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Abstract

The study of the strength of a material is relevant to a variety of applications including auto-
mobile collisions, armor penetration and inertial confinement fusion. Although dynamic behavior of
materials at high pressures and strain-rates has been studied extensively using plate impact experi-
ments, the results provide measurements in one direction only. Material behavior that is dependent
on strength is unaccounted for. The research in this study proposes two novel configurations to
mitigate this problem.

The first configuration introduced is the oblique wedge experiment, which is comprised of a driver
material, an angled target of interest and a backing material used to measure in-situ velocities. Upon
impact, a shock wave is generated in the driver material. As the shock encounters the angled target,
it is reflected back into the driver and transmitted into the target. Due to the angle of obliquity
of the incident wave, a transverse wave is generated that allows the target to be subjected to shear
while being compressed by the initial longitudinal shock such that the material does not slip. Us-
ing numerical simulations, this study shows that a variety of oblique wedge configurations can be
used to study the shear response of materials and this can be extended to strength measurement as
well. Experiments were performed on an oblique wedge setup with a copper impactor, polymethyl-
methacrylate driver, aluminum 6061-t6 target, and a lithium fluoride window. Particle velocities
were measured using laser interferometry and results agree well with the simulations.

The second novel configuration is the y-cut quartz sandwich design, which uses the anisotropic
properties of y-cut quartz to generate a shear wave that is transmitted into a thin sample. By using
an anvil material to back the thin sample, particle velocities measured at the rear surface of the
backing plate can be implemented to calculate the shear stress in the material and subsequently the
strength. Numerical simulations were conducted to show that this configuration has the ability to

measure the strength for a variety of materials.
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XX
Schematic for the y-cut quartz sandwich configuration experiment. Upon impact, y-cut
quartz generates two waves, which both have longitudinal and transverse components
of velocity. The latter component causes the sample to be subjected to shear. Using
a high strength backing material that remains elastic, the shear stress at the sample-
backing interface can be found. Shorting pin are used to measure the tilt of the target
and two probes are used in conjunction with a PDV to measure the longitudinal and
shear rear surface velocities. The two configurations for this setup are shown in 7.1b

and 7.1c . . e
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Chapter 1

Introduction

The dynamic behavior of materials at high pressures and strain-rates has been studied for many
years using wave propagation techniques through solids [49], [25], [71], [69]. Although results for the
planar compression of materials are prevalent, the full material response needs further investigation

as the methods involved to obtain these measurements can be quite complicated.

1.1 Motivation

One method to estimate the three dimensional response of a material is to assume a constitutive
relation for it and fit the data in an iterative manner [43]. By assuming a model from normal impact
data, however, only the longitudinal response is really seen [19], which is insufficient for material
behavior that depends on the strength after the material yields. For this reason, testing must be
performed to characterize the two extra dimensions and accurately account for the strength of the
material.

The strength of a material is its response to deviatoric stresses [3]. In high-speed machining, a
variety of techniques are used to shape materials; some of these methods, such as metal cutting,
result in the material withstanding strain-rates of up to 10°/s [44] and thus it is important to
determine how the material will behave and how much it can withstand before it fails. Similarly,
in automobile collisions, materials can experience strain-rates of up to 103/s [27]. Understanding
how the material responds in this scenario is crucial to vehicle safety. Strength analysis at high
strain-rates is important in the battlefield as well in the penetration of different types of armor
materials where the study of material response can also be used to save lives [76]. At even higher
strain-rates, inertial confinement fusion can also benefit from this analysis. Here, a fuel target

containing a mixture of deuterium and tritium is heated and compressed by a laser with the desired
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result of creating vast amounts of energy. Presently, ripples form due to inhomogeneities in the
targets that are thought to be related to strength. Understanding this behavior would shed light on
this experimental technique, the results of which could benefit society [38]. Finally, in the case of
planetary impact, experiments probing strength response can be used to understand how these large
bodies behave in such extreme conditions. The results of these analyses could be used to understand
this dynamic event and would elucidate events such as the formation of Earth’s moon and other

such collisions.

1.2 Previous Methods

A variety of systems have been implemented to study high strain-rate (> 10?)/s effects of mate-
rials. One such experiment is the Kolsky bar, which tests specimens with compression, torsion, or
tension at strain-rates on the order of 102 — 103/s. The specimen is placed between two long bars
that remain elastic throughout the experiment and one of the bars is impacted to transmit a pulse,
which is reverberated in the sample. Upon reflection, part of the wave travels back into the bar
that was hit, and the rest is transmitted into the second bar. Strain gauges measure the response in
both bars to the incident, reflected, and transmitted waves from which the response of the specimen
can be calculated [65], [4]. Another method of studying high strain-rate phenomenon is the Taylor
impact test, which looks at strain-rates of 102 —10%/s. This experiment consists of impacting a large
target with a cylindrical rod flyer and measuring how the shape of the target is changed in order
to find the dynamic yield stress of the material [33], [72]. A technique used for higher strain-rates
of order 10* — 107 /s is the oblique gun. This setup uses inclined plates to generate shear and is
particularly effective in studying higher strain-rate phenomenon, the focus of this study. Figure 1.1
shows the various methods discussed to study strength and the applications that the results are used
to understand.

