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Abstract

The study of the strength of a material is relevant to a variety of applications including auto-

mobile collisions, armor penetration and inertial confinement fusion. Although dynamic behavior of

materials at high pressures and strain-rates has been studied extensively using plate impact experi-

ments, the results provide measurements in one direction only. Material behavior that is dependent

on strength is unaccounted for. The research in this study proposes two novel configurations to

mitigate this problem.

The first configuration introduced is the oblique wedge experiment, which is comprised of a driver

material, an angled target of interest and a backing material used to measure in-situ velocities. Upon

impact, a shock wave is generated in the driver material. As the shock encounters the angled target,

it is reflected back into the driver and transmitted into the target. Due to the angle of obliquity

of the incident wave, a transverse wave is generated that allows the target to be subjected to shear

while being compressed by the initial longitudinal shock such that the material does not slip. Us-

ing numerical simulations, this study shows that a variety of oblique wedge configurations can be

used to study the shear response of materials and this can be extended to strength measurement as

well. Experiments were performed on an oblique wedge setup with a copper impactor, polymethyl-

methacrylate driver, aluminum 6061-t6 target, and a lithium fluoride window. Particle velocities

were measured using laser interferometry and results agree well with the simulations.

The second novel configuration is the y-cut quartz sandwich design, which uses the anisotropic

properties of y-cut quartz to generate a shear wave that is transmitted into a thin sample. By using

an anvil material to back the thin sample, particle velocities measured at the rear surface of the

backing plate can be implemented to calculate the shear stress in the material and subsequently the

strength. Numerical simulations were conducted to show that this configuration has the ability to

measure the strength for a variety of materials.
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Chapter 1

Introduction

The dynamic behavior of materials at high pressures and strain-rates has been studied for many

years using wave propagation techniques through solids [49], [25], [71], [69]. Although results for the

planar compression of materials are prevalent, the full material response needs further investigation

as the methods involved to obtain these measurements can be quite complicated.

1.1 Motivation

One method to estimate the three dimensional response of a material is to assume a constitutive

relation for it and fit the data in an iterative manner [43]. By assuming a model from normal impact

data, however, only the longitudinal response is really seen [19], which is insufficient for material

behavior that depends on the strength after the material yields. For this reason, testing must be

performed to characterize the two extra dimensions and accurately account for the strength of the

material.

The strength of a material is its response to deviatoric stresses [3]. In high-speed machining, a

variety of techniques are used to shape materials; some of these methods, such as metal cutting,

result in the material withstanding strain-rates of up to 105/s [44] and thus it is important to

determine how the material will behave and how much it can withstand before it fails. Similarly,

in automobile collisions, materials can experience strain-rates of up to 103/s [27]. Understanding

how the material responds in this scenario is crucial to vehicle safety. Strength analysis at high

strain-rates is important in the battlefield as well in the penetration of different types of armor

materials where the study of material response can also be used to save lives [76]. At even higher

strain-rates, inertial confinement fusion can also benefit from this analysis. Here, a fuel target

containing a mixture of deuterium and tritium is heated and compressed by a laser with the desired
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result of creating vast amounts of energy. Presently, ripples form due to inhomogeneities in the

targets that are thought to be related to strength. Understanding this behavior would shed light on

this experimental technique, the results of which could benefit society [38]. Finally, in the case of

planetary impact, experiments probing strength response can be used to understand how these large

bodies behave in such extreme conditions. The results of these analyses could be used to understand

this dynamic event and would elucidate events such as the formation of Earth’s moon and other

such collisions.

1.2 Previous Methods

A variety of systems have been implemented to study high strain-rate (> 102)/s effects of mate-

rials. One such experiment is the Kolsky bar, which tests specimens with compression, torsion, or

tension at strain-rates on the order of 102 − 103/s. The specimen is placed between two long bars

that remain elastic throughout the experiment and one of the bars is impacted to transmit a pulse,

which is reverberated in the sample. Upon reflection, part of the wave travels back into the bar

that was hit, and the rest is transmitted into the second bar. Strain gauges measure the response in

both bars to the incident, reflected, and transmitted waves from which the response of the specimen

can be calculated [65], [4]. Another method of studying high strain-rate phenomenon is the Taylor

impact test, which looks at strain-rates of 103−104/s. This experiment consists of impacting a large

target with a cylindrical rod flyer and measuring how the shape of the target is changed in order

to find the dynamic yield stress of the material [33], [72]. A technique used for higher strain-rates

of order 104 − 107/s is the oblique gun. This setup uses inclined plates to generate shear and is

particularly effective in studying higher strain-rate phenomenon, the focus of this study. Figure 1.1

shows the various methods discussed to study strength and the applications that the results are used

to understand.

The basic premise of the oblique gun is that two plates are set parallel to one another, but at an

angle with respect to the horizontal. Upon impact, one dimensional plane longitudinal and shear

waves form due to the impact velocity vector being oriented at an angle with respect to the target.

If no slip occurs between the target and impactor, particle velocity at the impact face is independent

of the position along it and one-dimensional wave theory can be used to describe the state of the

material since motion is only dependent on the distance normal to the impact face and time [2],

[21], [53], [76]. With the generation of both types of waves, the material is compressed and hence

slip is prevented such that shear can be transmitted into it. A schematic of this experimental setup
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Figure 1.1: Techniques used to study shear response of materials at high strain-rates with appli-
cations that the results are used to understand.

is shown with a detailed description in Section 4.2.

A clever method that uses a normal impact experimental setup implements the anisotropic nature

of y-cut quartz. Upon impact, y-cut quartz generates two types of waves (described in Chapter 4)

that each contain longitudinal and shear components of velocity [48], [47], [1], [18]. These waves can

be used in a manner analogous to the oblique gun to subject a target to a simultaneous pressure and

shear environment and was studied by Chhabildas and Swegle in a variety of publications [75], [19],

[16]. It was found that a specimen could be bonded to the y-cut quartz by using an epoxy-particulate

mixture that allowed for the transmittance of shear to the specimen. In these studies, the maximum

shear transmitted was observed to be 0.35 GPa and the experiment was limited in either the shear

strength of the epoxy or the slippage of the target from the y-cut quartz.

Measuring transverse velocities poses complexities that are not present in normal impact exper-

iments. To measure the velocities, laser interferometry techniques are used. These are described in

detail in Section 5.2, but the basic premise is that laser light is shined onto a moving target and the

reflected light is collected and combined with itself after it is Doppler shifted due to the movement
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of the target. The combined light creates a beat frequency that is related to the velocity of the

target. To implement this method for transverse velocities, fiber optic probes must be placed at

an angle with respect to the normal at the back of the target and secured in place to collect light

reflected off of the moving surface, see Section 5.2.1.2. To actually be able to collect light in these

probes, the surface must be treated in a way that diffracts light shined onto it. Multiple studies

have placed these techniques into practice where they have used either a diffraction grating that was

deposited using photoresist techniques or a mirror surface that was scratched slightly to create a

similar effect. The light that was diffracted off of this surface was collected by a variety of methods

as well. One technique implemented a three probe configuration where a central probe was used to

send light to the target that was then collected by the same probe and two side probes [52], [17],

[32]. A similar approach has previously been taken with measurements using a window [31], [34],

but these methods are relatively new and are even more complicated to use. This dissertation will

describe the implementation of both methods to measure transverse velocities.

1.3 Thesis Outline

The premise of this research is to implement the normal impact gun setup, a system that is

more readily available, with a variety of targets to measure the response of materials to shear at

high strain-rates. The first configuration proposed utilizes oblique targets to generate shear waves

while the second setup uses y-cut quartz to transmit shear, much like the work by Chhabildas and

Swegle described above, but with a sandwich configuration where the target is a thin sample placed

between two high-strength materials. This method is adapted from the oblique gun experiments

described above and uses a thin sample in order to sustain a high strain-rate for a longer period of

time than that experienced by a sample that is bonded to the y-cut quartz with no backing material.

Two configurations using the y-cut quartz as a generator are described and by using the thin sample

sandwiched between other materials, this study aims to expand upon the work done by Chhabildas

and Swegle. Furthermore, although both the oblique wedge and y-cut quartz sandwich techniques

currently reach the 106/s strain-rate range, there are possiblities to extend to higher strain-rates.

The first main chapter, Chapter 2, introduces the theories behind elastic wave propagation

in solids and discusses the governing equations of plane waves that result from the conservation

equations and the definitions of tractions, displacements, and strains. A progression is made into

the equations describing the incidence of an oblique wave at an interface. Here, the incident angle

and change in particle velocity across the wave can be used along with continuity of tractions
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and velocities at the interface to describe the change in stresses and velocities across each set of

longitudinal and shear waves that reflect from and transmit across the interface. The simple case of

1D wave propagation is discussed, which would result from a normal impact, where the 1D strain

assumption can be used. The transition between elasticity to plasticity is analyzed and the yield

stress is defined. As the velocity of the incident wave increases during an impact with increasing

pressure, a shock front forms for which the Rankine-Hugoniot jump relations of mass, momentum

and energy are given. The shock Hugoniot is also described — this is a set of states that the material

can reach after it is shocked. Impedance matching is discussed to allow for the determination of

particle velocity after the impact of two materials using their shock velocity vs. particle velocity

Hugoniot. This analysis is used in shock polar analysis, which studies the incidence of an oblique

shock wave on an interface and is used to determine the properties of the transmitted oblique wave

in the material of interest.

Chapter 3 discusses the oblique wedge configuration, the first novel technique described. This

configuration consists of a driver material and an oblique target of interest with a window at the rear

surface and uses the theories in shock polar analysis to find the properties across the transmitted

shock wave in the target. A variety of parameters in this experimental setup are studied in order to

find the relationship between longitudinal stress in the target, the angle of obliquity of the incident

wave, the transmitted shear wave angle, and the transmitted shock wave angle. Next, the target

design is discussed to determine the dimensions of the entire target needed to measure the shear

response. An elastic analysis is used along with a more refined hydrocode numerical simulation

to predict the response of the setup. The latter simulations are used to analyze the nature of the

shear wave in the target, to observe the strain-rate, and to calculate the shear stress based on the

particle velocities that would be measured at the rear surface of the specimen in a given experiment.

Comparisons are made between the calculated stresses, the stresses found in the simulation, and

the yield stress of the material and calculations are performed using the Von Mises yield criteria

to determine if the material is yielding. The path of the shear stress in a two dimensional yield

surface is also analyzed to determine the mechanism of yielding and to investigate the viability of

this technique in finding the yield strength of a material. The constraint of the impact velocity is

discussed along with using a window to make in-situ measurements. The alternative use of an anvil

in place of the window is then deliberated.

Chapter 4 introduces the y-cut quartz sandwich configuration, a novel technique that makes use

of the anisotropy of y-cut quartz to generate shear waves. The oblique gun (or slotted barrel gun)
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is discussed in further detail and the governing equations, used to find the longitudinal and shear

stresses as well as the strain-rate, are given. The first of the sandwich configurations is introduced,

where the y-cut quartz is used to drive a transverse and longitudinal wave into a high-strength

material that is followed by a thin sample and a subsequent anvil backing material. Simulations are

performed using a one-dimensional numerical analysis program and the results of these are used to

find the dimensions of materials needed to measure the longest shear response possible within a given

set of constraints. The assumption of a 1D strain with a superimposed shear is then checked using

the stress tensor found in the simulation and analyses are made to ensure that the first driver and

backing materials remain elastic, an integral part of the experiment, as will be described. The stress

path is shown for this configuration to prove its ability to measure strength of a material, which is

found using the rear surface velocity measurement. The measurement of strain-rate is discussed as

well. The next configuration explored is the one driver y-cut quartz sandwich design, where the y-cut

quartz is used as the elastic driver and the second high-strength material is eliminated, leaving the

y-cut quartz followed by the sample and the anvil backing. Once again, simulations are performed

to find appropriate measurements for the target setup and an analysis is conducted to make sure

that the elastic assumption in the driver and backing as well as the 1D strain and superimposed

shear are maintained throughout the experiment. The stress path is then discussed along with the

shear stress and strength calculations. The strain-rate is also analyzed. Finally, the limitations of

these two techniques are debated.

The loading systems and diagnostics used in the experiments for this dissertation are explored

in Chapter 5. Powder guns at Caltech as well as Sandia National Laboratories are introduced along

with the gas gun at the latter facility. The interferometry techniques used to measure the velocities

are considered next. Here, the basic theories of the VISAR system are investigated and the angled

measurements needed for the transverse velocities are explained. Another diagnostic called the PDV

that is similar in purpose to the VISAR is also discussed. Some preliminary analysis is then made

in the techniques needed to diffract light off the rear surface of the target.

In Chapter 6, two types of experiments are examined. The first is the y-cut quartz validation

experiment conducted at Sandia National Laboratories using y-cut quartz and a lithium fluoride

window. This experiment was used to validate the ability to measure transverse particle velocities

through a window by comparing the results of the experiment with well-known simulations that

implement the analysis of the anisotropic quartz material described by Johnson [47]. In this section,

the crucial alignment of the off-axis probes and the measurement of their angles is inspected. Once
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the technique is shown to work, it is implemented on a set of oblique wedge experiments, the results

of which are compared to two dimensional simulations using a numerical code that accounts for

strength. The complicated target setup for the oblique wedge is examined as well.

The final chapter summarizes the results found throughout this study. It then proposes future

work that must still be performed and discusses the variety of directions this research can take.
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Chapter 2

Theoretical Background

2.1 Elastic Wave Theory

2.1.1 Governing Equations

In order to understand what occurs in the oblique wedge and y-cut quartz sandwich experiments,

it is important to study the propagation of waves through soild materials. Upon impact for both

types of configurations, waves are generated and their travel through the specimens subjects these

materials to different loading conditions. To begin analyzing waves, one must define the two types of

reference frames. The first frame, called the “Lagrangian” or “Material” frame, follows a particular

particle through a given flow while the second frame, called the “Eulerian” or “Spatial” frame,

follows the total flow through a specific region. [63]. Figure 2.1 illustrates this concept. In this

figure, φ is some property of the flow dependent on position, x, and time, t. To relate the two

frames, the material derivative can be used, written as

(
Dφ

Dt

)
L

=

(
∂φ

∂t

)
E

+ u · Oφ =
∂φ

∂t
+ u1

∂φ

∂x
+ u2

∂φ

∂y
+ u3

∂φ

∂z
. (2.1.1)

In this equation, the term on the left hand side represents the derivative of the flow property with

respect to the Lagrangian frame, which is written on the right hand side in terms of the Eulerian

derivative and the terms relying on the position in space of the particle.

For small deformations, the balance laws can be defined using the small strain formulation, which

indicates that the description of the flow of material in both frames is approximately the same. This

approximation allows for the determination of the governing equations for plane waves propagating

in a material. Assume for a given body B, with some displacement field u (x, t), contact force,

t (n̂, x, t), and body force, f (x, t), for any point of B, linear momentum must be conserved [41]:



9

 
Figure 2.1: Definition of Eulerian and Lagrangian referentials (Courtesy Marc A. Meyers, [63])

d

dt

∫
B

ρu̇dV =

∫
δB

tdS +

∫
B

fdV, (2.1.2)

where an underlined variable represents a vector. The contact force in the above equation can be

defined in terms of the Cauchy stress tensor — represented in bold — multiplied by the surface

normal unit vector, denoted with a hat over it:

t (n̂, x, t) = σ (x, t) n̂. (2.1.3)

Plugging this definition of traction into 2.1.2 above results in

d

dt

∫
B

ρu̇dV =

∫
δB

σ (x, t) n̂dS +

∫
B

fdV. (2.1.4)

To simplify this equation, the first term needs to be examined using the Reynold’s Transport The-

orem [57]. This theorem reduces the first term on the left hand side to

d

dt

∫
B

ρu̇dV =

∫
B

∂

∂t
(ρu̇) dV +

∫
δB

ρu̇ (u̇ · n̂) dS. (2.1.5)

Applying the Divergence Theorem to the right hand side of Equation 2.1.5 results in

d

dt

∫
B

ρu̇dV =

∫
B

(ρ̇u̇+ ρü+ ρu̇div (u̇)) dV. (2.1.6)

The right hand side of Equation 2.1.6 can be reduced using mass conservation, which states that

d

dt

∫
B

ρdV = 0. (2.1.7)
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Equation 2.1.7 can also be re-written using the Reynold’s Transport Theorem as

d

dt

∫
B

ρdV =

∫
B

(
∂ρ

∂t
+ ρdiv (u̇)

)
dV = 0. (2.1.8)

From Equation 2.1.8, it can be concluded that

ρ̇ = −ρdiv (u̇) . (2.1.9)

This result can then be used to eliminate two of the terms in the right hand side of Equation 2.1.6,

reducing the conservation of linear momentum equation, 2.1.4, to

∫
B

ρüdV =

∫
B

div (σ) dV +

∫
B

fdV. (2.1.10)

Reducing Equation 2.1.10, the local form of the conservation of momentum becomes

ρü = div (σ) + f. (2.1.11)

The local form of the conservation of momentum equation can further be simplified by relating the

Cauchy stress to strain such that eventually the expression obtained can be used to understand the

displacements seen in plane wave propagation. For this simplification, the material is assumed to

be linear elastic with the constitutive relation

σij = Cijklεkl, (2.1.12a)

which can also be written as

εij = Sijklσkl, (2.1.12b)

where εkl is the infinitesimal strain tensor, Cijkl is the stiffness coefficient matrix, and Sijkl is the

compliance matrix. Here the stress tensor is now introduced using indicial notation. Compatibility

between the strains and displacements states that

εkl =
1

2
(uk,l + ul,k) . (2.1.13)

Substituting this into Equation 2.1.12a results in

σij =
1

2
Cijkl (uk,l + ul,k) . (2.1.14)
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Assuming there is no body force, Equation 2.1.11 becomes the general equations of motion

ρ
∂2ui
∂t2

= σij,j . (2.1.15)

Substituting 2.1.14 into 2.1.15 results in the displacement formulation

σij,j =
1

2
Cijkl (uk,lj + ul,kj) = ρui,tt. (2.1.16)

The displacements can be defined in terms of velocities, where

ui,t = vi. (2.1.17)

Then, substituting this expression into 2.1.16, results in the particle velocity formulation [22]:

ρui,tt =
1

2
Cijkl (uk,lj + ul,kj) = ρvi,t = σij,j . (2.1.18)

Equation 2.1.12b can also be written in terms of the stress and particle velocity formulation by first

differentiating Equation 2.1.13, substituting indices i and j for k and l, and utilizing Equation 2.1.17

to get:

εij,t =
1

2
(vi,j + vj,i) . (2.1.19)

Then, differentiating Equation 2.1.12b and using the result of Equation 2.1.19:

Sijklσkl,t =
1

2
(vi,j + vj,i) . (2.1.20)

The matrix notation of the Cauchy stress and strain tensors in Equations 2.1.18 and 2.1.20 can be

expressed as a first order system by first simplifying these tensors in terms of vector components

using the Voigt notation. This substitution will make further analysis simpler.

σ =


σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3

→ σ =



σ1

σ2

σ3

σ4

σ5

σ6


(2.1.21a)
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ε =


ε1

1
2ε6

1
2ε5

1
2ε6 ε2

1
2ε4

1
2ε5

1
2ε4 ε3

→ ε =



ε1

ε2

ε3

ε4

ε5

ε6


. (2.1.21b)

Now with these vectors, Equations 2.1.18 and 2.1.20 can be written as 1st order systems

ρvt + B1σx1 + B2σx2 + B3σx3 = 0 (2.1.22a)

and

Sσt + BT
1 vx1 + BT

2 vx2 + BT
3 vx3 = 0, (2.1.22b)

where

B1 =


−1 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0

 ,B2 =


0 0 0 0 0 −1

0 −1 0 0 0 0

0 0 0 −1 0 0

 ,B3 =


0 0 0 0 −1 0

0 0 0 −1 0 0

0 0 −1 0 0 0

 ,
(2.1.23)

and the subscripts on the vectors in 2.1.22a and 2.1.22b denote differentiation with respect to the

variable in the subscript. Another way to write these two equations is

Atωt + A1ωx1 + A2ωx2 + A3ωx3 = 0 or L(ω) = Atωt + Aiωxi = 0, (2.1.24)

where

ω =


v

· · ·

σ

 , At =


ρI

... 0

· · ·
... · · ·

0
... S

 , Ai =


0

... Bi

· · ·
... · · ·

BT
i

... 0

 . (2.1.25)

To use this concept, an acceleration wave is introduced. This is also known as a characteristic surface

along which φ (t, x) is constant and across which ω is continuous, but derivatives of this vector can
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be discontinuous. Figure 2.2 depicts this set of waves.

Figure 2.2: Acceleration waves along which φ is constant.

Let ξi, where i = 1, 2, 3, be the interior coordinates on the surface φ (t, x) = constant. Now take

ω to be a function of φ and ξi such that ω = ω (φ, ξ1, ξ2, ξ3), then

ωt = ωφφt + ωξi (ξi)t and ωxi
= ωφφxi

+ ωξj (ξj)xi . (2.1.26)

Substituting this result into the expression L (ω) = 0 in Equation 2.1.24 results in

(
Atφt + Aiφxi

)
ωφ = −

(
At(ξi)t + Ai(ξj)xi

)
ωξj . (2.1.27)

Since ω must be continuous across a characteristic surface but its derivatives can be discontinuous,

a surface φ(t, x) = constant, for which

(
Atφt + Aiφxi

) ∥∥∥ωφ∥∥∥ = 0, (2.1.28)

has non-trivial solutions that are only possible for

∣∣Atφt + Aiφxi
∣∣ = 0, (2.1.29)

where ‖∗‖ indicates the change of quantity ∗ from the upstream to the downstream state of the wave,

or ∗+ − ∗−, respectively, and | ∗ | indicates the determinant of ∗. By substituting in the definitions

of At, Ai and ωφ, Equation 2.1.28 is simplified to
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ρ
∥∥∥vφ∥∥∥φt + Biφxi

∥∥∥σφ∥∥∥ = 0 (2.1.30)

and

S
∥∥∥σφ∥∥∥φt + BT

i φxi

∥∥∥vφ∥∥∥ = 0. (2.1.31)

Combining these two equations, the jump in the stress tensor derivative is eliminated and a charac-

teristic equation is obtained:

(
−ρφ2

t I + BjS
−1BT

i φxjφxi
) ∥∥∥vφ∥∥∥ = 0 (2.1.32a)

for which ∣∣−ρφ2
t I + BjS

−1BT
i φxjφxi

∣∣ = 0, (2.1.32b)

which is a 1st order, nonlinear PDE for φ. Let,

dxi
dt

=
cφxi√
φxjφxj

. (2.1.33)

Note that c is just the wavespeed and φxi√
φxjφxj

is the normalized gradient of the characteristic surface

– or the normal vector to the surface – which gives the direction the wave is propagating. Since φ

is constant, it can be said that

φtdt+ φxidxi = 0. (2.1.34)

Therefore, rearranging Equation 2.1.34 and substituting in Equation 2.1.33 it is found that

φt +
cφxiφxi√
φxjφxj

= 0 or c = − φt√
φxjφxj

. (2.1.35)

Defining the normal to the characteristic surface as ni = φxi√
φxjφxj

, Equation 2.1.32b reduces to

∣∣−ρc2I + ninjBjS
−1BT

i

∣∣ =
∣∣−ρc2I + BS−1BT

∣∣ = 0, (2.1.36)

where B = njBj

Here it should be noted that BS−1BT is the acoustic tensor and Equation 2.1.36 is a cubic

equation for c2. The roots of this determinant are the velocities of the acceleration wave. This
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equation can now be defined in terms of the polarization vectors, which will allow for the closer

study of the unique properties of the different types of waves. Allow
∥∥∥vφ∥∥∥ = βp, where p is the

polarization vector for the velocity and describes the direction the displacement behind a wave takes

place, and β is a constant. Then, Equation 2.1.32a, with the substitution of 2.1.35, becomes

(
−ρc2I + BS−1BT

)
pl = 0, l = 1, 2, 3 and pi · pj = δij . (2.1.37)

For an isotropic, linear elastic solid, the inverse of the compliance matrix, S, is the stiffness tensor,

C:

S−1 = C =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


, (2.1.38)

where λ is the first Lamé constant and µ is the shear modulus. From Equation 2.1.36,
∣∣−ρc2I + BS−1BT

∣∣ =

0. Using the definition of S−1, it is found that

BS−1BT =


(λ+ 2µ)n2

1 + µ
(
n2

2 + n2
3

)
(λ+ µ)n1n2 (λ+ µ)n1n3

(λ+ µ)n1n2 (λ+ 2µ)n2
2 + µ

(
n2

1 + n2
3

)
(λ+ µ)n2n3

(λ+ µ)n1n3 (λ+ µ)n2n3 (λ+ 2µ)n2
3 + µ

(
n2

1 + n2
2

)
 .

(2.1.39)

And taking the determinant of −ρc2I + BS−1BT and setting it to zero results in the equation

(
µ− ρc2

) (
µ− ρc2

) (
λ+ 2µ− ρc2

)
= 0. (2.1.40)

This equation is satisfied if c21 = λ+2µ
ρ and c22 = c23 = µ

ρ which is independent of the normal vector

to the characteristic surface. The direction of displacement can be found for a wave with each

given velocity by analyzing the polarization vector associated with each case. For the first case, the

relation from Equation 2.1.37,
(
−ρc2I + BS−1BT

)
p1
j = 0, where the polarization vector has a “1”

superscript to denote this being the first case with corresponding velocity c1 =
√

λ+2µ
ρ . Equation

2.1.39 can be expressed as BS−1BT = Γij = µδij + (λ+ µ)ninj . Combining 2.1.37 and 2.1.39 gives
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((
µ− ρc21

)
δij + (λ+ µ)ninj

)
p1
j = 0. (2.1.41)

Using the result for c1, this becomes

((µ− λ− 2µ) δij + (λ+ µ)ninj) p
1
j = 0→ (ninj − δij) p1

j = 0. (2.1.42)

Or in symbolic notation,

(
n · p1

)
n− p1 = 0→ p1 =

(
n · p1

)
n. (2.1.43)

Physically, this result means that the acceleration wave with wavespeed c1 has a displacement

which is parallel to its propagation direction. This type of wave is a longitudinal wave and is shown

in Figure 2.3a. Similarly, for wavespeed c2,

(
−ρc22δij + Γij

)
p2
j

= 0

=
((
µ− ρc22

)
δij + (λ+ µ)ninj

)
p2
j

= ((µ− µ) δij + (λ+ µ)ninj) p
2
j

= (ninj) p
2
j
.

(2.1.44) 

 Propagation 

(a) Longitudinal Wave

 

Propagation  
 Propagation

(b) Transverse Wave

Figure 2.3: Propagation direction vs. displacement for Longitudinal and Transverse plane waves.

In symbolic notation this is

(
n · p2

)
n = 0. (2.1.45)

Thus, the waves here have a displacement that is perpendicular to the direction of motion. These
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types of waves are transverse and are shown in Figure 2.3b.

Now that the velocity and direction of displacement corresponding to each type of wave are

known, the change in properties across each type of wave can be found. This will be important

when considering waves propagating through solid materials in the variety of targets in this study.

From Equation 2.1.31, it can be shown that

∥∥∥σφ∥∥∥ =

(
− 1

φt

)
S−1BT

i φxi

∥∥∥vφ∥∥∥ . (2.1.46)

The terms φxi and φt can be expressed as
√
φxjφxjni and −c

√
φxjφxj , respectively, from Equation

2.1.35. Then, using these results, it is found that

∥∥∥σφ∥∥∥ =

(
1

c

)
S−1BT

i ni

∥∥∥vφ∥∥∥ , (2.1.47)

where the stress polarization vector can be expressed as

Σ =

(
1

c

)
S−1BT

i nip =

(
1

c

)
S−1BTp (2.1.48)

2.1.2 Oblique Wave Incident on Interface

For a plane wave that encounters an inclined surface, Equation 2.1.48 can be used to determine

the properties that change across the wave. Assume that some wave is traveling in a semi-infinite,

elastic medium and that it encounters an interface which is oriented at an angle β with respect

to the wave. Figure 2.4 illustrates this scenario. In this figure, nji denotes the normal to a given

wave, where i indicates the type of wave — L for a longitudinal wave or S for a shear wave – and j

indicates the material the wave is in. Note that j = A0 is just the incident wave in material A. For

the incident wave, nA0
L = cosβî+ sinβĵ, which is equal to the polarization vector pA0

L
, while for one

of the transverse waves, pji is perpendicular to the normal and can be found by rotating the normal

by 90 degrees. For instance, the reflected transverse wave has normal vector nAT = −cosβ2î+sinβ2ĵ,

with polarization vector pAT = −sinβ2î− cosβ2ĵ. The normal and polarization vectors can similarly

be found for the remainder of the waves. Continuity of velocities and tractions at the interface can

then be used to solve for the remainder of the parameters. The jump in particle velocities can be

expressed in terms of the polarization vector as

‖v‖ = αp, (2.1.49)
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with α denoting the magnitude of the velocity.
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Figure 2.4: Oblique plane wave incident at an interface in a semi-infinite, elastic solid. β is
the angle of the incident wave with respect to the interface, and the remaining angles, βi, are the
angles of the reflected longitudinal and shear waves, on the left of the interface, and the transmitted
longitudinal and shear waves, on the right of the interface, respectively. The vectors n are normal to
their respective waves and the subscripts L and S refer to longitudinal and shear waves, respectively.

