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PREFACE

The main goal of this work is to give an introductory account of
sieve methods that would be understandable with only a slight knowledge
of analytic number theory. These notes are based to a large extent on
lectures on sieve methods given by Professor Van Lint and the author in
a number theory seminar during the 1970-71 academic year, but rather
extensive changes have been made in both the content and the presentation.

Several developments related to the subject of these notes are not
discussed in them at all. One such is Rényi's probabilistic version of
the large sieve, for which the reader is referred to Rényi [4]-[9].
Another is Vinogradov's method of trigonometric sums which was used to
prove the famous theorem that any sufficiently large odd integer is
representable as a sum of at most three primes. This method is dis-
cussed in I. M. Vinogradov [1]. Neither of the two methods mentioned
above would fit in very well in this work, however. A much more serious
omission, due to lack of time, is that of Selberg's lower bound method.
Although much more complicated and in many ways less satisfactory than
the upper bound method, it gives the best results known in many cases.
We might mention here that using this method it has been shown that there
are infinitely many primes p such that p + 2 is a product of at most
three primes, and that every sufficiently large even integer can be repre-

N

sented as & sum of a prime and a product of at most three primes. While

these results do not prove the twin prime conjecture (which states that

P + 2 is a prime for infinitely many primes p) nor Goldbach's conjecture
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(that every even integer > L is a sum of two primes), they are still
significant achievements. A new unified proof of both of the above
results is given in Richert [1]. A good introduction to Selberg's sieve
is provided in Halberstam and Roth [1; Chapter 4]. A much more com-
prehensive and more up-to-date presentation is given in Richert [3].

All references for results quoted in any chapter are given in the
notes at the end of that chapter. These notes also contain some general
bibliographic information and often some additional facts. The biblio-
graphy contains practically all the publications on sieve methods of
which the author is aware, and an attempt has been made to supply
Mathematical Reviews references for as many as possible.

I am greatly indebted to Professor Gallagher for permission to use
the material of Chapter 5, which has not yet been published. I would
also like to thank Professor Ven Lint for lecturing on the material of
Chapters 3 and 4, and for help on many problems. I am very grateful
to the Mathematics Department of the Californie Institute of Technology
for a 1970 Summer Research and Independent Study Fellowship, which made
this work possible. Most of all I would like to thank Professor Apostol
for his advice, encouragement, and guidance. His help in the writing
and editing of these notes has been invaluable. Finally, I would like
tgj;ggress my appreciation to Mrs. Lorayne Decker for her patience and

e

skill in typing the manuscript.

Andrew Odlyzko
Pasadena, Californie

June 1971



1
THE SIEVES OF ERATOSTHENES AND BRUN

The name "sieve method" comes from the sieve of Eratosthenes, an
algorithm for finding all primes. It utilizes the fact that a natural
number is prime if and only if it is not divisible by any prime smaller
than itself. To find all the primes < x, one writes down the natural
numbers 2, 3, 4, ..., [x] in this order. Since 2 is the first prime,
it is left untouched, but every proper multiple of it (that is, every
second number starting with 4) is crossed out, since it is composite.
The next number in the sequence is 3, and it has not been crossed out
yet. Hence it is not divisible by any prime smaller than itself, and
so it is prime. Therefore 3 is left as it is, but every proper multiple
of 3, being composite, is crossed out. The next number, 4, has already
been crossed out, and therefore must be composite. The next one, 5, has
not been crossed out and hence must be & prime. It is left alone but
all its proper multiples are crossed out. Since if an integer < x is
composite, at least one of its prime factors has to be < ¥x , it is
sufficient to continue this process only up to [ ¥x ]. The numbers
which have not been crossed out are exactly the primes < x. Thus this
procedure "sieves out" all the composite numbers.

;f—-ﬁ,LEe)‘t n(y) denote the number of primes < y. The sieve of Eratosthenes
can be u-sed to obtain an exact formmula for n(x) - =( ¥x), the number of

primes between Yx and x. Let



1 ifn=1,
?
s’(n) = 1 if n is prime and ¥x < n < x,
0 otherwise.

Then
x(x) - x(VX) = ) s’(a).
2<n<x
Now let
I = TT P.
= Vx

We observe that the sieve of Eratosthenes removes all those natursl
numbers < x which are not relatively prime to [I, except for the primes

< ‘\/;. Since the M8bius function satisfies the relation

Y (@) = {

dln

1 i & o= Ty

0 If n>1,

we have

(1.1) s'(n) = ) w(a)
dl(an)

for each n < x, and hence

a(x) - ®(VR) +1= ) s'a)= ) ) @)= ) w(@F
- n<x n<x  d|(n,N) aln

-x) w8 V@i - 3.
aln aln



But
Y. ma-Lho T oo-d
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and so we obtain the exact formula

1
(1.2)  w(x) - x(Vx) + 1= xpgrﬁu - 5) d%ng(amg] % 3

Each term in }:u(a){[%‘] - %‘} is < 1 in absolute value, but there are

alm
Eﬁ(ﬁ)terms, & number much larger than x. Still, one might hope that
the first term on the right side of (1.2) yields the correct order of
magnitude of n(x) - n( Vx) and that the second temm is of a smaller order
because of cancellation due to alterations in the sign of M(d) and the
small size of the factors [%‘] - £ (since for most divisors d of T,x/d

a
is much smaller than 1). However, & theorem of Mertens states that

1 e Y
(1.3) T (1 -5)..

as y = «,
log y
pSy

where y is Euler's constant, so the first term on the right of (1.2) is
asymptotic to 2e 'x/log x. But, by the prime number theorem, the left
side of (1.2) is asymptotic to x/log X, so that the second term on the
right is asymptotic to (1 - 2¢”Y)x/log x. Hence each temm on the right

of (1.2) is asymptotic to & constant times , 50 that we cannot

—
log x
expect to obtain useful estimates for =(x) - =x(7/x) from this identity.



Nevertheless, the same underlying ideas can be used to obtain
estimates for the number of integers < x which are not divisible by any
prime p < z, provided z is much smaller than ¥x. (In the foregoing

discussion we considered the case z =)x.) This time we let

n=TTp

psz
and define s’(n) by (1.1). Then the number S(x,z) of integers < x not
2 -—

divisible by any prime < z is given by

S(x,z) = ) s'(a) = ) ) w(@)= ) w(@)3]
n<x n<x d|(n,n) aln

[}

1

xTT(1-2) + ZM(d){[}—‘] - 31,

=<z ol d d
- alm

Since each term in the sum on the right has absolute value < 1, the

sum itself is 0(2“(2)), and therefore

S(x,z) = x]T(‘I- 1—) + 0(21!(2.)).
Kz P

By Mertens' theorem the first term is asymptotic to e 'x/log z as x = =,
provided z # = also. Now if z = log x we have

log x log x log L log 4
2rt(z) < 222/log z _)log z _ log z - 108 Z _ xo('l),

so-the.second term is much smaller than the first termm. Thus, if z ¥ =

as x # @ but z < log x we have

s
S(x,z) ~ %g_xz as x = o,



As is shown below, the above method can be generalized to give
information about the number of integers < x which are not divisible
by any prime < z, when these integers belong to sequences other than the
sequences of natural numbers. Unfortunately the requirement that z be
very small in comparison with x limits the usefulness of such general-
izations.

Modern sieve methods originated with Viggo Brun around 1920. He
used a new sieve to obtain several important number-theoretic results,
notably an estimate of the density of twin primes. 1In the next few
pages we will develop & very simple form of Brun's sieve which will
enable us to prove a theorem on the density of twin primes (Theorem 1.4).
While weaker than the best results obtainable with Brun's sieve, it will
be sufficient to prove the celebrated theorem of Brun that the sum of
the reciprocals of the twin primes converges (Theorem 1.5). We will
first state Theorem 1.4 and then use it to prove Theorem 1.5. The rest

of the chapter will then be devoted to the proof of Theorem 1.k.

(1.4) THEOREM. Let T denote the set of twin primes (that is, primes p

such that either p - 2 or p + 2 is also a prime), and let T(x) = £ 1.

P<x
Then PET
2
o) < H(FfgHE) gor 23,

where <§ is the Vinogradov aymbol*).

*) F(x) < G(x) is equivalent to F(x) = O(G(x)); that is, both imply that
there is & ¢ >0  such that |F(x)| < c G(x) for x in the range indicated.



So far we have only utilized concepts from the sieve of Eratosthenes.
Since good estimates for B(x,d) can be obtained quite easily (see (1.12)
below), we could write S(x,z) as the sum of a main term for which an
asymptotic estimate exists and a remainder. Unfortunately, just as
before, the remainder would be a sum over all divisors d of I, and there-
fore we would need to take z of a much smaller order of magnitude than x
to ensure that the main term is the dominant one.

The main idea of Brun's sieve is that in order to get an effective
upper bound for S(x,z) when 2z is fairly large compared with x one should
sum in (1.6) over only a relatively small subset of divisors of I, where
this subset is chosen so that the resulting sum is greater than or equal
to S(x,z) (and to get a lower estimate one should sum over a subset that

mekes that sum less than or equal to S(x,z)). In this chapter we will

1
x20 log log x

obtain an upper bound for S(x,z) when z = To do this,
let us take an even natural number m < r (which will be specified more

exactly later) and define

(1.7) sw) = ) w(@)
d|(n(n+2),m)
v(d)<m

where v(k) is the number of distinct prime divisors of k.

(1.8) LEMMA. For all integers n, s’(n) < s(n).



Proof: Let t = (n(n+2),l). Then we have

s'(n) = ) w(@), s(n)= ) w(a).
alt dkz
v(d)<m
If t = 1, then s’(n) = s(n) = 1. If t > 1, then s’(n) = 0. Therefore
in order to prove s’(n) < s(n), we only need to show s(n) > O when t > 1.
Let us assume t > 1. Since t divides I, all divisors of t are
squarefree and hence

st)= )1 - Yy o1

dlt dlt
v(@)<m v(d)<m
v(d) even v(d) odd

Fix a prime p which divides t. Suppose §|t, v(8) <m, and v(8) is odd

(so that 1 < v(8) <m - 1 because m is even).

Let
ps if pVs 5
8 =
5/p if p| & .
Then
v(s) + 1 if P* 8,
\:(6') =

v(g) -1 if p| 8

Thus §’ is & divisor of t with v(8’) even and 0 < v(8’) < m. Since the
correspondence between § and §’ is one-to-one, there are at least as many
d with d|t, v(d) < m for which v(d) is even as there are those for which

v(d) is odd. Therefore s(n) > 0, and the proof of the lemma is complete.



Applying Lemma 1.8, we obtain

x x
(1.9) s(x,2) < ) s(a) = ) Y w@
n=1 n=1 4| (n(n+2),0)
n odd n odd v(da)<m

) w(@B(x,a).
a|ll
v(d&im

T opien to SiNpIETy Turther work we WLl dencte By pvo7 a1l 4l with

v(d) = £ (with the convention p(o) =1). E(f) will be understood to
p

be the sum over all d|II with v(d) = £. Then (1.9) becomes

(1.10) S(x,z) < Z( 1) y B(xp ).

Next let us compute B(x,p( )) B(x,pi pi ) = number of odd

n < x such that n(n+2) = 0 (mod (pi il " )). Since for odd n we have
1 : §

(n,n+2) = 1, each p; divides exactly one of n, n + 2. Thus the con-
J

gruence n(n+2) = 0 (mod (pi e P )) is equivalent to the congruences
1 £

n=0 (md (T p))

(1.11) PP,
n+2 = 0 (mod ( TT p))

PEP,

where P1 and P2 are any two sets such that
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By the Chinese Remainder Theorem, (1.11) has exactly one solution modulo

o(E) for £ixea P, and P,. Therefore for fixed P, and P, there will be

——J(cﬂ- + 8 odd n < x satisfying (1.11), where |8] < 1. Since there are ot
2p

possible choices for the sets P1 and P

2’
(1.12) B(x,p(T)) = of -2:’(‘-1—,)- + 2%, o] <1.
Combining (1.12) with (1.10) leads to
m
(1.13) sx2) <3 ) () ) Ty Z(f)a-
£=0 (f) £=0
Now
m m
(1.1%) z (5)2f < 2 ofef < (o)™,
=0 £=0
and
) ‘(‘5 AR ) TT
£=0 (f) £=0 p(f) p femt1 (f)

- TTG-%. Z (-1 s,
e f=m+1

2 2 o *)

=2 T2 sesy SR — .
+ ¥ Pr1

where if‘,is the f-th elementary symmetric function of

*#) The k-th elementary symmetric function of &;,.,8, 1is defined as

T a, *++ a, where the sum is over the ( ) possible choices of 1 peeesdy
.’l..l :Lk 1

from 1,2,...,t; thus, for example, s,(x,y,2) = x+y+z, s,(x,y,2) =
Xy + Xz + yz, and 33(x,y,z) = XyZ.
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We thus find from (1.12) - (1.15) that

r
+1 2 X f-1
(1.16)  s(x,z) < (20)™ + 5 11' (1-2+3 2 (-1)°7 s
3§P—z f=m+1
We next observe that
(1-17) S.l'Bf ->- (f+1)sf+1’ f = 1’2,0.-

since any product of (f+1) terms can be written in (f+1) ways as a

product of a single factor and a product of f factors. Therefore

2 g3
1 1
s, S5 » 83 <z e&nd in general (by induction)
f
51
< .
=
Relation (1.17) also shows that 8p 2 85,9 1f 5, <f + 1. Let us now
choose m + 12> 8, = L g (the only restriction on m so far was that
3<p<z P
z £-1
it be even). Then T (-1) s, becomes an alternating sun with temms
f=m+1

m+1 m+1

)

(in the last inequality we used the fact that n! > (n/e)”). In addition,

8 es
1 ( 1
< <
decreasing in absolute magnitude, so that it is < St < Tty L o=

since by a theorem of Mertens

(1.18) 5 = Y %-_- 2 log log z + 0(1),

—

3%ptz

we can choose m so that ees1 <m+ 1< 981 for sufficiently large z (this

guarantees m < r), and then



12

1 1 -2 8
(G55) =@ e Tce

Also, 1 -y < e¥ for all real Yy, and thus

-s
pz P
Since r = n(z) - 1, we can use 2r < z in (1.16). Then the inequalities

above lead to

e P
S(x,z) <z  + xe .
Because of (1.18) there is a constant C such that for z > 3,
eloglogz-c<s1<aloglogz+c

and therefore for sufficiently large x,z

(18 log log z + 9C) + xe®

S(x,z) <z
(Log 2)2

1
x20 log log x

We now take z = Then for sufficiently large x

19,
log z = 50 10331;; L log log z < log log x,
and hence
: 2
S(x’xao log log x ) < x9/10+o(1) + oo ecx(lgﬁlogggx x) )

Therefore for all x > 3, say,

1

2
log lo
S(x,x20 log log x) < x( _jia_g_g__x_) .
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To complete the proof of Theorem 1.8 we observe that

1 1 =
T(x) < 2z + 25(x,z) < x(—2§5§2§_£) .

The method used in proving Theorem 1.4 can easily be generalized.
We could, for example, investigate the density of primes p for which
p + 2 and p + 6 are also primes (it has been conjectured that there are

infinitely many such prime triplets). We would find that there are

3
<§ X(lggségg-ﬁ) of them below x. However, in Chapter 3 we will obtain

more accurate and more general results by using Selberg's sieve, so we
will not deal further with this subject here.

So far we have dealt only with Brun's upper bound method. However,
the lower bound method is analogous (actually one of the advantages of
Brun's over Selberg's sieve is that the two methods are almost identical
in case of Brun's sieve). The most important difference is that in (1.7)
we would take m odd in order to obtain a lower bound for S(x,z). After
meking a few obvious modifications in the proof of Theorem 1.4 we would

. 2

find that S x,x20 log log x) > cx(lgﬁségg—z) for some positive con-

stant ¢. Unfortunately, this result does not allow us to cbtain a lower
bound for T(x).
The best versions of Brun's sieve give estimates for S(x,xa) where

@ < 1/2 is a constant. There a set of primes is chosen:

< L N ) .
Py <Py < <p
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In the upper bound method s(n) is defined as in (1.8) except that sum-
mation is over those d which have at most 21 of their prime divisors
greater than or equal to p, (in the lower bound method: at most 2i - 1).