The basic premise of the oblique gun is that two plates are set parallel to one another, but at an
angle with respect to the horizontal. Upon impact, one dimensional plane longitudinal and shear
waves form due to the impact velocity vector being oriented at an angle with respect to the target.
If no slip occurs between the target and impactor, particle velocity at the impact face is independent
of the position along it and one-dimensional wave theory can be used to describe the state of the
material since motion is only dependent on the distance normal to the impact face and time [2],
[21], [53], [76]. With the generation of both types of waves, the material is compressed and hence

slip is prevented such that shear can be transmitted into it. A schematic of this experimental setup
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Figure 1.1: Techniques used to study shear response of materials at high strain-rates with appli-
cations that the results are used to understand.

is shown with a detailed description in Section 4.2.

A clever method that uses a normal impact experimental setup implements the anisotropic nature
of y-cut quartz. Upon impact, y-cut quartz generates two types of waves (described in Chapter 4)
that each contain longitudinal and shear components of velocity [48], [47], [1], [18]. These waves can
be used in a manner analogous to the oblique gun to subject a target to a simultaneous pressure and
shear environment and was studied by Chhabildas and Swegle in a variety of publications [75], [19],
[16]. It was found that a specimen could be bonded to the y-cut quartz by using an epoxy-particulate
mixture that allowed for the transmittance of shear to the specimen. In these studies, the maximum
shear transmitted was observed to be 0.35 GPa and the experiment was limited in either the shear
strength of the epoxy or the slippage of the target from the y-cut quartz.

Measuring transverse velocities poses complexities that are not present in normal impact exper-
iments. To measure the velocities, laser interferometry techniques are used. These are described in
detail in Section 5.2, but the basic premise is that laser light is shined onto a moving target and the

reflected light is collected and combined with itself after it is Doppler shifted due to the movement
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of the target. The combined light creates a beat frequency that is related to the velocity of the
target. To implement this method for transverse velocities, fiber optic probes must be placed at
an angle with respect to the normal at the back of the target and secured in place to collect light
reflected off of the moving surface, see Section 5.2.1.2. To actually be able to collect light in these
probes, the surface must be treated in a way that diffracts light shined onto it. Multiple studies
have placed these techniques into practice where they have used either a diffraction grating that was
deposited using photoresist techniques or a mirror surface that was scratched slightly to create a
similar effect. The light that was diffracted off of this surface was collected by a variety of methods
as well. One technique implemented a three probe configuration where a central probe was used to
send light to the target that was then collected by the same probe and two side probes [52], [17],
[32]. A similar approach has previously been taken with measurements using a window [31], [34],
but these methods are relatively new and are even more complicated to use. This dissertation will

describe the implementation of both methods to measure transverse velocities.

1.3 Thesis Outline

The premise of this research is to implement the normal impact gun setup, a system that is
more readily available, with a variety of targets to measure the response of materials to shear at
high strain-rates. The first configuration proposed utilizes oblique targets to generate shear waves
while the second setup uses y-cut quartz to transmit shear, much like the work by Chhabildas and
Swegle described above, but with a sandwich configuration where the target is a thin sample placed
between two high-strength materials. This method is adapted from the oblique gun experiments
described above and uses a thin sample in order to sustain a high strain-rate for a longer period of
time than that experienced by a sample that is bonded to the y-cut quartz with no backing material.
Two configurations using the y-cut quartz as a generator are described and by using the thin sample
sandwiched between other materials, this study aims to expand upon the work done by Chhabildas
and Swegle. Furthermore, although both the oblique wedge and y-cut quartz sandwich techniques
currently reach the 10¢/s strain-rate range, there are possiblities to extend to higher strain-rates.

The first main chapter, Chapter 2, introduces the theories behind elastic wave propagation
in solids and discusses the governing equations of plane waves that result from the conservation
equations and the definitions of tractions, displacements, and strains. A progression is made into
the equations describing the incidence of an oblique wave at an interface. Here, the incident angle

and change in particle velocity across the wave can be used along with continuity of tractions
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and velocities at the interface to describe the change in stresses and velocities across each set of
longitudinal and shear waves that reflect from and transmit across the interface. The simple case of
1D wave propagation is discussed, which would result from a normal impact, where the 1D strain
assumption can be used. The transition between elasticity to plasticity is analyzed and the yield
stress is defined. As the velocity of the incident wave increases during an impact with increasing
pressure, a shock front forms for which the Rankine-Hugoniot jump relations of mass, momentum
and energy are given. The shock Hugoniot is also described — this is a set of states that the material
can reach after it is shocked. Impedance matching is discussed to allow for the determination of
particle velocity after the impact of two materials using their shock velocity vs. particle velocity
Hugoniot. This analysis is used in shock polar analysis, which studies the incidence of an oblique
shock wave on an interface and is used to determine the properties of the transmitted oblique wave
in the material of interest.

Chapter 3 discusses the oblique wedge configuration, the first novel technique described. This
configuration consists of a driver material and an oblique target of interest with a window at the rear
surface and uses the theories in shock polar analysis to find the properties across the transmitted
shock wave in the target. A variety of parameters in this experimental setup are studied in order to
find the relationship between longitudinal stress in the target, the angle of obliquity of the incident
wave, the transmitted shear wave angle, and the transmitted shock wave angle. Next, the target
design is discussed to determine the dimensions of the entire target needed to measure the shear
response. An elastic analysis is used along with a more refined hydrocode numerical simulation
to predict the response of the setup. The latter simulations are used to analyze the nature of the
shear wave in the target, to observe the strain-rate, and to calculate the shear stress based on the
particle velocities that would be measured at the rear surface of the specimen in a given experiment.
Comparisons are made between the calculated stresses, the stresses found in the simulation, and
the yield stress of the material and calculations are performed using the Von Mises yield criteria
to determine if the material is yielding. The path of the shear stress in a two dimensional yield
surface is also analyzed to determine the mechanism of yielding and to investigate the viability of
this technique in finding the yield strength of a material. The constraint of the impact velocity is
discussed along with using a window to make in-situ measurements. The alternative use of an anvil
in place of the window is then deliberated.

