)) .
Again, let us consider each term separately:

Iy

1

~E{y (0)Ix(t-7 Fe(t-7 ) ITx(t-1, e (t-7,)1]

1l

-E{ I Gl(v)[x(t—v)+e(tn\))] [s=(t= 'rl)+e(t- "rl)] [x(t- To Mel(t- Tz)]d\)}

+o  +

exe

SIS CEL SPEVEL PO E S ST T

x EXX '€€xX 'XXe 'Xe€

+¢€€€]dv

The expressions for I,, I, are similar.
We notice that the number of error terms increases with the
order of the computed kernel. The exact determination of the error

depends solely on the correlations of x(t) with €(t) which can be de-
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termined by investigating e(t) at the start of the experiment.

In conclusion, errors occurring at the input are more serious
than errors occurring at the output or internally and adding to the
output. Errors at the input, in general, will produce error terms
which tend to increase with the order of the computed kernel and with
the order of the nonlinearity of the system. Errors at the output, in
general, will produce error terms which do not increase with increas-
ing of either of the above-mentioned orders.

There are additional errors due to the numerical approxima-
tion of the integrals and errors resulting from the un-Gaussianness
and un-whiteness of the input. If the deviations from Gaussianness
and whiteness are severe, then the kernesl must be found as solu-

tions of integral equations.

5. Conclusions

The experimental characterization of a system by the white-
noise method is possible, but some preliminary calculations and ex-
periments should be made in order to I:Llan the computation intelli-
gently and to reduce the effort required.

The main difficulty is the fact that computation time increases
almost exponentially with the order of the computed kernel. Given
that we are willing to spend a certain amount of computing time, we
can only treat systems whose nonlinearities allow a Wiener repre-
sentation using only the first few terms. This excludes systems
with '""sharp'' nonlinearities such as thresholds, sharp limiters, etc.,

even though we can still treat these systems approximately, and in
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many cases profitably.

Since the terms of the Wiener series are orthogonal to each
other, the model representation improves (in the mean error square
sense) with the addition of each term. Moreover, as each new kernel
is calculated and the corresponding term added to the series, it is not
necessary to re-evaluate the previously determined kernels in order
to improve the characterization because of the orthogonality of the
model. In fact, it can be shown easily that if the series is truncated
after the nl':h term, the resulting approximation is the best nth order
characterization in the mean square error sense.

Examination of the nonlinear kernels can reveal nonlinear
characteristics of the system such as facilitation and refractoriness
of neuron chains, saturation, rectification, and others. If there is
structural evidence (which is sometimes the case in neuronal sys-
tems) as to the composition of the system in terms of a cascade com-
bination of two subsystems (linear and nonlinear), exammination of the
linear and nonlinear kernels can reveal the order of this sequence,
that is, whether it is linear - nonlinear or nonlinear - linear [817.

The derived model is in the form of a truncated Wiener series.
It can be put in several other forms according to one's inclinations or
in order to serve a specific purpose. One such form is in terms of
linear filters and multipliers [737]. In any case, the use of the model
to predict the response to a certain input is simple, straightforward,

and numerically quick and stable.
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CHAPTER IV

MATERIALS AND METHODS

1. Structure of the Retina

The vertebrate retina has five building elements: the
receptors, bipolar cells, horizontal cells, amacrine cells and ganglion
cells. Although there are many sub-classifications, all neurons in
the retina fall into one of these five classes. The vertebrate retina
has a layered structure and these neurons form specific layers: the
receptor nuclei form the éxternal nuclear layer; the biﬁolar cell,
horizontal cell and amacrine cells form the inner nuclear layer and
the ganglion cells occupy the most proximal layer of the retina [85].

In the inner nuclear layer, the distal layers are occupied by
the horizontal cells while the proximal layer is occupied by the somata
of the amacrine cells. The neurons in these three nuclear layers form
an extensive connecting network. The layers where complex contacts
are made between the neurons in adjacent nuclear layers are called
plexiform layers; the external plexiform layer is the site of connection
of the receptors with the bipolar and horizontal cells, whereas the
inner plexiform layer is the site of contact of the ganglion cells with
the three classes of neurons in the inner nuclear layer [85].

During the last few years we have seen two breakthroughs which
greatly facilitated the study of the retina; first, the advance made in
the dye injection technique and second, the intra-retinal stimulation
[4,34,35,62,63,83,91]. The use of these two techniques has clarified

many issues which have been subjects of controversy.
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We describe briefly the morphology and function of these five

classes of neurons.