By choosing those t primes appropriately it is possible to show that
-2
?(x) <K x(log x)™°.

We will obtain this result using Selberg's sieve.
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Notes on Chapter 1.

Proofs of Mertens' theorems (Egs. (1.3) and (1.18)) may be found in
Herdy and Wright [1; Chapter 22].

The exact formula (1.2) not only fails to give a good asymptotic
estimate for n(x), but it is also not very useful in actually calculating
n(x) for a specific x. However, Meissel [1] has found another exact
formula for n(x) which leads to an effective (even though laborious)
procedure for calculating this function. Uspensky and Heaslet
[1; Chapter 5] also give & presentation of this method.

Several mathematicians have investigated the number &(x,y) of
positive integers < x and free of prime factors < y. Buchstab [1]
proved that for a fixed u > 2,

lim 3(y",y)y log y = w(u),
y4e

where
2 fuw(u)) = w(u-1)

for u > 2. Further results were later obtained by De Bruijn [1]-[3]
and Ramaswami [1], [2]. Their methods, however, were analytic.

Our version of Brun's sieve largely follows the presentation of
Lendau [2; Part 2, Chapter 2], Rademacher [2; Chapter 15], and Gelfcnd
and Linnik [1; Chapter 5]. The main difference is our explicit use of
the sieving function s(u), a concept borrowed from Selberg's sieve.

The literature on Brun's sieve is rather extensive. Practically all

the papers listed in the Bibliography that were published before 1942
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deal with this subject. Moreover, there is a presentation of Brun's
sieve in Gelfond and Linnik [1; Chapter 5]. Although it had seemed
for a while that Selberg's sieve had superseded Brun's, Miech [2]
recently used the latter to prove important results on the almost-

prime values assumed by a polynomial.
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2
SELBERG'S SIEVE

Let us suppose that A = {a\,] is & sequence defined by a = h(v),
v=1,2,... where h is an integer-valued polynomial. Let P be a finite
set of primes (5 z for some z). Many important number theoretic
problems reduce to the problem of estimating the number S(A,P,n) of
a, v=l,..., n which are not divisible by any prime p € P. For
example, such estimates in the case h(x) = x(x+2) give information about
the twin primes. In this chapter we prove a result (Theorem 2. 17) which
will enable us to obtain effective upper bounds for S(A,P,n) in a wide
variety of cases.

Selberg's sieve can be formulated so as to apply to general sequences
of integers. However, the sequences generated by polynomials are
the most important ones for which effective estimates can be obtained,

and so we will deal only with them.

Let N(d) denote the number of solutions of
(2.1) h(v) =0 (mod d), 1<v<ad.

Then by a property of congruences N is a multiplicative function.
Those primes p for which N(p) = O do not contribute to the "sieving out"
process and so we may assume that none of them belong to P. In addition,
if N(p).= p for some prime p € P, then S(A,P,n) = O. Therefore we will
require 1 < N(p) < p for all p € P. For convenience in later work we

define

(2.2) £(d) = 'If%ﬂ .

The function f is multiplicative and 1 < f(p) < p for all p € P.
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The v between 1 and n are divided into [%] complete residue classes

modulo d plus at most 4 - 1 additional v.
v in every complete residue class such that a

at most N(d) such v among those left at the end.

(2.3)
vn
dla
v
where
(2.4)

Let us now define II =

s'(a) =

Then

(2.5) S(A,P,n)

d|(a,m)

There are exactly N(d) integers
= 0 (mod d) and there are

Hence

Z 1= [3IN(a) + 9-N(a) = 17(2—)— +R(d), (0<8<1)

Ir(@)] < 775 -
T ana
peEP
1 if (a,l) =1,
w(a) =

0 if (a,Nl) > 1.

Ye'a)=) Y u(@
v<n v<n dl(av,ﬁ)
Y@y 1=n) %—} B@R)-

alt v<a ajn

dlav

Unfortunately this relation suffers from the disadvantage that the second

term, the remainder term, is & sum over all the divisors of I, and so is

very difficult to estimate.

The main problem is to circumvent this obstacle.
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First we observe that if s(a) is a function defined by

(2.6) s(a) = Z Aa)
d|(a,m)

where A(d) is any function defined for all d|T, then (Jjust as in (2.5))

Ald
z s(av) = nz E{E} + z A(a)r(a)
v<n ajm ajm
where the left side depends on A. If A is chosen so that s(av) < s'(av)

for all v, then

(2.7) SMﬁm)fnz %%ﬂ-ZRMMML

aln aln
The essential part of both Brun's and Selberg's sieves is the choice of
A so that S(A,P,n) can be effectively estimated. The difficulty lies in
the need to make the remainder smaller than the main term, while at the
same time minimizing the latter (since we would like to minimize the right
side of (2.7)). The task of making the remainder term fairly small is
accomplished in both sieve methods by defining A to be zero outside a
relatively small subset D* of divisors of lI. In Brun's sieve, A\ is chosen
equal to u on D*, and D' is chosen (in & rather complicated way) to ensure
that s(a) > s’(a). In Selberg's sieve, on the other hand, the possibility
of choosing )\ different from y is utilized, while D* is chosen in a rather
simple fashion. The resulting estimates are, as it turns out, more effec-

tive than those obtainable with Brun's sieve and are easier to find.
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(It should be pointed out, however, that the transition from Brun's to
Selberg's sieve was not as obvious as it might appear from this chapter.
Our whole presentation utilizes many ideas introduced by Selberg in
connection with his sieve, while Brun's sieve was originally formulated
quite differently.)

The set of all functions defined by (2.6) is too wide to work with.
However, it turns out that very good sieving functions can be selected
from & subset of it that is particularly well-behaved.

Suppose we define

(2.8) s@) = ) AQ)
a|(a,m)

where A is any function defined on all the divisors of [I. Then

2
(2.9) C@=( ) M) = ) A
d[(a,n) dl(a;n)
where
(2.10) M@ =) A@)AE)-
dy,d, [T
a=la, ,4,)

Thus if we denote by T the set of all functions s defined by (2.6), then
s2 é‘Ethenever s €ET. Selberg's decisive observation was that we should
look for our sieving function among the functions 52, where s € T. One

great advantage of this choice, as we shall see, is that it leads to a
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quadratic form which enables us, for every subset D of divisors of I,

Ald

to find the minimum value of T la

aln
zero outside D. The main reason for this is the great freedom of choice

over all functions A which are

as to A. To make se(a) > s'(a) it is sufficient to ensure that se(a) >1
when (a,lI) = 1 and that se(a) > 0 when (a,l1) > 1. The first condition

is easily satisfied by specifying A(1) = 1. But the second condition is
satisfied trivially no matter what real-valued function we choose for A.
Thus (2.7) will hold subject to the single restriction A(1) = 1. This

is of great practical importance, since for a general function s defined

by (2.6) it might be very difficult to prove that it satisfies s(a) > s’(a).

Ald

As a result we can, when looking for the minimum of I T3

ytreat A(d)
aln

as & free variable whenever d > 1.
Before we prove the main theorem (Theorem 2.13), we will derive a

few preliminary results. Let us define
(2.11) g(k) = ) w(a)(x/a)

dlk

so that

£(k) = ) (@)

alk

If k| then (4, %) = 1 for each divisor d of k and hence f(k/d) = £(k)/£(d)

since f is multiplicative. Therefore if k|Il we have

8(k) = £(x) ) w(@)/£(2) = £(x) m (' - 75y) -
P

alk



In particular, we see that g(k) > 0. Also, since f is multiplicative,
£((a,,8,)) £([d,,8,)) = £(a,) £ (a,)

and therefore

1 _ 1 T
L ST R I CUNY - d*a)g(&)‘
1.’

Next, let D be a finite, divisor-closed set (i.e., if @ € D then

all divisors of d belong to D) and let

Flk) = ) a(a),
den
k|d

vhere G is arbitrary. Then we have the inversion formula

(2.12) Y wEF(e) = c(a)
teD
alt

because

zu(ﬁ)F(t) = Zu(g) ZG(L) = EG(L) Zu(g) = ZG(.{,) }:p(a) = 6(a).
t€D tED  LED LED dlt LED

8l
alt alt  dje tle  t]t aje d

(2.13) THEOREM. Let D be a divisor-closed set of divisors of [, and let
-
D= {-43;_‘;;|n, d = [4,,d,], vhere d,,d, € D}. Assume that A(1) = 1 and

that A(d) = 0 if 4 £ D, and let
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A(d) = Z MaAE,) 1f a €D,

d‘l ,62€D
[d1 ’d?]=d

and define AM(d) =0 if 4 £D . Let

H(A) = Z*’I:—%.
aep

Then
(2.14) H(A) 2% ’
where
1
(2.15) Q= Z 2@y ?
d€ep
and this lower bound is attained when
d)f(da 1
(2.16) AMa) = &(—%(-l Z T
alt
Proof: We have
A2, )M&y) A, )A(L,)
M- ) FeEn - L mewey L &)
d,,4,€D d,,d,€D t[(4,,4,)

teD 4, ,d2€D

A(a,)A(a,)
- Te Y e - DL EON
t]d,,t]a, t‘d



24

Now we write

y(t) = z %&%—-

d€D
t]d

By (2.12) this means

Ma) = £a) ) w(t/a)y(s).

t€D
alt

Since f is multiplicative, f(1) = 1, and by teking d = 1 we find

1= ) w(e)y(t).
t€D

This leads to

2
H(A) = ) e(6)7(e) = ) e(e)P(t) - & ) w(edy(e) +j?z el
t€D t€D t€D t€D

1

2
1 1
=2 O] {g(t)y(t) - u(t) 5} ta
t€D
Therefore min H(A) = 1/Q and this minimum is attained if and only if

y(t) = %

But in view of (2.12) that is equivalent to

t

tED
dlt dft
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(2.17) THEOREM. If Q and A are those of Theorem 2.13, then

(2.18) s(A,Bn) S8+ ) IAMa)A@R(IE,,8,0)]
4,58,€D

For D = {d: d|M, a<z} this leads to

n 2 1 .
(2.19) S(A,P,n) < at? p‘[ETP (1 - F(FT)

Proof: Relation (2.18) follows immediately from (2.7) and (2.14). We

thus only need to prove that
Y IA@)A S 800 - g
(2.20) R = PIMaR([4,,4,])] < 2 pGP( - Y
d1,62€D

By Theorem 2.13

Iaca)] = 2‘(7—"HQ “(T - 54
dlt

since g(t) > 0 and g is multiplicative. Also, by (2.4) and the fact that

f(k) <k

[4,,4,) 44 f((d*pdz)) d,td,
|r([a,,a,1)| £ a5, - [@,8,) ¥, )H(ay) ~ 7(&,)1(5,)

Hence

£(a,) f(a,) @ 4 a\?
(2.21) RZ z ga,) &) g,  I(a) i(}:m)
d,,4,€D aep

2
< 22(2 E‘(a) = zeQa.

d€eD



Now
1 1
= <
(2.22) Q z 5@ < UPU * E(a'):
aen P
and
1+1 =1+ ! =f --(1.1)-'1
g(@) fp)-1 " fp)-1 "~ f(p)’ °
Thus

Ri 22 TT (1 - 'r%l?)-)-a.

pEP

This finishes the proof.
In the proof of Theorem 2.17 we could have combined (2.18) with
(2.21) to obtein

S(a,P,n) < % - zaqe.

The reason we replaced the Q in the second term above by & simpler
expression (simpler than the expression defining Q, that is) is that
the size of 22Q2 is determined mostly by z, and we do not lose much by
using the estimate (2.22) for Q. The size of Q is critically important,
however, for the main term. The main difficulty in the applications

we will be discussing in the next chapter will be in finding & gocd

lower bound for Q.



Notes on Chapter 2.

An obvious way to generalize the results of this chapter is to drop
the restriction that the a, be generated by a polynomial. In fact,
the only place where we used this property of the a. wes in proving
(2.3). If we were to start with some general sequence [av} and defined,

say,

R(@) = ) 1- o]

v<n

dTav
for some multiplication function f satisfying 1 < f(p) < p for all
p € P, then Theorem 2.13 and the inequality (2.18) would still be valid
(with the R(d) defined as sbove). Whether effective use could be made
of these results would then depend on whether the function f can be
chosen so as to make the second term on the right side of (2.18) small,
which would be equivalent to making R(d) small on the average. This can,
in fact, be done for many sequences. Perhaps the most important cases
are those of values of polynomials at primes. Going back to the example
of twin primes that was treated in Chapter 1, we could, instead of taking
&, = (2n-1)(2n+1), consider a, = p, + 2, where p is the v-th prime, with
v=1, «eo, n = n(x) for some x. Then we would have

z 1= |{p; p<xand p+2=0 (md 4)}| = n(x,d,-2).

v<n

d|a
v

It would then be natural to write for 4 odd

,,Zn T = %&’3 + [n(x,d,-2) - %&‘3—}.

dla,
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(Notice that we are not literally following the suggestion at the

beginning of this note.) In place of (2.7) we would then obtain
(with 2 £ P)

d
s(a2,x()) < 10x) ) B+ T a(@)(xa,-2) - Uiy
aln alm
We could then apply Theorem 2.13 and obtain an inequality analogous

to (2.18); namely

sa,p,e(x) B4 T MMy (x(x,a,-2) - B
4, ,d.ZED
where the Q and A are defined in Theorem 2.13. It is here that the large
sieve becomes very useful. Through results such as Bombieri's theorem
(Chapter 8), which says that the terms n(x,d,-2) - "; %4 are emall on

the average, it enables us to conclude that the second temm above is

small. For further discussion the reader is referred to Richert [3].
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3
APPLICATIONS OF SELBERG'S SIEVE
This chapter discusses applications of Selberg's sieve. Our
notation is the same as in Chapter 2; thﬁt is, we will work with a
sequence A = {av] given by e, = h(v),where h is an integer-valued
polynomial. N(d) will denote the number of solutions of h(v) = 0
(mod d) for v=1, ..., 4, P will be a set of primes such that p < z

and O < N(p) <pforallp €P, Il = TTe, £(a) = ﬁ%a)- for d|M. We
pEP

seek estimates of S = S(A,P,n), the number of elements of {al,...,an]

which are not divisible by any p € P. Theorem 2.17 then states that

-2

(3.1) 21T(1 -—(—; ,

DI!‘J

where Q = T —(—)- and g(d) = T w(2)f(d/¢). 1In all applications
g &
z

we follow the same basic procedure; namely, choose the polynomial h,
find f, estimate Q from below, choose z so as to minimize the right
side of (3.1),and complete the estimate.

Our first application is to primes in arithmetic progressions.
We consider the polynomial h(v) = 4 + kv, where £ and k are relatively

prime integers. Then

‘ 2
N(p) = { sl

0 1if p|k.

We define P = {p < z; plk}, so that f(p) = ﬂl_;_;)_ = p for p € P. Hence

for d|Nl we obtain
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g(a) = ) w@)e(a/t) = Yu) $=all (1 - 1) = g(a).
tla }d ¢ PE g

Since the greatest squarefree divisor of every natural number 4 < z

which 1s relatively prime to k divides [I, we find

1 1 1 1
alm aln® P <z
dfz df_z (d,k):l

To estimate the last sum, we use the following result:

(3.3) LEMMA. For y > 1 and any positive integer K we have

Ta-Hb"Y T 2o (TTa+de s oo 1 1 ,
(m,K)=1 (m,K)=1

Hence

Using the above estimate we now deduce from (3.2) that

ngg)-log Z.
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Also,
2 1 22 s, B 1,9 ¢ 2 2
e M-gy) =2 TO-3) < T0-3) <28z .
PEP P PEP P <z P
Therefore (3.1) now yields
(3.14) s K a—% To-;—;+ 221052z for 2 2,

when the constant implied by the << notation is absolute; that is, it
is independent of k, £, n, and z. To minimize the right side of (3.4)
we now choose z = n]/ 2/log2 n. Then for n sufficiently large we will

have z > 2 and log n < log z. Therefore we finally obtain

(35) s <y

for n sufficiently large. We now use this result to prove & Brun-
Titchmarsh type estimate on primes in arithmetic progressions.

Let n(x,k,L{) be the number of primes p < x such that p = 4 (mod k).

(3.6) THEOREM. If x and y are real numbers, k and { integers satisfying

1<k <y<x, (k) = 1, then

n(x,k,2) - =(x-y,k,2) << ok )log(y/k)

where the implied constant is absolute.

