LOW RATE IMAGE CODING USING
VECTOR QUANTIZATION

Thesis by

Anamitra Makur

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1990
(Submitted October 10, 1989)

11

(© 1990
Anamitra Makur

All Rights Reserved

i1

ACKNOWLEDGEMENT

It is quite impossible to properly acknowledge every one of those people with a kind
heart, a sharp mind, and both, who helped me, knowingly or unknowingly, in the
course of this research. Following are the names of only a few of those to whom I

am indebted.

Professor Edward C. Posner is the foremost person I should mention. His
immensely helpful advice was not, thanks to him, limited to mere research topics. I
was introduced to the field of image coding by him, and his constant encouragement,

as well as his profound insight, helped me get through the darker days.

Dr. Jerry E. Solomon and others at the MIPL facility of the Jet Propulsion
Laboratory have not only let me use their well-equipped laboratory, they were
patient enough to teach me how to use those apparatus. I am deeply indebted to
them. Special thanks are due to Professor P. P. Vaidyanathan, whose discussions

with me were very helpful.

I consider it my duty to extend my deepest gratitude to all of my friends, the
graduate students of the Systems Group, Caltech. The help I received from them at
every stage is invaluable. I specially thank Dr. Truong Q. Nguyen, Amir F. Atiya,

and Dr. Eric E. Majani, among others, for their technical assistance.

While I was busy writing this thesis, my wife Anindita was more understand-
ing and supportive than I deserved. Her contributions are in no way to be disre-

garded.

I also thank Pacific Bell for financing this research.

v

ABSTRACT

T'his thesis deals with the development and analysis of a computationally simple
vector quantization image compression system for coding monochrome images at
low bit rate. Vector quantization has been known to be an effective compression
scheme when a low bit rate is desirable, but the intensive computation required in
a vector quantization encoder has been a handicap in using it for low rate image
coding. The present work shows that, without substantially increasing the coder
complexity, it is indeed possible to achieve acceptable picture quality while attaining

a high compression ratio.

Several modifications to the conventional vector quantization coder are pro-
posed in the thesis. These modifications are shown to offer better subjective quality
when compared to the basic coder. Distributed blocks are used instead of spatial
blocks to construct the input vectors. A class of input-dependent weighted distor-
tion functions is used to incorporate psychovisual characteristics in the distortion
measure. Computationally simple filtering techniques are applied to further im-
prove the decoded image quality. Finally, unique designs of the vector quantization
coder using electronic neural networks are described, so that the coding delay is

reduced considerably.

Except for the basics of the vector quantization described in the first chapter,
each chapter is independent from the others because each chapter deals with a
separate aspect of the coder. Therefore, each chapter beyond the first can be read

separately.

CONTENTS
ACKNOWLEDGMENT e e 111
ABS T R ACT . v
LIST OF FIGURES e vii

Chapter I: INTRODUCTION

1.1 History and Overview of Image Coding 1
1.2 Vector Quantization0, 7
1.3 Brief Outline of the Chapters 11

Chapter II: USE OF THE DISTRIBUTED BLOCKS

2.1 Distributed-Block Vector Quantization 14
2.2 Performance Analysis i 20
2.3 Experimental Results i i 27

Chapter III: IMPROVED DISTORTION MEASURES
3.1 Input-Dependent Weighted Squared-Error Distortion Function..35
3.2 Use of the Activity Classes, 38

3.3 Emphasis on the Block Boundaries 46

Chapter IV: FILTERING TECHNIQUES

4.1 Introductiono 56

vi
4.2 Selective Spectral Attenuation Filtering 57

4.3 Use of the Prefiltered Codebook i, 66

Chapter V: IMPLEMENTATIONS USING NEURAL NETWORKS

5.1 Neural Networks in Vector Quantization 72

5.2 Realization of the Tree-Structured Encoder 75

5.3 Realization of the Full-Search Encoder 82

Chapter VI: SUMMARY AND CONCLUSIONS 91
APPENDIX

I Centroid for the IDWSE Distortion Function 94

IT FIR Encoder Filter Design .. 95

REFERENCES .. e 96

vii

LIST OF FIGURES

2.1 Distributed-Block Vector Quantization Coder 16
2.2 Extraction of the Distributed Blocks for Image 28
2.3 Partial Range Coverage for the DVQ Image Coder 30
2.4 (a) SNR Comparison of the DVQ and the VQ Coder 31

(b) Modified SNR Comparison of the DVQ and the VQ Coder 31

2.5 Coding Results with the Distributed-Block VQ:
(a) Original Image of Leena at 8 bppooovviiiiiii i 33
(b) Decoded Image using the DVQ Coder at 0.125 bpp, SNR 25.5 dB33
(c) Decoded Image using the VQ Coder at 0.156 bpp, SNR 26.9dB 34
(d) Decoded Image using the VQ Coder at 0.125 bpp, SNR 25.2dB 34

3.1 Local Activity:

(a) Original Image of Leenacoouiiiiiiiiiiiii . 42
(b) Local Activity of Leena ... 42
3.2 Distribution Function of Activity 44
3.3 MSE Distortion versus Activity Index 45

3.4 Coding Results with Activity Index:
(a) Decoded Image of Leena for §=0 at 0.156 bpp, SNR 26.88dB 47

(b) Decoded Image of Leena for =2 at 0.156 bpp, SNR 26.81dB 47

Viil

(c) Enlarged Version of a part of (&) ... 48
(d) Enlarged Version of a part of (b) ... 48
3.5 MSE Distortion versus Emphasis Factorccooiiii ... 51
3.6 Variance of Codeword Utilization versus Emphasis Factor 52

3.7 Coding Results with Block Boundary Emphasis:

(a) Decoded Image of Leena for §=1 at 0.156 bpp, SNR 26.88 dB 54
(b) Decoded Image of Leena for §=2.5 at 0.156 bpp, SNR 26.81 dB 54
(c) Enlarged Version of a part of (&)c..cooiiiiii i, 55
(d) Enlarged Version of a part of (b) 55
4.1 Magnitude Response of a Selective Spectral Attenuation Filter 59
4.2 Magnitude Response of Two-Dimensional Filters 63

4.3 Filtering Results:

(a) Decoded Image before Postfiltering 64
(b) Decoded Image after Postfilteringcooiuuiieinni... 64
(c) Enlarged Version of a part of (a)ooviiiiiiiiiiiii . 65
(d) Enlarged Version of a part of (b)co il 65
4.4 Magnitude Response of Encoder Filters 69

4.5 Filtering Results with Prefiltered Codebook:
(a) Postfiltered Image using Normal Codebook 70
(b) Postfiltered Image using Prefiltered Codebook 70

(c) Enlarged Version of a part of (2)cooovviiiiiiiiiiiiiinn. 71

ix

(d) Enlarged Version of a part of (b)c i, 71
9.1 Neurom ... 7
5.2 Index-Generation from Classification Results 79
5.3 Binary Tree-Structured VQ Encoder 81
9.4 Maxnet 85
5.5 Index-Generation from Maxnet Qutputsccoiiiiiiin... 87

5.6 Full-Search VQ Encoder i i 88

Chapter I
INTRODUCTION

Almost from the time television images started to be transmitted, the quest for
an efficient way to represent an image began. In image data compression, which
1s more popularly known as image coding, one is concerned with converting an
analog picture to the smallest set of binary digits such that this set of binary digits
can be used to reconstruct a replica of the original image good enough for human
visual perception. The need for such a representation arises during storage and
transmission of images. A digitized picture is a step towards this goal because it
is a time-discrete, amplitude-discrete representation of an analog image. A large
coding efficiency may be achievable for pictures that are to be viewed by humans,
taking into account the properties of the human visual system and the statistical
and picture-dependent properties of digitized pictures. The problem is different if
human viewing were not the primary objective. The human vision aspect has thus

influenced image transmission and coding since the beginning.

1.1 History and Overview of Image Coding

A typical image possibly has more redundancy than any other type of natural
signal. In the early fifties the autocorrelation of an image was measured and a high
degree of local correlation was observed. Many types of these observed redundancies
can be exploited. Typically horizontal or vertical correlation of a natural 1mage is

very high for adjacent pizels (or, pels, i.e., the samples of the digitized image). This

2

implies that the overwhelming portion of spatial power in a video signal is in the
lower frequencies, although the high-frequency part is responsible for the ultimate
quality of an image. Most coding techniques take advantage of this fact. A large
number of such techniques have been reported over almost four decades. Perhaps
the vast diversity among these schemes is due to the fact that there could be a lot

of difference in the coding objectives.

Image compression is not limited to the pixel-sampled images. It has been
attempted on analog TV signals, too [1]. Our discussion, however, is concerned
with the digital image compression/coding only. The compression techniques tend
to vary for different types of images, such as gray-level and color, two-tone, printed
material, or line-drawing images. We shall limit our discussion only to gray-level

and color images.

Any data compression scheme can be broadly categorized into two classes,
lossless and lossy. These classes are also differentiated as reversible and irreversible,
or as noiseless and noisy coding. A lossless coder operating on a digital image
achieves compression without losing any of the digital source information, hence
the decoded image is no different from the original one. A lossy coder reduces data
rate by sacrificing some information which is, or is thought to be, of not much
relevance to the viewer. As a result, the decoded image from a lossy coder shows

some coding noise, or error, when compared to the original image.

Lossless image coders exploit the strong spatial source correlation of an image.
In general, truly lossless techniques do not provide much in the way of compression.
Run-length coding, arithmetic coding, and Huffman coding are a few techniques

followed in lossless image coders. Some such coders are described in [2-5].

Though there exists a large number of lossy image coders in the literature,

almost all of them could be classified into one of the following categories: predictive,

3

block, and hybrid coding. These will be discussed now.

In a predictive image coder, a prediction for the value of the next scanned
pixel to be encoded is made based on the past encoded pixels, some of which may
not be on the same scan line. The difference between this prediction and the
actual value is encoded and sent to the decoder. The entropy of the adjacent-pixel
difference signal of a 6 bit gray-level picture is found to be only about 2.6 bits per
pixel. Therefore, traditional coding schemes such as delta modulation [6-8] and
differential pulse code modulation (DPCM) [9-13], in simple and adaptive forms,
are often used on imagery. Improved DPCM coders use more than one past pixel for
prediction. Because the local statistics of a typical image vary to quite an extent,
the need for a predictor that is adaptive was soon realized [14-20]. In case of video
data, the prediction operates both in spatial (within a frame, or intraframe) and in

temporal (between frames, or interframe) domains [21-26].

The prediction difference signal for the above-mentioned class of coders is
quantized to achieve digital transmission or storage with compression. Several meth-
ods for optimizing this quantizer, or making it adaptive to local image statistics,
have been suggested [27-31]. Keeping in mind the human audience, psychovisual

properties have also been used to design these quantizers [32-37].

Linear prediction is used in some image coders. The encoders do not send all
pixel values, instead the missing ones are computed by the decoder using interpo-
lation. Some such coders for still and video images are described in [38-41]. These

coders often use DPCM along with interpolation to achieve higher compression.

A strong similarity exists between the successive frames of a video signal. In
fact, in a new frame, pixels from only a few areas change. Therefore, temporal pre-
diction could be modified to become simply detecting and coding of the moving areas

of a frame. This simple yet efficient technique, called conditional replenishment, was

4

developed by Mounts in 1969 [42]. This technique produces variable rates for dif-
ferent amounts of motion. Improved designs have been offered characterizing buffer

control, efficient addressing of the changed area, or spatial prediction [43-48].

Some interframe coders use a more sophisticated temporal prediction by es-
timating and compensating for the changes due to motion [49-62]. The encoder
of such a motion compensation scheme determines the magnitude and direction of
motion, usually simplified as a piecewise linear translation, and sends them to the
decoder. Most improvements are done on these coders either by implementing an
efficient search algorithm to determine the motion vector, or by combining motion
estimation with other kinds of predictions and making the predictor adaptive to

local image characteristics.

The next type of image coding is called block coding because of the fact that
a section of neighboring pixels, or a block, is encoded together instead of encoding
individual pixels separately. The strong two-dimensional C(.)rrelation between the
pixels of a block is thus exploited. Block coders can achieve impressive coding
gains. In general, block coders perform comparatively better when the required
compression ratio is high. However, these coders usually are more complex than

predictive coders. Some block coding techniques will now be mentioned.

One very popular block coding technique is known as transform coding. The
input block to a transform coder is a two-dimensional spatial block of square shape.
The intensity values of this block are treated as a matrix with correlated coefficients.
The encoder maps this matrix to a transformed domain in which the coefficients
are expected to have reduced correlation. The transformed coefficients then require
fewer bits to be transmitted than the original intensity values do. The decoder

performs an inverse transform to return to the intensity domain.

A number of orthogonal or near-orthogonal transforms, such as Karhunen-

5

Loeve, Cosine, Hadamard, Sine, Fourier, Slant, Haar, etc., have been attempted
on still images [63-78]. The discrete cosine transform, or DCT, seems to be the
most popular among these transforms. Improved transform coders use adaptive bit
assignment for transmitting the transform coefficients. Interframe transform coders

use three-dimensional input blocks (spatial and temporal) while performing similar

operations [79-81].

Another widely investigated class of block coders perform vector quantization
to encode the input blocks [82, 83]. Each input block to a vector quantization
encoder is treated as a multidimensional vector for quantization purposes. The
large number of possible input vectors is mapped to only a few probable quantization
regions. Labeling of the region to which the input block was assigned could be done
using very few bits. The decoder substitutes the input block with the typical block
of the assigned region. This type of coder will be discussed in defail in the next

section.

The above two types of block coders have been combined in an attempt to keep
the advantages of both. In transform-domain vector quantization coders, quanti-
zation is done on the transform coefficients instead of the intensity values [84-87].

These coders have added complexity while offering higher compression ratios.

Various other block coders have also been published. Block truncation coding
encodes blocks using a bi-level non-parametric quantizer that can adapt to local
image properties. Some parametric values of the block are also transmitted to
preserve the lower-order moments of the square block. As has transform coding, two-
and three-dimensional blocks have been encoded using block truncation coding [88-
91). Singular value decomposition has been applied for spatial energy compaction

of image blocks in a way similar to orthogonal transform coding [92, 93].

Predictive coding is easy to implement, while block coding is robust and gives a

6

lower bit rate. In an attempt to combine these advantages, a class of hybrid coders
has evolved. In some hybrid encoders, a DPCM encoder follows the transform
encoder to exploit the similarity between the spatial blocks [94-101]. DPCM can
also be performed before the transform coding [101-103]. Vector quantization is
used in conjunction with DPCM, too [104]. Conditional replenishment can be used
with any intraframe block coder to design an efficient interframe coder [105]. Lastly,
motion compensation is also done in transform domain [101, 106-108] and with

vector quantization [109].

Apart from the three general types of coders described here, a few other image
coding techniques have also been reported. Attempts have been made to consider
source coding and channel coding at the same time. Combined source-channel
coding has the advantage of some error correction capability within a low data rate.
These coders usually are superior to others in the presence of transmission noise.
Tree encoding [110-112] is one example of sich a scheme. The effect of adding some
error correction without increasing the bit rate has been investigated in [113-115]
for DPCM and DCT coders. Sub-band coding techniques are also used for image
compression. These coders split the spatial frequency band of the image signal and
code each band separately using an appropriate coder and rate. Some such coders
are described in [116-119]. Note that it is possible to classify a source-channel coder,
or a sub-band coder, into one of the three broad groups discussed earlier, depending
on which particular coding scheme is being used. The fractal compression scheme
uses a completely different concept by tolerating encoding distortion not only in
the intensity values of the pixel, but also in the spatial position of the pixel itself.
Fractal image coding is claimed to have achieved very high compression ratios at

the expense of enormous computing [120].

Tutorial and review papers have been published on general or specific image

coding techniques from time to time. Refer to [121-127] for some of these papers.

1.2 Vector Quantization

Vector quantization (VQ) is a source coding technique that has existed in
theory for a long time, and has been extensively used for speech for some years, but
for images only more recently. A simple consequence of Shannon’s rate distortion
theory is that better performance can always be theoretically achieved by coding
vectors instead of scalars, even if the data source is memoryless. Therefore pixel-
wise compression schemes are, in a Shannon sense, inherently sub-optimal, because
quantization is accomplished only on scalars. This fact naturally leads to designing
a VQ coder where vectors instead of scalars are quantized to achieve better com-
pression. Input samples from the source, typically speech or image, are bunched
together as input vectors. A pre-computed set of representing vectors,n or a codebook,
is then searched through to find out the member (a codeword) which, according to
some criterion, best matches the input vector to be encoded. For the purpose of de-
ciding the best match, the closeness between the input vector and any codeword is
measured by a vector distortion function associated with the VQ coder. The index,
or a binary label, identifying the selected best-matching codeword is then assigned
to the input vector and transmitted. The decoder uses this label to address the
same codebook, each entry of which contains a precise digital representation of the
corresponding codeword. The job of the decoder is to simply substitute the label

by the codeword.

The dimensionality of a VQ image coder refers to the number of dimensions,
or pixels, an input vector has. For such a K-dimensional VQ image coder, the
source image is partitioned into typically rectangular blocks of p x ¢ pixels (usually
p = ¢). The intensity values of such a block is put into a typically row-first single-file

ordering, regarding them as a K-dimensional input vector

X = (z1,22,...,2K), (1.1)

8

where K = p X ¢ and z}’s are the individual pixel values. This VQ coder has a

codebook C consisting of NV pre-computed codewords,
C={cW,c? . . cM} (1.2)

where N is the cardinality of C, usually some integer power of 2. Each of these N
codewords is also K-dimensional: C(® = (cgn),cgn), . ,c(I?)). Then, for an input

vector X, the encoder determines C(™ such that
d(Xx,c™) < d(x,c™) for1<n<N. (1.3)

Here d(X, C') is the distortion function associated with the VQ) coder. The distortion
function almost universally used in image coding has been the mean square error

(MSE) distortion,
K

' 1 2
d(X,0) = = k\;l(xk — i) (1.4)
In case of MSE distortion, the closeness is thus measured by the Euclidean distance

between the two points in a K-dimensional Cartesian coordinate system.

