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PREFACE 

The main goal of this work is to give an introductory account of 

sieve methods that would be understandable with only a slight knowledge 

of analytic number theory. These notes are based to a large extent on 

lectures on sieve methods given by Professor Van Lint and the author in 

a number theory seminar during the 1970-71 academic year, but rather 

extensive changes have been made in both the content and the presentation. 

Several developments related to the subject of these notes are not 

discussed in them at all. One such is Renyi's probabilistic version of 

the large sieve, for which the reader is referred to Renyi [4]-[9]. 

Another is Vinogradov's method of trigonometric sums which was used to 

prove the famous theorem that any sufficiently large odd integer is 

representable as a sum of at most three primes. This method is dis-

cussed in r . M. Vinogradov [1). Neither of the two methods mentioned 

above would fit in very well in this work, however. A much more serious 

omission, due to lack of time, is that of Selberg's lower bound method. 

Although much more complicated and in many ways less satisfactory than 

the upper bound method, it gives the best results known in many cases. 

We might mention here that using this method it has been shown that there 

are infinitely many primes p such that p + 2 is a product of at most 

thre~rimes, and thateyery sufficiently large even integer can be repre­
~ 

sented as a sum of a prime and a product of at most three primes . While 

these results do not prove the twin prime conjecture (which states that 

p + 2 is a prime for infinitely many primes p) nor Goldbach's conjecture 



ii 

(that every even integer~ 4 is a sum of two primes), they are still 

significant achievements. A new unified proof of both of the above 

results is given in Richert [1]. A good introduction to Selberg's sieve 

is provided in Halberstw and Roth ( 1; Chapter 4]. A much more com­

prehensive and more up-to-date presentation is given in Richert [3]. 

All references for results quoted in any chapter are given in the 

notes at the end of that chapter. These notes also contain sane general 

bibliographic information and often some additional facts. The biblio-

graphy contains practically all the publications on sieve methods of 

which the author is aware, and an attempt has been made to supply 

Mathematical Reviews references for as many as possible. 

I am greatly indebted to Professor Gall~ for pennission to use 

the material of Chapter 51 which has not yet been published. I would 

a.lso like to thank Professor Van Lint for lecturing on the material of 

Chapters 3 and 4, and for help on many problems. I am very grateful 

to the Mathematics Department of the California Institute of Technology 

for a 1970 Summer Research and Independent Study Fellowship, which made 

this work possible. Most of all I would like to thank Professor Apostol 

for his advice, encouragement, and guidance. His help in the writing 

and editing of these notes bas been invaluable. Finally, I would like 

to. e~ss my appreciation to Mrs. Lorayne Decker for her ~tience and 
=-...... 

skill in typing the manuscript. 

Andrew Odlyzko 
Pasadena 1 California 
June 1971 
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1 

THE SIEVES OF ERATOSTHENES AND BRUN 

The name "sieve method" comes fran the sieve of Eratosthenes, an 

algorithm for finding all primes. It utilizes the fact that a natural 

number is prime if and only if it is not divisible by any prime smaller 

than itself. To find all the primes ~ x, one writes down the natural 

numbers 2, 3, 4, •.. , [x) in this order. Since 2 is the first prime, 

it is left untouched, but every proper multiple of it (that is, every 

second number starting with 4) is crossed out, since it is composi te. 

The next number in the sequence is 3, and it has not been crossed out 

yet. Hence it is not divisible by any prime smaller than itself, and 

so it is prime. Therefore 3 is left as it is, but every proper multiple 

of 3, being composite, is crossed out. The next number, 4, has already 

been crossed out, and therefore must be composite. The next one, 5, has 

not been crossed out and hence must be a prime. It is left alone but 

all its proper multiples are crossed out. Since if an integer~ x is 

composite, at least one of its prime factors has to be ~ rx ' it is 

sufficient to continue this process only up to [ Yx ] . The numbers 

which have not been crossed out are exactly the primes < x. Thus this 

procedure "sieves out" all the composite numbers. 

~ ~t n(y) denote the number of primes ~ y. The sieve of Eratosthenes 

can be used to obtain an exact fonnula for n(x) - n( y'X), the number of 

primes between yx and x. Let 



s'(n) = 

Then 

Now let 

1 ifn=1, 

1 if n is prime and Vx < n ~ x, 

0 otherwise. 

n(x) - n( Vx) = I s'(n). 

2<n<x 

II = Tf P· 
~Yx 

We observe that the sieve of Eratosthenes removes all those natural 

2 

numbers < x which are not relatively prime to II, except for the primes 

~ Yx· Since the M8bius function satisfies the relation 

we have 

( 1 • 1 ) 

for each n ~ x, and hence 

\ { 1 if n = 1, 
L ~(d) = 

din 0 if n > 1, 

s'(n) = I ~(d) 
dl (n,II) 

n(x) - n( yX) + 1 = I s'(n) = I I ~(d) = I ~(d)[~] 
n<x n<x dl (n,II) diii 
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But 

I ~ = IT (1 - !) :: TT (1 - !) 
din Pin P P:: vx P 

and so we obtain the exact fonnul.a 

( 1 .2) 1t(x)-1t(Yx)+1=xiT (1-~)+ I~(d){[~) -~}. 
P:: Yx di n 

Each term in I~(d){[~] - ~} is< 1 in absolute value, but there are 

din 
21t( fx\erms, a number much larger than x. Still, one might hope that 

the first term on the right side of (1.2) yields the correct order of 

magnitude of 1t(x) - 1t( 1(X) and that the second term is of a smaller order 

because of cancellation due to alterations in the sign of ~(d) and the 

small size of the factors [~] - ~ (since for most divisors d of n,x/d 

is much smaller than 1 ). However, a theorem of Mertens states that 

( 1 • 3) 
1 e-y TT (1 - p)- logy as y ~ ~, 

p~y 

where y is Euler's constant, so the first term on the right of (1.2) is 

asymptotic to 2e -yx/log x. But, by the prime number theorem, the left 

side of (1.2) is asymptotic to x/log x, so that the second term on the 

right is asymptotic to {1 - 2e-y)x/log x. Hence each term on the right 

o~(l. is asymptotic to a constant times -----
1 

x , so that we cannot 
og x 

expect to obtain useful estimates for 1t(x) - 1t(l{X) from this identity. 
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Nevertheless, the same underlying ideas can be used to obtain 

estimates for the number of integers ~ x which are not diviEible by any 

prime p ~ z, provided z is much smaller than Yx· (In the foregoing 

discussion we considered the case z = yi.) This time we let 

n = Tfp 
p~z 

and define s'(n) by (1.1 ). Then the number S(x,z) of integers~ x not 

divisible by any prime ~ z is given by 

S(x,z) = Is'(n) 
n<x 

= I 
n<x 

I ~(d) = 

dj(n,n) 

Since each term in the sum on the right has absolute value < 1, the 

sum itself is 0(2~(z)), and therefore 

S(x,z) = x TT (1- .!.) + 0(2~{z)). 
~z p 

By Mertens' theorem the first term is asymptotic to e-yx/log z as x ~ ~, 

provided z ~ ~ also. Now if z = log x we have 

log x log x log 4 log 4 

2~(z) < 22z/log z = 41og z = e log z log z o( 1) = X = X 1 

so::-the.. second term is much smaller than the first term. Thus, if z ~ ~ 
-""'-._ 

as x ~~but z ~ log x we have 

e-yx 
S(x,z) - -1 as x -+ ~. og z 
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As is shown below, the above method can be generalized to give 

information about the number of integers ~ x which are not divisible 

by any prime ~ z, when these integers belong to sequences other than the 

sequences of natural numbers. Unfortunately the requirement that z be 

very small in comparison with x ltmits the usefulness of such general-

izations. 

Modern sieve methods originated with Viggo Brun around 1920. He 

used a new sieve to obtain several important number-theoretic results, 

notably an estimate of the density of twin primes. In the next few 

pages we will develop a very simple form of Brun's sieve which will 

enable us to prove a theorem on the density of twin prtmes (Theorem 1.4). 

While weaker than the best results obtainable with Brun's sieve, i t will 

be sufficient to prove the ce~ebrated theorem of Brun that the sum of 

the reciprocals of the twin primes converges (Theorem 1.5). We will 

first state Theorem 1.4 and then use it to prove Theorem 1.5. The rest 

of the chapter will then be devoted to the proof of Theorem 1.4. 

( 1 .4) THEOREM. Let T denote the set of twin primes (that is, primes p 

such that either p- 2 or p + 2 is also a prime), and let T(x) = E 1. 
p<x 

Then peT 
2 

T(x) ~ x(log log x) > ~ log x for x _ 3, 

where ~ is the Vinogradov symbol*) • 

*) F(x) <g G(x) is equivalent to F(x) = O(G(x)); that is, both imply that 

there is a c > 0 such that IF(x)l < c G{x) for x in the range indicated. 
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So far we have only utilized concepts from the sieve of Eratosthenes. 

Since good estimates for B(x,d) can be obtained quite easily (see (1.12) 

below), we could write S(x,z) as the sum of a main term for which an 

asymptotic estimate exists and a remainder. Unfortunately, just as 

before, the remainder would be a sum over all divisors d of n, and there-

fore we would need to take z of a much smaller order of magnitude than x 

to ensure that the main term is the dominant one. 

The main idea of Brun' s sieve is that in order to get an effective 

upper bound for S(x,z) when z is fairly large compared with x one should 

sum in (1.6) over only a relatively small subset of divisors of TI, where 

this subset is chosen so that the resulting sum is greater than or equal 

to S(x,z) (and to get a lower estimate one should sum over a subset that 

makes that sum less than or equal to S(x,z)). In this chapter we will 

( ) 2o log log x obtain an upper bound for S x,z when z = x • To do this, 

let us take an even natural number m < r (which will be specified more 

exactly later) and define 

( 1. 7) s(n) = L ~(d) 
dl (n(n+2),n) 

v(d) ~ m 

where v(k) is the number of distinct prime divisors of k. 

(1.8) LEMMA. For all integers n, s'(n) ~ s(n). 



Proof: Let t = (n(n+2),n). Then we have 

s'(n) = I~(d), 
djt 

s(n) = L ~(d). 
dlt 

v(d}Sm 

If t = 1, then s'(n) = s(n) = 1. If t > 1, then s'(n) = o. Therefore 

8 

in order to prove s'(n) ~ s(n), we only need to show s(n) ~ 0 when t > 1. 

Let us assume t > 1. Since t divides n, all divisors oft are 

squarefree and hence 

s(n) = L 1 

djt 
v(d)< m 
v(d)-even 

I 1 

djt 
v(d)< m 
v(d) -odd 

Fix a prime p which divides t. Suppose &It, v(6) < m, and v(6) is odd 

(so that 1 ~ v(&) S m - 1 because m is even). 

Let 

Then 

{

v(6)+1 
v(6') = 

v(6) - 1 

if p"' 6 , 

if P I 6 • 

if p'}6, 

if P I 6 • 

Thus &_' is a divisor oft with v(6') even and 0 S v(6') ~ m. Since the 

correspondence between 6 and &' is one-to-one, there are at least as many 

d with dlt, v(d) < m for which v(d) is even as there are those for which 

v(d) is odd. Therefore s(n) ~ o, and the proof of the lemma is complete. 



Applying Lemma 1 • 81 

( 1.9) S(x,z) < 

we obtain 

X X 

I s(n) = I I ~(d) 

n=1 n;::1 dl (n(n+2),n) 
n odd n odd v(d)Sm 

= L ~ (d)B(x,d). 

din 
v(d)Sm 

In order to simplify further work we will denote by p (f) al.l d In with 

v(d) = f (with the convention p(O) = 1). t(f) will be understood to 
p 

be the sum over all din with v(d) =f. Then (1. 9 ) becomes 

m 

(1.10) S(x,z)S L(-1/ )' B(x,p(f)). 
f=O ;(f) 

Next let us compute B(x1p(f)) = B(x,pi ••• pi ) =number of odd 
1 f 
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n S x such that n(n+2) e 0 (mod (p1 •·· p1 )). Since for odd n we have 
1 f 

(n,n+2) = 1, each pi divides exactly one of n, n + 2. Thus the con­
j 

gruence n(n+2) = 0 (mod (pi ••• pi )) is equivalent to the congruences 
1 f 

(1.11) 

n = 0 (mod ( TT p)) 
p€P1 

n+2 = 0 (mod ( lT p) ) 
pEP2 

where P 1 and P 2 are any two sets such that 



( 1. 12) (f) f X f 
B(x,p ) = 2 :::m + 2 a, 

2p 
I el < 1. 

Combining (1.12) with (1.10) leads to 

(1.13) 

Now 

(1.14) 

and 

( 1.15) 

where - f 

( ) x ~ ( 1 )f \ 2f ~ (fr )2f, 8 x,z ~ 2 L - L :1fY + L 
f=O (f) p f=O 

p 

m m 
I (~)2f ~ I 2frf < (2r)m+l , 

f=O f=O 

r 
2f \ f-1 \ l =-rn+ ~...,c-1) L =m 

p f=m+l (f) p 
p 

r 

= IT(l-~)+ L (-1/-
1

sf 
ry~z f=m+1 

2 2 s the f -th elementary symmetric function of 3, 5, ... , 

*) The k-th elementary symmetric function of a 1, ••• ,at is defined as 

10 

*) 

t 
~ ai

1 
••• a~ where the sum is over the (k) possible choices of i 1, ••• ,~ 

from 1,2, ••• ,t; thus, for example, s1(x,y,z) = x+y+z, s2(x,y,z) = 

xy + xz + yz, and s3(x,y,z) = xyz. 



We thus find from {1.12) - {1.15) that 

r 

( 1.16) S(x,z) ~ (2r)m+
1 

+ ~ lT {1- g)+~ I {-1)f-
1 

sf. 
3~~z p f=m+l 

\ole next observe that 

( 1. 17) 

since any product of {f+1) terms can be written in {f+l) ways as a 

product of a single factor and a product of f factors. Therefore 
82 83 

< 1 < 1 ( ) s2 _ 2 , s 3 _ b' and in general by induction 

f 
s1 

sf ~ f! • 

Relation (1.17) also shows that sf~ sf+l if s1 ~ f + 1. Let us now 

2 
choose m + 1 > s 1 = t (the only restriction on m so far was that 

- 35P~Z p 

11 

it be even). 
r 

Then t 
f=m+l 

( )f-1 
-1 sf becomes an alternating sum with tenns 

m+1 m+1 
s 1 (mes1) decreasing in absolute magnitude, so that it is < s 1 < ( 1), < --1 - m+ - m+ • - + 

(in t he last inequality we used the fact that n! > (n/e)n). In addition, 

since by a theorem of Mertens 

(1.t8), 

we can choose m 

s 1 = I ~ = 2 log log z + 0 ( 1 ) > 

~pSz 

2 
so that e s1 < m + 1 < 9s

1 
for sufficiently large z (this 

guarantees m < r), and then 
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es m+ 1 
1 

m+ 1 2 8 

(m + 11) S <e) < e -e 81 < e- 1 • 

Also, 1 - y S e-y for all real y, and thus 

2 -s1 TT ( 1 - -) < e • 
p -rySz 

Since r = ~(z) - 1, we can use 2r < z in (1.16). Then the inequalities 

above lead to 

9s1 -s1 
S(x,z) S z + xe 

Because of (1.18} there is a constant C such that for z ~ 3, 

2 log log z - C < s 
1 

< 2 log log z + C 

and therefore for sufficiently large x,z 

We now take 

and hence 

c 
S(x,z) < z(18 log log z + 9C) + -=xe~..,.,. 

(log z)2 

1 
20 log log x 

Z = X • Then for sufficiently large x 

log x < log z = 20 log log x , log log z _ log log x, 

Therefore for all x ~ 3, say, 

1 2 

S( 
20 1og log x) ~ x(log log x) • 

x,x ~ log x 



To complete the proof of Theorem 1.8 we observe that 

2 
T{x) < 2z + 2S(x,z) ~ x(10~ log x) . - og x 

The method used in proving Theorem 1.4 can easily be generalized. 

We could, for example, investigate the density of primes p for which 

p + 2 and p + 6 are also primes (it has been conjectured that there are 

infinitely many such prime triplets). We would find that there are 

h (log log x)
3 

~ x iog x of them below x. However, in Chapter 3 we will obtain 

more accurate and more general results by using Selberg's sieve, so we 

will not deal further with this subject here. 
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So far we have dealt only with Brun' s upper bound method. However, 

the lower bound method is analogous {actually one of the advantages of 

Brun's over Selberg's sieve is that the two methods are almost identical 

in case of Brun' s sieve). The most important difference is that in ( 1. 7) 

we would take m odd in order to obtain a lower bound for S{x,z). After 

making a few obvious modifications in the proof of Theorem 1.4 we would 

~~--1~~ 2 
find that s(x,x

20 
log log x) > cx(10~0!0~ x) for same positive con-

stant c. Unfortunately, this result does not allow us to obtain a lower 

bo\ll}d for T{x). 
"'--

The best versions of Brun's sieve give estimates for S(x,x0 ) where 

a< 1/2 is a constant. There a set of primes is chosen: 

p <p <···<p. 
t t-1 1 
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In the upper bound method s(n) is defined as in (1.8) except that sum­

mation is over those d which have at most 2i of their prime divisors 

greater than or equal to pi (~the lower bound method: at most 2i - 1). 