2. The Receptors:

These are neurons which convert the energy carried by light
into electro-chemical energy. The receptors contain photosensitive
pigments which absorb the incident photons [32a71]. Structurally, a
receptor consists of three main parts: the outer segment where photons
are caught, the cell body, and the receptor base where the signal
produced by the receptor is relayed to the second order neurons.

The most ubiquitous visual pigment is the rhodopsin or Vitamin
A aldehyde coupled to the opsin. The retinal is in a form of 1ll-cis
and the only action of light is to convert this form into a ll-transform
[71].

The rhodopsin which has absorbed a photon splits into two
elements, retinal and opsin, following a series of discrete steps.
Somewhere in these series of transformations, it is coupled to a process
which increases the impedance of the receptor membrane. This increase
in the impedance gives rise to a hyperpolarization of the receptor cell
membrane (it is accepted now that the receptor cell hyperpolarizes by

photic stimulus [88]).

3. Bipolar Cells:

The bipolar cells are the classical second order neurons which
connect the receptors with the ganglion cells. The bipolar cells have
a dendritic expansion which spreads laterally in the external plexiform

layer. The axonal processes extend down to the inner plexiform layer
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where arborizations are seen at several discrete levels. Rods are
thought to be associated with the large field bipolar cell whereas
cones are thought to be associated with the small field bipolar cells
[85].

Recent studies with dye injecting electrodes have revealed
that the bipolar cells give rise to a slow potential change in response
to a stimulus. The polarity of the potential change is a function of

the spatial distribution of light over the retina [34,64,91].

4. The Horizontal Cells

There are one to four layers of horizontal cells in the verte-
brate retina and they form the distal layer of the inner nuclear layer.
In an animal such as the frog or the cat the horizontal cells form a
single layer while in some teleosts at least four layers can be seen.
In this case, the horizontal cells occupy more than 2/3 of the entire
inner nuclear layer.

In the teleost, cones are connected to the cone horizontal
cell while rods are connected to the rod horizontal cell [84]. 1In the
mammal both rods and cones are connected to a single horizontal cell
[39,82]. The horizontal cells are referred to as the external, inter-
mediate and internal horizontal cells according to their locations in
the inner nuclear layer. 1In the teleost retina there is one more class
of horizontal cells called 'snaky' or 'crazy' cells as no description
of their nucleus or dendritic extension has yet been obtained [64,84,94].

The horizontal cells give rise to a slow potential change in
response to stimulus [86]. In the case where light of any wavelength

hyperpolarizes the cell, it is called L-type (or luminosity type)
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horizontal cell. In the case where light of some wavelength depolar-
izes the cell while light of other wavelength hyperpolarizes the cell,
it is called a C-type (or color type) horizontal cell [45]. The most
outstanding functional feature of the horizontal cell is that its
potential can spread across many cells over a large retinal area [26,
58,68,83]. It was established that this spread was not due to spread
of light. There are two schools of thought on the mechanism of the
lateral spread of the horizontal cell potential; one school suggests
that a chemical reaction is responsible for the lateral spread [65,66],
while the other stipulates that the layer of horizontal cells can be
approximated by a laminar structure of low resistivity in the intra-
laminar space through which the potential can propagate with little
attenuation [58,64]. As in the receptors, an increase in the impedance
of the horizontal cell membrane seems to be responsible for a hyper-

polarizing response.

5. Amacrine Cells

Amacrine cells are literally axon-less neurons located at the
innermost layers of the inner nuclear layer. They send dendritic expan-
sions of various shapes into the inner plexiform layer. According to
the shape of the extension the amacrine cell can be classified into
groups such as the basket type, brush type or diffuse type. Polyah
first suggested that the amacrine cells might be involved in the lateral
transmission of signals in the retina. By dye injection it was revealed
that the amacrine cells give rise to spike potentials superposed on a

slow potential change. Not much is known about the amacrine cells

[34,91].
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6. Ganglion Cells

The ganglion cells form the last stage in the vertebrate
retina. Their axons reach the lateral geniculate body wherefrom the
signal is fed into the central nervous system. The ganglion axons
carry spike discharges. The ganglion cells send their dendritic trees
into the inner plexiform layer where they make complex contacts with
the bipolar and amacrine processes. The ganglion cells are clagsified
into several types according to the shape of their dendritic trees. The
synaptic connections of the outer plexiform layer (among receptor, hori-
zontal and bipolar cells) have the following configuration.