To transmit the index m to the decoder, logN bits are required. The de-
coder replaces m by C(™. Therefore, the coder achieves a compression ratio of
(Ks/logN), where s is the number of bits per pixel (typically 8) in the original
input. The minimum distortion, as computed by the encoder, is the resulting quan-

tization noise in the decoded data.

The concept of quantizing vectors was applied to speech coding before it was
extended to images. Quantization in multidimensions can, however, be found in
some earlier image coding schemes. In one such coder [128], though VQ has not
been explicitly mentioned, a vector codebook consisting of some typical codewords
was searched to find the best match for the input block. Some early VQ image

coders have already been referred to in the previous section. A detailed discussion

9

of vector quantization is given in [129]. A brief review paper on VQ image coders

appears in [130].

Some basic modifications of the VQ coder will now be mentioned. The dimen-
sionality, and consequently the codebook size, of a VQ image coder is usually higher
than those of a VQ speech coder. Therefore, image coding faces the disadvantages
of a large codebook, which are large storage requirement and longer search time. In
order to reduce the codebook size, mean residual VQ is used in some coders [131-
133]. In such a coder, the mean value of the vector is subtracted from the input
vector before encoding. The mean value is scalar quantized and sent along with
the label. In order not to have a very large codebook, the block size of a VQ coder
1s kept small. This, however, does not allow one to exploit all the redundancy of
an image. Finite state V) uses the information from the previous blocks to decide
which sub-codebook will most likely have the best match, thus exploiting some of
the spatial [134] or temporal [133, 135] inter-block redundancy. Finite state VQ has

also been used adaptively [136].

The MSE distortion function does not represent human viewing discomfort
too well. Therefore, human visual properties have been incorporated in VQ image
coders to achieve better subjective quality [137, 138]. The basic VQ coder puts
equal emphasis in encoding uniform blocks and high-detailed blocks. The high-
detailed blocks are not so well encoded as a result. To remedy this problem, a
variable block size generating a variable bit rate has been used in some coders
[139, 140]. An alternative approach is taken in [141, 142] by classifying the vectors
into different ‘shade’ and ‘edge’ classes according to inner details, and by designing
separate codebooks for these classes. Then the final codebook is a conglomeration of
these codebooks with a desired emphasis on each class, such that a more balanced
encoding would result. For the same purpose, multistage VQ image coders have

also been used [140, 143].

10

Encoding of color images using a VQ technique offers some choices. Because
the three color elements, whether composite or component, are highly correlated,
vector quantization could be performed on three-dimensional input vectors contain-
ing the three elements of an individﬁal pixel [144, 145]. This approach is quite
common in the encoding of multispectral imagery, although the spatial correlation
is disregarded here. A more popular approach is to use three independent spatial
VQ coders for the three color elements [131, 132, 138, 146], which, however, fails
to utilize the redundancy along the color axis. The best results have been achieved
by considering a three-dimensional block (two spatial axes, one color axis) as the

input vector to the VQ coder [146-148].

Encoding of video images with a VQ coder has been done by using some
interframe techniques along with the basic VQ structure. Label replenishment is
used as an extension of conditional replenishment in some schemes [105, 132, 149].
A label replenishment coder encodes each input block and compares the label with
the label of the previous temporal block. The present label is transmitted only if
the two labels differ. Motion compensation is also used in conjunction with vector

quantization [109, 133, 150].

For a VQ image coder to perform efficiently, the codebook has to represent
the image data very well. It has been observed that codebooks generated from
some types of image data typically don’t perform well on unforeseen images. Thus,
robustness of a codebook towards changing image statistics is very desirable in a VQ.
Some schemes use an adaptive codebook by periodically updating the codebook, i.e.,
replacing the relatively unused codewords by splitting the more likely clusters [105,
132, 149, 151]. Re-encoding the encoding error of the initial VQ by a second-stage

VQ has been suggested in [104] to make the coder more robust.

Generating a good codebook requires a huge amount of computation. The

11

amount of computation could be reduced by using less data, but it would also
result in a less robust codebook. In order to circumvent this computation burden
while not sacrificing robustness, some fast codebook generation algorithms have
been suggested [152, 153]. Attempt has also been made to design a better codebook

without increasing the amount of computation [154].

Once the codebook is generated, the encoding search still requires a lot of
computing. The basic VQ algorithm performs a full search through the codebook
(FSVQ), which is computationally intense. In [155], a faster search algorithm has
been suggested which is still optimal. Tree search attempts to utilize some charac-
teristics of the codebook to reduce the search time [153, 156]. Alternatively, various
structured codebooks have been designed so that encoding becomes much simpler.
One has to note that these structured codebooks are usually sub-optimal. Binary
(or other) tree-structured VQ, first mentioned in [157], takes only logarithmic en-
coding time when compared to FSVQ. Similar savings in encoding computation is
achieved by lattice VQ [158], which is used in some schemes [104]. Pyramid VQ is

another example of such a structured VQ [159].

1.3 Brief Outline of the Chapters

In Chapter II we suggest a novel approach to extract input vectors for a vector
quantization coder. We point out in Section 2.1 the motivation for doing so, and
the advantages and disadvantages of this distributed-block VQ coder. For almost
no added complexity, our coder achieves a lower bit rate for same distortion when
compared to a similar conventional VQ image coder with small dimensionality.

Moreover, the new coder offers more flexibility in altering bit rate, and needs less

12

encoding computation than the standard coder. The remaining part of Section 2.1
describes the scheme in general terms. In Section 2.2 we show that the distributed-
block VQ coder outperforms, in theory, the basic VQ coder in some cases for large
enough codebook. Our simulation results in Section 2.3 show that a specific example
of this coder, applied to low rate image coding, performs better than the basic vVQ

coder.

In order to improve the decoded image quality, we make some effective yet
simple-to-implement modifications to the VQ image coder in Chapter I1II. A gen-
eral class of distortion measure is proposed in Section 3.1. Our proposed distortion
function introduces activity classes and a geometric emphasis. In accordance with
the activity, or inner detail, of an input vector, each vector is assigned to an ac-
tivity class with a penalty factor for the quantization distortion. In Section 3.2 we
investigate the use of activity classes in VQ image coding and find that this scheme
indeed improves the subjective quality of the decoded pictures in our simulations.
The geometric emphasis part is used to selectively reduce the distortion at the block
boundaries. In Section 3.3 we show some more results for a VQ coder with selec-
tive emphasis, achieving lower quantization distortion and better subjective quality

when compared to the basic VQ coder results.

Chapter IV deals with filtering techniques for a block image coder, with special
emphasis on a VQ coder. A brief introduction to incorporating filtering techniques
in image coders is given in Section 4.1. By exploiting the spectral characteristics of
the quantization error, we design and compare some simple spatial filter in Section
4.2 to smooth away the block discontinuities in the decoded image. In Section 4.3 we
suggest a scheme using preﬁltering and postfiltering to improve the decoded image
quality, and show that our scheme performs better than the regular preprocessing

scheme.

13

Chapter V describes two schemes we have designed to implement a VQ image
coder using an electronic neural network. An introductory overview of using neural
networks in vector quantization is given in Section 5.1. Our first scheme, described
in Section 5.2, uses simple networks to realize a binary tree-structured VQ encoder,
and will have a very short encoding time. The second scheme, described in Section
5.3, realizes the full-search VQ encoder using fewer synapses, but suffers a longer

encoding delay due to the presence of feedback.

The thesis is summarized and conclusions drawn in Chapter VI. The VQ image
coder has until now been perceived to be somewhat impractical due to its excessive
encoding computation. However, from the results of our work, implementation
of an affordable real-time low rate video coder using vector quantization appears
plausible even with today’s technology. We show that the subjective quality of
the decoded picture can be enhanced without increasing the encoder computation.
Also, electronic neural networks appear to be a good alternative for implementing

a VQ image coder, especially when the system requires a small encoding delay.

14

Chapter I1
USE OF THE DISTRIBUTED BLOCKS

In a vector quantization coder, the input vectors are usually formed from the source
using spatial pixel blocks for images, or a set of neighboring samples (temporal
blocks) for speech. In this chapter we present a different technique for extracting
vectors from the source. The new vector quantization coder, as described in Sec-
tion 2.1, uses distributed blocks as input vectors. The clustering property required
during codebook generation from these distributed vectors is expected to be less
favorable than for the conventional spatial vectors. On the other hand, the quanti-
zation noise with our technique is distributed, which is more acceptable for human
viewing. In addition, owing to the correlation between the distributed vectors, the
encoding search and the bit rate for the new scheme will be smaller than for the
conventional coder. In Section 2.2, this coder is shown to asymptotically achieve
lower rate for small dimensionality over the general coder producing the same SNR.
Not only does the new technique not increase the coder complexity, it also is much
more flexible for rate versus SNR compromises than other coders. Some experimen-
tal results are given in Section 2.3 comparing our technique with the spatial vector

quantization coder for low rate image coding.

2.1 Distributed-Block Vector Quantization

Traditionally the input vectors for a VQ encoder have been extracted from the

source by choosing K samples (K = dimensionality of the coder) that are immediate

15

neighbors of each other (in a line for one-dimensional sources, in a square or rect-
angular block for two-dimensional images). This is only natural since immediate
neighbors show the highest correlation, therefore the vectors tend to cluster to-
gether, which is desirable in a VQ coder. In the distributed-block V@ scheme the
source sequence is decimated by a factor of d before constructing the K-dimensional
vectors. Note that the normal spatial-block vector is a special case where d = 1. For
d > 1, the source is split into d decimated sequences in a form similar to sub-band
coding [160]. No information is lost in the process because each decimator receives
a different delayed version of the source sequence. Each of these sub-sequences is
encoded and decoded by a separate VQ coder. The decoded sequences at the re-
ceiver are put together to get back the source sequence with possible quantization
error. Figure 2.1 shows the schematic diagram of the coder, features of which will

now be described.

Because these d decimated sequences have similar probability distributions, it
is necessary to design and store only one codebook. Coders of all channels use this
same codebook. The codebook, C in (1.2), is assumed to be ordered in the following

fashion:

FICW)y < FE@®)y <. < F(CW), (2.1)

where f(-) is a similarity function on the codewords; codewords similar in intensity
values and in patterns should have closer f(C), and vice versa. The objective of this

ordering is to have similar codewords in neighboring regions within the codebook.

Ideally, the similarity function should represent the similarity for human view-
ing. In practice, however, one could use some distortion measure, or correlation,
between two codewords to determine their similarity and place them accordingly in

the codebook. However, this may not result in a unique ordering. A simpler way

input

16

~ Yd S::rléh Bl label > Lookup [—=f Ad
! — -
D JE; i
- +d i: g:;‘;ll , #2 »- partial label I = Look up - fd
Dl A i
*d . gzﬂ . partial label—1 Look up - * d
- _ Y _
Codebook Codebook
Decoder

Encoder

Figure 2.1: Distributed-Block Vector Quantization Coder

output

17

of sorting the codebook is using the average intensity,

1 K
f(O)= % > e, (2.2)
k=1

which, however, is pattern-invariant. There is no penalty in making the similarity
function computationally complex, because this part of the computation is to be

done only initially and is not required in the encoding process.

Because the d simultaneous input vectors to the coder are interlaced, they are
much correlated. The need to exploit spatial redundancy over a larger region than
just the block size has been recognized before [134]. A finite state VQ, for exam-
ple, utilizes the correlation between the adjacent spatial vectors. The correlation
between the distributed vectors is, however, much stronger than the correlation be-
tween vectors in case of the traditional scheme. This correlation is exploited in the
coder to reduce both the search time and the bit rate. The individual VQ encoders
of the d channels do not exactly operate in parallel. Instead, the coding is done in
sequence through the channels, and each channel uses the information from other
channels above it in the coding process, conducting only partial search. The partial

search for the i-th channel is done over some localized region within the codebook,
{Cc®) ¢t oledy (2.3)
where b; and e; denotes the beginning and the end of this search region.

To begin with, full search is performed in the initial (topmost) channel, which
means b; = 1 and e; = N. Once this search is completed, the index, m{¥), is
known, where the superscript indicates the channel number. The next channel then

performs its search through the part of the codebook localized around m(!)
by = by(mM) and e = ey(mM). (2.4)

The functions b;(-) and e;(-) specify the range of the partial search where the closest

codeword for the input vector of the i-th channel will most likely lie, and could be

18

of the form

bij(im)=m— — and e;(m)=m+ % -1, (2.5)

where R; is the partial range for the ¢-th channel. Typically R; will be much less
than N for ¢ > 1, therefore the partial search will result in a partial label, m(?,
which needs fewer bits than m(!) to be specified. Consequent channels will further
reduce their search area using information from all the labels computed before, for

example
b3 - bg(m(l), m(z)) (26)
and so on. In order to keep the coder fixed-rate, these functions should be such

that R; remains the same in any case.

Though it is likely that the codeword with the least distortion for some input
vector will lie within the partial range, with a certain probability it will not belong
to the search neighborhood. In that case the selected codeword, though optimal
within the partial range, will be sub-optimal when compared to full search. An
appropriately chosen similarity function will result in a small probability of sub-
optimal decision even for a fractional search area. The decoder constructs the labels
from the received partial labels using information already available. Therefore, no

overhead is required.

The bit rate of the coder is given by
1 d
Kd ;flog(ei ~b;+1)] Dbits per sample. (2.7)

This rate will be smaller than the bit rate for a full-search VQ coder, [log N/ K, for
any reasonable choice of search ranges. The average number of times the distortion

function has to be computed for one K-dimensional vector is

1 d
E Z(ei - b,‘ + 1). (2'8)

19

For a full-search coder the corresponding number is N. Thus, the encoding com-
putation is substantially less for the distributed-block scheme. The storage require-
ment remains the same in our scheme. Because of the sequential encoding of the
channels, it is possible to implement the coder using same amount of hardware as
the full-search VQ, which is not obvious from the diagram. The complexity of this
coder is marginally higher than that of the conventional coder due to the variable

partial search range, but this is negligible compared to the full coder complexity.

Consider a spatial vector quantization coder with dimensionality K and N
codewords. This coder has a compression ratio of (Ks/log N), where s is the
number of bits per sample (or, pixel) of the source, and ‘log’ refers to logarithm
base 2. Some applications of this type of coder demand the bit rate, i.e., the
compression ratio, to be variable while compromising the quantization distortion.
In general a larger block dimension results in a higher compression ratio for a VQ
coder. However, the computational burden increases linearly with the number of
dimensions. It is easy to rrealize that once implemented, the dimensionality K of
a coder cannot be altered trivially. For fixed K the rate could be reduced while
sacrificing quality by reducing N. A factor of 2 reduction in N will decrease the
bit rate by —11‘— bit per sample. In case of the tree-structured VQ, this reduction
of codebook size amounts to reduction in depth of the tree, and could be achieved
easily. However, for other VQ coders, this is not at all trivial. If a pre-computed
fixed codebook is to be used, for most typical sources there is a need to adapt
the coder to source statistics. These facts motivate one to look for a coder which
is capable of changing the rate easily at smaller steps even for fixed codebooks.
The distributed-block scheme not only fulfills this goal, computer simulations show
images with better quality using this scheme compared to the conventional VQ

coder.

The distribution of blocks has a desirable effect in case of image coding. Block

20

coding such as VQ at low rate results in blockiness, or visibly annoying blocks of
quantization noise, in the decoded picture. In the new coder, as d increases, an
encoded block appears more and more diffused in the decoded image, and because of
the integrating effect of human eye the blockiness becomes less annoying. However,
as d increases, the correlation between the components within a vector becomes
less. As a result the clusters become more random, and larger codebook size is
required to achieve the same quality as before. Thus, the decoded image quality is
affected both positively and negatively for increasing d. The optimum value of d
seems to depend mostly on the type of source. As our results will suggest, for low

rate coding of gray-level images, d = 2 performs better than d = 1.

2.2 Performance Analysis

The following section considers a theoretical approach to the distributed-block
vector quantization (DVQ) coder performance when compared to the convectional

scheme (VQ).

Consider the source to be one-dimensional, emitting real numbers z1, z,,. . .,

z;,... where —oo < z; < oo. For simplification we will assume these outcomes to

form a Markov chain. Thus,
plxi/zicy, zizg,...) = p(zi/Tizy). (2.9)

We choose the symmetric Gaussian function to be this differential probability den-

sity,
p(zi/zi-1) = go(zi — zi—1), (2.10a)
where
A 1 —a?
9o(z)= ez7, (2.100)

21

the normal density with zero mean. Assume the probability density of the first

element, z1, to be g(z1).