Proof: Let m be the largest integer such that m < x - y, m = 2 (mod k),

and let n = [x_k'ﬂl_]’ so that n < y/k + 1. Then the integers a such that



x-y<a<xanda=4{ (mod k) are precisely m + k, m + 2k, ..., m + nk.

since (m,k) = (4,k) = 1, we find from (3.5) that of these

k y/k
<< cpzkf log y/k

are not divisible by any prime p < nl/ 2/log;":"n » provided y/k is sufficiently

large. But then

K(xskt) - wxykyt) K s s (/)2 (108 v/x)°

< ¢(k)log(y/k) ’

again provided that y/k is greater than some constant. But for y/k

bounded, this result is trivially true.

(3.7) COROLLARY. If x is a real number, k and 4 integers such that

1<k <x, (k,£) = 1, then

n(x,k, L) <K cp(k)l,;g(x/k7 i

Proof: Take x = y in Theorem 3.6.

It might be expected at first that the above estimates could be
easily derived from the prime number theorem for arithmetic progressions,
which gives an asymptotic formula for =(x,k,L). In general that is not
the case, however. Even under the assumption of the very powerful
(and unproved) generalized Riemann hypothesis, we could only conclude

that for (k,L) = 1
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(3.8) n(x,k,L) = diix) , 0(x1/2 log x).

¢k

If x is much larger than y2, for example, (3.8) implies only that
w(x,k,L) - n(x-y,k,L) = O(:\c1/‘2 log x), while if k is much larger than

1/2 log x). These results

Vx , it would only imply that n(x,k,L) = O(x
are much weaker than the estimates (3.6) and (3.7) (in many cases weaker
even than the estimates one obtains by considering the total number of
integers n, n = ¢ (mod k), that are in the appropriate interval).

The main purpose of proving first the estimates (3.5) - (3.7) was
to acquaint the reader with the methods used in applying Selberg's
sieve. We will now prove a very general theorem which will include
those estimates as special cases.

In our first application of Selberg's sieve we have considered one
linear factor kv + h, while in the second part of Chapter 1 we have
applied Brun's sieve to the product of the two linear factors v and
v + 2. We will now generalize to the case of s linear factors
a.1v+'b1, cesy aswbs, where the a, and bi are arbitrary integers. More
specifically, we will obtain upper estimates as to how often all of the
factors |a.1v +b i' are prime at the same time, and then will apply these
estimates to several important problems of number theory.

To obtain the desired estimates we will consider h(v) = (a,v+1b;) *+*
(asv+ bs). To avoid the case where one of the linear factors of h has

a constant prime divisor we will require that 8y # 0 and (ai,'bi) =1

fori=1, ..., s. More generally, we will require that h as a whole



should not have a constant prime divisor; that is, we will require

that N(p) < p for all primes p. (A non-trivial case when this condition
is violated is given by h(v) = v(v+2)(vi%). Here N(3) = 3, and therefore
3, 5, T is the only prime triplet of the form p, p+2, p+4.) Verifying
that this condition is satisfied is quite easy, since N(p) < s for all
primes p (as will be shown in Lemma 3.9), and therefore only the primes
p < s have to be checked. Finally, we will require that a.b j- 8 Jbi £0
for 1 # j, since we would not get any additional infommation by allowing
one of the linear factors to be & multiple of another (in view of the

a,b, = 0 can happen is

requirement that (ai,bi) = 1, the only way e.i'b‘1 - &b,

if a,v + b, = i(ajv .+ bj)).

Our next step is to estimate N(p) for a prime p.

(3.9) LEMMA. We bhave N(p) < s for all primes p. Moreover, N(p) < s if
and only if pIE, where

8
E= [[a, + IT (a;d, - a.b,).
TP TP o R

Proof: Let p be a fixed prime. Consider any linear factor a,v + b g

i
T p|ai, then

(3.10) vV+b =0 (mod p)

b |
has no solution, since (a,,b,) = 1. If p*ai, then (3.10) has exactly
one solution for v= 1, ..., p. Since h(v) = 0 (mod p) implies that (3.10)

holds for some i, and (3.10) has at most one solution for each i, we must

have N(p) < s.



35

Let us now investigate the conditions under which N(p) < s. We
have already seen that this happens if p|ai for some i. Another
(and the only remaining) way this can occur is if two of the linear
factors are divisible simultaneously by p; that is, if there are i,j
with 1 £ J such that

a,v+b, =0 (mod p)
and

v+b, =0 (mod p)

%)

for some integer v. However, this occurs if and only if pl(aib y = Jb i).

J

This finishes the proof.

We define P = {p < z; N(p) > 1} to be our set of sieving primes.
Then Il = TIp , and S = S(A,P,n) 1is the number of positive integers

N(gﬁo
m < n such that none of a,m + b, fori=1, ..., s is divisible by a
prime p < z. As in the previous application of Selberg's sieve, our
main task will be to estimate Q = dzn 51(37 from below.
a<z
Let P, = || pfork =0, 1, «.., s-1. We write each natural

k
<z
N(p)=k

m
number m &s m = TIT p P; that is, m, will be the exponent of p in the
P|m
m
prime power expansion of m. We also define m(i) = Tlr P p, for
pim

N(p)=1



i =0, vesy 5, 50 that m = wt9) L1 ., m(s), where plm(i) if and only
if p|m and N(p) = i (and m(i) = 1 if there are no primes p such that
p|m and N(p) = i).
If k is a positive integer such that k|I (and thus k is squarefree),
then
g(k) = 2(x) ) (@) gy = &) TT (1 - z=y)
Q) ol k (o)
alx
k NSE!
= 1 - -
N(k) P.||Tk( P )

Therefore, since IT is the product of all primes < z which do not divide

P
O)
-1
(3.71) Q= z EJ('E)': z I‘ld@). TTd(1 _%2)_)
a|m alm P
d<z d<z
¥ W(%n+ui§zz+...)
dlnpld P
a<z

d
>) 3 MaE)?®.
dsz Fha

(d,PO)r-'T
Let us now define dt(m) for positive integers t,m to be the number

of representations of m as a product of t positive integers, where two

such representations k, +-+ k_ and k{ ces ké are to be regarded as
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jdentical only if k, = k{ fori =1, ..., t. (Thus, for example,

i
2:2-3 and 2-3°2 would be regarded as different representations of 12.)

It is clear that for a fixed t, dt is a multiplicative function.
(3.12) LEMMA. dt(pa) < t® for all primes p.

Proof: The lemma is true for t = 1, since d1 (pa) =1 =1% Assume that
it is true for t. Since each product of t + 1 factors is a product of

one factor with the product of the remaining t factors, we obtain

3™ = ) 46N ) e
oz 0za

Hence the lemma is proved by induction.

3 mea, ) LT a7 : :
msz 1= i=1 k<z /s
(m,PO )=1 ' (k)Po' . 1_1 )=1
Proof: I;e!:1 b ) :
- g pea term appearing in L £ *
. k<21/s

(k’Po. . 'Pi_1 )‘1

Then ki = kii) k§-1+1) ‘e kis). From the following array




k, = k$1) kg‘?) k$3) kﬁ’)
k, = kéa) kéB) kés)
(3.14) ks = k§3) ..........kgs)
m=m(1) m(a) m(3) SR e m(s)
we see that if m = k1 k2 cee ks’ then
(3.15) m(i) = ksi) ka(,i) kii) for 4= 1y snep 8
Now ki < 21/8 for each i, and so m < z. Likewise, (ki’Po) = 1 for all

i implies (m,Po) = 1. Thus if we expand the right side of (3.13), each

1
*ee k
B

of the terms will be equal to some term :ln on the left side.

k., k

172
Moreover, it is apparent from (3.15) that a given m appearing on the left

side of (3.13) cannot be represented as k‘l see ks in more than

d1(m(1)) ds(m(s)) ways. Hence the inequality (3.13) is valid.

The remainder of our work is now very easy. From (3.11) and Lemma

3.12 we obtain
m s m
e> Y FTM@EN?- Y LT T k?
m<z Plm p  k=1plm
(mlPo)=l (mJPO )"-'1 N(p)ﬂk

> ¥ LT T ae®.

- m
nﬁz k=1 P I m
(m)PO )=1' N(P)=k
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But dt is a multiplicative function for each fixed t, so

e ¥ 1 T a@®)

m
=1
mz K
(m1P0)=1
5 8 e, **° P _4)
; 0 i-1’ log z
T 3 20— =
i=1 1/8 i=1 0 i-1
k<z
(k,Po Vb e Pi—1)=1

utilizing Lemmas (3.13) and (3.3 ). Since Eand P

0 *** Ps-l have the

same prime factors,we find

> (o 28 el 1.1 o 48 s 1_13'N(P)
Q__(—E—s ) 1-['-0 plPlT--Pi. ) = 5" (log 2) pFE( =) .

This is the required lower ©bound for Q. To estimate the remainder temm

we note that N(p) < s for all primes p, and therefore for s < p
(" - 5757 ¢ st -2
fp = P =

If p < s, then N(p) <p - 1 (since N(p) < p for all p), and so

(T-FG,T) ,:(1_111()2).) <p
Hence
T - = itk =100 -2k
p €P £(p) p €P £(p) pEP £(p)
pSs s<p
2 -28
< g}gsp) : (pTTP (1-)



- '|<TB p) - (T (- ;7))-28

pSz
& ot 2s
< ¢ '(1log z) for z > 2,

where ¢’ is a constant depending only on s. From (3.1) we now obtain

s
s < - s-N(p) | - ~Ha c"za- (log z)aS for z 2> 2.
Ta-2) og =)
plg P

If we now choose 2z = n1/2 (log n)—Es’ then we find that

n

-s+N(p)
(log n)®

(3.16) s<ec' ) TTO -
plE P

for n sufficiently large (bound de:éending on s only) and ¢’ a function
of s alone.

Because of its definition, S counts all those v for which none of
the factors a;,v + b, is divisible by any prime < z, but it does not
count those v for which each of |aiv +b iI is a prime if at least one

of them is < z. However, for a given linear factor a,v + b

i 12
la,v + bi[ < z has at most 2z + 1 solutions. Hence the total number
of v such that |aiv + bil is a prime for 0 = 1, ..., s which were sieved

out is < s(2z + 1). We now obtain

(3.17) THEOREM. Let s be a positive integer, and suppose that for

i=1, ..., s 8 and b, are integers such that (ai’bi) =1 and



k1

8
E= [T 8y * 1T (aib,j - B‘jbi) # 0. Let N(p) be the number of solutions
Ay 1< 4

of (a,v + 'b.l) ahs (asv + bs) = 0-(mod p) for v=1, ..., p for each
prime p, and assume N(p) < p for all primes p. Then the number of
positive integers m < n such that each of |a1m - bil (1 = 15 seny 8) i

prime is

gl —Bes T (=B,

(log n)°® p|E P

Proof: For n larger than & certain bound ( depending only on s) this
follows from (3.16) and the remark preceding the statement of the theorem.
But for n bounded it is trivially true!

We can meke a few simple deductions fram this theorem.

(3.18) COROLLARY. The number T(x) of twin primes < x satisfies

r(x) < __ﬁx for x> 2.
(log x) B

Proof: Take h(v) = v(v + 2). Then |E| = 2 and N(p) < p for all primes

p since N(2) = 1. Hence the number of primes p < [x] such that p + 2
is also a prime is

S. 2 0(2) _.L‘_]___E_
(log [x])

3

and this implies the corollary.
It has been conjectured that there are infinitely many primes p such

that p + 2, p + 6, and p + 8 are also primes, but just as in the case of



twin primes nothing is known for certain. The next corollary, however,

gives an upper bound for their density.

(3.19) COROLLARY. The number of primes p < x such that p + 2, p + 6,
and p + 8 are also primes is

K —F—1 forx>2.
(1og x)

Proof: Take h(v)= v(v + 2)(v + 6)(v + 8). Then |E| = 29'32, and

N(2) = 1, N(3) = 2, proving N(p) <p for all primes p.

For our last application we will consider the number of representa-
tions of an even positive integer as a sum of two primes. If Golbach's
conjecture is correct, then this number is always positive (except for 2

and 4). We are going to give an upper bound for it.

(3.20) COROLLARY. Let a be a positive even integer, and let T(a) be the

number of primes p such that a - p = q is also a prime. Then

Pa) € —E— 1+1) fora> 2.
- (log &)° P]Ire.( tp forez

Proof: We consider h(y) = (v+2)(a -2 -y) forv=1, ..., a-5.
|E] = a, N(2) = 1, and in generasl N(p) = 1 for p|la. The corollary follows
easily from Theorem 3.17 for a sufficiently large, and it is trivially

true for a bounded.

As an important epplication of the above estimates we will now prove

the following important result.
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(3.21) THEOREM. There is a constant ¢ such that every integer > 2 cen

be represented as & sum of not more than c¢ prime numbers.

Proof: The basic idea 1s to prove tﬁat the integers representeble as a
sum of two primes, together with 1, form a sequence of positive
Schnirelmann density. The theorem will then follow by virtue of well-
known results on addition of sequences.

Let n’ denote those ;ntegers that can be represented as a sum of

two primes. Then by the Cauchy-Schwarz inequality

(3:2) (3 =) (T F@)( 1)-

n<x n<x n'<x

1A

Now

2
n (2 ) > =X — ——=——5 for x 2 L,
(log x)

z T(n) > Z 1
n<x PP,
Py :ng.xla

Also, by Corollary 3.20, we have

ZT(n)<<—-———)E z 'IiT (1+-)

n<x (log x n<x pln
2
X
(10g x)* z (z d) (log x) <
g nix dln d],de n X

(q, ,delix nﬂ(mod[d1 »451)

< xa X z ! + xz T z a-—'l— .
= (108 X)H d1 pde d1d2[d1;d2] (log x) d1 ,d2 1d2

[d1’d2]ix [dl Jdglix



In the second sum above we use the fact that each k < x can be expressed
as [d.I ,6.2] in at most k ways, and each such expression contributes

<4 to the sum. Therefore that sum is < x. In the first temm we

1‘12 =

sum over k = (d, ,62) to find

Y k a1 1
) el I ompcl s I
c11 ,d,2 k<x 1,d2 1 k<x 51,52§x 172
[4,,d5]<x (a,,4,])<x (8158,)=1
k=(4, )d2)
2
1 1
(T (T &) <
k<x §<x
Therefore
3
E : o (n) << ""x—E ’
nﬁx (108 x)
and hence we find from (3.22) that
( £ T(n)) & .
Z] z_rﬁ._e_.__._ >> _:3[_(&).’; >x forx)ll-
nf<x E T (n) /(108 X)
— nsx

This implies that the sequence consisting of 1 and the numbers representable
as a sum of two primes has positive Schnirelmann density, and therefore
every positive integer is the sum of < ! primes and ones, for some constant
. To prove the theorem we have to show that given m > 2 there is a
representation of it which does not involve ones. This is clearly true if

m = 2 or 3. Suppose therefore that m > 4 and that
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m-2= Z1+ Z p, for some C<c’,
i<k k<i<C
is & representation of m - 2 that we have proved exists. If k = 1 or O,
then we write

m= 3+ z Py» or m=2 + Epi’
1<i<e i<e

respectively, and if k > 2 then we write the k ones as a sum of < k/2 twos
and threes, and obtain

m=2+22+23+ Zpi.

k<i<c

In any event we have found & representation of m as & sum of < ¢’ + 1 primes,

and this completes the proof.



Notes on Chapter 3.