For velocities to be continuous at the interface, Equation 2.1.49 can be used to give the following

condition

α0
ALp

A0
L + αALp

A
L + αASp

A
S = αBLp

B
L + αBSp

B
S . (2.1.50)

Similarly, the jump in stress can be expressed in terms of the polarization vector. Using Equation

2.1.48 this results in

‖σ‖ =

(
1

c

)
S−1BTαp. (2.1.51)

For tractions to be continuous at the interface in the x direction [22], it can be shown that

‖t (n)‖ = −B (n)σ. (2.1.52)
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Thus, Equation 2.1.51 can be applied in conjunction with 2.1.52 at the interface to get

(
1

cA1
B1CABT

AL0

)
α0
ALp

A0
L +

(
1

cA1
B1CABT

AL

)
αALp

A
L +

(
1

cA2
B1CABT

AS

)
αASp

A
S =(

1

cB1
B1CBBT

BL

)
αBLp

B
L +

(
1

cB2
B1CBBT

BS

)
αBSp

B
S ,

(2.1.53)

where Ci is the stiffness matrix for either materials A or B, and BT
jk is the matrix B for material

j = A or B, wave k = L or S, and the superscript T just means transposed. The final constraint

here is to determine the angles of the reflected and transmitted waves. These can be found by using

slowness surfaces. This concept is outside the scope of this thesis, but suffice it to say that the

results indicate that the angle of the wave can be related to the elastic wavespeed by

sinβ

cA1
=
sinβ1

cA1
=
sinβ2

cA2
=
sinβ3

cB1
=
sinβ4

cB2
. (2.1.54)

With this result, Equations 2.1.50 and 2.1.53 can be combined to form a system of four equations

and the four amplitudes αjk, which are unknown. Solving these equations allows one to find the

jump in velocities and tractions across each wave.

2.1.3 One Dimensional Wave Propagation

Now suppose that a plane wave is traveling in a semi-infinite, elastic material and that it is

parallel to the interface. This is the more common scenario encountered in experiments. Applying

2.1.22a results in

ρ


v1,t

v2,t

v3,t

 =


σ1,1

σ6,1

σ5,1

+


σ6,2

σ2,2

σ4,2

+


σ5,3

σ4,3

σ3,3

 . (2.1.55)

For a longitudinal wave, the only change in displacement is in the propagation direction. If the wave

propagates in the “1” direction, and it is assumed that properties only change in this direction, then

ρv1,t = σ1,1. (2.1.56)

Using equation 2.1.17, it is found that



20

ρ
∂2u1

∂t2
=
∂σ1

∂x1
. (2.1.57)

Finally, using Equation 2.1.18 and assuming the stiffness matrix C is for an isotropic material,

ρ
∂2u1

∂t2
= (λ+ 2µ)

∂2u1

∂x2
1

or
∂2u1

∂t2
= c21

∂2u1

∂x2
1

. (2.1.58)

A similar result can be calculated for a shear wave in which case the displacement occurs perpen-

dicular to the direction of motion. Here it is also assumed that properties change in the x1 direction

and it is found that

∂2u2

∂t2
= c22

∂2u2

∂x2
1

. (2.1.59)

These results are known as the wave equations for longitudinal and shear waves and are well known

differential equations [42], the solutions to which are

σ ± (ρc1) v1 = constant along characteristic
dx1

dt
= ∓c1 (2.1.60a)

and

τ ± (ρc2) v2 = constant along characteristic
dx1

dt
= ∓c2. (2.1.60b)

Here, x1 is the position, σ1 has been replaced with σ, the longitudinal stress, σ6 with τ , the shear

stress, and vi is the particle velocity for each wave.

2.1.3.1 One Dimensional Stress

One dimensional tension tests determine the point at which a material yields, which is the

strength of the material. The stress in this case is shown in Figure 2.5 for a unit element. Assuming

linear elasticity and that the material is isotropic, the constitutive relation in Equation 2.1.12b can

written as

εij =
1

E
[(1 + ν)σij − νσkkδij ] , (2.1.61)

where E is the Young’s modulus and ν is Poisson’s ratio. For this case, the Cauchy stress tensor is
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ρ


σ 0 0

0 0 0

0 0 0

 . (2.1.62)

Using the relation in Equation 2.1.61, the stress in the elastic region can be written as

σ = Eε, (2.1.63)

where E is Young’s modulus.

 

𝜎 𝜎 

Figure 2.5: One dimensional stress on unit element.

2.1.3.2 One Dimensional Strain

For normal impact experiments, the strain can be assumed to be uniaxial [35]. This condition

implies that the Cauchy stress tensor can be expressed as

ρ


σ 0 0

0 σt 0

0 0 σt

 , (2.1.64)

where, for a unit element, the stress state is shown in Figure 2.6. In this case, the lateral stress can

be expressed in terms of the longitudinal stress as such:

σt =
ν

1− ν
σ. (2.1.65)

For this elastic region, the stress can be related to strain with Equation 2.1.61:

σe =
(1− ν)

(1 + ν) (1− 2ν)
Eε (2.1.66)
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Figure 2.6: Resulting stresses from one dimensional strain assumption.

2.1.3.3 Plasticity

As the material continues to be deformed, the change can become permanent when the material

yields and can be determined by defining the yield surface which bounds the region of elasticity [67].

Two such criteria are commonly used to describe this surface. The first, Tresca yield criteria, defines

the yield surface under multi-axial loading conditions as

σmax − σmin
2

= τmax =
σ0
Y

2
, (2.1.67)

where σmax and σmin are the maximum and minimum eigenvalues of the Cauchy stress tensor, τmax

is the yield stress in simple shear and σ0
Y is the yield stress in simple tension — this is the plastic

component of stress, σp, for the one dimensional stress assumption in Section 2.1.3.1. The second

criteria – Von Mises yield criteria – describes the yield surface as

1

2
SijSij =

σ0
Y

2

3
, (2.1.68)

where Sij is the deviatoric stress tensor and is defined in terms of the Cauchy stress tensor as

Sij = σij −
1

3
σkkδij . (2.1.69)

In most cases, experimental results agree more closely with the Von Mises criteria. One can use

these results to relate the yield stress in uniaxial strain to the yield stress in simple tension, a result

which is a known material property for many materials and is readily found in simple one dimensional

tension tests. Applying the Tresca criteria on the Cauchy stress tensor for one dimensional strain,

it is found that
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σ − σt = σ0
Y . (2.1.70)

Substituting Equation 2.1.65 into this result, and denoting the stress, σ, as the maximum stress

until a material yields under uniaxial strain, σHEL, the relationship between this value and the yield

stress in simple tension, σ0
Y , is found to be

σHEL =
1− ν
1− 2ν

σ0
Y . (2.1.71)

This result is known as the Hugoniot Elastic Limit (HEL) and it describes the transition between

a purely elastic state into the plastic regime for the one dimensional strain assumption. Once the

material reaches the yield stress, plasticity sets in and permanent deformation occurs. In this regime,

strain can be decomposed into elastic and plastic components:

ε = εe + εp (2.1.72a)

and

εt = εet + εpt , (2.1.72b)

where ε and εt are the longitudinal and tangential strains, respectively. Since this is the uniaxial

strain assumption, εt = 0.

It has been observed from experiments that hydrostatic pressure does not affect the yield surface

and thus the plastic strains depend on the stress deviator, given by Equation 2.1.69. For this reason,

plastic deformation does not affect volume change which indicates that the trace of the small strain

tensor is zero

εpkk = εp + 2εpt = 0. (2.1.73)

Using results from Equations 2.1.72b, and substituting into Equation 2.1.73 and subsequently into

Equation 2.1.72a leads to the result

ε = εe + 2εet . (2.1.74)

In terms of stresses, this equation can be expressed by using Equation 2.1.61 and the fact that
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σ − σ0
Y = σt from 2.1.70 to get

σp =
Eε

3 (1− 2ν)
+

2

3
σ0
Y = K (P ) ε+

2

3
σ0
Y , (2.1.75)

where σ has been replaced with σp denoting that the stress is in the plastic region, and the fact

that the bulk modulus K = E
3(1−2ν) has been used, which is a function of pressure. This is a

very interesting result since it describes the behavior of the longitudinal stress after yield. What

this equation indicates is that the longitudinal stress after yield differs from hydrostatic stress —

denoted by K (P ) ε — for an equivalent strain by a factor of 2
3σ

0
Y , where the hydrostatic assumption

states that the pressure in a compressed solid is isotropic, as in the case of a gas or liquid, when

pressure is large in comparison to material strength. The stress on a unit element for the hydrostatic

assumption is shown in Figure 2.7. To show that the hydrostatic stress is given by K (P ) ε, Equations

2.1.74 and 2.1.61 can be used to find the total stress for the strain equivalent to the strain observed

in the 1D strain assumption. Using these equations, it can be shown that σ = P = Eε
3(1−2ν) which is

in fact equal to K (P ) ε.

 

𝜎 𝜎 

𝜎 

𝜎 

𝜎 

Figure 2.7: Stress on a unit element for the hydrostatic assumption.

In reality, material behavior is affected by strength and this difference is shown in Figure 2.8.

In this figure, the hydrostat is compared to the one dimensional stress and one dimensional strain

assumptions. From Equation 2.1.63, the one dimensional stress assumption is governed by the fact

that stress is a linear function of strain and is proportional to the Young’s modulus E at which point

the material yields and the stress is equal to σ0
Y . Stress for the one dimensional strain assumption

is a linear function of strain, but governed by Equation 2.1.66. At the point of yield, the HEL is
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reached, given by 2.1.71, and the material becomes plastic, where stress is related to strain by 2.1.75.
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Figure 2.8: Comparison of 1D strain,1D stress and the Hydrostat.

At higher strain it must be understood how the velocity of a wave changes with deformation.

From Equation 2.1.57 it was found that ρ∂
2u
∂t2 = ∂σ

∂x , the right hand side of which can be expressed

as ∂σ
∂ε

∂ε
∂x , which from Equation 2.1.13 becomes ∂σ

∂ε
∂2u
∂x2 and thus results in

∂2u

∂t2
=

1

ρ

∂σ

∂ε

∂2u

∂x2
. (2.1.76)

Comparing this equation to 2.1.58 indicates that the wave speed is simply a function of the density

and the derivative of stress with respect to strain

c =

√
1

ρ

∂σ

∂ε
. (2.1.77)

This physically means that, as deformation increases with increased strain, the slope of the derivative

of stress with respect to strain increases after the Hugoniot Elastic Limit is reached in the 1D strain

curve. Thus, the velocity initially stays constant at the longitudinal elastic wavespeed when the

HEL is reached at which point it increases until it reaches a steady state where a shock wave or

discontinuity emerges.
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2.2 Shock Wave Theory

2.2.1 Lagrangian Conservation Equations

In order to study shock waves, the first step is to analyze the impact of parallel and plane surfaces

which generate the plane longitudinal waves that have been discussed. This concept is known as

the plate impact experiment. The properties of the resulting waves are governed by the Lagrangian

Conservation Equations. In Section 2.1, the linearized form of the conservation of momentum and

mass were discussed. The other conservation equation that will be needed here is energy. These

equations will now be discussed in the Lagrangian Frame.

 

− 

𝐶𝐿 

  

 

𝑈𝑆 

 

+ 
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𝑥 

Figure 2.9: Progression of an elastic longitudinal wave into a steady shock wave.

In Figure 2.9, a basic schematic of a two-wave system that occurs in plate impact experiments is

shown. Here there is an elastic wave traveling at a constant wavespeed that progresses into a steady

shock wave. Upstream of the shock, the properties are denoted by a “-” sign and downstream of

the shock the properties are denoted by a “+” sign. It can be shown that the local conservations of

mass, momentum and energy that govern the jump from the upstream to the downstream conditions

can be expressed as [24]

u+ − u− = −ρ0US
(
V + − V −

)
, (2.2.1)

which is the conservation of mass,
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σ+
11 − σ

−
11 = ρ0US

(
u+ − u−

)
, (2.2.2)

the conservation of momentum, and

σ+
11u

+ − σ−11u
− +Q+ −Q− = ρ0US

(
E+ − E− +

1

2

(
u+2 − u−2

))
, (2.2.3)

the conservation of energy. Here, u is the particle velocity in the direction of shock wave propagation,

not to be confused with the displacement u discussed in the elastic wave theory in Section 2.1. The

reason for the change in nomenclature for the particle velocity is to stay consistent with the equations

in literature. For the remaining variables, ρ0 is the initial density, V is the specific volume, US is

the shock wave speed, σ11 is the Cauchy stress in the wave propagation direction, Q is the heat flux,

and E is the specific internal energy. The jump in these properties across the wave can be expressed

in a similar manner. If the upstream components of density, stress, specific energy, velocity and

specific volume are denoted as ρ0, σ0, E0, up0, and V0, respectively, and the downstream density,

stress, velocity, specific energy, and specific volume are defined as ρ, σ, up, E, and V , respectively,

where it has been assumed the transition between the unshocked and shocked state is adiabatic, the

following relations for the conservation of mass, momentum and energy are obtained:

ρ0US ‖V ‖ = ‖up‖ (2.2.4)

ρ0US ‖up‖ = ‖σ‖ (2.2.5)

and

‖E‖ =
1

2
(σ + σ0) ‖V ‖ , (2.2.6)

respectively. These equations are collectively known as the Rankine-Hugoniot jump relations. At

this point there are three equations and 5 unknowns. One of these unknowns can be eliminated with

a constitutive relation between the particle velocity and shock velocity, which is a linear relationship

for many materials [50],

US = C0 + Sup. (2.2.7)
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Here, C0 is the bulk sound speed at zero stress and S is an empirical constant. In an experiment, one

of the variables is generally measured and thus three equations and three unknowns are left. Note

that, Equation 2.2.5 can also be obtained from the wave characteristics discussed in Section 2.1.3.

In Equation 2.1.60a, for a positive moving wave (or positive characteristic), σ− (ρc1)u1 = constant.

So, replacing c1 with US leads to σ+ − (ρ0US)u+ = σ− − (ρ0US)u−, which rearranges to Equation

2.2.5. This same analysis can be applied to Equation 2.1.60b to obtain the jump relation for a shear

wave, which is given as

ρ0CS ‖vp‖ = ‖τ‖ , (2.2.8)

where vp is the particle velocity perpendicular to the motion of the shear wave.

2.2.2 Hugoniot

An important concept in shock physics is the Hugoniot, which is a collection of points that

describe the shocked state for a given material. This state can be given by a combination of two

variables [68]. For one such example, the stress vs. volume Hugoniot, the jump between two points

can be described by the Rayleigh line. This jump is found by combining Equations 2.2.4 and 2.2.5

to get

‖σ‖
‖V ‖

= ρ2
0U

2
S . (2.2.9)

This line is useful when performing experiments as it relates the upstream and downstream quantities

across a shock. With each experiment, the points on the Hugoniot can be filled in to describe the

entire behavior of a material in the shocked state. Figure 2.10 illustrates this concept.

2.2.3 Impedance Matching

Upon impact, two waves are generated, one traveling into the target and the other back into

the impactor. One can use the jump equations to graphically determine what occurs in such an

impact. This is known as impedance matching [51]. Figure 2.11 shows the scenario for a plane

impact situation. It is assumed here that once the impactor hits the target, a no slip condition is

formed at the interface between the two materials. For this reason, stress and particle velocities

must be equal, thus the stress vs. particle velocity Hugoniot for the two materials can be plotted to

find where they intersect in order to solve the problem. This analysis is shown in Figure 2.12.
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Figure 2.10: Stress vs. volume Hugoniot with Rayleigh line connecting upstream and downstream
states of a shock wave.
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Figure 2.11: Normal Impact.

Using Equation 2.2.5, it is found that

σI = −ρ0IUSI (up − uI) = ρ0TUSTup, (2.2.10)

where it should be noted that the velocity for the shock traveling into the impactor is negative. At

this point, one can use the known US − up Hugoniot for each material and the measured impact

velocity to solve for the in-situ particle velocity. Conversely, if the US − up relationship is unknown

for one of the materials, the particle velocity and impact velocity can be measured and used to solve

for the shock velocity.
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Figure 2.12: Impedance matching for normal impact experiments.

2.2.4 Shock Polar Analysis

Although calculating the change in various properties across a normal shock wave is relatively

straightforward, this process becomes more complicated for the case of oblique shock waves. Much

like the oblique elastic waves incident on an interface, shock waves that approach another material

at an angle also generate pressure and shear waves in both materials. Generally speaking, the shear

wave will still remain elastic, but the reflected and transmitted waves will form a shock. To study

the effects of the shock waves, shock polar analysis [13], [14] can be implemented. This technique

will only briefly be mentioned here, but it is discussed in detail by Justin Brown in his thesis [13].

Essentially, one can borrow concepts from oblique wave studies in fluid dynamics by analyzing the

flow of material across a shock wave in the Eulerian frame, or the frame of the shock. In Figure

2.13a, the shock velocity and particle velocity are shown in the Lagrangian or laboratory frame.

This same situation can be expressed in the Eulerian frame, which is the frame of the stationary

shock, as in Figure 2.13b

In the Eulerian frame, the equations for mass and momentum conservation can be expressed as

ρ1u1 = ρ2u2 (2.2.11)

and

P1 + ρ1u
2
1 = P2 + ρ2u

2
2, (2.2.12)
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𝑈𝑆 𝑢𝑝  

(a) Lagrangian Frame

 

𝑈𝑆 𝑈𝑆 −  𝑢𝑝  

(b) Eulerian Frame

Figure 2.13: Shock and particle velocities across a moving shock wave.

where state “1” refers to the upstream state of the shock, “2” refers to the downstream state, u is the

flow velocity, ρ is the density and P is the pressure. For high velocity impacts, the hydrodynamic

assumption can be used for the primary shock wave prior to the shear wave arrival – since the

pressure greatly exceeds the strength of the material. This allows for the angle of the transmitted

longitudinal shock wave to be determined, which is essential for the oblique wedge target design, to

be discussed later. For an oblique shock wave, the situation is illustrated in Figure 2.14.

 

 

𝒒𝟐  
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Figure 2.14: Flow across an oblique shock wave incident on an interface in the frame of the shock.
β is the angle of obliquity of the shock, q is the flow velocity, n is the normal component of the flow
velocity, t is the tangential component of the flow velocity, and θ is the deflection angle of the flow
across the shock. The subscripts 1 and 2 denote the upstream and downstream states across the
shock, respectively.
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Here the shock is described as “stationary”, which refers to the fact that the flow is observed in

the frame of the shock. β is the angle of obliquity of the shock wave, θ is the deflection angle of the

flow downstream of the shock, q is the flow velocity, n is the component of velocity normal to the

flow, and t is the component of velocity tangential to the flow. Since there is no pressure change

along the shock, applying the conservation of momentum for the Eulerian frame in Equation 2.2.12

results in

ρ1n1t1 = ρ2n2t2 (2.2.13)

and substituting in the conservation of mass implies the important result

t1 = t2, (2.2.14)

which indicates that the tangential component of velocity remains constant across a longitudinal

shock wave. Thus, only the change in the normal components across the wave front need to be

examined. Analyzing Figure 2.14, it is found that

q1sinβ = n1 (2.2.15)

tanβ =
n1

t1
(2.2.16)

and

tan (β − θ) =
n2

t2
. (2.2.17)

From Figure 2.13b, n1 = US and n2 = US − up, which can be substituted into Equations 2.2.15 –

2.2.17 to find

sinβ =
US
q1

(2.2.18)

tanβ =
US
t1

(2.2.19)

and
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tan (β − θ) =
Us − up
t2

. (2.2.20)

Applying the trigonometric equation

tan (β − θ) =
tanβ − tanθ
1 + tanβtanθ

(2.2.21)

to Equation 2.2.20 and then using the Pythagorean theorem for right triangles, which leads to

the relation U2
S + t21 = q2

1 , the important relationship between shock velocity, particle velocity and

deflection angle is obtained

tanθ = up

√
q2
1 − U2

S

q2
1 − upUS

. (2.2.22)

In order to relate the pressure to the flow angle downstream of the shock wave, the mass and

momentum conservation equations can once again be used to find the relation between pressure,

density, shock wave velocity and particle velocity, where it has been assumed that the upstream

pressure and particle velocity are zero. This gives

P2 = ρ1USup. (2.2.23)

Equation 2.2.23 is then used in conjunction with the linear US − up relation in 2.2.7 to relate the

shock and particle velocities to the pressure, density and known empirical constants in the linear

US − up relation resulting in the following equations

up =
C0

2S

[√
1 +

4SP

ρ0C2
0

− 1

]
(2.2.24)

and

US =
C0

2

[√
1 +

4SP

ρ0C2
0

+ 1

]
. (2.2.25)

These relations can then be substituted into Equation 2.2.22 to give the resulting pressure versus

deflection angle equations that are used in shock polar analysis.

Two situations, which must also be mentioned for completeness, that occur for oblique waves

incident on an interface are reflected shock waves or reflected expansion waves. In the former

situation, one must look at the re-shock Hugnoniot for pressure vs. volume, as shown in Figure
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2.15. Here the material reaches some state “+” after the primary incident shock at which point the

reflected shock wave changes the material to some state along the re-shock Hugoniot [64]. This final

state is found using the energy Equation 2.2.6 from the Rankine Hugoniot relations to relate the

energy states at the shock and re-shock states to the reference state as such

EH2 (V ) = E+ +
1

2

(
PH2 (V ) + P+

) (
V + − V

)
(2.2.26a)

EH2 (V ) = E0 +
1

2
PH2 (V ) (V0 − V ) (2.2.26b)

and

E+ = E0 +
1

2
P+

(
V0 − V +

)
, (2.2.26c)

where 2.2.26a relates the re-shock energy EH2 to the energy, pressure and volume after the first

shock, denoted by the “+” sign, and the pressure and volume at the re-shocked state PH2 and V .

These energies at the re-shock and shocked states are then related to the reference state, 0, in 2.2.26b

and 2.2.26c. The three equations can then be substituted into the Mie-Grüneisen equation of state

which is a thermodynamic equation of state that describes processes off of the Hugoniot curve. This

model is given by

PH2 (V )− PH (V ) =
γ (V )

V

[
EH2 (V )− EH

]
, (2.2.27)

where PH and EH are any state along the principal Hugoniot and γ is the Grüneisen coefficient.

Finally, one can eliminate the energy terms in 2.2.27 using the relations in 2.2.26a – 2.2.26c to get

PH2 (V ) =
PH (V )

[
1− γ(V )

2V

(
V 0 − V

)]
+ γ(V )

2V P+
(
V 0 − V

)
1− γ(V )

2V (V + − V )
. (2.2.28)

Once again, momentum and mass conservation equations can be used to relate pressure to particle

and shock velocities and then to the deflection angle, much like the analysis done for the incident

shock wave.

Graphically, this analysis is shown in Figures 2.16 and 2.17. In Figure 2.16 , the flow across each

of the shock waves is shown. In both materials 1 and 2, the pressure and flow angle starts at zero

where the flow velocity, q1 is equal for both. At this point the flow is deflected across the incident

wave into material 1 and the transmitted wave in material 2. Next, the flow is deflected across the
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Figure 2.15: Reshock Hugoniot for a reflected shock wave.

reflected shock wave at which point the no slip condition must be applied at the interface. Here

it is assumed that the pressure and deflection angle are equal for both the flow after the reflected

shock and the flow after the transmitted shock since it is along the same interface. The method to

find the pressure and deflection angles after each wave is shown in Figure 2.17. Here the pressure

vs. deflection angle shock polar is drawn for each of the states 1, 2, 3 and 4 and the intersections

are shown where these quantities are equal. Implementing such an analysis with the equations

discussed above yields results for the pressure and deflection angles which can then be used to find

the remaining properties in the flow from the above equations, specifically the angle of obliquity of

the transmitted shock which is given by 2.2.22, shown as β4 in Figure 2.16, where

tanβ4 =
upt
√
q2
1 − U2

S3

q2
1 − uptUS3

. (2.2.29)

In this equation, upt is the particle velocity and US3 is the shock velocity of the transmitted shock-

wave. Note that here, the reason that the deflection angle is used to find the angle of obliquity of the

transmitted shock is that the angle with respect to the original position of the interface is sought,

which is given by the deflection angle of the flow. For the case of the reflected expansion wave, one

can refer to Section 2.2.3.2 in [13].
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Figure 2.16: Flow in two materials with an incident, reflected and transmitted shock wave.
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Figure 2.17: Shock polar analysis relating pressure to deflection angle of flow in two materials with
an incident, reflected and transmitted shock wave.
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Chapter 3

Oblique Wedge Configuration

3.1 Introduction

The oblique wedge configuration is a novel technique to test the effects of shear on a material.

In this experiment, a plane wave is generated upon impact in the driver material. As it propagates

through the driver, it encounters the inclined interface of the target where it is reflected back into

the driver and transmitted into the target as an oblique shock wave, followed by a shear wave.

By using shock polar analysis, described in Section 2.2.4, the angle of the transmitted shock wave

in the target is predicted, allowing the rear surface of the target to be machined parallel to the

angle of obliquity of this wave. This technique mitigates any angled reflections of the waves at the

target-window interface allowing for the shear response of the transverse wave to be measured.

Figure 3.1 shows the wave state in the composite target. Although shock polar analysis can

be used to determine the hydrodynamic state, the primary focus here is to measure the deviatoric

response from the shear wave that follows the transmitted shock wave, which results due to the

angle of obliquity of the incident shock with respect to the target. To study this response, particle

velocities can be measured at the rear surface of the target using interferometery discussed in

detail in Section 5.2. From these velocities, longitudinal and shear stresses can be calculated at the

target-window interface using Equations 2.2.5 and 2.2.8. Since the transmitted shock travels into

a quiescent material, and the shear wave travels into a material that has no shear velocity present,

the resulting equations for the two stresses are

σ = ρ0USup (3.1.1)

and
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Figure 3.1: Schematic of the oblique wedge impact experiment. Upon impact, a longitudinal shock
wave is generated in the driver and is reflected and transmitted at the driver-target interface where
it is followed by a shear wave.

τ = ρ0CSvp. (3.1.2)

3.2 Predicting the Shear Wave Angle

Similar to the case of an elastic wave approaching an interface at an angle, with a shock wave,

there are both longitudinal and shear waves present that are not parallel to one another. To find

the angle of the transmitted shear wave, Equation 2.1.54 can be used. For this case, it is found that

sinβ

US
=
sinδ

CS
, (3.2.1)

where δ is the angle of the shear wave with respect to the interface. This angle is shown in Figure

3.2
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Figure 3.2: Incident and transmitted shocks with transmitted shear wave.

3.3 Analysis of Target Parameters

3.3.1 Longitudinal Stress vs. Angle of Obliquity

The oblique wedge configuration can be modified in a variety of ways ranging from the driver

and target materials, to the angle of obliquity of the target and the material of the impactor and

its impact velocity. In order to analyze how these modifications will affect the wave state in the

target, a variety of parameters were studied. The first of these was the longitudinal stress obtained

as a function of angle of obliquity. These parameters are especially important in studying the shear

response at different pressures. In order to find the longitudinal stress, shock polar analysis was

used to find the pressure – which estimates the longitudinal stress in these plots – for a variety of

different angles of obliquity. This analysis was conducted for a copper impactor at 1.0 km/s and 1.2

km/s impact velocity and aluminum 6061-t6 and tantalum targets. The driver materials used were

polymethylmethacrylate (PMMA), copper (Cu), molybdenum (Mo), and tantalum (Ta).

In both Figures 3.3a and 3.3b, it can be seen that with an increase of impact velocity, the lon-

gitudinal stress observed also increases. For both the aluminum and tantalum targets, the PMMA

driver continues to increase the stress with increasing angle of obliquity. The tantalum and copper

drivers both decrease in stress initially and then again increase for the aluminum target, and molyb-

denum continues to decrease in stress with increasing angle of obliquity. For the tantalum target,

the aluminum driver stays fairly constant in stress, whereas the molybdenum and copper drivers

cause a continued decrease in stress in the target. In this analysis, the angle of obliquity was cut off
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(a) Aluminum 6061-t6 target and a copper impactor.

 

(b) Tantalum target and a copper impactor.

Figure 3.3: Longitudinal Stress vs. Angle of Obliquity for polymethylmethacrylate (PMMA),
copper (Cu), molybdenum (Mo), tantalum (Ta) and aluminum (Al) drivers with two different targets
and a copper impactor. In the legend, OW stands for oblique wedge, and uI is the impact velocity.
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Material Density Longitudinal Wavespeed Impedance
(g/cm3) (km/s) (kg/m2/s)x106

Aluminum 6061-T6 2.703 6.4 17.3
Tantalum 16.656 4.16 69.29
PMMA 1.186 2.72 3.23
Copper 8.924 4.76 39.48
Molybdenum 10.208 6.44 65.74

Table 3.1: Density, longitudinal wavespeed and longitudinal impedance for 6061-t6 aluminum,
tantalum, polymethylmethacrylate (PMMA), copper and molybdenum [60]

at the point where the reflected shock (or expansion wave) separated from the interface, which is

marked by no intersection in the shock polars. Overall, it appears that an increase in impact velocity

results in a higher longitudinal stress state, but the effect of the material of the driver depends on

the material used. This latter observation can be elucidated by studying the impedance mismatch

in the driver and target.

In Table 3.1, it can be seen that the only material that has a lower impedance than aluminum is

PMMA, which is the only material that results in an increased stress in the target with increasing

angle of obliquity. For the tantalum target, it is interesting to note that all of the drivers have a lower

impedance, but the PMMA still causes the same trend in this target as it does in the aluminum.

The aluminum driver also causes a slight increase in stress with increased obliquity, while the other

drivers cause a decrease. This result could be due to the large difference in impedance between

the PMMA and aluminum drivers with the tantalum target, whereas the other impedances are not

quite as different. From these observations, it is not very clear if the impedance mismatch directly

correlates with the behavior of the longitudinal stress with increased angle of obliquity, however, in

general the higher the impedance of the driver, the larger the resulting longitudinal stress in the

target for lower angles of obliquity. At higher angles, this trend seems to change.

3.3.2 Transmitted Shear Wave Angle vs. Transmitted Shock Wave Angle

Another parameter that can be analyzed is the transmitted shear wave angle as a function of

the transmitted shock wave angle. For this calculation, shock polar analysis was used to find the

transmitted shock wave angle for a variety of combinations of targets. To find the shear wave angle,

Equation 3.2.1 was used, where the shear wave velocity for a target was taken to be the elastic shear

wave speed [60] and the shock velocity was found by using impedance matching. The results of this

study are shown in Figures 3.4a and 3.4b.