A conventional VQ coder of dimensionality K and with N codewords is applied
to this source. The encoder takes K-tuples from the source to form input vectors

of the form X = (z1,z,,...,2K). The joint probability density function for X is
p(X)=p(z1,22,...,2K). (2.11)

No known result exists for the average distortion for arbitrary N; however, the
minimum achievable average distortion for such a block quantizer for asymptotically
large N is known {161]. If Dy denotes this minimum average distortion, then

CET) o) || (2.12a)

DVQ = NT/K K+r

where the distortion measure is the [.-norm, and

19(3) o 2| [p)eax] g (2.120)

Here C(K,r) is a function independent of the source statistics, and only the upper

and lower bounds are known for K > 3. The joint density, p(X) in (2.11), could be

expressed as

p(X) = plz1)p(ze/z1)p(x3/21,22) ... p(TK [T1,T0, ..., TK—1)
= p(z1)p(ze/z1)p(xs/z2) ... p(TK/TK-1) [from (2.9)]

= q(z1)90(22 — 21)90(23 — 22) ... go(Tx — zx—1) [from (2.10)]. (2.13)

Now we will consider the distributed-block scheme. For some integer d > 1,

every d-th outcome from the source is chosen to construct vectors of the form

Y = (y17y2’ [P ,yK) = (:I)l,.’Ed+1, e ,1’(K_1)d+1). (214)

22

Here p(y1) = p(z1) = ¢q(y1), and

p(Yi+1/yi) = p(ziyra/z;)

/ /P($z+d/1'z+d 1) p(Tiv1/zi)dTiza—1 ... dziqq

:/.../gU(IEH_d—$i+d_1)...ga($i+l —.’Ei)d$i+d_1...dl'i+1

= 9o *¥Jo * ... * o (Yitr1 — i) (2.15)
d times
where * means convolution. But g, * go * ... * g, = ge, where g¢ is the normal

density with zero mean and variance ¢? = do?. Therefore, Y is a vector having
a similar density function to that of X, except that the functions go(+) are to be
replaced by g¢(-). This is expected because the correlation between data points are

reduced in a distributed-block VQ. Therefore, from (2.14) and (2.15),

P(Y) = q(y1)9e(v2 — y1)9e(ys — y2) - .. 9e(yie — Y —1). (2.16)

The minimum average distortion for this coder is given by

Dove =" p¥) | . (2.17)

Therefore, keeping all other parameters the same, the ratio of the average

distortion for a VQ to a DVQ coder in (2.12) and (2.17) turns out to be

Dyvq _ 1 p(X) |la
Dpvg lp(¥)]’ (2:18)

where a = K/(K + r), and r = 2 because we are using MSE distortion. Now from

(2.13),
[r0ix = [[- o). giton —axr)de . dex
:/f(:cl,...,a:K_l)dzl...de_l/ 9o(zx —TK-1)dTK

:Ca/f(xl,...,xK_l)dxl...d:cK_l (2.19a)

23

where
C, = (2m0?) T a"F. (2.195)
Proceeding this way, one gets
ar v s K—
/p (X)dX = C,C, 1 (2.19¢)
where
c, :/ q¢%(z)dz, (2.194)
and
/ p*(Y)dY = C,Ccf! (2.20)

in a similar fashion. Then from (2.18), (2.19), and (2.20),

1
DVQ . C;(_l “
Dpvo Cg{_l

=d® . (2.21)

Note that for K > 1, the ratio approaches %l This means the DVQ scheme results
in a factor of d more average distortion than a comparable VQ scheme. This is
expected since use of distributed blocks makes the vectors effectively less correlated.
However, one should keep in mind that MSE distortion is not a true measure of
human visual discomfort, and that the quantization error for the DVQ coder is more
distributed, as opposed to localized errors for the VQ coder. Subjective quality of
a distributed-block image might be almost as good with a substantial saving in bit

rate.

Because the d vectors of a DVQ encoder are highly correlated among them-
selves, the bit rate of the DVQ scheme is less than that of a similar VQ coder. We
will now compute this bit rate advantage of a DVQ coder over a VQ counterpart.

Let us rename the outcomes of our Markov chain source as

1 2 d 1 2 d 1 2 d
ij)7y§)77y§)73/;(;)7y§)>)y§)aayﬁ()vyg(%?y;\% (222(1)

24

and the DVQ input vectors of (2.14) as

Y(l) = (y§1)>y§1)a ’yK))

YO = (0,650, i) (2.22b)
The joint density function in (2.16) could also be expressed as

p(Y) = ¢(y1)9¢(Ay2)g9¢(Ays) . .. 9e(Ayx), (2.23)

where Ay; = y; — yi—1. Then, ford > 2, i < d,

p(Y Dy ()
= p(y{tD Sty O O ,yg))
= pyi Y)Y O)p(y D fy Dy Oy L p(ylh DGy

= p(y " Sy 16y P D) [from (2.9),(2.22)]

= 9o (Dy ™)go (Mg V) L go (AYETY), (2.24)
where Ay() = y;i) — yj-i_l). Because of symmetry reasons, p(Y(2)/Y(1)) =
p(Y®/)Y®) = . = p(Y@/y(@=D), The entropy of these d vectors Y1) Y@

., Y@ is given by

HyWy® vy =gHYO) 4+ HY®)+.. .+ HYD) - [(yD,y?)
~ (Y@, y®y v,y @)

=dH(Y) - (d-1D)IY®;y(+D), (2.25)

For the non-discrete vector variables Y9 and YD the mutual information,

I(Y®; Y+ s given by [162] as

I(YO; Y6 = Ry G _ p(r 40y) (2.260)

25

with the assumption that the following integrals,

. 1 .
R(Y DY = p(y :/ Y)log ——dY 2.926b
() =h(Y) p(Y) 8 TV ()
and
. A . . 1 . .
(i41) 137()y — A(i+1) (i) (i+1) gy(i)
rY /Y)—/p(l Y)logp(y(i+1)/y(i))dy dy (2.26¢)
both exist.

Consider A(Y") first. From (2.23),
h(Y)=/---/Q(yl)gs(ﬁyz)---gs(AyK){—logq(yl)

K .
- Z log ge(Ay;) | dy1dAys ... dAyg. (2.27a)

1=2

But —log g¢(y) = 3 log(27€2) + 2—3’;—2, and [7_ %"Ez—zgf(y)dy = 1. Therefore,

1 K-1
hY:/ y1) log dy; + —— log(2mef?
¥) = [a(v1) oy v+ —5 log(2me?)
= h(y;) + K-l log(2meda?). (2.27b)

Here it is assumed that h(y;) exists. Now, consider the second integral. From

(2.24),
i i i i i 1 (i i
R(Y))y)y = /p(y(Np(Y D /1y ())Ing(Y(i+1)/Y(i))d} (+1) gy ()
K 9
=5 log(2mec?) (2.28)
following a similar way. Hence, (2.26) becomes
(@), y (+D) Log (427
DY) = = . 2
T Oy O =) + 3 1os (5) (220)

In case of the VQ scheme, the vectors X are assumed independent. Hence,

the absolute entropy of each vector would be H(X). In the DVQ case, the average

26

entropy of one vector is H(Y) — &L I(Y®; Y +D), If we assume H(X) ~ H(Y),
then the DVQ coder has a bit rate saving of %I(Y“); Y (+1) bits per sample over
the VQ coder. The above assumption may seem loose, because one might expect
H(Y) to be larger than H(X). However, both absolute entropies are infinite here,
and the mutual information between consecutive vectors is an appropriate measure
of the maximum bit rate saving. Note that we do not compress the labels further
by entropy coding in either scheme, therefore the quantity H(Y) — H(X) is not
important in this discussion. Thus, bit rate advantage per sample of the DVQ

scheme over the VQ scheme is given by

d—1 1 di-1
SR [h(yl) + 5 log <27reo2>} . (2.30)

Consider a VQ coder with M codewords, where A is less than N. The asymp-

totic average distortion of this coder, from (2.12), will be

(%) * Dyq. (2.31)

Equating this distortion to Dpy¢ in (2.21), we get the following relation:

N _
= =d (2.32)

Assuming N and NV to be integer powers of 2, the bit rate for the smaller VQ coder
is % log, % bit pef sample less than for the original VQ coder. Comparing this bit
rate with the bit rate in (2.30), one finds that the DVQ has a lower rate than the

VQ for equal average distortion so long as the following condition is satisfied,

(d—1)log2 [2h(y;) — 1 — log(27c?)]

K<l
+ log d[d(1 — log 2) + log 2]

(2.33)

where log refers to the natural logarithm.

Substituting d = 2, K = 64 in (2.21), we find the SNR resulting from the

DVQ coder to be almost 3 dB below that of a VQ coder with same parameters. If

27

g(z) is taken to be normal density with a variance of &, then h(y;) — 3 log2mec? in
(2.30) becomes log(é /o). For gray-level image the value of (6/¢) in one dimension
ranges from 10 to 50. Using this value in (2.30), the DVQ coder will have a bit rate
advantage of nearly 0.18 bit per sample over the VQ coder. These figures, however,
are only true for asymptotically large N. For N = 1024 with same values of d and
K, our simulation results show 1.3 dB reduction in SNR with 0.03 bit per pixel

reduction in bit rate for the two-dimensional DVQ coder [Figure 2.4(a)].

2.3 Experimental Results

The DVQ coder has been applied to monochromatic images and compared
with results obtained from a VQ coder. Extension of the distributed-block scheme
into two dimensions is automatic. Figure 2.2 shows the formation of distributed
blocks from a two-dimensional pixel matrix for d = 2. The coder will have d? chan-
nels and the interdependence between the channels will also be two-dimensional. A
square block of size 8 x 8 is used, and the number of codewords, N, is taken to be
1024 or less. For reason of comparison, the training sequence and other parameters

are kept exactly the same for both the coders.

The similarity function, f(C), used in the DVQ coder is the average inten-
sity function, as described by (2.2). We have not tried to optimize this function.
The codebook has been sorted using this similarity function. The coder has four
channels: (1,1), (1,2), (2,1), and (2,2). Let us rank these as channels 1, 2, 3, and 4,
and call the corresponding inputs X, X3 X3 and X®, In the first encoder,

by = 1 and e; = N, or full search is performed for X(). Because X® is least

28

ANy

SR

NN

I A

LTI

HERERD

[pixel

=2)

Distributed Block (n=4,d

=4)

Spatial Block (n:

Figure 2.2: Extraction of the Distributed Blocks for Image

29

correlated to X it is encoded next using

N
et

by(m™) = max{1,mV — es =by — 1+ (2.34)

s’

Here the partial search range is Ry = (N/2™), which saves r4 bits to encode X,
The strategy of encoding the two least correlated vectors first works best here,
because it determines the possible range for the remaining labels. X(? and X ()

are enicoded next using

(1 (4)
m't +m N N
) - 27‘2-}-1 }, €9 :b2 _1+2Tz’ (235)

by (m™®, m™®) = max{1,

and similar functions for b3 and e3. The average saving in bits per pixel for this
encoder is then (ry 4+ r3 + r4)/K. Figure 2.3 shows the percentage of times the
decision made by the encoder is sub-optimal for different values of ry or rs, r4
and N. In general a search region twice as long is required for X to have a
similar percentage as for X2 or X®). One should also remember that, even if the
best match belongs outside the search range, the sub-optimal match may generate
only marginally more distortion. The advantage of this scheme over entropy-coded
partial label transmission is that the later scheme has a variable rate and does not

save computation.

Figure 2.4(a) shows the resulting signal-to-noise ratio (SNR) versus bit rate
for the DVQ and VQ coders. For our simulation, the well-known 256-level picture
of Leena was taken. To evaluate the coder performance, peak SNR is used as given

below:
2552

— — . 2.36
[-Tdecoded(zyj) — :toriginal(%])]z} ()

SNR = 10log, £+

Here z(¢,7) is the intensity value of the (7,j)-th pixel. Our DVQ scheme had
N = 1024 codewords. The results show the DVQ to be superior in quality to the

VQ for bit rates lower than about 0.13 bits/pixel. As has been pointed out before,

Percentage labels

30

15%_| - 128

10%_

(4

outside rang

5%

0%

Figure 2.3: Partial Range Coverage for the DVQ Image Coder

SNR (dB)

SNR,, (dB)

31

27 —A
A VQ
~
-
-~
-~
~
26 -
”~
~
- DVQ
~
.
25 _ -
-~ .
-
-
o
24 T T T T T Lo
0.11 0.12 0.13 0.14 0.15
Bit Rate (bpp)
Figure 2.4(a): SNR Comparison of the DVQ and the VQ Coder
29
A2 VQ
-~
-~
~
28 o——0——p-"—o—o——o Dy
/o/_-o’c il
-
-
~
27 g
aa
-~
-~
-
_
26 1 -~
o
25 T T ! L} 1 L
0.11 0.12 0.13 0.14 0.15
Bit Rate (bpp)

Figure 2.4(b): Modified SNR Comparison of the DVQ and the VQ Coder

32

the quantization errors in the DVQ are distributed which is less annoying to eye.

The MSE distortion is unable to display this fact.

In an attempt to account for this, the SNR expression in (2.36) could be

re-written using a vector-MSE distortion as

255%

. (237)
E { (Elf i1 [T accoted(is) — zoriginal(i,j)]) }

SNR42 = 10log;,

Figure 2.4(b) re-draws the previous results using the modified SNR for d = 2. As
can be seen, the DVQ coder outperforms the VQ for bit rates lower than about

0.145 bits/pixel now.

Figure 2.5 shows the coding results for the same image. While figure 2.5(a)
shows the original version at 8 bits/pixel, 2.5(b) is the decoded image using the DVQ
coder at 0.125 bits/pixel. Figures 2.5(c) and 2.5(d) are decoded images using the
VQ coder for bit rates of 0.156 and 0.125 bits/pixel respectively. All of the decoded
images show degradation in the areas of high details, for example the feathers of
the hat. The overall quality of figure 2.5(c) is better than 2.5(b) or 2.5(d) because
of its higher bit rate. Comparing for the same rate, figure 2.5(b) represents the
high-contrast edges better than 2.5(d), for example the shoulder. The low-contrast
edges are not so well represented by the DVQ coder, but being the background, this

quality is tolerable.

33

(b)

Figure 2.5: Coding Results with the Distributed-Block VQ:

(a) Original Image of Leena at 8 bpp; (b) Decoded Image
using the DVQ Coder at 0.125 bpp, SNR 25.5 dB;

34

(d)

Figure 2.5: (Continued):
(c) Decoded Image using the VQ Coder at 0.156 bpp, SNR 26.9 dB;
(d) Decoded Image using the VQ Coder at 0.125 bpp, SNR 25.2 dB.

35

Chapter III
IMPROVED DISTORTION MEASURES

The role played by the distortion measure in an image VQ encoder is very impor-
tant. The mathematical function used for computing the distortion is nothing but an
attempted quantification of human visual discomfort with quantization errors in the
decoded picture. Unlike speech coding, where more involved distortion measures
such as the Itakura-Saito distortion function have been used alongside the MSE
distortion, there have been very few investigations on a more appropriate function
than the squared-error distortion in VQ image coding. In the following discussion
we look into a simple class of distortion functions, the input-dependent weighted
squared-error distortion, which takes into account some psychovisual characteris-
tics. The performance of the codebooks generated using these distortion functions
are compared to that of the conventional MSE codebook. This simple yet efficient
distortion measure suggested by us, while keeping the coder complexity the same or
at worst marginally higher, is found to provide better subjective quality than the

MSE distortion.

3.1 Input-Dependent Weighted Squared-Error Distortion Function

For a quantizer to perform well, the quantizer has to represent the source
efficiently. Given a specific source and a fixed number of quantization levels, N, an
optimum quantizer is defined as the quantizer which can encode the source with

minimum average distortion. To define this optimality, a penalty for the distortion

36

or quantization errors has to be assumed. The distortion function of a VQ coder

mentioned in Section 1.2 is a computation of this penalty.

For scalars, Lloyd’s algorithm can design an optimum quantizer when the
source statistics and some distortion measure are specified [163]. Linde, Buzo and
Gray extended Lloyd’s algorithm to designing vector quantizers in a way similar
to the clustering algorithms in pattern recognition [164]. Their algorithm is known
as the LBG algorithm in VQ coding. Because no appropriately representing source
statistics may be available for typical VQ sources such as image and speech, the
LBG algorithm designs a vector quantizer optimal for a typical set of input vectors,
known as the training sequence. The training sequence should be long enough and
be chosen in such a way so that it represents the source statistically. The iterative

LBG algorithm may, however, converge to a local instead of the global optimum.

The LBG algorithm will not be described here, but we shall mention some
of its requirements. When the distortion function is specified, this algorithm is
intended to design a codebook with the minimum expected distortion. N aturally,
the distortion function d(X,C), as in equation (1.3), has to exist. The algorithm
works for any such distortion function as long as the centroid of a set of vectors

using the distortion function exists, too.

The centroid for a cluster or a set of input vectors is defined to be the vector
(not necessarily unique) having a minimum average distortion between it and any
other member of the set. Thus, for such a set B, the centroid C is given by

min | E{ d(X,Y)}

U=y XeB

(3.1)

In other words, a centroid is an optimal representation of a set of vectors for a
specified distortion function. In case of the squared-error and the MSE distortions

(they are identical except for a constant scaling factor), the distortion value is

37

proportional to the square of the Euclidean distance between the two vectors, and

the centroid happens to be the mean of the set.

In general, it is difficult to incorporate psychovisual effects in a computably
simple distortion function. Attempts have been made to get around this problem.
In [137] a % power-law device followed by a psychovisually modeled filter precedes
the VQ coder. Reverse operations are performed at the other end. Thus, while
using MSE distortion in the VQ part, the effective distortion measure of the coder

is more human-like.

Another class of distortion measures meeting the LBG requirements is the
weighted mean square error (WMSE) distortion. If the input vector X and the
codeword C' are viewed as K-dimensional column vectors, then the WMSE distor-

tion can be expressed as

1 .

d(X,C) = K[X—C]t-W-[X—C], (3.2)
where W is the weight matrix of size K x K. The MSE distortion is a special case
when W = I, the identity matrix. The WMSE distortion has been used for image
VQ coding in a simple way by taking W; = w;I, where w; is a scalar and i is the

sub-class index [134, 142].

We suggest a general class of distortion measure by extending the WMSE
function such that the weight matrix depends on the input vector. Because the
function is not normalized, it is named input-dependent weighted squared-error (ID-
WSE) distortion function. Following the former notation, the IDWSE function is
given by

dX,C)=[X-C]'- Wx-[X=C]. (3.3)

The above function can easily be computed. In order for the centroid using the

IDWSE distortion to exist too, we add a constraint that all non-diagonal elements

38

of the weight matrix have to be zero. For such a diagonal weight matrix Wy, the
centroid of a cluster is [Appendix I:

_ E{Wx - X}

= B 1)) 54

C

where [1] is the unit column vector. Incorporating the above result in the LBG
algorithm, it is then possible to design a VQ codebook optimum in the IDWSE

distortion measure.

The following sections illustrate two ways of using the IDWSE distortion func-
tion to take into consideration human visual characteristics, and compare the ID-

WSE codebooks with the conventional MSE codebook for low bit rate image coding.