The presentation of this chapter largely follows Prachar [1; Chapter 2],
who also gives several additional applications of Theorem 3.17. One
problem which is dealt with neither in Prachar's book nor in this chapter
is the explicit determination of constants in the inequalities above. The
next chapter, on the other hand, will be denoted entirely to obtaining the
best estimates of the Brun-Titchmarsh type that are known so far, with
particular attention being peid to the constants and the relative sizes
of the main term and the remainder. However, it has been found in many
cases that the upper bounds given by Selberg's sieves are several times
larger than either the asymptotic estimates obtained throigh analytic
methods (where these exist) or the conjectured asymptotic estimates. As
an example, it has been conjectured that T(x), the number of twin prime
pairs < x, satisfies

T(x) ~ 2C ——-—L—-g as X = =,
(log x)

where

c= ] (1 -——-é1 y
p2 3 (p-1)

(For heuristic arguments supporting this conjecture see either the original
paper of Hardy and Littlewood [1], or Hardy and Wright [1; Chapter 22],

or Golomb [1].) The best upper estimates obtained so far are asymptotic

to 80—= 5 . It is not clear how far this bound can be lowered.
(log x)

Selberg [2], [3] has actually proved that his sieve is in general incapable

of giving the exact constants.
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Material on the Schnirelmann density and the addition of sequences
can be found in Niven and Zuckerman [1], Halberstam and Roth
[1; Chapter 1], or Gelfond and Linnik [1; Chapter 1]. It is easy to
see from the proof of Theorem 3.21 that we can obtain a numerical
value for c. This was actually done by Schnirelmenn [1] in his
original proof (in which, however, he used Brun's sieve, since Selberg's
method was not known at that time), but his value was very large. After
meny subsequent improvements Shapiro and Wargae [1] showed that Theorem
3.21 holds with ¢ = 20. (It should be mentioned, however, that in the
meantime I. M. Virogradov [1] had proved that every sufficiently large

integer is a sum of at most four primes.)
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L
PRIMES IN ARITHMETIC PROGRESSIONS

This chapter uses Selberg's sieve to obtain new estimates of the
Brun - Titchmarsh type due to Van Lint and Richert . These are the best

estimates of this type known to date. They can be stated as follows:

(4.1) THEOREM. If x and y are real numbers, k and { integers such that

15k<3f§x: (er)"";

then

2y 8
(4.2) n(x,k,2) - n(x-y,k,2) < ok )1og(y/k) (1 + log(y/k) )

and

(4.3) n(x,k,2) - n(x-yk,L) < argjig§r§7gj .

By taking x = y in the above relations we immediately obtain

(4.4) COROLLARY. If x is a real number and k and 4 are integers such

that 1 <k <x, (k,4) = 1, then

(-5) (ko) < Gryiaetey O+ TRty

and

(4.6) n(x,k,2) <

3x
¢(k )log(x/k) *

These results are of the same nature as those of (3.6) and (3.7).
In proving the earlier estimates, however, as well as in our other appli-

cations of Selberg's sieve, we absorbed the remainder 1in the main term
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by appropriate choice of z. We used the < notation quite freely in
this process, without determining the implied constants. Had we been
more careful, we could have obtained an estimate similar to (4.2)

8
(for y/k sufficiently large, at least), but with Yealole in the

¢ log 1 k

for some constant c. The
log (y/k

remainder replaced by
improvement in the Van Lint - Richert result comes from a very careful
treatment of the remainder term in Selberg's sieve. An important feature
of the proof is the repeated application of the sieve; first a sieve
estimate is proved (equation (4.13)) with a remainder somewhat smaller
than we had previously, and then this estimate is used to reduce the

size of the remainder even further (Lemma 4.16).

Our starting point will be, in essence, equation (2.18). However,
(2.18) deals with the values of the polynomial kv + £ for n consecutive
values of v, while we are interested in the values of that polynomial
which fall in the interval (x-y,x]. Therefore we derive first a slightly
modified version of (2.18) which gives a better estimate in our case. It
will be quite clear, however, that we are not doing anything basically

new at this stage.

Let ITI denote the number of elements of & finite set T. We define
8 = 8(k,L,x,y,2,K) = ”ni X-y<n<x,n=4% (mod k), (n,n) = 1}|
for 1<y<x,z>1, (k) = 1, k|K, where
T=Tlz)= Tlp.
sz
pik



In particular, (d,k) = 1 for all d|ll. Therefore if d|l, there is
exactly one integer n in each residue class modulo kd such that

n=2 (mod k) and n = 0 (mod d). Hence

|{n; x - y<n<x,n=4 (mod k), d|n}| =l'€%+ 6, where 0 < 8 < 1

Therefore, if s is & sieving function defined by (2.8), in view of
(2.9) we f£ind

X=-

Z 82(n) = z | Zx(d)=2x(d) }: 1
y<nSx

x-y<asx  d|(n,N) alm  x-y<nsx
n=¢(mod k) n=t (mod k) nEL(xxlzod k)
din
<L VM, ¥ )
alm alm

3% LRI N [CRVCHIE
aln d,,4,|m

We again choose A to be a real-valued function on the divisors of 1l

such that A(1) = 1 and A(d) = 0 if 4 > z. Then sa(n) > 1 whenever
(n,N) = 1, and therefore

7)) s ) L@y ML T aea@)]

x-y<n<x aln d,,4,|m
n={ (mod k) a<z 4y,4.<2
2
-£ ) (L Inl)
aln aln

da<z d<z

50
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In order to find the minimum of the first term on the right of (4.7) we
apply Theorem 2.13, where for 4|1 we take £(d) = 4 and define g(d) by
(2.11), so that g(d) = ¢(d). We then find from (2.14)and (4.7) that

the main term is minimized when

olt) ’
tim
t<z
t=0(mod 4)
where
1
4= E: e(d) °
alm
d<z

For this choice of A we obtain the estimate

(4.8) s+ (% IA@)])2 .
aln

a<z
This is the modification of (2.18) that we have been seeking. Had we
applied (2.18) directly, we would have obtained a similar estimate, but

with % in (4.8) replaced by (y/k + 1)/Q .

For later convenience we define

H (x) = Z ua(n)%%}, Q (x) = Z &;&%, x > 0.
nsx

n<x
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Then

QW=7 T e Tag T e
n<x a|K

alk m<x/d
(n,k)=1 (m,k )={m,k/d)=(m,d)=1
(n,K)”d

2(a
- Z ch&-}qn (:1-‘) for (K,k) = 1.
alk

Since QKk(x) is an increasing function of x,

2
Q. (x) > Z%{%} Q&) = al((ﬂ- Q@) 1f (Kk) = 1.
alk

Therefore
2 2
nSx dln ax  mx/a
(n,k)=1 (a,k)=1 (m,k)=1
(m,d)=1
2
= E ® g S de(iic‘) i Qk(x)z ua(d).
a<x a<x
(d,k)=1 (a,k)=1
Also,

* R 1
(4.10) %(x): nzx LI(IE)-PTITn(l +5+—2+...)2 z ;.129.(.!9.1033(

P n<x
(n,K)=1 (n,K)=1

by Lemma 3.3.

We now return to the task of estimating S = S(k,%,x,y,2,K). In our

new notation



2
1 n
()4-.11) Q= z Q—(-Td = z 3(n = %(z)
ajm n<z
a< (n,K)=1
and for 4|l
d)d 1 d)d 1
u
t<z u<z/d
t=0(mod d) (u,d)=1
a)d 2(u a  %al#/d)
O Z Lé_g-cpu = u(d) g1y Q(2)
u<z/d
(u,Kd)=1
Therefore A(d) = O for 4 > z, and
2
1 2 d L m
(h12) ) MOl =gy ) W@y L e
alm d<z m<z/d
d<z (a,K)=1 (m,Kd )=1
2 (z)
1 n HK
=Qx(z) Z cpin; zd'—'QKZzF
n<z d|n
(n,K)=1
Combining (4.8), (4.11), and (4.12) we obtain
B ()

S = S(k:L:x:YJ ;K)

k“x(ﬂ qK(z)'
(HK(Z)) i o

Equation (4.9) implies that

(4.13) S(k,2,x,y,2,K) < k—QKL(;)- + z2.

53
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This already represents an improvement over the estimates of Chapter 3,
when we knew only that the remainder term was <€ z-(log z)e. It turns
out, however, that the bound on the remainder can be reduced still

further. We will carry out this reduction (which will use (4.13) in a

very important way) in the next two lemmas.

(4.14) LEMMA. If p(k) denotes the greatest prime divisor of k (with the

convention p(1) = 1), then for x > 103 and p(k) < x we have

Tk(x)a z 1<-1§§-1%)-x.

nsx
(n,k)=1

Proof: Let z satisfy 1 < z < x and define

k, = MMp and x= J[p-.
psz plz
pl k p\k
Then
Tk1(x) E S(1,1,x,x,z,K).

Therefore by (4.13) and (4.10)

1 logz [ (1-=)
p<z P
p\ k
Now k, |k implies that T (x) < T, (x), and thus
1
2
<

T, (x) < +2z .

X
log z || (1-1)
pS 2z P

phk
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since p(k) < x, we have

g T 1 1 2=
) = 51—“1_%)( = -

It is known that for x 2 1

(4.15) T (-7 < €Y 108(2x),
p<x P

where ¥ is Euler's constant, and therefore by taking z = (2::)1/3 we find

T, (x)
E%ET kx < eY(3 +2 %§§§$§%) )

By considering its derivative, we find that the expression on the right

3,a.ndforx=103i‘cis<%-§--

We might remark here that for a fixed k, Tk(x) is asymptotic to

decreases for 2x > e

EE}({Q X+ The importance of Lemma 4.14 comes from the fact that it holds
even when x is small, and that it gives a constant valid for all k and
x satisfying the hypotheses. The restriction p(k) < x is quite natural,

since the value of Z 1 1is independent of prime factors of k which are

n<x
(n,k )=1

greater than x, while 21:&)- = '[IT (1- %) is a product over all prime
Plk

factors of k. Without the restriction p(k) < x we could take a sequence
of values of k such that (for a fixed x) Tk(x) would be constant, while

%&ﬁ would tend to zero.
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3

(4.16) LEMMA. For z > 10~ and h even

2
By (2) < g B 22

Q,i(z) p(n) - logzz

Proof: Define

2
5 (z) = ) Wi(n) %2l
n<z ¢ (n)

(n,H)=1

Then by the Cauchy-Schwartz inequality
(4.17) 2(2) < 1, (2)3, (2).
. LS R N

Since both ¢ and ¢ are multiplicative, we have for squarefree n

°i(£)._'|'|' _(mif_— TT(1+ % ):Zhv(d)d

@ pln )7 el 0¥ @]

where v(d) is the number of distinct prime factor of d. Now h is even,

and therefore

(a)
(5.18) 3, (2) £ J,(2) = Z uz(n)i u\’a d
n<z iln © (a)
(n,2)=1
(a)
= EZ E(d) uvg d ) HE(m)
(a,2)=1 (m,2d )=1
(a)
<z E(d)hv a“=z 1+ 4 <ﬁ’
e L gy L (e g <
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since

T (1 + 4 5 ) = 15.93%... .
P (p-1)

Combining (4.10), (4.17), (4.18), and Lemma L4.14 we obtain

2 15' h . .E
B2} F°°p %% % h 2=
2 N B =2 om "z ¢
Qh(z) P éh! 1082 " log =z
b

provided p(h) < z. But both Hh(z) and Qh(z) are independent of those
prime factors of h which are greater than 1z, while 5%57 is increased

by them, so that the above inequality is true even when p(h) > z.

Proof of Theorem 4.1: Let

A(x,y,k,{.) = ﬂ(x:k)L) - “(x'y,k:{')'

Since for odd values of k the positive integers n such that n = £ (mod k)
are alternately even,and at most one of the even terms can be prime, we

will reduce the proof to the case of even k. More precisely, we define

e

Then for a suitable L1 we will have

k 1if k even,

2k if k odd .

A(x:y’:k:L) EA(X;Y;hr’q) % L

Since S(h,L1,x,y,z,h) counts at least those primes p which satisfy

x-y<p<x,p>z,and p=l, (mod h), we have

Alx,y,k,4) < S(h:‘b]:x:Y:z:h) * n(z,h,{,l) + 1 for z2> 1.



Therefore by (4.13) we find

,  HE(2)
(4.19) A(x,y,k,2) < Rl " Qﬁ(z) + (z,h,2,) + 1.
We define
u = y/k .

If we teke z = 2 in (4.19), then

A(x,y,k,{)i%+2§_%+2=u2+2.

Therefore if W = 2‘1—{)%-5_-&&1 A(x,y,kL), we have
2

wflogu(;—+2—2-)<-3- for1<u§_e2'9 ’
u

Also, since

n(z,h,l,]) +1< z 32(m) < _ ; ! for z > 10,
m<z
(m,2)=1

we find from (%.19), %.10), and (4.9)

2
1 z
<
W logu+]gz+h—-é-u}forz>10-

Defining v by

we choose

58
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Then

(4.20) W< L°5L"/~/'i) LT g %;} for v > log 10.

By examining the derivative of the function on the right we find that
it decreases for v > .2e (,/2e > log 10), and for v = ,2e it is < -23— :
This proves (4.3). It remains to prove (%.2).

Since ¢(h) = o(k), (4.10) implies that
thizs = ¢(k)log z °

n(z,h,L1)+1_<_£-+25$1(‘E)-z for z > 2.

Also,

Combining these inequalities and Lemma 4.16 (h is even) with (4.19)

we £ind that for z > 10

(4.21) %los(Y/k){ﬂk);;g(Y/k) Alx,y kL) - 1}

log z 2 2

< log u ——5——-1+l+8—§-- z +L°5—E‘z}.
u log 2z u

Choosing

log z = log u - 2

we find that the right side of (4.21) is

B l+8 log u
log u 5
Tog w2 * B (10 u-e) - }



This function is decreasing in u, and for u = em it is < 4, which

1
proves (4.2) foru>e O 1ru < e8, then (4.2) follows directly

from (4.3). If e8 <u<x< ew, then we use (4.20), It says that, in that

range, we have

L

Wb <1 s =g

which is the desired estimate.
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Notes on Chapter L.

The presentation of this chapter follows closely the original paper
of van Lint and Richert [1]. The only significant modification was made
in the first part in order to show the connection with the general theory
of Selberg's sieve.

The inequality (4.15) follows immediately from the inequality (3.30) of

1

Rosser and Schoenfeld [1] for x Z_elog . For x smaller than this bound

it is easily verified directly.
A large sieve estimate very similar to the one presented above has
been recently obtained by Bombieri [4]. He showed that (4.2) holds with

0(1) in place of the 8 in the remainder term.
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P
GALLAGHER'S SIEVE

Both Brun's and Selberg's sieve methods are applicable only to a
relatively small class of sequences. In particular, only a relatively
small number of residue classes modulo each prime can be sieved out of
a sequence of consecutive integers. However, it is often desirable to
find estimates for the case in which a large number of congruence classes
is sieved out modulo each prime; for example, to investigate the density
of integers which are not primitive roots for any prime in a given set,
one would sieve out the ¢(p) residue classes of primitive roots modulo
each of those primes p. Linnik's large sieve was invented, as its
name suggests, especially for dealing with such problems. In its most
refined form it is applicable to all integer sequences, and it gives
upper bounds similar to those of Selberg's sieve where both methods can
be used. Chapters 6 and 7 will be devoted to an exposition of the large
sieve. This chapter presents a new and very elegant sieve due to
Gallagher. Although very elementary, it is larger than the large sieve
in the sense that it gives better results than the large sieve when the
number of residue classes sieved out is very large.

We consider the case in which all but g(gq) residue classes modulo q
are removed for a given set of prime powers q. Gallagher's basic result

can be stated as follows:
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(5.1) THEOREM. Let S be a finite set of prime powers, and let W be &
subset of {M+1, ..., M#N} (M and N any integers with N > 0) such that
for any q in S all elements of W fall into at most g(q) residue classes
modulo q. If Z = |W| (the number of elements of W) then

T A(q) - log N

< 988
(5.2) ZzS< th

qes8\?

- log N

-
provided the denominator is positive ).

Proof: We define, for each q in S,
z(q,h) = |{n; n €W and n = h (md q)}|.

As we will see in Chapter 6, the function Z(q,h) arises quite naturally
and plays a very important role in the large sieve method. For any given

g in S we have

z=) 2(q,h)

and therefore by applying the Cauchy-Schwarz inequality and the fact

that at most g(q) of the Z(q,h) are nonzero we find that
q-1 q-1
2 2 2
2" = () 2(a,n)) <ala) ) (z(a,0))?.
h=0 h=0

*) Mangoldt's A-function is defined by A(q) = log p if q = ﬁa for some
prime p and some @ > 1, and A(q) = O otherwise. One of its basic properties
is that ? A(d) = log |n| whenever n # 0.

d|n
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A
Multiplying by E&% and summing over S, we get

q-1
(5-3) ) H< T Y aen)? .
Q€S q€s h=0
Now
(z(g,n)2=( ) 1 )2= R
new n,m €W

n=h(mod q) n,m=h(mod q)

Therefore (5.3) implies

q-1
FIMG<Tu0) T -Tae L
q€s q€s h=0

n,m €W Q€S n,m € W
n,n=h(mod q) n=m(mod q)
=2 (2 ( 2aw)
|a|<N m,new ala
m-n=d q€s
=(2 ) (La)+ } (L 1) welel
m,n€W q€s 1<|a|<N m,ne&w
m=n m-n=d

<z ZI\(q)+(Z2 -Z) » log N.
q€s

Dividing by Z (the result is trivial if Z = Q) we obtain

Z(z %-logbl)i %SA(Q)-IOSN
q

q€ S

which implies (5.2) if ¢ > log N.

qes B\¢
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We now derive two consequences of Theoem 5.1, both better than

the corresponding large sieve estimates.