From these figures, it can be seen that there is a linear relationship between the shear wave
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(a) Aluminum 6061-t6 target and a copper impactor.

 

(b) Tantalum target and a copper impactor.

Figure 3.4: Shear Wave Angle vs. Transmitted Shock Wave Angle for polymethylmethacrylate
(PMMA), copper (Cu), molybdenum (Mo), tantalum (Ta) and aluminum 6061-t6 (Al) drivers with
two different targets and a copper impactor. In the legend, OW stands for oblique wedge, and uI is
the impact velocity.
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angle and shock wave angle and that, as the transmitted shock wave angle increases, so does the

transmitted shear wave angle. This is the case for a variety of drivers and increasing impact velocity.

3.3.3 Transmitted Shear Wave Angle vs. Angle of Obliquity

The final relationship of interest is the shear wave angle as a function of the angle of obliquity.

Once again, the shear wave angle was found using Equation 3.2.1 and the angle of obliquity was

varied independently. The impact velocities examined were also 1.0 km/s and 1.2 km/s. Figures 3.5a

and 3.5b show the results. In these two figures, it can be seen that the shear wave angle increases

with increasing angle of obliquity for all of the drivers. For both the aluminum and the tantalum

targets, the shear wave angle is larger for a smaller impact velocity. Furthermore, depending on the

given driver, the shear wave angle is also larger for a given angle of obliquity.

The three types of analyses described above can be used as a guide to determine the response of

the experiment for parameters the experimentor can control — angle of obliquity, impact velocity,

and the driver, target, and impactor materials. For instance, if an experimentor would like to

determine the shear response of the target with increasing longitudinal stress, they can increase the

impact velocity or, in some cases, increase the impedance of the driver.

3.4 Target Design

In order to design the composite target (driver and target) shown in Figure 3.1, the diameter of

the target as well as the thicknesses of each of the materials were considered. Initially, the target was

designed to be studied at the Caltech powder gun facility in the Mechanics of Materials Group. The

gun used, described in Section 5.1.1, utilizes an impactor that is 34 mm in diameter. For this reason,

the target was designed to be slightly smaller than this diameter – at 30 mm – in order to avoid any

edge effects that could occur upon impact. Although these experiments were eventually conducted

at Sandia National Laboratories, where the gun is much larger, as illustrated in Section 5.1.2, the

targets originally machined for the Caltech gun were still used. Another design consideration was

the actual wedged target sample, designed to have a controlled angle of obliquity out front, as well

as a rear surface angle that was parallel to the transmitted longitudinal wave previously discussed.

This study considered designing the rear surface to be either parallel to the shear wave or at 45

degrees with respect to the principal stresses, but it was determined that machining parallel to the

shock wave would be the best approach. Initially, it was thought that at 45 degrees with respect to
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(a) Aluminum 6061-t6 target and a copper impactor,

 

(b) Tantalum target and a copper impactor.

Figure 3.5: Shear Wave Angle vs. Angle of Obliquity for polymethylmethacrylate (PMMA), copper
(Cu), molybdenum (Mo), tantalum (Ta) and aluminum 6061-t6 (Al) drivers with two different targets
and a copper impactor. In the legend, OW stands for oblique wedge, and uI is the impact velocity .
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the principal stresses, a maximum shear stress would be seen, but this only led to both the shear

and longitudinal waves being reflected at different angles at the rear surface at which point it was

difficult to determine the material response. Machining parallel to the shear wave was also thought

to mitigate reflections of the shear wave, nevertheless, since the longitudinal wave has a significant

effect on the longitudinal velocity component in the target, and its angled reflection produces a shear

response separate from the shear wave in question, its angled reflection at the rear surface was also a

problem. Simulations were conducted with this configuration and it was found that shear tractions

calculated from the transverse particle velocity deviated from the shear stress given by the stress

tensor. It was thus decided to design the rear surface of the wedge to be parallel to the shock. Upon

making this decision, the following considerations were made for the thicknesses of the composite

target, impactor and window.

3.4.1 Edge Wave Analysis

To study the full wave state behind the shock and subsequent shear wave, the material response

behind these waves prior to the arrival of the edge waves at the measurement surface must be seen.

The first step is to calculate the time for the shock wave to travel from the impactor-driver interface

to the closest point on the driver-target interface. This distance, labeled d1, is shown in Figure 3.6.
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Figure 3.6: Distances waves must travel in each of the materials in the composite target.
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The time it takes the incident wave to travel distance d1 is

t1 =
d1

UDS
, (3.4.1)

where UDS is the shock wave velocity of the incident wave, found by using impedance matching, see

Section 2.2.3, upon impact. The time for the transmitted shock to travel in the target is given by

t2 =
d2

UTS
, (3.4.2)

where d2 is perpendicular to the transmitted shock wave front and UTS is the transmitted shock

velocity, found by using shock polar analysis 2.2.4. It should be noted here that time t1 + t2 is equal

to the time it takes the incident wave to travel to the top of the target, or

t4 =
d4

UDS
= t1 + t2. (3.4.3)

Since the shear wave following the shock in the target propagates at a different angle with respect

to the rear surface, it can be estimated that an additional microsecond is needed to see the response

following it. A similar approach can be followed with the timing of the shear wave arrival as that

of the shock, however, the estimated angle of the shear wave only applies when the shear wave is

purely elastic. Nevertheless, since the shear modulus behind the shock changes, the calculated shear

wave velocity, given by c22 = µ
ρ , may be different. This is of course only an estimate and thus to

check that the full shear response is observed, numerical simulations, discussed in Section 3.6, can

be implemented. With this estimate, the edge waves should come in no sooner than time t4 + 1

µsec. A common estimate for edge wave arrival is to assume that edge waves travel radially inward

from the point of impact, as shown in Figure 3.7.

As can be seen in Figure 3.7, upon impact the initial waves are shown to travel radially into the

driver material. However, since the target itself is a wedge, it can be assumed that the front most

point of the material is where the edge waves begin to propagate in the wedge. It has been estimated

that the edge waves propagate at the same velocities as the shock waves in the materials, as a worst

case estimate. The distance that these waves must propagate are denoted as S1 and S2, where S1

measures the distance from the corner of the driver to the closest corner of the target and S2 is the

distance between the latter corner and the center of the rear surface of the window. Note that here

it is assumed that the target and window are well matched and thus the edge wave continues to

travel into the window at the same velocity as in the target. With these estimates, one must then
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Figure 3.7: Edge waves propagating into the composite oblique wedge target after impact.

make sure that the time it takes for the edge waves to travel these distances, given by

S1

UDS
+
S2

UTS
, (3.4.4)

is greater than or equal to the time for the transmitted shear wave to arrive at the target-window

interface, defined in Equation 3.4.3, plus the estimated extra microsecond for the shear wave re-

sponse.

3.4.2 Impactor Thickness

The design of the impactor relies on the time that it takes for the entire shear response from

the experiment to be collected. As a rule of thumb, this time must occur before the incident

wave in the impactor reflects off its rear surface and travels back to the impactor-driver interface.

Mathematically,

2DI

U IS
≥ t4 + 1 µsec, (3.4.5)

where DI is the thickness of the impactor and U IS is the velocity of the shock generated upon impact

in the impactor, found using impedance matching in Section 2.2.3.
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3.4.3 Window Thickness

The final check is to make sure that the window is thick enough such that the information at the

target-window interface is gathered before the transmitted shock hits the rear surface of the window.

This calculation is made by using the velocity of the transmitted shock in the target and calculating

how long it would take for it to travel from the target-window interface to the rear surface of the

window; the time at which this wave arrives at the rear surface should occur after the shear response

is found. These calculations are estimates and hence a starting point for the design, which can be

refined by using numerical analysis.

3.5 Elastic Wave Simulations

To predict the magnitude of the shear response of the material in the oblique wedge design,

one dimensional elastic wave simulations were implemented. These simulations used the theory

presented in Section 2.1.2. Figure 2.4 has been overlaid onto the oblique wedge configuration in

order to demonstrate how this theory has been applied. This is shown in Figure 3.8. In these

simulations, the incident wave shown in Figure 3.8 is considered to be the incident wave in the

driver material, the transmitted shock and shear waves correspond to the transmitted P and S

waves, and the reflected shock and shear wave coincide with the reflected P and S waves in the

elastic case. Equations 2.1.50 and 2.1.53 can be used to solve for the wave state. Prior to using

these equations, some of the variables must be solved for in order to obtain an equivalent number

of unknown variables and equations. In Figure 3.8, angle β is the angle of obliquity, or the angle

of the incident wave with respect to the target, that allows for the normal nA0
L to be found. The

polarization vector pA0
L is parallel to the normal for a longitudinal wave. Impedance matching can

be used to find the particle velocity behind the incident shock; this is the magnitude of the velocity

vector in Equation 2.1.50, α0
AL. The elastic longitudinal wave velocity in Equation 2.1.54, cA1 , is

now set to the shock velocity of the incident wave, found using the linear US − up relationship in

Equation 2.2.7. This velocity can then be used to calculate the equivalent Láme constant, λ, which

is assumed to change from the elastic value due to the shock wave. This constant is found from the

definition of the longitudinal elastic wave velocity, giving

λA = ρAcA1
2 − 2µA, (3.5.1)

where cA1 is now replaced with UDS , ρA is the initial density, and µA is the shear modulus of the
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Figure 3.8: Elastic wave theory for oblique incident wave applied to oblique wedge configuration.
The blue line represents the incident shock, the red is the reflected shock, the orange is the reflected
shear wave, the dark green is the transmitted shock and the light green is the transmitted shear
wave. n represents the normal to each wave and each βi is the angle with respect to the interface.

The transmitted L wave in Figure 3.8 coincides with the transmitted shock wave, whose velocity

is obtained using shock polar analysis in Section 2.2.4, and is used instead of the elastic longitudinal

wave velocity cB1 in Equation 2.1.54. Once again the Láme constant is found by using the definition

of the wavespeed,

λB = ρBcB1
2 − 2µB , (3.5.2)

where cB1 = UTS , ρB is the initial density, and µB is the shear modulus of the material. It is assumed

that the reflected shock wave has the same velocity and angle of obliquity as the incident shock

wave, in congruence with a true elastic model. The shear wave velocities are assumed to be the

elastic values for the materials and the remaining angles of the waves with respect to the interface

are found using Equation 2.1.54, from which the remaining normal and polarization vectors of each

wave can be found. Incorporating this information, the only unknowns are the remaining particle

velocity magnitudes in 2.1.50, which can be found by combining this with 2.1.53 to get 4 equations.
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3.5.1 Applying Elastic Wave Theory

The premise behind using a pseudo-elastic wave theory approach for the oblique wedge configu-

ration was to be able to predict the particle velocity behind the shear wave in the target such that

experiments could be optimized without having to resort to time consuming numerical simulations.

However, it was found that this approach essentially analyzed two hypothetical materials whose elas-

tic properties matched the material properties after the shock wave propagated through them. For

instance, for an oblique wedge configuration with a copper impactor, PMMA driver, and aluminum

6061-t6 target with a 10 degree angle for the incident wave and a 1000 m/s impact velocity, the

calculated particle velocities after the transmitted longitudinal shock were

uBLp = αBLp
B
L =

 385

106

 m/s

and the predicted particle velocities after the transmitted shear wave were

uBSp = αBLp
B
L + αBSp

B
S =

 394

41

 m/s.

To check if these one dimensional calculations matched with more detailed two dimensional

numerical simulations, the program CTH was used – discussed in Section 3.6. Using material

models and running the simulations showed that the velocities did not coincide. However, when a

purely elastic approach was implemented using the Mie-Grüneisen equation of state for all of the

materials with an elastic strength model, that implemented the modified Poisson’s ratios after shock

propagation for both the PMMA driver and aluminum target, the velocities agreed quite well with

the elastic theory calculation. It should be noted here that the Poisson’s ratios were calculated using

the equation [12]

ν =
λ

2 (λ+ µ)
, (3.5.3)

where the modified Láme constants found in 3.5.1 and 3.5.2 were used due to the parameter require-

ments for the elastic perfectly plastic strength model in CTH. This model requires a Poisson’s ratio

as well as a yield strength, the latter of which was set to 100 GPa such that the material did not

yield.

Figure 3.9 shows the results of the CTH simulation. The timing of the particle velocities is not
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Figure 3.9: Particle velocities in target using elastic model for driver and target for oblique wedge
configuration with copper impactor, polymethylmethacrylate driver, aluminum 6061-t6 target and
lithium fluoride window for a 1000 m/s impact and 10 degree angle of obliquity.

of particular interest, but a tracer well into the target was chosen at which to find these velocities

such that the separation between the longitudinal and shear waves could be studied. As can be

seen, the longitudinal velocity here initially is 398 m/s and rises to 411 m/s, while the shear particle

velocity starts out at 130 m/s and drops down to 59 m/s. Although these sets of velocities are not

in exact agreement with velocities predicted in the elastic wave analysis, they are much closer to the

1D elastic predictions than the results found using actual material models, discussed in Section 3.6.

What this result shows is that a numerical technique must be implemented that accounts for material

strength to predict the shear response since the elastic wave analysis does not encompass the true

nature of the experiment. Thus it can be concluded that when the target yields, the magnitude of

the shear wave transmitted into the target can no longer be predicted. While shock polar analysis

can be used to determine the longitudinal response, this wave analysis cannot be used to determine

the shear wave magnitude.

3.6 CTH 2D Simulations

To have a better notion of the shear response of the material in the oblique wedge configuration,

CTH hydrocode was used. CTH was developed by Sandia National Laboratories to model large

deformation events and has the ability to analyze strong shock situations. It uses a two-step process

to integrate the conservation equations starting with a Lagrangian step that allows the mesh to

distort in order to follow material motion, followed by a remapping to the original mesh in the
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Material ρ0 C0 S γ0
(g/cm3) (J/Kg/K) (km/s)

Beryllium 1.850 7.92 1.124 1.19
Aluminum 6061-T6 2.703 5.22 1.37 1.97
Lithium Fluoride 2.638 5.15 1.35 1.69
Copper 8.930 3.94 1.489 1.99
Polymethylmethacrylate 1.186 2.30 1.75 1.91
Tantalum 16.654 3.39 1.22 1.60
Molybdenum 10.210 5.03 1.265 1.49
Sapphire SESAME EOS

Table 3.2: Equation of state parameters for materials used in the CTH simulations [73].

Eulerian frame. Although the simulation is mapped back into the original mesh, the code has the

ability to update flow properties at given Lagrangian tracer locations [46].

3.6.1 Models

Two types of models used in CTH were the Equation of State (EOS) and the strength models.

The EOS relates the pressure and internal energy, both thermodynamic quantities, to the density and

temperature of a material. This type of model depicts the hydrodynamic response of the material.

The main model used in these simulations was the Mie-Grüneisen model, discussed in Section 2.2.4,

which uses shock Hugoniot data, found through experiments, to define an EOS. This is one of the

most common models used in plate impact experiments. For the materials used in this research, the

EOS was centered on the linear US − up Hugoniot, the parameters of which are given in Table 3.2.

The linear Hugoniot was used to define the shock pressure, PH (V ), and internal energy, EH (V ),

in Equation 2.2.27, by

PH = P0 + ρ0USup (3.6.1)

and

EH = E0 + 1/2u2
p, (3.6.2)

which result from the shock jump equations of momentum and energy. The Grüneisen parameter

in Equation 2.2.27 was assumed to be a function of volume, and the energy was given as a relation

of a constant-volume specific heat, and temperature [55]. The only material whose EOS was not

described by the Mie-Grüneisen model was Sapphire. For this material, a tabular form of the EOS

given in the SESAME library was used.
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The deviotoric response of the material is described by the strength models. Primarily, the

Steinberg-Guinan-Lund Plasticity model was implemented for most of the materials for its ability to

handle high pressures. However, for those materials that were outside the scope of this model – and

in the case where the elastic response was required – a linearly elastic, perfectly plastic approach

was used. The latter is based on the Von Mises yield surface. It uses the Von Mises yield criteria,

defined in Equation 2.1.68, and the yield strength in simple tension, σ0
Y , to test if the material is

yielding. Prior to yield, stress can be related to strain by Equation 2.1.61. At yield, the material

remains at the yield stress value. For the Steinberg-Guinan-Lund constitutive relation, which models

a viscoplastic response, the expression for yield is strain-rate dependent and is given by

Y = [YT (ε̇, T ) + YAf (εp)]
G (P, T )

G0
, (3.6.3)

where YT , YA, f , and G are described by

ε̇p =

(
1

C1
exp

[
2Uk
T

(
1− YT

YP

)2

+
C2

YT

])−1

, (3.6.4a)

YAf (εp) = YA [1 + β (εp + εi)]
n ≤ Y ∗max, (3.6.4b)

and

G (P, T ) = G0

[
1 +A

P

η1/3
−B (T − 0.02585eV )

]
. (3.6.4c)

Here, YA is the yield strength at the Hugoniot Elastic Limit, YT is the thermally activated part of

Y , Y ∗max is the work hardening maximum, G0 is the initial shear modulus, C1 is the exponential

prefactor, C2 is the coefficient of drag term, UK is the activation energy, YP is the Peierls stress,

n and β are work hardening parameters, A is the pressure dependence of the shear modulus and

B is the temperature dependence of the shear modulus. These constants are all dependent on the

material. εp is equivalent plastic strain, ε̇p is the equivalent plastic strain-rate, εi is the intial plastic

strain, P is pressure, T is temperature, η = ρ/ρ0 is compression, where ρ0 is the initial density, and

G is the bulk shear modulus [73]. To test for melting, the Lindemann law is used, where

Tm = Tmoexp [2a (1− 1/η)] η2(γ0−a−1/3). (3.6.5)

Equation 3.6.5 is used to test for when temperature, T , exceeds Tm at which point Y and G are set
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Be Al LiF Cu Ta Mo Sa

ρ0(g/cm3) 1.85 2.703 2.638 8.930 16.690 10.200 –
Tmo(eV ) 1.568e-1 1.051e-1 1.275e-1 1.542e-1 3.740 e-1 3.154e-1 –
a 1.0 1.5 1.4 1.5 1.3 1.3 –
γ0 1.11 1.97 1.69 2.02 1.67 1.59 –
A((dynes/cm2)−1 1.54e-12 6.52e-12 5.0e-12 2.83e-12 1.45e-12 1.14e-12 –
B(eV −1) 2.994 7.149 7.172 4.375 1.509 1.764 –
n 7.8e-1 1.0e-1 0 4.5e-1 1.0e-1 1.0e-1 –
C1(sec−1) 4.0e8 0 0 0 7.1e5 3.52e7 –
C2(dynes− sec/cm2) 1.2e5 0 0 0 1.2e5 1.2e4 –
G0(dynes/cm2) 1.51e12 2.76e11 4.9e11 4.77e11 6.9e11 1.25e12 –
β 2.6e1 1.25e2 0 3.6e1 1.0e1 1.0e1 –
εi 0 0 0 0 0 0 –
YP (dynes/cm2) 3.0e9 0 0 0 8.2e9 1.67e10 –
UK(eV ) 3.1e-1 0 0 0 3.1e-1 3.72e-1 –
Y o
max(dynes/cm2) 1.31e10 0 0 0 4.5e9 1.6e10 –
YA(dynes/cm2) 2.8e9 0 0 0 3.75e9 9.0e9 –
Y0(dynes/cm2) 3.3e9 2.9e9 3.6e9 1.2e9 7.7e9 1.6e10 3.55e9
Y ∗
max(dynes/cm2) 1.31e10 6.8e9 3.6e9 6.4e9 1.1e10 2.8e10 –
ν 0.18 0.33 0.25 0.333 0.3 0.375 0.28

Table 3.3: Strength parameters for materials used in the CTH simulations [73]. Materials are
abbreviated as Be for beryllium, Al for aluminum 6061-t6, LiF for lithium fluoride, Cu for ohfc-
copper, Ta for tantalum, Mo for molybdenum, and Sa for sapphire.

to zero. In this equation, Tmo is the melt temperature at constant volume, a is the coefficient of the

volume dependence of the Grüneisen coefficent, and γ0 is initial value of the Grüneisen coefficient.

A summary of the parameters used for the materials in these simulations is given in Table 3.3 for

both the Steinberg-Guinan-Lund and elastic perfectly plastic strength models. The only material in

this table that uses the latter model is sapphire. It should be noted that PMMA, although not listed

in Table 3.3, uses a viscoelastic-plastic model in CTH, the description of which is export controlled.

3.6.2 Slip at Material Interface

Since a shear wave is being transmitted into the specimen, slip can occur at the interface. CTH

does not model slip and assumes materials are welded together at the interface, hence there is no

easy way to accurately model this due to the inherent random nature of slip. Furthermore, samples

are not perfectly flat in experiments as they are in CTH and often times two identical experiments

can be conducted where one exhibits slip and the other does not. For this reason, experimentors

will conduct the same experiment several times to determine if slip occurs.
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3.6.3 Oblique Wedge Setup in CTH

After determining the appropriate materials to be used, the impact velocity and the angle of

obliquity of the incident shock, the configuration was set up in CTH to be numerically analyzed.

For ease of analysis, the configuration was first rotated in Matlab such that the rear surface of the

target was parallel to the y-axis. This is shown in Figure 3.10. The reason for this was that the

velocities obtained at the rear surface would coincide with those measured at the rear surface of the

target in a given experiment. In other words, the transverse velocity would be along the y-axis and

the longitudinal velocity would be perpendicular to the rear surface, along the x-axis in CTH.
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Figure 3.10: Two dimensional pressure plot for an oblique wedge configuration consisting of a cop-
per impactor, polymethylmethacrylate (PMMA) driver, aluminum 6061-t6 (Al) target and lithium
fluoride (LiF) window. Impact velocity is specified at 1000 m/s with a 10 degree angle of obliquity
for the incident wave.

In Figure 3.10, a two dimensional pressure profile is shown to illustrate the wave state in the

oblique wedge target. The incident, reflected and transmitted shocks can all be seen here, where

the transmitted shock is parallel to the rear surface of the aluminum target. The Lagrangian tracer

point shown in red is located at the aluminum-lithium fluoride interface and is the main point of

interest since it demonstrates what would be measured in an experiment. Additional points are

shown in the plot in the dotted black line and are used to study the wave propagation through the

specimen. A two-dimensional rectangular mesh was used with Adaptive Mesh Refinement (AMR)

in the target of interest in order to accurately depict what occurs in this region. A square mesh
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was created throughout the entire problem ranging from 128 cells in the outer materials to 512 cells

in the inner target. Convergence studies were performed on the mesh size to ensure that results

remained consistent. Cell size was decreased until the stress and velocity outputs from the simulation

no longer varied, at which point the largest possible cell size that produced no change in the results

was chosen.

3.6.4 Progression of the Shear Wave

In these experiments, uniform loading is desired throughout the target. Furthermore, it is optimal

to have the target respond to a maximum amount of shear stress in order to test its strength. To

study if the shear wave is steady such that it has not dissipated once it propagates into the target,

shear particle velocities throughout the target were plotted and are shown in Figure 3.11. The initial

velocity is at a tracer point just after the driver-target interface and the final velocity profile is just

before the target-window interface. The remainder of the velocity profiles, shown in a variety of

different colors, are evenly distributed between these two points. In the first configuration, Figure

3.11a, the impactor and driver are beryllium (Be), the target is aluminum 6061-t6 (Al), the window

is lithium fluoride (LiF), the impact velocity is 1000 m/s, and the angle of obliquity of the incident

shock is 10 degrees. It can be seen that there is slight attenuation in velocity, although the profile

remains similar throughout the specimen. The second configuration, shown in Figure 3.11b, consists

of a copper (Cu) impactor, polymethylmethacrylate (PMMA) driver, an aluminum 6061-t6 target, a

lithium fluoride window, has an impact velocity of 1000 m/s and an obliquity of 10 degrees. Here the

wave is quite steady where the velocity profile remains constant throughout. Figure 3.11c shows the

copper impactor, copper driver, tantalum (Ta) target, and lithium fluoride window configuration.

In this setup, it is evident that there is some attenuation. In this case, the impact velocity was

1300 m/s with an angle of obliquity of 10 degrees. Closer to the target-window interface, reflections

can be seen that appear to increase the velocity profile. The velocities at the last two tracers must

experience edge effects since the velocity decreases rather than increases upon reflections from the

window. The final configuration in Figure 3.11d is the molybdenum (Mo) impactor, molybdenum

driver, tantalum target, and sapphire window with a 1000 m/s impact velocity and a 10 degree angle

of obliquity. Here the velocity has some oscillation which could be due to the artificial viscosity in

CTH. There is definitely some attenuation here of the wave as well as the effects of the reflected

wave off of the window.
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(a) Be Be Al LiF

 

(b) Cu PMMA Al LiF
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(c) Cu Cu Ta LiF

 

(d) Mo Mo Ta Sa

Figure 3.11: Progression of shear particle velocity within oblique wedge targets for four configura-
tions. Initial velocity is at the tracer just within the target after the driver-target interface and the
final velocity is at the tracer just within the target before the target-window interface; the remainder
of the velocities are evenly distributed between these two points. The names of each simulation are
abbreviated for impactor, driver, target, and window; i.e., for Be Be Al LiF, the impactor and driver
are beryllium, the target is aluminum 6061-t6 and the window is lithium fluoride.

3.6.5 Strain-Rate Analysis

In order to calculate the strain-rate at which these simulations occur, Equation 2.1.19 can be

used. Assuming that the problem is one dimensional in strain, this reduces to

∂ε

∂t
=
∂v

∂x
. (3.6.6)

The difference of the output of the particle velocity in the x direction between two adjacent tracers
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and their distance from one another can be used to find the strain-rate for each point in time. This

calculation, performed at a tracer point just inside the target at the target-window interface for

the four main configurations discussed above, is shown in Figure 3.12. As can be seen, the peak

strain rates are 4.8x106/s for the Be Be Al LiF configuration, 4.1x106/s for the Cu PMMA Al LiF

configuration, 2.3x106/s for the Cu Cu Ta LiF configuration, and 2.3x106/s for the Mo Mo Ta Sa

configuration. The peak strain-rates occur at different times due to the geometry of each composite

target.

 

Figure 3.12: Strain-rate at target-window interface for four oblique wedge configurations. The
first configuration is the beryllium impactor, beryllium driver, aluminum 6061-t6 target and lithium
fluoride window with a 1000 m/s impact velocity. The second configuration is the copper impactor,
polymethylmethacrylate driver, aluminum 6061-t6 target and lithium fluoride window with a 1000
m/s impact velocity. The third configuration is the copper impactor, copper driver, tantalum target
and lithium fluoride window with a 1300 m/s impact velocity. The last configuration consists of a
molybdenum impactor and driver, a tantalum target and a sapphire window for a 1000 m/s impact
velocity. All of these configurations assumed a 10 degree angle of obliquity.

3.6.6 Stress Calculation

As previously mentioned, particle velocities at the rear surface of the target can be used to

calculate the longitudinal and shear stresses. These were found in the simulation using the velocity

outputs at the rear surface Lagrangian tracer, shown in Figure 3.13. It can be seen in Figure 3.13

that the shear wave arrives later in time than the longitudinal shock, as expected. Times tL and tS

indicate the time of arrival at the rear surface of the target-window interface. By shifting the time

scale so that time zero indicates arrival at the front surface of the wedge target, the arrival at the
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rear surface of each wave can be used to find the time it takes each wave to propagate and hence

the shock and shear wave velocities can be found, where these velocities are respectively defined as

UTS =
dT
tL

(3.6.7a)

and

CS =
dT
tS
. (3.6.7b)

The distance dT is measured halfway up the target. It must be noted that, although the shear wave

comes in at an angle with respect to the rear surface of the target, the effect of this on the observed

wave velocity is negligible. Using the initial density – since velocity is measured in the Lagrangian

frame – as well as the wave velocities and particle velocities, vp and up, the shear and longitudinal

stresses are calculated from Equations 3.1.1 and 3.1.2.
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Figure 3.13: Longitudinal and shear velocity profiles at the rear surface of an oblique wedge target.
Time is shifted such that time zero indicates shock arrival at the front surface of the target. uLp is

the longitudinal particle velocity, uSp is the shear particle velocity, and tL and tS are the arrivals of
the longitudinal and shear waves at the rear surface of the wedge target, respectively.

3.6.7 Comparison of Stresses vs. Yield

The process described above for stress calculation was repeated for a variety of different configu-

rations. The four that are highlighted here correspond to the targets described above in the analysis

to find if the shear wave was steady. The first configuration is Be Be Al LiF and is the theoretical
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configuration proposed by Justin Brown in his Ph.D. thesis [13]. This theoretical case led to the

study of this target design specifically because its shear stress matched closely to the maximum shear

stress in the material, which could then be used to calculate strength. The impact velocity in this

simulation was 1000 m/s, with an angle of obliquity of 10 degrees and resulted in a transmitted wave

angle of 6.96 degrees with respect to the front edge of the target. The second design from above

for Cu PMMA Al LiF resulted in a transmitted wave angle of 5.33 degrees. The Cu Cu Ta LiF

configuration resulted in a 8.2 degree transmitted wave angle and the Mo Mo Ta Sa configuration

resulted in a 7.0 degree transmitted wave angle. The windows were chosen to be as closely matched

in impedance to the target as possible to mitigate angled reflections at the target-window interface

for all but the Cu Cu Ta LiF. LiF was chosen here to test whether reflections off of its surface would

result in a larger change in particle velocity. It was thought that it would be easier to determine

variations in these velocities as oppposed to those resulting from reflections off the sapphire.

Since the strength of the material is of interest, the maximum stress was compared to the

calculated shear stress to see if the shear stress reached in the experiment could be used to find the

strength of the material. To calculate the maximum stress, the Von Mises yield criteria was used,

giving

τmax =
σ0
Y√
3
, (3.6.8)

where σ0
Y is the yield strength and is a material property. To find out whether the material yields,

Equation 2.1.68 can be used. The stresses used in these equations were found from the Lagrangian

tracer point output in CTH and results of this analysis are shown in Figure 3.14.
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Figure 3.14: Shear stress, shear stress using Mises Yield criteria, calculated shear stress from trans-
verse particle velocity and maximum shear stress for four oblique wedge configurations. Calculations
were performed from CTH simulation results.