3.2 Use of the Activity Classes

In this section we propose using the IDWSE distortion function such that the

weight matrix of equation (3.3) is of the form
Wx =a(X)- 1, (3.5)

where a(X) is a scalar function of the input vector, X, and is called the activity
indez of the vector. For a spatial block of image, the activity can be defined as
the amount of detail, or changes in intensity, present in that block. A possible
way to measure this activity is to compute the ‘ac’ energy of the vector. The local
activity in a typical picture changes rather rapidly. The high-contrast edges and
the high-detailed areas of an image have much higher activity than the uniform or
the slowly changing areas have. In a typical image, the edges and the detailed parts

are responsible for the quality of the image, and are usually more noticeable. Thus,

39

a measure of the local activity gives us a chance to segment the image into different

classes and to encode each class differently.

The concept of using the image activity to treat different parts of an image
separately is not new. In scalar image coding, a visibility function has been used
to measure the activity, thereby classifying the pixels and using separate quantizers
for each class [32]. For block coding, the ‘level of activity,” or the ‘ac’ energy, of
the input blocks has been used to classify the blocks before performing transform
coding [66]. The ‘activity index’ has also been computed in the transform domain
by taking the weighted sum of either the absolute or the squared values of the

transform coefficients [65].

In VQ image coding, a codebook designed using the widely used squared-error
distortion has been found to fail to satisfactorily reproduce the edges of an image.
Therefore, to achieve better performance, one has to make sure that enough edge-
type codewords are there in the codebook. One suggestion to get this desirable
property in a codebook involves the training sequence being segmented into two
separate classes, ‘edge’ and ‘shade’, using an edge-detector or an edge-classifier
[82, 141, 142]. Separate sub-codebooks are designed for each class, and the final
codebook is a concatenation of the sub-codebooks. The number of distinct classes

may be more than two.

The codebook resulted from the above scheme is no longér optimal in the
MSE or any other sense. For this coder, if the encoding search is kept limited
to the particular sub-codebook of the class to which the input vector belongs, the
equivalent distortion measure will be a special case of the WMSE distortion of
equation (3.2):

1, if X and C belongs to the same class,

oo, if X and C belongs to a different class. (3.6)

W =wl, w:{

Using this distortion measure, the average distortion for any point becomes infinite,

40

and the desired centroid cannot be determined. Therefore, it is not possible to
design the entire codebook as a unit. So, given the size of the final codebook, the
cardinality of each sub-codebook has to be determined. It is possible to analytically
find an expression for asymptotically optimal allocation of the sub-codebooks, but
the probability density of each class has to be known [142]. For a typical training
sequence whose probability density function is unknown, and for a finite codebook

size, the sub-codebook cardinalities have to be decided arbitrarily.

The IDWSE distortion can be used to achieve a similar effect. An input vector
1s assigned to some class depending on its activity. The objective of this classification
is to separate out the more visible parts of an image from the background having
little or no variation. Note that the measure of activity could be scalar or vector. It
is therefore possible to use virtually any kind of classifier. An activity index which
reflects the relative importance or visibility of the class is assigned to each such
activity class. Thus an input block with an edge should have a higher activity index
than a low-variation block. Here the activity index is a positive scalar quantity.
Negative or zero value is not allowed because then the distortion measure would be

Inconsistent.

The codebook can be generated on the complete training sequence using this
distortion function. The encoder in this case will be a full-search encoder. It is
possible to emphasize, or de-emphasize, any particular class in the codebook by
simply raising, or lowering, the activity index attached to it. Yet another flexibility
in our scheme is that there exists no constraint regarding the number of classes.
In fact, there could be infinitely many classes, e.g., a monotone continuous activity
index. Our scheme has two distinct advantages over the sub-codebook method.
Firstly, the modified distortion measure is used only during the codebook designing.
The encoding process is exactly the same as for an MSE-distortion VQ coder. Hence,

any conventional VQ coder can be used. Also, the codebook in our case remains

41

well defined because it is optimum for the modified distortion measure.

Now we present our experimental system illustrating the use of activity index
for low rate image coding. All of the previous examples of quantifying activity of an
image block needed some amount of computation involving multiplication. Instead,
we propose a computationally easy way to determine the activity value of a given
vector, which does not need any multiplication. Consider a pair of pixels in general
position in an image vector. The difference in value of the pixels will be zero or small
if there is little or no intensity variation in the vector. On the other hand, if the
pixels fall on either side of an edge, or on different intensity segments of a high-detail
block, then the difference will be high. To capture edges of various orientations,
more than one such pair of pixels is required. The magnitude of the total difference
of all such pairs will, therefore, give some measure of the local activity. The more
random these pixels are positioned in a vector, the more efficient the scheme will

be in determining the activity for a fixed number of such pixel pairs.

We have tried several arrangements and found that pairs of pixels with two-
dimensional random distribution perform better than any regular, cyclic or one-
dimensional patterns in determining the activity of a square image block with vary-
ing edge orientation. In case of 8 x 8 square blocks, we found that 8 pairs of pixels
are necessary to satisfactorily compute the activity. Thus, merely 15 additions are
required to measure the local activity of an input block this way. If R denotes a
column vector of K elements such that it contains ‘1’ in eight random positions,
‘—1"in eight other random positions, and ‘0’ elsewhere, then the activity of an input
vector X is simply |R' - X|. Figure 3.1 shows the local activity of 8 x 8 blocks of
Leena (a darker block implies higher activity) along with the original version. Note
how the edges, the high-detailed parts of her eyes, and the feather of her hat are
detected by our simple measure of activity. Observe that the activity in this case,

which is a non-negative integer, has a possible range from 0 to 2040.

42

(b)

Figure 3.1: Local Activity:
(a) Original Image of Leena;
(b) Local Activity of Leena.

43

Figure 3.2 shows the distribution function of activity for the entire training
sequence. We have defined four activity classes by dividing the activity range into
four equiprobable regions, shown in the same diagram. In general, m such classes

can be defined by using some increasing threshold values:
a(X) = a,, if ‘Rt 'Xl <t

= Qa, Iftl S 'RtXl <t2
(3.7)

= Qm, if tm—l S lRt . Xl

Here t1,%q,---,t;m—1 are the thresholds or class boundaries, and a4, a9, -, an, are
the activity indices, typically monotonically increasing, of the m classes. The four
activity classes in our system could be subjectively described as the non-varying -
background, the low-detailed area, the higher details and low-contrast edges, and

the high-contrast edges.

We have tried several sets of values as the activity indices for the four classes.
Some codebooks have been designed using a; = 1+ (2 — 1)6 (linear increment)
for different positive values of §. We have also tried a; = (1 4+ §)'~! (exponential
increment) for different positive values of §. Note that § = 0 means the basic
squared-error distortion, which we take to be the standard case for comparison. The
training sequence and other parameters have been kept identical so that the results
can be compared. We found the performance of the activity indexed codebooks to

be as expected. With increasing value of §, the edges and the contrasting blocks

are encoded better.

For comparison, the image of Leena is again selected. Figure 3.3 shows the
MSE distortion of the decoded image of Leena for some of the values of § we
have attempted. The bit rate for each case is 0.156 bit/pixel, with N = 1024 and

K = 64. Observe that better signal-to-noise ratio has indeed been achieved for

44

1.0
0.8
0.6 1
PDF
0.4
Class-II Class-1II Class-IV

0.2 4

g

Sliis [385 95.5
0.0 T T T T T

0 50 100 150
Activity

Figure 3.2: Distribution Function of Activity

200

MSE

45

137

136

135

134

133

132

131 1
0.0 0.5 1.0 1.5 2.0

Figure 3.3: MSE Distortion versus Activity Index

46

small 6. However, this curve does not compare the subjective quality of the images.
Improved subjective quality can be observed for higher values of §. Figure 3.4
compares the decoded images for § values of 0 and 2 (linear increment). Figures
3.4(a) and 3.4(b) show the complete image, while figures 3.4(c) and 3.4(d) are the
enlarged version of the back of Leena’s hat. Note the better representation of the

edges in figure 3.4(d), which shows the effect of activity classes on image VQ coders.

Therefore, incorporating the activity classes in the distortion measure im-
proves the representation of edges in an image without changing the coder com-
plexity at all. Using the p\roposed algorithm it is possible, by proper selection of
indices, to design a codebook with just enough edges representing a set of pictures
efficiently. Any other modified VQ scheme, such as the distributed-block VQ, can

be used with the activity classes to retain advantages of both schemes.

3.3 Emphasis on the Block Boundaries

A common problem in the low bit rate block image coding is the blockiness,
described in Section 2.1. This degradation, occurring in the geometrical boundaries
of the blocks of a decoded image, is usually the most noticeable and most annoying
quantization error. This problem is common to both transform coding and vector
quantization. There is thus great motivation to find some means of subduing, or at

least reducing, the blockiness in low bit rate block coding.

Some modifications to the block coder has been suggested to get rid of the
blockiness. In [69] a pinned orthogonal transform coder transmits some information
regarding the block boundaries along with the transform coefficients in order to

encode the boundaries better. As a result, this scheme requires some extra bits to

47

(b)

Figure 3.4: Coding Results with Activity Index:
(a) Decoded Image of Leena for 8=0 at 0.156 bpp, SNR 26.88 dB;
(b) Decoded Image of Leena for §=2 at 0.156 bpp, SNR 26.81 dB;

48

k]

d)
f a Part of (a)
f a Part of (b)

L
=3
=
=
MOO
joo il o
SNeRe
.. U2
< 55
> >
Doy
509
gr
it & &
= oo
[Aagaal
Poun Vamn)
G

49
achieve better quality.

In the MSE VQ coding, each pixel of the input block, or each dimension of
the input vector, is encoded with equal effort. However, it is intuitively clear that,
in order to preserve the continuity of an image across the blocks, the peripheral
pixels are needed to be encoded more carefully. A quantization error in the interior
pixels will do less harm. Therefore, one possible approach to reduce blockiness in
a VQ coder is to assign a higher penalty in encoding the pixels at the geometrical

boundary of the block than in encoding the interior pixels.

The IDWSE distortion measure can be used to achieve this effect. In this case

the weight matrix, W in equation (3.3), becomes
Wx = A= {dy}, (3.8)

where A is a diagonal matrix independent of the input vector, X. Here the diagonal
elements of A, d;;, are what we call the emphasis factors for each dimension, or the
dimensional weights. For the dimensions ¢ corresponding to the interior pixels,
d;; = 1. The remaining diagonal elements corresponding to the pixels at the block
boundaries are set equal to p here, except for the four vertices of the block. For
the vertex pixels, d;; = ¢. Because a vertex pixel has neighboring pixels from
three other blocks, while an edge pixel has only one neighboring block, a different
(typically higher) emphasis factor is assigned to the vertices. In order to represent
the boundary pixels better, the values of p and ¢ should be greater than 1. The
dimensional weights we see represent the relative importance of a dimension with

respect to other dimensions.

Because the weight matrix A is independent of X, the centroid in equation
(3.4) becomes the arithmetic mean of the cluster, which is very easy to compute.
However, the modified distortion measure in this block boundary emphasis scheme

increases both the codebook designing and the encoding computation. The number

o0

of elements not equal to 0 or 1 in A is 4v/K —4. Therefore, an additional 4N(VEK-1)
multiplications are required in encoding one input vector in our scheme. Taking p
and ¢ to be integer powers of 2, the additional multiplications needed could be
replaced by bit-shifting operations in hardware implementations. However, for the
neural implementations of the VQ encoder proposed in Chapter V, neither the

encoding time nor the complexity is altered by this scheme.

Simulation results of emphasizing the block boundaries for low rate image
coding will now be given, comparing the performance with that of the MSE VQ.
Keeping all other parameters the same, we have designed several codebooks for
different values of p = ¢ = 6. The basic MSE codebook is a special case when
6 = 1. Figure 3.5 shows the MSE distortion of the decoded image of Leena for some
of these codebooks with increasing values of the emphasis factor, 6. Though for
smaller emphases our scheme has a lower conventional distortion than the MSE VQ,
the distortion is higher for larger values of §. The desired sub Jective improvement

is, however, noticeable only for the higher values of é.

The codebook generated by our scheme has another advantage over the MSE
codebook. Ideally, one would like all codewords of a VQ codebook to be equiproba-
ble so that maximum compression can be achieved from the entropy point of view.
Not only does the LBG algorithm not guarantee that the codewords are utilized
equally often, another problem associated with that algorithm is the empty clusters
or the unutilized codewords. The presence of unutilized codewords decreases the
efficiency of the coder. In order to measure the uniformity of the codebook, we
computed the variance (0?) of the codeword utilization (number of times a code-
word is used for the training sequence). Figure 3.6 plots the variance versus the
emphasis factor, §, for some of these codebooks. Observe that the variance of a. VQ
codebook reduces when the emphasis factor goes up. Therefore, a relatively well

utilized codebook resulted from our scheme.

51

142

140

138

MSE

136

134

132 T T T T

Figure 3.5: MSE Distortion versus Emphasis Factor

52

2440

2420 A

2400

2380 -

Variance

2360 -

2340 -

2320

2300 . . . : .

Figure 3.6: Variance of Codeword Utilization versus Emphasis Factor

53

Figure 3.7 shows some simulation results. Figures 3.7(a) and 3.7(b) are the
complete decoded images of Leena using codebooks with § values of 1 and 2.5 re-
spectively. Figures 3.7(c) and 3.7(d) are enlarged versions of a part of these images.
The blockiness of the bottom image has been considerably reduced. Moreover, the

edges of the decoded image using the new codebook are better represented.

Thus, introducing some positive emphasis at the block boundaries produces
a decoded image with less blockiness, and also improves the edge representation,
both of which are desirable in image VQ coding. When using the block boundary
emphasis distortion function, the encoder computation is marginally raised, though
the neural implementation is not affected. This blockiness-reducing scheme can also

be used along with other modifications to the basic VQ coder.

54

(b)

Figure 3.7: Coding Results with Block Boundary Emphasis:
(a) Decoded Image of Leena for 8=1 at 0.156 bpp, SNR 26.88 dB;
(b) Decoded Image of Leena for 8=2.5 at 0.156 bpp, SNR 26.81 dB:

(d)

Figure 3.7: (Continued):
(c) Enlarged Version of a Part of (a);
(d) Enlarged Version of a Part of (b).

56

Chapter IV
FILTERING TECHNIQUES

Lossy image coding methods are known to produce annoying coding errors or arti-
facts in the decoded image. Apart from trying to diminish these degradations in the
coding algorithm itself, filtering techniques are also used to improve the subjective
quality of the decoded image. Naturally, the type of this filter depends entirely
upon the type of coding scheme used. In case of low rate block encodings such
as VQ, transform coding, block truncation coding, etc., blockiness is one of the
major problems. In this chapter we attempt to design some simple filters in order
to reduce blockiness and other coding errors, with special consideration to the VQ
image coder. We suggest a simple two-dimensional filter which is shown to produce
subjectively better images. We also suggest the use of a prefiltered codebook before

filtering to further improve the image quality.

4.1 Introduction

An inherent disadvantage of very low bit rate VQ image coding is the annoy-
ing presence of quantization noise in the decoded picture. Due to the fact that often
the coding noise is statistically quite different from the input image, simple image
enhancement techniques such as filtering can be applied to the decoded image to
get rid of the obvious errors in the decoded version of the picture. The quality
improvement of the enhancement technique might however be limited by the avail-

able processing time. The process of enhancing the image quality is referred to as

57

postprocessing or postfiltering when it is performed at the decoder, usually after the
decoding is complete. If the source image is filtered before encoding, the process is

named preprocessing or prefiltering.

Blockiness is the most prominent coding error in case of the VQ image coding.
Because of the mismatch between the luminance values of two spatially adjacent
codewords, discontinuity is developed at the block boundaries and a staircase effect
shows up at the edges. These errors contribute to the higher side of the frequency
spectrum. Because most of the spectral energy of a typical image lie in the low-
frequency region, a low-pass postprocessing filter may be the first linear candidate

in eliminating the block discontinuities.

For a typical monochrome image, we have found that a 6 dB attenuation
from the passband to the stopband is adequate. Because the signal and noise are
both present in between, a smooth transition would do equally well. This kind of
filter can be designed with very small length. However, the processed image quality
using such a low-pass filter is found to be unsatisfactory. The attenuation cannot
be increased much due to the presence of original image information in the high-
frequency part of the spectrum. In fact, the relatively low high-frequency spectral
components are responsible for the subjective quality of an image. Perhaps this is
the reason why a simple low-pass filtering is not enough to reduce blockiness. In

the next section we take a more involved approach for the same purpose.

4.2 Selective Spectral Attenuation Filtering

Because we are mainly concerned with the noise at the block boundaries, we

may take advantage of the known positions of the noise. For a given spatial block size

o8

of m x m, the errors are localized at a regular interval of m pixels in both horizontal
and vertical directions. Due to this periodic nature, the error spectrum is expected
to have amplitude peaks at horizontal and vertical frequencies of 7/m, 37 /m, dr/m,
and so on. A selective spectral attenuation filter will selectively attenuate these
frequency components. The amount of attenuation and the width of the stopbands

can be specified.

For 8 x 8 block size, we need to attenuate four odd multiples of 7 /8. Even
for a small attenuation of 3 to 5 dB, the one-dimensional filter length will be large
if we specify narrow stopbands and transition bands. Instead, we decided to use
very smooth transition between the ‘hills’ and the ‘valleys.’ In that case, a one-
dimensional FIR filter of length 9 with real coefficients can be designed with the
desirable property. Figure 4.1 shows the magnitude response of such a filter, whose
transfer function is of the form

H(z) = H [1—2r;cosf;27" + riz7?]. (4.1)

2

For each frequency 6 to be attenuated, a pair of complex conjugate zeros of the
form re’®, re~7% have been inserted into the transfer function, where the value of

r (# 1) depends on the attenuation required.

Our image signal is inherently two-dimensional. Therefore, consider a two-
dimensional frequency plane, (wh,ws,), where the subscripts to the frequency vari-
ables denote the horizontal and vertical directions. What is actually desirable is

local attenuation at some points, such as (x/8,0), (37/8,0), (0, 7/8), etc.

However, it turns out that designing a two-dimensional transfer function from
this type of specified zeros is not a straightforward task, unlike the one-dimensional
case. A one-dimensional transfer function can always be expressed as a product

of first-order factors. Therefore, such a transfer function can be specified by the

59

™o
[

Magnitude

=
[Sal
€D
&
(=)

Figure 4.1: Magnitude Response of a Selective Spectral Attenuation Filter

60

location of its zeros (and poles, if rational). In general, a function with two or more

variables cannot be factored into linear factors only.