By choosing those t primes appropriately it is possible to show that 

T(x) ~ x(log x)-2• 

We will obtain this result using Selberg's sieve. 
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Notes on Chapter 1. 

Proofs of Mertens' theorems (Eqs. (1.3) and (1.18)) may be found in 

Hardy and Wright [1; Chapter 22]. 

The exact formula ( 1 .2) not only fails to give a good asymptotic 

estimate for n(x), but it is also not very useful in actually calculating 

n(x) for a specific x. However, Meissel [1] has found another exact 

formula for n(x) which leads to an effective (even though laborious) 

procedure for calculating this function. Uspensky and Heaslet 

[1; Chapter 5] also give a presentation of this method. 

Several mathematicians have investigated the number ~(x,y) of 

positive integers~ x and free of prime factors~ y. Buchstab [1] 

proved that for a fixed u ~ 2, 

where 

lim t(yu,y)y-ulog y = w(u), 
y-+oo 

d 
du (uw(u)} = w(u-1) 

for u > 2. Further results were later obtained by De Bruijn [ 1) -[ 3] 

and Ramaswami [1], [2]. Their methods, however, were analytic. 

Our version of Brun's sieve largely follows the presentation of 

Landau (2; Part 2, Chapter 2], Rademacher [2; Chapter 15], and Gelfand 

and Linnik [1; Chapter 5]. The main difference is our explicit use of 

the sieVing function s(u), a concept borrowed from Selberg's sieve. 

The literature on Brun's sieve is rather extensive. Practically all 

the papers listed in the Bibliography that were published before 1942 



deal with this subject. Moreover, there is a presentation of Brun's 

sieve in Gelfand and Linnik [1; Chapter 5]. Although it had seemed 

for a while that Selberg's sieve had superseded Brun's, Miech [2] 

recently used the latter to prove important results on the almost­

prime values assumed by a polynomial. 

16 
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2 

SELBERG Is SIEVE 

Let us suppose that A = (a } is a sequence defined by a = h( v), v \) 

v = 1 ,2,... where h is an integer-valued polynomial. Let P be a finite 

set of primes (:S. z for scme z). Many important number theoretic 

problems reduce to the problem of estimating the number S(A,P,n) of 

a , v-:1 , ••• , n 
\) 

w·hich are not divisible by any prime p E P. For 

example, such estimates in the case h(x) = x(x+2) give information about 

the twin primes. In this chapter we prove a result (Theorem 2. 17) which 

will enable us to obtain effective upper bounds for S(A,P,n) in a wide 

variety of cases. 

Selberg's sieve can be formulated so as to apply to general sequences 

of integers. However, the sequences generated by polynomials are 

the most important ones for which effective estimates can be obtained, 

and so we will deal only with them. 

Let N(d) denote the number of solutions of 

(2 .1) h(v) = 0 (mod d), 1 < v < d. 

Then by a property of congruences N is a multiplicative function. 

Those primes p for which N(p) = 0 do not contribute to the "sieving out" 

process and so we may assume that none of them belong to P. In addition, 

if N(p ~ p for some prime p E P, then S(A,P,n) = o. Therefore we will 

require :S. N(p) < p for all p E P. For convenience in later work ''e 

define 

(2.2) d 
f(d) = N(dJ . 

The function f is multiplicative and 1 < f(p) :S. p for all p E p. 
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The v between 1 and n are divided into [~] complete residue classes 

modulo d plus at most d - 1 additional v. There are exactly N(d) integers 

v in every complete residue class such that a = 0 (mod d) and there are 
v 

at most N(d) such v among those left at the end. Hence 

(2.3) I 1 = [~]N(d) + e·N(d) = f(~) + R(d), (o ~ e ~ 1) 

v<n 
dja 

v 

where 

(2.4) IR(d) I s. fCd) • 

Let us now define n = IT p and 
pEP 

Then 

(2.5) 

s'(a) = I ~(d) 
dl (a,n) 

S(A,P,n) = I s'(av) = I 
v<n v<n 

if (a,n) = 1, 

if (a,TI) > 1. 

I ~(d) 
dj (a ,rr) 

v 

= I~(d) I 1 = n I ~f~~ + I~(d)R(d). 
din ~n djn djTI 

dja 
v 

Unfortunately this relation suffers fran the disadvantage that the second 

term, the remainder term, is a sum over all the divisors of IT, and so is 

very difficult to estimate. The main problem is to circumvent this obstacle. 
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First we observe that if s(a) is a function defined by 

(2.6) s(a) = } X(d) 
'-' 

dl (a,n) 

where ~(d) is any function defined for all dill, then (just as in (2.5)) 

L s(a) = n I ~~~~ + L ~(d)R(d) 
v~n din din 

where the left side depends on ~. If~ is chosen so that s(a ) < s'(a ) v - \) 

for all v, then 

(2.7) S(A,P,n) ~ n L ~~~~ + L ~(d)R(d). 
din din 

The essential part of both Brun's and Selberg's sieves is the choice of 

~ so that S(A,P,n) can be effectively estimated. The difficulty lies in 

the need to make the remainder smal.ler than the main term, while at the 

same time minimizing the latter (since we would like to minimize the right 

side of (2.7)). The task of making the remainder term fairly small is 

accomplished in both sieve methods by defining ~ to be zero outside a 

* relatively small subset D of divisors of n. In Brun's sieve, ~ is chosen 

* * equal to ~ on D , and D is chosen (in a rather complicated way) to ensure 

that s(a) ~ s '(a). In Selberg's sieve, on the other hand, the possibility 

* of choosing ~ different from ~ is utilized, while D is chosen in a rather 

simple fashion. The resulting estimates are, as it turns out, more effec-

tive than those obtainable with Brun's sieve and are easier to find. 
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(It should be pointed out, however, that the transition fran Brun' s to 

Selberg's sieve was not as obvious as it might appear from this chapter. 

Our whole presentation utilizes many ideas introduced by Selberg in 

connection with his sieve, while Brun's sieve was originally formulated 

quite differently.) 

The set of all functions defined by (2.6) is too wide to work with. 

However, it turns out that very good sieving functions can be selected 

f rom a subset of it that is particularly well-behaved. 

Suppose we define 

(2.8) s(a) = L A(d) 

dl (a,n) 

where A is any function defined on all the divisors of n. Then 

(2.9) 2 
s (a) = 

2 ( L A( d)) = L ).(d) 

dl (a,n) dl (a,n) 

where 

(2. 10) ).(d) = L A(d1 )A(~). 
d,,d21n 

d=[d,,~l 

Thus if we denote by T the set of all functions s defined by (2.6), then 

2 
s E T -vhenever s E T. Selberg's decisive observation was that we should 

2 look for our sieving function among the functions s , where s E T. One 

great advantage of this choice, as we shall see, is that it leads to a 
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quadratic form which enables us, for every subset D of divisors of TI, 

~ . to find the minimum value of X: f(dJ over all functions A which are 
d!TI 

zero outside D. The main reason for this is the great freedom of choice 

as to A. To make s2(a) > s'(a) it is sufficient to ensure that s2 (a) > 1 - -
when (a,TI) = 1 and that s2(a) > 0 when (a, TI) > 1. The first condition 

is easily satisfied by specifying A(1) = 1. But the second condition is 

satisfied trivially no matter what real-valued function we choose for A. 

Thus (2.7) will hold subject to the single restriction A(l) = 1. This 

is of great practical importance, since for a general function s defined 

by (2.6) it might be very difficult to prove that it satisfies s(a) ~ s'(a). 

As a result we can, when looking for the minimum of E ~t~~1treat A(d) 
diTI 

as a free variable whenever d > 1. 

Before we prove the main theorem (Theorem 2.13) 1 we will derive a 

few preliminary results. Let us define 

(2. 11 > g(k) = I ~(d)f(k/d) 

so that 

dlk 

f(k) = Ig(d). 

dlk 

If kiTI then (d, ~) = 1 for each divisor d of k and hence f(k/d) = f(k)/f(d) 

since f is multiplicative. Therefore if k I TI we have 

g(k) = f(k) I ~(d)/f(d) = f(k) IT ( 1 - fCp)) • 
djk Plk 
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In particular, we see that g(k) > 0. Also, since f is multiplicative, 

and therefore 

Next, let D be a finite, divisor-closed set (i.e., if d E D then 

all divisors of d belong to D) and let 

F(k) = I G(d), 
dED 
ktd 

where G is arbitrary. Then we have the inversion formula 

(2. 12) I ~(~)F(t) = G(d) 

tED 
dlt 

because 

I ~ ( ~ )F ( t ) = I ~ ( ~) L G ( .t, ) = L G ( .t,) I ~ ( ~) = I G ( .t, ) I ~ ( 6 ) = G (d) • 

tED tED .tED .tED djt .tED I.e, 
dlt dlt dl.t tl.t t!.t dl.t 

6 d 

(2.13) THEOREM. Let D be a divisor-closed set of divisors of n, and let 

* D ={~In, d = [d1 ,~], where d1 ,~ ED). Assume that A(1) = 1 and 

that A(d) = 0 if d ~ D, and let 



X(d) = I h(dl )A(~) 
d1'~ED 

[d,~]=d 

* if d E D , 

* and define X(d) = 0 if d ~ D • Let 

Then 

(2.14) 

where 

(2. 15) 

H(A) = I ~f~~ . 
dED* 

1 
H(A) ~ Q , 

Q = I sed> , 
dED 

and this lower bound is attained when 

(2. 16) A(d) t+(d)f(dl \ 1 
1\ = Q /_, SltY . 

tED 
dlt 

Proof: We have 
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g(t) 



Now we write 

By (2.12) this means 

y(t) = I ~f~~ · 
dED 
tid 

A(d) = f(d) I ~(t/d)y(t). 
tED 
dlt 

Since f is multiplicative, f(l) = 1, and by taking d = 1 we find 

This leads to 

1 = I ~(t)y(t). 
tED 
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\ 2 \ 2 2\ 1\~ 1 
H(A) = L g(t)y (t) = Lg(t)y (t)- Q ~~(t)y(t) + ~ ~ -grt) + Q 

tED tED tED Q tED 

\ 1 1 2 1 = ~ srtT (g(t)y(t) - ~(t) QJ + Q . 
tED 

Therefore min H(A) = 1/Q and this minimum is attained if and only if 

y(t) = ~f~~ . 
But in view of (2.12) that is equivalent to 

•(d) llil \ ~(t/d))(t) - f(d)~J,(d) \ 
n = Q L s(t - Q L grty · 

tED tED 
dlt dlt 



(2.17) THEOREM. If Q and A are those of Theorem 2.13, then 

{2. 18) S(A,P ,n) S ~ + L I A(d1 )A(~)R( [dl'~]) I· 
d1 ,d2ED 

For D = (d: din, ~z) this leads to 

(2.19) 
2 1 -2 

S(A,P,n) ~ ~ + z IT {1 - fGJ) . 
pEP 
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~: Relation (2.18) follows immediately fran (2.7) and (2.14). We 

thus only need to prove that 

(2.20) 

By Theorem 2. 13 

IA(d) I - fill. \ 1 < ~ .!. \ 1 = ilil 
- Q L g{t} - S{dJ Q L gnJ SfcfY 

tED 6ED 
dlt 

since g{t) > 0 and g is multiplicative. Also, by {2.4) and the fact that 

f(k) s k 

[dt'~] d1~ 
IR([d1'~l)l s f([d,,~l) = {d,,~) 

Hence 

(2.21) 
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(2.22) Q= \ ~~ ITC1+b), L g\U.J pEP g,p, 
dED 

and 

1 1 ___!_(Pl_ 1 - 1 
1 + g1P) = 1 + f[p)-1 = ~ = (1 - f{P)) • 

Thus 

2 rr < , >-2 RSz 1 -rr=' . 
pEP .L\PJ 

This finishes the proof. 

In the proof of Theorem 2.17 we could have combined (2.18) with 

(2 .21) to obtain 

n 2 2 
S(A,P,n) S Q + z Q • 

The reason we replaced the Q in the second tenn above by a. simpler 

expression (simpler than the expression defining Q1 that is) is that 

2 2 the size of z Q is determined mostly by z, and we do not lose much by 

using the estimate (2.22) for Q. The size of Q is critically important, 

however, for the main tenn. The main difficulty in the applications 

we will be discussing in the next chapter will be in finding a. good 

lower bound for Q. 



Notes on Chapter 2. 

An obvious way to generalize the results of this chapter is to drop 

the restriction that the a be generated by a polynomial. In fact, 
v 

the only place where we used this property of the a was in proving v 
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(2.3)· If we were to start with some general sequence {a } and defined1 v 

say, 

R(d) = L 1 - :t(d) 
v<n 
dTa v 

for sane multiplication function f satisfying 1 < f(p) S p for all 

pEP, then Theorem 2.13 and the inequality (2.18) would still be valid 

(with the R(d) defined as above). Whether effective use could be made 

of these results would then depend on whether the function f can be 

chosen so as to make the second tenn on the right side of (2.18) small, 

which would be equivalent to making R(d) small on the average. This can, 

in fact, be done for many sequences. Perhaps the most important cases 

are those of values of polynomials at primes. Going back to the example 

of twin primes that was treated in Chapter 1, we could, instead of taking 

a = (2n-1)(2n+1), consider a c p + 2, where p is the v-th prime, with v v v v 

v = 1, ••• , n = ~(x) for sane x. Then we would have 

L 1 = l(p; p S x and p + 2 50 (mod d)ll = ~(x,d,-2). 
v<n 

dla v 

It would then be natural to write for d odd 

L 1 = ~f~~ + (~(x,d, -2) - ~f~~). 
v<n 

djav 



(Notice that we are not literally following the suggestion at the 

beginning of this note.) In place of (2.7) we would then obtain 

(with 2 ~ P) 

S(A,P,1t(x)) ~ U(x) I ~f~~ + I >.(d){1t(x,d,-2) - ~~~~). 
din din 

We could then apply Theorem 2.13 and obtain an inequality analogous 

to (2.18); namely 

S(A,P,1t(x)) ~ U~x) + I I A(d1 )A(~}(1t(x,d,-2) - ~f~~ J I 
d1 ,~ED 
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where the Q and A are defined in Theorem 2. 13. It is here that the large 

sieve becomes very useful. Through results such as Bombieri's theorem 

(Chapter 8), which says that the terms 1t(x,d,-2) - t~~~~ are small on 

the average, it enables us to conclude that the second tenn above is 

small. For further discussion the reader is referred to Richert (3). 



3 

APPLICATIONS OF SELBERG'S SIEVE 

This chapter discusses applications of Selberg's sieve. Our 

notation is the same as in Chapter 2; that is, we will work with a 

sequence A= (a ) given by a = h(v),where h is an integer-valued 
v v 

polynomial. N(d) will denote the number of solutions of h(v) :: 0 

(mod d) for v = 1, ••• , d, P will be a set of primes such that p ~ z 

and 0 < N(p) < p for all p E P, n = 1TP, f(d) = N(d) for din. We 
pEP 

seek estimates of S = S(A,P,n), the number of elements of (a1, ••• ,an) 

which are not divisible by any pEP. Theorem 2.17 then states t~~t 

(3.1) s < !!. + 2lT ( 1 1 ) -2 
-l'\ z -f"=' ' ~ pEP .1. \PJ 

where Q = r g(d) and g(d) • r ~(t)f(d/t). In all applications 
din tid 
d<z 

we follow the same basic procedure; namely, choose the polynomial h, 

find f, estimate Q from below, choose z so as to minimize the right 

side of (3.1),and complete the estimate. 

Our first application is to primes in arithmetic progressions. 

29 

We consider the polynomial h(v) = t + kv, where t and k are relatively 

prime integers. Then 

1 if p'i,k, 
N(p) IC { 

0 if Plk· 
p 

We define P = (p ~ z; p)k), so that f(p) c NtPJ = p for pEP. Hence 

for din we obtain 
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g < d > = I ~ < t )f < d/ t > = 2:: ~ < t > ~ = d rr < 1 - ~ > = cp( d > • 
tid tid Pld 

Since the greatest squarefree d.ivisor of every natural number d ~ z 

which is relatively prime to k divides rr, we find 

( 3·2) > > I 
d<z 

(d,k)=1 

1 
d 

To estimate the last sum, we use the following result: 

(3.3) LEMMA. For y ~ 1 and any positive integer K we have 

Proof: We have 

\ ! > !llillog Y• L m- K 
m<y 

(m,K)=1 

( IT (1 _ l > -
1

) ) l = ~IT < 1 + .!.+ -1 + 
IK p L m I p 2 

P m<_y K P 
(m,K)=1 

Hence 

\ l > \ .!. > log y. L m- L m 
~y ~y 

(m,K)=1 -

\ .!. > log y • 1T { 1 - pl) = cpK(K) log y. 
L m- PIK 

m<y 
(m,K)=1 

Using the above estimate ve now deduce fran (3.2) that 

Q > !i!llog z. 
- k 
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Also, 

2 1 -2 2 1 -2 2 1 -2 2 2 
z lT < 1 - !'-' > = z IT < 1 - - > < z IT (1 - - > ~ z log z . 

pEP .L\PJ pEP P - p~z P 

Therefore (3.1) now yields 

(3.4) S ~ k n 2 2 
~ ~ log z + z log z for z ~ 2, 

when the constant implied by the ~ notation is absolute; that is, it 

is independent of k, .t, n, and z. To minimize the right side of (3.4) 

we now choose z = n 
1
/ 2/log

2 
n. Then for n sufficiently large we will 

have z ~ 2 and log n ~ log z. Therefore we finally obtain 

(3 5) S ~ k n 
• ~ cp(k) log n 

for n sufficiently large. We now use this resul.t to prove a Brun-

Titchmarsh type estimate on primes in arithmetic progressions. 