Chapter 4 introduces the y-cut quartz sandwich configuration, a novel technique that makes use

of the anisotropy of y-cut quartz to generate shear waves. The oblique gun (or slotted barrel gun)
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is discussed in further detail and the governing equations, used to find the longitudinal and shear
stresses as well as the strain-rate, are given. The first of the sandwich configurations is introduced,
where the y-cut quartz is used to drive a transverse and longitudinal wave into a high-strength
material that is followed by a thin sample and a subsequent anvil backing material. Simulations are
performed using a one-dimensional numerical analysis program and the results of these are used to
find the dimensions of materials needed to measure the longest shear response possible within a given
set of constraints. The assumption of a 1D strain with a superimposed shear is then checked using
the stress tensor found in the simulation and analyses are made to ensure that the first driver and
backing materials remain elastic, an integral part of the experiment, as will be described. The stress
path is shown for this configuration to prove its ability to measure strength of a material, which is
found using the rear surface velocity measurement. The measurement of strain-rate is discussed as
well. The next configuration explored is the one driver y-cut quartz sandwich design, where the y-cut
quartz is used as the elastic driver and the second high-strength material is eliminated, leaving the
y-cut quartz followed by the sample and the anvil backing. Once again, simulations are performed
to find appropriate measurements for the target setup and an analysis is conducted to make sure
that the elastic assumption in the driver and backing as well as the 1D strain and superimposed
shear are maintained throughout the experiment. The stress path is then discussed along with the
shear stress and strength calculations. The strain-rate is also analyzed. Finally, the limitations of
these two techniques are debated.

The loading systems and diagnostics used in the experiments for this dissertation are explored
in Chapter 5. Powder guns at Caltech as well as Sandia National Laboratories are introduced along
with the gas gun at the latter facility. The interferometry techniques used to measure the velocities
are considered next. Here, the basic theories of the VISAR system are investigated and the angled
measurements needed for the transverse velocities are explained. Another diagnostic called the PDV
that is similar in purpose to the VISAR is also discussed. Some preliminary analysis is then made
in the techniques needed to diffract light off the rear surface of the target.

In Chapter 6, two types of experiments are examined. The first is the y-cut quartz validation
experiment conducted at Sandia National Laboratories using y-cut quartz and a lithium fluoride
window. This experiment was used to validate the ability to measure transverse particle velocities
through a window by comparing the results of the experiment with well-known simulations that
implement the analysis of the anisotropic quartz material described by Johnson [47]. In this section,

the crucial alignment of the off-axis probes and the measurement of their angles is inspected. Once
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the technique is shown to work, it is implemented on a set of oblique wedge experiments, the results
of which are compared to two dimensional simulations using a numerical code that accounts for
strength. The complicated target setup for the oblique wedge is examined as well.
The final chapter summarizes the results found throughout this study. It then proposes future

work that must still be performed and discusses the variety of directions this research can take.



Chapter 2

Theoretical Background

2.1 Elastic Wave Theory

2.1.1 Governing Equations

In order to understand what occurs in the oblique wedge and y-cut quartz sandwich experiments,
it is important to study the propagation of waves through soild materials. Upon impact for both
types of configurations, waves are generated and their travel through the specimens subjects these
materials to different loading conditions. To begin analyzing waves, one must define the two types of
reference frames. The first frame, called the “Lagrangian” or “Material” frame, follows a particular
particle through a given flow while the second frame, called the “Eulerian” or “Spatial” frame,
follows the total flow through a specific region. [63]. Figure 2.1 illustrates this concept. In this
figure, ¢ is some property of the flow dependent on position, x, and time, t. To relate the two

frames, the material derivative can be used, written as

Doy _ (o oo, 06 00, %
(-Dt)L_ <at>E+U'V¢— ot +ulax+UQay+U3az. (2.1.1)

In this equation, the term on the left hand side represents the derivative of the flow property with
respect to the Lagrangian frame, which is written on the right hand side in terms of the Eulerian
derivative and the terms relying on the position in space of the particle.

For small deformations, the balance laws can be defined using the small strain formulation, which
indicates that the description of the flow of material in both frames is approximately the same. This
approximation allows for the determination of the governing equations for plane waves propagating
in a material. Assume for a given body B, with some displacement field u (z,t), contact force,

t (i, z,t), and body force, f (z,t), for any point of B, linear momentum must be conserved [41]:
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Figure 2.1: Definition of Eulerian and Lagrangian referentials (Courtesy Marc A. Meyers, [63])

4 p@dV:/ ;dSJr/de, (2.12)
dt Jp 5B BT

where an underlined variable represents a vector. The contact force in the above equation can be
defined in terms of the Cauchy stress tensor — represented in bold — multiplied by the surface

normal unit vector, denoted with a hat over it:

t(n,z,t) =o(z,t)n (2.1.3)

Plugging this definition of traction into 2.1.2 above results in

4 p@de/ O'(Lt)ﬁdS—&—/ fdv. (2.1.4)
dt Jp 5B B

To simplify this equation, the first term needs to be examined using the Reynold’s Transport The-

orem [57]. This theorem reduces the first term on the left hand side to

& [ oiav = [ Sonav+ [ pugeads (2.1.5)

Applying the Divergence Theorem to the right hand side of Equation 2.1.5 results in

5 [ oaav = [ i+ pi-+ piaiv @) av (2.1.6)