Alternatively, some attenuation at other places may be tolerable in order to
keep the filter transfer function simple. We mention three ways to design such
a function. A two-dimensional filter with a transfer function H{(z, z,) is said to
be separable [165, p.441] if the transfer function can be expressed as a product of

one-dimensional functions,
H(zp,2z,) = Gi(21)G2(zy). (4.2)
If the above relation does not hold, the filter is nonseparable.

It is possible to design a separable two-dimensional filter by simply taking
the product of a one-dimensional filter with itself (G; = G;). We used the one-
dimensional FIR filter described in (4.1) to be the basic filter. The attenuation
valleys in the magnitude response of this filter run along lines parallel to the axes.
Therefore this filter is called the rectangular filter. The resulting FIR filter is of

length 9 x 9, and the transfer function is of the form

H (z,2,) = H [1 — 2r; cos Hi(z,:I + zv‘l) + r?(zh—2 + zv'2) + 47‘? cos? Gizljlzv—l

—2rfcosb;(z; 2yt + 2 %2) + r?z,:2zv_2] . (4.3)
Note that if the VQ blocks are not square but rectangular, this type of filter can
still be designed. The only difference is that the two one-dimensional components
will be different in that case. This flexibility is not there in the next two filters, as

we shall shortly see.

Using the McClellan transformation [165, pp. 472-478], a one-dimensional
FIR filter can be transformed into a two-dimensional nonseparable FIR filter. The

following mapping in frequency from one to two dimensions is used:

= 2 coswn + = coswy + = cos(whw) + & 44
Cosw = 5 Coswp, 2coswv 2cos WhW,y 5 (4.4)

61

It is required that the one-dimensional filter be linear-phase, so that the transfer
function can be expressed as a function of cosw alone. Onmnce this is done, sub-
stituting relation (4.4) gives the two-dimensional transfer function. Following the
mapping in (4.4), the curves of constant w run approximately circularly around the
origin in the two-dimensional frequency plane. Therefore, the attenuation valleys
are also circular, and the filter is called a circular filter. A linear-phase basic filter
is required in order to design a circular filter for our purpose, to which we now turn

our attention.

The basic filter designed in (4.1) can be converted to a linear-phase one by

1

adding an additional pair of zeros —i—e]p, ;e‘je for each pair re/?, re=7? already

present. Thus, the two-dimensional circular filter will have a transfer function of

the following form:

1 _ _ 4 1 _ _ _ _
Hc<zh,zv)=H{E<1+zh4+zv4+zh4zv4)+Z(zhl+zv1+zh3+zv3
+Z;12v—4 +Zh_42v_1 +Zh—3zz-)—4 +Z’:42v—3)

1

-1_-1 -1_-3 -3 -1 -3_-3
—E(ri+:)c0591(2h A TR S - M- Mg g
1

3 o _ —4
@ T)

1 1
— (5 + (r; + ;—) cos 91') (z;lzv_2 + 2;22;1 + 2;27;;3 -+ 2;3252)

1

(4.5)

1 1 1
+ (Z +ri+ = +4cos’ 8; + 2(r; + —)c059i> 72t

The two-dimensional linear-phase filter has a length of 17 x 17. Note that to get
the same amount of attenuation, the values of r; in (4.5) will not be the same as

the values of r; in (4.3).

We suggest instead another simple mapping in frequency from one to two
dimensions:

W= Wh + Wy. (4.6)

62

In this mapping the lines of constant w are straight lines in the two-dimensional
frequency plane with a slope of —1, which preserves our desirable zero positioning
along both axes. The attenuation valleys run in straight lines parallel to the above
slope. Therefore, we call it a striped filter. Except for trivial cases, this filter is
nonseparable. No linear phase requirement exists because the transformation from
one to two dimensions is so simple. Using the basic filter of (4.1), the resulting filter
length becomes 9 x 9, and the transfer function is

H,(zp,2,) = H [1—2r;cosb;z; 2. + rizptz;?]. (4.7)

i

Each term of the form z,l_iz;k, ¢ # k, in the above transfer function multiplied out
is zero. So if the transfer function coefficients are arranged in a matrix, it will be a
diagonal matrix. Thus, an n X n striped filter has only n non-zero coeficients, as
opposed to n? non-zero coefficients in a general rectangular or circular filter. The

circular filter can, however, be implemented using only O(n) multiplications [166].

Figure 4.2 shows the magnitude response of the above three types of filters,
namely, the rectangular, circular, and striped filter. We have applied these filters
on VQ decoded images to compare their performances. For equal amount of at-
tenuation, these filters behave quite similarly. The circular filter is found to be
marginally better against blockiness. Apart from reducing blockiness, the filtering
also affects sharp edges in the picture, creating mild shadows. The circular filter
creates shadows in all directions. The rectangular filter creates shadows in hori-
zontal and vertical directions only. The striped filter does it along a line of slope
—1 only. Therefore, the least number of sharp edges are affected by the striped
filter. Moreover, the striped filter has the least number of non-zero coefficients in
its transfer function, and can be implemented more easily than either of the other

two filters.

Figure 4.3 shows the filtering results with the striped two-dimensional selective

63

rectangular

striped

1 Filters

imensiona

de Response of Two-Di

itu

Magn

Figure 4.2

64

(b)

Figure 4.3: Filtering Results:
(a) Decoded Image before Postfilterin g;
(b) Decoded Image after Postfiltering;

65

.. o

Figure 4.3: (Continued):
(c) Enlarged Version of a Part of (a);
(d) Enlarged Version of a Part of (b).

66

spectral attenuation filter. While figure 4.3(a) is the decoded image from a low rate
VQ coder without any processing, figure 4.3(b) is the filtered version. The blockiness
in the second image is visibly less. This effect is better seen in the enlarged part of

the images, figures 4.3(c) and 4.3(d).

4.3 Use of the Prefiltered Codebook

Any kind of filtering, such as described in the previous section, has the dis-
advantage that it affects the original image to some extent. An ideal filter should
attenuate the coding error but not any part of the original information. However,
because of the overlap of image information and coding error in the spectral plane,
it 1s not possible to separate them out with a linear filter. As a result, even without
the presence of quantization noise, if an image is filtered by such a filter, the result

will generally not be the same.

In order to compensate to some extent for this fact, we propose the use of a
prefilter in the encoder. The idea is that the source image is prefiltered by a filter,
H,(z), before encoding. The decoded image is then postfiltered as in Section 2.2 by
the decoder filter, Hy(z). The encoder filter is an inverse filter of the decoder filter,
l.e., the product of these two filters is (or, resembles) an all pass filter. Thus, the
postfiltered image is expected to be identical to the source image when no coding
error has occurred. The sacrifice made here is that each frame needs to be filtered

twice, once in the encoder and once in the decoder.

Because we are interested in fast coding time, an alternative to a second
filtering has been sought. We suggest that the encoder codebook be prefiltered

instead. This prefiltered codebook is stored in the decoder in place of the original

67

codebook. The decoded image is reconstructed from the prefiltered codebook before
it is postfiltered. Thus, the requirement of prefiltering the source image has been
abolished. If a single full-search encoder-decoder unit is to be implemented in
the conventional way, our scheme does require some extra memory to store the
prefiltered codebook. However, for the designs where the encoder and decoder
codebooks are implemented separately, such as the tree-structured encoder or the
neural design suggested in the next chapter, no extra memory will be required.

Prefiltering the codebook can be done off the line.

The two-dimensional prefilter has to be designed to fit the postfilter we have
designed in the previous section. However, we are required to design only the basic
one-dimensional encoder filter from the decoder filter transfer function. Extending

1t to two dimensions can be done as before.

Given an FIR selective spectral attenuation postfilter with a transfer function
Hy(z), we desire to construct the encoder prefilter H.(z) such that the following

condition is approximately satisfied:
|H.(e’“)Hy(e?*)| = 1. (4.8)

An exact solution is possible if we allow the encoder filter to be IIR, in which case
H,(z) = 1/Hy(z). This filter will be stable only if all the zeros of Hy(z) lie within
the unit circle, |z| = 1. That is the case when Hy(2) is a minimum-phase filter, such
as in (4.1) if r; is less than 1 for all . But if the decoder is a linear-phase filter, as
is required for the McClellan transformation, some zeros lie outside the unit circle,

and the IIR encoder filter will be unstable.

Due to the difficulty in implementing two-dimensional IIR filters, it is desirable
that the decoded filter has a finite impulse response. We show that, because the

magnitude of the decoder filter is close to 1, it is indeed possible to design an FIR

68

encoder filter [Appendix II} such that
[H.(e/)? + [Ha(*)]* = 2, (4.9)

which is an approximation to the property of (4.8). This design procedure works for
both minimum- and linear-phase filters. Figure 4.4 shows the magnitude response
of such a minimum-phase FIR encoder filter, and compares it with the ideal IIR

magnitude response.

Our simulations show that for the same two-dimensional filter, a prefiltered,
decoded, and postfiltered image actually offers less subjective improvement over an
image decoded using the prefiltered codebook and then postfiltered. Suppression
of blockiness is better with the prefiltered codebook scheme than with the image
prefiltering scheme. Moreover, the edges are free of any staircase effect when the
prefiltered codebook is used. Therefore, our scheme of using the prefiltered code-

book is subjectively superior than the image prefiltering scheme.

Figure 4.5 shows the results of using a prefiltered codebook. As earlier, the
striped filter offered comparatively better quality because of less shadowing at the
edges. While figure 4.5(a) is the postfiltered image from a normal codebook, figure
4.5(b) is the postfiltered image from the prefiltered codebook. Figures 4.5(c) and
4.5(d) are enlarged versions of the shoulder of Leena to realize the clear improvement
offered by the prefiltered codebook. The filter used here is the two-dimensional

striped selective spectral attenuation filter.

Magnitude

69

.2 \
/ ‘ \
/ / t\ , ‘\
1 { / v /’ } |
/ Vo ‘\\ o e { , Decoder filter
¥ \ - \/ \/ oy i
-0 J’< "\\/“/ \ //\ /‘\ / \-«l\
) .) FARY . .)) / .
I o SV , \Jl ' i IIR Encoder Filier
g ' i - ! | oM " \'FIR Encoder Filter
i i . . | i i A i
i ! i : . \ , | /‘
\ / \ / \ /‘ ! :
. \ ,
8- , . . v
i . \) . oy
| \ ; ! o AN
5 ‘_ \ /‘ Yo
| -
1
6 — \
0 100 ® 200 3.00

Figure 4.4: Magnitude Response of Encoder Filters

70

(b)
Figure 4.5: Filtering Results with Prefiltered Codebook:

(a) Postfiltered Image using Normal Codebook;
(b) Postfiltered Image using Prefiltered Codebook:

(d)

Figure 4.5: (Continued):
(c) Enlarged Version of a Part of (a);
(d) Enlarged Version of a Part of (b).

72

Chapter V
IMPLEMENTATIONS USING NEURAL NETWORKS

In this chapter we shall look into the implementation issue of a vector quantization
coder. Traditional vector quantization encoders for image coding are computation-
ally very intense. In order to implement a real-time encoder for this purpose, we
consider a novel approach by investigating the use of neural networks. The pattern-
matching task of a VQ encoder seems suitable for a neural circuit to solve, as we
show in more detail later. A 3-layer feed-forward network has been suggested in the
next section, which can realize a binary tree-structured VQ encoder using O(N)
neurons (N = number of codewords) and O(N(log N + K)) synapses (K = num-
ber of dimensions). Also, a feedback network, which requires O(N) neurons and

O(N K) synapses, is described to implement a full-search VQ encoding scheme.

5.1 Neural Networks in Vector Quantization

An electronic, or artificial, neural network is a massively parallel intercon-
nected network of simple processing elements, or neurons, that can carry out infor-
mation processing using simple operations on numerous inputs as biological nervous
systems do. Although one of the most important features of some neural networks is
their learning ability, there exists another category of time-invariant (non-learning)
neural networks which are becoming popular as efficient parallel computing ma-
chines. A neural network designed to solve certain problem can be viewed as a

custom-made, therefore very efficient, parallel-architecture computer.

73

The self-organizing ability found in an adaptive neural network is extensively
used in different kinds of learning problems. Clustering or unsupervised learning is
an extensively studied example. The objective in this class of problem is to divide
the training patterns into a number of geometrical clusters. During the learning
process, no information regarding the cluster membership of the training patterns
is provided, either because it is not known or because of the high cost involved
in doing so. The process of generating a codebook from the training sequence in
VQ is an example of a clustering problem. The popular LBG algorithm [164] used
for designing a VQ codebook is functionally same as the isodata algorithm [167).
Isodata is an iterative version of the original recursive c-means (also known as k-

means) algorithm for clustering, long known in pattern recognition.

The application of neural unsupervised learning algorithms for vector quan-
tization has been suggested, explicitly or implicitly, in a number of neural network
articles. Recently several such attempts have been reported. In [168] three dif-
ferent neural unsupervised learning techniques have been compared with the LBG
algorithm to design a speech VQ coder. Though some neural algorithms are found
to generate codebooks having more balanced codeword utilization than the LBG
codebook has, the LBG performance is never bettered by these codebooks. In [169]
a similar comparison is reported between the LBG algorithm and an well-known
neural learning scheme in case of images. For images outside the training sequence,

the LBG codebook performed marginally better.

Apart from the fact that the neural learning schemes may not offer any im-
provement, it is not clear how such a system could be implemented in hardware.
For a neural codebook to be adaptive, the weights of the network have to change.
Moreover, because these weights may not directly represent the codewords, one has
to find a way to compute the resulting changes in the codewords and transmit these

changes to the decoder. If the learning is done off the line and the network is ‘frozen’

74

before using it, then it is inefficient because some part of the network is used only

while learning, and remains unused in the encoding process.

However, the interconnectivity of a neural network can still be used to our
advantage. Neural networks have been found to be suitable for pattern recognition
applications. The vector quantization encoding process is nothing but an example
of the classic classification problem, where the task is to map each input vector to
one of N pre-defined classes. A neuron implements a linear discriminant function
(LDF') capable of solving a binary classification problem when the decision boundary
1s a hyperplane. More complex decision boundaries and multi-class solutions can
be achieved using a multi-layer network. Therefore, it seems natural to attempt to

design a VQ encoder using a neural network.

There is another reason one should consider the neural implementation of a
VQ coder. The major obstacle which has limited the use of vector quantization for
practical purpose is the difficulty in implementing the computationally demanding
codebook-search algorithm in the encoder in order to find out the best match. Con-
sidering an encoder for K-dimensional vectors and N codewords, for an exhaustive
search one has to compute NV distortion functions, each of which needs K multipli-
cations and 2K — 1 additions for squared-error distortion measure. This means that
for every K-pixel input vector, the arithmetic task consists of NK multiplications,
N(2K — 1) additions and N — 1 comparisons. The computation required is thus
O(NK) here. It is easy to realize that, in order to achieve real-time encoding, one
has to use parallel processors. Fortunately the VQ encoding algorithm is inherently

parallel. Therefore, a neural network can indeed be a solution.

In general, it is easier to design a VQ encoder for speech coding. The image
coding problem is considered more difficult because of the larger block size, K, as

well as a larger codebook, N. However, the resolution r = (log N)/K required for

75

an image is smaller than that required for speech, so the compression ratio can be

higher.?

Attempts have been made to implement a real-time VQ encoder for 1mage
coding in hardware. One such VLSI implementation, reported in [170], uses paral-
lelism and pipelining to perform vector operations, thus requiring only O(N) time
for a full search. Note that performing the distortion computations in parallel is
not easy to achieve, because it demands simultaneous memory addressing, which in

turn requires either extremely fast memory or an enormous amount of storage.

Recently, a forward-only counterpropagation neural network has been pro-
posed to implement a VQ encoder [171]. The network has three layers. The input
layer contains K fanout neurons that simply multiplex the input signal. The mid-
dle layer consisting of N neurons is a portion of the self-organizing feature map
of Kohonen [172]. The final layer is the outstar structure of Grossberg with N
neurons [173]. The Kohonen units need to be fully interconnected with feedback to
realize the encoder. This network is trained using supervised learning, which needs
a pre-designed V(@ codebook. After the training, the network would be capable to
perform as well as a full-search VQ encoder. This network uses O(N + K) neurons

and O(N(N + K)) synapses.

5.2 Realization of the Tree-Structured Encoder

Consider a VQ codebook with N codewords, C(1), C(®) C™) . each of
dimensionality K. Consider a hypothetical case where an input vector X is to

be mapped to either of the two codewords, C(™ or C(™) and m # n. For the

! Throughout this chapter [log, N7 is abbreviated as log N.

76

squared-error distortion measure, from equation (1.4),

K K
dX,C™M) =3 (ar— g™ and d(X,CM) = (zx - (5.1)
k=1

k=1

We will map X to C(™ only if

d(Xx,c™) < d(Xx,c™)

= d(X, C(m>) —d(X,C™) <0

K
@Z [(zk -—ck —(zk——cin))z] <0

k=1

= [—2wkc§€m) + cgcm)2 + 2:1:kc£n) - cgcn)Q} <0

e

K
m 2 n 2
:I;k(chcn) - 2cgcm)) + z:(csc - ci)) <0

N3
] =

o~
I
—

%
= Ewkxk + w, < 0, (52)
k=1

— o.n) m) _ (m)? _ (n)?
where wy = 2ck 2ck yfork=1,...,K,and w, =3, (¢, e)

Therefore, thinking of this as a classification problem with two classes repre-
sented by C(™ and C(™ the decision rule is

if Zwkxk +w, <0 = X mapped to C(™

(5.3)
if Zwkxk +w, 20 = X mapped to c),
k

As has been mentioned before, this type of binary classification problem for a
K-dimensional vector X can be solved using a neuron as shown in Figure 5.1. The
neuron has K inputs zy,...,2x, K weights wy,...,wg, an adder and a monotonic
(sigmoid or binary) function fg(-) with threshold w,. A positive output represents
C™ and a negative output represents C(™). In case of image coding, the input
values, X}, could be analog (before digitization), and the weights, w, can take

discrete values within a fixed dynamic range.