Let n(x,k,t) be the number of primes p ~ x such that p =-!, (mod k). 

(3.6) r.mEOREM. If x and yare real numbers, k and t integers satisfying 

1 ~ k < y ~ x, (k,t) = 1, then 

where the implied constant is absolute. 

~: Let m be the largest integer such that m ~ x - y 1 m = -!, (mod k) 1 

(x-m / and let n "" k] , so that n ~ y k + 1 • Then the integers a such that 



x - y < a. < x and a = t (mod k) are precisely m + k, m + 2k, ••• , m + nk. 

Since (m,k) = (t,k) = 1, we find from (3.5) that of these 

~ k __ yLk _ 
cp(k) lOiYlk 

are not divisible by any prime p ~ n1
/

2
/log

2
n, provided y/k is sufficiently 

large. But then 

<{ y 
cp(k)log(y/k) , 

again provided that y/k is greater than sane constant. But for y/k 

bounded, this result is trivie.l.ly true. 

(3. 7) COROLLARY. If x is a. real number, k and t integers such that 

1 < k < x, (k,t) = 1, then 

~(x,k,t) <{ cp(k)l~g(x/k) • 

~: Take x = y in Theorem 3.6. 

It might be expected at first that the above estimates could be 

easily derived fran the prime number theorem for arithmetic progressions, 

which gives an asymptotic formula for ~(x,k,t). In general that is not 

the case, however. Even under the assumption of the very powerful 

(and unproved) generalized Riemann hypothesis, we could only conclude 

that for (k,t) = 1 
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~(x,k,t) = ;(£)) + O(x
1
/
2 

log x). 

2 
If x is much larger than y , for example, ( 3.8) implies only that 

~(x,k,t) - ~(x-y,k,t) = O(x
1
/ 2 log x), while 1f k is much larger than 

\(X , it would only imply that ~(x,k,t) = O(x1/ 2 log x). These results 

are much weaker than the estimates (3.6) and (3.7) (in many cases weaker 

even than the estimates one obtains by considering the total number of 

integers n, n ·= t (mod k), that are in the appropriate interval). 

The main purpose of proving first the estimates (3.5) - (3. 7) was 

to acquaint the reader with the methods used in applying Selberg's 

sieve. We will now prove a very general theorem which will include 

those estimates as special cases. 

In our first application of Selberg's sieve we have considered one 

linear factor kv + h, while in the second part of Chapter 1 we have 

applied Brun's sieve to the product of the two linear factors v and 

v + 2. We will now generalize to the case of s linear factors 

a1v+b1' ••• , a
6
v+bs' where the ai and bi are arbitrary integers. More 

specifically 1 we will obtain upper estimates as to how often all of the 

factors laiv + bil are prime at the same time, and then will apply these 

estimates to several important problems of number theory. 

To obtain the desired estimates we will consider h(v)"" {a1v+b1) 

(a v+ b ) • To avoid the case where one of the linear factors of h has s s 

a constant prime divisor we will require that a
1 
~ 0 and ( ai, b 

1
) = 1 

for i "" 1, ••• , s. More generally, we will require that h as a whole 

... 



should not have a constant prime divisor; that is, we will require 

that N(p) < p for all primes p. (A non-trivial case when this condition 

is violated is given by h(v) = v(v+2)(vt4). Here N(3) = 3, and therefore 

3, 5, 7 is the only prime triplet of the fonn p, p+2, p+4.) Verifying 

t hat this condition is satisfied is quite easy, since N(p) S s for all 

primes p (as will be shown in Lemma 3.9), and therefore only the primes 

p ~ s have to be checked. Finally, we will require that aibj - ajbi ~ 0 

for i ~ j 1 since we would not get any additional infonnation by allowing 

one of the linear factors to be a multiple of another (in view of the 

requirement that (ai,bi) = l, the only way a1bj - ajbi = 0 can happen is 

if aiv + bi = ±(ajv .+ bj)). 

Our next step is to estimate N(p) for a prime p. 

(3.9) LEMMA. We have N(p) S s for all primes p. Moreover, N(p) < s if 

and only if pIE, where 

Proof : Let p be a fixed prime. Consider any linear factor a
1 

v + b 1 • 

If p lai, then 

(3.10) 

has no solution, since (a1,bi) = 1. If Plai' then (3.10) has exactly 

one solution for v = 11 ••• , p. Since h(v) = 0 (mod p) implies that (3.10) 

holds for same i, and (3.10) has at most one solution for each i, we must 

have N(p) S s. 



Let us now investigate the conditions under which N(p) < s. We 

have already seen that this happens it pI a
1 

for sane i. Another 

(and the only remaining) way this can occur is if two of the linear 

factors are divisible simultaneously by p; that is, if there are i,j 

with i ~ J such that 

and 

ajv + bj e 0 (mod p) 
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for sane integer v. However, this occurs if and only if Pl(aibj- ajb
1
). 

This finishes the proof. 

We define P = (p ~ z; N(p) ~ 1) to be our set of sieving primes. 

Then n = Tf p, and S = S(A,P ,n) is 
p~z 

the number of positive integers 

N(p)>o 

m < n such that none of aim + bi for i = 1, ••• , s is divisible by a 

prime p ~ z. As in the previous application of Selberg's sieve, our 

main task will be to estimate Q = E 
1 

fran below. 
din g{d} 
d<z 

Let P · 
k = Tf p for k = 0, 1, 

p<z 
... , s-1. We write each natural 

N(p)=k 
m 

number m as m = TT p p; that is, m will be the 
Plm P 

prime power expansion of m. We also define m ( 1 ) 

exponent of p in the 

m 
= lT p P, for 

Plm 
N(p)=i 



i = o, .•• , s 1 so that m = m(o) m(l) ••• m(s), where plm(i) if and only 

if plm and N(p) = i (and m(i) = 1 if there are no primes p such that 

plm and N(p) • i). 

If k is a positive integer such that kiiT (and thus k is squarefree), 

then 

g(k) = f(k) I ~(d) f(d) = f(k) 1T (1 - f(p)) 
dlk Pl.k 

= N(k) Tfl (1 - !ili?J.). 
p k p 

Therefore, since n is the product of all primes ~ z which do not divide 

(3. 11) Q= I g(d) = L Nid) 1T (1- ~)-1 
din din PI d 
d<z d<z - -

= L IT (~ + rf~p) + ••• ) 
dlnPid P 
d<z 

1 d - TT (N(p)) p 
d PI d 

Let us now define dt(m) for positive integers t,m to be the number 

of representations of m as a product of t positive integers, where two 

such representations k1 ••• kt and k{ ·•· k~ are to be regarded as 
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identical only if ki = k~ fori= 1, ••• , t. (Thus, for example, 

2·2·3 and 2·3·2 would be regarded as different representations of 12.) 

It is clear that for a fixed t, dt is a multiplicative function. 

proof: The lemma is true for t = 1 , since d
1 
(p a) = 1 = 1 a. Assume that 

it is true for t. Since each product of t + 1 factors is a product of 

one factor with the product of the remaining t factors, we obtain 

dt+l(pa) = I dt(pb) ~ L tb ~ (t + 1 )a. 

o<b<a o<b<a 

Hence the lemma is proved by induction. 

(3.13) LEMMA. I ~ IT 
~z i= 1 

(m,P 0 )=1 

Proof: --
1 

Let - be a term appearing in 
ki 

Then k = k(i) k(i+l) ••• k{s) 
i i i i • From the following array 



k = k( 1) k(2) k(3) ( s) 
1 1 1 1 ..•••....• kl 

k2 = 
k(2) k(3) (a) 

2 2 •••••••••• k2 

(3. 14) k3 = 
k(3) (s) 

3 
•••••••••• k3 

m 
(2) 

• • • • ••• • • • m 
(s) 

we see that if m = k1 k2 ••• ks' then 

(3.15) m(i) = k~i) k~i) •••••• k~i) for i = 1, .•• , s. 

1/s 
Now ki ~ z for each i, and s~ m ~ z. Likewise, (ki 1p0) = 1 for all 

i implies (m,P0 ) = 1. ~if we expand the right side of (3.13), each 

1 1 
of the tenm k k k will be equal to some tem. - on the left side. 

1 2 ••• s m 

Moreover, it is apparent from (3.15) that a given m appearing on the left 

side of (3.13) cannot be represented as k1 ••• ks in more than 

d1(m( 1)) ••• d
6

(m(s)) ways. Hence the inequality (3.13) is valid. 

The remainder of our worlt is now very easy. From ( 3. 11 ) and Lemma 

3.12 we obtain 
1 m - IT (N(p)) p = 
m PI m 

m 
IT <it<P P). 

Plm 
N(p)r::k 



But dt is a multiplicative function for each fixed t, so 

s 
> Tf 

i:: 1 I 
k<z1/s 

(k,P0 ~ •• Pi_1)=1 

utilizing Lemmas (3.13) and (3·3 ). Since E and P0 ••• Ps_1 have the 

same prime f&ctors,we find 

(
log z)s 6

-
1 TT 1 -s s 1 s-N(p) 

Q > TT ( 1 - -) = s (log z) v ( 1 - -) • 
- s I P P i= 0 p P

0 
••• Pi . p E 
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This is the required lower bound for Q. To estimate the remaindei tenn 

we note that N(p) S s for all primes p, and therefore for s < p 

-1 
{1 - ~) < {1 - !)-1 < (1 - l)-s. 

f\PJ - p - p 

If p S s, then N(p) ~ p - 1 {since N(p) < p for all p), and so 

Hence 

-II (1 
PEp 

1 - 1 MI ..... \ -1 
(1 - f1P}) = (1 - ~) S P· 

-2 1 -2 
- f(p)) = lT (1 

pEP 
-~> · IT (1 

f\PJ pEP 
PSS s< p 

2 s ( lT p) . ( lT {t 
\><s pEP 

t )-26 - -) p 

- s<p 



s. IT P • IT < 1 - -> 
\ 

2) ( 1 )-2s 
S. s PS. z p 

'( )2s S. c log z for z ~ 2, 

where c 1 is a constant depending only on s. From (3. 1) we now obtain 

s 
s < ----~s----~~ 

1 s-N(p) 
n 1 2 ( )2s -~=---- + c ·z • log z for 

(log z)s 
ff(l--) 

PIE p 

If we now choose z = n1/ 2 (log n)-28, then we find that 

(3.16) 1 -s+N(p) 
S < c • (s) IT (1 - -) 

- pIE p 

n 

(log n)6 

z > 2. 
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for n sufficiently large (bound dePending on s only) and c • a function 

of s alone. 

Because of its definition, S counts all those v for which none of 

the factors aiv + bi is divisible by any prime S. z, but it does not 

count those v for which each of laiv + bil is a prime if at least one 

of them is < z. However, for a given linear factor aiv + bi' 

laiv + bil S z has at most 2z + 1 solutions. Hence the total number 

of v such that laiv + bil is a prime for 0 = 1, ••• , s which were sieved 

out is Ss(2z+1). Wenowobtain 

(3.17) THEOREM. Lets be a positive integer, and suppose that for 
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s 
E = IT ai ·IT (aibj- ajbi) ~ 0. Let N(p) be the number of solutions 

i=1 i<j 

of (a1v + b 1) ••• (a
5

v + b
8

) ~ 0 - (mod p) for v = 1, ••• , p for each 

prime p, and assume N(p) < p for all primes p. Then the number of 

positive integers m ~ n such that each of laim + bil (i = 1, ••. , s) is 

prime is 

1 -s+N(p) 
< c(s) n • lT (1 - p-) 

(log n)6 
PIE 

Proof: For n larger than a certain bound ( depending only on s) this 

follows fran (3.16) and the remark preceding the statement of the theorem. 

But for n bounded it is trivially true! 

We can make a few simple deductions fran this theorem. 

(3.18) COROLLARY. The number T(x) of twin primes S x satisfies 

T(x) ~ x 2 for x > 2. 
(log x) 

Proof: Take h(v) = v(v + 2). Then lEI = 2 and N(p) < p for all primes 

p since N(2) = 1. Hence the number of primes p S [x] such that p + 2 

is also a prime is 

< 2 c(2) [x] 
- 2 , 

(log [x]) 

and this implies the corollary. 

It has been conjectured that there are infinitely many primes p such 

that p + 2, p + 6, and p + 8 are also primes, but just as in the case of 



twin primes nothing is known for certain. The next corollary, how~ver, 

gives an upper bound for their density. 

(3.19) COROLLARY. The number of primes p S x such that p + 2, p + 6, 

and p + 8 are also primes is 

~ x for x > 2. 
(log x)4 

Proof: Take h(v)= v(v + 2)(v + 6)(v + 8). Then lEI = 29 ·3
2

, and 

N(2 ) = 1, N(3) = 2, proving N(p) < p for all primes p. 

For our last application we will consider the number of representa-

tions of an even positive integer as a sum of two primes. If Golbach's 

conjecture is correct, then this number is always positive (except for 2 

and 4). We are going to give an upper bound for it. 

(3.20) COROLLARY. Let a be a positive even integer, and let T(a) be the 

number of primes p such that a - p = q is also a prime. Then 

T(a) ~ a 2 Tf (1 + l) for a > 2. 
(log a) pI a P 

Proof: We consider h(v) = (v + 2)(a- 2- v) for v = 1, ••• , a-5· 

lEI =a, N(2) = 1, and in general N(p) = 1 for pia. The corollary follows 

easily from Theorem 3.17 for a sufficiently large, and it is trivially 

true for a bounded. 

As an important application of the above estimates we will now prove 

the following important result. 
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(3.21) THEOREM. There is a constant c such that every integer~ 2 can 

be represented as a sum of not more than c prime numbers. 

Proof: The basic idea is to prove that the integers representable as a 

sum of two primes, together with 1, form a sequence of positive 

Schnirelmann density. The theorem will then follow by virtue of well-

known results on addition of sequences. 

Let n 1 denote those integers that can be represented as a sum of 

two primes. Then by the Cauchy-Schwarz inequality 

Now 

n<x 

I T(n) ~ 
n<x 

I, 
P,+P2Sx 

P,P2Sx/2 

n<x n'<x 

2 
= Jt2(~) ~ x 2 for x > 4. 

(log x) 

Also, by Corollary 3.20, we have 

2 1 2 I T(n) ~ x 4 I IT (1 + -) 
n<x (log x) n<x p I n P 

< 
2 

X 

(log x)4 
I (I 

n<x din 

2 
X < ---T'"4 

(log x) 

2 
1 + _...;.x.;..._--r-

4 d1~[d1 ,~l (log x) 

, I 1 
n<x 

n=O(mod[d1 ,~]) 



In the second sum above we use the fact that each k ::: x can be expressed 

as [d1 ,~] in at most k ways, and each such expression contributes 

1 1 
d1~ ::: k to the sum. Therefore that sum is < x. In the first term we 

sum over k = (d1 ,~) to find 

~ d1~t!1 ,~J = ~ ~ k ::: I 1 
~ 1 

(d1~)2 k3 r}&2 
d1'~ k<x d1,d2 k<x 61,&2:::x 1 2 

[d1 ,~J:::x [d1 ,~J:::x (6,,62)=1 

k=(d1'~) 
2 

~ ( I \) ( ~ 12) ~ 1. 
k<x k &<x 6 

Therefore 

'\ 2 x3 
L T (n) ~ 4 , 

n<x (log x) 

and hence we find fran (3.22) that 

( t T(n) )2 

> n<x 

E T2 (n) 
n<.x 

>x for x > 4. 

This implies that the sequence consisting of 1 and the numbers representable 

as a sum of two primes has positive Schnirelmann density, and therefore 
, 

every positive integer is the sum of ::: c primes and ones, for sane constant 

I 
c • To prove the theorem we have to show that given m ~ 2 there is a 

representation of it which does not involve ones. This is clearly true if 

m = 2 or 3. Suppose therefore that m > 4 and that 
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m - 2 = L 1 + L pi for sane C ~ c' 1 

i<k k<i<c 

is a representation of m - 2 that we have proved exists. If k = 1 or 0 1 

then we write 

m = 3 + L pi' 
1<i<c 

or m = 2 + \ p L 1 , 

i<c 

respectively, and if k > 2 then we write the k ones as a sum of ~ k/2 twos 

and threes 1 and obtain 

m = 2 + I 2 + I 3 + I pi • 
k<i<c 

In any event we have found a representation of m as a sum of < c' + 1 primes, 

and this canpletes the proof. 
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Notes on Chapter 3. 