In Figure 3.14a, the theoretical case is shown – since beryllium is toxic and not well suited for a

lab environment it is only a theoretical study here. In this figure, the shear stress, shown in blue from

the stress tensor output, matches quite well with the shear stress calculated using the transverse

particle velocity – 0.199 GPa for the calculated shear stress and 0.189 GPa for the average shear

stress in the peak region. It is also close to the results using the Von Mises yield criteria, shown

in black, the average of which is 0.27 GPa. The next two configurations, however, differ quite

significantly from the Mises criteria value. Again, the calculated shear stress matches well for the

Cu PMMA Al LiF in 3.14b, Cu Cu Ta LiF in 3.14c, and the Mo Mo Cu Sa in 3.14d, composite

targets with 0.07 GPa vs. 0.075 GPa, 0.198 GPa vs. 0.189 GPa, and 0.428 GPa vs. 0.486 GPa,

respectively, for the average shear stress from the tensor output vs. the calculated shear stress. The
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Configuration Impact Angle of Transmitted Shear Calculated Mises Maximum
Velocity Obliquity Shock Wave Stress Shear Shear Shear

(m/s) (deg) Angle CTH Stress Stress Stress
(deg) Output (GPa) (GPa) (GPa)

(GPa)

Be Be Al LiF 1000 10 6.96 0.189 0.199 0.270 0.167
Cu PMMA Al LiF 1000 10 5.33 0.070 0.075 0.255 0.167
Cu Cu Ta LiF 1300 10 8.2 0.198 0.189 0.614 0.444
Mo Mo Ta Sa 1000 10 7.0 0.428 0.486 0.960 0.444

Table 3.4: Summary of four oblique wedge configurations. Impact velocity and angle of obliquity
were independent variables, while the transmitted shock wave angle was calculated using shock polar
analysis. “Shear stress CTH output” is the mean shear stress at the peak region at the rear surface
of the target. “Calculated shear stress” was found using the transverse velocity. “Mises shear stress”
was found using the Von Mises yield criteria.“Maximum shear stress” is the yield stress in simple
tension divided by the square root of three, a material property.

Mises shear stress, however, is much higher for each of these configurations – 0.255 GPa, 0.614 GPa

and 0.960 GPa, respectively. It should be noted here that the shear stress analyses for the Cu Cu

Ta LiF and Mo Mo Ta Sa configurations were made at a Lagrangian tracer point midway into the

target. The reason for this was the attenuation of the velocity profile further into the target and the

reflections off of the windows, as described in Section 3.6.4. If these particular configurations were

of interest in an experiment, it would be prudent to design a target larger in diameter to avoid any

edge effects that could be causing the attenuation. These results are summarized in Table 3.4.

In all four cases, the target has yielded since the Mises stress that is calculated exceeds the

maximum shear stress for each material. What this indicates is that, although the material is

yielding, it is not yielding from pure shear, otherwise the shear stress would match or exceed the

maximum shear stress value. For the Be Be Al LiF and Mo Mo Ta Sa cases, the shear stress is

close to the maximum value. These could be slightly off due to yielding caused by the other stress

components. Since the Mises stress is higher in all of the cases than the maximum shear stress, the

yield surface must be analyzed to determine the mechanism causing yield to occur.

3.6.8 Yield Surface and Stress Path

The yield surface can be found using Equation 2.1.68 to further elucidate the yielding process

in the oblique wedge setup. The analysis can be simplified assuming a 1D strain state as defined in

Section 2.1.3.2, and superimposing a shear stress, resulting in the tensor



65

σ =


σxx σxy 0

σxy σyy 0

0 0 σyy

 . (3.6.9)

Applying 2.1.69 and substituting this into Equation 2.1.68 results in an equation for the shear stress

as a function of the longitudinal, lateral, and yield stresses given by

σxy =

√
σ0
Y

2 − (σxx − σyy)
2

3
. (3.6.10)

This equation is the yield surface and allows for the stress path followed by the target material to be

found by plotting σxy as a function of

√
(σxx−σyy)2

3 from the stress tensor output in CTH. The stress

path as compared to the yield surface is shown for each of the configurations in Figures 3.15a-3.15d.

In Figure 3.15a the aluminum target in the Be Be Al LiF configuration first follows the yield

surface and then exceeds it, ending up in a state of mostly shear, rather than the longitudinal and

lateral stresses. Here, initial yield in simple tension is analyzed and since the stress path exceeds

the surface, this result could indicate that the yield stress is strain-rate and pressure dependent,

changing throughout the experiment, which results in a new yield surface. Nevertheless, since the

material ends up in a state of pure shear, the measured transverse velocity can be used to calculate

the shear stress and the yield strength thereafter. On the contrary, Figure 3.15b, the Cu PMMA Al

LiF configuration, shows that the stress path follows the yield surface and is yielding, but it is not

in pure shear at the end of the experiment. The same is true for the Cu Cu Ta LiF configuration in

Figure 3.15c. Although in this case the stress path is not quite on the yield surface, it is evident in

Figure 3.14c that it is yielding. The reason the stress path is off the yield surface could be due to the

assumption of 1D strain with superimposed shear. In this assumption, σyy and σzz were assumed

to be equal. Thus, σzz could be separately contributing to the yielding of the material. The final

case in Figure 3.15d for the Mo Mo Ta Sa composite target indicates that the stress path follows the

yield surface closely and ultimately ends up near the maximum value of shear stress, much like the

Be Be Al LiF case. Overall, the four configurations have the ability to measure the shear stress, but

not necessarily the strength, although this is promising with the Mo Mo Ta Sa composite target.

3.6.9 Higher Impact Velocities

At higher velocities it appears that the assumption of a constant shear wavespeed breaks down

and thus the arrival time can not be used to calculate the shear wave velocity for the entire exper-
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(a) Be Be Al LiF

 

(b) Cu PMMA Al LiF

 

(c) Cu Cu Ta LiF

 

(d) Mo Mo Ta Sa

Figure 3.15: Stress path and yield surface calculations for four oblique wedge configurations The
names of the configurations have been abbreviated as impactor, driver, target, and window.
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iment. This is apparent in a higher velocity impact of the Cu PMMA Al LiF configuration, the

results of which are shown in Figure 3.16. Note that, the region where the shear wave propagates

in the target prior to reflection is in the first peak of the shear stress from the stress tensor. As

can be seen, the target is yielding since the Mises criteria is much higher than the maximum shear

stress. While the calculated shear – 0.145 GPa – is relatively close to the maximum value – 0.167

GPa – it is still quite a bit higher than the shear stress from the tensor, the average peak value

of which is 0.107 GPa. The reason that the calculated value is higher than the actual shear stress

value is attributed to the fact that shear wave velocity is assumed to be a constant value, when in

reality it depends on the shear modulus which could be significantly different at higher pressures in

comparison to the nominal value for the material.

 

Figure 3.16: Shear stress, shear stress using Von Mises yield criteria, calculated shear stress from
transverse particle velocity and maximum shear stress for the Cu PMMA Al LiF configuration at
1300m/s impact. Calculations were made from simulations in CTH hydrocode.

3.6.10 Impedance Matching to find In-Situ Velocities

Another concern with the oblique wedge design is that measurements are being made through

a window. Though this is generally not a problem for planar shocks, it becomes an issue when

the transmitted waves are not parallel to the rear surface. Specifically, this is a concern for the

transverse velocity measurement since the shear wave is not parallel to the longitudinal shock and

thus reflects off of the target-window interface at an angle. Figure 3.17 shows an x-t diagram for

the waves propagating into the window.

In Figure 3.17 the target and window are assumed to be in a quiescent state – zero pressure and

velocity. After the longitudinal wave propagates into the target, the state contains a longitudinal
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Figure 3.17: x-t diagram for the target and window in an oblique wedge configuration.

velocity uT1 and stress σT1 . This is simplified since this state involves a three dimensional stress tensor

in reality, however, a hydrostatic pressure prior to shear wave arrival may be assumed. Following

this state, the shear wave arrives in the target and superimposes a transverse velocity vT1 and stress

τT1 . Some portion of the longitudinal wave reflects off the window and the rest transmits into it.

Assuming continuity of stresses and particle velocities at the target-window interface, the state in

the window, with velocity uW1 and stress σW1 , is set equal to state uT2 and σT2 in the target. Finally,

the shear wave reaches the window and the state is superimposed with shear velocity and stress of

vW1 and τW1 , respectively, which is equal to state vT2 and τT2 in the target . Equations 2.2.5 and

2.2.8 can be used to relate velocities measured in the window to the in-situ velocities in the target.

Applying these equations for the longitudinal direction in the window and target results in

σW1 − σW0 = ρW0 UWS
(
uW1 − uW0

)
, (3.6.11a)

σT1 − σT0 = ρT0 U
T
S

(
uT1 − uT0

)
, (3.6.11b)

and

σT2 − σT1 = −ρT0 UTS
(
uT2 − uT1

)
, (3.6.11c)

where Equation 3.6.11c incorporates the fact that the reflected wave travels in the negative direction

with respect to the coordinate system. Since the transmitted shock wave enters a quiescent state,

it can be assumed that uT0 = σT0 = 0. The window is also initially at rest so uW0 = σW0 = 0.
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Applying continuity of tractions and velocities at the interface, results in uW1 = uT2 = u1
p, u

T
1 = u0

p,

and σT2 = σW1 . Substituting in these assumptions and combining Equations 3.6.11a-3.6.11c, an

expression for the in-situ particle velocity is found:

u0
p =

(
ρW0 UWS + ρT0 U

T
S

)
u1
p

2ρT0 U
T
S

. (3.6.12)

Here u1
p is the measured velocity, ρW0 and ρT0 are known values, and UTS can be measured based on

the arrival of the shock and the thickness of the target. The shock velocity in the window, UWS , can

be found from Equation 2.2.7 using the measured particle velocity, u1
p. The same approach can be

applied to the transverse direction to get the relation for the in-situ shear velocity:

v0
p =

(
ρW0 CWS + ρT0 C

T
S

)
v1
p

2ρT0 C
T
S

, (3.6.13)

where v1
p is the measured shear particle velocity, CWS is assumed to be the elastic value for the shear

wavespeed in the window, and CTS is measured based on arrival of the shear wave and the thickness

of the target.

For the case of an aluminum target with a lithium fluoride window, the two materials are so

well matched that this approach seems to work well. Figures 3.18a and 3.18b show the velocities

measured in the window, the calculated in-situ velocity and the actual in-situ velocity from the

simulation described above for the Cu PMMA Al LiF configuration with a 10 degree angle of

obliquity and 1000 m/s impact. The window and calculated in-situ velocities appear time shifted

due to the fact that they occur later since they are from the tracer in the window rather than the

target. From Figures 3.18a and 3.18b, it appears that it is not necessary to use impedance matching

to find the in-situ velocities. Furthermore, the longitudinal velocity in the window is actually slightly

closer to the in-situ velocity than the calculated velocity.

This approach can also be applied to the Cu Cu Ta LiF configuration with the 10 degree angle of

obliquity and 1000 m/s impact, where Ta and LiF are not well matched. These results are shown in

Figure 3.19. In Figure 3.19a, it does appear that Equation 3.6.12 estimates the longitudinal in-situ

velocity quite well from the window measurement. Nevertheless, 3.19b shows that the transverse

velocity is not well matched. The simulation was repeated for a larger target and it was found

that the peak in-situ velocity for no attenuation was 9.2 m/s rather than 8.7 m/s in the attenuated

case and, while the non attenuated velocity was higher, performing impedance matching on the

velocity measured at the target-window interface still yielded similar results to Figure 3.19b . Upon
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(a) Longitudinal Particle Velocities

 

(b) Shear Particle Velocities

Figure 3.18: Longitudinal and transverse velocity profiles for Cu PMMA Al LiF oblique wedge
configuration including velocities in the window, in-situ velocities in the target and calculated in-situ
velocities from the window measurement. Calculations made using numerical simulations in CTH
hydrocode.
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further investigation, it was concluded that this result is not due to the attenuation of the wave but

rather the inability of the impedance matching technique to capture the in-situ shear velocity for the

oblique wedge setup. Another concern is that the window could also be yielding, which would mean

that the maximum shear from target is not being transferred into the window and thus the shear

measured through the window would relate more to the window response rather than the target

response to the shear wave. It was concluded that a different approach would need to be used to

obtain in-situ measurements.

3.6.11 Oblique Wedge Configuration Using Anvil Backing

As a solution to some of the issues exhibited with the rear surface window approach, an anvil

can be used instead. The case of Mo Mo Ta Sa, described in Section 3.6.7, was re-examined to

determine if sapphire was yielding. Equation 3.6.8 was used to determine the maximum shear stress

the window would support, where σ0
Y was stored in CTH as 0.355 GPa, and Equation 2.1.68 was

implemented to see if the window yielded. Figure 3.20 shows that the window does in fact yield. In

this case, the window was modeled as elastic perfectly plastic and thus the stress does not exceed

yield value, however, it does reach it which indicates that the material is yielding.

As mentioned in Section 3.6.10, the window yielding would not allow the maximum shear stress

in the target to be transmitted and since this is the case here, an alternative technique must be

approached. This new technique would also mitigate concerns in finding the in-situ velocities in the

target since it was shown above that angled reflections at the target-window interface cause issues.

Since the Mo Mo Ta Sa design exhibited a shear stress that was close to the maximum value, this

oblique wedge design was used with the sapphire replaced by tungsten carbide (WC). WC was used

because it has a higher strength than Ta — with initial yield strength σ0
Y = 4.46GPa for the WC

and σ0
Y = 0.77GPa for the Ta [73] — and hence should allow for all of the shear stress from the

Tantalum to be transmitted into it.

The goal of this new model would be to create an experiment that would allow for the in-situ

measurement to be determined. To do this, a similar technique to that used in the elastic wave

simulations, Section 3.5, was implemented. In Figure 3.21, the wave state is shown. Here it has

been assumed that the incident shock wave is nominally parallel to the rear surface of the target and

hence only causes longitudinal reflected and transmitted waves. Although the incident shear wave

is not parallel to the rear surface, it is assumed that it is not a shock and hence any longitudinal

reflected and transmitted waves due to the oblique shear waves will not have much effect on the
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(a) Longitudinal Particle Velocities

 

(b) Shear Particle Velocities

Figure 3.19: Longitudinal and transverse velocity profiles for Cu Cu Ta LiF oblique wedge configu-
ration from CTH simulation including velocities in window, in-situ velocities in target and calculated
in-situ velocities from window measurement.
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Figure 3.20: Maximum shear stress and Mises shear stress for oblique wedge configuration of Mo
Mo Ta Sa using a CTH simulation.

state after the shock. Hence, transverse reflected and transmitted waves from the incident shear

wave are only considered. These two assumptions simplify the problem. In Figure 3.21, angles β0L

and β0S are the angles of the incident waves with respect to the target-anvil interface, where β0L is

assumed to be zero. β0S is found using geometry and is given by the difference between the angle of

the shear wave with respect to the driver-target interface and the angle of the target, the former of

which is found from Equation 3.2.1. The wavespeeds in the target, c1A and c2A, are found by using

the shock and shear wave arrival times at the rear surface of the target and the thickness of the

target midway up. In an actual experiment, the arrival time at the rear surface of the target would

need to be measured by using a technique such as VISAR probes, tilt pins, etc., outside the anvil

diameter, but within the target diameter. To find the time that the shock traveled in the target, one

would need to subtract travel time in the driver, which could be found by either finding travel time

in a second experiment with just the flyer and driver or by using the Hugoniot of the driver. For

higher impact velocities where the shear wave velocity is not a constant, either the elastic value can

be used or the calculation with the arrival time can be used as an estimate. It can also be shown

that the shear strain resulting from the transverse wave is quite low and hence it can be assumed

that the wave travels at its elastic wavespeed. To show this, Equation 2.1.61 can be used to find the

shear strain as a function of shear stress in the target, given by

ε12 =
σ12

2µ
, (3.6.14)
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where µ is the shear modulus and can be found from the definition of the transverse wavespeed

resulting in the equation

µ = c2
2ρ. (3.6.15)

Using the results in Table 3.4 for the calculated shear stress in each of the four configurations previ-

ously studied along with the wavespeeds and densities for both 6061 T6 Aluminum and Tantalum,

it is found that the strain is 0.0037, 0.0014, 0.0013, and 0.0033 for the Be Be Al LiF, Cu PMMA Al

LiF, Cu Cu Ta LiF, and Mo Mo Ta Sa configurations, respectively. The wavespeeds used were 3.15

km/s for the Al and 2.09 km/s for the Ta and the respective densities were 2.703 g/cm3 and 16.656

g/cm3 [60]. For further accuracy, simulations must be studied. Whichever method is used to find

the wavespeeds, they can be used to calculate the equivalent Láme constant, λ, and shear modulus,

µ, where

λA = ρAcA1
2 − 2µA, (3.6.16)

as in Equation 3.5.1 and the shear modulus is given by

µA = cA2
2
ρA. (3.6.17)

In these equations, the definitions of the wavespeeds have once again been used. It is assumed that

the anvil is elastic and hence its defined material properties can be implemented. For tungsten

carbide, ρB = 15.4 g/cm3, c2B = 4.3 km/s, and c1B = 6.858 km/s [37]. From these values, the shear

modulus and Láme constant can be found. As mentioned, the incident longitudinal wave angle was

assumed to be parallel to the rear surface of the target meaning that β1 = β3 = 0. Then, using

Equation 2.1.54, the remaining angles were found to be β2 = β0S and β4 = sin−1
(
c2Bsinβ0S

c2A

)
. From

these angles, the normal and polarization vectors can be calculated.

To find the in-situ velocities in the target using the information from the target-anvil interface,

continuity of velocities and tractions at the interface are applied. An approach similar to Equation

2.1.50 is used to obtain the continuity of velocity equation,

α0
ALp

A0
L + α0

ASp
A0
S + αALp

A
L + αASp

A
S = αBLp

B
L + αBSp

B
S . (3.6.18)

Using Equations 2.1.51 and 2.1.52 at the target-anvil interface yields the continuity of traction
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Figure 3.21: Wave state at target-anvil interface upon incidence of the shock and shear wave. The
dark green line represents the incident shock, the light green is the incident shear wave, the dark
blue line is the reflected shock, the light blue is the reflected shear wave, the red is the transmitted
shock and the orange is the transmitted shear wave. βi is the angle with respect to the interface for
each wave and n is the normal for each wave, where the subscripts S and L refer to the shear and
longitudinal waves, respectively, and the superscripts refer to material A or B. The superscript A0
refers to an incident wave.

relation

(
1

cA1
B1CABT

AL0

)
α0
ALp

A0
L +

(
1

cA2
B1CABT

AS0

)
α0
ASp

A0
S +

(
1

cA1
B1CABT

AL

)
αALp

A
L+(

1

cA2
B1CABT

AS

)
αASp

A
S =

(
1

cB1
B1CBBT

BL

)
αBLp

B
L +

(
1

cB2
B1CBBT

BS

)
αBSp

B
S .

(3.6.19)

As noted above, the material properties are obtained from the wave velocities, which can also be

used for the stiffness matrices C. The angles are also known values along with the particle velocity

amplitudes at the interface, given by αBL and αBS . These amplitudes can be found in the simulation

from the particle velocities at the target-anvil interface, giving

V Lx î+ V Ly ĵ = αBLp
B
L = αBL

(
cosβ3î+ sinβ3ĵ

)
= αBLî. (3.6.20)

In Equation 3.6.20, V Lx and V Ly refer to the particle velocities normal and perpendicular to the rear
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surface of the target, respectively, after the longitudinal wave arrives in the anvil. Since this wave

is nominally parallel to the rear surface, V Lx = αBL and V Ly = 0. Similarly for the shear wave,

V Sx î+ V Sy ĵ = αBLp
B
L + αBSp

B
S = αBL

(
cosβ3î+ sinβ3ĵ

)
+

αBS

(
−sinβ4̂i+ cosβ4ĵ

)
= (αBL − αBSsinβ4) î+ αBScosβ4ĵ.

(3.6.21)

The assumption that the longitudinal wave is parallel to the rear surface was used in Equation

3.6.21 to eliminate the angle dependence of β3. With this decoupled equation, αBS can be directly

solved for using V Sy and β4. Combining Equations 3.6.18-3.6.21 leads to a system of equations with

the unknowns α0
AL, α0

AS , αAL, and αAS . These equations can be used to find the in-situ particle

velocities in the target given by

α0
ALp

A0
L , (3.6.22)

after the longitudinal wave, and

α0
ALp

A0
L + α0

ASp
A0
S , (3.6.23)

after the shear wave.

Taking this approach one step further, the rear surface velocities at the anvil can be used to find

the in-situ velocities within the anvil and the subsequent in-situ velocities in the target. This method

could be used to find the in-situ velocities from the rear surface measurements in an experiment.

In this case, Figure 3.22 shows the wave state. In Figure 3.22, it can be seen that the transmitted

longitudinal and shear waves from Figure 3.21 are now the incident waves on the rear surface of the

anvil. Furthermore, since the window is parallel to the rear surface of the target, the angles of the

waves remain the same. Although the waves don’t actually hit the rear surface at the same time,

they are shown as they would appear at the rear surface when they arrive there. Using Equation

2.1.54 it can be shown the reflected angles are respectively the same as the incident angles for each

wave. Using continuity of velocity at the rear surface of the anvil, the following relations can found

(αIL − αRL)− (αIS + αRS) sinβ4 = V endx (3.6.24)

and
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(αIS − αRS) cosβ4 = V endy . (3.6.25)
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Figure 3.22: Wave state at rear surface of anvil for the oblique wedge setup. The red line is the
incident shock wave, the orange is the incident shear wave, the dark blue is the reflected shock and
the light blue is the reflected shear. βi is the angle with respect to the interface for each wave and n
is the normal for each wave, where the subscripts S and L refer to the shear and longitudinal waves,
respectively, and the superscripts BI and BR indicate an incident or reflected wave in material B,
the anvil, respectively. The incident waves don’t hit the rear surface at the same time, but have
been shown as they would appear at the rear surface.

Here, αIL, αRL, αIS ,and αRS are the amplitudes of the particle velocities across the incident and

reflected longitudinal waves, and the incident and reflected shear waves, respectively. V endx and V endy

are the particle velocities measured at the rear surface of the anvil. Applying continuity of tractions,

where the rear surface tractions are set to zero, results in the equations

λ+ 2µ

c1
(αIL + αRL)− 2µcosβ4sinβ4

c2
(αIS − αRS) = 0 (3.6.26)

µ
(
cos2β4 − sin2β4

)
c2

(αIS + αRS) = 0. (3.6.27)

From 3.6.27, it is found that αIS = −αRS and substituting this result into 3.6.25 leads to



78

αIS =
V endy

2cosβ4
. (3.6.28)

Substituting in the results of Equation 3.6.27 for (αIS + αRS) into Equation 3.6.24, and combining

this with Equation 3.6.26 solves for αIL, where

αIL =
2µc1αIScosβ4sinβ4

c2 (λ+ 2µ)
+
V endx

2
. (3.6.29)

The results of Equations 3.6.28 and 3.6.29 can finally be used to find the in-situ particle velocities

in the anvil which can then be used to find the in-situ velocities in the target through the approach

described by Equations 3.6.18 and 3.6.19.

To test whether these theories could be used for velocities measured in experiments, CTH was

implemented to model the setup. WC was modeled in CTH with the Mie-Grüneisen EOS. These

parameters are not in the model database in CTH and hence had to be found through outside

sources. The parameters used for this model were ρ = 15.4 g/cm3, C0 = 4.93 km/s, S = 1.309,

cv = 238 J/Kg/K, and γ0 = 1.44 where ρ is the density, C0 is the sound speed in Equation 2.2.7, S is

the empirical constant in Equation 2.2.7, cv is the specific heat, and γ0 is the Grüneisen parameter.

Density, sound speed and the empirical constant S were all found in [40], cv was found from [23], and

the Grüneisen parameter was determined from [59]. The linearly elastic perfectly plastic strength

model was used, as a more detailed model was not available in CTH, with parameters Poisson’s ratio

ν = 0.2 and yield strength in tension σ0
Y = 4.46 GPa [37]. The results of this simulation are shown

in Figures 3.23 and 3.24.

In Figures 3.23 and 3.24, the longitudinal and transverse particle velocities are shown for the

Mo Mo Ta WC oblique wedge configuration at a 10 degree angle of obliquity and 1000 m/s impact.

In these figures, up and vp are the longitudinal and transverse particle velocities in the target. The

“calculated up in target from anvil” and “calculated vp in target from anvil” use Equations 3.6.18-

3.6.23 to calculate in-situ particle velocities in the target from the particle velocities in the anvil

measured after the passage of the longitudinal shock and shear wave into the anvil. “Calculated up

in target using impedance” uses impedance matching techniques for a shock wave, much like the

approach described in Figure 3.17 for a window, and uses the particle velocity in the anvil to make

these calculations. “up in anvil” and “vp in anvil” are the particle velocities in the anvil after the

passage of the transmitted shock and shear waves. “Calculated up in target using end velocity” and

“calculated vp in target using end velocity” implement Equations 3.6.24-3.6.29 to find the in-situ
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Figure 3.23: Longitudinal particle velocities for Mo Mo Ta WC oblique wedge configuration. up is
the velocity in the target, “calculated up in target from anvil” is the longitudinal velocity calculated
from the particle velocity in the anvil. “Calculated up in target using impedance” uses impedance
matching techniques for a shock wave using particle velocity in the anvil. “up in anvil” is the particle
velocity in the anvil. “Calculated up in target using end velocity” is the particle velocity in the target
calculated using the velocity measured at the rear surface of the anvil. “Calculated up in target using
impedance from end velocity” uses impedance matching techniques for shock waves from the rear
surface of the anvil. “End velocity” is the particle velocity at the rear surface of the anvil.

 

 

Figure 3.24: Transverse particle velocities for Mo Mo Ta WC oblique wedge configuration. vp is
the velocity in the target. “Calculated vp in target from anvil” is the transverse velocity calculated
from the particle velocity in the anvil. “vp in anvil” is the particle velocity in the anvil. “Calculated
vp in target using end velocity” is the particle velocity in the target calculated using the velocity
measured at the rear surface of the anvil. “End velocity” is the particle velocity at the rear surface
of the anvil.
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velocities in the anvil from the rear surface measurements of the anvil and subsequently find the

in-situ particle velocities in the target using Equations 3.6.18-3.6.23 with these calculated velocities

in the anvil. “Calculated up in target using impedance from end velocity” uses impedance matching

techniques for shock waves once again, but starting from the rear surface of the anvil to find the

in-situ velocity in the target. This results in dividing the rear surface velocity in half, which gives

the in-situ velocity in the anvil, and then using the same approach as that in Figure 3.17 to find

the velocity in the target. Finally “end velocity” in both figures is the particle velocity at the rear

surface of the anvil.

In Figure 3.23, the longitudinal velocity in the target prior to the shear wave arrival is 448.8m/s.

Interestingly enough the velocity does increase to 453.5 m/s after the shear wave passes which

does indicate an effect of the oblique shear wave on longitudinal velocity, however, this is only a

1.05% growth and hence the assumption that only the shock wave affects the longitudinal velocity

suffices. The remainder of the velocities are shown in Table 3.5. As can be seen from the results, the

impedance matching technique works much better for finding the in-situ velocities as opposed to the

psuedo-elastic wave analysis, where the difference for the impedance matched in-situ velocity is 3.63%

using the rear surface velocity versus 10.23% for the psuedo-elastic technique. In Figure 3.24, it can

be seen that the shear velocity is not level and peaks at a certain point. This trend could be due to

a variety of reasons such as wave reflections from the shock wave (if it is not perfectly parallel to the

rear surface), as well as the unsteady nature of the wave due to the changing viscosity of the material.

For this case, impedance matching was not used since it was shown for the windowed example that it

did not work well. Furthermore, it is clear that the shear wave is not parallel to the rear surface and

impedance matching does not take this into account. Using the psuedo-elastic approach described

above, the in-situ velocities calculated from the in-situ anvil particle velocity and rear surface particle

velocity are shown in Table 3.6 and are 14.85% and 11.16% different, respectively, than the actual

transverse in-situ particle velocity in the target, given by the simulation. Here it should be noted

that the peak velocity was taken for all but the “rear surface” and “in-situ calculated from rear

surface” velocity values. In these cases, the average peak value was found. In the latter case, it is

apparent in Figure 3.24 that there is an oscillatory nature to the velocity perhaps due to an issue

with the mesh if there were two materials in one cell and hence the average value had to be taken.

Although the error here is higher than for the longitudinal velocity found using impedance matching,

the values are still promising and show that this technique could be used in an experiment.

The final analysis that needs to be made is to determine whether the anvil is yielding. Using
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up Target up Target up Impedance up Anvil up Target up Impedance up End
from Anvil from End from End

Velocity 448.8 532.2 457.7 407.2 494.7 432.5 770.0
(m/s)

Difference n/a 16.58 1.98 n/a 10.23 3.63 n/a
from in-situ
in Target
(%)

Table 3.5: Longitudinal particle velocities in Mo Mo Ta WC oblique wedge configuration.

vp Target vp Target from Anvil vp Anvil vp Target from End vp End

Velocity (m/s) 8.42 7.17 6.13 7.48 12.19

Difference n/a 14.85 n/a 11.16 n/a
from in-situ
in Target
(%)

Table 3.6: Transverse particle velocities in Mo Mo Ta WC oblique wedge configuration.

the same approach outlined for the Mo Mo Ta Sa configuration, where Equation 3.6.8 was used to

find the maximum shear strength the anvil could support, it was found that the anvil does yield.

Once again, a linearly elastic perfectly plastic model was used with σ0
Y = 4.46 GPa [37]. The results

of this study are shown in Figure 3.25. As with the sapphire window, the analysis shows that the

material is yielding, but it is not clear by how much since σ0
Y could be strain-rate dependent and

not a constant value. Nevertheless, although yielding does occur, this approach still seems to be

working which could indicate that the material is just starting to yield. A more detailed model for

tungsten carbide could be used in the future to study this phenomenon.