(5.4) COROLLARY. If all but at most G residue classes modulo each
prime power q € S are removed from the sequence M+1, ..., M+N, then

the number Z of remaining integers satisfies

(5.5) Z<G if ZA(q) > g° log N
Q&S

and

(5.6) Z < 26-1 if Zh(q) > 2G log N.
Q€S

Proof: We can assume that G is an integer (otherwise work with [G]).
We rewrite (5.2) as

GZ AQ) -G logN 5
< 985 g4 GlgN-Glogh
- TMqg)-Glgh ~ T A(Q) -G log N °
q&s q€S

This implies that Z < G+1 if £ A(q) > Ga log Nand Z < G + G if
qQes

T Mg) > 2 G log G. Since Z and G are integers, we obtain (5.5) and (5.6),
Q€S

respectively.

(5.7) THEOREM. Let € > O be given. Then the number of positive integers
n < N for which expp(n) < ¥° for all primes p < NO*€ 1g < N’ for

*
0 <8< 1, with the implied constant depending only on € ) .

*) expp(nT is the smallest positive integer k such that n om0 (mod p)
if (p,n) = 1; otherwise expp(n) = 0.
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Proof: The result is clear for € = O. Therefore we assume from now on
that 6 > 0.

For each prime p < y we remove all residue classes of exponent > x.
Since there are ¢(k) classes of exponent k for each k|[(p-1), as well as

the zero class (which is of exponent 0), we have

glp) =1+ Z o(k).
k|(p-1)
k<x

We need to evaluate I é%%’n « By the Cauchy-Schwarz inequality we find

(5.8) (T 282 . (7 ateioe 5) > (sz ) -

<y <y
By the prime number theorem
Z logp~y as y 4=,
<y

and so the right side of (5.8) is > y2 for y > 2, say. Also

zs(p)los P= Elos P+ z z ¢(k)log p

<y <y k|(p-1)
k<x

: zlos P+ logy Zw(k)ﬂ(y,k,l)-
<y k<x

By the Brun-Titchmarsh estimate (3.7)

") < ey
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1
if x '©<yand y> 2, with the implied constant depending only on e.

T+e

Therefore if x> 2 and y 2 x ~, we find

Zg(p)logp<<y+xy<xy
<y

and thus

L <k

Py

where the applied constants again depend only on €. We now take
X = Ne y ¥ = N0+e_ Theorem 5.1 t.hen?,.?ays that

Bre
7 & W . (—

cNe - log N

where ¢ is some positive constant, provided cl\Ie > log N (again, the

constants depend only on €). Therefore
z & N°

for N sufficietly large. But the result is clearly true for bounded N.
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Notes on Chapter 5.

The material of this chapter is drawn from Gallagher [3]. That paper
contains also a comparison of the effectiveness of Gallagher's sieve and
the large sieve as well as another interesting application of the above
estimates. If for every prime power g,except perhaps for the powers of a
finite number of primes, there is an integer a(q) such that a = ba(Q)(mod a)s
then Gallagher proved that a = ba for some integer @. (A somewhat stronger

result had been proved previously by Schinzel [1].)

1

1,_/
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6

TRIGONOMETRIC POLYNOMIAL INEQUALITIES

The large sieve was invented by Linnik for the purpose of investi-
gating certain sequences obtained by sieving out a relatively large number
of congruence classes modulo each prime from a given set of primes. It
wasdiscovered soon afterwards, however, that the large sieve can be applied
to all integer sequences (although it gives best estimates for sequences
defined by a sieving process), giving quantitive estimates as to how much
they deviate from uniform distribut;%h into congruence classes to various
moduli. Moreover, the inequalities used in proving these estimates lead
to important results in analytic number theory, perhaps the most important
so far being Bombieri'stheorem on the average of the remainder term in the
prime number theorem for arithmetic progressions. Bombileri's theorem is
discussed in Chapter 8, while this chapter develops the trigonometric
polynomial inequalities that are the basis of the large sieve method, and
Chapter T utilizes those estimates to study integer sequences.

The underlying idea of the large sieve 1s to relate the properties
of an integer sequence to the behavior of a trigonometric polynomial.

The two very basic (and very easy) properties of the exponential function

which meke this process possible are the fact that if n, m, and q are

*
integers, then n = m (mod q) is equivalent to e(n/q) = e(m/q) ) , and the

equation
d N q if n =0 (mod q),
(6.1) ) el )= {
a1 E 0 otherwise .

*) We use the definition e(t) = g T
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(Equation (6.1) follows immediately from the formula for the sum of the
first q termms of a geometric progression; the common ratic in our case
is e(n/q), which is 1 if n = 0 (mod g) and unequal to 1 otherwise).

As a result, if n, S s g n, are integers, and we define for integers

qand h
(6.2) 2(a,h) = | {13 1€1<2, 0, = h (mod q)}]
and fﬁ
. ,
(6.3) S(x) =) e(nx),
i=1
then we have
q
(6-4) sG) = ) a(a,nle(n P
h=1

for all integers a. Now if the sequence Nyy +eey Oy is evenly distributed
modulo q (that is, if 2(q,h) = Z/q for all h), then by (6.1) we have
s(a/q) = O whenever a # O (mod q). If, on the other hand, all the ng
belong to the same congruence class modulo q, then |S(e/q)| = Z for all
integers a. Thus the values of |S(x)| at the points a/q are somehow

*
related to how evenly the n, are distributed modulo q ). This fact by

i
itself does not help us, since we do not have any way of estimating

|s(a/q)| without reference to the sequence defining S(x). It was

*) Note that values of S(x) at the point a/q can be used to determine
Z(q,h) explicitly; using (6.1) we obtain

q a
q z(g,h) = £ s(a/q)e(-h 3"
8,:1




discovered by Linnik, however, that useful upper estimates can be ob
tained for

p-1 5
(6-5) ]
<x a=1

which are largely independent of the nature of the sequence Nyyeee,n
(It is this fact that is responsible for the great generality of the

large sieve.) That the expression (6.5) reflects how evenly the n, ar

1
distributed modulo p for all primes p < X can be seen best from the

following identity:

(6.6) LEMMA. If q> 2 is an integer, then

q-1 - g B
(67) Y Is@I" =a) (2(a,n) - B
a=1 h=1

Proof: We write out the left side, using (6.4), as

q-1 4 -1 g q
T 1s@ - T (3 atamets D) 3 2twmrcx )
a=1 a=1 h=1 k=1
g-1 q
= ) ) z(ama(e,K)eeER))
a=1 h,k=1

q

q-1
Y zan)z(ek) ) e(2EEL),

h,k=1 a=1

n

71

7

e
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Now by (6.1) we have

-1
qz o - - {q-l if h =k (mod q),
. 1 -1 otherwise.
Therefore
g-1 5 q q
LIS =a Y (@@ - Y z(e,n)z(ak)
a=1 h=1 h,k=1
qQ q 5
=q ) @a,n)? - () z(a,n)
h=1 h=1

q
a ) (2(q,n)? - 22
h=1 |

: 2
a ) (2(a,n) - By
h=1

Using the above lemma, we can now rewrite (6.5) in the fom

P 2
Z p z (z(p,h) - %) .
psx h=1

P 2
The so-called "variance" § (Z(p,h)-—%) shows how far the n, depart
h=1

from an even distribution modulo p. Our upper bounds for (6.5) will
enable us to conclude that 1f the n, are sufficiently dense, then

they cannot be very unevenly distributed modulo many primes. This
will mean that if we start with a sequence that is unevenly distributed,
then it cannot contain many elements. As an example, suppose that none

of the ny fall into any of f(p) residue classes for each prime p < X.
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Then Z(p,h) = 0 for f(p) values of h, and therefore
P > D
2% = () 2(p,0)) < (2-£(p))" ) (2(p,0))°

=1 h=1

by the Cauchy-Schwarz inequality. But then

Y (2e,0)-2) = ) (@o,0))7 - 2 ) z(p,n) + B
h=1 h=1 h=1

~p-f(p) P P Pp-f(@)’

N

and therefore

Llec>|>22p—§%

X a=1

Since we will prove that the left side is <€ (N + X°)Z for N = n, = ny+ 1,

this will give the estimate

X

_f%]; )
_;’p

The above discussion demonstrates how sums of the form (6.5) can be

4

(6.8) 7 <

B+ |
o]

used to study integer sequences. The next chapter will be devoted mainly
to proving modifications of (6.7) and (6.8), while the rest of this chapter
will deal mostly with estimates for sums similar to (6.5). We will work
with trigonometric polynomisls more general than those defined by (6.3),
and we will estimate sums of values of |S(x)|2 more general than (6.5).
These generalizations are necessary for the analytic number theory

applications of the large sieve, and they do not cause any materieal



e

difference in the proofs. It turns out that the crucial feature of (6.5)
is that it is & sum of |S(x)|2 over points x which are well-spaced; that
is, if a/p and b/p’ are two distinct points which appear in the sum (6.5),
then

a

a _b I _ |ap' - hpl s, 1 1__.
P D D’ =’ =2

We will work with trigonometric polynomials of the form

K
(6-9) s(x) = ) & e(mx),
=-K

where K is a positive integer and the & are any numbers, real or complex.

I£ Xqy +e+; Xp aTE real numbers satisfying %)
(6.10) "xr - xB" >8>0 forr ¢ s,

then we will obtain several estimates of the form

(6.11) zls(x )12 <D(1c,5)z la, I,

n=-K

where D(K,8) will be functions of K and § only. The restriction that S
be of the symmetric form (6.9) is only temporary, imposed to facilitate

our proofs. Estimates for trigonometric polynomials of the form
M+N

N
; e(nx)

n=M+1

will follow easily from estimates of the form (6.11).

*) We aencte by |lt]| the distance from t to the nearest integer, so that
t]| = min |t-n].
n
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Our first estimate is a beautiful result, on the lines of Linnik's

original work, due to Gallagher. Its basic idea is to relate the sum
R
2
(6.12) ) Istx )l

r=1
: 2
to the integral I IS(x)l dx. Since the exponential function satisfies
0

the relation

1 if n = 0,

(6.13) j e(nx)ax = {;

0 otherwise,

for integers n, we have

1 1 1 K
(6.14) J'0|s(x)|2 dx = jos(x)E(x)dx - jo ) e & e((a-m)x)ax
n,m=-K

2
n==-K
The sum (6.12) is related to the integral (6.14), and in fact, if S is

kept fixed and the x, are evenly spaced (say X, = r§ forr= 1,...,R

i
with § = 1—3") then

R 1 K
26|S(xr)|2 -0'[ |S(x)|26.x = z la.n|2 as R = =,
r=1 . n=-K

(This shows why one might expect 57 'g Ianl2 to appear in our estimates
of (6.12).) 1In general our situation is different, however, since the
X, and R are fixed, and therefore we cannot argue using limits, What

we will use is our knowledge of S’(x). Since values of S(x) in a neigh-

borhood of x_ are determined by's(xr) and values of S’(x) in that
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neighborhood, we will estimate (6.10) in terms of the integral (6.12) and

a function of S’/(x), and then complete the estimate.

(6.15) THEOREM. If S(x) is defined by (6.9), and Xqs +++y Xp 8Te real

numbers satisfying (6.10), then

R K
(6.16) Y IsGx 1% < (57" ) )

r=1 n=-K
Proof: Since for any u
2 2 % 4
S (xr) =S (u) +2| s’(t)s(t)at,
u

we have

X
I rIs'(t)s(t)ldtl.

u

IsGx )% < Is)]?

We nov integrate this inequality over the interval I = (x = %, X+ %)

to obtain

X,
T
|8/(t)s(t)|at|du
u

slstx)|® < |

Now

jo»

x+

I1r| f:rIS'(t)smlatldu . j

no

( I Is'(t)s(t)ldt)

I‘ I‘

X

X
L7 : ( furls’(t)s(t)ldt)du

, ™ 2
X2 X
= J. IS'(t)S(t)I(x +'g—" t)dt - l i ils'(t)S(t)l(t—xr-k %)dt
¥ r 2

<% J' |s(t)s(t)]at
I’




T

and thus

@) slsb )P < [ Isalfan + ] 18 ()s(e)]as.

r r
Since by (6.10) the intervals I, are disjoint modulo 1 (that is, if r # s then
no point of Ir differs by an integer from a point of IB) the integral of
eny positive function over the Ir will be not larger than the integral of
that function over [0,1], provided that function is periodic with period 1.

Since S is periodic with period 1, we find by summing (6.17) over r that

. 1 1
8) Isx )% < IOIS(t)IZdt ‘ ojols'(t)s(tndt.
r=1

K
The first integral is I |an|2. The second satisfies
n=-K

1 , |
JO|S’(t)S(t)|dt = ( ‘rols(t)lzdt)lle( IOIS'(t)IEdt)Va

K K
(3 10Dt
n n
=-K n=-K
K
2
<o ) e
==K
since
K

$'(t) = ) 2xina_e(nt).
n=-K
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Hence

R K
5 ) Isx)®< (14 s2m) ) o l?
r=1 n=-K
which completes the proof.

We will now give two other estimates which were found by Bombieri
and Davenport. The basic idea here is to write S(x) as the convolution
of two appropriately chosen functions, so that the value of S at any
given point is defined by an integral over & neighborhood of that point.
The proof is much more complicated than that of Gallagher's estimate,
but the results that follow from it represent an important improvement
in some applications. (Note, however, that for some values of K§
the estimates below are weaker than Gallagher's.) First we prove our

auxiliary result.
(6.18) LEMMA. For x > O we have

a 1
sin ¢
”x 3 dt‘l S5

Proof: We use contour integration. The integral is

N ix o it ix @ -it
—-.[ et dt=5—_r S_at - = Je at.
21 " t 21 0x+t a1 0x+1;

iz
Let us take r > O and consider the integral of §+—z over the path con-

sisting of
(2) 0 to r along the x-axis,
(b) r to ri along the éircle |z| = r,

(¢c) ri to O along the y-axis.
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Since the integrand has no poles inside the path of integration, the

integral is zero. Thus

J.r St ot n/2 eireie
dt+iI m:+:|.rJl de = 0.
0 == 0 x+reie
Now sin 6>—9for0<t<-2—, and therefore
n/2 e:trej'e n/2 o sin §
irj Y] de\ E r_l. — de
0 xtre 0
x/2 - -i- ér
<[ e a8
0
n -r
& e =
5 (1-e )=208asr=w,
Hence
g _at = 1I — dt.
0 x+t 0 x+it
e'it
Similarly we can move the integral of =it to the negative imaginary

axis to obtain

Therefore

w -
J‘sint |‘I ix[‘ et %

ix
S x+itdt+"e jxitdt’

g
"

10 " 10 et 1
<z] Faez] aag.
0 0



(6.19) THECGREM. 1If S(x) is defined by (6.9), and Xqs e+, Xp are real

numbers satisfying (6.10), then

R K
(6.20) Y Isx)I? < 2 max(ax,57") ) s |
r=1 n=-K
and
R 2 K
(6.21) Y IsG)l? < (@072 + 8727 a2
r=1 n=-K
Proof: Let

#(x) = z bne(n.x), with b real, and b =D

N==0

-n’

be a real function of integrable square such that
#(x) = O when ||x|| > 8/2.
Suppose also that b £ 0 for |n| < K. Define

K an
T(x) = Z = e(nx).

n=-K .