Each rod and cone forms a proximal terminal called a spherale and a
pedicle respectively. Inside a spherale or a pedicle is a complex
structure composed of the bipolar dendrites and horizontal cell dendrites.

The simplest schematic model of this structure is as shown below [84,85],

7. Receptive Field

In 1940 Hartline [30] showed that a retinal ganglion cell
receives signals from a very large retinal area. A spot of light placed
1-2mm away from the spike recording site (presumably the location of the
electrode) could still excite the ganglion cell. This sensitive area

is called the receptive field of a ganglion cell and is roughly circular
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in shape.

In 1952 Kuffler [40] made another important observation. He
showed (in the cat) that the receptive field is not a uniform area
but is organized in two concentric discs, one called the receptive
field center and the other the surround of the receptive field. 1In
one type of unit a respomnse is observed to the onset of a light
stimulus at the center, while the same stimulus causes a response at
the offset of light if the stimulus is delivered to the surround. This
is an 'ON-center' (OFF-surround) unit. There is a complementary unit
called an 'OFF-center' (ON-surround) unit. The center and surround do
interact to give rise to a complex response pattern. Obviously a
stimulus which give rise to an 'OFF' discharge acts as a depressor.
Later, various receptive field types such as a color coded or double
opponent fields have been described [33390]. However, the concentric
field is the most basic unit in the visual pathways. It is easy to
imagine that there are two concentric and overlapping areas, one
excitatory and one inhibitory which give rise to a concentric field.
This is the model proposed by Rodieck and Stone [70a].

During the past few years it has become possible to record
responses from the bipolar cells. In all bipolar cells so far examined
(except in the mudpuppy) it has been shown that they also possess a
concentric receptive field, i.e. a central spot of light gives rise
to a polarization of one polarity and a surround gives rise to a
response of the opposite polarity [34]. If a spot gives rise to a
depolarization it is called an 'ON-center' bipolar cell. If a spot
gives rise to a hyperpolarization it is called an 'OFF-center' bipolar

cell.
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There is evidence to show that the amacrines form a complex

receptive field. But the field is more complex and subtly organized.

8. Catfish Retina

The catfish is a teleost of older origin. They bear no scales
and have a pair of whiskers. The catfish is a bottom feeder. The
channel catfish inhibits clearer water and is known as the chick of
the channel.

Detwiler [1l4b] lists the dimensions of the layer of the verte-
brate retina. The catfish retina had the least developed inner plexiform
layer suggesting a rather simple retinal transformation of the optical
information. Morphologically the catfish retina does not differ
drastically from the retinas so far examined.

The catfish retina has cones and rods. There are three layers
of horizontal cells in the retina [K. Naka, personal communication].
The external horizontal cells form the outermost layer. It has been
shown functionally that the external horizontal cells receive signals
from 625 ;;?cones [60,61]. The intermediate horizontal cells are very
thin and inconspicuous. No electrical activity has been recorded from
this class of horizontal cells. The third class - the 'snaky' horizontal
cells - is not a true horizontal cell according to the morphological
definition [84,85]. This horizontal cell runs between the layer of
the true horizontal cells and the layer of amacrine cells. They do
not take a straight course but often bend into the horizontal layers.
Although its nucleus has been located no dendrite has been observed.
The electrical responses have been recorded for the snaky horizontal

cell [N. Matsumoto, personal communication].
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The catfish external plexiform layer is the thinnest one so

far reported [14b]. No other structural details have yet been

examined.

9. Experimental Methods

All experiments described in this thesis utilized the retina

of the catfish (Ictalurus punctatus) and were performed by Dr. Ken Naka.

The preparation of the retina and the recording techniques have been
described by Naka and his associates [55,61,63]. In this work the

following stimulus-response experiment were performed:

Stimulus Response
Light (extracellular) receptors (mass
response

Light (intracellular) horizontal cell
(Current injected into horizontal (extracellular) ganglion cell

cell)

Light (extracellular) ganglion cell

Light ERG

Fig. 4.1 shows a schematic diagram of the catfish retinal neurons and
indicates the stimulating and recording sites for the systems under

study in this work.