3.7 Conclusions

Theoretically, a variety of driver materials, impactor materials, angles of obliquity and impact

velocities can be implemented in the oblique wedge configuration to study the response to shear

stress at a wide range of pressures. This study has shown that with an increased impact velocity,

a greater state of longitudinal stress can be created at which the shear response can be tested.

Furthermore, with an increase in the angle of obliquity for the incident wave, a larger shear wave

angle will form. It has been shown that this setup can measure shear stress for both tantalum

and aluminum, but it has limitations. For the case of Be Be Al LiF, the maximum shear stress

was close to the shear stress in the experiment, while this was not true for the Cu PMMA Al LiF

configuration. An explanation for this could be that the PMMA may have yielded while the Be did
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Figure 3.25: Maximum shear stress and Mises shear stress for oblique wedge configuration of Mo
Mo Ta WC in the WC anvil calculated from CTH simulation.

not and hence the shear wave transmitted into the Al was weaker, causing the material to yield from

longitudinal and lateral stresses, rather than shear. To mitigate a similar problem in the Cu Cu Ta

LiF configuration, Mo was used as a driver since it has a higher shear impedance and yield strength

than Cu which resulted in a higher transmitted shear in Ta that was close to maximum shear stress

and could be used to calculate the strength of the material. Thus, it was concluded that the driver

material must have a higher shear impedance and strength than the target for the target to reach

the maximum shear stress value in a state of pure shear.

At higher impact velocities, it was found that a constant shear wavespeed cannot be assumed.

Impedance matching for transverse waves is also difficult since they are not parallel to the transmitted

longitudinal waves and is an issue when dealing with targets and windows that are not very close

in impedance. A solution to the latter problem could be the implementation of high strength anvils

that remain elastic throughout the experiment such that the elastic oblique wave analysis can be

used to relate the measured particle velocities at the rear surface of the anvil to the in-situ velocities

in the target. Using the Mo Mo Ta Sa configuration and replacing the sapphire with tungsten

carbide, it was shown that such an approach could work.



83

Chapter 4

Y-Cut Quartz Sandwich
Configuration

4.1 Introduction

Another novel method to test the effects of shear on materials is by using y-cut quartz as a

shear generator. Upon impact, y-cut quartz generates two waves due to its anisotropic nature [75],

[77]. The first wave, called “quasi-longitudinal” (QL), travels at a faster velocity than the second

“quasi-transverse” (QT) wave, however, both waves contain longitudinal and shear particle velocity

components. If the sample is cut such that the crystallographic Y direction is normal to the surface

and Z is parallel, then the waves will always travel in the direction of the Y axis, with velocity

components in the Y and Z directions [18]. In Figure 4.1, a schematic of a y-cut quartz sandwich

configuration is shown. Note that, in the simulations conducted for this study, the impact is in the

x direction in the experiment coordinate frame, and the crystallographic Y direction of the quartz

is oriented in this direction with the quartz Z direction in the z direction of the simulation. Both

coordinate systems are shown in Figure 4.1, with the quartz coordinates denoted by upper cases

letters and the superscript q. Upon impact, the waves travel into the quartz where the components of

velocity are transmitted into the target of interest. These velocity components generate both pressure

and shear waves in the target. Using an anvil that remains elastic throughout the experiment allows

the velocity to be measured at the rear surface, which can be used to find the stress state in the

target, defined by equations

σ =
1

2
ρA0 C

A
L ufs (4.1.1)

and
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τ =
1

2
ρA0 C

A
S vfs. (4.1.2)

In these equations, ρA0 is the initial density of the anvil, CAL and CAS are the elastic longitudinal and

shear wavespeeds in the anvil, respectively, and ufs and vfs are the longitudinal and transverse free

surface velocities, respectively.
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Figure 4.1: Schematic of the y-cut quartz sandwich configuration to test material response to
shear. Upon impact, a quasi-longitudinal (QL) and quasi-transverse (QT) wave is generated due to
the anisotropic nature of the quartz. Each wave has a shear and longitudinal component of velocity
that is transmitted into the target. The coordinate systems for the simulations and the quartz are
shown. Simulation coordinates are in lower case letters and quartz coordinates are in upper case
with the superscript q.

4.2 Oblique Gun Experiments

To study shear response and strength measurement in materials, the pressure-shear experiment

has been used. Many of these types of experiments were conducted using an oblique (or slotted

barrel) gun. In this experimental setup, the impactor and target are oriented parallel to one another,

but at an angle with respect to the horizontal axis. Rotation of the projectile is eliminated by

implementing a key that is guided by a keyway in the gun barrel [2]. The velocity vector of the

projectile contains both longitudinal and shear components due to the skewed angle and hence, both

pressure and shear waves are generated upon impact. One dimensional wave theory, as discussed in

Section 2.1.3, can be used to analyze the effects of the waves propagating into the specimen since

the target is loaded uniformly. This analysis is no longer valid when cylindrical unloading waves

from the edges of the target reach the point of observation.
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Figure 4.2: Schematic of slotted barrel gun.

A basic schematic of this setup is shown in Figure 4.2. In this type of experiment, the impactor

can be either a solid material, or consist of a hard anvil backed by a material with a different

impedance in order to conduct strain-rate change tests [76]. The target can also be either a solid

material, or a thin sample backed by a high strength anvil. To maintain high shear strain-rates, thin

foil samples (< 500 µm) sandwiched between plates that remain elastic are used [58], [30]. Within

the specimen, the stress state rings up until it is uniform throughout the sample and is continuous

at each of the anvil-specimen interfaces. For this reverberation to occur, the target and flyer plates

must have a higher impedance than the sample. The longitudinal velocity difference causes the

material to be compressed due to the 1D strain assumption, at which point it reaches a steady state

and the velocity is continuous. If the specimen responds elastically, the velocity will be continuous

throughout, however, if it behaves plastically, the shear velocity is discontinuous and the difference

between the front and back surfaces can be used to find the strain-rate [42], where

γ̇ =
vF − vB

h
. (4.2.1)

Here, γ̇ is the strain-rate, vF and vB are the velocities at the front and back surfaces of the specimen,

respectively, and h is the thickness of the specimen and is assumed to be a known value. The velocity

at the back surface of the specimen, vB , is assumed to be continuous with the velocity in the anvil

and is given by

vB =
1

2
vfs, (4.2.2)

which can be shown to be the case by using the characteristic in Equation 2.1.60b. The development

of the longitudinal and shear stress states is shown in Figures 4.3a and 4.3b. As can be seen in Figure

4.3a, the impactor begins to travel at u0, which for the oblique gun is equal to V0cosθ — where

V0 is the impact velocity and θ is the angle of inclination of the impactor and target. Once the

impactor hits the thin sample, the sample reaches some stress state and continues to reverberate
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between the two Hugoniots, shown in red and beige in Figure 4.3a. Although initially these are

the target and impactor Hugoniots, since the two anvils are assumed to be the same material, their

Hugoniots actually reflect onto one another as the sample wave reverberates between the two plates.

The shear stress state, however, is slightly different. Here, the sample reaches some stress state as

it is impacted by the flyer and, after a few reverberations (not shown in Figure 4.3b), the sample

reaches a shear stress state at which point it begins to flow. The anvil unloads at the rear surface

at some free surface velocity, vfs, and zero stress. The stress must be continuous across the sample

and hence the impactor anvil and target anvil at the interfaces with the sample must be at the same

shear stress. Velocities are not necessarily continuous and hence the front of the sample reaches some

velocity, vF , while the in-situ velocity in the anvil backing plate, vB , matches that of the sample’s

back surface. This technique was found to be advantageous to using a homogeneous target where

the wave profile attenuates and shear strain-rates diminish.

4.3 Y-Cut Quartz Sandwich Configuration

The concept of the sandwich configuration that is used with the oblique gun can be employed

in a normal impact gun by using y-cut quartz to generate the shear wave. Figure 4.4 depicts the

x-t diagram for such a configuration. In this case, there are two anvils, unlike the setup shown in

Figure 4.1. Upon impact, the QL and QT waves propagate into the y-cut quartz and generate two

longitudinal (P) waves and two shear (S) waves due to each wave having both longitudinal and shear

particle velocity components in the quartz. It is assumed here that since the specimen is so thin,

the waves propagate in the second anvil without an impact to their velocity.

Although in the oblique gun sandwich experiment the specimen front surface velocity can be

found by using the impact velocity and impedance matching, using y-cut quartz complicates the

problem. Thus, to find the front surface velocity and be able to calculate the strain-rate, one could

monitor the velocity by using interferometry techniques with a probe monitoring the rear surface

of the anvil through a notch in the full target or by conducting a separate experiment with the

impactor and target, where the target would consist of the quartz backed by the anvil. The free

surface measurement off of the WC would match the in-situ measurement in the full target setup

with the specimen and the anvil. This in-situ measurement — let it be called vIS — can be used

with the jump conditions to find the front surface velocity for the specimen. Figure 4.5 shows the

shear stress-particle velocity Hugoniot for such a configuration. It is similar to Figure 4.3b, however,

v0 is now an unknown since the WC driver is stationary. Furthermore, this time the Hugoniots are



87

 

𝑢0 

 𝜌𝑐𝐿 𝐼 

𝑢𝑝 

𝜎 

Impactor 

 Anvil Target  
Anvil 

 𝜌𝑐𝐿 𝑇 

Sample 

(a) Longitudinal Stress State 

 𝜌𝑐𝑆 𝐼 

𝑣𝑓𝑠 𝑣0 𝑣𝐹 
𝑣𝑝 

𝜏 

Impactor 

 Anvil Target  
Anvil 

 𝜌𝑐𝑆 𝑇 Sample 

𝑣𝐵 

(b) Shear Stress State

Figure 4.3: Development of stress state in sample for the pressure-shear experiment.
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Figure 4.4: x-t diagram for a y-cut quartz sandwich configuration with two anvils.

labeled as forward and backward for each of the WC plates. The reason for this is that, initially,

the shear wave travels forward into the WC and the driver reaches some shear stress τIS . At this

point, the wave travels forward into the sample, but part of it is reflected into the WC driver;

thus the stress state in the driver can be found along the backward Hugoniot. As the wave in the

sample travels forward, it is reflected at the sample-backing interface, and a wave is sent forward

into the backing anvil plate, where its stress state lies along the forward Hugoniot. At this point

the sample reaches some stress state τS , and the backing anvil must unload to zero stress and some

free surface velocity vfs. It is assumed that the sample reaches a steady state and the shear stress

is uniform throughout such that the front surface velocity at the WC driver-sample interface lies on

the backward Hugoniot. Equation 2.2.8 can be used to find the following relations from Figure 4.5:

τIS = ρWCc2vIS , (4.3.1)

τS = ρWCc2vB , (4.3.2)

and

τIS = τS + ρWCc2 (vF − vIS) , (4.3.3)

where τIS is the in-situ shear stress in the WC and τS is the shear stress throughout the specimen.

Equation 4.3.1 can be used to solve for τIS in order to substitute it into Equation 4.3.3. The stress

in the specimen, τS , can be calculated using the free surface velocity in the two driver setup to find

vB and plugging it into Equation 4.3.2. Finally, vF can then be found from Equation 4.3.3.
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Figure 4.5: Shear stress-particle velocity Hugoniot for y-cut quartz two driver configuration.

4.3.1 Laslo Simulations

To design targets for testing, numerical simulations were performed using Laslo (Lagrangian

Analysis and Simulation of Loading in One dimension) [70]. Developed at Sandia National Lab-

oratories, Laslo is a 1D transient dynamics – time history analysis – code and uses an updated

Lagrangian formulation to solve the conservation equations. To integrate these equations, it dis-

cretizes spatially with linear two-node elements and uses a central difference scheme to integrate in

time. The theory behind this code is covered in [11].

4.3.1.1 Models

As mentioned, at high pressures, solid materials behave in a fluid like manner, however, to model

shock wave discontinuities, artificial viscosity is used [15]. This term is implemented to “smooth”

the shock front. The user can choose to describe viscosity with either a linear or quadratic equation,

given by [11]

q = c0ρ (4u)
2

+ cLaρ |4u| , (4.3.4)

where 4u is the jump in velocity across the element, c0 and cL are non-dimensional constants, ρ is

density and a is sound speed.
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Tungsten Carbide [39] Y-Cut Quartz [47]

ρ
(
kg/m3

)
15400 2650

C11 (GPa) 720.0 86.8
C12 (GPa) 254.0 7.0
C13 (GPa) 151.0 11.9
C14 (GPa) 0.0 -18.0
C15 (GPa) 0.0 0.0
C16 (GPa) 0.0 0.0
C22 (GPa) 720.0 86.8
C23 (GPa) 151.0 11.9
C24 (GPa) 0.0 18.0
C25 (GPa) 0.0 0.0
C26 (GPa) 0.0 0.0
C33 (GPa) 972.0 105.8
C34 (GPa) 0.0 0.0
C35 (GPa) 0.0 0.0
C36 (GPa) 0.0 0.0
C44 (GPa) 328.0 58.2
C45 (GPa) 0.0 0.0
C46 (GPa) 0.0 0.0
C55 (GPa) 328.0 58.2
C56 (GPa) 0.0 -36.0
C66 (GPa) 233.0 39.9

Table 4.1: Elastic constants for the stiffness matrices of tungsten carbide and y-cut quartz. The
parameter ρ is density and Cij is each term in the stiffness matrix.

Tungsten carbide was used for the anvil in all of the simulations due to its high strength so that

it could be used for a variety of specimens since it stays elastic at higher pressures. A linear elastic

model was used for both y-cut quartz and WC, with parameters for the stiffness matrix given in

Table 4.1. The theory to predict wave propagation in y-cut quartz is based on the work by Johnson

[47], [48].

The remaining materials, tantalum and aluminum 6061-t6, used a Mie-Grüneisen EOS, see Sec-

tion 3.6.1, and a Johnson-Cook strength model with the parameters set such that the model was

essentially linear elastic perfectly plastic. The reason for the latter step is that the linear plas-

tic model does not work in Laslo and hence the Johnson-Cook model can be used instead. The

Johnson-Cook model describes strength in the following way:

Y = (a+ bεn) (1 + c log ε̇) (1− T ∗m) , (4.3.5)

where Y is the strength and is strain-rate dependent. The value a is the initial yield strength, ε is

the equivalent plastic strain, ε̇ is the strain-rate, and T ∗ is the non-dimensional temperature defined

by
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Aluminum 6061-T6 [73] Tantalum [73] Polyurethane [73], [54]

ρ
(
kg/m3

)
2703 16654 1265

ν 0.34 0.33 0.18
a (GPa) 0.29 0.77 0.0021
b 0 0 0
c 0 0 0
m 1 1 1
n 0 0 0
T ∗ (K) 273 273 273
tref (K) 298 298 298
cv (J/Kg/K) 1070 160 86
γ 1.97 1.60 1.55
S 1.37 1.22 1.577
C0 (m/s) 5220 3390 2486

Table 4.2: Parameters for the Mie-Grüneisen EOS and Johnson-Cook Strength models. ρ is density,
ν is poisson’s ratio, a is the initial yield strength, b, c, and n are strain-rate hardening factors, m is
a thermal-softening factor, T ∗ is a nondimensional temperature, tref is the initial temperature, cv
is the specific heat capacity, γ is the Grüneisen parameter, S is the linear coefficient and C0 is the
sound speed in the US − up Hugoniot.

T ∗ =
T − Tr
Tm − Tr

, (4.3.6)

where Tr is the room temperature, Tm is the melt temperature and T is the temperature which

is somewhere between the two, Tr ≤ T ≤ Tm . The remaining parameters, b, c, and n, are all

strain-rate hardening factors and the constant m is a thermal-softening factor [62]. The parameters

for these models are given in Table 4.2.

4.3.2 Two Driver Target Design

The first approach used was the y-cut quartz (YQ) sandwich design with a WC and YQ driver

followed by a thin sample and a WC anvil bounding plate. Simulations were performed with an

aluminum 6061-t6 impactor at 400, 450, and 500 m/s. It was determined that 400 m/s was the choice

of interest due to material yielding, which will be discussed later. Although it does not necessarily

matter what impacts the quartz, x-cut quartz and aluminum 6061-t6 are most commonly used as

they are both well matched to the quartz and therefore produce a close to symmetric impact. The

advantage of using aluminum is that it is light-weight and hence can be thick such that reflections

will not be a problem during the experiment.

Figure 4.6 shows the x-t diagram for part of the configuration. As can be seen, upon impact the

waves generated correspond to those discussed for Figure 4.4. Figures 4.7a and 4.7b show the velocity
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profiles at the tracers shown in red and green on Figure 4.6. The tracer at 0.01 m corresponds to

the interface between the YQ and WC, and the green tracer at 0.015 m is midway through the WC.

Times t1 and t2 indicate the arrival times for QL and QT at the YQ-WC interface. The times t3, t4,

t5, and t6 indicate the times of arrival of the pressure and shear waves due to QL and the pressure

and shear waves due to QT, respectively, at the tracer midway through the WC.
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Figure 4.6: x-t diagram for the two driver y-cut quartz sandwich configuration for the impactor
and two drivers, YQ and WC.

The distance traveled and the individual arrival times can be used to find the wave velocities in

each material, where the wave velocities of QL and QT in the YQ are given by

CY QQL =
0.01 m

t1
= 6031.36 m/s (4.3.7)

and

CY QQT =
0.01 m

t2
= 4391.74 m/s, (4.3.8)

respectively. Since the WC remains elastic, both pressure and shear waves should travel at the same

elastic longitudinal and transverse velocities, respectively, and thus only the first arrival time for

each wave needs to be used for the calculation. These velocities are

CWC
L =

0.005 m

t3 − t1
= 6849.32 m/s (4.3.9)

and
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𝒕𝟏 
= 1.658 usec 

𝒕𝟐 =  
2.277 usec 

𝒕𝟑 =  
2.388 usec 

𝒕𝟓 =  
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(a) Longitudinal velocity profile for two tracers, one at the YQ-WC
interface (red) and the other midway through the WC (green). 

𝒕𝟏 =  
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𝒕𝟐 =  
2.277 usec 

𝒕𝟒=  
2.738 usec 

𝒕𝟔 =  
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(b) Transverse velocity profile for two tracers, one at the YQ-WC
interface (red) and the other midway through the WC (green).

Figure 4.7: Longitudinal and shear particle velocities for y-cut quartz (YQ) two driver sandwich
configuration. The second driver and anvil are tungsten carbide (WC). Tracer locations are shown
in (m).
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CWC
S =

0.005 m

t4 − t1
= 4629.63 m/s. (4.3.10)

The goal in this experiment is to subject the specimen to the largest amount of shear, which will

occur from the response to the first wave, QL, since its transverse component of velocity is larger.

Figure 4.8 shows the entire x-t diagram for the composite target. In this schematic, times t7, t8,

t9, and t10 correspond to the first and second longitudinal and transverse waves arriving at the rear

surface of the WC bounding plate. The goal here is to maximize the amount of time the state after

t8 and prior to t10 is seen. These times can be calculated by dividing the distance traveled by the

velocity of each wave,

t7 = t1 +
DWC

CWC
L

(4.3.11)

t8 = t1 +
DWC

CWC
S

(4.3.12)

t9 = t2 +
DWC

CWC
L

(4.3.13)

t10 = t2 +
DWC

CWC
S

, (4.3.14)

where DWC is the entire thickness of the two WC plates with the specimen.
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Figure 4.8: x-t diagram for full y-cut quartz two driver sandwich configuration using tungsten
carbide as the second driver and the anvil.

The first consideration is to see the entire shear response from the first transverse wave plus a
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given read time prior to edge wave arrival. Figure 4.9 illustrates the propagation of edge waves in the

composite target. Upon impact, waves begin to propagate in from the corners of the YQ. Since YQ

is an anisotropic material, the waves will travel at different velocities depending on the direction of

analysis, which results in an elliptical wave front [26]. As a safe measure, the fastest wavespeed can

be used to approximate the wave traveling in a cylindrical manner, which is assumed to be traveling

at the same velocity as QL. Assuming edge waves travel at the same velocity as the fastest wave is

a common practice in the analysis of plate impact experiments. The time it takes for the waves to

travel is the distance along the shortest path divided by the velocity of the wave. It is assumed here

that the edge waves travel inwards until they reach a certain diameter at the WC interface at which

point they continue to propagate towards the center, but this time at the elastic longitudinal wave

speed of the WC. The first step is to calculate the shear wave arrival plus some given read time and

make certain this occurs prior to edge wave arrival. This step results in

t8 + tr ≤ tyq +
S

CWC
L

. (4.3.15)
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Figure 4.9: Edge wave propagation in two driver y-cut quartz sandwich configuration.

As defined above, t8 is the arrival of the first shear wave at the rear surface of the second WC

plate and the term tr is the read time after the wave arrives. The sum of these times is set equal to

the arrival of the edge waves at the rear surface of the target, which is the time it takes the first set

of edge waves to propagate through the quartz, tyq, and the time for the second set to propagate

through the remainder of the target, S
CWC

L

. The most conservative estimate of the time for the edge

waves to travel until they affect diameter d1 in the WC is
dY Q

√
2

CY Q
QL

and the time for the waves to travel
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from this diameter to the point of observation at the rear surface of the WC is

√
(DWC)2+( d1

2 )
2

CWC
L

,

where d1 can be defined by dH − 2dY Q. Thus, Equation 4.3.15 becomes

t8 + tr =
dY Q
√

2

CY QQL
+

√
(DWC)

2
+
(
dH−2dY Q

2

)2

CWC
L

, (4.3.16)

where the ≤ sign has been replaced by an equal sign for the worst case scenario. Plugging in for t8

in Equation 4.3.12 results in

t1 +
DWC

CWC
S

+ tr =
dY Q

CY QQL
+
DWC

CWC
S

+ tr =
dY Q
√

2

CY QQL
+

√
(DWC)

2
+
(
dH−2dY Q

2

)2

CWC
L

, (4.3.17)

where t1 was replaced by
dY Q

CY Q
QL

. Rearranging the terms, the equation becomes a quadratic function

for DWC,

DWC2

[
1

CWC
S

2 −
1

CWC
L

2

]
+DWC

[
2dY Q

(
1−
√

2
)

CY QQL C
WC
S

+
2tr
CWC
S

]
+d2

Y Q

(
1−
√

2
)2

CY QQL
2 +

2dY Qtr
(
1−
√

2
)

CY QQL
+ t2r −

d2
H

4CWC
L

2 +
dHdY Q

CWC
L

2 −
d2
Y Q

CWC
L

2

 = 0.

(4.3.18)

This equation is in the form of

A (DWC)
2

+B (DWC) + C = 0, (4.3.19)

where the quadratic formula can be used, given by

DWC =
−B ±

√
B2 − 4AC

2A
. (4.3.20)

In addition to edge wave effects, it is important that the sample remain in compression for shear

to be transmitted, otherwise slip will occur. As can be seen in Figure 4.10, the focus has now shifted

to the effects of the first set of waves resulting from QL since it has the highest shear response. The

constraint here indicates that the shear wave arrival plus a certain read time must be recorded prior

to the reflected pressure wave off the rear surface of the bounding anvil arriving at the sample and

then reflecting back to the anvil rear surface at time t11 in Figure 4.10. Similarly, the experiment
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Figure 4.10: x-t diagram for full y-cut quartz two driver sandwich configuration with longitudinal
waves reflected at rear surface of bounding anvil and YQ-anvil interface.

must finish prior to the arrival of the P wave that is reflected from the sample, then the YQ-anvil

interface and back to the sample, where the back of the anvil receives this information at time t12.

Mathematically this becomes

t11 = t7 + 2
dWC2

CWC
L

≥ t8 + tr. (4.3.21)

Plugging in for t7 and t8 this equation becomes

DWC

CWC
L

+ 2
dWC2

CWC
L

≥ DWC

CWC
S

+ tr. (4.3.22)

Similarly,

t12 = t1 + 2
dWC1

CWC
L

+
DWC

CWC
L

≥ t8 + tr. (4.3.23)

Substituting in the definitions for t12 and t8 this equation becomes

2
dWC1

CWC
L

+
DWC

CWC
L

≥ DWC

CWC
S

+ tr. (4.3.24)

Using the fact that DWC = dWC1 + dWC2 + dS, replacing the ≥ sign with an = sign for the worst

case scenario, and combining 4.3.24 and 4.3.22 results in the stipulation that

DWC =
tr + dS/C

WC
L

2/CWC
L − 1/CWC

S

. (4.3.25)

Equations 4.3.20 and 4.3.25 can be combined for a variety of values for dH , dY Q and dS to solve for
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Case dYQ (m) dH (m) dS (µm) tr (ns) dWC1 (mm) dWC2 (mm) t8 (µs) t10 (µs)

1 0.01 0.025 25 396.27 2.65 2.64 2.81 3.43
2 0.005 0.025 25 447.80 2.99 3.00 2.13 2.44
3 0.01 0.05 25 902.65 5.95 5.95 4.23 4.85
4 0.005 0.05 25 994.67 6.56 6.57 3.67 3.97

Table 4.3: Calculated read time, tr, and tungsten carbide (WC) thickness for y-cut quartz two
driver sandwich configuration. dY Q is the thickness of the y-cut quartz, dH is the height of the
target, dS is the sample thickness, dWC1 is the thickness of the tungsten carbide driver, dWC2 is the
thickness of the tungsten carbide backing, t8 is the arrival of the first shear wave at the rear surface
of the target, and t10 is the arrival of the second shear wave at the rear surface of the target.

the read time tr and the thicknesses of the anvils, dWC1 and dWC2. Matlab was used to solve for

these values and the results of this study are shown in Table 4.3.

In Table 4.3, the values of dWC1 and dWC2 must be rounded since machining techniques can only

be accurate to several decimal places and hence the read time is recalculated. To calculate the true

read time, the smallest arrival time out of the arrival of the edge waves at the rear surface, Equation

4.3.16, the arrival of the L wave from the rear surface of the bounding anvil to the target and back to

the anvil rear surface, Equation 4.3.22, and the arrival of the L wave from the quartz-anvil interface

to the target and then to the rear surface, Equation 4.3.24, is taken from which the arrival of the

shear wave at the rear surface, Equation 4.3.16, is subtracted. It is also important to make sure that

the second shear wave does not arrive before the entire read time is seen since its shear response is

lower. The arrival of both the first and second shear waves are shown in Table 4.3. The only case

in which the second shear wave arrives after the entire read time is the first case. The re-calculated

read times, representing the time between the arrival of the first and second shear waves, are 309.5

ns, 619 ns, and 309.5 ns for cases 2-4, respectively. As can be seen, case 2 and 4 have the same actual

read time due to the fact that the quartz is the same thickness and thus the separation between the

shear waves will be the same. For this reason, to obtain the optimal read time and the maximum

shear for the greatest amount of time, it is best to optimize for the quartz thickness along with the

other parameters, where it appears that a taller target allows for a longer read time and a thicker

quartz sample gives the largest separation between the two shear wave arrivals.

4.3.2.1 Checking Assumptions

As previously mentioned, the main assumptions of this experiment are that the second bounding

plate remains elastic so that the in-situ shear stress at the sample-anvil interface can be found using

the elastic wavespeed, and that the bounding plates have a higher impedance than the sample so

that it can be subjected to a high strain-rate for a longer period of time. Furthermore, the YQ must
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remain elastic since the two-wave structure breaks down above the elastic limit. For this reason,

Equation 3.6.8 was used to find the maximum shear stress the bounding plates could support and

Equation 2.1.68 was implemented to determine if the materials yielded. σ0
Y for the YQ is 5.17 GPa,

found by using the Hugoniot Elastic Limit in [36] and Equation 2.1.71. For the WC, σ0
Y is 4.46 GPa

[37]. The results of these calculations are shown in Figures 4.11a, 4.11b and 4.11c.

In Figure 4.11, a dotted line has been added for each material to illustrate where the region of

time the QL wave occurs since it is the wave focused on for its higher shear value. The profiles were

calculated for tracers within each material, hence the time discrepancy. In Figure 4.11a, it is evident

that the YQ remains elastic for the region of interest. The WC driver, although it slightly yields

in Figure 4.11b, remains elastic for the most part. The reason the stress increases is that there are

wave reflections between the sample and the y-cut quartz. If yielding is a concern, a lower impact

velocity can be chosen, but this is the lower range of the Caltech powder gun and hence poses a

constraint. Furthermore, if this plate is still higher in impedance than the sample, it shouldn’t affect

the sample remaining at a high strain-rate level. Figure 4.11c shows that the WC backing remains

elastic, which indicates that its elastic wavespeed can be used to find the shear stress. It can thus

be assumed that both materials can be used for this experiment with an impact of 400 m/s.

The next assumption that must be checked is to make sure that the 1D strain with a superimposed

shear stress assumption for the stress tensor is valid. In this case, the stress tensor is assumed to be

σ =


σxx 0 σxz

0 σyy 0

σxz 0 σyy

 , (4.3.26)

where shear stress is now given by σxz rather than σxy in the stress tensor for the oblique wedge

configuration in Equation 3.6.9. The reason for the shear being in this direction is due to the

orientation of the y-cut quartz. Figure 4.13 shows the values of the stress tensor at various points

in the configuration. The tracer location corresponds to that shown in Figure 4.12.

In Figures 4.13a-4.13c, it is clear that the assumptions made in the stress tensor in Equation

4.3.26 for stresses σxx, σyy and σzz coincide with the simulation, where σyy and σzz are equal.

Figures 4.13d and 4.13f also support the hypothesis that the only shear is in the xz direction, which

is shown in Figure 4.13e.

Since it has been demonstrated that the tensor assumed in Equation 4.3.26 holds true in the

experiment, the stress path can be found as it relates to the yield surface as was done for the oblique
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(c) WC Backing.