Then

1
5(x) = jov(y)w(x-y)ay

5/2
= [, $RxeIey

since
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1 - K a 1
[pomway = T ] ey [ elmetatxrday
M=- n=-K

™ K
i}

a 1
- z z 2 bme(nx)Joe((m-n)y)dy
n

m=- n=-K

K
= X a.ne(n.x).
n=-K
Therefore
, 8/2 . 8/2 :
s@I® < ([ i) [ Inee) i)
8/2 x+8/2

-2 [, Fow)( ] Ine)%s).

Using the fact that the intervals (x_- 8/2, X+ 8/2) are disjoint modulo 1,

and that T is periodic with period 1, we find (Just as in the proof of

Theorem 6.15) that
8/2

R 1
(6.22) ) IsGl® <2 [ ¥ ma)( [ 1ntai"as)

r=1 0

/ K
o [P T3
n=-K

- ) 8/2 0
by = [y etnar = [ ymetmer + [ a(reCanay

-

8/2
= 2[  ¥(y)cos(2amy)ay-
(0]
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We define
1
¥y = 5 8t, 9(t) = y(y), u = K8.

Then ¢(t) is an arbitrary function of integrable square, and

8/2 1
fo vy = 3 afo ¥ (t)at,

1
b = 6‘[0 ¢(t)cos(nst )dt,

vhere s = n§. Therefore for |n| <K,

1
|bn| > § min II @(t)cos(nst )at |
0<s<u "0

Therefore R K
2 -1 2
Y 1s(x 1% < 87'p(u) ) la, 1%,
r=1 n=-K
where
! 2
f ¢ (t)at
D(u) = sup TO .
OSen |J‘ o(t )cos(nst )at|
0

To prove the theorem it will then suffice to show that for a suitable

function ¢(t) we have
(6.23) D(w) < 2 max (2u,1),

and

(6.21) D(u) < ((2u)'/2 4+ 1)2.
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Case 1: u > +'Vh . Since in this range

njw

L 2’((211)1/2 + 1)2,

it suffices to prove (6.24). We take A > u (which will be specified

more exactly later) and define

Since

Lemma 6.18 implies that

X oo
I sin ¢ at = % . I sin t at > % -

1
0 X
Therefore for 0 < s < u we have
1 s 1
(6.25) I @(t )cos(nst )at = §'I sin x(A+s)t + sin x(A-s)t ..
t
0 0
n(A+s) x(A-s)
3 ey [
0 0

T 1 n 1 1
> -zanm) * - E a0y

A

x A st _ A
e T g B =D e 2. 7
(A" -u")

which is positive for A\ sufficiently large. Also

> 2
I(El‘.‘.i) &% = E
0 t 2

implies that



15 LTI ” 2 1 2
j¢umt=ﬂj(5t)at<njﬁft)u=§ﬂx.
0 0 0

Hence for this choice of ¢(t) we have

-2
2\
D(U) < 2’&(1 - mé-)-) .

To prove (6.24) it suffices to prove that

-2
2A 1 2
a1 - ;E;;ﬁt_GE;) < (@)% + 1)

for an appropriate A. But that is equivalent to showing that

1/2
Y2 & 7&-1/2 - S
(2u)1 2 41 u2(k2 -u2)

We put A = u(1 + y)a, with y > 0. Then

Ag - u2 = u2(14-hy+-6y2+ wy3+ yh) B u2 > huav(1 +¥).

Thus we only need to show that

1/2
(6.26 (2u) PP S
) 20)7261 VY 2Puy

for an appropriate y. By differentiating the right side we find that it
attains its maximum when
¥ = 1
ﬂ(2u)1;2- 1
With this cholce of y the last expression in (6.25) is positive and (6.26)

becomes equivalent to
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2 2
M < (4 1) - 1)5,
where T = V2u . But the last inequality reduces to
2
0 < na(n-2)N" - (2x-1)7 + 1,

and this one holds for 7 > 1.5, say. Since we only need to prove it

for u > -g— + V2, which corresponds to | > 1 + Y2 , the theorem is true

in this case.

Case 2: 0 <u < 1/2. We take ¢(t) = cos(mt). The derivative of

1 1
(6.27) j; o(t)cos(nst )at = jg cos(mut )cos( st )at

with respect to s is
1
- I t cos(mut )sin(nst )dt,
0

which 1is negative for 0 < s < u < 1/2. Hence the minimum of (6.27)

occurs at s = u, and it is

1

f cose(nut)dt =
0

1 sin 2mu

% T ’

which is also equal to I ¢?(t)dt. Tnerefore for this ¢ we have
0

sin 21(11]-1

Dlu) =2 {1 + o

Since 0 < u < 1/2, sin 2xu is non-negative, and therefore D(u) < 2,

proving (6.23). To prove (6.24) we need to show that

(6.28) 2 < (1 + BIBEM ()1/2 , 412,



If u > 1/4, then ((211)1/2 + 1)2 > 2. Now suppose that u < 1/4. From
3
the Taylor series expansion of sin x we find that sin 2mu > 2mu - ng&l_.

Hence

| 22
(1+ i’-;:‘mﬂ)((zu)‘/2+ 12> 2(1 - T2 )((21.\)1/2+ 1

But u < 1/4 implies that i % 3, so that

22
(1 - "—33-)((2\1)1/2 + 1)2 > (1-u)(2u+1) > 1,

and therefore (6.28) is valid.

case 3: 1/2<u<3/2+ Y2 . In this range we have
b < ((22)'72 + 102,
so it suffices to show that D(u) < ku for a suitable @(t). We take

cos(mit) for 0<t f_(Eu)-1,
o(t) = { 4

0 for (2u) <t < 1.
Then the derivative of

1 (2u)-1
(6.29) I; @(t)cos(nst)at = J; cos(mut Jcos(nst )dt

with respect to s is

-1
(2u)
£ J' t cos(mut)sin(nst)at,
0
which is negative for 0 < s < u, and therefore the minimum of (6.29) is

obtained when s = u. Therefore
-1
(20)" -1
D(u) = {j cos (rrut)dt} = Uy
0

for this choice of ¢, and this completes the proof.
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Theorems 6.15 and 6.19 apply only to trigonometric polynomials of

the special form (6.9). However, we easily deduce from them the following
estimates:

(6.30) THEOREM. Let
M+N

(6.31) S(x) = ) ®e(nx),
n=M+1

when M and N are integers, with N > 0, and the a are any complex numbers.
Suppose that Xq5 weey Xp aTE real numbers satisfying
- >8> .
lix, - x| >8>0 forrés

Then we have

R M+N
(6.32) Y Istx)Z< 07 ) ¥ Jayl®,
r=1 n=M+1
R M+N
(6.33) Y Isx )12 < 2 max(v,8™) ) e |5,
r=1 n=M+1
and
R 2 N+N
(6.34) Y Ist P < 24 8712y Y s |2
r=1 n=M+1

Proof: Let K = [g , and define

8,(x) = 8(x) e(-(M+N-K)x).




Then
K

S,(x) = Z c_e(nx),

=-K
vhere c =& ... o (except when N is even and n = -K, in which case

C = 0). To obtain the estimates (6.32) - (6.34) we apply Theorems

6.15 and 6.19 to S (x), noting that

K M+N
2 2
5,60l = s, ) lel®= Y lal?, ana 2x <.
n=-K n=M+1

In such applications as Bombieri's theorem any one of the estimates
(6.32) - (6.34) will be sufficient; in fact, only estimates of the fom
< (N + 87 )zla.nl2 will be used. In some applications, however, such as
those to primes in arithmetic progressions, it is inequality (6.34) that
is most useful. The main reason is that we deal then with bounds of the

form

(6.35) ESZE;EI

log X ?

when N is the length of the interval we are investigating, X is a variable,

and where D(XQ,N) is x2 + nN if we use (6.32), 2 ma.x(N,Xe) if we use (6.33),

1/2

and (N1/2 + X)a if we use (6.34). By taking X = N /“/log N and using

(6.34) we find that the main term of (6.35) is

2N
log N °

Inequalities (6.32) and (6.33) lead to similar estimates, but with 2 above

replaced by 2n and 4, respectively.
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We now state, without proof, a more recent result of Bombieri and
Davenport, which gives improved estimates when N§ is very large or
very small. It also shows that those estimates are essentially the best

possible for the class of all trigomometric polynomials defined by (6.31).

(6.36) THEOREM. With the notation of Theorem (6.30) we have

I. If N§ > 1, then

R M+N
) s )P < m+ss™) )
r=1 n=M+1

On the other hand, if ¢ is a constant less than 1 then there exist

sums S(x) with § arbitrarily small and N§ arbitrarily large for which

R M+
2 -1

Y s )P > (v es™) )

=1 n=M+1

II. If N§ < 1/h then

M+N
E ls(x )| < (6 + 270N362) 2
=1 n=M+1

On the other hand there exist sums S(x) with Ng arbitrarily small

for which
- 2
<1
T Istx )2 > (67 + 15 8% )Z
r=1 n=M+1

So far we have been considering only sums involving the exponential

function. The inequalities of Theorem 6.30 can, however, be used to



glve estimates for sums involving Dirichlet's characters, and it is
these estimates that make the large sieve a valuable tool in analytic
number theory. We now present one way of obtaining such estimates.

Suppose S(x) is a function of the character y defined by
M+N

(6.37) s(x) = ) ax(n),
n=M+1

where, as before, M and N are integers with N > 0, and the a_ are any

complex numbers. We then define the corresponding trigonometric

polynomiel S(x) by (6.31); that is,
M+N
s(x) = ) & e(mx),

n=M+1

where M,N, and the a are the same as in (6.37). Then we have

*
(6.38) LEMMA. If z denotes summation over the primitive characters

yx mod q

to the modulus q, then for a positive integer q we have
q

dy L IsiFs ) 1s@f.
x mod q a=1
(E;Q)=1

Proof: Let q be a fixed positive integer. If y is & character to the

modulus g, then for any integer r we define the Gauss sum
q

6(rx) = ) x(@)e(R).
a=1
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If (r,q) = 1, then G(r,y) is separable; that is,

G(r,x) = x(r)a(1,y)-

If y is primitive, then G(r,y) is seperable for all r (separability of

G(r,y) for all r actually characterizes primitive characters), and
1/2

Now if y is primitive,so is ; Hence we can write for a primitive

character y
q

6(1,x)x(n) = ) e(22).

a=1

Multiplying both sides by a and summing over n, we find

M+N q M+N
6(1,7) ) axi@) = ) X&) ) ae(®),
n=M+1 a=1 n=M+1
or
q
a(1,08(x) = ) F@ke().
a=1

Taking squares of absolute values of both sides and summing over the

primitive characters we obtain

* * q 2
a ) Isel®= ) ZI(&)S(%)l
X mod g b mod q a=1
: -
< )Y Xex®s®s®)
y mod ¢ a,b=l




q

Y s@s® Y k)
a,b=1 y mod q

3 2
o@) ) sl
a=1
(a,q)=1

L}

since

o(q) if n=m (mod q) and (n,q) = 1,
Y k@) = {

" mod q 0 otherwise.

This proves the lemma.

Since bounds for

3 2
a
L) 1s@)
aX ea=1
(a,q)=1

follow easily from Theorem 6.30, Lemma 6.38 gives us bounds for the sum
of ;%ET ]s(x)le over all primitive characters y to all moduli q < X.

In some applications where only primitive characters occur, this result is
then immediately applicable. In others we will use the fact that every

character is induced by a primitive character. The following lemma will

be useful in such cases.

(6.39) LEMMA. If S(x) is defined by (6.31) and A(x) is a positive de-

creasing continuous function on 0 < D € x < Q, then
q 5 Q M+N .
a 2
610) ] r@ Y Is@I < (@0 m « [aie) ) lsl%

D<q<Q a=1 n=M+1
(a,q)=1
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M+N
Proof: Let Y = Z Ianla, and let
n=M+1

q
)= ) ) Is@IE
a<x a=1
(a,q)=1

Since the points a/q, with 1 <a <gq, (a,q) = 1, and q < x are

separated by at least l§ , Theorem 6.30 says that
x

T(x) € (N + x2)Y.

We now write the left side of (6.40)as a Riemann-Stieltjes integ.al.

It is equal to

Q Q
[ Mx)amta) = 2(@)2(@) - A@)D) - [ 2x)an(x)

Q
<A@+ - [ (4 D)x a(x)
D
Q
= MQW+ &)Y - NY(A@) - A(D)) - ¥ xPa(x)
D
Q
= ADNY + AQ)QY - XA(Q) - D°A(D) - 2[ xh(x)ax)
D

Q
< A(D)NY + A(D)rﬁ + YI x\ (x)ax,
D

and this proves the lemma.



Notes on Chapter 6.

Although the large sieve was originated by Linnik [1], much of its
development is due to Rényi, who was the first to use the variance
expression and to apply the large sieve to estimate the remainder tem in
Selberg's sieve. The results listed in this chapter were obtained in the
late 1960's after several important advences had been made, notably by
Roth [1], Bombieri [3], and Davenport end Halberstam [1]. Theorem 6.15
(and its corollary, the estimate (6.32)), as well as Lemmas 6.38
and 6.39, are derived from Gallagher [1]. Theorem 6.19 and the inequal-
ities (6.33) and (6.34) come from Bombieri and Davenport [2]. The recent
results of Bombieri and Davenport [3], which we listed as Theorem 6.36,
effectively concludes this part of the large sieve; by indicating what
the best possible results are for general trigonometric polynomials “lLey
show that further advances can be obtained only for particular cases oy
utilizing some special properties of the polynomials under consideration.

Properties of Dirichlet characters and Gauss sums are discussed in
Ayoub [1; Chapter 5] and Prachar [1;chapters 4 and 7]. That separability of
G(r:x) for all r implies that y is primitive has been proved by Apostol
i1}«

One weekness of estimates such as those of Theorem 6.30 is that they
are affected greatly by two of the Xy being close together. This
weakness has been avoided by & result of Davenport and Halberstem [1)

(also given in Davenport [1; Section 23] which states, in the notation of



Theorem 6.30, that if

5. = min llx, - x
F o 5 ,4 ” ! : S I’"’
then
R M+
N 2 2
E min(1, -2-51_)|S(xr)| <X N z Ianl A
r=1 n=M+1

In the Corrigendum and Addendum to that paper they also gave inequalities
for sums of |S(x)|2 and over all characters to the modulus q for all

q s x.
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THE LARGE SIEVE

We have seen in the first part of Chapter 6 how the number of
integers that remain in an interval after removing a given number of
congruence classes modulo each prime p < X can be estimated from bounds

for the sum
p-1

(7.1) DAL

ba
X a=1

where S is a trigonometric polynomial of the form (6.31). Now if a/p
and b/p’ are two points that appear in (7.1), and a/p # b/p’, then

ap’ - bp 1is a non-zero integer, and hence

Since the same argument holds for |k - % + %7| for any integer k, we

ap’ - Db 1 1
- [ 22

X

o

-2
P

have the lower bound

1
—2' ]

/|

min I % -

a/p # b/p’

d|o’
v

>

which is best possible in general. Therefore we can estimate (7.1) by
applying Theorem 6.30 with § = X-2. But by the same argument we can take
5 = X° in estimating the sum of |S(x)|2 over all rational points, in
their lowest terms, which lie in (0,1], and for which the denominator

is < X. Therefore the bound for (7.1) that we obtain fram Theorem 6.30

is the same as the bound for




q

2
(7.2) Y sl
qix a=1
(aJQ)=1

Since the numbers of terms in (7.1) and (7.2) are asymptotic to
% X2/log X and 3X2/n2, respectively, it is natural that in looking
for improvements on (6.8) one should try to use the terms in (7.2) with

q composite. We will do this by proving an identity for
q

Y ls@)

8,:1
(a,q)=1

similar to the one of Lemma 6.6 (which is not applicable to (7.2)
because of the condition (a,q9) = 1). The next step will be to use this
identity, together with Theorem 6.30, to give estimates for sequences
that have no elements in a given number of residue classes modulo p, for
each prime p < X. This whole chapter is devoted to the proof of these
estimates (which were discovered by Montgomary) and a few applications.

Instead of considering simply a sequence of integers from the
intervel [M+1, M+N], (M and N integers, N > 0), we will generalize to
the case where every integer in that interval has attached +to it a
certain complex "weight" &« Our inequalities will then measure the
distribution of these weights into various congruence classes. Inequalities
for the number of elements in a given sequence will then be obtained by
choosing an to be 1 if n is in that sequence and O otherwise.