The presentation of this chapter largely follows Prachar [ 1; Chapter 2], 

who also gives several additional applications of Theorem 3.17. One 

problem which is dealt with neither in Prachar's book nor in this chapter 

is the explicit determination of constants in the inequalities above. The 

next chapter, on the other hand, will be denoted entirely to obtaining the 

best estimates of the Brun-Titchmarsh type that are known so far, with 

particular attention being :paid to the constants and the relat"ive sizes 

of the main tem and the remainder. However, it has been found in many 

cases that the upper bounds given by Selberg's sieves are several times 

larger than either the asymptotic estimates obtained thr01.gh analytic 

method.s (where these exist) or the conjectured asymptotic estimates. As 

an example, it has been conjectured that T(x), the number of twin prime 

pairs S x, satisfies 

T(x) ,.,. 2C 

where 

X 
2 

(log x) 
as x -+ co, 

c = TT <, - , 2 >· 
p~ 3 (p-1) 

(For heuristic arguments supporting this conjecture see either the original 

paper of Hardy and Littlewood [ 1], or Hardy and Wright [ 1; Chapter 22], 

or Golomb [1].) The best upper estimates obtained so far are asymptotic 

to 8C x 
2 

• It is not clear how far this bound can be lowered. 
(log x) 

Selberg [2), [3] has actually proved that his sieve is in general incapable 

of giving the exact constants. 
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Material on the Schnirelmann density and the addition of sequences 

can be found in Niven and Zuckennan [ 1 ] , Halberstam and Roth 

[1; Chapter 1], or Gelfond and Linnik [1; Chapter 1]. It is easy to 

see from the proof of Theorem 3.21 that we can obtain a numerical 

value for c. This was actually done by Schnirelmann [ 1] in his 

original proof (in which, however, he used Brun's sieve, since Selberg's 

method was not known at that time), but his value was very large. After 

many subsequent improvements Shapiro and warga [ 1] showed that Theorem 

3.21 holds with c = 20. (It should be mentioned, however, that in the 

meantime I. M. Virogradov [ 1] had proved that every sufficiently large 

integer is a sum of at most four primes.) 
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PRIMES IN ARITHMETIC PROGRESSIONS 

This chapter uses Selberg's sieve to obtain new estimates of the 

Brun - Titchmarsh type due to Van Lint and Richert • These are the best 

estimates of this type known to date. They can be stated as follows: 

(4 . 1) THEOREM. If x and y are real numbers, k and t integers such that 

1 < k < y < x, - - (k,t) 1: 1, 

then 

(4 .2) n(x,k,t) - n(x-y,k,t) < ~(k)l~(y/k) (1 + log(~/k) ) 

and 

(4-3) 

By taking x = y in the above relations we immediately obtain 

(4 .4) COROLLARY. If x is a real number and k and t are integers such 

that 1 ~k < x, (k,t) = 1, then 

(4 .5) 

and 

(4 .6) 

( ) 2x (+ 8) n x,k,t < ~(k)log(x/k) 1 log(x/k) 

3x 
n(x,k,t) < ~(k)log(x/k) • 

These results are of the same nature as those of (3.6) and (3.7). 

In proving the earlier estimates, however, as well as in our other appli-

cat ions of Selberg's sieve, we absorbed the remainder in the main term 



by appropriate choice of z. We used the ~ notation quite freely 1n 

t his process, without detemining the implied constants. Had we been 

more careful, we could have obtained an estimate similar to ( 4.2) 

8 
(for y/k sufficiently large, at least), but with log(y/k) in the 
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remainder replaced by c ~~g 1(~/£ fk) for some constant c. The 

improvement in the Van Lint - Richert result comes fran a very careful 

treatment of the remainder tenn in Selberg's sieve. An important feature 

of the proof is the repeated application of the sieve; first a sieve 

estimate is proved (equation (4.13)) with a remainder somewhat smaller 

than we had previously, and then this estimate is used to reduce the 

size of the remainder even further (Lemma 4.16). 

Our starting point will be, in essence, equation (2.18). However, 

(2.18) deals with the values of the polynomial kv + t for n consecutive 

values of v, while we are interested in the values of that polynomial 

which fall in the interval (x-y,x]. Therefore we derive first a slightly 

modified version of (2.18) which gives a better estimate in our case. It 

will be quite clear, however, that we are not doing anything basically 

new at this stage. 

Let ITI denote the number of elements of a finite set T. We define 

S = S(k,t,x,y,z,K) = l(n; x- y < n S x, n = t (mod k), (n,n) = 1)1 

f or 1 < y S x, z > 1, (k,t) = 1, kiK, where 

n .. ~(z) = 
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In particular, (d,k) = 1 for all din. Therefore if din, there is 

exactly one integer n in each residue class modulo kd such that 

n = t (mod k) and n = 0 (mod d). Hence 

I ( n; X - y < n < X' n 5 t {mod k)' dIn) I c !a: + e' where 0 s. e s. 1 • 

Therefore, if s is a sieving function defined by (2.8), in view of 

(2.9) we find 

x-y<nSx 
n5t{mod k) 

2 s (n) = I I >-(d) = I >-(d) 
x-~ dl (n,n) diiT 

n5t(mod k) 

<l \Mll+ \1>-(d)l 
-k L d L.. 

din din 

c ~ LAid) + L IA(d1 )A(~) I· 

djn d1 ,~1n 

I 
x-y<nSx 

n=t(mod k ) 
din 

We again choose A to be a real-valued funct:Wn on the divisors of n 

such that A(1) = 1 and A(d) = 0 if d > z. 2 
Then s ( n) ~ 1 whenever 

{n,Il) = 1, and therefore 

2 
= ~ L ~ + (I IA(d)l) • 

din din 
d<z d<z - -
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In order to find the minimum of the first term on the right of (4.7) we 

apply Theorem 2.13, where for aln we take f(d) = d and define g(d) by 

(2.11), so that g(d) =~(d). We then find from (2.14)and (4.7) that 

t he main term is minimized when 

where 

A(d) = ~(~)d I 
tin 
t<z 

1 

cprty ' 

t~(mod d) 

For this choice of A we obtain the estimate 

(4.8) s ~ ~ + (I lA( d) 1)
2 

• 

din 
d<z 

This is the modification of (2.18) that we have been seeking. Had we 

applied (2.18) directly, we would have obtained a similar estimate, but 

with~ in (4.8) replaced by (y/k + 1)/Q. 

For later convenience we define 

~(x) = 
nSx 

(n,k)=l 
n<x 

(n,k)=l 

2 
~, X> 0. 
~ 



Then 

\(x) c: L lhl )~ 
~ = <-J cp{d) 

diK nSx 
(n,k)=1 
(n,K)=d 

diK m<x/d 
(m,k)={m,K/d)=(m,d)=1 

Since ~ (x) is an increasing function of x, 

2 

~(x) =::_ L ~ cp~~~ ~([) = cptK) ~(f) if (K,k) = 1. 

diK 

Therefore 

(4.9) 

Also, 

~<x) = I .. :f~~ I d = I 
nSx djn dS.x 

(n,k)=l (d,k)=l 

2 

I ~:~:~~ 
m$;</d 

(m,k )c: 1 
(m,d)=l 
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( 4. 10) ~(x) = L ~ in) IT (1 
nSX pIn 

1 1 L 1 M'K' + - + - + • • • ) > - > ~ log x p 2 - n-K 
p nSx 

(n,K)=l {n,K )c: 1 

by Lemma 3·3· 

We now return to the task of estimating S = S(k,t,x,y,z,K). In our 

new notation 



(4.11) Q = \ b- \ ~- Q_~(z) L ~\ UJ - L ~ - -,<;: 
din n<z 
d<z (n,K)-=1 

and for din 

A(d) = ~~{z)) \ 1 - ~~d~d -x L cprty - ~ z cp(d) 
tin 
t<z 

t::O(mOd d) 

\ 1 
L~ 

uln 
u$:1./d 

(u,d)=1 

(d)d \ &1 d ~d (z/d) 
= ~{z)~(d) L ~ c ~(d) ~ ~(z) · 

u'5:_z/d 
{u,Kd)cl 

Therefore A(d) = 0 for d > z, and 

(4.12) I IA(d)l = '<tc/z) I ~2 (d) <p{d) I ~:1:l 
djn d'S.z ~/d 
d<z (d,K)=1 (m,Kd)=1 

1 
= ~(z) 

\ ~ \ ~(z) 
L ~ Ld=uzy · 

nSz cp n din ~ z 
(n,K)=1 

Combining (4.8), (4.11), and (4.12) we obtain 

~(z) 
S c S(k,t,x,y,z,K) ~k~tz) + ~(z) . 

~(z) 2 2 
Equation (4.9) implies that (~(z)) S z • Hence 

(4.13) S(k,t,x,y,z,K) S.k~(z) + z2. 

53 
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This already represents an improvement over the estimates of Chapter 3, 
~ 2 2 when we knew only that the remainder tenn was ~ z (log z) • It turns 

out, however, that the bound on the remainder can be reduced still 

further. We will carry out this reduction (which will use (4.13) in a 

very important way) in the next two lemmas. 

(4.14) LEMMA. If p(k) denotes the greatest prime divisor of k (with the 

convention p( 1) = 1 ), then for x ~ 103 and p(k) ~ x we have 

Tk(x) = L 1 < ;5 S!(~) x. 
nSx 

(n,k)=1 

Proof: Let z satisfy 1 < z < x and define 

Then 

and K = IT p • 
p,S z 
p~k 

Tk {x) = S{1,1 1 x,x,z,K). 
1 

Therefore by (4.13) and (4.10) 

Tk (x) ~ X 1 
1 log z IT ( 1 - -) 

p< z p 

p{k 

Now k 1 1k implies that ~(x) ~ Tk (x), and thus 
1 

Tk(x) ~ X 1 
log z IT ( 1 - -) 

pS z P 

p~k 

2 
+ z • 

2 
+ z . 
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Since p(k) < x, we have 

It is known that for x > 1 

(4.15) Tf ( 1 - .!_ f 1 S e y log ( 2x) , 
PSX p 

where y is Euler's constant, and therefore by taking z = (2x) l/3 we find 

T(x) ~ k k < ey(3 + 2 lo 2x) • 
~ x - (2x)1 3 

By considering its derivative, we find that the expression on the right 

decreases for 2x > e3, and for x = 103 it is< ~5 . 

We might remark here that for a fixed k, Tk(x) is asymptotic to 

~ x. The importance of Lemma 4.14 canes fran the fact that it holds 

even when x is small, and that it gives a constant valid for all k and 

x satisfying the hypotheses. The restriction p(k) S x is quite natural, 

since the value of L 1 is independent of prime factors of k which are 

nsx 
(n,k)=l 

greater than x, while ~ = TT ( 1 - .!_) is a product over all prime 
PI k P 

f actors of k. Without the restriction p(k) S x we could take a sequence 

of values of k such that (for a fixed x) Tk(x) would be constant, while 

~ would tend to zero. 



56 

(4.16) LEMMA. For z > 103 and h even 

~: Define 

2 
2( ) a (n) 

~ n 2 • 
cp (n) n<z 

(n,h)=1 

Then by the Cauchy-Schwartz inequality 

(4.17) 

Since both a and ~ are multiplicative, we have for squarefree n 

a2(n)- IT {p+1)2- IT (1 + 4p ) \ 4v(d)d 
2 - 2 - 2 = L 2 ' 
~ (n) pI n (p-1) pI n (p-1) din cp (d) 

where v(d) is the number of distinct prime factor of d. Now h is even, 

and therefore 

(4.18) 

= ) 
L 

dS:l 
(d,2)=1 

2 4v(d)d 
~ (d) ~2_...:;:. 

~ (d) 

2 
1.1. (m) 

\ 2 4v(d)d 
::: z L ~ (d) 2 = z lT ( 1 

d<z cp (d) p> 2 

4 ) 16 + 2 < - z, 
(p-1) 5 

(d,2)=1 
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since 

TT < 1 + 
4 

2 ) = 15 • 9396. . . . 
p (p-1) 

Combining (4.10), (4.17), (4.18), and Lemma 4.14 we obtain 

K
2 (z) .!2 • ~ • z • ~ z 2 

-_n_ < 2 h 5 _ 24 h . _z-=--
~2(z) ~2 (h) 

1 
2 - ~ log2 z 

~ 2 og z 
h 

' 

provided p(h) S z. But both Hb(z) and ~(z) are independent of those 

prime factors of h which are greater than z, while ~(h) is increased 

by them, so that the above inequality is true even when p(h) > z. 

Proof of Theorem 4.1: Let 

6(x,y,k,t) = n(x,k,t) - n(x-y,k,t). 

Since for odd values of k the positive integers n such that n = t (mod k) 

are alternateiy even, and at most one of the even tenns can be prime, we 

will reduce the proof to the case of even k. More precisely, we define 

{ 

k 
h = 

2k 

if k even, 

if k odd • 

Then for a suitable t 1 we will have 

6(x,y,k,t) S6(x,y,h,t1) + 1. 

Since S(h,t1,x,y,z,h) counts at least those primes p which satisfy 

x - y < p S x, p > z, and p !I t 1 (mod h ) 1 we have 

6(x,y,k,t) S S(h,t1 ,x,y,z,h) + n(z,h,t1) + 1 for z > 1. 



Therefore by (4.13) we find 

(4.19) 

We define 

If we take z = 2 in (4.19), then 

6(x,y,k,t) ~ * + 2 ~ ~ + 2 = u2 
+ 2. 

Therefore if' W = cp(k)l~~(yJk) 6{x,y
1
kt), we have 

W < log u(.!. + g_) < 1 for 1 < u < e2 ·9 . 
- 2 2 2 u 

Also, since 

n(z,h,t1) + 1 < \ 2( ) z - 1 L ~ m ~ - 2- for z ~ 10, 

m<z 
(m,2)=1 

we find frcm ( 4. 19), ~. 10), and ( 4. 9) 

Defining v by 

we choose 

2 
W < log u f __ j + z

2
} for z > 10. 

- U:Og z 4 u 

v v u =- e 
./2 

z • ev • 
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Then 

(4.20) w < Log(v/J2) + v (1 + -1 } for v > log 10. 
- v 2v -

By examining the derivative of the function on the right we find that 

it decreases for v ~ .j2e (j2e > log 10) 1 and for v = j2e it is<~ • 

This proves (4.3)· It remains to prove (4.2). 

Since ~(h)= ~(k), (4.10) implies that 

----X-< y 
h~(z) - C9(k)log z · 

Also, 

~(z,h,~ 1 ) + 1 ~£ + 2 ~ C9(k) z for z > 2. 

Combining these inequalities and Lemma 4.16 (his even) with (4.19) 

we find that for z > 103 

(4.21) 

< log u { ~g u - 1 + 48 log u 
- og z u2 

Choosing 

log z = log u - 2 

2 z log u 
2 + 2 

log z u 

we find that the right side of (4.21) is 

log u I 2 + 48 • log u + 12g u } 
liog u-2 4 2" • 

e (log u-2) e u 

59 
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10 
This function is decreasing in u, and for u = e it is < 4, which 

10 8 
proves (4.2) for u > e • If u S e , then (4.2) follows directly 

from (4.3). 
8 10 If e < u < e , then we use (4.20). It says that, in that 

range, we have 

w < 1 .4 < 1 + - 4-log u ' 

which is the desired estimate. 
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Notes on Chapter 4. 

The presentation of this chapter follows closely the original paper 

of van Lint and Richert [1]. The only significant modification was made 

in the first p:l.rt in order to show the connection with the general theory 

of Selberg's sieve. 

The inequality (4.15) follows ~ediately from the inequality (3.30) of 

1 

Rosser and Schoenfeld [1] for x ~ e10g 2 • For x smaller than this bound 

it is easily verified directly. 

A large sieve estimate very similar to the one presented above has 

been recently obtained by Bomhieri [4]. He showed that (4.2) holds with 

0(1) in place of the 8 in the remainder term. 
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5 
GALLAGHER Is SIEVE 

Both Brun 1 s and Selberg 1 s sieve methods are applicable only to a 

relatively small class of sequences. In particular, only a relatively 

small number of residue classes modulo each prime can be sieved out of 

a sequence of consecutive integers. However, it is often desirable to 

find estimates for the case in which a large number of congruence classes 

is sieved out modulo each prime; for example, to investigate the density 

of integers which are not primitive roots for any prime in a given set, 

one would sieve out the ~(p) residue classes of primitive roots modulo 

each of those primes p. Linnik's large sieve was invented, as its 

name suggests, especially for dealing with such problems. In its most 

refined form it is applicable to all integer sequences, and it gives 

upper bounds similar to those of Selberg's sieve where both methods can 

be used. Chapters 6 and 7 will be devoted to an exposition of the large 

sieve. This chapter presents a new and very elegant sieve due to 

Gallagher. Although very elementary, it is larger than the large sieve 

in the sense that it gives better results than the large sieve when the 

number of residue classes sieved out is very large. 