Figure 4.11: Von Mises criteria for the two drivers and backing plate in the y-cut quartz two driver
sandwich configuration with maximum shear stress to determine if material is yielding.
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Figure 4.12: Tracer locations for two driver y-cut quartz sandwich configuration.

wedge configuration. Using the same approach as that used for Equation 3.6.10, it can be shown

that

σxz =

√
σ0
Y

2 − (σxx − σyy)
2

3
, (4.3.27)

which is the equation for the yield surface. The stress path can then be found using the output

from the stress tensor in the sample by plotting σxz as a function of

√
(σxx−σyy)2

3 . The results of

this calculation are shown in Figure 4.14.

In Figure 4.14, the stress path follows the yield surface until it ends up in a state of pure shear.

Although this simulation assumes an elastic-perfectly plastic model, in a given experiment a different

strength model can be used to model the setup that is strain-rate dependent, therefore, the material

response at different pressures can be tested. The key here however, is that the sample is in pure

shear for a large duration of the experiment. Assuming it follows the yield surface in a similar

manner, it should reach its maximum shear value, which means that the transverse velocity could

be used in conjunction with Equation 4.1.2 to find the maximum shear stress, from which the yield

strength of the material can be calculated using Equation 3.6.8.

4.3.2.2 Calculating Strength, Strain-Rate, and Impactor Thickness

The predictions from the simulation can be used to show the feasibility of the experiment. As

mentioned, the transverse velocity at the rear surface of the anvil can be used in Equation 4.1.2 to

find the shear stress. Figure 4.15 shows the velocity profiles at the various tracers tracked in the

simulation. In particular, the values at the WC driver-sample interface, at the sample-anvil interface
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−𝟒. 𝟑𝟕𝟔 

−𝟓. 𝟑𝟐𝟑 

(a) σxx

 

−𝟑. 𝟔𝟎𝟕 

−𝟓. 𝟑𝟐𝟖 

(b) σyy
 

−𝟑. 𝟔𝟎𝟕 

−𝟓. 𝟑𝟐𝟖 

(c) σzz

 

(d) σxy

 

−𝟎. 𝟒𝟒𝟒𝟖 

(e) σxz

 

(f) σyz

Figure 4.13: Outputs from the stress tensor for the y-cut quartz two driver sandwich configuration.
Tracer taken midway through sample. Location of tracer in (m).
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Figure 4.14: Stress path and yield surface for a tantalum sample in y-cut quartz two driver
sandwich configuration.

and at the rear surface of the anvil are shown. The velocity at the back of the bounding plate, shown

as 12.49 m/s in Figure 4.15, would correspond to what is measured in an experiment at the free

surface. Thus, using this value in Equation 4.1.2 with density ρWC = 15400 kg/m3 and shear wave

velocity CWC
S = 4629.63 m/s, it is found that the shear stress is equal to

τ =
1

2
ρWCC

WC
S vp = 0.445 GPa. (4.3.28)

The maximum value in tantalum, with σ0
Y = 0.77 GPa, is 0.445 GPa which indicates that this

experiment can be used to find the strength of the sample material.

The next calculation that can be made is for the strain-rate by using Equation 4.2.1 which gives

γ̇ =
vp − vp

h
. (4.3.29)

In the Laslo simulation, the strain-rate was recorded at the tracer within the sample and is shown

in Figure 4.16. From Figure 4.16, it is clear that the strain-rate given by the simulation is lower

than that given by the velocity calculation, which gives 1.76 x 106/s, by a factor of 3.6. It is not

clear at this time why the strain-rate calculated is lower than the simulation value, however, this is

a question to be pursued in the future.

The final calculation that can be made is to ensure that the impactor is thick enough such that

the reflection of the shock off its back surface does not reach the impact surface prior to the end of

the experiment. Thus,
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𝒗𝒑 = 12.49 
𝒗𝒑 = 6.234 

𝒗𝒑 = 50.25 

Figure 4.15: Transverse velocity at tracers throughout the y-cut quartz two driver sandwich
configuration. Tracers locations are at the driver-sample interface (pink), sample-backing interface
(blue), and rear surface of the backing (black). Tracer locations in legend are given in units of (m).

 

𝛾 = 4.87x 105/s 

Figure 4.16: Strain-rate in tantalum target in two driver y-cut quartz sandwich configuration.
Location given in legend in (m).

2dAl
UAlS

≥ t4 + tr, (4.3.30)

where UAlS can be found by using the US − up Hugoniot relation in 2.2.7, giving

UAlS = CAl0 + SAlup. (4.3.31)

Since aluminum and y-cut quartz are well matched, this can be treated like a symmetric impact
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problem where the particle velocity is just half of the impact velocity. Depending on the configuration

used and the time of arrival of the first shear wave at the back of the bounding anvil, Equation 4.3.30

can be rearranged to solve for the dimension of the impactor.

4.3.3 One Driver Target Design

As can be seen in Table 4.3, the read times for the experimental setup are decent, however, an

alternative method could be used to increase them. Height dH = 0.025 m would be the largest

that would fit into the chamber of the Caltech powder gun and thus the largest read time would be

447.80 ns for a quartz driver of 0.005 m thickness. This occurs after the second shear wave arrival,

so the read time here would actually be smaller for the larger shear stress level. This driver could

be increased in width, however, edge waves could soon pose to be an issue. An alternative approach

is to eliminate the WC anvil driver.

 

𝒕𝟎𝟑  
QL 

QT 

Aluminum 
Impactor 

Y-Cut Quartz Tungsten-Carbide 
Sample 

𝑡 

𝑥 

S 

P 

𝒕𝟎𝟐  

𝒕𝟎𝟏  𝒕𝟏  

𝒕𝟐  

𝒕𝟎𝟒  

𝒕𝟑  

𝒕𝟒  

𝒕𝟓  

𝒕𝟔  

0.009345m 0.0025m -0.005m 
0.0050125m 

0.005025m 

0.005m 

Figure 4.17: x-t diagram for y-cut quartz one driver sandwich configuration with tracers indicating
where velocity profiles are read.

Figure 4.17 shows the x-t diagram for this configuration. Here, times t01 and t02 indicate the

arrival of QL and QT, respectively, midway through the quartz, which are used to find the velocities

of these waves. Times t1 and t2 correspond to the arrival of QL and QT, respectively, at the front

face of the sample, times t03 and t04 coincide with the arrival of the pressure and shear waves,

respectively, at the interface of the sample and WC. Times t3, t4, t5, and t6 correspond to the

arrivals of the first longitudinal and transverse waves and the second longitudinal and transverse

waves, respectively, at the rear surface of the bounding anvil. This simulation was conducted for

a 450 m/s impact due to concerns that at 500 m/s the YQ might yield. The dark blue tracer is

midway through the aluminum impactor, the red tracer is midway through the quartz, the pink
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𝒕𝟎𝟑 = 
 0.8369 usec 𝒕𝟑 = 

 1.47 usec 

𝒕𝟎𝟏 =  
0.4166 usec 

𝒕𝟎𝟐 =  
0.5712 usec 

(a) Longitudinal velocity profile.

 

𝒕𝟎𝟏 =  
0.4166 usec 

𝒕𝟎𝟐 =  
0.5712 usec 

𝒕𝟎𝟒 =  
0.8301 usec 

𝒕𝟒 =  
1.768 usec 

(b) Transverse velocity profile.

Figure 4.18: Longitudinal and shear particle velocities for y-cut quartz one driver sandwich con-
figuration. Tracer locations are given in (m) for tracers midway through the impactor (dark blue),
midway through the quartz driver (red), midway through the sample (green), at the sample-backing
interface (light blue), and at the backing anvil rear surface (black).
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tracer is at the YQ-sample interface, the green tracer is midway through the sample, the light blue

tracer is at the sample-WC interface, and the black tracer is at the rear surface of the bounding

anvil.

Once again, the arrival times of each wave, shown in Figure 4.18, can be used to find the wave

velocities in each material. Using the red tracer, the outputs of which are shown in Figures 4.18a-

4.18b, it is found that the wave velocities in the quartz are

CY QQL =
0.0025 m

t01
= 6000.96 m/s (4.3.32)

and

CY QQT =
0.0025 m

t02
= 4376.75 m/s. (4.3.33)

These velocities are slightly different than those in the 400 m/s impact due to the increased impact

velocity. The velocities for the first pressure and shear waves, which should be the same for the

second two waves since the WC should remain elastic, are

CWC
L =

0.009345 m− 0.005025 m

t3 − t03
= 6823.57 m/s (4.3.34)

and

CWC
S =

0.009345 m− 0.005025 m

t4 − t04
= 4606.03 m/s, (4.3.35)

respectively. Once again, these are slightly different than the velocities found in Equations 4.3.9 and

4.3.10, however, this could be due to what point in the wave profile the arrival time was chosen.

These velocities are also fairly close to those given by Frutschy and Clifton [37] where for pure WC,

CWC
L = 6858 m/s and CWC

S = 4300 m/s.

Using the same approach as that for the two driver configuration, the edge waves are first

analyzed, shown in Figure 4.19. At the YQ-sample interface, the time it takes for the edge waves to

travel to diameter d1 is

dY Q
√

2

CY QQL
. (4.3.36)

Since the sample is so thin, it is assumed that the waves travel at the same velocity through the

sample as they do in the WC backing plate. Thus, the time for the edge waves to travel from
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Figure 4.19: Edge wave diagram for y-cut quartz one driver sandwich configuration.
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Figure 4.20: x-t diagram for y-cut quartz one driver sandwich configuration with a focus on the
first shear wave resulting from the QL wave in the quartz.

diameter d1 to the point of observation at the rear surface of the target is

√
(DWC)

2
+
(
d1
2

)2
CWC
L

. (4.3.37)

In this equation, DWC = dWC +dS . At time t4, shown in Figure 4.20, when the shear wave reaches

the back surface of the anvil, a certain amount of time tr should be allotted for the data to be

collected before the edge waves set in. This consideration results in the following constraint

t4 + tr =
dY Q
√

2

CY QQL
+

√
(DWC)

2
+
(
dH−2dY Q

2

)2

CWC
L

=
dY Q

CY QQL
+
DWC

CWC
S

+ tr, (4.3.38)
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Case dYQ (m) dH (m) dS (µm) tr (ns) dWC (mm) t4 (µs) t6 (µs)

1 0.01 0.025 25 623.59 2.81 2.82 2.90
2 0.005 0.025 25 786.58 3.55 1.61 1.92
3 0.015 0.05 25 1288.42 7.1 4.05 4.97
4 0.02 0.05 25 1255.62 5.65 4.56 5.80

Table 4.4: Calculated read time, tr, and tungsten carbide (WC) thickness for y-cut quartz one
driver sandwich configuration. dY Q is the thickness of the y-cut quartz, dH is the height of the
target, dS is the sample thickness, dWC is the thickness of the tungsten carbide, t4 is the arrival of
the first shear wave at the rear surface of the target, and t6 is the arrival of the second shear wave
at the rear surface of the target.

where it was used that d1 = dH − 2dY Q and t4 =
dY Q

CY Q
QL

+ DWC
CWC

S

. This is the same Equation as 4.3.17

and hence Equations 4.3.18-4.3.20 can be used to solve for DWC. As mentioned above, the sample

should be in compression for shear to be transmitted and thus the experiment must take place before

the L wave from the rear surface of the anvil reflects, hits the target and then travels back to the

rear surface of the bounding plate at time t7, shown in Figure 4.20. This results in the following

stipulation

t7 = t3 + 2
dWC

CWC
L

=
dY Q

CY QQL
+
DWC

CWC
L

+ 2
dWC

CWC
L

≥ t4 + tr. (4.3.39)

Plugging in for times t3 and t4 in terms of the lengths and wave velocities and rearranging for DWC

results in

DWC =
tr + 2 dS

CWC
L

3
CWC

L

− 1
CWC

S

. (4.3.40)

In Equation 4.3.39, the ≥ sign was set to equal the quantity on the right to solve for the worst

case scenario. Since YQ and aluminum 6061-t6 are well matched, the L wave reflecting off of the

front surface of the target is not of concern when it hits the YQ-aluminum interface (as it was in

the two driver configuration for the reflection off of the YQ-WC interface). Thus, Equations 4.3.38

and 4.3.40 can be used to solve for the read time and anvil thickness by varying the height of the

target, quartz thickness and sample thickness. The summary of these results is given in Table 4.4.

Again, the shortest arrival time between the edge waves and the arrival of the reflected L wave from

the rear surface of the anvil back to the target was selected, from which the shear wave arrival at

the anvil back surface was subtracted to find the actual read time due to the rounding off of the

thickness of the WC.

In Table 4.4, the analyzed YQ was thicker for the taller targets in cases 3 and 4 to see if the read
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time would be increased from the two driver design. As can be seen in Table 4.4, the read times

are much larger for this configuration especially where the YQ is thicker, but once again the second

shear wave will hit the rear surface of the anvil during the read time. This is in fact the case for

all of the configurations, where the read time between the two shear wave arrivals will be 618.4 ns

for the first case, it will be 309.20 ns for the second case, and it will be 927.6 ns and 1236.80 ns for

the last two cases, respectively. Thus, to increase the read time of the experiment, the YQ driver

plate can be made thicker, which seems to work well, however, only to a certain extent. In Table

4.4, case 4 has a thicker quartz driver than case 3, which has the same height of the target, however,

their read times are about the same (ignoring when the shear wave arrives). The advantage here

to making the quartz thicker is that the time between shear wave arrivals is larger, but it appears

that the read time prior to edge wave arrival or decompression of the specimen decreases. Overall,

it is clear that both quartz thickness and the height of the target can also be altered, depending

on the dimensions of the loading system. By altering the target parameters, the experiment can be

optimized for a larger read time at the higher level of shear stress observed for the first shear wave.

4.3.3.1 Checking Assumptions

Once again the driver and backing need to be checked to make sure that they remain elastic

throughout the experiment. Equation 3.6.8 was again used to find the maximum shear stress and

Equation 2.1.68 was implemented to determine if the materials yielded. The analysis was run for a

case where the sample, polyurethane, had a lower impedance than the y-cut quartz and for a sample

made of tantalum, with a higher impedance to see if it was necessary to have a lower impedance

material as in the oblique gun experiments. The results of these calculations are shown in Figures

4.21a, 4.21b, 4.21c, and 4.21d.
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QL 

(a) YQ Driver Polyurethane Sample. 

QL 

(b) WC Backing Polyurethane Sample.
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QL 

(c) YQ Driver Tantalum Sample.

 

QL 

(d) WC Backing Tantalum Sample.

Figure 4.21: Mises criteria for driver and backing in y-cut quartz one driver sandwich configuration
for a tantalum and polyurethane sample with maximum shear stress to determine if material is
yielding.

From Figures 4.21a and 4.21b, it is clear that both the driver and backing remain elastic for the

polyurethane sample. The same is mostly true for the tantalum sample in Figures 4.21c and 4.21d

however, the WC slightly yields for a short period of time. Since it falls below the Mises criteria

for most of the simulation, it can be utilized for both materials with an impact of 450 m/s. If the

yielding of WC at the very beginning of the simulation is of concern, the impact velocity can be

lowered.

Once again, the 1D strain with superimposed shear stress assumption must be checked. This

tensor is defined in Equation 4.3.26. The tracer locations correspond to those shown in Figure 4.17.

In Figures 4.22a-4.22c, it is clear that the assumptions made in the stress tensor in 4.3.26 for stresses

σxx, σyy and σzz agree with the simulation, where σyy and σzz are equal. There is a slight difference
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−𝟓. 𝟗𝟕𝟒 

−𝟒. 𝟔𝟒𝟕 

(a) σxx

 

−𝟒. 𝟔𝟒𝟔 

−𝟓. 𝟗𝟕𝟔 

(b) σyy 

−𝟒. 𝟔𝟒𝟕 

−𝟓. 𝟗𝟕𝟕 

(c) σzz

 

(d) σxy 

−𝟏. 𝟐𝟐𝟓𝒙𝟏𝟎−𝟑 

(e) σxz

 

(f) σyz

Figure 4.22: Outputs from the stress tensor for the one driver y-cut quartz sandwich configuration.
Tracer taken midway through the polyurethane sample and shown in units of (m).
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(a) σxx
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(b) σyy
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(d) σxy

 

−𝟎. 𝟒𝟒𝟓 

(e) σxz

 

(f) σyz

Figure 4.23: Outputs from the stress tensor for the one driver y-cut quartz sandwich configuration.
Tracers taken midway through the driver (red), midway through the tantalum sample (green) and
at the sample-backing interface (light blue) and are shown in units of (m).
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(a) Polyurethane

 

(b) Tantalum

Figure 4.24: Stress path and yield surface for tantalum and polyurethane samples in the one driver
y-cut quartz sandwich configuration.

between the two however, it is by only 0.1%. It is also interesting to note that σxx is also equal to

σyy which coincides with the hydrodynamic assumption commonly used for shock waves. Figures

4.22d and 4.22f also coincide with the assumption that the only shear is in the xz direction, which

is shown in Figure 4.22e. Interestingly enough, the case with the higher impedance sample also falls

within the assumptions of the stress tensor, as can be seen in Figure 4.23. Here the shear stress is

much larger than for the polyurethane configuration.

Now that the assumptions have been shown to hold for the stress tensor, the stress path vs. yield

surface can be found using Equation 4.3.27 and the approach for the two driver target described in

Section 4.3.2.1. The calculations for the two samples are shown in Figures 4.24a and 4.24b. For

both cases in Figures 4.24a and 4.24b, the stress path ends up in a state of pure shear at the highest

value of shear stress. Once again, it is interesting to note that, although tantalum has a higher

impedance than y-cut quartz, it too reaches a state of maximum shear at the highest value of shear

in the simulation. These results indicate that both samples could potentially be used in the one

driver y-cut quartz sandwich configuration to find the strength of each material.

4.3.3.2 Calculating Strength, Strain-Rate, and Impactor Thickness

To find the strength of the material, the transverse velocity at the rear surface of the anvil

backing must be found. Figures 4.25a and 4.25b show the velocities for the polyurethane and

tantalum samples with the color of the tracer corresponding to the position of the tracers in Figure

4.17. The only difference in positions is for the polyurethane configuration, which has a wider

backing and hence has the rear surface tracer located at 0.015025 m in the simulation. As can be

seen, only the velocities at the sample-backing interface and the backing rear surface were shown
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for both materials. The reason for this is that these velocities are much smaller than the shear

velocities throughout the remainder of the target and hence it is easier to see them without the

other data. The velocities in the polyurethane example are much smaller than the tantalum setup

due to the large impedance mis-match between polyurethane and tungsten carbide, where the shear

impedances are 1.302 x 106 kg/m2/s [60] and 66.22 x 106 kg/m2/s [37], respectively. Using Equation

4.1.2 with density ρWC = 15400 kg/m3, shear wave velocity CWC
S = 4606.03 m/s found above, and

rear surface velocity 0.0343 m/s for the polyurethane, it is found that the shear stress is,

τ =
1

2
ρWCC

WC
S vp = 1.21 MPa. (4.3.41)

The maximum value in polyurethane, with σ0
Y = 2.1 MPa, is 1.21 MPa which indicates that this

experiment can theoretically be used to find the strength of the sample material. Unfortunately, the

velocity observed is quite low and hence a backing with a lower impedance would be recommended

for practical purposes. For the tantalum case, the rear surface velocity 12.55 m/s can be used with

Equation 4.3.41 to get 0.445 GPa, where the maximum value is
σ0
Y√
3

= 0.445 GPa. Once again, this

result shows that this experiment could be implemented as a method to measure the strength of

tantalum.

Next, the strain-rate can be found from the velocity difference between the two sides of the target

using Equation 4.2.1. The velocity at the y-cut quartz-polyurethane interface, shown in Figure 4.17

at 0.005 m, is 211.6 m/s. This is the velocity profile after reflection at the y-cut quartz-sample

interface which is different than the in-situ velocity in the quartz. The velocity at the rear surface

of the sample is shown in Figure 4.25a as 0.0171 m/s — or half of the backing rear surface velocity.

The sample is 25 µm thick which gives a strain rate of 8.46 x 106/s. For the tantalum sample,

the velocity at the front of the tantalum sample is 174.5 m/s, the velocity at the back surface is

6.241 m/s and the thickness is the same resulting in a strain-rate of 6.73 x 106/s. The strain-rate

in the target was found from the Laslo simulations and is shown in Figure 4.26. As can be seen,

the strain-rate for the polyurethane sample is 5.742 x 106/s according to the simulation, which is

on the same order of magnitude as that given by the velocity difference calculation, but it is still off

by a a factor of 1.17. For the tantalum sample, the strain-rate is found as a factor of mesh size. It

appears that with increasing mesh size, the strain-rate is larger, but still differs from the calculated

value. Something else to note is that the strain-rate drops, but then stays at an elevated value for

a while in the polyurethane as it would in an oblique gun experiment due to the reverberations

of the shear wave inside the lower impedance sample. Although the value of the strain-rate itself
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𝒗𝒑 = 0.0171 
𝒗𝒑 = 0.0343 

(a) Polyurethane

 

𝒗𝒑 = 6.241 

𝒗𝒑 = 12.55 

(b) Tantalum

Figure 4.25: Transverse velocity at tracers throughout the one driver y-cut quartz sandwich con-
figuration for polyurethane and tantalum samples. Tracers given at the sample-backing interface
(light blue) and at the rear surface of the backing (black). Tracer locations shown in (m).
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𝛾 = 5.742x 106/s 

6 

(a) 0.2µm mesh size in polyurethane sample

 

𝛾  = 8.47x 105/s 

 

5 

(b) 0.2µm mesh size in tantalum sample
 

𝛾 = 1.234x 106/s 

 

5 

(c) 0.25µm mesh size in tantalum sample

 

𝛾 = 3.55x 106/s 

 
6 

(d) 1.0µm mesh size in tantalum sample

Figure 4.26: Strain-rate in polyurethane and tantalum samples in one driver y-cut quartz sandwich
configurations. Tracer shown in (m).

could be mesh dependent, it does appear that the strain-rate is closer to being constant for a larger

portion of time for the lower impedance polyurethane sample. At this point, it is not clear why the

strain-rate behaves so differently for the various mesh sizes and why the velocity calculation differs

from the simulation value, however, this is a question to be pursued in the future and could be due

to the complexities of using y-cut quartz as a driver material and the reflections that occur at the

driver-sample interface. In practice, to calculate the strain-rate, the front surface velocity could be

found by using a simulation since it would be difficult to measure in an experiment. This value

would be combined with the rear surface measurement on the anvil to find the strain-rate.

The final calculation to be made is for the impactor thickness and the same approach described

in Equations 4.3.30-4.3.31 can be used.
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4.4 Limitations

4.4.1 CTH Simulations

Although Laslo captures the one dimensional effects of the wave propagation in both the two

driver and one driver y-cut quartz sandwich configurations, it does not definitively analyze the edge

wave effects. The methodology described above is only an estimate. Unfortunately, CTH hydrocode,

which does model two dimensional configurations, does not have a model for y-cut quartz. For this

reason, the one dimensional analysis with estimation of edge effects can be used. Other numerical

codes can also be implemented to mitigate this problem.

4.4.2 Slip

In y-cut quartz there are two waves (QL and QT) and both waves have longitudinal and transverse

components. As seen in the simulations, the QL wave will apply some shear at exactly the same

time it applies the longitudinal compression and this value cannot be increased by varying the

angle of impact, as it can be in an oblique gun experiment. Therefore, the benefit of the increased

longitudinal compression in resisting the shear wave is not seen. This is why it is difficult to transmit

shear at the quartz-sample interface. Furthermore, the harder the quartz is hit by the flyer, the

larger the component of shear and the greater the chance of slipping. The most shear observed to

be transmitted has been 0.35 GPa [75]. Nevertheless, epoxy was previously used with a mixture

of diamond particles between the quartz and specimen and it is anticipated that by binding the

sample directly to the quartz by depositing epoxy on the outer edges of the two materials, rather

than between them, and lapping the quartz to a smooth surface, more shear will be transmitted.

See Section 7.2 for more detail.

4.4.3 Impact Velocity

As with the oblique gun experiments, the higher the impact velocity, the larger the amplitude

of the incoming wave. If the stress level is low enough for the material to remain elastic, the shear

stress in the sample “rings up” to the level of the shear stress in the incident wave. Higher impact

velocities will result in a difference in transverse velocities at the back and front surfaces of the

sample and hence a strain-rate can be observed with consequently larger plastic strains for the same

pulse duration at even larger impact velocities. At this point the shear stress in the sample depends

on the flow stress and strain-rate [76]. Nevertheless, as long as the backing anvil remains elastic, the
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traction on the interface between the sample and the anvil will be measured. Furthermore, as long

as the quartz remains elastic, the two-wave structure will be seen. Thus, the impact velocity can be

increased until a level is reached at which the quartz and backing anvil are no longer elastic.

4.4.4 Two Drivers vs. One Driver

In the above simulations, it is evident that the one driver sandwich configuration exhibits a longer

read time than the two driver approach. Although using the one driver approach with the y-cut

quartz as the upstream bounding plate works for a variety of materials, the backing material must be

chosen carefully such that it remains elastic and has a low enough impedance that the transmitted

shear velocity is observable. Alternatives would be to use different anvils such as Ti6Al4V or Tool

Steel, which are lower impedance materials, and to use a much lower impact velocity. The one-

driver configuration will also not work for an aluminum sample since it is well matched to the y-cut

quartz and hence there would not be any reverberations between the two bounding plates. Another

concern is that it is difficult to extract the front surface velocity for the sample since reflections at

the rear surface of the quartz are quite complex. To measure strain-rate, simulations would need

to be conducted to find the front surface velocity such that it could be combined with the velocity

measured at the anvil rear surface. If using the two driver approach, more analyses would need to

be conducted to find if varying the quartz thickness and target height would help increase the read

time.

4.5 Conclusions

It has been shown that the y-cut quartz sandwich configuration can be used in a manner similar

to oblique gun experiments, but with a normal impact gun, which is advantageous since the latter

setup is more prevalent. Although both the two driver configuration consisting of the quartz plate

and an anvil or the one driver with only the quartz plate can be implemented, using only one driver

allows for a longer read time. It also appears that increasing quartz thickness can lead to a longer

read time in both setups. With both experimental setups, transverse velocity can be measured and

used to find the maximum shear stress the sample is subjected to and thus the yield strength of

it. The drawbacks to this configuration are that only a certain pressure can be attained since the

larger the longitudinal stress the larger the shear stress generated by the quartz, which results in

the sample slipping. Likewise, as the impact velocity is increased, the quartz and backing anvil
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begin to yield, which will lead to the breakdown of the two-wave structure in the quartz and the

inability to use the elastic properties in the anvil to calculate shear stress in the sample. Though

there are limitations, this technique has promise as a method of finding the strength of a material

with a normal impact configuration and experiments must be conducted for both the two driver and

one driver setups to study the results and compare them to the 1D simulations. Further analysis

must also be performed to determine if the velocity difference approach to finding the strain-rate is

indicative of the actual strain-rate in the target.
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Chapter 5

Loading Systems and Diagnostics

5.1 Loading Systems

The loading technique considered here is the plate impact experiment, performed using gas or

powder guns. In this type of experiment, a cylindrical plate is propelled by either high pressured gas

or gun powder at which point it impacts a cylindrical target of interest. This impact produces waves

in both the impactor and target. These types of experiments study the Hugoniot of the material,

spallation, phase changes, etc., and are used here to study shear response.

5.1.1 Caltech Single Stage Powder Gun

The propellant gun at Caltech, shown in Figure 5.1, is a high velocity planar impact loading

system consisting of a 3 meter long launch tube with a 36 mm diameter bore. Impact velocities

range between 400-2000 m/s and can be adjusted by the powder to sabot ratio, given by

Powder

Sabot
= 0.2799V 2 + 0.0583, (5.1.1)

where Powder
Sabot is a mass ratio and V is the impact velocity [78]. When an experiment is set to

be performed, a solenoid is used to fire the projectile. The solenoid, made by McMaster Carr, is

powered by 120 V of AC power. When the powering circuit closes upon pressing the firing switch,

the solenoid shaft pushes against a trigger pin. This pin is a tapered cylindrical rod made from 4340

steel and has a 1.8 mm diameter hole drilled 19 mm deep where a gauge steel pin fits. Upon firing,

this steel pin protrudes enough to indent the primer of a bullet by 0.6-0.8 mm. As the volume of the

primer reduces, it burns and produces a high temperature and pressure gas flame that ignites 3 g of

2400 handgun powder encased in the brass cartridge surrounding the primer. This powder produces
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an even hotter flame which travels into a hollow Vascomax C-300 maraging steel cylindrical tube

called a flame splitter that uniformly distributes the flame. The flame splitter contains 16 holes that

are evenly distributed in a 45 degree spiral which causes up to 50 g of H4198 smokeless rifle powder

surrounding this tube, in a device called the breech, to ignite uniformly [78]. The high pressure and

temperature gas in the breech exerts considerable force on a nylatron sabot that is sealed in front

of the breech in the launch tube. This sabot consists of small steps with increasing diameter and a

final stop ring that is seated in the barrel. The steps increase in diameter and form a uniform seal

between the breech and launch tube. The gas builds up uniformly behind the sabot due to the angled

and then planar surface at the breech end. Once enough pressure builds up, the stop ring is broken

and the sabot propels down the barrel. The impact face of the sabot contains counterbores where

the flyer is glued. An air gap is created between the flyer and sabot due to the sabot design which

allows for the formation of a well characterized release wave at the rear surface of the impactor. An

image of the sabot is shown in Figure 5.2.

 
Figure 5.1: Caltech single stage powder gun.

The target is mounted to a target holder, bolted 25.4 mm away from the barrel end in the vacuum

chamber such that, as the impactor hits it, part of it remains in the barrel in order to avoid tilt. This

 

(a) View at the breech end.

 

(b) View at the impact side.