We let 8, be any complex numbers defined for n = M+1, ..., M#N.



Define
M+N
(7-3) z(a,n) = ) &
n=M+1
n=h(mod q)
and
M+N
(7+4) z=2(1,1)= ) a,
n=M+1

thus generelizing our previous definition (6.2). We will work with the

associated trigonometric polynomial
M+N

(7.5) s(x) = ) & e(nx).
n=M+1

(7.6) LEMMA. If q is & positive integer, then

q q
(7.7) Y ols@® =a) |T @t
a=1 h=1 djq
(a,a)=1

Proof: Since for a an integer
q
a
5(2) = ?zm,h) o(2),
h=

we have, by (6.1)

q
az(a,h) = ) s(E)e(22
an1
a/d
_ Z Z s(bd) (-bd.h
dlg b=l

(b:q/d)=1
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If we define

(7.8) T(q,h) = V s(3e(2h),
a.-l
(a:CI)'-']
then
(7.9) az(a,h) = ) ™(a/d,h).
dlq

Applying the M8bius inversion formula to (7.6) we obtain

T(q,h) = qz ﬂdﬂ z(a/d,h).

dlq

But from (7.8) we find that

q
V l V w() 7(q/a, h)| -3 er(q,h)l2
h_l dlq h=1
q qQ -
Y Y e ey
= a,b=1
(a,a)=(b,q)=1
q
=c17 Y s )s( ) Ve(L)—)
a,b=1 h=1
(a:Q)=(b:Q)=1
q

"
==
~—~
0 | @
o

by (6.1), and this completes the proof.
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We may note that for a prime p, (7.7) is the same (except for some-

what generalized an) as (6.7), since

P g = 2
a z
') IZ W) 2(2n)| = p ) lz(esn) - I
h=1d|p h=1

We now easily deduce

(7.10) THEOREM. If Z(q,h) is defined by (7.3), then for X > 1 we have

. 2 2 i 2
7o) [T el s Voen? Y Ie2

<X h=14d|q neM+1

Proof: Let S(x) be defined by (7.5). By (6.34%) we have

q . / 5 M+N
5 & < (§'/? 2; 2
D LI IS YR N W o
a<X a=1 n=M+1

B (a,q)=1

But now we just substitute (7.7) in the left side above.

We deduce from Theorem T7.10

(7.11) THEOREM. Let 2(q,h) and Z be defined by (7.3) and (7.4),
respectively, and let X > 1. For each prime p < X let H(p) be the union

of f(p) distinct residue classes modulo p. Let the & satisfy
(7.12) e =0if n € H(p) for some p < X.

Then
M+N

1/2, .\2
2el ) 2
|z| S_ N Q+ x E Ianl »

n=M+1



where

Q- q};x HQ(Q)JE e

Proof: In view of Theorem 7.10 it will suffice to show that for each

q < X we have
q
2
(113 W@zl rﬁ%ly ) I‘IL 2(a/a,n)| -
Pld h=1

This is clearly true if u(q) = O. Therefore assume that q < X is a
fixed, squarefree integer.

If d|q, we define
(7.14) k(d) = {h; 1<h<gq, h € H(p) if p|d, h £ H(p) if p|(a/d)}.

The sets K(d), for d going through all the divisors of q, fomm a
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partitioning of {1, .+s, q}, since for each h we can write q uniquely as

a=( IT »):(C TT »).
plq pla
heH(p) hEH(p)
Therefore we will be able to write

L= Lo

h=1 d|q he&x(d)

)0

-

Let us fix a 8, 5|q. Then by the Cauchy-Schwarz inequality
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(115) | Yutwaa ¥ z@nff-|Y w8 T e/am|
dla hex(s) d|q hex(s)

-| T T e
hex(s) dlq

(I HT |7 a8 awen]}.

e

hex(8) hex(s) dlq

1A

Let us consider the left side above. Suppose (§,d) > 1, and choose a prime p
such that p|(8,d). Now Z(d,h) is a sum of a withn=h (mod d). But pld
implies that for such an & Wwe have n = h (mod p). But p|8 and h € K(§) mean,
in view of the definition (7.14), that n € H(p). Therefore by (7.12)

& = O whenever n = h (mod d) and h € K(5). Hence the inner sum on the

left side of (7.15) vanishes when (§,4) > 1, and 80O

(7.16)  Yu(e/a)a ) z@nm)= ) wle/a)a ) z(am).
dlq hex(s) al(a/s) hex(5)

Let us fix d, with d|(g/s). We have

d
z z(da,h) = z Z(d,k)« |[{h; h € X(8), h = k (mod 4)}|,
hex(8) k=1
kfi(p) ¥ pld

where the condition k £ H(p) for all p dividing d follows fram the fact

that if k € H(p) for some p|d, then Z(d,k) = 0. We can compute

s(8,d,k) = |[{h; h €K(8), h = k (mod d)}|
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for k such that k € H(p) for all primes p dividing d. Now in view of
the Chinese remainder theorem h = k (mod d) is equivalent to h = k (mod p)
for all primes p dividing d. Also, h € K(8) is equivalent to h € H(p)
for all primes p dividing 8 and h £ H(p) for all primes p dividing q/5.
Therefore h € K(5) and h = k (mod d) if and only if the following three
conditions are satisfied:

a) pld=h =k (mod p) and h £ H(p),

v) pl§=h € H(p),

c¢) p|(a/as) = n £ H(p).

Since we are dealing with k such that k ﬁ H(p) for all primes p dividing
d, the second part of a) is satisfied whenever the first part is. We

now notice that if p|d, then there is exactly one solution of &) modulo p.
If p|§, then there are f(p) solutions of b) modulo p, and if p|(a/ds),
then there are p - f(p) solutions of c) modulo p. Applying the Chinese

remainder theorem we find that

5(8,d,k)

[{h; 1 <h <gq, h satisfies a), b), and c)}|

{TTe@)} { TT (@ - £(2))}-
s plagg

This number is independent of k, and hence

Y zen) =Y 2(a,%) 1T 2(0) T (o-£(p))

k=1 p|s Pla%
xfi(p) ¥V pla
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d

" zz(d,k)( M) (TT (- £)))
k=1 |8 Plf—a

=z( TT £(2)) ( TT (p- £(2)))-
pls Pldgg

From (7.16) we now obtain

(17) Jul@/aa)  z(a,h) = ) u(e/a)a z{ TT £(p)} T (- £(2)))
dla hex(s) d|(a/s) Bl lda

=u@2{ TTt@EH T (»- 2eN} ) w@a TT (p-£())™"

p|8 rl(a/s) al(a/s) pld
=uw(@z{ TT£@)H TT (p-£@))I TT —%—T)
pls p|(a/5) p|(a/ 6

=u(8)2{ TT @) TT  £(p)} = u(s)z TT £(p)-
p|5 pla/s rla

The first factor on the right side of (7.15) is

s(6,1,1) = { TT£@eN {TT  (p- £(2))}
pls r|(a/8)

Dividing by it and using (7.17) we now find from (7.15)that

121%¢ T 2@t T 20! (T 2" < T s g gam)|
rla p|s rl(a/s) hEK(&) dlq

We now sum on all 6|q. The right side is Just
q

T 1Y wdd pg/a,m)”
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since the sets K(§) form a partition of {1, ..., q}. The left side is

|z]%( qﬂpnesz(pn—’ AT -t
rla s[a I8 r|(a/s)

1z|2{ TT £(p) T 2(p) (p-£(5))""
| [plq o }}q{pl(qla)p }{pTI];Q/a)P -

1212 TT 2(2)) TT (1 + 23%k5)

pla pla

n

2 f
alz|? TT 2ol
P-1I\P
pla
This completes the proof.

(7.18) COROLLARY. Let X > 1 and let Z be the number of integers n
such that M + 1 Sn<M+Nand n does not fall into any of f(p) residue

classes modulo p for any prime p < X. Then
2
Z < .(ﬂz_ﬂ).
= ) ]
where

Q= ) ul@ T £

p-f(p) °
e<x  Pla

Proof: Let &, be 1 if n is one of the given integers and 0 otherwise.

Apply Theorem T.11, noting that
MHN
= = T
1z] =2 la | -
n=M+1
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We first use Corollary 7.18 to obtain estimates which we proved

previously using Selberg's sieve.

(7.19) THEOREM. Let k, M, and N be positive integers satisfying k < %N,

and let £ be an integer such that (k,2) = 1. Then

(7.20)  =m(M+N,k,2) - m(Myk,2) < cka)lgﬁ(N/k)“ g 0(%))'

Proof: We considerm + rk for r = 1, ..., n, where n is the largest

integer such that m <M and m = & (mod k), and n is the largest integer
such that m + nk < M+N.

Let X z 2. We consider those r < n for which m + rk is not divisible
by any prime p < X. Let p be a fixed prime. If plk, then p\(m+rk) for
all r. If plk, then p|(m+rk) only when r = i) (mod p). Hence we may
apply Corollary 7.18 with f(p) = 1 if plk and £(p) = O if plk. We then
find that Z, the number of r < n for which m + rk is not divisible by

any prime p < X satisfies

7 < §n1/2 + x!a
el Q ’
where
2
2 £ 1 gfk}
Q= ZH(Q)W ;%%%)w z %(8)-3 Xizk log X
(a,k)=1 (g,k)=1

by Lemma 3.3. We now choose

X = n]/e/log fi »
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Then

2
5 & K B s <_ N (1 + o(2o8_Log N/k,,
— (k) log n- 2 log log n — ¢(k)log N/k log N/k

for N/k sufficiently large (as n < N/k + 1). Since
w(M+N,k,24) - n(M,k,2) <Z + n(X) < Z + X,

we obtain (7.20), again for N/k sufficiently large. But the theorem is
clearly true for N/k bounded.

Next we give a new proof of Theorem 3.17.

(7.21) THEOREM. Let s be a positive integer, and suppose that for

fm 1y sany 8 a; and b, are integers such that (ai,bi) = 1 and

S
E = il-r B.i' TT (&ib

- a,b,) £ 0. Let N(p) be the number of solutions
1 i< § J Ji

of (a1v - b1) e (asv - bs) £ 0.(mod p) for v=1, ..., p for each
prime p, and assume N(p) < p for all primes p. Then the number of positive

integers m < n such that each of |aim + bil (1 =1, ..., 8)is prime is

” n . 1 - 1y-s+N(p)
= (log n)® P-II-El; .

Proof: Let X > 1, and consider
z= |{m; m<n, p\ (am+b,) foranyp<Xandi=1, ..., P

Then the integers counted by Z do not fall into any of the N(p) residue

classes modulo p corresponding to solutions of
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(a.|r+ b1) aes (asr+bs) = 0 (mod p)

for all p < X, and therefore Corollary 7.18 says that

7 < $n1/2+ X!E ,
- Q

Q= qzx ﬂe(Q)p]II pTNi(v%%)' :

where

> ¥ 1T ww>
a<x Pl a
(@5

which is the estimate (3.11). The rest of the proof is the same as that
of Theorem 3.17.

For our final application of Corollary 7.18 we consider & problem
to which Selberg's sieve is not epplicable due to the large number of
congruence clesses sieved out. It has been conjectured by Artin that
every integer except for O, -1, and the perfect squares is a primitive

root for infinitely meny primes. While we cannot prove that conjecture,
we can give an upper bound on the number of positive integers < N which

are not primitive roots for small primes.
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(7.22) THEOREM. The number of positive integers < N which are not

1
primitive roots for any prime < N /2 is

< N1/2‘log N:log log N for N > 3.
Proof: Here we sieve out the ¢(p-1) residue classes of primitive

roots for each p < Nl/a. By Corollary T7.18 the number of remaining

integers is

< g ;
where
LT - =
- T T s T
o< /2 pla PEN‘/E
But
(7.23) lim inf 242 1:: L R

n =+

where ¥ is Euler's constant, and therefore

n
o(n) > ;o957 for n2 3.

It follows that
.
N /2
log N*log log N

Q> : n(Nl/a) >

for N > 3,
lcg log NI/2

and this completes the proof.
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Notes on Chapter 7.

The material of this chapter is drawn primarily from Montgomery [1].
It should be mentioned, however, that Theorem 7.19 can be proved using
large sieve inequalities for sums over Dirichlet characters, as was done
by Bombieri and Davenport [2]. Recently Bombieri [3] has proved, using a

specialized large sieve method, & result similar to the one of Van Lint
and Richert (Theorem 4.1); namely, that O(lo liZgNNkk ) in (7.20) can be

1
replaced by O( Tog Wk 19

Eq. (7.23) is proved in Hardy and Wright [1; Chapter 18].

Theorem T7.22 is not the best possible. While applying an old form of

the large sieve, Gallagher [1] proved that

1/2
-1 N
pZNl/e T e > LT -

Using the contribution to Q of composite integers it can be proved that Q

is of an even larger order of magnitude.
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8

BOMBIERI'S THEOREM

It has been known for some time that estimates for sums of Dirichlet
series can be obtained from large sieve inequalities. The purpose of
this chapter is to use such estimates to prove a very important theorem
of Bombieri about the average of the remainder term in the prime number
theorem for arithmetic progression.

Let

*(x)q,a) = z A(n),
n<x
n=a (mod q)

where A is Mangoldt's A-function. Bombieri's result can then be stated

as

(8.1) THEOREM. For each positive constant A, there is & positive con-
stant B such that if Q = x1/2(log x)'B, then
<g -A

(8.2) max  max |4(y,9,8) - oyl <€ x(108 x)7,

¥y < x (a,9)=1 i

QR v -
where the constant implied by the <& symbol depends on A.
An analogous estimate holds with ¢(y,q,a) and y/¢(q) replaced by

n(y,q,2) and 1i(y)/w(qa), respectively. Now the extended Riemann hypo-
thesis, which states that all the non-trivial zeros of Dirichlet L-series

L(s,x) lie on the line Re(s) = 1/2, implies that

(8.3) v(y,9,8) - 5{—@- < y1/2 loaey,
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which in turn implies that Theorem 8.1 holds with B = A + 2. Thus
Bombieri's theorem gives & result comparable to the one implied by the
extended Riemann hypothesis (which has been neither proved nor disproved),
and in many cases where only the average of the remainder term is im-
portant it can be used in place of the assumption that (8.3) is valid.
Our proof, due to Gallagher, shows that B may be taken as 16A + 103, and
even better results are possible, but they are relatively unimportant
since no way has been found for determining the constant implied by the
< notation.

Qur proof of Bombieri's theorem will proceed through a series of
lemmas. The basic idea is to express the left side of (8.2) in terms
of L-series, and then apply the large sieve inequalities of Chapter &
to it. Actually, however, we will first apply a smoothing device to the
functions ¥(y,q,2) - y/9(qa) and work with the resulting functions.

For functions F piecewise continuous on [1,»], we put

X
- - dy
F,=F, and Fk+1(x) = L Fk(y) b

The main part of our proof will consist of showing that Theorem 8.1 holds
with §(y,q,a) replaced by ¢k(y,q,a) for k sufficiently large (note that
if F(x) = x, then F1(x) = x - 1, so that our smoothing device affects

x to an extent that is negligible for our purposes). We will actually
show this for k = 3. At the end of the proof we will show that such

estimates imply (8.2).
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First we prove an auxiliary result.
(8.4) LEMMA. For x > 1 we have

1
ZW<<1+:LOEX-

nf;

Proof: This is clearly true for x < 3. Assume therefore that x 2 3.

1
Since o(m) is a multiplicative function, we have

1 1

1 1 1
ij. .]T(1+—(_)‘+“""_+‘o-)= TT(1+_+ +...)
ngx LAk PEX PP ¢(p2) pix p-1 P(P’l)
: 22— 1 o)
- TT (14 ___2_5) < JP3x (p-1)° _ px P

p<x (p-1)

= elog g, =+ 0(1) <§ log x

The next lemma shows that in order to estimate

¥
L ymgxx (a!fze;ﬂlwk(y,q,a) o)
it is sufficient to estimate a sum involving primitive characters to
fairly large moduli. Before we prove it we should make a few remarks
about the values of A and k. Our goal is to prove (8.2) with the implied
constant depending only on A. Due to the use of the smoothing device,
however, the A's we will be working with will be functions of the A of

Theorem 8.1. In order to ensure that all constants can be chosen so as
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to depend only on the original A for which the theorem is being proved,
which is given, we will require at each stage that the A and k be bounded
(actually we will only need k < 3, and if A’ is the given A of Theorem 8.1,
then we will always have A < 8A’ + 7), so that the implied constants will
be valid for all values of A and k that we will use.