The stimulus and response data were recorded on magnetic tape
(to be later transmitted to a digital computer) and also by a pen writer
for preliminary screening of results. The optical system has been
described by Naka and Nye [61]. The light source was a Sylvania glow

modulator 1B59/R-1130B.
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White-noise of limited bandwidth was obtained by the following

process. A type 1390-B Random-Noise Generator (General Radio Company,
West Concord, Mass.) was used which produces a gaussian random signal
that has a flat power spectrum from 5Hz to 500 KHz (five decades of
frequency). This electrical signal was recorded on magnetic tape
(AMPEX FR-1300) and subsequently copied on another tape at a much
slower speed. This process of copying at a slower speed was repeated
until the bandwidth of the resulting signal was in the desired range
for our systems (essentially d.c. up to 25 Hz or 50 Hz flat power

spectrum) .

10. Data Processing

The data processing system is shown in schematic form in Fig.
4.2. This system has been developed at the California Institute of
Technology and has been extensively used for processing biological data
[1318,24,48,49]. A detailed description can be found in [18,44,50].

LORI is basically a special-purpose computer and multi-channel
A/D converter preprocessing the experimental data for on-line trans-
mission to the control computer (IBM 360/44). Continuous signals such
as the white-noise inputs and slow potentials were sampled at a rate
of 250Hz and transmitted to the central processor where they were stored
in auxiliary memory (2314 disc units). Neural spike data such as the
ganglion response were transmitted and stored in the TOE (Time of Event)
mode which catalogs the time of occurrence of a neuron firing. TOE
data were transmitted at a clock rate of 50KHz corresponding to an

accuracy of 20 microseconds.
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The next step in the data processing procedure involved inter-
action with the central computer (IBM 360/44) through the IBM 2250
display terminal. This interaction included “eyeballing" of the
data and qualitative determination of some features of the input and
output records (drift of the average value, nonlinearities, etc.).
Preliminary analysis such as auto and cross-correlations and histo-
gramming were also performed at this stage. In general, the interactive
nature of the system proved a valuable system feature at this stage.

In the case of the TOE data obtained from the ganglion response
the following procedure was followed in order to convert these records
into continuous functions of time. The white-noise stimulus record
was formed by concatenating ten identical white-noise records. The
ganglion responses to the ten runs of identical white-noise were super-
imposed and histogrammed in time to produce a PST (post-stimulus time)
histogram of the ganglion discharge in response to this white-noise
input. Thus the ganglion response was converted to a continuous func-
tion of time and the difficulty of dealing with the discrete spike
events was overcome. Such a procedure resulted in a waveform with
some artificially introduced high frequencies which were subsequently
filtered out (smoothing) through the use of an appropriate Hanning

window [5]. Specifically,
y(ti) = 0.5 y(ti) + 0.25[y(ti_l) + y(ti+1)] 2

The input and output data were then treated for reduction of
long-term drifts. This was accomplished first through 'eyeballing'

which indicated the type of drift and second through subtracting the
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appropriate mean square curve. Such curves, variably used, included
linear trends (a + bt), parabolas (a + bt + ct2) and exponentials
(e—a(t + b)).

Power spectra for the input and output records were subsequently
computed. Based on the results of these computations the input data
were multiplied by a constant in order to normalize the power level of
the flat portion of the input spectrum equal to one (0 db) (see Chapter
III). Similarly, the response data were multiplied by a constant to
produce an output power spectrum whose power level at intermediate
frequencies (3Hz to 7Hz) was equal to one (0 db). This normalization
was necessary in order to be able to make meaningful comparisons of
the response power spectra for the different systems under study.

Following these normalizations of the input and output records
the system kernels‘{hi} were computed. Starting with the zeroth order
kernel (ho) the system response (described by that kernel) to the white-
noise input was calculated and subtracted from the total response
before the next higher order kernel was computed [41]. The responses of
the derived model to the same white-noise input (as used in the experi-
ment) were calculated for both the linear and nonlinear models as well
as their corresponding power spectra. Often, model responses to
specialized inputs such as steps and sine waves were also computed. All
this processing was done utilizing both computers shown in Fig. 4.2
(IMB 360/44, IBM 360/75) and peripheral devices.

The kernels were computed from cross-correlation between input
x(t) and the system response z(t) that remained at each stage (after

subtracting), by use of a simple rectangular rule,
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6 (R,At,...,K_At) =

ZXew i X
where N is the number of samples in the record, A = mak{Kl,...,Kn} and

{x Kn} are between 0 and m (mAt is the extent to which the kernels

1200
are computed).