77

output

0
threshold

Figure 5.1: Neuron

78

The encoding procedure for a binary tree-structured VQ codebook is a repet-
itive binary classification process. Each node of the search-tree consists of two
intermediate codewords, one of which has to be selected. We can implement such a
binary classifier using one K-dimensional neuron (in other words, oﬁe neuron with
K synapses). The final codewords, i.e., the leaves of the tree, are not needed during
encoding. A binary tree of any type with N leaves has N — 1 nodes. The neu-
rons corresponding to these nodes will be arranged in parallel, unlike the tree. The
control flow along the levels of the tree will be implemented in the second layer.
The nonlinearity of the neurons will be a binary threshold function, such that the
outputs take one of only two possible values. Thus, the first layer of the encoder

will consist of N — 1 classifier neurons and (N ~ 1)K synapses.

An index-generator circuit will follow the first layer of neurons to produce the
log N-bit index from the decision outputs of these neurons. Because the outputs
from the previous layer are binary, a digital circuit with O(N log N) two-input
boolean gates can be designed to implement this index-generator. In Figure 5.2
we demonstrate another way of realizing the generator for a complete binary tree
using a two-layer neural network. The tree hierarchy is implemented in the second
layer, such that the outputs of the neurons belonging to a given level are enabled or
disabled by the outputs from the higher levels. The individual bits of the index will
be generated in the third layer as shown. Alternatively, it is possible to generate
the analog value of the index using only one neuron in the third layer, in which
case an analog-to-digital converter may follow to generate the bits. However, the
alternative design uses the same number of synapses as before, and does not offer
any advantage. For a complete tree, this network uses N +log N — 3 neurons. The
dimensionality of these neurons varies as opposed to the first layer, the maximum
dimension being % A total of Nlog N — 2 synapses are required, which is of the

same order as that of the boolean gates mentioned above.

79

1
k threshold

stage 1 stage 2 stage 3

Figure 5.2: Index-Generation from Classification Results

bit 3

80

The schematic diagram of the complete encoder is shown in Figure 5.3 when
the tree is complete. The design uses a three-layer forward-only network to generate
the index from the input vector. The initial layer consists of the classifier neurons.
The remaining two layers compute the index from the cla,ssiﬁcation. results. The

neuron count of this network is O(N), and the synapse count is O(N(log N + K)).

The most obvious advantage of our neural design is that the encoding time
for this scheme is roughly the sum of the time delays of the three layers, i.e., the
settling time of three neurons. This is possible because no feedback is involved,
either from a layer to another, or within a layer itself. Thus we could safely assume
that the encoding time, to first order, does not depend on N or K. There may,
however, be some small dependency, because the delay in a neuron may to some

extent depend on its dimensionality.

The weights, wg, and the threshold value, w,, of the first-layer neurons can
be found in two ways. Using the analytical results given in (5.2), these values can
be determined from a pre-designed codebook. This fact allows us to choose any
appropriate clustering algorithm to design the codebook. On the other hand, the
weights and thresholds could be trained using any unsupervised learning technique,
either the whole network together or one node at a time in a hierarchical manner,
in a way similar to the schemes suggested in [168]. It is not possible to make these
weights adaptive because the codewords cannot be exactly determined from the

weights.

A tree-structured codebook is usually sub-optimal in performance. However,
due to the non-uniform distribution of the vectors, a variable-depth tree-structured
VQ has been found to outperform even a full-search VQ in case of speech coding
[174]. In conventional implementations a variable-depth tree requires a variable

amount of search, which results in a variable encoding time. In our neural scheme

input
c 0
-0 n -
04
0 00
— T
]
1 10
-0 T
Coo
000
-0 o™
I .
I -
C
N/2-1 _
—-O ﬁ_f o
classifier neurons

Figure 5.3: Binary Tree-Structured VQ Encoder

81

index
generator

= index

82

the encoding time is fixed, and a variable-depth tree could be realized with equal

ease as a fixed-depth tree.

It 1s worthy noting that among the various kinds of VQ tree-encoders, the
binary tree appears to be always optimal for neural implementation. To implement
a non-binary tree, each first-layer node requires more than one neuron, which in
turn increases the required number of neurons and synapses in the following lay-
ers proportionately. This is in contrast to the fact that, as long as storage has a
nonzero cost, a quad tree is always superior to a binary tree for conventional hard-
ware implementations. In conventional case, for a complete m-ary tree of depth d
(N = m?), the encoder must compute md distortion functions and store Z?:l mt
intermediate codewords. When N is an integer power of 2, m = 2 and 4 yields the
minimum number of distortion computations. But when m = 4, only two-thirds

the storage is necessary compared to the binary tree encoder.

5.3 Realization of the Full-Search Encoder

Consider a codebook with N codewords CV,C(®) ... C™) and a full-search
encoder. For an input vector X, the encoder first computes the N distortion mea-

sures,

d™ =d(x,c™), n=1,...,N. (5.4)

Then the encoder finds out the minimum of these distortions (any one of the minima

in case of a tie),
din = "0 gm) = go) (5.5)

n

and assigns C™ to X, transmitting the label #.

83

For K-dimensional vectors, we have

K K K K
n n 2 n
ERTERUIR y UL ST o) SR CRErS
k=1 k=1 k=1 k=1
Define
) K , K K
d™ = =" Y ak2eM) = Y aa(2eM) 4 ¢, (5.7)
k=1 k=1 k=1
where (") = — Yok ci")z. It is obvious that finding the maximum among the d(™’s

is the same as finding the minimum among the d(™’s, because both methods will

select the same index, 7.

Observe that d™ is a familiar form which could be computed by a neuron with
K inputs z1,...,zx, K weights Qan), ey 2c§?), a sum and a sigmoid nonlinearity
fs(+), so long as the input d(™ remains in the linear region of the sigmoid. Here
(") would be the threshold to the neuron (Figure 5.1). With N such neurons in
the initial layer, we could compute the modified distortions J<"> for every codeword

paired with the input vector. Thus the initial layer consists of N neurons and NJK

synapses.

After the distortion values have been computed, the maximum of these have to
be selected. For this purpose we suggest the use of a winner-take-all network. This
type of network uses heavy lateral inhibition to hold a competition among the units,
and the one with the strongest input wins. Other designs to pick the maximum from
a set of inputs are also available [175], but typically require more layers or neurons.

Since we are only interested in the index, the choice seems appropriate.

Winner-take-all networks have been developed and analyzed using different
types of neural network models. Grossberg showed how a feedback competitive
network behaves as a winner-take-all if the nonlinearity grows faster than a linear
function [176]. A typical winner-take-all network with N external inputs has N

neurons. Once the network is initialized by applying the inputs to the corresponding

84

neurons, the external input is then withdrawn and the network is left to settle down
to a stable output configuration. The output is also an N-dimensional vector. The
lateral inhibition is generated by feeding back the output of every other neuron
to the input of each neuron with a negative weight of . There also exists some
excitatory feedback from each neuron to itself with a scaling factor of §. The
threshold of each neuron is set to zero. Lippmann calls this network a maznet
(Figure 5.4) when § = 1 and € < 3 [175]. He also shows that, when the maxnet
is allowed to iterate after the initialization until the output of only one neuron is
positive (or, high), it will always converge and the only positive neuron is the one
with the maximum input. In the VQ encoder, this is the neuron # corresponding

to the maximum modified distortion d™ or I at ¢t = 0.

In case of two (or more) maximum inputs, the two corresponding output nodes
will have a common positive value which is smaller than the output in the unique
convergence case. However, in case of VQ-encoding it is highly unlikely that two
maxima occurs simultaneously, i.e., then the integer input vector would lie on one

of the Voronoi partitions.

The above configuration of maxnet requires O(N?) synapses. Recently some
groups have proposed equivalent networks requiring only O(NN) synapses [177, 178].
In [177] an alternative configuration of a more general k-winners-take-all network
(k=1 for our application) uses only 4N synapses and N + 1 neurons. In this al-
ternative design || is less than 1 (6 close to +1 for faster convergence) and e is
equal to 1. The first N nodes will initially receive external inputs. Each of these
nodes will have a self-connection of weight 1 + §. The sum of their outputs will be
computed by the remaining node, whose output is fed back to the other N nodes
of the maxnet through a weight of —1. The threshold value of each neuron is set
to 0 except for the summing node, where it is set to N — 2. After the maxnet has

been initialized with the distortion values through a set of switches, the switches

85

Iy

Figure 5.4: Maxnet

86

are opened and the network converges after a few iterations.

Because the maxnet outputs are not binary, a set of N neurons is used in
the third layer as hard-decision thresholds. Only one of the N outputs from this
layer will have a positive value, the rest all being zero. Once the set of binary
outputs are available, the individual bits of the index can be generated from them
using either a boolean circuit containing O(N log N) two-input logic gates, or by an
equivalent neural circuit having the same order of synapses. However, it is possible
to generate the analog value of the index from the N outputs of the third layer by
using only O(N) synapses, as shown in Figure 5.5. The fourth layer will then be
succeeded by an analog-to-digital converter to digitize the selected index. Thus, the

index-generation part of the network will require N + 1 neurons and 2N synapses.

The complete encoder, schematically drawn in Figure 5.6, consists of four
layers of neurons. The initial layer of neurons computes the distortions. The second
layer is a maxnet, which picks the unit with maximum input with the help of
feedback. The last two layers generate the index to be transmitted. This scheme
requires O(N) neurons and O(NK) synapses, which is an improvement over the
scheme reported in [171]. By using the more efficient design of [177] in the Kohonen
layer, it is possible to implement the encoder of [171] with only O(N(log N + K))

synapses, which is however more than what our scheme requires.

The encoding time of the above realization is the sum of three neuron response
times (first, third and fourth layers) and the maxnet settling time. The last time
contribution would probably increase as N goes up. Unlike the tree-structured en-
coder, this encoder has a layer with feedback connections, hence it may not have a
negligible encoding delay. However, we expect this delay with neural implementa-
tion to be appreciably smaller when compared to the conventional hardware scheme.

Fully interconnected maxnets with N = 100 have been observed to require typically

87

AwD p——m index

Figure 5.5: Index-Generation from Maxnet Outputs

input

88

148
#1 .

1+8

index
generator

—p- index

computing
distortion maxnet

Figure 5.6: Full-Search VQ Encoder

89

three discrete iterations to distinctly identify the maximum input, and to converge

in fewer than ten iterations [175].

The weights and the thresholds of the distortion-computing neurons of the
initial layer can again be determined either analytically using (5.7) from a pre-
designed codebook, or through unsupervised training. The weights of the other
layers are pre-determined. Unlike the case of the tree-structured encoder, the first-
layer weights (effectively, the codewords) in this case can be made adaptive and the

information can be sent to the decoder with ease.

Because the typical number of codewords and the dimensionality in a VQ im-
age coder is quite large, one is required to pack between 50,000 to 100,000 synapses
into a single package in order to implement a high-compression full-search VQ im-
age encoder. Due to the interconnectivity required, it is not plausible to distribute
this circuit to more than one package. This task seems formidable with present-day
technology. Therefore, some compromise may be in order here. [171] suggests the
use of multi-stage VQ. In a similar fashion, an M-ary tree-structured VQ could be
used. The codebook size of the individual VQ stages in the first case, or M in the
second case, could be as large as 100. The resulting VQ coders in these cases may,

however, be sub-optimal.

An alternative is to implement a tree-search VQ encoder [156] on the full-
search codebook. For such a tree-search process, which preserves the optimality of
the codebook, the decision function at each node is CTX + d, from which we could

design a neuron in the following way:
wp=c¢ fork=1,...,.K, w,=d. (5.8)

The tree part can thus be realized in a way similar to the tree-structured encoder

scheme.

90

The leaves of a tree-search VQ are usually buckets consisting of a few code-
words, through which a full search has to be performed. A separate full-search
encoder, as described in this section, can be used for each leaf. The final index is
a concatenation of the two indices generated from the tree and the chosen bucket.
Due to the fact that the cardinality of a typical bucket is much less than N, this
coder will need less encoding time than the full-search coder. The amount of saving

will, however, entirely depend on the depth and the shape of the tree.

91

Chapter VI
SUMMARY AND CONCLUSIONS

In this thesis, different parts of a new type of vector quantization image compression
scheme for low rate image coding have been discussed. Improvements have been
achieved by using a new technique for extracting input vectors, a new class of

distortion measures, some unique filtering techniques, and neural implementations

in a VQ image coder.

In Chapter II, a new vector quantization technique has been described that
uses distributed blocks instead of spatial blocks for encoding. The coder exploits
the strong correlation between the distributed input blocks to reduce both the
rate and the computation required. By making the partial ranges adaptive, it is
easy to achieve a coder that is capable of adjusting its rate within a certain range
while minimally compromising quality. It is shown that this coder outperforms the
conventional VQ coder when coding gray-level images at low bit rate. Also, this
coder has the effect of distributing the annoying quantization errors, thereby making
them less visible to human eye. The coder complexity is almost the same as for the
conventional scheme, and it needs no extra storage. Whether this coder will perform
better than the conventional VQ coder is much dependent on the source statistics.
The asymptotic results show that the new coder with two channels performs better
than the VQ coder only if the vector dimensionality is small. However, it is shown
to produce better quality even for a large dimensionality with a small codebook size

when the source has enough redundancy.

In Chapter Il an input-dependent distortion measure has been suggested

which is capable of taking into account human psychovisual characteristics. Using

92

this distortion measure, images with better subjective quality have been achieved
when compared to the basic VQ coding results. The edge representation in a code-
book has been improved, while still keeping the codebook optimal. The blocki-
ness in the decoded image has been reduced as well. Moreover, the codewords are
more uniformly utilized when the new distortion measure is used. This change of
distortion function mostly affects the codebook design computation. When this
distortion measure is incorporated in a VQ image coder, the encoding process re-
mains the same in the neural design, or requires marginally more computation in

the traditional design.

In Chapter IV some simple filtering techniques have been proposed in order
to further improve the decoded image quality. Using a simple mapping of frequency
from one to two dimensions, a two-dimensional filter has been designed which pro-
duces the same improvement as or better improvement than other standard filters
requiring more computation. Also, prefiltering the codebook instead of the image
has been suggested, and is shown to be not only computationally easy but also sub-
jectively superior. However, to implement the above suggestions requires some extra

computation, and may require some additional memory storage at the decoder.

In Chapter V, two neural schemes have been described to implement the
binary tree-structured VQ encoder and the full-search VQ encoder. The first
scheme requires synapses of linear order in the dimensionality, and of linear-times-
logarithmic order in the codebook size. The flexibility of this design has been shown,
compared with the conventional implementation. The encoding time is very small,
and is mostly independent of the encoder parameters such as the codebook size,
the vector dimensionality, or the depth of the tree. Also the design is quite flexible.
For example, only the first-layer neurons have to be altered if the dimensionality is
changed. The second scheme implements the full-search VQ encoder using synapses

of linear order in both the dimensionality and the codebook size. This encoder, too,

93

is shown to carry similar advantages over conventional coders. Altogether, a neural
implementation is shown to be quite appropriate for image VQ encoding. It offers
the advantage of using analog inputs while producing digital outputs. The storage

being inherent within the neurons, substantial space is saved.

All of the suggested techniques can be thought of as parts of a more refined,
better performing image compression system. These techniques can be implemented
together, or along with other improved VQ techniques offering better coding gain.
Throughout this discussion, the bit rate has been kept low while the computation
has been kept within the implementation capability. Therefore, the final conclu-
sion is that vector quantization is an appropriate and plausible technique for low
rate image compression. Applying electronic neural networks in VQ coding looks

promising, and is not outside the grasp of present-day technology.

94

APPENDIX
Appendix I: Centroid for the IDWSE distortion function

For a set of vectors with the input-dependent weighted squared-error distortion func-
tion when the weight matriz i3 diagonal, the centroid of the set is given by the ratio

of the weighted mean to the mean weight of the set.

Proof: From equation (3.3), the IDWSE distortion function in each dimension : can

be written as

d,'(X, C) = w,','(X)(.’L',' - C,‘)2, ((L.l)
where w;; is the i-th diagonal element of the weight matrix, Wx.

Because the right-hand side of the expression (a.1) has no other component of
C than ¢;, it is possible to minimize the average distortion d(X,C) = > d;,(X,C)

by minimizing each dimensional component independently.

For a set of M vectors X1, X@ ... X (M) the average distortion in the i-th

dimension for the centroid C' is
E{d;} = Z wi (X9 (]) — ;) . (a.2)
This distortion will be minimized when the following is true:
1 & . :
o 3 2wi(XD)(e; —2) = 0. (a.3)
i=1

Thus, ¢; becomes

M (X))
Y wa(X0)

Therefore, the centroid for the set can be expressed as

(a.4)

E{Wx - X}

“= Bwx)

(a.5)

95

Appendix II: FIR Encoder Filter Design

Or,

Given the decoder filter Hy(z), observe that

]Hd(ej“’)lz =1—ex~1. (a.6)
1 jwy|2 a
W21+€:2—|Hd(6)° (a.7)

Therefore, relation (4.8) can be approximated as

[He(e7)[? = 2 — [Ha(e™)P. (a-8)

H.(2)H.(z7") + Hy(2)Hy(z71) = 2. (a.9)

Using the power-complimentary relation of (a.9), we can design the encoder

filter if the decoder filter is given. The algorithm is described below.

1)

2)

Take the minimum-phase decoder filter, having sets of zeros of the form
{re’® re=3%}, where r < 1. Replace Hy(z) in (a.9) by the minimum-phase
transfer function. The zeros of Hy(2~!) will be the inverse of the zeros of
the decoder filter, i.e., of the form {2e/ Le=7%}. If the decoder filter is
linear-phase, simply replace H;(2)Hy(271) in (a.9) by the linear-phase trans-

fer function.