From now on we write 4 for log x. We use the usual definition

§x) = ) x(0)A(a).

n<x

(8.5) LEMMA. For Q < ):1/2 and for bounded k, A, and C, we have
*

max max |y (na8)- oyl € ) el ) mxly Gl ™
a<Q y<x (a,q)=1 D<e<Q o 0 4, 2

1+lo

*
o(a , and 2 denotes summation over

x mod q

where D = LC, elq) =

primitive characters to the modulos q.
Proof: We have (by induction)

b Gox) = o ) x(@)A)108 ).
n<x

Also, since

¥(x,9,8) = 5%57 EZ 3(@)#(x,%),
x mod g
we find
(8.6) hne) = oy ) R(ady Gox)-
o mod q
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¥* *
If y is induced by the primitive character y , then y(n) = y (n) except

possibly when (n,q) > 1. Therefore

4, Gox) - Gox )| < Z Ix(n) = %" (n)|A(n)10g"(E)

n<x
2 k 2 . LR
Iy E A(n):—zL ) log P i)_l
n<x rla =
(n,q 1 P <x
+1 1
< 2 .Lk log q << .Lk+ log q.
- kT

L Xo denctes the principal character to the modulus q, then Xo is

induced by the identity character and thus

b (oxg) = a1 ) Mn)10g" (%) = ¢ ().

n<x

Therefore we obtain from (8.6)

¥ (x)
(a ‘;%f’ bpFeand = ‘Pl(ca) < <P%<ﬂ Z h(ox') + £*10g q,
o %
and hence
¥ (r)
8. LY .
(8.7) ng mygg: (::c)ﬂltk(y q,a —(—)—

<Z —(Tz ;‘2 Hk(:hx )|+ o '10g Q.

IR X o
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In the first term on the right of (8.7) we group together temms arising
from the same primitive character. Since if y is induced by the primitive

* *
character y , then the modulus of y divides the modulus of y, we get

z o(a) z max |¢k(y,x )| = z 2 max |4, (v,x)| - z o
a<Q e - 1<g<Q y mod g VX <

<. Z z s Hk(v:x)l'a]@)- dzq/q 51(;1-)-

1<g<q y mod g “-=

*
< ) el@) ) max [y Ox,
1<g<q g mod q V="

where the last relation follows from Lemma 8.4. Hence for Q < x1/2 and

bounded k and A,
¥ (¥)

(8.8) max  max (v,a,2) —(—)—
<R v (a,9)= |¢k L

< z e(a) Z max |4 (v,x)] + x A
<R xmodq Y

Siegel's theorem implies that

(8.9) max I*(Y:X)l < XL’EJ for x # Xo and q 5,LC’

y<x

with arbitrarily large constants C and E. Therefore if k, A, and C are

bounded, the terms with @ <D = LC contribute < xL-A to the right side
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of (8.8). Similarly, the prime number theorem implies that
-E
(8.10) max |§(y) - y| € =™,
y <x
for arbitrarily large E, and therefore

max “k(Y) = YI << XL-E,
y<x

1/2

for arbitrarily large E, provided k is bounded. Hence for Q < x and

bounded k and A we obtain

L4, (¥)-vl
k -A-1 1 -A
Z y<x P\ CP(Q)
QR °= a<Q
Combining all our estimates we obtain the statement of the lemma.

Thus our task has been reduced to that of estimating

»*
EE e(a) ;z $ix ¥, (v5x)
X
D<q§Q yx mod g -

The next lemma expressesthls sum in a form suitable for application of

the large sieve.

(8.11) LEMMA. Let L = L(s,y) be a Dirichlet L-series for the character x and
let 3 = 5(s,x) be any function bounded and analytic in g > 1/2.

Define @ = 1 + 4‘1 and B = 1/2 + 4'1, end denote by (@) and (B) the paths
o+ it (<<t <w)and B + it (-» < t < ), respectively. Then for

k > 2 we have

*
z e(a) Z my:xx I*k(y’X” << n{ : |_:_|%9(+L1 at + X1/2( ) Izlz.ﬂ dt,
D<gXq  y mod q 7= o B
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where

As)= ) e@ ) 1 -1sl?
D<g<Q yx mod q

and

*

Bs)= ) eld) ) (ln2s®] + [v’s]).
D<qQ x mod q

Proof: Since for k > 1 we have

17 logkx itx>1,
1 xS kn —
(8.12) e {a) v s -
0 if0<x<1,
and the series
co
L* n)A(n
(8.13) L ey = ) xleitn)
n=1

converges absolutely for ¢ > 1, we obtain

b (9%) = 5o j(a) £ (- L sx))as.
Now

(8.14) (1 - 18)% + (au’s - L'157).

L"It'l
I'."Il':

For x # Xg» L and L’ are analytic in o > 1/2. Moreover, L(s) < |s[1/2

for ¢ > 1/2, and since by Cauchy's formula

(8.15) L' a) = L(z)_ g4,
2ni jv (2-8)2 .
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where y is a circle of radius 4,-1 centered at s, we have L'(s) < |s|1/2
-1

for 0> B =1/2 + 4 . Therefore the second term in (8.14) is analytic

and <€ |s| in 0 > 8, and hence for k > 2 we can transfer the path of

integration of the second term from (&) to (B). We find

S )
¥ (vox) = -2—:;5 ‘(ra) ;}ym(- =)0 -15)%as + 5,-&-{ lT(L’IS 2L’s)ds.

On o

@, we have for 1 < y < x,

=1 =1
o y‘l+{, +Ht _ e(1+s{, )log y+it-log y & olog x+1 £ x

Similarly, on g = B we have ys < x1/2 for 1 < y < x. Also, y(u) <u
and (8.13) imply that on ¢ = @ we have

,x)<< Y _(_). L i_%%du*-()(”«j] -‘1—;=L,

u
n..]

Hence we find that

max |y, (v,x) < xb{ L:-—RTA_ 1/2.[ ll_m'l‘zaﬁl

y<x I

To finish the proof we just sum this estimate, multiplied by e(q), over

all g with D < g < Q and 8ll primitive characters to the modulus q.

Application of the large sieve inequalities. We now use the inequalities

of Chapter 6 to estimate A(s) on g = @ and B(s) on ¢ = B.

Let a_ be any complex numbers. Then by Lemma 6.38

M+N q M+N
< Y| T e

(8.16) A z |Vax(n)

y mod @ n=M+1 a=1 n=M+1
(ﬁ.’q)=1

2
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and by Theorem 6.30

M+N M+N
z E l z a e(na) < (X + N) ?
g<X a=l n=M+1 n-M+‘l

(EJQ)=1

Combining these two inequa.lities leads to

(8.17) Z 3. 7 IZ ax(n) <<<x+m)z

y mod q@ n=M+1 n=M+1

Lemma 6.39 implies that for D < Q/log Q we have

q M+N o
Y LO&&%&)L‘ y |zane(%e)|

D]gQ a=1  n=M+1
(QJQ)=1
M+N
< {MSU—(D +N) + J'q(ulog(q/x))dx} Y e |?
nPM+1
M+N
< (q+1288) b g |5
n=;1‘+1
Combining this with (8.15) leads to
M+N
©.18) Y e@ Y | Z o) <€ @+E25Y) Y ja 2,
DgQ yx mod @ n=M+] n—M+l

again with the restriction D < Q/log Q.

For y a character to the modulus q, define

R(x,y) = ) x(n).

X
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Then by a theorem of PSlya and Vinogradov
< 4 /2
(8.19) R(x,x) € @'" log q, for y # x,-

Since the Dirichlet series for L(s,y) converges for ¢ > O whenever

X # Xg» ¥e have under these aSSumptions, for each integer H> 1,

o0
St_o.‘

(8.20) L(s,x)

I R(t _ R(H,y)
H

H
x(n) 1/2, ls]
21 8 +O(q HOOSQ (1+ 2))'
N=

Therefore for ¢ > 1, H> 1, and y # x,, we have

L(sx) = Z "(“) + olela o q ).

n=1

We choose

H
S(SJX) = z H(n)x = ’

ns
n=1

and notice that it satisfies the hypothesis of Lemma 8.11. Moreover,

for H< x and ¢ > 1 we have S(s,x) <€ log H < £, so that for q < x,

> /2,2
1= Lien)s(enx) =y SR, o LJ‘!T/—"— b

where ¢(1) = 0, and for n > 1,

cn) = ) (@)
d|n
d,(n/d)iH
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In particular, c¢(n) = O for n > # end n < H, and |c(n)| < d(n), the
number of divisors of n, for H<n S.HQ. We now separate the integers
H+1, ..u, H® into m sets: {H+1, veey 2HY, [2H¥1, sees; BH)y wouy
{2m4H+1, ver, 2™}, vhere 2841 _<_H2 < 2"H, so that m <€ log H L

Using the Cauchy-Schwarz inequality, we obtain

h+1 n+1
m-1 H m-1
lycgn!x!n! |Z E c!n[xgn!)| «LE\
n=1 h=0 | ohy.q h=0 n=2bH+1 n®

Next we apply (8.17) with a = c(n)/ns to each of the factors on the

right side above. For each N = EhH (5 x2), with D < Q/log Q and Q < x,

we find
Te@ T | = <<(Q+NL)V—S—1<(9 43,
D<g<Q x mod @ n=N+1 n=N+1 n
since the inequality
(8.21) T(M) = z a%(n) € M logM

U

implies

o dagn! 1 = 2 log3N
Z 2 <N—ezd<n> a5~

n=N+1 " n=N+1

Therefore, using m << L,

2
Ae) < Sﬂ 4 - +Eub e ) (1o(@/a) + 1)J—-L——SH2‘“’

D9

< QH-1Lh + D-1L6 + |s|2Q2ﬂ"2 5,

By



We can choose H = Q,Dt,_2 to get
(8.22) A(s) <D |s| L ; On g = Q,

provided {4 < D < Q/log Q.

To estimate B(s) on ¢ = B, we apply (8.17) to

o
Se(s,x) N Z b(n)y(n) )

nS
n= 1

where |b(n)| < d(n), and get for ¢ > 1/2
) " i 8 2. .20k
(8:23) ) by Y IsGealt < (Be)) Bl < (P iyt
Qix yx mod q n=1
when the last estimate again follows from (8.21)by partial summation.

It follows from (8.20) that for each N > 1,

2
L(S,X) V' X.(_).+O( / )a forxpéxo a.ndc?_'l/e.

l_-v
n=1

Therefore

(8.26) ) A z*|L<s,x)|“<<

<q<x % mod e}

L L
5 |s| xelog X

N

<>:—‘h?|

x mod g n=1

We now apply (8.17) to the sum on the right. Since

2
N N
(? xgn!)z . z e.gan!n} ,
n:l ns - nS

123



124

with |a(n)| < d(n), we find that (8.24) is
2
N

2
2
< (X2 + N2) g‘ QHLEI < (X2 + N )loguN.
n=1
We now choose N = [X|s| + 2]. Then the above inequalities give

Y A L el K BlslPetxls] + 2).

P

1<q§_X X mod q

Since ((s) <K |s|1/2 for 1/2 < g < 3/4, say, we actually have

*
(8.25) E: 5%57 EZ |I&s,x)|2 < X2|s|210gh(xls| +2) for 1/2 < g < 3/bL.

<X x mod g
Applying H8lder's inequality to (8.15) twice gives
4
L (sn)]* <€ 2 [ 2zl
Y
Therefore on g = B we have

(8.26) Ez 5%67 E: IL'(S,X)|h << leslelogh(xlsl 4 2)Lh.

q_<_x X mod q

Using the Cauchy-Schwarz inequality, we now find that

f ch'ﬁ z* lL1s?| < (z _‘h. lL'le)l/E(Zq,q 2* IS|1+)1/2
Q=X x mod q a<X X mod q Sk oy g
. / * /
(L IS I )" (L 1"

y mod q q<X x mod q a<X y mod g

< (x + H)*X-|s] 'L3'1032(X|s| +2).
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If we now choose H = DQ{.—Q, then we easily obtain
5 2
(8.27) B(s) < DQt’|s|10g”(|s| + 2) for ¢ = B.

Completion of the proof. Using Lemme 8.5, Lemma 8.11, (8.22), and (8.27),

we find that fork > 2, Q < x1/2, and bounded k and A,

(8.28) : max ~ max |4 (¥,q,a) - 5‘{3)-1 < xt Jr —5%1—“

a<q v<x (a,q)=1 (@)
1/2I DQ—-L—I—E—(-U-—)-“’ 31]{31 at + xgA
(8)

provided £ < D < Q/log Q. For k = 3 the right side of (8.28) is

< x0T + x/200e5 + x4,

A+T I/EL-(2A+12)

Choosing D = 4 and Q = x , we find

-A
(8.29) y max max |¢,(y,9,2) - —'7('—7| < xt™.
a<Q <x (a,q)=1 3 i
We now deduce (8.2) from(8.29). Suppose that the following statement

is true for a positive integer k:

i For every positive constant A, there is a constant Bk(A)

such that if

-B ()
Q= X1/2‘L Bk 2
(8.30)4 then

T -A
) max max |y (v,q,8) - —{-71 < x4
q:Q < (a,q)=1 K P\a

with the implied constant depending only on A.

N
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We will show that then (8.30) also holds for k - 1, with Bk-I(A) =
Bk(2A + 1),

Since ¢k_1(y,q,a) is an increasing function of y, we have, for
0<1 <1,
A
1Y dz 1 7Y dz
X Ie-xy te1(2:08)57 S 4 1 (9,8) S5 Jy ¥y1(259,8) -

Evaluating the integrals we obtain

1 J
(8.31) x{*k(YJQ:a) 5 *k(e )‘Y,Q;a)'! < *k_-l(y:an)
1
E 'i'{dlk(eky')q’a) = ‘#k(Y:Q)a)]'
If we write
*k(x)qda) #= q_,z(cay + rk(XIQ)a))

then (8.31) implies that

-\
1ey(l-e , < _{_).
l[ o(a - 2 max Irk(z:Q:a)” = 2(q + rk-1 (Y,Q)a)

ziy
el-1
xéray—l 2 max[rk(z,q,a)l}.

zfpxy

>:L:.|

<

Bt T -8 whk b o(xz) and -

-1=x+ 0(12), so that

1
[rk_-l(Y)QJa)l << ‘PTKET ¥ X max Irk(z)Q;a)l‘
z<e’y

Therefore for Q E_x1/2 we have

Y max max Ir _1(Y:QJ8-)I << Axd + ?\-1 z max max ‘rk(Y:cha)l'

ac YX (850)=1 ¥ acq ¥oex (a,a)=1
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But by (8.30) the right side is

-8, ()

<ixt+ 2 mP, forac< %21

< xL"%(A'i), 12 3 = ¢ 2(A41)

This proves our assertion about (8.30). Since we have proved that

BB(A) = 2A + 12, this gives us BO(A) = 16A + 103.
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Notes on Chapter 8.

The proof given above is due to Gallagher [2]. The original proof
(Bombieri [3]), which is considerably more involved, relates the sum (8.2)
to the density of zeros of Dirichlet L-series in the initial
and avoids the use of our smoothing device. (There is also a good
exposition of this method in Devenport [1; Sections 24-28].) Bombieri
proved that B can be taken as 3A + 23, but this is not very important
since the use of Siegel's theorem (which plays & crucial role in both
Bombieri's ard Gallagher's proofs) has so far prevented the determinaticn
of the constant implied by the <§ sign.

Our proof presupposes & fair knowledge of analytic number theory,
but practically everything used is quite standard and may be found in
Prachar [1] and Ayoub [1]. The inequality (8.21), which is not known
too well, is proved in Prachar [1; Chapter 1].

Many applications of Bombieri's theorem have been made. One of the
most interesting is the proof by Elliott and Halberstam [1] that every
sufficiently large integer n may be represented as n=p + x2 + y2;
that is, as a sum of a prime and two squares. Their paper lists previous
proofs of this theorem, some of which used unproved conjectures such as
the extended Riemann hypothesis.

The large sieve estimates have been used in proving several other
important results in anelytic number theory. We might mention here the papers

of Jutila [1] and Montgomery [2], [3].
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