The right hand side of Equation 2.1.6 can be reduced using mass conservation, which states that

d
a —o. 2.1.
o deV 0 (2.1.7)
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Equation 2.1.7 can also be re-written using the Reynold’s Transport Theorem as

d _ op | .o _
i /. pdV = /B <8t + pdiv (u)) dV = 0. (2.1.8)

From Equation 2.1.8, it can be concluded that

p = —pdiv (i) . (2.1.9)

This result can then be used to eliminate two of the terms in the right hand side of Equation 2.1.6,

reducing the conservation of linear momentum equation, 2.1.4, to

/Bp@dV:/Bdiv(a)dV-l-/BidV. (2.1.10)

Reducing Equation 2.1.10, the local form of the conservation of momentum becomes

pi=div (o) + f. (2.1.11)

The local form of the conservation of momentum equation can further be simplified by relating the
Cauchy stress to strain such that eventually the expression obtained can be used to understand the
displacements seen in plane wave propagation. For this simplification, the material is assumed to

be linear elastic with the constitutive relation

0ij = Cijri€rt, (2.1.12a)

which can also be written as

€ij = SijkiOkt, (2.1.12b)

where €y is the infinitesimal strain tensor, Cj;x; is the stiffness coefficient matrix, and S;;i; is the
compliance matrix. Here the stress tensor is now introduced using indicial notation. Compatibility

between the strains and displacements states that

1
€ =3 (up, +urg) - (2.1.13)
Substituting this into Equation 2.1.12a results in

1
0ij = 5 Cijut (W + ui) - (2.1.14)
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Assuming there is no body force, Equation 2.1.11 becomes the general equations of motion

6211,1‘

Substituting 2.1.14 into 2.1.15 results in the displacement formulation

1
Oijj = iCijkl (uij + Ulch) = pPUj,tt- (2.1.16)

The displacements can be defined in terms of velocities, where

Uit = Vi (2117)

Then, substituting this expression into 2.1.16, results in the particle velocity formulation [22]:

1
PU; 1t = §Cijkl (Uk,j + U kj) = PUiE = Tijij- (2.1.18)

Equation 2.1.12b can also be written in terms of the stress and particle velocity formulation by first
differentiating Equation 2.1.13, substituting indices ¢ and j for k and [, and utilizing Equation 2.1.17

to get:

1
5 (0 +v30). (2.1.19)

€ijit =
Then, differentiating Equation 2.1.12b and using the result of Equation 2.1.19:

1
5 (i + i) (2.1.20)

SijklOkl,t = 3

The matrix notation of the Cauchy stress and strain tensors in Equations 2.1.18 and 2.1.20 can be
expressed as a first order system by first simplifying these tensors in terms of vector components

using the Voigt notation. This substitution will make further analysis simpler.

g1
02

01 06 Os
g3

o = O 02 04 — 0 = (2121&)

04

05 04 03
05
J6
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€1
€
€ 16 l6 ’
1 2¢6 265
€3
1 1 —
€ = 5€6 €9 5€4 — €= . (2121b)
€
le l€ € !
565 2 ¢4 3
€5
€6

Now with these vectors, Equations 2.1.18 and 2.1.20 can be written as 1st order systems

pvs +B10s1 + Baoye +Bgogz =0 (2.1.22a)

and
So; + BT vy + By vy + BYvgs =0, (2.1.22b)

where
-1 0 0 0 0 O 0 0 0 0 0 -1 00 0 0 -1
Bi=| 0 o000 0 -1|:B2=|0 -10 0 0 0 [:Bs=[0o0 0 -1
0 000 -1 0 0 0 0 -1 0 O 00 -1 0
(2.1.23)

and the subscripts on the vectors in 2.1.22a and 2.1.22b denote differentiation with respect to the

variable in the subscript. Another way to write these two equations is

Afw, + Alwy + A%wpo + ABw3 =0 or L(w) = Afw;, + Alw,; =0, (2.1.24)
where
v pl 0 0 B;
w=1| ... 1], At=1| ... ], A= ... . (2.1.25)
a 0 S Bf 0

To use this concept, an acceleration wave is introduced. This is also known as a characteristic surface

along which ¢ (t,z) is constant and across which w is continuous, but derivatives of this vector can
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be discontinuous. Figure 2.2 depicts this set of waves.

N

X2

> X 1
Figure 2.2: Acceleration waves along which ¢ is constant.

Let &;, where ¢ = 1,2, 3, be the interior coordinates on the surface ¢ (¢, z) = constant. Now take

w to be a function of ¢ and &; such that w = w (¢, &1, &2, &3), then

Substituting this result into the expression L (w) = 0 in Equation 2.1.24 results in

(Afhr + Aldyi) wg = — (A (E)e + AN )ai) we, - (2.1.27)

Since w must be continuous across a characteristic surface but its derivatives can be discontinuous,

a surface ¢(t,z) = constant, for which

(Af¢; + Algy,) ‘@H =0, (2.1.28)
has non-trivial solutions that are only possible for
|At¢, + Alg,| =0, (2.1.29)

where ||| indicates the change of quantity * from the upstream to the downstream state of the wave,
or xT — x7 respectively, and | * | indicates the determinant of *. By substituting in the definitions

of At, Al and wge, Equation 2.1.28 is simplified to



14

PH%H@ + Bi¢yi

aﬁH —0 (2.1.30)

and

S||s | 60 + BT g v

’ —0. (2.1.31)

Combining these two equations, the jump in the stress tensor derivative is eliminated and a charac-

teristic equation is obtained:

(—pdiT+BiS™ By ¢y¢ai) ’%H =0 (2.1.32a)
for which
|=pd{1+ BjS ' B 60| = 0, (2.1.32b)
which is a 1st order, nonlinear PDE for ¢. Let,
d 7 Tt
D e (2.1.33)

dt V (bwj(sz '

Pui
vV ¢zj¢mj

— or the normal vector to the surface — which gives the direction the wave is propagating. Since ¢

Note that c is just the wavespeed and is the normalized gradient of the characteristic surface

is constant, it can be said that

prdt + ¢ridz; = 0. (2.1.34)

Therefore, rearranging Equation 2.1.34 and substituting in Equation 2.1.33 it is found that

C(rbzi ¢11 ¢t

¢ + =0 or = ——. (2.1.35)
V Pwj Puj \/ P Puj
Defining the normal to the characteristic surface as n; = —22i—, Equation 2.1.32b reduces to
g vV ¢'J_J¢1J 4
—pc®I+n;n;B;ST'B | = |-pc’ I+ BST'BT| =0, (2.1.36)

where B = n;B;
Here it should be noted that BS™'BT is the acoustic tensor and Equation 2.1.36 is a cubic

equation for ¢2. The roots of this determinant are the velocities of the acceleration wave. This
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equation can now be defined in terms of the polarization vectors, which will allow for the closer
study of the unique properties of the different types of waves. Allow Hvﬁ H = [p, where p is the
polarization vector for the velocity and describes the direction the displacement behind a wave takes

place, and  is a constant. Then, Equation 2.1.32a, with the substitution of 2.1.35, becomes

(—pc2I + BS_lBT) p =0, 1=1,2,3 and pi pj = 0ij- (2.1.37)

For an isotropic, linear elastic solid, the inverse of the compliance matrix, S, is the stiffness tensor,

C:

A2 A A0 0 0

A A+22 A 0 0 0

, A A A+24 0 0 0
S1=Cc= , (2.1.38)

0 0 0 u 0 0

0 0 0 0 u 0

0 0 0 0 0 pu

where ) is the first Lamé constant and  is the shear modulus. From Equation 2.1.36, |—pc?I + BS™!BT| =

0. Using the definition of S™1, it is found that

(A4 2p) n? + p (n3 +n3) (A + p)nins (A+ p)ning
BS™'B” = (A+ ) mamy (A+2u)nd + o (n? +n3) (A+ 1) ngns
(A4 ) nang (A + ) nans (A4 2p) 3 + p (nf +n3)

(2.1.39)

And taking the determinant of —pc?I + BS~1BT and setting it to zero results in the equation

(,u — pcz) (u — ch) (A +2u — pc2) =0. (2.1.40)

This equation is satisfied if ¢? = M‘—f“ and ¢3 = ¢§ = £ which is independent of the normal vector
to the characteristic surface. The direction of displacement can be found for a wave with each
given velocity by analyzing the polarization vector associated with each case. For the first case, the
relation from Equation 2.1.37, (—pc®T+ BS™'BT) pi = 0, where the polarization vector has a “1”

superscript to denote this being the first case with corresponding velocity ¢; =

>‘+—p2” . Equation

2.1.39 can be expressed as BS7'BT =T';; = 1d;; + (A + p) nynj. Combining 2.1.37 and 2.1.39 gives
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(1= pcl) 6ij + (A + p)ning) p; = 0. (2.1.41)

Using the result for ¢;, this becomes

((p—=X—=2u)6;; + (A + u)ninj)p; =0— (nyn; — 5ij)p; =0. (2.1.42)

Or in symbolic notation,

(n-p)n—p'=0—p"'=(n-p")n (2.1.43)

Physically, this result means that the acceleration wave with wavespeed ¢ has a displacement
which is parallel to its propagation direction. This type of wave is a longitudinal wave and is shown

in Figure 2.3a. Similarly, for wavespeed cs,

(—pc3dij +Tij) p3 =0

= ((1 = pc3) 6ij + (A + p)niny) p; (2.1.44)
= (1= 1) 83 + O+ ) mimy) p?

= (nmj);zj.

Propagation

(a) Longitudinal Wave (b) Transverse Wave
Figure 2.3: Propagation direction vs. displacement for Longitudinal and Transverse plane waves.

In symbolic notation this is

(n-p*)n=0. (2.1.45)

Thus, the waves here have a displacement that is perpendicular to the direction of motion. These
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types of waves are transverse and are shown in Figure 2.3b.
Now that the velocity and direction of displacement corresponding to each type of wave are
known, the change in properties across each type of wave can be found. This will be important
when considering waves propagating through solid materials in the variety of targets in this study.

From Equation 2.1.31, it can be shown that
el = () 5 2t
— o

The terms ¢,; and ¢; can be expressed as \/¢,;¢,;n; and —cy/Pz; Pz, respectively, from Equation
2.1.35. Then, using these results, it is found that

viH (2.1.46)

1
o] - () S BT, [|ug (2.1.47)
where the stress polarization vector can be expressed as
1\ q-1pT I\ g1t
YX=(-)S™Bynp=(-)S"B'p (2.1.48)
c = c =

2.1.2 Oblique Wave Incident on Interface

For a plane wave that encounters an inclined surface, Equation 2.1.48 can be used to determine
the properties that change across the wave. Assume that some wave is traveling in a semi-infinite,
elastic medium and that it encounters an interface which is oriented at an angle 8 with respect
to the wave. Figure 2.4 illustrates this scenario. In this figure, ni denotes the normal to a given
wave, where ¢ indicates the type of wave — L for a longitudinal wave or S for a shear wave — and j

indicates the material the wave is in. Note that j = A0 is just the incident wave in material A. For