Following the power-complimentary relation, find H.(2)H.(z7!). Using any
standard algorithm, compute the zeros of this sequence. These zeros should
be in sets of the form {se’?,1e7% se=7¢ 1e=3%}

Choose only the zeros inside (and, on) the unit circle to form the minimum-
phase encoder transfer function. Only sets of the form {se’®,se™7¢} with

s < 1 will be chosen. To construct the linear-phase encoder transfer function,

simply use H,(z)H.(z™') from (@.9); computing the zeros is not necessary.

[1]

96

REFERENCES

M. P. Beddoes, T. Chu, “A Simple Nonstatistical Television Compression

System,” IEEE Trans. Info. Th., vol. IT-19 (1973), pp. 648-652.

R. F. Rice, “Practical Universal Noiseless Coding,” 1979 SPIE Sympo. Proc.,

vol. 207 (1979), pp. 247-267.

H. Gharavi, “Conditional Variable-Length Coding for Gray-Level Pictures,”
ATET Bell Lab. Tech. Jral., vol. 63 (1984), pp. 249-260.

I. H. Witten, R. M. Neal, J. G. Cleary, “Arithmetic Coding for Data Com-
pression,” Comm. of the ACM, vol. 30 (1987), pp. 520-540.

K. Sayood, M. C. Rost, “A Robust Compression System for Low Bit Rate
Telemetry — Test Results with Lunar Data,” Proc. of the Scientific Data
Compression Workshop, NASA Conference Publication 3025 (1988), pp. 237-
250.

T. R. Lie, N. Scheinberg, D. L. Schilling, “Adaptive Delta Modulation Systems
for Video Encoding,” IEEE Trans. Comm., vol. COM-25 (1977), pp. 1302-
1314.

D. L. Schilling, N. Scheiberg, J. Garodnick, “Video Encoding using Adaptive
Delta Modulation,” IEEE Trans. Comm., vol. COM-26 (1978), pp. 1682-
1689.

J. Barba, N. Scheinberg, D. L. Schilling, J. Garodnick, S. Davidovici, “A
Modified Adaptive Delta Modulator,” IEEE Trans. Comm., vol. COM-29
(1981), pp. 1767-1785.

J. P. Agrawal, J. B. O’Neal, “Low Bit Rate Differential PCM for Monochrome
Television Signals,” IEEE Trans. Comm., vol. COM-21 (1973), pp. 706-714.

[10]

[11]

[13]

[14]

[15]

18]

[19]

97

J. O. Limb, “Picture Coding : The Use of a Viewer Model in Source Encod-
ing,” Bell Sys. Tech. Jrnl., vol. 52 (1973), pp. 1271-1302.

A. K. Jain, “Image Coding Via a Nearest Neighbors Image Model,” IEEE
Trans. Comm., vol. COM-23 (1975), pp. 318-331.

E. G. Bowen, J. O. Limb, “Subjective Effect of Substituting Lines in a Video
-Telephone Signal,” IEEE Trans. Comm., vol. COM-24 (1976), pp. 1208-
1212.

A. N. Netravali, E. G. Bowen, “Improved Reconstruction of DPCM-Coded
Pictures,” Bell Sys. Tech. Jrnl., vol. 61 (1982), pp. 969-979.

W. Zschunke, “DPCM Picture Coding with Adaptive Prediction,” IEEE
Trans. Comm., vol. COM-25 (1977), pp. 1295-1302.

K. Sawada, H. Kotera, “A 32 Mbit/s Component Separation DPCM Coding
System for NTSC Color TV,” IEEE Trans. Comm., vol. COM-26 (1978), pp.
458-465.

K. Sawada, H. Kotera, “32 Mbit/s Transmission of NTSC Color TV Signals
by Composite DPCM Coding,” IEEE Trans. Comm., vol. COM-26 (1978),

pp. 1432-1439.

N. F. Maxemchuk, J. A. Stuller, “An Adaptive Intraframe DPCM Codec
Based upon Nonstationary Image Model,” Bell Sys. Tech. Jrnl., vol. 58
(1979), pp. 1395-1412.

N. F. Maxemchuk, J. A. Stuller, “Reduction of Transmission Error Propa-
gation in Adaptively Predicted, DPCM Encoded Pictures,” Bell Sys. Tech.
Jral., vol. 58 (1979), pp. 1413-1423.

V. Devarajan, K. R. Rao, “DPCM Coders with Adaptive Prediction for NTSC
Composite TV Signals,” IEEE Trans. Comm., vol. COM-28 (1980), pp.

[21]

[22]

[27]

98
1079-1084.

D. G. Daut, R. W. Fries, J. W. Modestino, “Two-Dimensional DPCM Image
Coding Based on an Assumed Stochastic Image Model,” IEEE Trans. Comm.,
vol. COM-29 (1981), pp. 1365-1374.

B. G. Haskell, R. L. Schmidt, “A Low-Bit-Rate Interframe Coder for Video-
telephone,” Bell Sys. Tech. Jrnl., vol. 54 (1975), pp. 1475-1495.

B. G. Haskell, P. L. Gordon, R. L. Schmidt, J. V. Scattaglia, “Interframe
Coding of 525-Line, Monochrome Television at 1.5 Mbits/s,” IEEE Trans.
Comm., vol. COM-25 (1977), pp. 1339-1348.

I. J. Dukhovich, J. B. O’Neal, “A Three-Dimensional Spatial Non-Linear Pre-
dictor for Television,” IEEE Trans. Comm., vol. COM-26 (1978), pp. 578-
583.

P. Pirsch, “Adaptive Intra-Interframe DPCM Coder,” Bell Sys. Tech. Jrnl.,
vol. 61 (1982), pp. 747-T764.

L. H. Zetterberg, S. Ericsson, H. Brusewitz, “Interframe DPCM with Adaptive
Quantization and Entropy Coding,” IEEE Trans. Comm., vol. COM-30

(1982), pp. 1888-1899.

N. Mukawa, H. Kuroda, T. Matsuoka, “An Interframe Coding System for
Video Teleconferencing Signal Transmission at a 1.5 Mbit/s Rate,” IEEE
Trans. Comm., vol. COM-32 (1984), pp. 280-287.

H. H. Bauch, H. Haberle, H. G. Musmann, H. Ohnsorge, G. A. Wengenroth,
H. J. Woite, “Picture Coding,” IEEE Trans. Comm., vol. COM-22 (1974),

pp. 1158-1167.

F. Kretz, “Subjectively Optimal Quantization of Pictures,” IEEE Trans.
Comm., vol. COM-23 (1975), pp. 1288-1292.

[29]

[32]

[33]

[36]

99

B. Prasada, F. W. Mounts, A. N. Netravali, “Level Reassignment : A Tech-
nique for Bit Rate Reduction,” Bell Sys. Tech. Jrnl., vol. 57 (1978), pp.
61-73.

B. Prasada, A. Netravali, A. Kobran, “Adaptive Companding of Picture Sig-
nals in a Predictive Coder,” IEEE Trans. Comm., vol. COM-26 (1978), pp.
161-164.

D. E. Troxel, “Application of Pseudorandom Noise to DPCM,” IEEE Trans.
Comm., vol. COM-29 (1981), pp. 1763-1767.

A. N. Netravali, B. Prasada, “Adaptive Quantization of Picture Signals using

Spatial Masking,” Proc. IEEE, vol. 65 (1977), pp. 536-5483.

A. N. Netravali, C. B. Rubinstein, “Quantization of Color Signals,” Proc.

IEEE, vol. 65 (1977), pp. 1177-1187.

D. K. Sharma, A. N. Netravali, “Design of Quantizers for DPCM Coding of
Picture Signals,” IEEE Trans. Comm., vol. COM-25 (1977), pp. 1267-1274.

C. B. Rubinstein, J. O. Limb, “On the Design of Quantizers for DPCM Coders:
Influence of the Subjective Testing Methodology,” IEEE Trans. Comm., vol.
COM-26 (1978), pp. 565-572.

J. O. Limb, C. B. Rubinstein, “On the Design of Quantizers for DPCM
Coders: A Functional Relationship between Visibility, Probability and Mask-
ing,” IEEE Trans. Comm., vol. COM-26 (1978), pp. 573-578.

P. Pirsch, “Design of DPCM Quantizers for Video Signals using Subjective
Tests,” IEEE Trans. Comm., vol. COM-29 (1981), pp. 990-1000.

B. G. Haskell, F. W. Mounts, J. C. Candy, “Interframe Coding of Videotele-
phone Pictures,” Proc. IEEE, vol. 60 (1972), pp. 792-800.

[39]

[40]

[41]

[42]

[43]

[47]

[48]

100

J. O. Limb, “A Picture-Coding Algorithm for the Merli Scan,” IEEE Trans.
Comm., vol. COM-21 (1973), pp. 300-305.

A. N. Netravali, “Interpolative Picture Coding using a Subjective Criterion,”

IEEE Trans. Comm., vol. COM-25 (1977), pp. 503-508.

K. Takikawa, “Simplified 6.3 Mbit/s Codec for Video Conferencing,” IEEE
Trans. Comm., vol. COM-29 (1981), pp. 1877-1882.

F. W. Mounts, “A Video Encoding System with Conditional Picture-Element

Replenishment,” Bell Sys. Tech. Jrnl., vol. 48 (1969), pp. 2545-2554.

D. J. Connor, B. G. Haskell, F. W. Mounts, “A Frame-to-Frame Picturephone
Coder for Signals Containing Differential Quantizing Noise,” Bell Sys. Tech.
Jral., vol. 52 (1973), pp. 35-51.

J. O. Limb, R. F. W. Pease, K. A. Walsh, “Combining Interframe and Frame-
to-Frame Coding for Television,” Bell Sys. Tech. Jrnl., vol. 53 (1974), pp.

1137-1173.

K. linuma, Y. Iijimi, T. Ishiguro, H. Kaneko, S. Shigaki, “Interframe Coding
for 4-MHz Color Television Signals,” IEEE Trans. Comm., vol. COM-23

(1975), pp. 1461-1465.

B. G. Haskell, “Differential Addressing of Clusters of Changed Picture El-
ements for Interframe Coding of Videotelephone Signals,” IEEE Trans.
Comm., vol. COM-24 (1976), pp. 140-144.

H. Yasuda, F. Kanaya, H. Kawanishi, “1.544-Mbits/s Transmission of TV
Signals by Interframe Coding System,” IEEE Trans. Comm., vol. COM-24
(1976), pp. 1175-1180.

H. Yasuda, H. Kuroda, H. Kawanishi, F. Kanaya, H. Hashimoto, “Transmit-
ting 4-MHz TV Signals by Combinational Difference Coding,” IEEE Trans.

[49]

[50]

[51]

[56]

[57]

[58]

101
Comm., vol. COM-25 (1977), pp. 508-516.

J. O. Limb, J. A. Murphy, “Measuring the Speed of Moving Objects from
Television Signals,” IEEE Trans. Comm., vol. COM-23 (1975), pp. 474-478.

F. Giorda, A. Racciu, “Bandwidth Reduction of Video Signals via Shift Vector
Transmission,” IEEE Trans. Comm., vol. COM-23 (1975), pp. 1002-1004.

S. Brofferio, F. Rocca, “Interframe Redundancy Reduction of Video Signals
Generated by Translating Objects,” IEEE Trans. Comm., vol. COM-25

(1977), pp. 448-455.

A. N. Netravali, J. D. Robbins, “Motion-Compensated Television Coding :

Part 1,” Bell Sys. Tech. Jrnl., vol. 58 (1979), pp. 631-670.

J. A. Stuller, A. N. Netravali, J. D. Robbins, “Interframe Television Coding
using Gain and Displacement Compensation,” Bell Sys. Tech. Jrnl., vol. 59

(1980), pp. 1227-1240.

J. R. Jain, A. K. Jain, “Displacement Measurement and Its Application in
Interframe Image Coding,” IEEE Trans. Comm., vol. COM-29 (1981), pp.
1799-1808.

K. A. Prabhu, A. N. Netravali, “Motion Compensated Component Color Cod-
ing,” IEEE Trans. Comm., vol. COM-30 (1982), pp. 2519-2527.

K. A. Prabhu, A. N. Netravali, “Motion Compensated Composite Color Cod-
ing,” IEEE Trans. Comm., vol. COM-31 (1983), pp. 216-223.

Y. Ninomiya, Y. Ohtsuka, “A Motion-Compensated Interframe Coding
Scheme for NTSC Color Television Signals,” IEEE Trans. Comm., vol. COM-
32 (1984), pp. 328-334.

S. Sabri, “Movement Compensated Interframe Prediction for NTSC Color TV
Signals,” IEEE Trans. Comm., vol. COM-32 (1984), pp. 954-968.

[59]

[60]

(63]

[64]

[69]

102

D. R. Walker, K. R. Rao, “Improved Pel-Recursive Motion Compensation,”
IEEE Trans. Comm., vol. COM-32 (1984), pp. 1128-1134.

C. D. Bowling, R. A. Jones, “Motion Compensated Image Coding with a
Combined Maximum A Posteriori and Regression Algorithm,” IEEE Trans.

Comm., vol. COM-33 (1985), pp. 844-857.

R. Srinivasan, K. R. Rao, “Predictive Coding Based on Efficient Motion Es-
timation,” IEEE Trans. Comm., vol. COM-33 (1985), pp. 888-896.

S. Kappagantula, K. R. Rao, “Motion Compensated Interframe Image Pre-
diction,” IEEE Trans. Comm., vol. COM-33 (1985), pp. 1011-1015.

T. Fukinuki, M. Miyata, “Intraframe Image Coding by Cascaded Hadamard
Transforms,” IEEE Trans. Comm., vol. COM-21 (1973), pp. 175-180.

P. J. Ready, P. A. Wintz, “Information Extraction, SNR Improvement, and
Data Compression in Multispectral Imagery,” IEEE Trans. Comm., vol.

COM-21 (1973), pp. 1123-1131.

J. 1. Gimlett, “Use of ‘Activity’ Classes in Adaptive Transform Image Coding,”
IEEE Trans. Comm., vol. COM-23 (1975), pp. 785-786.

W. Chen, C. H. Smith, “Adaptive Coding of Monochrome and Color Images,”
IEEE Trans. Comm., vol. COM-25 (1977), pp. 1285-1292.

J. J. Knab, “Effects of Round-Off Noise on Hadamard Transformed Imagery,”
IEEE Trans. Comm., vol. COM-25 (1977), pp. 1292-1294.

T. Ohira, M. Hayakawa, K. Matsumoto, “Orthogonal Transform Coding Sys-
tem for NTSC Color Television Signals,” IEEE Trans. Comm., vol. COM-26
(1978), pp. 1454-1463.

A. Z. Meiri, E. Yudilevich, “A Pinned Sine Transform Image Coder,” IEEE
Trans. Comm., vol. COM-29 (1981), pp. 1728-1735.

[70]

[71]

[72]

(73]

[74]

103

H. Murakami, Y. Hatori, H. Yamamoto, “Comparison between DPCM and
Hadamard Transform Coding in the Composite Coding of the NTSC Color
TV Signal,” IEEE Trans. Comm., vol. COM-30 (1982), pp. 469-479.

R. C. Reininger, J. D. Gibson, “Soft Decision Demodulation and Transform

Coding of Images,” IEEE Trans. Comm., vol. COM-31 (1983), pp. 572-577.

L. T. Watson, R. M. Haralick, O. A. Zuniga, “Constrained Transform Coding
and Surface Fitting,” IEEE Trans. Comm., vol. COM-31 (1983), pp. 717-
726.

K. Takikawa, “Fast Progressive Reconstruction of a Transformed Image,”

IEEE Trans. Info. Th., vol. IT-30 (1984), pp. 111-117.

W. Chen, W. K. Pratt, “Scene Adaptive Coder,” IEEE Trans. Comm., vol.
COM-32 (1984), pp. 225-232.

M. Miyahara, K. Kotani, “Block Distribution in Orthogonal Transform Cod-

ing — Analysis, Minimization and Distortion Measure,” IEEE Trans. Comm.,

vol. COM-33 (1985), pp. 90-96.

J. W. Modestino, N. Farvardin, M. A. Ogrine, “Performance of Block Cosine
Image Coding with Adaptive Quantization,” IEEE Trans. Comm., vol. COM-

33 (1985), pp. 210-217.

N. B. Nill, “A Visual Model Weighted Cosine Transform for Image Compres-
sion and Quality Assessment,” IEEE Trans. Comm., vol. COM-33 (1985),
pp. 551-557.

E. Dubois, J. L. Moncet, “Encoding and Progressive Transmission of Still
Pictures in NTSC Composite Format using Transform Domain Methods,”

IEEE Trans. Comm., vol. COM-34 (1986), pp. 310-319.

[79]

[80]

[81]

[82]

[83]

[84]

[86]

[39]

104

S. C. Knaner, “Real-Time Video Compression Algorithm for Hadamard Trans-

form Processing,” Proc. SPIE, August 1975, pp. 58-69.

T. R. Natarajan, N. Ahmed, “On Interframe Transform Coding,” IEEE Trans.
Comm., vol. COM-25 (1977), pp. 1323-1329.

J. A. Roese, W. K. Pratt, G. S. Robinson, “Interframe Cosine Transform
Image Coding,” IEEE Trans. Comm., vol. COM-25 (1977), pp. 1329-1339.

A. Gersho, B. Ramamurthi, “Image Coding Using Vector Quantization,” Proc.

Intl. Conf. ASSP, 1982, pp. 428-431.

H. Hang, J. W. Woods, “Predictive Vector Quantization of Images,” IEEE
Trans. Comm., vol. COM-33 (1985), pp. 1208-1219. '

N. M. Nasrabadi, R. A. King, “A New Image Coding Technique using Trans-
forms Vector Quantization,” Proc. Intl. Conf. ASSP, 1984, pp. 29.9.1-29.9.4.

T. Saito, H. Takeo, K. Aizawa, H. Harashima, H. Miyakawa, “Adaptive Dis-
crete Cosine Transform Image Coding using Gain/Shape Vector Quantizers,”

Proc. Intl. Conf. ASSP, 1986, pp. 129-132.

K. Aizawa, H. Harashima, H. Miyakawa, “Adaptive Discrete Cosine Transform
Coding with Vector Quantization for Color Images,” Proc. Intl. Conf. ASSP,
1986, pp. 985-988.