We consider the case in which all but g(q) residue classes modulo q 

are removed for a given set of prime powers q. Gallagher's basic result 

can be stated as follows: 



(5.1) THEOREM. LetS be a finite set of prime powers, and let W be a 

subset of {M+1, ••• , M+N} (M and N any integers with N > 0) such that 
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for any q inS all elements of W fall into at most g(q) residue classes 

modulo q. 

(5.2) 

If Z = lwl (the number of elements of W) then 

I: A(q) - log N 
Z < q.._ES~-r--r----­

- I: Mil - log N 
qESg-cq} 

provided the denominator is positive*). 

Proof: We define, for each q in s, 

Z(q,h) = I {n; n E W and n := h (mod q)} I· 

As we will see in Chapter 6, the function Z(q1 h) arises quite naturally 

and plays a very important role in the large sieve method. For any given 

q in S we have 

q-1 

z = L Z(q,h) 

h=O 

and therefore by applying the Cauchy-Schwarz inequality and the fact 

that at most g(q) of the Z(q,h) are nonzero we find that 

q-1 2 q-1 

z
2 

= ( L z(q,h)) ~ g(q) L (Z(q,h) )
2 

• 

h=O h=O 

Q 
*) Mangoldt • s A-function is defined by A( q) = log p if q = p for same 
prime p and same a> 1f and A(q) = 0 otherwise. One of its basic properties 
is that I: A(d) = log 1nl whenever n ~ o. 

din 



Multiplying by ~(~~ and summing over s, we get 

(5.3) 

Now 

(Z(q,h) )
2 = ( 1 • 

new 
n eh(mod q) 

n,m E W 
n,m=h(md q) 

Therefore (5.3) implies 

q-1 

Z
2 I ~~~~ ~ L A(q) I I 1 

qES qES h=O n,m E W 
n,mEh(mod q) 

= I ( I 1). ( IA(q)) 

ldl~ m,nEW qld 
m-n=d qES 

n,m E W 
n=m(mod q) 
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= ( I 1) · ( I A( q)) + I ( I 1) · log I d I 
m,nEW qES 1Sidi~N m,nEW 

m=n m-n=d 

~ Z I A( q) + (z
2 

- Z) • log N. 

qES 

Dividing by Z (the result is trivial if Z = 0) we obtain 

Z • ( I ~ - log N) S. I A( q) - log N 

qE s qES 

which implies (5.2) if E ~q >log N. 
qES grq) 



We now derive two consequences of Theoem 5.1, both better than 

the corresponding large sieve estimates. 

(5.4) COROLLARY. If all but at most G residue classes modulo each 

prime power q E S are removed from the sequence M+1, .•• , M+N, then 

the number Z of remaining integers satisfies 

(5. 5) Z<G if I A(q) > G
2 

log N 

q€S 

and 

( 5.6) z < 2G-1 if I A(q) > 2G log N. 

q€S 

Proof: We can assume that G is an integer (otherwise work with [ G] ) • 

We rewrite (5.2) as 

z< 
- G log N G 1: A(q) 

qES 
--=-E~A~( q"""':')---G-lo_g_N_ = G + 

q6S 

2 
G lot N - G log N 
E h q) - G log N 

qES 

This implies that Z < G+1 if E A(q) > G2 log N and Z < G + G if 
q$ 
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r A(q) > 2 G log G. Since Z and G are integers, we obtain (5.5) and (5.6), 
qES 
respectively. 

(5.7) THEOREM. Let € > 0 be given. Then the number of positive integers 

a 9+€ A e 
n S N for which expp (n) S N for all primes p S N is ~ N 

0 < e < 1, with the implied constant depending only on €*). 

*) exp (n) is the smallest positive integer k such that nk E 
p 

if (p,n) R 1; otherwise eXip(n) ~ o. 

for 

1 (mod p) 
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Proof: The result is clear for e = 0. Therefore we assume from now on 

that e > o. 

For each prime p S y we remove all residue classes of exponent > x. 

Since there are ~(k) classes of exponent k for each kj(p-1) 1 as well as 

the zero class (which is of exponent 0), we have 

g(p) = 1 + I ~(k). 
k I (p-1) 

k<x 

1 We need to evaluate E . By the cauchy-Schwarz inequality we find 
p~ 

(5 .8) 

By the prime number theorem 

I log p ,.,. y as y -+ co 1 

P'5_y 

and so the right side of (5.8) is~ y2 for y ~ 2, say. Also 

I g(p)log p = I log p + I I cp(k)log p 

VSY VSY p<.y k 1 (p-1 ) 
- - - k<x 

< I log p + log y I ~(k)lt(y ,k, 1 ). 

p<y k<x 

By the Brun-Titchmarsh estimate (3.7) 

lt(y k 1) ~ y 
' ' ~ ~(k)log y 



if k
1

+E ~ y andy~ 2, with the implied constant depending only onE· 

1+€ Therefore if x > 2 and y ~ x , we find 

and thus 

L g(p)log p ~ y + xy ~ xy 

pSy 

where the applied constants again depend only on E. We now take 

e 8+€ 
x = N , y = N • Theorem 5.1 then ays that 

&+€ 
z ~ N 

€ eN - log N 

where c is some positive constant, provided cNE > log N (again, the 

constants depend only on E). Therefore 
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for N sufficietly large. But the result is clearly true for bounded N. 
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Notes on Chapter 5· 

The material of this chapter is drawn from Gallagher [ 3) • That paper 

contains also a comparison of the effectiveness of Gallagher's sieve and 

the large sieve as well as another interesting application of the above 

estimates. If for every prime power q,except perhaps for the powers of a 

finite number of primes, there is an integer a(q) such that a = ba(q)(mod q), 

a then Gallagher proved that a = b for same integer a. (A somewhat stronger 

result had been proved previously by Schinzel [1).) 
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TRIGONOMETRIC POLYNOMIAL INEQUALITIES 

The large sieve was invented by Linn:ik for the purpose of investi-

gating certain sequences obtained by sieving out a relatively large number 

of congruence classes modulo each prime frcm a given set of primes. It 

wasdiscovered soon afterwards, however, that the large sieve can be applied 

to all integer sequences (although it gives best estimates for sequences 

defined by a sieving process), giving quantitive estimates as to how much 

they deviate from uniform distributi into congruence classes to various 

moduli. Moreover, the inequalities used in proving these estimates lead 

to important results in analytic number theory, perhaps the most important 

so far being Bombieri' s theorem on the average of the remainder term in t he 

prime number theorem for arithmetic progressions. Bombieri's theorem is 

discussed in Chapter 8, while this chapter develops the trigonometrir 

polynomial inequalities that are the basis of the large sieve method., and 

Chapter 7 utilizes those estimates to study integer sequences. 

The underlying idea of the large sieve is to relate the properties 

of an integer sequence to the behavior of a trigonometric polynomial. 

The two very basic (and very easy) properties of the exponential function 

which make this process possible are the fact that if n, m, and q are 

integers, then n = m (mod q) is equivalent to e(n/q) = e(m/q)*), and the 

equation 

q 
{q 

if n = 0 (mod q), 
( 6. 1 ) I e{a ~) = 

a=1 
0 otherwise . 

*) We use the definition e(t) 2Jtit 
= e 
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(Equation (6. 1) follows immediately fran the fonnula for the sum of the 

first q tenns of a geometric progression; the common ratio in our case 

is e(n/q), which is 1 if n ~ 0 (mod q) and unequal to 1 otherwise). 

As a result, if n1 < ••• < Dz are integers, and we define for integers 

q and h 

(6 .2) 

and 

(6 .3) 

then we have 

(6.4) 

Z(q,h) = I (i; 1 ~ i ~ z, ni = h (mod q))l 

z 
S(x) = L e(nix), 

i=l 

q 

s(~) = L Z(q,h)e(h ~) 
h.:l 

for all integers a. Now if the sequence n1 , ••• , Dz is evenly distributed 

modulo q (that is, if Z(q1 h) = Z/q for all h), then by (6.1) we have 

S(a/q) = 0 whenever a~ 0 (mod q). If, on the other hand, all the ni 

belong to the same congruence class modulo q1 then js(a/q)j = Z for all 

integers a. Thus the values of js(x)l at the points a/q are somehow 

related to how evenly the n
1 

are distributed modulo q*). This fact by 

itself does not help us 1 since we do not have any way of estimating 

js (a/q)l without reference to the sequence defining S(x). It was 

*) Note that values of S(x) at the point a/q can be used to detennine 
Z(q,h) explicitly; using (6.1) we obtain 

q a 
q Z(q1 h) = E S{a/q)e{-h q). 

a=l 
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discovered by Linnik, however, that useful upper estimates can be ob-

tained for 
p-1 

(6.5) I I 
~x a=l 

which are largely independent of the nature of the sequence n1, ••• ,nz. 

(It is this fact that is responsible for the great generality of the 

large sieve.) That the expression ( 6. 5) reflects how evenly the ni are 

distributed modulo p for all primes p ~ X can be seen best from the 

following identity: 

(6.6) LEMMA. If q ~ 2 is an integer, then 

q-1 q 

(6.7) L ls(~)l 2 = q L (Z(q,h) - ~)2 • 

Proof: 

ac1 h=1 

We write out the left side, using (6.4), as 

q-1 q-1 q q 

L js(~)l 2 = L ( L Z(q,h)e(h ~))·( L Z(q,h)e(-k ~)) 
a=1 a=1 h=1 k=1 

q-1 

= I 
a=1 

q 

= I 

q 

L Z(q1h)Z(q,k)e(a(~-k)) 
h,k=1 

q-1 

Z(q,h)Z(q,k) L 
ac1 

e(a(h-k)). 
q 



Now by {6.1) we have 

q-1 
( ) 

q-1 L e{a h-k ) = { 
q _, 

if h ~ k {mod q), 

otherwise. 

Therefore 

a.=1 

q-1 q q 
\ a 2 
L ls(q)l = q I (Z(q,h))

2
- I Z(q,h)Z(q,k) 

a.:l 

q 

::;: q I (Z(q,h))2 

h=1 

q 

=q I<z(q,h))2 

h=l 

h,ko::l 

q 2 
= q I (Z(q,h) - ~) . 

h=l 

Using the above lemma, we can now rewrite (6.5) in the form 

p 2 
I p L (Z{p,h)- ~) • 

p~X h=l 

p z 2 
The so-called "variance" ~l {Z(p,h)- p-) shows how far the ni depart 

from an even distribution modulo P• Our upper bounds for (6 .5) vill 

enable us to conclude that if the ~ are sufficiently deue, then 

they cannot be very unevenly distributed modulo many prtme~. This 
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will mean that if we start with a sequence that is unevenly distributed, 

then 1 t cannot contain many elements. As an example, suppose that none 

of the ni fall into any of f(p) residue classes for each prime p ~ x. 
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Then Z(p,h) = 0 for f(p) values of h, and therefore 

p p 

z
2 = ( 'i Z(p,h))

2 
s_ (p- f(p))· L (Z(p,h))

2 

h=1 h=1 

by the cauchy-Schwarz inequality. But then 

p 2 p 

L (Z(p,h)- ~) = L (Z(p,h) )
2 

p 

~ 'i Z(p,h) 

h=l h=1 h=1 

and therefore 

Since we will prove that the left side is ~ (N + x2
)z for N = nz- n1 + 1, 

this will give the estimate 

(6.8) 

The above discussion demonstrates how sums of the form (6.5) can be 

used to study integer sequences. The next chapter will be devOted mainly 

to proving modifications of (6.7) and (6.8), while the rest of this chapter 

will deal mostly with estimates for sums similar to (6.5). We will work 

with trigonometric polynomials more general than those defined by (6.3), 

and we will estimate sums of values of ls(x)l 2 
more general than (6.5). 

These generalizations are necessary for the analytic number theory 

applications of the large sieve, and they do not cause any material 
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difference in the proofs. It turns out that the crucial feature of (6.5) 

is that it is a sum of ls(x)l 2 over points x which are well-spaced; that 

is, if a/p and b/p' are two distinct points which appear in the sum (6.5), 

then 

I~ _ b I = lap' - bpi > 1 > _1 • 
P pr pp' - PP' - 2 X 

We will work with trigoncmetric polynomials of the fonn 

K 

(6.9) S(x) = I an e(nx), 

n=-K 

where K is a positive integer and the a are any numbers, real or complex. 
n 

If x1, ••• , ~ are real numbers satisfying*) 

(6.10) 

then we will obtain several estimates of the form 

R K 
(6.11) L ls(xr)1

2 S D(K,6) I lanl
2

, 
r=1 n=-K 

where D(K,6) will be functions of K and 6 only. The restriction that S 

be of the symmetric form (6.9) is only temporary, imposed to facilitate 

our proofs. Estimates for trigonometric polynomials of the fonn 

M+N 
\- a e(nx) 
L n 

n=M+1 

will follow easily from estimates of the form (6.11). 

*) We denote by lltll the distance fran t to the nearest integer, so that 

lit II = min I t -n I • 
n 
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Our first estimate is a beautiful result, on the lines of Linnik's 

original work, due to Gallagher. Its basic idea is to relate the sum 

R 

(6.12) L ls(xr)l
2 

1 
to the integral I ls(x)l 2dx. Since the exponential function satisfies 

0 
the relation 

(6.13) I
1 { 1 if n = o, 

e(nx)dx = 
0 0 otherwise, 

for integers n, we have 

1 1 1 K 

I ls(x) 1
2 

dx c I S(x)S(x)dx = I \ a a e( (n-m)x)dx 
0 0 0 L nm 

n,m::-K 

(6 .14) 

K 

= I 
n=-K 

The sum (6.12) is related to the integral (6.14), and in fact, if Sis 

kept fixed and the xi are evenly spaced (say xr = ra for r = 1, ••• ,R 

1 
with 5 = R) then 

R 1 K 

L 5IS(xr)l
2

-+ I
0

ls(x)l
2
dx = L 1anl

2 
as R-+ 0). 

I'l= 1 n=-K 

(This shows why one might expect 5-lE Ia 1
2 to appear in our estimates 

n 

of (6 .12).) In general our situation is different, however, since the 

x and R are fixed, and therefore we cannot argue using limits. What 
r 

we will use is our knowledge of s'(x). Since values of S(x) in a neigh­

borhood of xr are detennined by S(xr) and values of s'(x) in that 
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neighborhood, we will estimate (6.10) in terms of the integral (6.12) and 

a function of s'(x), and then complete the estimate. 

(6.15) THEOREM. If S(x) is defined by (6.9), and x1, ••• ,~are real 

numbers satisfying (6.10), then 

R K 

( 6. 16) I I S ( x r ) 1
2 S. ( 5- \ 21tK) I 

n=-K 

Proof: Since for any u 
xr 

s2(xr) = s2
(u) + 2I s'(t)S(t)dt, 

u 

we have 
X 

ls(xr)l
2 S. ls(u)l

2 
+ 21 I rls'(t)S(t)ldtl· 

u 

We now integrate this inequality over the interval I = (x - 2 x + 2) r r 2' r 2 

to obtain 

Now 

X 

ols(xr)1
2 s. II ls(u)j

2
du + 2JI I Iurls'(t)S(t)ldt,du. 

r r 

6 
x x+2 u 

J I I rls'(t)s(t)jdt,du = J r (I ls'(t)s(t)ldt)du 
I U X X r r r 

X X r 
+ I r (I ls'(t)S(t)ldt )du 

6 u 
xr- 2 

X +£ X 
.~ 2 r 

= Ix ls'(t)S(t)l(xr+~- t)dt + [ _ ~ls'(t)S(t)l(t-xr+ ~)dt 
r r 2 

s. ~I ls'(t)s(t)ldt 
Ir 
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a.nd thus 

(6.17) 6IS(x )1 2 S. J ls(u)l
2

du + 6I ls'(t)s(t)ldt. 
r I I 

r r 

Since by (6.10) the intervals Ir are disjoint modulo 1 (that is, if r ~ s then 

no point of I differs by an integer from a point of I ) the integral of r s 

any positive function over the I will be not larger than the integral of 
r 

that function over [0,1], provided that function is periodic with period 1. 

Since Sis periodic with period 1, we find by summing (6.17) over r that 

1 

+ 6I ls'(t)s(t)ldt. 
0 

K 2 
The first integral is t Ia I . The second satisfies 

n 
n=-K 

since 

1 1 1/2 1 1/2 I ls'(t)s(t)ldt S. ( J ls(t)l
2
dt) (I ls'(t)l

2
dt) 

0 0 0 

( I
K 2)1/2( IK 2)1/2 

= Ia I I2Jrna I n n 
n=-K 

K 

S. 2~ L lanl2 

n=-K 

K 

n=-K 

s'(t) = I 21tinane(nt). 

n=-K 
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Hence 
R K 

s I ls<xr>l
2 ~ (1 + o211K) I lanl

2 
, 

n=-K 

which completes the proof. 

We will now give two other estimates which were found by Bombieri 

and Davenport. The basic idea here is to write S(x) as the convolution 

of two appropriately chosen functions, so that the value of S at any 

given point is defined by an integral over a neighborhood of that point. 

The proof is much more camplic&ted than that of Gallagher's estimate, 

but the results that follow from it represent an important improvement 

in some &pplications. (Note, however, that for some values of Ko 

the estimates below &re weaker than Gallagher 1 s. ) First we prove our 

auxiliary result. 