A0

A0
L L

the incident wave, n% = cosfi + sin37, which is equal to the polarization vector p5", while for one

of the transverse waves, pg is perpendicular to the normal and can be found by rotating the normal

by 90 degrees. For instance, the reflected transverse wave has normal vector n% = —cosfai+ sinﬁgj,
with polarization vector pﬁfﬁ = —sinfai — cosﬁgj. The normal and polarization vectors can similarly

be found for the remainder of the waves. Continuity of velocities and tractions at the interface can
then be used to solve for the remainder of the parameters. The jump in particle velocities can be

expressed in terms of the polarization vector as

vl = ap, (2.1.49)
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with « denoting the magnitude of the velocity.

y

A0

Material B X

Material A

Interface

Figure 2.4: Oblique plane wave incident at an interface in a semi-infinite, elastic solid. f is
the angle of the incident wave with respect to the interface, and the remaining angles, (;, are the
angles of the reflected longitudinal and shear waves, on the left of the interface, and the transmitted
longitudinal and shear waves, on the right of the interface, respectively. The vectors n are normal to
their respective waves and the subscripts L and S refer to longitudinal and shear waves, respectively.

For velocities to be continuous at the interface, Equation 2.1.49 can be used to give the following

condition

a%L]ﬁ+aAL}£+aA5]£: OlBL]i“FO(BS@- (2.1.50)

Similarly, the jump in stress can be expressed in terms of the polarization vector. Using Equation

2.1.48 this results in

lel = (i) S™'BTap. (2.1.51)

For tractions to be continuous at the interface in the x direction [22], it can be shown that

lt(n)]| = -B(n)g. (2.1.52)



19

Thus, Equation 2.1.51 can be applied in conjunction with 2.1.52 at the interface to get

1 1 1
<ABICABXLO> oS pi° + <AB10AB£L) aaLpp + <ABchB£S> CVASIDEil =
“ Y. T\e T (2.1.53)

1 1
(CBBchBEL) aprpp + (CBBchBgs) apsps,
1 2

where C! is the stiffness matrix for either materials A or B, and B;:E( is the matrix B for material
j=Aor B, wave k = L or S, and the superscript T just means transposed. The final constraint
here is to determine the angles of the reflected and transmitted waves. These can be found by using
slowness surfaces. This concept is outside the scope of this thesis, but suffice it to say that the

results indicate that the angle of the wave can be related to the elastic wavespeed by

sinB  sinfy  sinfa  sinf3  sinfy

A A A B B
51 S 155 51 Gy

(2.1.54)
With this result, Equations 2.1.50 and 2.1.53 can be combined to form a system of four equations
and the four amplitudes o, which are unknown. Solving these equations allows one to find the

jump in velocities and tractions across each wave.

2.1.3 One Dimensional Wave Propagation

Now suppose that a plane wave is traveling in a semi-infinite, elastic material and that it is
parallel to the interface. This is the more common scenario encountered in experiments. Applying

2.1.22a results in

U1,t J1,1 06,2 05,3
Pl vy | = | 061 | T | 022 | T | oa3 |- (2.1.55)
U3t 05,1 042 03,3

For a longitudinal wave, the only change in displacement is in the propagation direction. If the wave

propagates in the “1” direction, and it is assumed that properties only change in this direction, then

pULE =011 (2.1.56)

Using equation 2.1.17, it is found that
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82u1 80'1
= —. 2.1.
P 8t2 8%1 ( 57)

Finally, using Equation 2.1.18 and assuming the stiffness matrix C is for an isotropic material,

5’2u1 62U1 8211,1 28211,1
= 2 —_— = . 2.1.
gz ~ AT G o G =ags (2.1.58)

A similar result can be calculated for a shear wave in which case the displacement occurs perpen-
dicular to the direction of motion. Here it is also assumed that properties change in the x; direction
and it is found that

62U2 2 32u2

These results are known as the wave equations for longitudinal and shear waves and are well known

differential equations [42], the solutions to which are

d
o+ (pc1) v = constant along characteristic % =TFc; (2.1.60a)
and
c . dx,
T £ (pca) vo = constant along characteristic - = Tex (2.1.60b)

Here, x1 is the position, o1 has been replaced with o, the longitudinal stress, og with 7, the shear

stress, and v; is the particle velocity for each wave.

2.1.3.1 One Dimensional Stress

One dimensional tension tests determine the point at which a material yields, which is the
strength of the material. The stress in this case is shown in Figure 2.5 for a unit element. Assuming
linear elasticity and that the material is isotropic, the constitutive relation in Equation 2.1.12b can

written as

%= F (1 +v)oij — voredij] (2.1.61)

where E is the Young’s modulus and v is Poisson’s ratio. For this case, the Cauchy stress tensor is
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c 0 0
el o o o]. (2.1.62)
0 00

Using the relation in Equation 2.1.61, the stress in the elastic region can be written as

o = Eke, (2.1.63)

where F is Young’s modulus.

Figure 2.5: One dimensional stress on unit element.

2.1.3.2 One Dimensional Strain

For normal impact experiments, the strain can be assumed to be uniaxial [35]. This condition

implies that the Cauchy stress tensor can be expressed as

c 0 O
plo o 0|, (2.1.64)
0 0 Ot

where, for a unit element, the stress state is shown in Figure 2.6. In this case, the lateral stress can

be expressed in terms of the longitudinal stress as such:

14

0. (2.1.65)

gy —
1—v

For this elastic region, the stress can be related to strain with Equation 2.1.61:

e __ (1 B V)
o= mEe (2.1.66)
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/
Ot

T

Ot

Figure 2.6: Resulting stresses from one dimensional strain assumption.