Figure 5.2: Nylatron sabot used to launch projectiles at Caltech powder gun facility.
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positioning also blocks the high pressure gas from disturbing the target. The chamber is evacuated

to approximately 28 inHg gauge pressure. To measure the velocity of the impactor, several methods

are implemented. The first is the light interruption system, shown in Figure 5.3. In this diagnostic,

fiber optic cables are mounted onto the gun barrel via a “barrel extension” which attaches to the

end of the barrel. On one side, white light is directed into two cables where it is then collected

by another set of two cables on the other side of the barrel. This set is connected to photodiodes

that turn on when light is received and turn off as the projectile travels down the gun barrel and

blocks the emitted light. When the first diode is turned off, a signal is sent to the oscilloscope to

start recording; this records the second signal as well. The time interval between these two signals

along with the 40.35 mm separation between the two sets of fibers is used to find the velocity. The

second method to measure velocity is by using shorting pins. Electric shorting pins, purchased from

Dynasen (CA-1038), short upon impact due to the closure of a gap between the outer conductive

casing and a central insulting pin. A pin mixer is used to provide a signal for the pins and after

the pins short, this signal is sent to the oscilloscope. By staggering the pins in height from the

impact surface, the impact time of each pin and the distance between each pin height can be used to

calculate impactor velocity. The final method of velocity measurement is to use a fiber optic probe

with a VISAR, much like the observation of the rear surface of a target.
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Figure 5.3: Schematic of Caltech single stage powder gun and components during an experiment.
Upon pressing a trigger, the solenoid fires and indents the primer. This ignites 2400 handgun powder,
which creates a flame that travels into the flame splitter that evenly ignites H4198 rifle powder that
creates an even hotter and higher pressured gas. This gas propels a nylatron sabot with an attached
flyer down the barrel where it passes through a light interruption system that measures its velocity.
This projectile then hits the target of interest, whose velocity is measured by laser interferometry
techniques.

To ensure planarity of the impact, several alignment procedures are conducted prior to the

experiment. The first step is to align a low powered alignment laser down the gun barrel such that
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it is collinear with the barrel. To do this, the laser light is controlled by a series of mirrors [78]. At

the vacuum end, the light is focused on the target. Using a sharpee, one can mark where the light

hits the target and then use a metal insert which has a small hole drilled into its center. Once the

laser light through the small pinhole is coincident on the target with the larger dot of light, marked

without the metallic insert on the target, the laser is considered to be collinear with the barrel. This

light is now centered down the barrel and is used to align the target at the center of the impact. The

final alignment is for tilt. Three sets of bolts with springs are used and inserted into a polycarbonate

target holder. Adjustments can be made with a screw driver to adjust the tilt of the target. To

minimize tilt, the light from the alignment laser must be reflected back onto itself from the target.

The light is checked back at the laser end for concentric interference rings that indicate the laser is

collinear with itself. This process mitigates tilt down to 5 mrad [13]. To check for the tilt during

the experiment, four shorting pins distributed evenly around the target at the same radius can be

used. These pins are set flush with the surface of the target – unlike the velocity pins which are

staggered – and tilt is calculated using the pin circle radius, impact velocity and the center of the

impact time:

α =
VItc
R

. (5.1.2)

Here, α is the tilt in radians, VI is the velocity of the projectile, R is the radius of the target, and

tc is the time for the shock wave to reach the center of the target, found by subracting the earliest

pin arrival time from the average arrival time given by the 4 pins [56]. It should be noted that to

avoid edge effects it is best to place the pins in the target holder rather than the target, but make

sure that the diameter of the pins is within that of the flyer.

5.1.2 Sandia Single Stage Propellant Gun

The propellant gun used at Sandia National Laboratories is housed at the STAR (Shock Ther-

modynamic Applied Research) facility and contains an 89 mm smooth bore launch tube with a 17

m long barrel. Velocities range from 300-2300 m/s and are obtained by implementing phenolic pro-

jectiles weighing up to 1.5 kg. Unlike the Caltech system, the STAR powder gun has a direct mount

to the barrel end for the target and an optical flat is used to align the target against the barrel to

less than 1 mrad tilt. Shorting pins are used to measure the velocity, as described in the Caltech

powder gun Section 5.1.1. In the vacuum chamber, the target and impactor are decelerated by a

combination of steel plates and aluminum honeycomb [6]. Figure 5.4 shows the vacuum chamber
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end of the gun.

 
Figure 5.4: Vacuum chamber of Sandia National Laboratories’ single stage propellant gun.

5.1.3 Sandia Intermediate Velocity Gas Gun

For lower velocity impacts, Sandia’s intermediate velocity gas gun was implemented. The ad-

vantage of this system is that it does not employ gun powder and hence cleanup is much simpler

with a shorter turn-around time between shots. This gun contains a 7.6 m smooth bore launch tube

with a velocity capability of 15-1000 m/s. Helium is used to obtain pressures of up to 6000 psi (˜41

MPa). To acheive the fast release of gas needed to propel the projectile down the barrel, the gun

uses a double burst diaphragm that activates the gas release in ports contained in the gun breech.

Alignment between the target and impactor is controlled by using an optical flat resulting in a tilt

of less than 5 mrad. Projectile velocity is measured using shorting pins [6]. Figure 5.5 shows images

of the gas gun.

 

(a) Launch end of the gas gun.

 

(b) Vacuum chamber end of the gas
gun.

Figure 5.5: Sandia National Laboratories’ intermediate velocity gas gun.
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5.2 Diagnostics

The primary diagnostic used for velocity measurements in shock physics experiments has been

velocimetery. Using laser light, experimentalists can measure the velocity of surfaces traveling in

the km/s range. Two of these systems are the VISAR and PDV.

5.2.1 VISAR

5.2.1.1 Basic Theory

The Velocity Interferometer System for any Reflector (VISAR), was developed by Barker and

Hollenbach [9] in 1972. Although laser interferometry was used previously, the techniques available

required a mirror surface on which the light was reflected and only small amounts of tilt. The

VISAR, on the otherhand, allowed for a diffuse surface to be monitored while still retaining 1-2%

accuracies that previous techniques observed using nominal targets. The basic premise of the VISAR

is that one portion of light is reflected off of a moving target which causes the light to be Doppler

shifted. This shifted light is combined with itself after some delay time τ , which creates a beat

frequency that can be related to velocity. A basic schematic of a VISAR system is shown in Figure

5.6.
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Figure 5.6: Schematic of a basic VISAR system.

As can be seen in Figure 5.6, light is reflected off of a target and sent into a beam splitter; 30% of

this light is sent to a beam intensity monitor – the top photodetector in the diagram – and the rest
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is sent into a 50/50 beam splitter. Part of this light is then sent into optical path length 1 (OPL1)

and the rest is sent to OPL2, where the optical path lengths are the physical distance multiplied

by the index of refraction. Although these paths are optically equal in length, the second path

results in a time delay. The reason that both legs of light are equal in length is to allow for fringe

contrast even when a surface is diffuse or spatially incoherent. In OPL2, the light is sent into a high

index of refraction glass called an etalon and then into a 1/8 wave plate where it is reflected in the

mirror. Since it passes twice through the etalon, the waveplate becomes an effective 1/4 waveplate

resulting in the P component of light being retarded by 90 degrees and being circularly polarized.

Light from both paths are collected at the polarizing beam splitter resulting in two interferometry

fringes that are 90 degrees out of phase. This is known as quadrature and allows for acceleration

and deceleration of the target to be detected. To obtain the fringe count from the signals measured

at the detectors, s1 and s2 in Figure 5.6, the signal can be “unwrapped” with the equation

F (t) = tan−1

(
s2

s1

)
. (5.2.1)

This equation stems from the fact that the two signals are 90 degrees out of phase and hence their

ratio is a tangent function. Signals s1 and s2 are a function of the measured intensity at the detectors,

the intensity at the beam intensity monitor and normalization factors [45].

5.2.1.2 Angled Measurements

To understand mathematically what occurs in the combination of the light, the two optical fields

can be described by [17],[32],[61].

~E1 = l̂1E01e
i( ~k1·~r−ωt+φ1) (5.2.2a)

and

~E2 = l̂2E02e
i( ~k2·~r−ωt+φ2), (5.2.2b)

where l̂i is a unit vector denoting direction of oscillation of the electric field ~Ei, ~ki is the propagation

vector of the given field, E0i is the amplitude of the electric field, ~r is the position vector of the point

of observation, ω is the angular frequency, t is time, and φi is the initial phase angle of the beam.

The propagation vector can be related to the wave number by
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~ki =
2π

λ
~li. (5.2.3)

Interfering the two beams results in

~E = ~E1 + ~E2, (5.2.4)

with a time averaged intensity of

I =
∣∣∣ ~E1 + ~E2

∣∣∣ =
(
~E1 + ~E2

)(
~E1 + ~E2

)∗
= ~E1

~E1
∗

+ ~E2
~E2
∗

+ ~E1
~E2
∗

+ ~E2
~E1
∗

= I1 + I2 + ~E1
~E2
∗

+ ~E2
~E1
∗
,

(5.2.5)

where the first two terms are the intensity of each beam and the last two terms govern the interference

pattern. Writing out the interference terms results in

~E1
~E2
∗

+ ~E2
~E1
∗

= l̂1E01e
i( ~k1·~r−ωt+φ1) · l̂2E02e

−i( ~k2·~r−ωt+φ2)

+l̂1E01e
−i( ~k1·~r−ωt+φ1) · l̂2E02e

i( ~k2·~r−ωt+φ2)

= l̂1 · l̂2E01E02

[
ei((

~k1− ~k2)·~r−ωt+(φ1−φ2)) + ei((
~k2− ~k1)·~r−ωt+(φ2−φ1))

]
= 2l̂1 · l̂2E01E02 cos

((
~k1 − ~k2

)
· ~r + (φ1 − φ2)

)
.

(5.2.6)

Combining the results of these interference terms and Equation 5.2.5 gives

I = I1 + I2 + 2I1I2 cos
((

~k1 − ~k2

)
· ~r + (φ1 − φ2)

)
= I1 + I2 + 2I1I2cosΦ, (5.2.7)

where Φ has replaced the terms
(
~k1 − ~k2

)
· ~r + (φ1 − φ2).

For the general case of a VISAR probe illuminating the target at an angle and the collected light

being observed by the same probe and by an additional probe at another angle, the rear surface of

the target can be illustrated by a diffraction grating, shown in Figure 5.7. In Figure 5.7, the amount

the target moves is given by ~δr, the first VISAR probe shines and collects light at angle θ1 and the

second probe collects light at θ2. The vectors ~k+
d , ~k−d and ~ki are the propagation vectors of the two

reflected electric fields and the incident field, respectively. The distance traveled by the grating, ~δr,

can be expressed by
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Figure 5.7: Rear surface of a moving target represented by a diffraction grating.

~δr = δy ŷ + δz ẑ = Y

(
t− l

c

)
ŷ + Z

(
t− l

c

)
ẑ, (5.2.8)

where Y and Z are the amount of movement in the y and z directions. Note that the coordinate

system coincides with that given by Chhabildas [17] and represents, in that case, the y-cut quartz

reference frame. In Figure 5.7, the propagation vectors can be expressed by the angles of the probes

and the wavenumber, which is assumed to be the same for each path of light:

~ki = −k cos θ1ŷ − k sin θ1ẑ (5.2.9a)

~k+
d = k cos θ1ŷ + k sin θ1ẑ (5.2.9b)

and

~k−d = k cos θ2ŷ − k sin θ2ẑ. (5.2.9c)

Plugging this result into Equation 5.2.7, the light collected at probe 1 is

IV ISAR1 = I1 + I2 + 2I1I2 cos

(
−2k cos θ1Y

(
t− l

c

)
− 2k sin θ1Z

(
t− l

c

)
+ φ+

0

)
, (5.2.10)

where φ+
0 = φi − φ+

d . The electric field at probe 1 can then be expressed by
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~E+ = A1A2 l̂e
i(~k·~r−ωt+Φ), (5.2.11)

where it’s been assumed the field oscillates in direction l̂ and the amplitude of the electric field is

A1A2, a combination of the two original fields. In this equation, ~k · ~r = kŷ · lŷ, which means that at

some point lŷ, the VISAR is collecting the scattered light that propagates in the kŷ direction. Also,

Φ is the interference term that arises when ~ki and ~k+
d mix, given in Equation 5.2.7. Comparing 5.2.7

with 5.2.10, the interference term can be replaced and Equation 5.2.11 becomes

~E+ = A1A2 l̂e
i(~k·~r−ωt−2k(cos θ1Y (t− l

c )+sin θ1Z(t− l
c ))+φ+

0 ). (5.2.12)

Following a similar process, it can be shown that the light collected at probe 2 has the intensity

IV ISAR2 = I1+I3+2I1I3 cos

(
−k (cos θ1 + cos θ2)Y

(
t− l

c

)
− k (sin θ1 − sin θ2)Z

(
t− l

c

)
+ φ+

0

)
,

(5.2.13)

where φ−0 = φi − φ−d , which results in the electric field

~E+ = A1A3 l̂e
i(~k·~r−ωt−k((cos θ1+cos θ2)Y (t− l

c )+(sin θ1−sin θ2)Z(t− l
c ))+φ+

0 ). (5.2.14)

If each of these Doppler (or phase) shifted signals is combined with itself in the VISAR after some

delay time τ , then the signal at probe 1 becomes

IV ISAR1 (t) =
∣∣∣ ~E+ (t) + ~E+ (t− τ)

∣∣∣ = A2
1 +A2

2 + 2A2
1A

2
2 cos (α− β) , (5.2.15)

where

α− β = [kl − ωt+ Φ (t)]− [kl − ω (t− τ) + Φ (t− τ)] = −ωτ + Φ (t)− Φ (t− τ)

= −ωτ − 2k (cos θ1Y (t) + sin θ1Z (t)) + φ+
0 + 2k (cos θ1Y (t− τ) + sin θ1Z (t− τ))− φ+

0

= −ωτ + 2k (cos θ1 (Y (t− τ)− Y (t)) + sin θ1 (Z (t− τ)− Z (t)))

= −ωτ + 2kτ (cos θ1U (t− τ) + sin θ1V (t− τ))

= −ωτ + τ4ω.

(5.2.16)

The term 4ω corresponds to the change in phase that arises when the two signals are mixed. Note
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that, the change in displacement in the y and z directions was replaced by the velocities U and

V multiplied by the time delay since the delay time is assumed to be small. The total number of

fringes is given by [20]

4F (t)4λ = cτ, (5.2.17)

where 4F (t) is the fringe count, 4λ is the change of the wavelength of light from the doppler shift

due to the movement of the target, c is the speed of light, τ is the delay time and cτ is the etalon

length. Rearranging 5.2.17,

4F (t) =
cτ

4λ
=
cτ4ν
c

=
τ4ω
2π

. (5.2.18)

Plugging in for τ4ω from above into 5.2.16 and rearranging,

λ4F (t)

2τ
= cos θ1U (t− τ) + sin θ1V (t− τ) , (5.2.19)

where the left hand side is what the scope measures and the right hand side can be used to relate the

measurement to the particle velocities and angles. For the second VISAR, the approach is similar:

IV ISAR2 (t) =
∣∣∣ ~E− (t) + ~E− (t− τ)

∣∣∣ = A2
1 +A2

3 + 2A2
1A

2
3 cos (α− β) (5.2.20)

and

α− β = [kl − ωt+ Φ (t)]− [kl − ω (t− τ) + Φ (t− τ)]

= −ωτ − k ((cos θ1 + cos θ2)Y (t) + (sin θ1 − sin θ2)Z (t)) + φ−0

+k ((cos θ1 + cos θ2)Y (t− τ) + (sin θ1 − sin θ2)Z (t− τ))− φ−0

= −ωτ + kτ ((cos θ1 + cos θ2)U (t− τ) + (sin θ1 − sin θ2)V (t− τ))

= −ωτ + τ4ω.

(5.2.21)

Using Equation 5.1.2 and rearranging terms results in

λ4F (t)

2τ
=

1

2
((cos θ1 + cos θ2)U (t− τ) + (sin θ1 − sin θ2)V (t− τ)) , (5.2.22)

which is what VISAR 2 measures. Hence, the VISAR measurements can be used to find the particle



133

velocities if the angles are known.

5.2.1.3 Normal Measurements

For a central probe shining light perpendicular onto the back of a target and collecting that light

back at θ1 = 0 without the second probe, Equation 5.2.19 becomes

λ4F (t)

2τ
= U (t− τ) . (5.2.23)

This result matches the velocity to fringe count relation for a VISAR system using a normal incident

probe [20]. The interferometry delay time, τ , is a function of the etalon length and its index of

refraction and is given by [9]

τ =
2h

c

(
n− 1

n

)
, (5.2.24)

where h is the etalon length, n is the index of refraction, and c is the velocity of light in free space.

5.2.1.4 Window Measurements

When using a window to make in-situ measurements in an experiment, a correction must be

made to Equation 5.2.23. During an experiment, the light is Doppler shifted causing the index of

refraction to change due to its dependence on the wavelength of light passing through the material.

This change causes dispersion of the light [10]. The derivation of the correction term is described in

[10], the result of which is that Equation 5.2.23 becomes

λ4F (t)

2τ (1 + δ) cos θn
= U (t− τ) , (5.2.25)

where

δ = 1−
(

n0

n2
0 − 1

)
λ0
dn

dλ

∣∣∣∣
λ0

, (5.2.26)

and cos θn is the correction for the angle of the central probe. Here, n0 is the initial index of

refraction, λ0 is the initial wavelength and λ0
dn
dλ

∣∣∣∣
λ0

is the derivative of the index of refraction with

respect to wavelength evaluated at the initial wavelength. The correction δ has been evaluated for

a variety of materials at a range of pressures and is documented in [8]. For angled measurements

through a window, the analysis becomes a bit more complicated. Once again the index of refraction
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changes, however, it is much more difficult to follow an angled probe path since the light coming

in travels a different distance than the light coming out; in most cases, experimenters will use a

normal probe to shine light into the window and will collect light with two probes that are off-axis

from the normal. Following this approach results in a symmetric problem where the portion of the

measured velocity that is dependent on the index of refraction is equivalent for both probes. Since

it is difficult to track the change to the index of refraction for these angled measurements, one can

subtract one of the angled measurements from the other which cancels out the dependence on the

index of refraction and results in the equation

V (t− τ) =
V +θ − V −θ

sin θt
=

F+(t)λ
2τ − F−(t)λ

2τ

sin θt
, (5.2.27)

where V (t− τ) is the transverse velocity at the target-window interface, V +θ and V −θ are the

apparent velocities measured at the off-axis probes, and θt is the nominal angle between each of the

probes and the normal to the window — note that this is the measurement taken outside of the

window, not within the window where the beams refract. For this relation to work, the probes must

be within half a degree off from one another [29], [31].

5.2.1.5 Push-Pull VISAR

To minimize noise in the data, the push-pull VISAR was invented by Hemsing [45]. The diagram

of this modified VISAR is shown in Figure 5.8. As can be seen in this figure, rather than sending

part of the light reflected off of the target into a beam intensity monitor, the entire amount is sent

into the system. Once again light is sent to two optical path lengths, one with a delay leg, and then

recombined in a beam splitter. At this point the two signals are 90 degrees out of phase due to the

1/8 waveplate. This light is split and sent to two polarizing beam splitters which further separate

the light into S and P waves. The signals are collected at four channels that measure s1 and its

complement s
′

1, and s2 and its complement s
′

2. Using a similar approach to Equations 5.2.15 and

5.2.16, these signals can be expressed in terms of their interference components, since this is what

is used to determine the velocity:

s1 = 2A2
1A

2
2 cos (−ωτ +4φ) = 2A2

1A
2
2 cos (2π4νt+4φ) (5.2.28a)

s2 = 2A2
1A

2
2 cos (2π4νt+4φ+ π/2) = 2A2

1A
2
2 sin (2π4νt+4φ) (5.2.28b)



135

s
′

1 = 2A2
1A

2
2 cos (2π4νt+4φ+ π) = −s1 (5.2.28c)

s
′

2 = 2A2
1A

2
2 sin (2π4νt+4φ+ π) = −s2. (5.2.28d)

The complements of each signal, given by Equations 5.2.28c and 5.2.28d, can be subtracted from

the original signals, in Equations 5.2.28a and 5.2.28b, essentially amplifying the signal, and hence

canceling incoherent light due to the subtraction, resulting in better resolution.
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Figure 5.8: Schematic of a Push-Pull VISAR.

5.2.1.6 Caltech VISAR

The VISAR implemented at Caltech is the MiniVISAR system made by National Security Tech-

nologies. It is a lens-relayed, air-delay VISAR that has a fixed delay time. An image of the inside of

the MiniVISAR is shown in Figure 5.9. Although this is a lens relayed system, it has the same func-

tionality as a push-pull VISAR system. The optical path length difference for this VISAR is 149.57

mm which is equal to cτ giving a delay time of τ=0.4989 ns. From Equation 5.2.23, λ4F (t)
2τ = U .

For one fringe this means

vpf = 515.63 m/s/fringe, (5.2.29)

which is the velocity per fringe constant used to reduce data. The laser used for this system is
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the Coherent Innova 300C Argon Ion 1 W model at the 514.5 nm wavelength. To monitor the

signals, differential amplifiers are used which amplify the signal by 10 and perform the subtraction

for the complementary signals. The Agilent Technologies InfiniiVision MSO-X-4104A mixed signal

oscilloscope with a 1 GHz bandwidth is used to record the data providing enough resolution for the

1 ns rise time of the photodetectors.

 

Figure 5.9: Inside of MiniVISAR (Courtesy of National Security Technologies).

5.2.1.7 Sandia VISAR

The VISAR systems at Sandia use a Coherent V-10 diode-pumped solid-state laser at 532 nm

that pumps a neodymium-doped YAG crystal [13]. Sandia has a variety of MiniVISAR systems with

different velocity per fringe constants depending on the application. They also implement a table

top VISAR that has a variable time delay capability. These VISARs are push-pull systems and one

can be used in conjunction with another to increase the accuracy of the data. This is known as a

dual-delay VISAR. By using two VISARs with vpf’s that are not multiples of one another, a unique

solution can be obtained even in the presence of fringe jumps which often result in ambiguity in the

presence of a shock wave. As described above, each signal is a function of the phase change from

the original signal to the signal at the time of recording. Adding 2π to the initial phase results in

the same quadrature signal when the inverse tangent is found from the two signals in Equation 5.2.1

[28]. When a signal is not smooth – such as in a shock wave – it is unclear how many revolutions

have been added to the phase and thus using two vpf’s resolves this ambiguity.
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5.2.2 PDV

5.2.2.1 Setup and Theory

Photon Doppler Velocimetry (PDV) is a fiber based technique that uses mainly off-the shelf

components to measure the velocity of a moving target [74]. These components are readily available

as they are used in part for the telecommunications industry. Unlike the VISAR, the PDV is a

displacement interferometer that produces a fringe for each half a wavelength that a surface moves

[7]. In this technique, fibers are implemented to send infrared light at 1550 nm in wavelength into

a probe that focuses this light onto a surface of interest. Part of this original light is sent to a

sensor, while the remaining light endures a Doppler shift when it is reflected off of a moving surface.

The reference and reflected light are then recombined at a digitizer. This mixing of two different

wavelengths creates a beat frequency that can be related to the velocity of the moving target.
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Figure 5.10: Mixing of two wavelengths for PDV.

5.2.2.2 Homodyne System

The basic premise of the PDV can be seen in the Figure 5.10. Light is sent to a beam splitter

which collects part of it – called the reference leg – and sends the rest to be reflected at the target

surface at some position x (t). This light is Doppler shifted and recombined with the reference light

at some position, xr [5]. At the detector, the electric field can be represented as

E (t) = ER (t) cos (ΦR (r)) + ET (t) cos (ΦT (r)) , (5.2.30)

where Ei (t) is the field amplitude, φi (t) is the optical phase of each signal, R is the reference path,

and T is the target path. This formula is similar to that used for the VISAR in Equation 5.2.2a. At
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the detector, the cycle averaged output intensity can be expressed as

I (t) = IR + IT +
√
IRIT cos Φ (t) , (5.2.31)

where IR is the non-doppler shifted intensity from the laser, IT is the doppler shifted intensity from

the moving surface, and Φ (t) is the optical phase difference – which is given as the interference

between the optical phase differences for both the reflected and reference paths, ΦT (t)−ΦR (t). In

Equation 5.2.31, the first two terms on the right hand side are the continuous wave components

of the signal, while the last term contains the beat frequency information. If it is assumed that

the target undergoes a small change in velocity over some small period of analysis, τ , then the

instantaneous position of the target can be expressed as

x ≈ x (t̄) + v̄ (t̄) [t− t̄] , (5.2.32)

where v̄ is the average interval velocity and t̄ is the center of the time interval. Then the optical

phase difference within this interval of time can be approximated as

Φ (t) ≈ Φ (t1)− ω̄ (t̄) [t− t̄] , (5.2.33)

where ω̄ (t̄) = 4πv̄
λ0

is the radial beat frequency within the signal and contains the velocity information

of the target and Φ (t1) is the optical phase difference at the previous time interval. Then, much like

with the VISAR, the electrical output at the detector can be shown to be a function of this phase

difference,

s (t) = A cos
(
Φ̄ (t1)− ω̄ (t̄) [t− t̄]

)
. (5.2.34)

The frequency in the interval of interest is found using a short-time Fourier transform (STFT), which

calculates the electrical power spectrum,

S (ω, t̄) =

∫ ∞
−∞

s (t)w (t) e−iωtdt, (5.2.35)

where w (t) is the window function that extracts the beat frequency information from the peak of

the power spectrum at each point t̄ in the interval τ . The average velocity in this interval is given

as a function of the beat frequency f̄ :
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v̄ =
λ0

2
f̄ =

λ0

4π
ω̄. (5.2.36)

In this equation, λ0 is the reference wavelength of light.

5.2.2.3 Heterodyne System

Prior to impact, a target is generally stationary and hence there is no Doppler shifted light to be

mixed with reference light in order to create a beating frequency. Unfortunately, this means that no

velocity can be extracted. While this is not an issue for stationary time periods, this problem arises

for low velocities. In this case, signal noise may obscure the beat frequency and makes it difficult to

extract any relevant information. This can be seen quantitatively through the uncertainty product

which states that τ4f ≥ 1
4π (see SIRHEN manual for more details [5]). For instance, to achieve

velocity precision of 4v = 10 m/s, the peak width is given as 4f = 24v
λ0

= 1.29 x 107/s, which

indicates that the time resolution needed in the STFT technique is τ ≈ 6 ns. For small velocities on

the order of 100 m/s, 4vv = 10% which means that the velocity precision is quite poor. To mitigate

this problem, one could increase the time interval, but this leads to less timing precision. A solution

to this issue is frequency conversion.

Frequency conversion, or “upshifting”, occurs when the reference light is set to be at a different

wavelength than the light at the target. A method to do this is with an Acousto-Optic (AO)

frequency modulator. This device adds in a specified wavelength to the path of light sent to the

target, while the reference leg remains at the original frequency. Thus, when a target is traveling

at a lower velocity, it has a higher beat frequency allowing for a precise velocity measurement. The

beat frequency can be expressed as

fbeat = fmod +
2v

λ0
, (5.2.37)

where fmod is the frequency added by the AO modulator. Figure 5.11 shows a schematic of a

heterodyne PDV system used to make angled measurements for transverse velocities.

5.2.2.4 Angled Measurements

A similar analysis to that conducted in Section 5.2.1.2 can be applied to the PDV. The right

hand side of Equations 5.2.19 and 5.2.22 can be related to the reduced data from each of the side

probes, shown in Figure 5.11, although the left hand side of the equations will not have the same
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Figure 5.11: Schematic of a Heterodyne PDV System.

terms. Nevertheless, it is not necessary to have the exact description of the left hand terms provided

the PDV data can be reduced to find the apparent velocity at each probe.

5.2.2.5 Caltech PDV

The PDV at Caltech uses four channels allowing for four different probes to measure velocities.

The modification to Figure 5.11 is that light is sent from the laser into a four-way beam splitter

where it can be distributed to four different probes. It is a heterodyne velocimeter, similar to the

system shown in Figure 5.11, and is also time multiplexed, which means that channels 2 and 4 are

delayed by 4 km of single mode fiber and then mixed back with channels 1 and 3. Channels 1

and 2 are collected at one photosensor and channels 3 and 4 are collected on another sensor. Since

the signals are multiplexed, the delay allows for the differentiation between each signal. Another

modification made to the system in Figure 5.11 is to use a laser rather than an AO modulator to

upshift the signal. An Agilent MSO 9104A 4GHz oscilloscope is used to record the signals. The

laser used is an NKT Photonic 2 W booster laser and has a 20 mW seeder laser [66].

5.3 Scattering Experiments

A series of scattering experiments were conducted to deduce what angle of probes are best to use

to obtain shear velocity measurements. These experiments were done by machining an aluminum

6061-t6 wedge and placing a PMMA wedge on top of the aluminum. The back surface of aluminum

was sand blasted with small micro-beads ranging from 44 µm to 422 µm in diameter. The goal of
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sand blasting the surface was to create a diffraction grating effect to scatter the light. As shown in

Figure 5.12, light was shined through a probe normal to the surface and was collected at a second

probe off-axis from the normal. The results of this study analyzed qualitatively how much light was

returned by looking at the lissajous of the two VISAR signals for the side probe. A target alignment

system was used consisting of a cylindrical holder that was machined such that the two wedges

could be securely placed within the holder and rotated such that the back surface of the PMMA was

parallel to the horizontal plane allowing for accurate measurements. Figure 5.13 shows the holder at

the top of the image and the aluminum-PMMA assembly at the bottom of the figure. The PMMA

window was polished with a series of sand paper and Cerium-Oxide polishing compound made by

Buehler. During these experiments, it was found that polishing the PMMA and microbead-blasting

the aluminum surface with beads in the range of 44 µm to 89 µm resulted in the most light returned

at angles of approximately 5-20 degrees. A similar study was conducted at Sandia without a window

and it was found that light shined along the normal and collected with two probes at 17 and 25

degrees works best [3]. A variation between free surface angled measurements and windowed angled

measurements is to be expected, however, these results show that the angles found in this study

match closely to the findings at Sandia.