(6.18) LD!MA. For x > 0 we have 

1 <-. 
X 

Proof: We use contour integration. The integral is 

-
1_ Jco eit _ e -it eix Jco eit e -:ix Jco e -it 
2i t dt = - - dt - - - dt. X 2i O X+t 2i O X+ t 

eiz 
Let us take r > 0 and consider the integral of - over the path con­

x+z 

sisting of 

(a) 0 to r &long the x-axis, 

(b) r tori &long the eircle lzl = r, 

(c) ri to 0 &long the y-axis. 



Since the integrand has no poles inside the path of integration, the 

integral is zero. Thus 

I 19 r it 0 -t ~ 2 ire I ~+t dt + iJ x:it dt + ir I e iQ d9 = o. 
0 r 0 x+re 

2 ~ 
Now sin 9 ~ i 9 for 0 s_ t S, 2 , and therefore 

Hence 

n/2 ireie ~/2 

\iri e ie de\ S ri 
0 x+re 0 

-r sin e 
e..;;.. ____ de 

r 

n/2 - g er 
S. I e ~ d9 

0 

~ it ~ -t 

Io ~+t dt = iio ~+it dt. 
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-it 
Similarly we can move the integral of :+it to the negative imaginary 

axis to obtain 

Therefore 

it 
iJ x~it dt. 

0 

~ II si~ t dtl = 
X ll eix I~ e -t dt 1 -ixs~ e -t I 

2 it + -2 e x-it dt 0 X+ 0 

~ -t ~ -t 1 
< 1.. I ~ dt + 1.. I !!___ dt = - • 
-2 O X 2 O X X 
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(6.19) THEOREM. If S(x) is defined by (6.9), and x1, ••• ,~are real 

numbers satisfying (6.10), then 

R K 

( 6 • 20) I I S ( x r) 1
2 ~ 2 max ( 2K, 6 -l ) I 

n=-K 

and 

(6.21) 

r=1 n=-K 

Proof: Let 
co 

t(x) = L b e(nx), with b real, and b = b , n n n -n 
n=-co 

be a real function of integrable square such that 

t(x) = 0 when llxll > 6/2. 

Suppose also that b t 0 for lnl < K. Define 
n -

Then 

since 

K a 
T(x) = I bn e(nx). 

n=-K n 

1 

S(x) = It (y)T(x-y)dy 
0 

&/2 

= I / t(y)T(x-y)dy 
-6 2 



1 co 

I .(y)T(x-y)dy = L 
0 

K a 1 L b: bm I
0
e(my)e(n(x-y))dy 

n=-K 

Therefore 

m=-oo 

co 

= I 
m=-oo 

K 

K a 1 

L b: bme(nx) IO e((m-n)y )dy 

n=-K 

= L a
0

e(nx). 

n=-K 
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Using the fact that the intervals (x - 6/2, X + o/2) are disjoint modulo 1, r r 

and that T is periodic with period 1, we find (just as in the proof of 

Theorem 6.15) that 

R 6/2 1 

(6.22) L js(xr)l
2 S. 2( Io t 2

(y)dy)( I
0

1T(z)j
2
dz) 

r=1 

Now 

6/2 K 
""2( J

0 
t

2
(y)dy)·( L la0 1~~2) • 

~-K 

, 6/2 0 

bn =I t(y)e(-ny)dy =I y(y)e(-ny)dy +I t(y)e(-ny)dy 
0 0 -6/2 

6/2 
= 2J t(y)coa(2~ny)dy. 

0 



We define 

1 
Y = 2 6t, ~(t) = f(y), u = K6· 

Then ~( t ) is an arbitrary function of integrable square, and 

J
6/

2 
2 1 J, 2 t (y)dy = 2 6 ~ (t)dt, 

0 0 

1 

b = 6J ~(t)cos(rrst)dt, 
n 0 

where s = n6. Therefore for lnl < K, 

1 

Therefore 

where 

lbnl ~ 6 min IJ ~(t)cos(rrst)dtl 
o<s<u 0 

R K 

I ls(xr)1
2 ~ 6-

1
D(u) I 1an1

2
, 

D(u) = sup 
o<s<n 

n=-K 

1 

I ~2 (t)dt 
0 

IJ ~(t)cos(rrst)dtl 
0 
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To prove the theorem it will then suffice to show that for a suitable 

function ~(t) we have 

(6 .23) D(u) ~ 2 max (2u,l), 

and 

(6 .24) 



Case 1 : u ~ ~ + f2 . Since in this range 

4u ~ ((2u)
1
/

2 + 1)
2 , 
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it suffices to prove (6 .24). We take A> u (which will be specified 

more exactly later) and define 

Since 

~(t) = 

00 

sin 1fAt 
t 

I sin t dt _ ~ 
0 t - 2 ' 

Lemma 6. 18 implies that 

X oo 

I sin t dt = ~ - J sin t dt > ~ - l for x > o. 
O t 2 X t 2 X 

Therefore for 0 < s < u we have - -

(6.25) 
1 1 

JO~(t)cos(rrst)dt = ~ Jo sin 1{(A+s)t ~sin n(A-s)t dt 

1{(A+s) rr(A-s) 
= .!. J sin t dt + l J sin t dt 

2 0 t 2 0 t 

which is positive for A sufficiently large. Also 

implies that 



Hence for this choice of ~(t) we have 

( 
2). )-2 D(u) < 2). 1 - 2 2 2 . 

1t (A - u ) 

To prove (6.24) it suffices to prove that 

for an appropriate ). • But that is equivalent to showing that 

We put A = u(1 + y)2, with y > o. Then 

Thus we only need to show that 

(6.26) 
(2u) 1/2 

(2u) 1/ 2 + 1 

1 1 <-----
1 + y 2 2 

1t uy 
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for an appropriate y. By differentiating the right side we find that it 

attains its maximum when 

1 

With this choice of y the last expression in (6.25) is positive and (6.26) 

becomes equivalent to 
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2 3 2 
n ~ < (~ + 1)(n~- 1), 

where ~ = ~ . But the last inequality reduces to 

0 < n(n-2)~2 - (2n-1)~ + 11 

and this one holds for~> 1.5, say. Since we only need to prove it 

for u ~ ~ + 12, which corresponds to ~ ~ 1 + 12 , the theorem is true 

in this case. 

case 2: 0 < u < 1/2. We take ~(t) = cos(nut). The derivative of 

1 1 

(6.27) I ~(t)cos(nst)dt = I cos(nut)cos(nst)dt 
0 0 

with respect to s is 
1 

-nJ t cos(nut)sin(~st)dt, 
0 

which is negative for 0 < s ~ u ~ 1/2. Hence the minimum of (6.27 ) 

occurs at s = u, and it is 

1 

I 2 1 sin 2ru 

0 
cos (nut)dt = 2 + 4nu , 

1 

which is also equal to I ~2(t)dt. Therefore for this~ we have 
0 

Since 0 < u ~ 1/2, sin 2nu is non-negative, and therefore D(u) ~ 2, 

proving (6.23). To prove (6.24) we need to show that 

(6 .28) 2 ~ ( 1 + si~~~nu)((2u)1/2 + 1)2. 
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If u ~ 1/4, then ((2u)
1
/ 2 + 1)

2 > 2. Now suppose that u < l/4. From 

the Taylor series expansion of sin x we find that sin 2~ > 2nu 

Hence 

2 But u < 1/4 implies that ~ u < 3, so that 

2 2 I 
(1 - ~3u )C(2u)

1 2 
+ 1)2 > (1-u)(2u+1) > 1, 

and therefore (6.28) is valid. 

case 3: 1/2 ~ u ~ 3/2 + i2 . In this range we have 

4u ~ ((2u)1/2 + 1)2, 

- (26)3 . 

so it suffices to show that D(u) ~ 4u for a suitable ~(t) . We take 

{ 
cos(~t) 

~(t) = 
0 

for 0 ~ t ~ (2u)-1, 

for (2u)-1 ~ t ~ 1. 

Then the derivative of 

(6.29) 
1 (2u)-1 J ~(t)cos(~st)dt = J cos(nut)cos(~st)dt 
0 0 

with res~ct to s is 

(2u) - 1 

-~J t cos(~t)sin(~st)dt, 
0 

which is negative for 0 < s ~ u, and therefore the minimum of (6.29) is 

obtained when s = u. Therefore 

J
(2u)-1 

2 -1 
D(u) = { cos (nut )dt} = 4u 

0 

for this choice of ~' and this completes the proof. 
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Theorems 6.15 and 6.19 apply only to trigonometric polynomials of 

the special form (6.9). However, we easily deduce from them the following 

estimates: 

(6.30) THEOREM. Let 

M+N 

(6.31) S(x) = I ane(nx), 
n=M+1 

when M and N are integers, with N > 0, and the a are any complex numbers. 
n 

Suppose that x1, ••• , XR are real numbers satisfying 

Then we have 

(6 .32) 

(6.33) 

and 

(6.34) 

R *N 

L js(xr)l2 S. (6-1 + JtN) L 1anl2 ' 
r=1 ncM+1 

R 

I js(xr)1
2 S. 2 max(N,a-

1
) 

r=1 

R 
2 

M+N 

L !s(xr)j2 S. (N1/2 + 6-1/2) I janl2 • 

r=1 n=M+1 

Proof: N Let K = [2], and define 

s*(x) = S(x) e(-(M+N-K)x). 



Then 

c e(n.x), 
n 

n=-K 
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where c = a +M N K (except when N is even and n = -K, in which case n n + -

c_K = 0). To obtain the estimates (6.32) - (6.34) we apply Theorems 

6.15 and 6.19 to S*(x), noting that 

K M+N 

ls*(x)l = ls(x)l, L lcnl
2 

= I 

In such applications as Bombieri's theorem any one of the estimates 

(6.32) - (6.34) will be sufficient; in fact, only estimates of the form 

~ (N + s-1 )tla 1
2 will be used. In some applications, however, such as n 

those to primes in arithmetic progressions, it is inequality (6.34) that 

is most useful. The main reason is that we deal then with bounds of the 

form 

( 6. 35) D(~,N) 
log X ' 

when N is the length of the interval we are investigating, X is a variable, 

and where D(x2,N) is~+ nN if we use (6.32), 2 max(N,X
2

) if we use (6.33), 

and (N
1
/ 2 + X)2 if we use (6.34). By taking X= N1/ 2/log Nand using 

(6.34) we find that the main term of (6.35) is 

2N 
log N • 

Inequalities (6.32) and (6.33) lead to similar estimates, but with 2 above 

replaced by 2~ and 4, respectively. 
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We now state, without proof, a more recent result of Bombieri and 

Davenport, which gives improved estimates when N& is very large or 

very small. It also shows that those estimates are essentially the best 

possible for the class of all trigonometric polynomials defined by (6.31). 

(6. 36) THEOREM. With the notation of Theorem ( 6. 30) we have 

I. If N& > 1, then 

R M+N 

I ls(xr)12 < (N + 5&-1) L lanl2. 

r=1 n=M+1 

On the other hand, if c is a constant less than 1 then there exist 

sums S(x) with 6 arbitrarily small and N6 arbitrarily large for which 

R ~N 

I js(xr)12 > (N + c6-1) L 1an12. 

r=l n=M+l 

II. If N& ~ 1/4, then 

R M+N 

L ls(xr)1
2 

< (o-
1 

+ 270N3
&
2

) L lanj
2

• 

r=1 n=M+l 

On the other hand there exist sums S(x) With N& arbitrarily small 

for which 
R M+N 

I ls(xr)12 > u)-1 + ~2 N3&2) L lan12. 

r=l n=M+1 

So far we have been considering only sums involving the exponential 

function. The inequalities of Theorem 6.30 can, however, be used to 



give estimates for sums involving Dirichlet's characters, and it is 

these estimates that make the large sieve a valuable tool in analytic 

number theory. We now present one way of obtaining such estimates. 

Suppose S(x) is a function 

(6-37) s(x) = 

of the character x defined by 

M+N 

I anx(n), 
n=M+l 

where, as before, M and N are integers with N > 0, and the a are any 
n 

complex numbers. We then define the corresponding trigonometric 

polynomial S(x) by (6.31); that is, 

M+N 

S(x) = I 
n=M+l 

a e(nx), 
n 

where M,N, and the a are the same as in (6.37). Then we have n 

* (6.38) lEMMA. If L denotes sumtl8tion over the primitive characters 

x mod q 

to the modulus q, then for a positive integer q we have 

q 

I ls(~)l 2 • 

a=l 
(a,q)=l 

Proof: Let q be a fixed positive integer. If X is a character to the 

modulus q, then for any integer r we define the Gauss sum 

q 

G(r,x) = I x(a)e(~). 
a=l 
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If (r,q) = 1, then G(r,x) is separable; that is, 

If x is primitive, then G(r,x) is separable for all r (separability of 

G(r,x) for all r actually characterizes primitive characters), and 

Now if X is primitive, so is x· Hence we can write for a primitive 

character X 
q 

G(t,x)x(n) = I e(r:;). 

a.=l 

Multiplying both sides by an and summing over n, we find 

M+N q M+N 

G(l ,x) I anx(n) ... I x(a) I ane(z:), 

~M+1 a=l n=M+l 

or 
q 

G(t,x)s(x) = I y:(a)s(~). 
a.=1 

Taking squares of absolute values of both sides and summing over the 

primitive characters we obtain 

I* I* q 2 
q ls(x)l

2 
= I I x(a)S(~) I 

x mod q x mod q a=1 

q 

I I - a b < x(a)x(b)s(q-)s(q-) -
x mod q a,b=l 



since 

q 

= L S(~)S(~) L x(a)x{b) 

a,b=l 'X mod q 

q 

= (J)(q) I 
a=l 

(a,q)=1 

ls<~>l 
2 

\ (J)(q) if' n em (mod q) and (n,q) = 1, 
L x(n)x(m) = { 

'X mod q 
0 otherwise. 

This proves the lemma. 

Since bounds for 

q 

I ) 
w 

q<X a=l 
- (a,q)=l 

follow easily from Theorem 6.30, Lemma 6.38 gives us bounds for the sum 
2 

of eifqy ls(x) I over all primitive characters 'X to all moduli q ~ x. 
In some applications where only primitive characters occur, this result is 

then immediately applicable. In others we will use the fact that every 

character is induced by a primitive character. The following lemma will 

be useful in such cases. 

(6.39) LEMMA. If S(x) is defined by (6.31) and ).(x) is a positive de-

creasing continuous function on 0 < D ~x ~ Q, then 

c 6 • 4o > I ). c q > 

D<q~Q 

q Q M+N 

L ls(~)l 2 ~ (>-(D)(D
2
+ N) + J x>.(x)dx) L 1anl

2
• 

a=1 D n-=M+l 
(a,q)•l 



M+N 
Proof: Let Y = I I an 1

2
, and let 

n=M+1 

T(x) = I 
q 

I 
qs_x a=1 

(a, q)=1 

Since the points a/q, with 1 Sa S q, (a,q) = 1, and q S x are 

1 separated by at least 2 , Theorem 6 . 30 says that 
X 
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We now write t he left side of (6.4o)as a Riemann-Stieltjes intes~~l . 

It is equal to 

Q Q 
J X(x)dT(x) = X(Q)T(Q) - X(D)T(D) - J T(x)dX(x) 
D D 

2 JQ 2 ~ >.(Q)(N+ Q )Y - (N+ x )Y dA(x) 
D 

Q 
== >.(Q)(N+ Q2)Y - NY(>.(Q) - X(D)) - YJ x2dA(x) 

D 
Q 

= A(D)NY + X(Q)Q2Y - Y(Q2X(Q) - D2A(D) - 2J xX{x)dx) 
D 

Q 

~ X(D)NY + X(D)D~ + YJ xX(x)dx, 
D 

and this proves the lemma. 



Notes on Chapter 6. 

Although the large sieve was originated by Linnik [1), much of its 

development is due to Renyi, who was the first to use the variance 

expression and to apply the large sieve to estimate the remainder term in 

Selberg's sieve. The results listed in this chapter were obtained in the 

late 1960's after several important advances had been made 1 notably by 

Roth [1), Bambieri [3), and Davenport and Halberstam [1). Theorem 6.15 

(and its corollary, the estimate ( 6 -32) ) , as well as Lemmas 6. 38 

and 6. 39, are derived from Gallagher [1]. Theorem 6.19 and the inequal­

ities (6.33) and (6.34) came from Bombieri and Davenport [2). The r ecent 

results of Bombieri and Davenport [3), which we listed as Theorem 6.36, 

effectively concludes this part of the large sieve; by indicating what 

the best possible results are for general trigonometric polynomials ~ :1ey 

show that further advances can be obtained only for ISrticular case s oy 

' utilizing some special properties of the polynomials under consideration. 