2.1.3.3 Plasticity

As the material continues to be deformed, the change can become permanent when the material
yields and can be determined by defining the yield surface which bounds the region of elasticity [67].
Two such criteria are commonly used to describe this surface. The first, Tresca yield criteria, defines

the yield surface under multi-axial loading conditions as

W e ‘%Y, (2.1.67)

where 0,4, and 0,4, are the maximum and minimum eigenvalues of the Cauchy stress tensor, 7,,qx
is the yield stress in simple shear and o¥ is the yield stress in simple tension — this is the plastic
component of stress, oP, for the one dimensional stress assumption in Section 2.1.3.1. The second

criteria — Von Mises yield criteria — describes the yield surface as

1 o
isijsij =Y (2.1.68)

where S;; is the deviatoric stress tensor and is defined in terms of the Cauchy stress tensor as

1
Sij = 045 — gokkéij. (2169)

In most cases, experimental results agree more closely with the Von Mises criteria. One can use
these results to relate the yield stress in uniaxial strain to the yield stress in simple tension, a result
which is a known material property for many materials and is readily found in simple one dimensional
tension tests. Applying the Tresca criteria on the Cauchy stress tensor for one dimensional strain,

it is found that
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o— 0oy =aY. (2.1.70)

Substituting Equation 2.1.65 into this result, and denoting the stress, o, as the maximum stress
until a material yields under uniaxial strain, oy gy, the relationship between this value and the yield

stress in simple tension, o¥, is found to be

1—-—v 0
1-2,°Y

OHEIL = (2.1.71)

This result is known as the Hugoniot Elastic Limit (HEL) and it describes the transition between
a purely elastic state into the plastic regime for the one dimensional strain assumption. Once the
material reaches the yield stress, plasticity sets in and permanent deformation occurs. In this regime,

strain can be decomposed into elastic and plastic components:

e=¢c"+é (2.1.72a)

and

€ = €5 + €, (2.1.72Db)

where € and ¢; are the longitudinal and tangential strains, respectively. Since this is the uniaxial
strain assumption, ¢; = 0.

It has been observed from experiments that hydrostatic pressure does not affect the yield surface
and thus the plastic strains depend on the stress deviator, given by Equation 2.1.69. For this reason,
plastic deformation does not affect volume change which indicates that the trace of the small strain

tensor is zero

e, =€ +2€e) =0. (2.1.73)

Using results from Equations 2.1.72b, and substituting into Equation 2.1.73 and subsequently into

Equation 2.1.72a leads to the result

€ =¢€® + 2¢;. (2.1.74)

In terms of stresses, this equation can be expressed by using Equation 2.1.61 and the fact that
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o — oY =0y from 2.1.70 to get

Fe 2 2
p___ 7Y 4250 k(P 209 2.1.75
o 3(1721/)"’3‘71/ (P)e+ 307 ( )

where o has been replaced with oP denoting that the stress is in the plastic region, and the fact
that the bulk modulus K = ﬁ has been used, which is a function of pressure. This is a
very interesting result since it describes the behavior of the longitudinal stress after yield. What
this equation indicates is that the longitudinal stress after yield differs from hydrostatic stress —
denoted by K (P) e — for an equivalent strain by a factor of %ag’/, where the hydrostatic assumption
states that the pressure in a compressed solid is isotropic, as in the case of a gas or liquid, when
pressure is large in comparison to material strength. The stress on a unit element for the hydrostatic
assumption is shown in Figure 2.7. To show that the hydrostatic stress is given by K (P) €, Equations
2.1.74 and 2.1.61 can be used to find the total stress for the strain equivalent to the strain observed
in the 1D strain assumption. Using these equations, it can be shown that o = P =

ﬁ which is

in fact equal to K (P)e.

Figure 2.7: Stress on a unit element for the hydrostatic assumption.

In reality, material behavior is affected by strength and this difference is shown in Figure 2.8.
In this figure, the hydrostat is compared to the one dimensional stress and one dimensional strain
assumptions. From Equation 2.1.63, the one dimensional stress assumption is governed by the fact
that stress is a linear function of strain and is proportional to the Young’s modulus E at which point
the material yields and the stress is equal to o¥.. Stress for the one dimensional strain assumption

is a linear function of strain, but governed by Equation 2.1.66. At the point of yield, the HEL is
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reached, given by 2.1.71, and the material becomes plastic, where stress is related to strain by 2.1.75.

oM

1D Strain

Hydrostat

1D Stress

Figure 2.8: Comparison of 1D strain,1D stress and the Hydrostat.

At higher strain it must be understood how the velocity of a wave changes with deformation.

From Equation 2.1.57 it was found that pi;‘ = 92 the right hand side of which can be expressed
ot ox
as %%, which from Equation 2.1.13 becomes g—z% and thus results in
02 1 8o 62
gu_-9994 (2.1.76)
ot2  p Oe 0z2

Comparing this equation to 2.1.58 indicates that the wave speed is simply a function of the density

and the derivative of stress with respect to strain

¢=4 /%g—z. (2.1.77)

This physically means that, as deformation increases with increased strain, the slope of the derivative
of stress with respect to strain increases after the Hugoniot Elastic Limit is reached in the 1D strain
curve. Thus, the velocity initially stays constant at the longitudinal elastic wavespeed when the
HEL is reached at which point it increases until it reaches a steady state where a shock wave or

discontinuity emerges.
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2.2 Shock Wave Theory

2.2.1 Lagrangian Conservation Equations

In order to study shock waves, the first step is to analyze the impact of parallel and plane surfaces
which generate the plane longitudinal waves that have been discussed. This concept is known as
the plate impact experiment. The properties of the resulting waves are governed by the Lagrangian
Conservation Equations. In Section 2.1, the linearized form of the conservation of momentum and
mass were discussed. The other conservation equation that will be needed here is energy. These

equations will now be discussed in the Lagrangian Frame.

o

—_—
C.