The convolution integrals involved in the computation of the
model response were calculated using Simpson's rule.

The computation of the power spectra was done taking into
account many of the subtleties and difficulties of this procedure [5,69].
The computational procedure used is outlined below:

The data are in terms of array {xi, i=1,...,N} of the signal
samples given every At. To reduce the variance of the statistical
estimates [5,69 ], the record is broken into three segments, each of
duration (NAt)/3, the power spectrum of each segment is calculated and
the three power spectra are averaged to produce the final estimate. For

each segment the power spectrum is calculated as follows. The mean

and autocovariance estimates are,

e -
Ch = T L *i *im
g1

X

where m = 0,1,2,...,M and M ~ 100. The initial spectral estimates are

given by
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+ 2 z C, cos iﬁ" + CM cos(mm) - (At)

where m = 0,1,2...,M. These spectral estimates are, in turn, smoothed

by a Hanning window, to produce the final estimates

S, = 0.54 +0.25 (A ., +4 )

or, in db, 10 loglosm.
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CHAPTER V

TRANSFER FUNCTIONS OF LIGHT - RECEPTOR SYSTEMS

1. Introduction

The receptors (rods and cones) are transducers which
convert the energy carried by photons into an electrical signal
[71, 88], specifically, a hyperpolarization of the receptor cell
membrane. This scheme is supported by a large amount of data
obtained during the last few years [3,4,91 7.

Although no direct evidence has been presented to indicate
that the hyperpolarization of the receptor membrane is the only
instrument in the information transmission to the next neuronal
layer, all circumferential evidence indicates that this potential
controls the liberation of the transmitter substance at the
receptor terminals [ 9,107.

Intracellular recording for the receptors has been reported
by several authors [3,4,917]. The stability of recording which is
essential to detailed analysis has not been satisfactory except,
possibly, in the case of the turtle eye [3,47]. Therefore, in this
work, we avoid the torturous path of intracellular recording from
the receptors and base our analysis on the mass receptor
response obtained through stable extracellular recordings.
Sillman et. al. [74,75)] have presented convincing evidence that
the mass response (or ERG) obtained after treating the retaina
with sodium aspartate is indeed the late receptor potential which

reflects the receptor membrane hyperpolarization.
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Presently, there is enough additional evidence obtained from
the carp retina (Witkovsky & Ripps, personal communication) and
the skate retina [20] to show that this extracellularly recorded
potential is due to the receptor potential. We noticed that within
a limited intensity range, the response of the receptor to a step
input appears to be a linear transformation of the input [ 74,75].

, This conjecture is also supported by results of (linear) analysis in
the cat retina [ 70b].
| A recent report by Baylor, Fuortes and O'Bryan [ 4]
suggests that there is (in turtle) a receptor-to-receptor interaction
possibly through the teledendrone. In our Golgi study of the cat-
fish retina we failed to impregnate such a process [unpublished
results]. Although we have no evidence supporting or not supporting a
receptor-to-receptor interaction, we feel that the catfish receptors
are simpler in their organization than the ones in the turtle.

In this chapter we obtain nonlinear dynamic transfer
functions of the receptor response due to light patterns which we
shall extensively use to study the receptive field behavior of the
ganglion cells. These light stimuli are spots (0.3 mm diameter),
annuli (0.5 mm inner diameter, 5 mm outer diameter) and uniform
light intensity over the whole retina. The transfer functions are
obtained by modulating the stimulating light intensity, in each case,
in a white-noise fashion and following procedures described in
previous chapters to obtain the nonlinear, dynamic characterization

of the system in terms of a series of Wiener kernels.
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The receiator field is of the order of 5 microns in diameter
and therefore several thousand receptors are being stimulated in
each stimulus case considered here. The recordings are extra-
cellular and they indicate the mass behavior of the surrounding
receptor cells. The contributions of other cells besides the
receptors are being supressed with the addition of sodium

aspartate to the preparation.
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2. The White-Noise=-Derived Models

The procedure to be followed in obtaining the system non-
linear models through white-noise stimulation has already been
described in previous chapters.

Preliminary harmonic analysis of the system response to
white-noise of 50 Hz bandwidth revealed a cutoff of about 10 Hz
(with some variation of this value for the different cases of
stimulus and intensity levels). In view of these findings, the white-
noise bandwidth chosen to perform the characterizing experiments
was 25 Hz. The system memory is of t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>