 

PMMA 

Window 

Aluminum 

Target 

Target   
Holder 

Probe   
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Figure 5.12: Schematic of scattering experiments assembly.
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Figure 5.13: Cylindrical alignment holder for aluminum-polymethylmethacrylate wedge configu-
ration.
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Chapter 6

Experimental Setup and Results

6.1 Introduction

A variety of experiments were performed at Sandia National Laboratories to explore the novel

experimental setups previously discussed. The y-cut quartz validation experiment was conducted

at Sandia to show the ability to measure transverse velocities through a window. Oblique wedge

experiments were performed at Sandia as well and show the promise of this technique to measure

shear particle velocities and hence strength.

6.2 Y-Cut Quartz Validation Experiments

As previously mentioned, y-cut quartz generates a two-wave structure upon impact where both

waves contain longitudinal and shear velocity components. Utilizing this well analyzed material,

experiments were performed to test the off-axis probe configuration in its ability to measure trans-

verse velocity. An aluminum impactor was used to impact a y-cut quartz sample at 171.1 m/s and

a lithium fluoride window was implemented to measure the in-situ velocities. The experiment was

conducted at Sandia National Laboratories’ STAR facility using the intermediate velocity gas gun,

discussed in Section 5.1.3. Figure 6.1 shows the four shorting pins used to find the velocity of the

flyer as well as the four pins used to find the tilt, which was calculated to be 0.41 mrad.

6.2.1 Target Preparation

A 0.5021” thick y-cut quartz sample 2.153” in diameter and with a density of 2.6362 g/cm3 was

used in conjunction with a 0.4955” thick lithium fluoride window that was 1.2512” in diameter and

had a density of 2.6320 g/cm3. The window was plated with a 2500 angstrom thick aluminum spot
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Figure 6.1: Y-cut quartz validation experiment with a lithium fluoride window bonded into a
target holder at Sandia National Laboratories’ STAR facility.

that was diffused with micro-glass beads in order to diffract light and the two materials were bonded

with an epoxy applied between the materials with a -0.0005” thick glue bond. The negative sign

of the glue bond indicates that it was thinner than the smallest measurement that could be made

precisely. Figure 6.1 shows the target setup.

6.2.2 Probes

Three probes were used to measure the velocity, with one probe normal to the window rear

surface and the other two off-axis from the window. The central probe was used to focus light onto

the aluminum spot, where it was reflected and also scattered such that it could be collected back at

the focusing probe and also at the two side probes. Equation 5.2.27 was used to find the transverse

velocity from the two side measurements, and 5.2.25 was used to find the normal velocity from the

central probe. Three MiniVISARs were used for each of the probes with vpfs of 70.69 m/s/fringe for

the normal probe, 61.50 m/s/fringe for one of the side probes and 26.60 m/s/fringe for the other.

The window correction 1 + δ in Equation 5.2.25 was 1.29 for the LiF window. Note that it did not

need to be used on the side probe measurements as previously explained for Equation 5.2.27. Figure

6.2a shows an image of the probe holder used to mount the probes onto the target. A cylindrical shell

fits around the LiF window on top of which rests a polycarbonate holder with two ball-and-socket

holders for the side probes, allowing for maneuverability, and a central hole for the focusing probe.

Once light return was checked on each probe, the angles of each of the probes were measured.

Figure 6.3 shows a schematic of the measurements made. Light from a low powered green light laser
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(a) Probe holder assembly.

 (b) Cone used to find center
of target holder.

 
(c) Light shinging through
probes traced onto paper.

Figure 6.2: Probe holder for central and two off-axis probes for the y-cut quartz validation exper-
iment.

was split to shine light into each of the three probes – only the two side probes are shown in Figure

6.3a, but the approach is the same for the central probe. An assembly using a mill held the probe

holder with the probes and was moved in known increments vertically from the table. A sharp cone,

shown in Figure 6.2b, was used to find the center of the target projected onto a piece of paper below

the probes. The light shining into the probes moves further out from the center as the assembly

is moved away from the table and by recording the distance of the center of the light circles and

correlating it to the height the probes were moved from the table, the angles were found. An image

of these circles of light is shown in Figure 6.3a. The equation fitting the height to the distance from

the center as a function of angle is given by the linear relationship

h = md+ b, (6.2.1)

where

tan θ =
d

h
. (6.2.2)

To solve for θ, one can look at the triangle formed in Figure 6.3b from d and h and see that, when

the assembly is at some distance d from the table, where at height h = 0, d = −b/m, and at distance

d = 0 from the center, the variable h = b, plugging in for d and h into 6.2.2 results in

θ = tan−1

(
− 1

m

)
. (6.2.3)

The angles for the two side probes were 19.5451 degrees and 19.9508 degrees, which average out
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Figure 6.3: Schematic of the methodology used to measure probe angles in y-cut quartz validation
experiment.
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to 19.7480 degrees for the VISAR analysis. The angle for the central probe was 1.5 degrees off from

the center normal. Equations 5.2.25 and 5.2.27 can be used to find the velocities at the target-

window interface. Note that for this experiment, the normal measurement was actually affected by

a reflection off of the rear surface of the window which means that it must be divided in half to

obtain the in-situ velocity, or

U (t− τ) =

F (t)λ
2τ(1+δ)

2 cos θc
. (6.2.4)

Both probes were manufactured by Oz Optics for 532 nm wavelength light with a spot size of 200

µm for the focusing probe and a 28 mm focal length. The side collimating probe also had a spot

size of 200 µm which was used to collect the scattered light. Although light refracts as it enters

the lithium fluoride window, the angles with respect to the normal at the window rear surface were

used.

6.2.3 Results and Discussion

The results of the y-cut quartz validation experiment are shown in Figure 6.4. The experimental

velocities are the in-situ velocities at the target-window interface. Simulation velocities were found

using Laslo. As previously mentioned in Section 3.6.10, lithium fluoride is very well matched to

aluminum, which is also fairly well matched to y-cut quartz, thus the results show that the velocities

measured in the LiF window are actually close to the simulation, which calculates the particle

velocities in the quartz. In Figure 6.4a, it is clear that there are some odd reflections in the velocity

profile which could be due to the measurement taking place at the rear surface of the LiF rather than

in-situ. This anomaly was detected due to the fact that the normal velocity profile occurred later in

time than the profiles from the side probes. Nevertheless, the ultimate value of the velocity is similar

to the simulation. Furthermore, measurement of normal velocities through a window is a well-known

technique that has been proven to work. The real concern that this experiment analyzed was the

transverse velocity profile. This is shown in Figure 6.4b. As can be seen here, the magnitude is quite

similar to the simulation value and the only discrepancy is the drop in the velocity at about 2.6 µsec

resulting in a slightly shorter pulse. This could be due to reflections within the target. However,

despite this small variation, it is clear that the measured shear velocity with the windowed approach

is representative of the actual velocity in the experiment and thus it can be assumed that using a

window with two side probes is a valid technique to finding the shear velocity at the target-window

interface.
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(b) Shear particle velocity.

Figure 6.4: Experiment velocities vs. simulation velocities for y-cut quartz validation experiment
with an impact at 171.1 m/s.
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6.3 Oblique Wedge Experiments

Once the use of off-axis probes was proven to be valid for the measurement of transverse ve-

locity in the y-cut quartz validation experiment, this technique could be used to find the in-situ

velocities in the novel oblique wedge configuration. In these experiments, a copper impactor pro-

pelled at nominally 1000 m/s was used to impact the composite target configuration consisting of

a polymethylmethacrylate driver, aluminum 6061-t6 target and a lithium fluoride window. This

is analogous to the configuration discussed in Section 3.6 where the incident shock angle was 10

degrees and the transmitted shock angle was 5.33 degrees as shown in Table 3.4. These experiments

were conducted at Sandia National Laboratories’ STAR facility using the powder gun discussed in

Section 5.1.2. The target plates used to hold the target implement the same design as shown in

Figure 6.1.

6.3.1 Target Preparation

The targets of interest were machined out of 6061-t6 aluminum and a polymethylmethacrylate

(PMMA) sleeve was made with a separate PMMA wedge into which the aluminum wedge could fit.

This was deemed to be the best approach for such a complex configuration. The composite target

was assembled by first placing the wedge into the PMMA sleeve, shown in Figure 6.5a, and then

placing the aluminum wedge on top of the PMMA and spinning these pieces until the rear surface

of the aluminum was parallel to the PMMA sleeve back surface, which was machined such that

the rear surface was angled to be parallel to the aluminum target. The aluminum alignment sleeve

shown in Figure 6.5a was used so that the PMMA-aluminum assembly could be placed in it and it

was machined such that the bottom and top of the piece was angled at the same angle as the rear

surface of the aluminum specimen. The reason for this angle on both sides was such that, when the

PMMA-aluminum assembly was placed inside the cylinder and spun around to be parallel to the

back surface, the configuration would sit flat on a horizontal surface and a weight could be placed

on the back surface as the epoxy between the PMMA wedge and sleeve and the aluminum wedge

and PMMA wedge cured. After the epoxy cured, a drop sized amount of epoxy was placed on the

aluminum onto which the LiF window – with the same design as that used for the y-cut quartz

validation experiment – was placed. A weight was also placed on this setup to ensure the epoxy

spread out and dried evenly.

Originally, the window for this experiment was intended to be angled, but it was decided that it

was much simpler to use a window parallel to the rear surface of the aluminum such that the index
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(a) Aluminum alignment cylinder with PMMA wedge and
sleeve and aluminum wedge (from left to right).

 

(b) Assembled target con-
figuration with PMMA and
aluminum.

 

(c) Placement of window
onto target assembly.

Figure 6.5: Assembly procedure of oblique wedge target.

of refraction dependent portions of the optical path lengths of the side probes through the window

canceled out and Equation 5.2.27 could be used. The thickness of the window was chosen so that

the measurement was made before the transmitted shock in the LiF hit the rear surface, at which

point the window could separate from the target.

To measure the density of the aluminum wedge, a measurement of each of the three sides was

taken, as shown in Figure 6.6a in the cross-sectional view. To find the volume of the wedge, each of

the sides of the wedge target can be thought of as being inscribed in a cylinder whose total volume

is

π

(
h

2

)2

d = A+B + C. (6.3.1)

This is the sum of the three volumes shown in Figure 6.6b, where C is the volume of the wedge.

These volumes can be written as

A =
1

2
π

(
h

2

)2

d1 (6.3.2)

and
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Figure 6.6: Diagrams for measurement of density in wedge target.

B =
1

2
π

(
h

2

)2

d2. (6.3.3)

Then,

C = π

(
h

2

)2

d−A−B = π

(
h

2

)2

d− π
(
h

2

)2

(d1 + d2) =
1

2
π

(
h

2

)2

d. (6.3.4)

The height h can be found by the relations

d1 =
√
a2 − h2 (6.3.5a)

and

d2 = d− d1 =
√
b2 − h2. (6.3.5b)

Combining 6.3.5a and 6.3.5b results in the relation

√
a2 − h2 +

√
b2 − h2 − d = 0. (6.3.6)

From here, h can be solved for and then used to find the volume of the wedge, which is then divided

by its mass to obtain the density.
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6.3.2 Setup

The oblique wedge experiment was assembled into a target plate similar to that shown in Figure

6.1. To measure the arrival of the incident shock wave at the PMMA-aluminum interface – such that

the wave velocities could be found based on time and distance traveled in the aluminum specimen –

a separate PMMA sample was tested simultaneously. This configuration is shown in the schematic

in Figure 6.7. Here, the front and back surfaces of the PMMA sample were coated with diffused

aluminum such that two probes could be used to measure the velocity at the front and the back

of the target. Although the Hugoniot of PMMA is known and the arrival time at the front of the

aluminum target could be found using impedance matching, it was concluded that it would be more

accurate to test this in real time by calculating the velocity of the shock through the PMMA for the

experiment. Prior to the experiment, the impact of the PMMA with the copper flyer was analyzed

to see if the PMMA was overdriven, which means that the shock velocity is greater than the elastic

wave velocity. For this case, it turned out that the shock velocity was in fact greater which meant

that a window would not need to be used since there were no wave interactions. Thus, only the

free surface velocity needed to be measured. The probes used for the oblique wedge target in this

experiment were the same ones described for the y-cut quartz validation experiments. Bare fiber

probes were used for the PMMA sample.
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Figure 6.7: Oblique wedge and PMMA sample configuration schematic.
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6.3.3 Results and Discussion

Table 6.1 shows the calculated results of the two main experiments and Figures 6.8 and 6.9 show

the particle velocity profiles. In Table 6.1, “vpf Normal” refers to the velocity per fringe constant

used for the central probe on the oblique wedge target, “vpf Left” and “vpf Right” are for the

two off center probes, and “vpf PMMA” front and rear are for the PMMA sample. Note that for

experiment 2, the normal probe had a dual-delay system and hence had two different values. The

angles θ Normal, Left and Right are the measured angles for the normal, left and right probes. The

incident shock velocity corresponds to the shock velocity in the PMMA sample which in turn allows

for the shock arrival time to be solved for at the front of the aluminum wedge target – given by

“shock arrival target front” — by using the thickness of the PMMA sleeve and the PMMA wedge,

taken halfway up the wedge specimen. The thickness of the PMMA wedge is also measured midway

up, where the bottom thickness of the triangular wedge was divided in half to find the thickness in

the middle. CL and CS refer to the longitudinal and shear wave velocities in the target, respectively.

Here it should be noted that finding the shock arrival time at the front of the aluminum wedge

is not only crucial to determining wave velocity, but it is also rather tricky. For experiment 1, the

arrival time was found to be 8.3468e-7 sec, based on the incident shock velocity of 4.1567 km/s and

the combined PMMA wedge and sleeve thickness of 2.4695 mm. However, this is assuming that the

impact at the front of the oblique wedge target at the driver front surface occurred at time zero,

which it did not. In reality, the time of impact at the center of the target holder was at 61.5 ns.

The average amount that the aluminum wedge was offset from the target holder was by -0.004 mm

which means that the corrected time of incident shock wave arrival at the front of the aluminum

wedge was 8.3468e-7 sec + 61.5 ns + 0.004 mm/1.0206 km/s = 9.0010e-7 sec, where the last term is

just the aluminum offset divided by the impactor velocity. The same approach was repeated to find

the arrival time in the second experiment. Looking at the calculation in Table 6.1, it appears that

the measured incident shock wave velocity is very close to the simulation, however, the longitudinal

and shear wave speeds are quite a bit off. The variation in the shear wave velocity between the two

experiments could be due to the difficulty in determining when this wave arrives since its onset is

gradual, unlike the shock wave.

As can be seen in Figures 6.8 and 6.9, the velocity profiles match very well to the simulation

indicating that the techniques used to measure the velocity profiles are accurate. It is interesting

to point out that at the beginning of both of the transverse velocity profiles, there are what look

like dips in the data. Originally, these were sudden jumps in between two data points that were
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Experiment 1 Experiment 2 Simulation

Window Thickness (mm) 12.9328 12.9346 12.0
Window Diameter (mm) 25.4747 25.4337 25.0
Window Density

(
g/cm3

)
2.6338 2.6295 2.638

PMMA Sample Thickness (mm) 1.9050 2.2657 N/A
PMMA Sample Diameter (mm) 29.9390 50.9270 N/A
PMMA Sample Density

(
g/cm3

)
1.1819 1.1760 N/A

PMMA Sleeve Thickness (mm) 1.1220 1.1164 2
PMMA Wedge Thickness (mm) 2.2495 2.2913 2.293
Target Density

(
g/cm3

)
2.7228 2.7447 2.703

Target Rear Angle (deg) 5.0239 5.1979 5.3286
Target Thickness (mm) 3.5199 3.5351 3.504
Impactor Thickness (mm) 7.9207 12.6944 8.0
Impactor Diameter (mm) 87.4268 87.4928 34
Impactor Density

(
g/cm3

)
8.3808 8.1681 8.930

Impactor Velocity (km/s) 1.0206 1.0335 1.0
Target Tilt (mrad) 1.52 2.73 N/A
vpf Normal Probe (m/s/f) 223.1 125.35, 291.95 N/A
vpf Left Probe (m/s/f) 223.1 61.5 N/A
vpf Right Probe (m/s/f) 223.1 70.69 N/A
vpf PMMA Front (m/s/f) 58.66 125.35 N/A
vpf PMMA Back (m/s/f) 58.66 291.95 N/A
θ Normal (deg) 0.9023 0.8980 N/A
θ Left (deg) 19.7433 20.2120 N/A
θ Right (deg) 19.7194 20.6960 N/A
Incident Shock Velocity (km/s) 4.1567 4.0044 4.0121
Shock Arrival Target Front (sec) 9.0010e-7 9.6009e-7 1.07e-7
Shock Arrival Target Rear (sec) 1.725e-6 1.741e-6 1.663e-6
Shear Arrival Target Rear (sec) 2.138e-6 2.064e-6 2.049e-6
CL (km/s) 4.2671 4.5267 5.9089
CS (km/s) 2.8434 1.7831 3.5792

Table 6.1: Experiment parameters, calculations and results for oblique wedge experiments. “vpf
Normal” refers to the velocity per fringe constant used for the center probe on the oblique wedge
target, “vpf Left” and “vpf Right” are for the two off center probes, and “vpf PMMA” front and rear
are for the PMMA sample. θ Normal, Left and Right are the measured angles for the normal, left
and right probes. “Incident shock velocity” corresponds to the shock velocity in the PMMA sample.
“Shock arrival target front” is the arrival time of the shock at the front of the aluminum target,
while “shock arrival target rear is the arrival of the shock at the rear surface of the aluminum”.
“Shear arrival target rear” is the time the shear wave arrives at the rear surface of the aluminum
target. CL and CS refer to the longitudinal and shear wave velocities in the target, respectively.
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Figure 6.8: Longitudinal and transverse particle velocities for experiment 1 measured at the
aluminum-lithium fluoride interface. Experimental data shifted such that shock wave arrival at
the interface in the experiment coincides with timing of the simulation.
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Figure 6.9: Longitudinal and Transverse particle velocities for experiment 2 measured at the
aluminum-lithium fluoride interface. Experimental data shifted such that shock wave arrival at the
interface in the experiment coincides with timing of the simulation.
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corrected for. There could be several reasons why these could have occurred. For one, there could

be a slight difference in the left and right probes during the elastic foot portion of the profiles which

could be from a slower rise in one curve due to a VISAR delay or slower detectors. Another reason

could be that one probe has more fringes than the other (i.e. 9 for the left and 7 for the right for

the second experiment). Thus, a small error in the vpf could lead to a large error in the velocity

especially where the shock wave arrives prior to shear arrival. This would affect the calculated shear

wave velocity since the two side probes measure components from the longitudinal velocity as well.

These issues indicate how sensitive the result is to any variations from the two probes and illustrates

how difficult the setup of this experiment is. Nonetheless, since it does not make sense that data

would jump suddenly from one point to the next in the shear wave, it was corrected for to find the

underlying gradually ascending velocity curve.

Despite the blip at the beginning of the shear wave, the profiles still match exceptionally well

and would continue to improve as the experiment became more routine rather than an exploration

of a new diagnostic. Since the particle velocities match, the discrepancies in the wave velocities

could be issues with timing or target measurements. For instance, if the thicknesses of the wedged

samples were measured even slightly off, this could alter the apparent velocity of the two waves.

As an example, if the measured longitudinal wavespeed in the first experiment was actually 5.9089

km/s, as in the simulation, then the thickness of the aluminum wedge should have been 4.87 mm as

opposed to the 3.5199 mm measured value. This is only a difference of 1.3501 mm and could have

resulted from estimating the thickness of the target halfway up to be half of the base measurement.

Furthermore, since the front of the oblique wedge target was not completely planar, as indicated by

the offset from the target holder, it is difficult to accurately say when the time of impact occurred

at the center of the target and hence calculating shock wave arrival at the front of the aluminum

target becomes difficult. Despite these concerns, this experiment shows that an oblique wedge

configuration can be used to transmit and measure the transverse particle velocity from a shear

wave. Specifically, experiment 2, where the probe holder assembly was switched to a single bar in

which holes were drilled for specific angles, matches quite well with the simulation. The reason this

approach could have worked better is that the probes were less likely to move when forced to stay

in a drilled angled hole rather than in a ball-and-socket type joint that could move. Furthermore,

the vpfs used were much smaller than in experiment 1, which would have allowed for more velocity

resolution at the lower velocity range for the transverse measurement. In future experiments, if the

windowed approach is used and hence the wavespeeds need to be used to find the longitudinal and
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shear stresses, careful measurement techniques should be implemented on the PMMA and aluminum

wedges. Timing issues also need to be resolved – perhaps there were some discrepancies between

what time zero was thought to be and when it really occurred with respect to the center of the

target. Finally, as mentioned in Section 3.6.11, using an anvil backing could potentially eliminate

the need to know the shear and shock wave velocities in the wedge since the elastic velocities in the

anvil backing material would be known, the elastic shear wavespeed in the wedge target could be

used as an estimate, and the shock wave velocity in the wedge could be found using shock polar

analysis.
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Chapter 7

Summary and Future Work

7.1 Summary

The focus of this dissertation has been to study material response to shear at high pressures and

strain-rates. In order to do this, two novel configurations were introduced that implement transverse

waves to study the shear response and strength of materials. The first experimental setup was the

oblique wedge configuration, which implements an angled target to generate shear waves. Upon

impact, a shock wave is generated in the driver material which is reflected and transmitted at the

driver-target interface. Due to the angle of obliquity with respect to the target, a shock is transmitted

into the specimen followed by a shear wave. The second configuration was the y-cut quartz sandwich

experiment, which uses the anisotropic properties of y-cut quartz for shear generation. Two waves

are generated upon impact that both contain longitudinal and shear components of velocity. As

these waves propagate into the other materials in the target, a pressure and shear wave is generated

for each wave and the sample of interest is subjected to shear. Both configurations are novel in their

approach in using a normal impact experiment in testing shear response.

To understand what occurs in these experiments, wave propagation through solids was discussed

in Chapter 2. The conservation equations of mass and momentum were introduced in order to

derive expressions for the jumps in velocities and tractions across an oblique elastic plane wave

incident on an interface. This example was simplified to the one dimensional case of a plane wave

travelling parallel to an interface, at which point the hydrostatic, one dimensional stress and one

dimensional strain assumptions were discussed in order to introduce the concept of material strength.

Material response past the yielding point was discussed as well to show that, as velocity increases

with increasing pressure, a shock wave will form. Using the conservation of mass, momentum and

energy, the Rankine-Hugoniot jump conditions that govern the properties across a shock wave were
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then introduced. Using these jump conditions and a linear relationship between the shock velocity,

US , and the particle velocity, up, the state across an oblique shock wave incident on an interface was

analyzed using shock polar analysis. This technique allowed for the determination of the transmitted

shock wave angle in the oblique wedge configuration, a property necessary for the design of the target.

Using shock polar analysis, a variety of parameters in the oblique wedge design were considered

in Chapter 3. The longitudinal stress in the wedged target was found and analyzed in relation to

the angle of obliquity of the incident wave in the driver material of the oblique wedge experiment.

The transmitted shear wave angle in the target was then studied with respect to the transmitted

shock wave angle as well as the angle of obliquity. It was found that the impact velocity, driver

material, and angle of obliquity could be controlled depending on the longitudinal stress and shear

response desired in the target. Numerical simulations were then performed using CTH hydrocode

to determine the shear response a particular target would exhibit. From these simulations it was

found that, while all of the targets yielded, not all of them were in a state of pure shear, which is

needed to determine the strength of a material. The cause of yielding was further elucidated by

using a stress path analysis on the yield surface of each configuration. It was found that certain

configurations can in fact measure strength. The oblique wedge design has limitations, which can be

mitigated by implementing an anvil in place of a window at the rear surface of the target in order to

measure in-situ velocities. Overall, it was found that this design is promising in finding the strength

of materials.

The next technique proposed was the y-cut quartz sandwich configuration in Chapter 4. This

design combines the oblique gun setup of experiments with the implementation of y-cut quartz for

shear generation from previous works. Simulations were performed using the Laslo code on two

designs. The first setup used y-cut quartz and a tungsten carbide driver followed by a thin sample

and a tungsten carbide backing plate, while the second eliminated the tungsten carbide driver. By

using plates surrounding a thin sample, the sample could remain in a state of pure shear at a high

strain-rate, much like the oblique gun experiments previously performed. Both configurations were

designed such that shear response could be found prior to the arrival of edge waves at the rear

surface of the composite target and while the sample was still in compression. Performing a stress

path analysis against the yield surface, it was found that both designs can be used to test the

strength of materials.

To perform these two types of experiments, loading systems must be implemented. These were

discussed in Chapter 5. An overview of the single stage powder guns at Caltech and Sandia National
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Laboratories was given, along with a description of the intermediate velocity gas gun at Sandia. The

methods used to measure impact velocity and tilt were also discussed. Laser interferometry was then

introduced as a means by which to measure particle velocities at the rear surface of each target.

The Velocity Interferometer System for any Reflector (VISAR), which allows for a diffuse surface to

be monitored at 1-2% accuracies, was described along with the configurations of monitoring probes

required to measure transverse velocities both through a window and at a sample surface. This

technique implements the Doppler shift in frequency of light reflected off of a moving target to

measure the velocity. The other particle velocity measurement technique mentioned was Photon

Doppler Velocimetry (PDV), which also uses the Doppler shift to find velocity.

Two types of experiments were performed in the course of this investigation. The first was the y-

cut quartz validation experiment, which tested the ability of a three-probe configuration to measure

shear velocities. Using the known response of y-cut-quartz, the experiment was conducted using

a window to measure the in-situ longitudinal and shear velocities using three probes and VISAR

systems. An aluminum spot was diffused onto the lithium fluoride window to scatter incoming laser

light such that it could be collected at the three probes. It was found that the measured velocities

matched well with the simulation for this setup. Since this method was proven to work on a well-

known material, it was used to measure the velocities in the oblique wedge configuration. A copper

impactor was propelled at 1000m/s into a composite target consisting of a polymethylmethacrylate

(PMMA) driver, an aluminum 6061-t6 target and a lithium fluoride window. A second PMMA

target was secured into the same target holder such that the shock velocity of the incident wave in

the driver could be found in order to calculate the shock arrival time at the front of the aluminum

target in the oblique wedge configuration. The results showed that the particle velocities at the

aluminum-lithium fluoride interface matched quite well with the simulations, which indicates that

this experiment can be used to study the shear response of a variety of materials.

7.2 Future Work

Though it has been shown that the oblique wedge configuration with a window can be used

to study the shear response of an aluminum target, for the purposes of studying a wide range of

materials, an anvil can be used instead. Section 3.6.11 outlines the elastic wave analysis that can

be used on the rear surface velocities measured in such an experiment to find the in-situ velocities

in the target. These can then be used to calculate the shear stress in the material and, for some

configurations, the strength as well. Once these experiments would be performed, they could be
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compared to simulations in CTH to see if the current models reflect the material strength exhibited

for a range of pressures and strain-rates the targets were tested at. Higher impact velocities could

also be used to extend the experiments to higher strain-rates.

For the y-cut quartz sandwich configuration, the theoretical background was described and a

model to design the targets was proposed. It appears that, in theory, both the one driver and two

driver setups would work. Nevertheless, these experiments could be performed as well to validate

the theory. A schematic for the y-cut quartz sandwich configuration experiment is shown in Figure

7.1a. Upon impact, y-cut quartz generates two waves, which both have longitudinal and transverse

components of velocity. The latter component causes the sample to be subjected to shear. Using a

high strength backing material that remains elastic, the shear stress at the sample-backing interface

can be found. The two driver and one driver configurations for this setup are shown in 7.1b and 7.1c.

Shorting pins can be used to measure the tilt of the target, with two probes in conjunction with a

PDV to measure the longitudinal and shear rear surface velocities. The PDV is described in detail

in Section 5.2.2, but it has the ability to measure low velocities and hence could be implemented for

this configuration.

To actually obtain the transverse measurements off the rear surface of the tungsten carbide, the

surface would have to be diffused. It is quite difficult to polish and roughen this surface due to the

hardness of the material, but preliminary tests have been conducted in which light was scattered to

the angled probe. In these experiments, an Electrical Discharge Machine (EDM) was used to cut

the WC, which was polished using 400 grit sandpaper. A focusing probe normal to the WC was

implemented and light was collected both at this probe and a collimating probe placed at an angle

from the normal. In an experiment, these probes could be used in conjunction with an isolator for

the collimating probe such that it does not shine light onto the target, but only collects the diffracted

light from the central probe. The probes here were aligned using a patch cord that allowed a green

light laser to be connected to the fiber optic probes intended for 1550 nm light in a manner similar to

the alignment process used for the y-cut quartz validation and oblique wedge experiments discussed

in Section 6.2.2.

In order for shear to be transmitted throughout the entirety of the target, it is proposed that the

quartz and tungsten carbide be polished, as it has been shown to produce better shear transmission.

It is thought that if a surface is too rough, it may produce a rubble like layer that can act much

like ball bearings and cause the material to slip. In past experiments using y-cut quartz as a shear

generator [18], epoxy was mixed with diamond particles and deposited in between the quartz and the
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(a) Y-cut quartz sandwich configuration experiment schematic.
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Figure 7.1: Schematic for the y-cut quartz sandwich configuration experiment. Upon impact, y-cut
quartz generates two waves, which both have longitudinal and transverse components of velocity.
The latter component causes the sample to be subjected to shear. Using a high strength backing
material that remains elastic, the shear stress at the sample-backing interface can be found. Shorting
pin are used to measure the tilt of the target and two probes are used in conjunction with a PDV
to measure the longitudinal and shear rear surface velocities. The two configurations for this setup
are shown in 7.1b and 7.1c
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target. This mixture seemed to only transmit shear up to a certain point and thus it is proposed that

epoxy be deposited on the outer edges of each interface in the y-cut quartz sandwich configuration

instead such that the compression of the longitudinal wave allows for shear transmission, rather than

the epoxy. These experiments could be performed and compared to the simulations shown in this

study. More complex strength models could be used as well to compare the measured strength to

that given by the model. The final suggestion for the direction this work could take would be to

extend the experiments to higher strain-rates by using a thinner sample.
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