Properties of Dirichlet characters and Gauss sums are discussed in 

Ayoub [ 1; Chapter 5) and Prachar [ 1; chapters 4 and 7). That seiSrabiJ.ity of 

G(r,x) for all r implies that x is primitive has been proved by Apostol 

[ 1) • 

One weakness of estimates such as those of Theorem 6.30 is that they 

are affected greatly by two of the xi being close together. This 

weakness has been avoided by a result of Davenport and Halberstam [ 1) 

(also given in Davenport [1; Section 23) which states, in the notation of 



Theorem 6.30, that if 

then 

& = min !lx1 - xrll' 
r i ~ r 

M+N 

min(1, ~2 tJ )ls(x )1 2 ~ N ) r r ~ 

n=M+1 

2 Ia I . n 
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In the Corrigendum and Addendum to that paper they also gave inequalities 

2 
for sums of js(x)l and over all characters to the modulus q for all 
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THE lARGE SIEVE 

We have seen in the first part of Chapter 6 how the number of 

integers that remain in an interval after removing a given number of 

congruence classes modulo each prime p S X can be estimated fran bounds 

for the sum 

( 7. 1 ) 

where Sis a trigonometric polynomial of the form (6.31). Now if a/p 

and b/p 1 are two points that appear in (7.1), and a/p ~ b/p 1
, then 

ap' - bp is a non-zero integer, and hence 

I ~ -b I .,. lap I - bpi > 1 > _1 
p pr pp' -:pp'- 2 

X 

Since the same argument holds for lk - ~ + ~~ for any integer k, we 
p p 

have the lower bound 

min 11 ~ - E.,ll > -1 
, 

a/p ~ b/p 1 P P - x2 

which is best possible in general. Therefore we can estimate (7.1) by 

-2 
applying Theorem 6 .30 with o = X • But by the same argument we can take 

~ 2 o =X in estimating the sum of js(x)l over all rational points, in 

their lowest terms, which lie in (0,1], and for which the denominator 

is< X. Therefore the bound for (7.1) that we obtain from Theorem 6 .30 

is the same as t he bound for 



(7.2) 

q 

I 
q~ ac1 

(a,q)=1 
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2 
js(~)l . 

Since the numbers of terms in (7.1) and (7.2) are asymptotic to 

~~/log X and ~/n2, respectively, it is natural that in looking 

for improvements on (6.8) one should try to use the terms in (7.2) with 

q composite. We will do this by proving an identity for 

q 

I js(~)l2 
acl 

(a,q)=1 

similar to the one of Lemma 6.6 (which is not applicable to (7.2) 

because of the condition (a,q) = 1). The next step will be to use this 

identity, together with Theorem 6.30, to give estimates for sequences 

that have no elements in a given number of residue classes modulo p, f or 

each prime p S X. This whole chapter is devoted to the proof of these 

estimates (which were discovered by Montgomary) and a few applications. 

Instead of considering simply a sequence of integers from the 

interval [M+l, M+N], (M and N integers, N > 0), we will generalize to 

the case where every integer in that interval has attached to it a 

certain complex "weight" a • Our inequalities will then measure the 
n 

distribution of these weights into various congruence classes. Inequalities 

for the number of elements in a given sequence will then be obtained by 

choosing a to be 1 if n is in that sequence and 0 otherwise. 
n 

We let a be any complex numbers defined for n = M+l, ••• , M+N. 
n 



Define 

(7.3) 

and 

(7 .4) 

Z(q,h) = 

M+N 

I 
n=M+1 

n=h(mod. q) 

M+N 

Z = Z(1,1) = I 
n=M+1 

a 
n 

a ' n 

thus generalizing our previous definition (6.2). We will won with the 

associated trigonometric polynomial 

M+N 

(7.5) S(x) = I 
n=M+1 

a e(nx). 
n 

(7.6) LEMMA. If q is a positive integer, then 

q q 

(7·7) L Js(~)J2 = q L I I ~ z(~,h)l2· 
a=1 h=1 dJq 

(a,q)=1 

Proof: Since for a an integer 

we have} by (6.1) 

q 

s(~) = I Z(q,h) e(~h), 
h=1 

qz(q,h) = 

qjd 

= I I S(~d)e( -b~). 
dlq b=1 

(b,q/d)=1 



If we define 

(7.8) 

then 

(7.9) 

q 

T(q,h) = I s(~)eC:h), 
a.=l 

(a,q)=1 

qZ(q,h) = L T(q/d,h). 

dlq 

Applying the M8bius inversion fonnula to (7 .6) we obtain 

T(q,h) 0:: q L ~ Z(q/d,h). 

dlq 

But from (7.8) we find that 

q 2 q 2 . 

q I I I ~ Z(q/d,h) I = i I IT(q,h) I 
h=l dlq h=l 

1 
=-q 

q 

I 
a,b=1 

(a,q)=(b,q)=l 

q 

I 
a,b=1 

(a,q)=(b,q)=l 

q 

= I ls(~)l 2 
a-=1 

(a,q)=l 

by (6.1), and this completes the proof. 
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We may note that for a prime p, (7.7) is the same (except for some­

what generalized a ) as (6.7), since 
n 

p p 

pI I I ¥ Z(~,h)l2 =pI IZ(p,h) - ~12· 
h=1 alp h=1 

We now easily deduce 

(7.10) THEOREM. If Z(q,h) is defined by (7.3), then for X~ 1 we have 

q M+N 

I q I I L ¥ Z(~, h) 12 S (N 1/2 + X)2 I I an12. 

qSX h=1 dlq n=M+1 

Proof: Let S(x) be defined by (7.5). By (6.34) we have 

q 

I I 
q<X a=l 
- (a,q)=l 

M+N 

ls(~)l 2 < (N
1
/

2
+ x)

2 
\ Ia 1

2
· q - L n 

n=M+l 

But now we just substitute (7.7) in the left side above. 

We deduce from Theorem 7.10 

(7.11) THEOREM. Let Z(q,h) and Z be defined by (7.3) and (7.4), 

respectively, and let X~ 1. For each prime p ~X let H(p) be the union 

of f(p) distinct residue classes modulo p. Let the a satisfy 
n 

(7.12) 

Then 

a = 0 if n E H(p) for some p S X. 
n 

1/2 2 M+N 
lzl 2 < (N +X) \ Ia 12 

- Q L n ' 
n=M+l 
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where 

Proof: In view of Theorem 7.10 it will suffice to show that for each 

q S, X we have 

(7.13) 

This is clearly true if ~(q) = o. Therefore assume that q S, X is a 

fixed, squarefree integer. 

If dJq, we define 

(7.14) K(d) = (h; 1 S, h S, q, hE H(p) if pjd, h ~ H(p) if pj(q/d)}. 

The sets K(d), for d going through all the divisors of q, form a 

partitioning of (1, ••• , q), since for each h we can write q uniquely as 

q = < 1T p). < IT p). 
plq pjq 

hEH(p) h,Elf(p) 

Therefore we will be able to write 

q 

I = I I 
h=1 dJ q hEK(d) 

Let us fix a 6, &lq. Then by the Cauchy-Schwarz inequality 



(7.15) I I ~(qfd)d I Z(d,h) 12 = j I ~(~)q I z(qjd,h) 12 
dlq hEK{6) dlq hEK(5) 

= I I I ~(~)q Z(q/d,h) 12 
hEK(5) dlq 
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s.{ I ,}{I II '*<~)qz(qjd,h)l 2}· 
h€K(5) h€K(6) dlq 

Let us consider the left side above. Suppose (6,d) > 1, and choose a prime p 

such that Pl(&,d). Now Z(d,h) is a sum of a with n = h (mod d). But pld n 

implies that for such an a we haven m h (mod p). But PI& and hE K(6) mean, 
n 

in view of the definition (7.14), that n E H(p). Therefore by (7.12) 

an = 0 whenever n = h (mod d) and h E K(6). Hence the inner sum on the 

left side of (7.15) vanishes when (6,d) > 1, and so 

(7.16) L '*(qjd)d L Z(d,h) = I '*(q/d)d L Z(d,h). 
dlq hEK(6) dl(q/6) h€K(6) 

Let us fix d, with dl(qja). We have 

d 

I Z(d,h) = I Z(d,k)· l{h; hE K(6), h = k (mod d)JI, 

hEK(6) k=1 
k,Eli(p) V Pld 

where the condition k ~ H(p) for all p dividing d follows from the fact 

that if k E H(p) for same pld, then Z(d,k) = o. '\ve can campute 

S(6 1 d,k) ~ l{h; hE K(6), h ~ k (mod d)) I 



r 
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fork such that k E H(p) for all primes p dividing d. Now in view of 

the Chinese remainder theorem h = k (mod d) is equivalent to h = k (mod p) 

for all prtmes p dividing d. Also, h E K(6) is equivalent to h E H(p) 

for all prtmes p dividing 6 and h ~ H(p) for all prtmes p dividing qf 5. 

Therefore h E K(5) and h = k (mod d) if and only if the following three 

conditions are satisfied: 

a) Pld ~ h = k (mod p) and h ~ H(p), 

b) Pl5 ~hE H(p), 

c) Pl(q/dtJ),. h ~ H(p). 

Since we are dealing with k such that k ~ H(p) for all primes p dividing 

d, the second part of a) is satisfied whenever the first part is. We 

now notice that if pld, then there is exactly one solution of a) modulo p. 

If Pl5, then there are f(p) solutions of b) modulo p, and if Pl(qfd5), 

then there are p - f(p) solutions of c) modulo p. Applying the Chinese 

remainder theorem we find that 

S(5,d,k) = l{h; 1 ~ h ~ q, h satisfies a), b), and c)}l 

= [ 1T f{p)} { 1T (p- f(p))}. 

Pl6 PI~ 

This number is independent of k, and hence 

d 

L Z(d,h) = I 
h€K(6) k=1 

k,Si(p) v pjd 

Z(d,k) TT f(p) IT (p-f(p)) 

Pl6 Pit& 
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d 

= L Z(d,k)( lT f(p)) (IT (p- f(p))) 

k=1 PI o Pli5 

= Z( lT f(p)) ( lT (p- f(p))). 

Plo Pit& 

From (7.16) we now obtain 

(7.17) I~(qfd)d L Z(d,h) = L ~(qfd)d z( IT f(p)}( lT (p- f(p))} 

d I q hEK( & ) d I< qf s) PIs PI~ 

= ~(q)Z( IT f(p)}{ 1T (p- f(p))J 'i !'(d)d IT (p-f(p))-1 

P lo P 1 c qJ o > d Tc qJ 6 ) PI d 

= ~(q)Z( IT f(p)}( 1T (p- f(p))} 1T (1 - p- ?(p)) 
Pis PI (qfo) PI (q/o) 

= ~(s)z( IT f(p))( 1T f(p)J = ~(s)z lT f(p). 
Plo Plqjo Plq 

The first factor on the right side of (7.15) is 

s(s, 1,1) = ( TT f(p)} ( TT (p- r(p))J 
Plo Pl(qfs) 

Dividing by it and using (7.17) we now find from (7.15)that 

We now sum on all olq. The right side is just 
q 2 

I 1 I ~ z(q/d,h)l 
h:l dlq 
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since the sets K(6) form a partition of {1, ••• , q}. The left side is 

This completes the proof. 

(7.18) COROLLARY. Let X~ 1 and let Z be the number of integers n 

such that M + 1 S n S M + N and n does nat fall into any of f(p) residue 

classes modulo p for any prime p ~ X. Then 

where 

\ 2 • __1_(pl_ 
Q = L~ (q) lT p:f(p}. 

qSX Plq 

Proof: Let a be 1 if n is one of the given integers and 0 otherwise. 
n 

Apply Theorem 7.11, noting that 

M+N 

I Z I .. Z "" L I an 1
2 

• 
n•M+l 
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We first use Corollary 7.18 to obtain estimates which we proved 

previously using Selberg's sieve. 

(7. 19) THEOREM. 
1 Let k, M, and N be positive integers satisfying k < 3 N, 

and lett be an integer such that (k,t) = 1. Then 

(7.20) 

Proof: We consider m + rk for r = 1, ••• , n, where n is the largest 

integer such that m ~M and m s t (mod k), and n is the largest integer 

such that m + nk < M+N. 

Let X > 2. We consider ~ r ~ n for which m + rk is not divisible 

by any prime p ~ x. Let p be a fixed prime. If pjk, then p\(m+rk) for 

all r. If Ptk, then pj(m+rk) only when r = mk-1 (mod p). Hence we may 

apply Corollary 7.18 with f(p) = 1 if pjk and f(p) = 0 if pjk. We t hen 

find that Z, the number of r S n for which m + rk is not divisible by 

any prime p ~X satisfies 

where 

by Lemma 3·3· We now choose 

I 
q<x 

(q,k)=l 

\ .!. >~log X L q- k 
q<x 

(q,k)=l 
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Then 

1 2 
k 2n( 1 + 1 ) 2N 

Z < og n < -.,.,"""'t""i,.;;.· ;___.,...._,.,.... 
-~log n- 2 log log n - C9(k)log N/k 

for N/k sufficiently large (as n ~ N/k + 1). Since 

n(M+N,k,t) - n(M,k,t) ~ Z + n(X) < Z + X, 

we obtain (7.20), again for N/k sufficiently large. But the theorem is 

clearly true for N/k bounded. 

Next we give a new proof of Theorem 3.17. 

(7.21) THEOREM. Lets be a positive integer, and suppose that for 

i = 1, ••• , s, a1 and bi are integers such that (ai,bi) = 1 and 

s 
E = Tf ai • Tf (aibj - ajbi) ~ o. Let N(p) be the number of solutions 

i= 1 i< j 

of (a1v + b 1) ·•• (asv + bs) = 0 . (mod p) for v = 1, ••• , p for each 

prime p, and assume N(p) < p for all primes p. Then the number of positive 

integers m ~ n such that each of laim + bil (i = 1, ••• , s) is prime is 

< c ( s ) ___;,;n;,...___ 
- (log n)5 

Proof: Let X ?: 1, and consider 

. IT ( 1 - .!. ) -s+N(p). 
PIE p 

Z = l{m; m ~ n, Pi (aim+bi) for any p ~X and i = 1, ••• , s}l· 

Then the integers counted by Z do not fall into any of the N(p) residue 

classes modulo p corresponding to solutions of 



for all p S X, and therefore Corollary 7.18 says that 

z<(n1/2+X)2 
- Q ' 

where 

Let P0 = TT Then 
p<x 

N(p)=O 
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Q= I 
2 

~o/(q) IT <ilil + ~ + .•• ) 
PI q P P q<x 

(q,P~)=1 

> I 
q<X 

(q,P~)=l 

,TT ~ 
q I N(p) ' 

p q 

which is the estimate (3.11). The rest of the proof is the same as that 

of Theorem 3.17. 

For our final application of Corollary 7.18 we consider a problem 

to which Selberg's sieve is not applicable due to the large number of 

congruence classes sieved out. It has been conjectured by Artin that 

every integer except for 0, -1, and the perfect squares is a primitive 

root for infinitely many primes. While we cannot prove that conjecture, 

~e can give an upper bound on the number of positive integers S N which 

are not primitive roots for small primes. 



(7.22) THEOREM. The number of positive integers~ N which are not 

1/2 primitive roots for any prime ~ N is 

~ N1
/

2 ·log N·log log N for N ~ 3. 

Proof: Here we sieve out the ~(p-1) residue classes of primitive 

1/2 roots for each p ~ N • By Corollary 7.18 the number of remaining 

integers is 

where 

Q = \ 2(q) TT ~(p-1) > \ ~(p-1) 
'--"/ ~ I P -~(p-1)- L I P 

q~N I 2 p q p~ 1 2 

But 

(7.23) lim inf !(n)log log n = 
n 

-y 
e ' 

where y is Euler's constant, and therefore 

It follows that 

~(n) ~ 1 ~ for n ~ 3. og og n 

~ .-(N1/2) ~ N 1/2 
Q ~ 1/2 ,. -:::--' log N ·log log N for N ~ 3' 

log log N 

and this completes the proof. 
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Notes on Chapter 7. 

The material of this chapter is drawn primarily from Montgomery [1]. 

It should be mentioned, however, that Theorem 7.19 can be proved using 

large sieve inequalities for sums over Dirichlet characters, as was done 

by Bombieri and Davenport [2]. Recently Bombieri [3] has proved, using a 

specialized large sieve method, a result similar to the one of Van Lint 

and Richert (Theorem 4.1); 

1 
replaced by 0( log N/k ) • 

in (7.20) can be 

Eq. (7.23) is proved in Hardy and Wright [1; Chapter 18]. 

Theorem 7.22 is not the best possible. While applying a.n old fonn of 

the large sieve, Gallagher [1] proved that 

Using the contribution to Q of ccmposite integers it can be proved that Q 

is of an even larger order of magnitude. 
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BOMBIERI 'S THEOREM 

It has been known for same time that estimates for sums of Dirichlet 

series can be obtained from large sieve inequalities. The purpose of 

this chapter is to use such estimates to prove a very important theorem 

of Bombieri about the average of the remainder term in the prime number 

theorem for arithmetic progression. 

Let 

l(x,q,a) = L A(n), 
n<x 
n=a (mod q) 

where A is Mangoldt's A-function. Bombieri's result can then be stated 

as 

(8.1) THEOREM. For each positive constant A, there is a positive con­

stant B such that if Q = x1/ 2 (log x)-B, then 

(8.2) L max max l+(y,q,a) - ~~ ~ x(log xfA, 
<~ y ~ x (a,q)=l 
q~ 

where the constant implied by the ~ symbol depends on A. 