M. E. Blain, T. R. Fischer, “Vector Quantizer Transform Coding of Imagery,”
TCSP Research Report No. 87-021, Telecomm., Control and Signal Processing
Research Center, Texas A&M University, December 1987.

E. J. Delp, O. R. Mitchell, “Image Compression using Block Truncation Cod-
ing,” IEEE Trans. Comm., vol. COM-27 (1979), pp. 1335-1342.

D. J. Healy, O. R. Mitchell, “Digital Video Bandwidth Compression using

[92]

[93]

105

Block Truncation Coding,” IEEE Trans. Comm., vol. COM-29 (1981), pp-
1809-1817.

G. R. Arce, N. C. Gallagher, “BTC Image Coding using Median Filter Roots,”
IEEE Trans. Comm., vol. COM-31 (1983), pp. 784-793.

M. D. Lema, O. R. Mitchell, “Absolute Moment Block Truncation Coding
and its Application to Color Images,” IEEE Trans. Comm., vol. COM-32
(1984), pp. 1148-1157.

H. C. Andrews, C. L. Patterson, “Singular Value Decomposition (SVD) Image
Coding,” IEEE Trans. Comm., vol. COM-24 (1976), pp. 425-432.

N. Garguir, “Comparative Performance of SVD and Adaptive Cosine Trans-
form in Coding Images,” IEEE Trans. Comm., vol. COM-27 (1979), pp.
1230-1234.

A. Habibi, “Hybrid Coding of Pictorial Data,” IEEE Trans. Comm., vol.
COM-22 (1974), pp. 614-624.

F. W. Mounts, A. N. Netravali, B. Prasada, “Design of Quantizers for Real-
Time Hadamard Transform Coding of Pictures,” Bell Sys. Tech. Jrnl., vol.
56 (1977), pp. 21-48.

A. N. Netravali, B. Prasada, F. W. Mounts, “Some Experiments in Adaptive

and Predictive Hadamard Transform Coding of Pictures,” Bell Sys. Tech.
Jral., vol. 56 (1977), pp. 1531-1547.

A. Habibi, “An Adaptive Strategy for Hybrid Image Coding,” IEEE Trans.
Comm., vol. COM-29 (1981), pp. 1736-1740.

F. A. Kamangar, K. R. Rao, “Interfield Hybrid Coding of Component Color
Television Signals,” IEEE Trans. Comm., vol. COM-29 (1981), pp. 1740-
1753.

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107)

[108]

[109]

106

A. Ploysongsang, K. R. Rao, “DCT/DPCM Processing of NTSC Composite
Video Signal,” IEEE Trans. Comm., vol. COM-30 (1982), pp. 541-549.

T. O. Tam, J. A. Stuller, “Line-Adaptive Hybrid Coding of Images,” IEEE
Trans. Comm., vol. COM-31 (1983), pp. 445-450.

S. Ericsson, “Fixed and Adaptive Predictors for Hybrid Predictive /Transform
Coding,” IEEE Trans. Comm., vol. COM-33 (1985), pp. 1291-1302.

B. G. Haskell, “Frame-to-Frame Coding of Television Pictures using Two-
Dimensional Fourier Transform,” IEEE Trans. Info. Th., vol. IT-20 (1974),

pp. 119-120.

R. Wilson, H. E. Knutsson, G. H. Granlund, “Anisotropic Nonstationary Im-
age Estimation and its Applications: Part II-Predictive Image Coding,” IEEE
Trans. Comm., vol. COM-31 (1983), pp. 398-406.

M. J. Bage, “Interframe Predictive Coding of Images using Hybrid Vector
Quantization,” IEEE Trans. Comm., vol. COM-34 (1986), pp. 411-415.

M. Goldberg, H. Sun, “Image Sequence Coding using Vector Quantization,”
IEEE Trans. Comm., vol. COM-34 (1986), pp. 703-710.

A. J. Stuller, A. N. Netravali, “Transform Domain Motion Estimation,” Bell

Sys. Tech. Jrnl., vol. 58 (1979), pp. 1673-1702.

A.N. Netravali, J. A. Stuller, “Motion-Compensated Transform Coding,” Bell

Sys. Tech. Jrnl., vol. 58 (1979), pp. 1703-1718.

A. N. Netravali, J. D. Robbins, “Motion-Compensated Coding: Some New
Results,” Bell Sys. Tech. Jrnl., vol. 59 (1980), pp. 1735-1745.

R. R. Furner, R. W. Christiansen, D. M. Chabries, “Motion Compensated
Vector Quantization,” Proc. Intl. Conf. ASSP, 1986, pp. 989-992.

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117)

118]

[119]

107

J. W. Modestino, V. Bhaskaran, J. B. Anderson, “Tree Encoding of Images in
the Presence of Channel Errors,” IEEE Trans. Info. Th., vol. IT-27 (1981),

pp. 677-697.

J. W. Modestino, V. Bhaskaran, “Robust Two-Dimensional Tree Encoding of
Images,” IEEE Trans. Comm., vol. COM-29 (1981), pp. 1786-1798.

J. W. Modestino, V. Bhaskaran, “Adaptive Two-Dimensional Tree Encoding
of Images using Spatial Masking,” IEEE Trans. Comm., vol. COM-32 (1984),

pp. 177-189.

J. W. Modestino, D. G. Daut, “Combined Source-Channel Coding of Images,”
IEEE Trans. Comm., vol. COM-27 (1979), pp. 1644-1659.

J. W. Modestino, D. G. Daut, A. L. Vickers, “Combined Source-Channel
Coding of Images using the Block Cosine Transform,” IEEE Trans. Comm.,
vol. COM-29 (1981), pp. 1261-1274.

D. G. Daut, J. W. Modestino, “Two-Dimensional DPCM Image Transmission
over Fading Channels,” IEEE Trans. Comm., vol. COM-31 (1983), pp. 315-
328.

J. K. Yan, D. J. Sakrison, “Encoding of Images based on a Two-Component
Source Model,” IEEE Trans. Comm., vol. COM-25 (1977), pp. 1315-1322.

D. E. Troxel, W. F. Schreiber, P. Curlander, A. Gilkes, R. Grass, G. Hoover,
“Image Enhancement/Coding Systems using Pseudorandom Noise Process-

ing,” Proc. IEEE, vol. 67 (1979), pp. 972-973.

P. H. Westerink, J. Biemond, D. E. Boekee, “Sub-Band Coding of Images
using Predictive Vector Quantization,” Proc. Intl. Conf. ASSP, 1987, pp.
1378-1381.

P. H. Westerink, D. E. Boekee, J. Biemond, J. W. Woods, “Subband Coding

108

of Images using Vector Quantization,” IEEE Trans. Comm., vol. COM-36

(1988), pp. 713-719.

[120] M. F. Barnsley, A. D. Sloan, “A Better Way to Compress Images,” Byte,
January 1988, pp. 215-223.

[121] D. J. Connor, R. C. Brainard, J. O. Limb, “Intraframe Coding for Picture
Transmission,” Proc. IEEE, vol. 60 (1972), pp. 779-791.

[122] P. A. Wintz, “Transform Picture Coding,” Proc. IEEE, vol. 60 (1972), pp.
809-820.
[123] A. Habibi, “Survey of Adaptive Image Coding Techniques,” IEEE Trans.

Comm., vol. COM-25 (1977), pp. 1275-1284.

[124] J. O. Limb, C. B. Rubinstein, J. E. Thompson, “Digital Coding of Color
Video Signals-A Review,” IEEE Trans. Comm., vol. COM-25 (1977), pp.
1349-1385.

[125] A. N. Netravali, J. O. Limb, “Picture Coding: A Review,” Proc. IEEE, vol.
68 (1980), pp. 366-406.

[126] B. G. Haskell, R. Steele, “Audio and Video Bit-Rate Reduction,” Proc. IEEE,
vol. 69 (1981), pp. 252-262.

[127] A. K. Jain, “Image Data Compression: A Review,” Proc. IEEE, vol. 69
(1981), pp. 349-389.

[128] T. W. Goeddel, S. C. Bass, “A Two-Dimensional Quantizer for Coding of
Digital Imagery,” IEEE Trans. Comm., vol. COM-29 (1981), pp. 60-67.

[129] R. M. Gray, “Vector Quantization,” IEEE ASSP Mag., vol. 1 (1984), no. 2
(April), pp. 4-29.

[130] N. M. Nasrabadi, “Use of Vector Quantizers in Image Coding,” Proc. Intl.

[131]

[132]

[133]

[134]

[135]

[136]

[137)

[138]

[139]

109
Conf. ASSP, 1985, pp. 125-128.

S. E. Budge, R. L. Baker, “Compression of Color Digital Images using Vector
Quantization in Product Codes,” Proc. Intl. Conf. ASSP, 1985, pp. 129-132.

C. Yeh, “Color Image-Sequence Compression using Adaptive Binary-Tree Vec-
tor Quantization with Codebook Replenishment,” Proc. Intl. Conf. ASSP,
1987, pp. 1059-1062.

H. Shen, R. L. Baker, “A Finite State/Frame Difference Interpolative Vector
Quantizer for Low Rate Image Sequence Coding,” Proc. Intl. Conf. ASSP,
1988, pp. 1188-1191.

R. Aravind, A. Gersho, “Low-Rate Image Coding with Finite-State Vector
Quantization,” Proc. Intl. Conf. ASSP, 1986, pp. 137-140.

R. L. Baker, H. Shen, “A Finite-State Vector Quantizer for Low-Rate Image
Sequence Coding,” Proc. Intl. Conf. ASSP, 1987, pp. 760-763.

V. Ramamoorthy, N. S. Jayant, “High Quality Image Coding with a Model-
Testing Vector Quantizer and a Human Visual System Model,” Proc. Intl.
Conf. ASSP, 1988, pp. 1164-1167.

K. S. Thyagarajan, S. Parthasarathy, H. Abut, “A Matrix Quantizer Incor-
porating the Human Visual Model,” Proc. Intl. Conf ASSP, 1985, pp.

141-144.

S. E. Budge, T. G. Stockham, D. M. Chabries, R. W. Christiansen, “Vector
Quantization of Color Digital Images within a Human Visual Model,” Proc.
Intl. Conf. ASSP, 1988, pp. 816-819.

E. Daly, T. R. Hsing, “Variable Bit Rate Vector Quantization of Video Images
for Packet-Switched Networks,” Proc. Intl. Conf. ASSP, 1988, pp. 1160-
1163.

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

110

Y. Ho, A. Gersho, “Variable-Rate Multi-Stage Vector Quantization for Image
Coding,” Proc. Intl. Conf. ASSP, 1988, pp. 1156-1159.

B. Ramamurthi, A. Gersho, “Image Vector Quantization with a Perceptually-

based Cell Classifier,” Proc. Intl. Conf. ASSP, 1984, pp. 32.10.1-32.10.4.

B. Ramamurthi, A. Gersho, “Classified Vector Quantization of Images,” IEEE
Trans. Comm., vol. COM-34 (1986), pp. 1105-1115.

B. Hammer, A. v. Brandt, M. Schielein, “Hierarchical Encoding of Image
Sequences using Multistage Vector Quantization,” Proc. Intl Conf. ASSP,

1987, pp. 1055-1058.

H. Yamaguchi, “Efficient Encoding of Colored Pictures in R,.G, B Compo-
nents,” IEEE Trans. Comm., vol. COM-32 (1984), pp. 1201-1209.

H. Yamaguchi, “Vector Quantization of the Differential Luminance and
Chrominance Signals,” IEEE Trans. Comm., vol. COM-33 (1985), pp. 457~
464.

T. Murakami, K. Asai, A. Itoh, “Vector Quantization of Color Images,” Proc.

Intl. Conf. ASSP, 1986, pp. 133-136.

P. Boucher, M. Goldberg, “Color Image Compression by Adaptive Vector
Quantization,” Proc. Intl. Conf. ASSP, 1984, pp. 29.6.1-29.6.4.

J. Barrilleaux, R. Hinkle, S. Wells, “Efficient Vector Quantization for Color

Image Encoding,” Proc. Intl. Conf. ASSP, 1987, pp. 740-743.

H. F. Sun, M. Goldberg, “Adaptive Vector Quantization for Image Sequence
Coding,” Proc. Intl. Conf. ASSP, 1985, pp. 339-342,

R. L. Baker, J. L. Salinas, “A Motion Compensated Vector Quantizer with

Filtered Prediction,” Proc. Intl. Conf. ASSP, 1988, pp- 1324-1327.

[151]

[152)

[153]

[154)

[1535]

[156]

[157)

[158]

[159]

[160]

[161]

111

A. Gersho, M. Yano, “Adaptive Vector Quantization by Progressive Codevec-
tor Replacement,” Proc. Intl. Conf. ASSP, 1985, pp. 133-136.

F. Oliveri, G. Conte, M. Gugleilmo, “A Technique using a One-Dimensional
Mapping for Vector Quantisation of Images,” Proc. Intl. Conf. ASSP, 1986,

pp. 149-152.

W. Equitz, “Fast Algorithms for Vector Quantization Picture Coding,” Proc.
Intl. Conf. ASSP, 1987, pp. 725-728.

J. Vaisey, A. Gersho, “Simulated Annealing and Codebook Design,” Proc.
Intl. Conf. ASSP, 1988, pp. 1176-1179.

C. Bei, R. M. Gray, “An Improvement of the Minimum Distortion Encoding
Algorithm for Vector Quantization,” IEEE Trans. Comm., vol. COM-33

(1985), pp. 1132-1133.

D. Cheng, A. Gersho, “A Fast Codebook Search Algorithm for Nearest-
Neighbor Pattern Matching,” Proc. Intl. Conf. ASSP, 1986, pp. 265-268.

A. Buzo, A. H. Gray, R. M. Gray, J. D. Markel, “Speech Coding based upon
Vector Quantization,” IEEE Trans. ASSP, vol. ASSP-28 (1980), pp. 562-
574.

K. Sayood, S. J. Blankenau, “A Fast Quantization Algorithm for Lattice

Quantizer Design,” Proc. Intl. Conf. ASSP, 1988, pp. 1168-1171.

T. R. Fischer, “A Pyramid Vector Quantizer,” IEEE Trans. Info. Th., vol.
IT-32 (1986), pp. 568-583.

R. E. Crochiere, S. A. Webber, J. L. Flanagan, “Digital Coding of Speech in
Sub-bands,” Bell Sys. Tech. Jranl., vol. 55 (1976), pp. 1069-1085.

A. Gersho, “Asymptotically Optimal Block Quantization,” IEEE Trans. Info.

Th., vol. IT-25 (1979), pp. 373-380.

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

112

R. J. McEliece, “The Theory of Information and Coding: Volume 3 of En-

cyclopedia of Mathematics and its Applications,” 1977, Addison-Wesley, pp.

35-37.

S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Info. Th.,
vol. 28 (1982), pp. 129-136.

Y. Linde, A. Buzo, R. M. Gray, “An Algorithm for Vector Quantizer Design,”
IEEFE Trans. Comm., vol. COM-28 (1980), pp. 84-95.

L. R. Rabiner, B. Gold, “Theory and Application of Digital Signal Processing,”
Englewood Cliffs (NJ) : Prentice-Hall Inc., 1975.

W. F. G. Mecklenbrauker, R. M. Mersereau, “McClellan Transformation for
Two-Dimensional Digital Filtering: II — Implementation,” IEFE Trans. Cir-
cuits and Systems, vol. CAS-23 (1976), pp. 414-422.

P. A. Devijver, J. Kittler, “Pattern Recognition : A Statistical Approach,’
London : Prentice/Hall Intl., 1982, pp. 409.

A. Krishnamurthy, S. C. Ahalt, D. Melton, P. Chen, “A New Neural Network
Learning Algorithm for Vector Quantization,” Abstracts & Papers of the 6%
IEEE Intl. Workshop on Maicroelectronics and Photonics in Comm., June

1989, paper no. 1I1.3.

N. M. Nasrabadi, Y. Feng, “Vector Quantization of Images based upon the
Kohonen Self-Organizing Feature Maps,” IEEE Intl. Conference on Neural
Networks, 1988, pp. 1-101 - I-108.

R. Dianysian, R. L. Baker, “A VLSI Chip Set for Real Time Vector Quantiza-
tion of Image Sequences,” Proc. of the Intl. Sympo. on Circuits and Systems,

May 1987, pp. 221-224.

[171]

[172]

[173]

[174]

[175]

[176]

[177]

178]

113

”

R. Hecht-Nielsen, “Applications of Counterpropagation Networks,” Neural

Networks, vol. 1, no. 2, 1988, pp. 131-139.

T. Kohonen, “Self-Organization and Associative Memory,” Berlin : Springer-

Verlag, 1984, pp. 125-161.

S. Grossberg, “Studies of Mind and Brain,” Dordrecht (Holland) : D Reidel
Publ.; 1982, pp. 79-88.

P. A. Chou, T. Lookabaugh, R. M. Gray, “Optimal Pruning with Applications
to Tree-Structured Source Coding and Modeling,” Report, Dept. of Electrical

Engg., Stanford University, May 1987.

R. P. Lippmann, “An Introduction to Computing with Neural Nets,” IEEE

ASSP Mag., April 1987, pp. 4-22.

S. Grossberg, “Contour Enhancement, Short Term Memory, and Constancies
in Reverberating Neural Networks,” Studies in Appl. Math., vol. LII (52),

no. 3, September 1973, pp. 213-257.

E. Majani, R. Erlanson, Y. Abu-Mostafa, “On the K-Winners-Take-All Net-
work,” Advances in Neural Information Processing Systems I, edited by D. S.

Touretzky, San Mateo (CA) : Morgan Kaufmann Publ., 1989, pp. 634-642.

J. Lazzaro, S. Ryckebusch, M. A. Mahowald, C. A. Mead, “Winner-Take-All
Networks of O(N) Complexity,” Advances in Neural Information Processing
Systems I, edited by D. S. Touretzky, San Mateo (CA) : Morgan Kaufmann
Publ., 1989, pp. 703-711.