An analogous estimate holds with v(y,q,a) and y/~(q) replaced by 

n(y,q,a) and li(y)/~(q), respectively. Now the extended Riemann hypo-

thesis, which states that all the non-trivial zeros of Dirichlet L-series 

L(s,x) lie on the line Re(s) = 1/2, implies that 

(8.3) *(y,q,a) - -l-- ~ Yl/2 log2y, 
~(q) 
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which in turn implies that Theorem 8. 1 holds with B = A + 2. Thus 

Bombieri 's theorem gives a result ccmparable to the one implied by the 

extended Riemann hypothesis (which has been neither proved nor disproved), 

and in many cases where only the average of the remainder tenn is im-

portant it can be used in place of the assumption that (8.3) is valid. 

Our proof, due to Gallagher, shows that B may be taken as 16A + 103, and 

even better results are possible, but they are relatively unimportant 

since no way has been found for detennining the constant implied by the 

<,g notation. 

Our proof of Bombieri's theorem will proceed through a series of 

lemmas. The basic idea is to express the left side of (8.2) in tenns 

of L-series, and then apply the large sieve inequalities of Chapter 6 

to it. Actually, however, we will first apply a smoothing device to the 

functions t(y,q,a) - y/~(q) and work with the resulting functions. 

For functions F piecewise continuous on [1,oo], we put 

The main part of our proof will consist of showing that Theorem 8.1 holds 

with *(y,q,a) replaced by vk(y,q,a) fork sufficiently large (note that 

if F(x) = x, then F 1 (x) = x - 1, so that our smoothing device affects 

x to an extent that is negligible for our purposes). We will actually 

show this for k = 3· At the end of the proof we will show that such 

estimates imply (8.2). 



First we prove an auxiliary result. 

(8.4) LEMMA. For x > 1 we have 

L cpC n} ~ 1 + log x. 
n<x 

Proof: This is · clearly true for x ~ 3· Assume therefore that x > 3. 

Since ~ is a multiplicative function, we have 
cp\n J 
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I ~ < IT (1 
1 1 ... ) 1T ( 1 

1 1 + ••• ) + ~ + 2 + = +-+ 
cp - p:_x cp p cp(p ) p-1 p(p-1) 

n<x p~x 

~ l2 ~ !+0(1) 

= 1T (1 + l2 2) < p<x (p-1)2 p<x P 
e - = e -

p:: X (p-1) 

log log x + 0(1) ~ 
1 = e ~ og x • 

The next lemma shows that in order to estimate 

it is sufficient to estimate a sum involving primitive characters to 

fairly large moduli. Before we prove it we should make a few remarks 

about the values of A and k. Our goal is to prove (8.2) with the implied 

constant depending only on A. Due to the use of the smoothing device, 

however, the A's we will be working with will be functions of the A of 

Theorem 8.1. In order to ensure that all constants can be chosen so as 
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to depend only on the original A for which the theorem is being proved, 

which is given, we will require at each stage that the A and k be bounded 

(actually we will only need k ~ 3, and if A' is the given A of Theorem 8.1, 

then we will always have A ~ 8A 1 + 7), so that the implied constants will 

be valid for all values of A and k that we will use. 

Fran now on we write t for log x. We use the usual definition 

t(x,x) = I x(n)A(n). 

n<x 

(8.5) w.tfA. 1/2 For Q ~ x and for bounded k, A, and C, we have 

* I max max l'tk(y,q,a)- ~~ ~ I €(q) I maxltk(y,x)l+ x.t-A , 
qs_Q Y'5_x (a, q )= 1 n<qs_Q 'X mod q yS_x 

* c where D = t , €(q) = 1 +log~Q/q) and \ denotes summation over 
cp( q ' L 

'X mod q 

primitive characters to the modules q. 

Proof: We have (by induction) 

+k(x,x) = fr I x(n)A(n)logk(~). 
n<x 

Also, since 

y(x,q,a) 
1 \ x(a)~(x,x), = ~ L 

')(mod q 

we find 

(8.6 ) 'fk(x,q,a) 
1 I x(a)tk(x,x)· = ~ 

'X mod q 
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* * If X is induced by the primitive character X , then x(n) = X (n) except 

possibly when (n,q) > 1. Therefore 

< 2 .tk 
-IT I 

n<x 
(n,q)>1 

A(n) = ~! tk L log p L 1 

pjq a 
a<x 

p-

If Xo denotes the principal character to the modulus q, then Xo is 

induced by the identity character and thus 

Therefore we obtain from (8.6) 

max 
(a,q)=1 

and hence 

k+l 
+ t log q, 
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In the first term on the right of (8.7) we group together terms arising 

from the same primitive character. Since if x is induced by the primitive 

* * character X , then the modulus of X divides the modulus of x, we get 

where the last relation follows from Lemma 8.4. 

bounded k and A, 

(8.8) L max 
qSQ ~X 

Siegel's theorem implies that 

I 'k (y 'X) I . L , 
~ 

n$Q 
n:::O(mod q) 

1/2 Hence for Q ~ x and 

with arbitrarily large constants C and E. Therefore if k, A, and C are 

bounded, the terms with q S D = tc contribute ~ xt-A to the right side 
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of (8.8). Similarly, the prime number theorem implies that 

(8.10) max l t(y)- Yl ~ xt-E, 
y~x 

for arbitrarily large E, and therefore 

for arbitrarily large E, provided k is bounded. 1/2 Hence for Q ~ x and 

bounded k and A we obtain 

Combining all our estimates we obtain the statement of the lemma. 

Thus our task has been reduced to that of estimating 

The next lemma expressesthis sum in a form suitable for application of 

the large sieve. 

(8.11) LEMMA. Let L = L(s,x) be a Dirichlet L-series for the characterx and 

let S = S(s,x) be any function bounded and analytic in a~ 1/2. 

Define a= 1 + t -1 
and 8 = 1/2 + t-1

, and denote by (a) and (e) the paths 

a+ it (-oo < t < oo) and~+ it (-oo < t < oo), respectively. Then for 

k > 2 we have 

* L €(q) L max ltk(y,x) l ~ xtJ 
D<q<Q x mod q ~x (a) 

A(s) dt + x1/2J B(s) dt, 
lslk+

1 
(e) lslk+

1 



where 

and 

A ( s ) = L € ( q) L * 11 - LS 12 
~ X mod q 

B(s) = L €(q) 

n<~ 

"* 2 ) (IL'LS I+ IL'Sj) • 
....... 

x mod q 

Proof: Since fork> we have 

1 k 
k! log X if X~ 1, 

(8.12) 

0 if 0 <X< 1, 

and the series 
00 

(8.13) L' \ - L (s,x) = L x(n)h(n) 
n 

converges absolutely for a> 1, we obtain 

Now 

( 8.14) L' L' 2 2 L = r;-(1 - LS) + (2L'S - L'LS ). 
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For x ~ x0, Land L' are analytic in a~ 1/2. Moreover, L(s) ~ lsl
1
/
2 

for a~ 1/2, and since by Cauchy's formula 

(8 .15) I ( ) 1 I L( z) L s "' 2d 2 dz, 
y (z-s) 
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where y is a circle of radius t-
1 

centered at s, we have L'(s) ~ lsl
1
/ 2 

I -1 
for ~ ~ B = 1 2 + t • Therefore the second term in (8.14) is analytic 

and ~ Is I in ~ > 8, and hence for k ~ 2 we can transfer the path of 

integration of the second term from (a) to (e). We find 

On ~ = a, we have for 1 ~ y ~ x, 

-1 -1 
s l+t +it (1+t )log y+it·log y ~ log x+1 ~ 

y = y = e ~ e ~ x. 

Similarly, on~= 8 we have y5 ~ x1
/

2 for 1 ~ y ~ x. Also, l(u) ~ u 

and (8.13) imply that on ('J =a we have 

du 
Ci = /.,. 
u 

Hence we find that 

To finish the proof we just sum this estimate, multiplied by €(q), over 

all q with D < q ~ Q and all primitive characters to the modulus q. 

Application of the large sieve inequalities. We now use the inequalities 

of Chapter 6 to estimate A(s) on ('J =a and B(s) on ('J = e. 

Let 

(8 .16) 

a be any complex numbers. Then by Lemma 6 . 38 
n 

* M+N 2 q M+N 2 I I I anx(n)\ ~ L I L ane(~a)l q 
Ci(q) 

n=M+ 1 a= 1 n=M+ 1 
(a,q)=l 

X mod q 
' 



and by Theorem 6.30 

I I 
q<X a=1 
- (a,q)=1 

M+N 2 M+N 

\ a e(~)~ ~ (X2
+ N) ) L n q ~...... 

n=M+1 n=M+l 

2 Ia I . n 

Combining these two inequalities leads to 

(8. 17) q • 
~ 

* M+N 2 

I I I anx(n)l ~ 
X mod q n=M+l 

M+N 

(X
2

+ N) L lanl
2

· 
n=M+l 

Lenma 6. 39 implies that for D ~ Q/log Q we have 

log(Q/q)+l 
q 

q 

I 
a=l 

(a,q)=l 

M+N 2 

I I an e(~a)l 
n=M+l 

Q M+N 
~ { los<§Ln)+l(D2+ N) + Jn(l+log(Q/x))dx} I lanl2 

n=M+l 

M+N 

~ ( Q + N l~g Q) ) I a 12 • 
~ n 

n=M+l 

Combining this with (8.15) leads to 

M+N 2 M+N 

I L anx(n) I ~ (Q + N ~og Q) L (8. 18) >* w 
X mod q n=M+l n=M+l 

again with the restriction D ~ Q/log Q. 

For X a character to the modulus q, define 

R(x,x) = L x(n). 

':l<x 

120 



Then by a theorem of Polya and Vinogradov 

(8.19) 

Since the Dirichlet series for L(s,x) converges for a> 0 whenever 

x 1 x0 , we have under these assumptions, for each integer H ~ 1, 

(8.20) 

Therefore for a ~ 1, H ~ 1, and x I= Xo' we have 

L(s,x) = I x<:l + o(lsls1~2loa q ). 

n=1 n 

We choose 
H 

= I 
n=1 

~ (n)x(n) 
s 

n ' 

and notice that it satisfies the hypothesis of Lemma 8.11. Moreover, 

for H S, x and a~ 1 we have S(s,x) ~ log H S. t, so that for q S. x, 

where c(1) = 0, and for n > 1, 

c(n) = \ ~(d). 
L 

din 
d,(n/d)SJ 
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I n particular, c(n) = 0 for n >~and n ~ H, and lc(n)l ~ d{n), the 

2 
number of divisors of n, for H < n £H. We now separate the integers 

2 
H+1, ••• , H into m sets: (H+l, ••• , 2H}, {2H+l, ••• , 4H}, ••• , 

(tn-1
H+ 1, ••• , 2Il}r}, where 2m-1H+ 1 ~ H2 S, 2Il}r, so that m ~ log H ~ t. 

Using the Cauchy-Schwarz inequality, we obtain 

m-1 2h+1H m-1 2n+lH 
2 12 I I ( I c(n)~(n) )j ~ t I I I c(n)~(n) • 

n h n h=O h.. h=O n=2 H+ 1 n=2··rt+ 1 

Next we apply (8.17) with a = c(n)/ns to each of the factors on the n 
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right side above. For each N = 2~ (S, x2
), with D ~ Q/log Q and Q S. x, 

we find 

" I*l ) e(q) 
I.....J 

2N 2 2N 2 
\ c(n)x(n)l ~ (Q + Nt) \ d (n) ~ (S + ~)t3 
L s D L. 2 N D ' n n n=N+1 n=N+l ~Q x mod q 

since the inequality 

(8 .21) 

implies 
2N 

I 
n=N+l 

T(M) = I d
2

(n) ~ M log3M 

n<M 

Therefore, using m ~ t, 
m-1 

A ( s) <:g I ( { + ~ )t 4 + I (log ( Q/ q} + 

h=O 
2 D<q~ 

~ QH-\4 + n-\6 + lsi2Q~-2t4. 
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-2 
We can choose H = QDt to get 

(8.22) on cr = a, 

provided t ~ D ~ Q/log Q. 

To estimate B(s) on cr =a, we apply (8.17) to 

~ 
s2(s,x) = L b(n1(n) ' 

n 

where lb(n) I :: d(n), and get for cr :::_ 1/2 

(8.23) 

when the last estimate again follows from ( 8.21 )by partial summation. 

It follows from (8.20) that for each N :::_ 1, 

N 1/2 
L(s ) - 'L ~ + o(lslq log q) for x ~ x

0 
and cr >_ 1/2. 'X - s 1/2 ' 

n=l n N 

Therefore 

(8.24) 

We now apply (8.17) to the sum on the right. Since 

N 2 N2 

(I x(~l) = L a(n);(n) , 

n=l n n=l n 



with la(n)l ~ d(n), we find that (8.24) is 

N2 2 
~ (~ + N2) J ~ ~ (X

2 
+ N2

)log
4N. 

--" n 
n=1 

We now choose N = [XIsl + 2]. Then the above inequalities give 

* L q>(q) L IL(s,x)l
4 ~ ~lsl 2log4(xlsl + 2). 

l<q~x x mod q 

A 1/2 Since C(s) ~ lsi for 1/2 ~ ~ < 3/4, say, we actually have 
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\ \* 2 2 2 4 
(8.25) L q>(q) L IL(s,x)l ~X lsi log (XIsl + 2) for 1/2 ~ ~ < 3/4. 

q~X X mod q 

Applying H8lder's inequality to (8.15) twice gives 

I L I ( s 'X) 1
4 ~ t 5 I I L( z 'X ) 1

4• 
y 

Therefore on ~ = 9 we have 

(8.26) 

Using the Cauchy-Schwarz inequality, we now find that 

I 'l'(q} ( IL'IB
2
1 S 0:: <lfu ( IL'LI2t 2

( I ifqy ( ls14)
112 

q~X X mod q q:S,X X mod q q:S.X X mod q 

\ * 4)1/2 ; Is I 
1.-1 
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-2 
If we now choose H = DQ.(, , then we easily obtain 

(8.27) A- 5 2 B(s) ~ DQt lsllog (lsi+ 2) for c = ~· 

Completion of the proof. Using Lemma 8.5 , Lemma 8.11, (8.22), and (8.27), 

1/2 we find that for k ~ 2, Q ~ x , and bounded k and A, 

(8.28) 

provided t ~ D ~ Q/log Q. For k = 3 the right side of (8.28) is 

~ xD-7t 7 + x1/ 2DQt5 + xt-A. 

Choosing D = tA+7 and Q = x1/ 2t-(2A+l2 ), we find 

(8.29) 

We now deduce (8.2) from(8.29). Suppose that the following statement 

is true for a positive integer k: 

For every positive constant A, there is a constant ~(A) 

such that if 

(8. 30) then 

with the implied constant depending only on A. 



We will show that then (8.30) also holds fork - 1, with ~- 1 (A) = 

~(2A + 1). 

Since vk_1(y,q,a) is an increasing function of y, we have, for 

0<)..~1, 

eA 
1 J Y ( )dz ( 1 J Y dz r ->.. *k-1 z,q,a z- ~ *k-1 y,q,a) ~ r 'k-1(z,q,a) z; 

e Y Y 

Evaluating the integrals we obtain 

(8.31) 

If we write 

tk(x,q,a) = ~(q) + rk(x,q,a), 

then (8.31) implies that 

->.. 
.!.[Y( 1 -e ) - 2 max I ( ) I ) < ~ + ( ) 

( ) rk z,q,a _ M q rk-l y,q,a 
>.. cp q z~y T 

1/2 Therefore for Q ~ x we have 
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But by (8.30) the right side is 

~ -1 -A 
~ ).x.t + A x.(, , 

This proves our assertion about (8.30). Since we have proved that 

B
3

(A) = 2A + 12, this gives us B0(A) = 16A + 103. 
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Notes on Chapter 8. 

The proof given above is due to Gallagher [2]. The original proof 

(Bombieri [3] ), which is considerably more involved, relates the sum (8.2) 

to the density of zeros of Dirichlet L-series in the initial 

and avoids the use of our smoothing device. (There is also a good 

exposition of this method in Davenport [1; Sections 24-28].) Bombieri 

proved that B can be taken as 3A + 23, but this is not very important 

since the use of Siegel's theorem (which plays a crucial role in both 

Bombieri's ani Gallagher's proofs) has so far prevented the determination 

of the constant implied by the ~ sign. 

Our proof presupposes a fair knowledge of analytic number theory, 

but practically everything used is quite standard and may be found in 

Prachar [1] and Ayoub [1]. The inequality (8. 21), which is not known 

too well, is proved in Prachar [1; Chapter 1]. 

Many applications of Bombieri's theorem have been made. One of the 

most interesting is the proof by Elliott and Halberstam [1] that every 

sufficiently large integer n may be represented as n = p + x
2 

+ y
2

; 

that is, as a sum of a prime and two squares . Their paper lists previous 

proofs of this theorem, some of which used unproved conjectures such as 

the extended Riemann hypothesis. 

The large sieve estimates have been used in proving several other 

important results in analytic number theory. We might mention here the papers 

ot Jutila [1] and Montgomery [2), [3]. 
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