X

Figure 2.9: Progression of an elastic longitudinal wave into a steady shock wave.

In Figure 2.9, a basic schematic of a two-wave system that occurs in plate impact experiments is
shown. Here there is an elastic wave traveling at a constant wavespeed that progresses into a steady

W

shock wave. Upstream of the shock, the properties are denoted by a sign and downstream of
the shock the properties are denoted by a “+” sign. It can be shown that the local conservations of
mass, momentum and energy that govern the jump from the upstream to the downstream conditions

can be expressed as [24]

ut —u” = —pUs (VY =V7), (2.2.1)

which is the conservation of mass,
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ofi — o1 =poUs (uh —u™), (2.2.2)

the conservation of momentum, and

1
ohut —oqu” + QT — Q" = poUs (E+ B+ (u+2 - u2)> , (2.2.3)

the conservation of energy. Here, u is the particle velocity in the direction of shock wave propagation,
not to be confused with the displacement u discussed in the elastic wave theory in Section 2.1. The
reason for the change in nomenclature for the particle velocity is to stay consistent with the equations
in literature. For the remaining variables, pg is the initial density, V is the specific volume, Ug is
the shock wave speed, 011 is the Cauchy stress in the wave propagation direction, @ is the heat flux,
and F is the specific internal energy. The jump in these properties across the wave can be expressed
in a similar manner. If the upstream components of density, stress, specific energy, velocity and
specific volume are denoted as pg, oo, Lo, upo, and Vy, respectively, and the downstream density,
stress, velocity, specific energy, and specific volume are defined as p, o, u,, E, and V, respectively,
where it has been assumed the transition between the unshocked and shocked state is adiabatic, the

following relations for the conservation of mass, momentum and energy are obtained:

poUs [V [ = [Jup|| (2.2.4)
poUs |lup|l = [lo]| (2.2.5)
and
1
1Bl = 5 (o +a0) VI, (2.2.6)

respectively. These equations are collectively known as the Rankine-Hugoniot jump relations. At
this point there are three equations and 5 unknowns. One of these unknowns can be eliminated with
a constitutive relation between the particle velocity and shock velocity, which is a linear relationship

for many materials [50],

Us = Cy + Suyp. (2.2.7)
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Here, Cj is the bulk sound speed at zero stress and S is an empirical constant. In an experiment, one
of the variables is generally measured and thus three equations and three unknowns are left. Note
that, Equation 2.2.5 can also be obtained from the wave characteristics discussed in Section 2.1.3.
In Equation 2.1.60a, for a positive moving wave (or positive characteristic), o — (pc1) uy = constant.
So, replacing ¢; with Ug leads to o — (poUs) ut = 0~ — (poUs) u™, which rearranges to Equation
2.2.5. This same analysis can be applied to Equation 2.1.60b to obtain the jump relation for a shear

wave, which is given as

poCs [vpll = 7l (2.2.8)

where v, is the particle velocity perpendicular to the motion of the shear wave.

2.2.2 Hugoniot

An important concept in shock physics is the Hugoniot, which is a collection of points that
describe the shocked state for a given material. This state can be given by a combination of two
variables [68]. For one such example, the stress vs. volume Hugoniot, the jump between two points
can be described by the Rayleigh line. This jump is found by combining Equations 2.2.4 and 2.2.5

to get

S = paU3. (2.2.9)

This line is useful when performing experiments as it relates the upstream and downstream quantities
across a shock. With each experiment, the points on the Hugoniot can be filled in to describe the

entire behavior of a material in the shocked state. Figure 2.10 illustrates this concept.

2.2.3 Impedance Matching

Upon impact, two waves are generated, one traveling into the target and the other back into
the impactor. One can use the jump equations to graphically determine what occurs in such an
impact. This is known as impedance matching [51]. Figure 2.11 shows the scenario for a plane
impact situation. It is assumed here that once the impactor hits the target, a no slip condition is
formed at the interface between the two materials. For this reason, stress and particle velocities
must be equal, thus the stress vs. particle velocity Hugoniot for the two materials can be plotted to

find where they intersect in order to solve the problem. This analysis is shown in Figure 2.12.
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>V

Figure 2.10: Stress vs. volume Hugoniot with Rayleigh line connecting upstream and downstream
states of a shock wave.

)

Impactor Target

Figure 2.11: Normal Impact.

Using Equation 2.2.5, it is found that

oy = _pOIUS’I (up - ul) = pOTUSTup, (2210)

where it should be noted that the velocity for the shock traveling into the impactor is negative. At
this point, one can use the known Ug — u, Hugoniot for each material and the measured impact
velocity to solve for the in-situ particle velocity. Conversely, if the Ug — u,, relationship is unknown
for one of the materials, the particle velocity and impact velocity can be measured and used to solve

for the shock velocity.
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Impactor Target

U
Up U,

Figure 2.12: Impedance matching for normal impact experiments.

2.2.4 Shock Polar Analysis

Although calculating the change in various properties across a normal shock wave is relatively
straightforward, this process becomes more complicated for the case of oblique shock waves. Much
like the oblique elastic waves incident on an interface, shock waves that approach another material
at an angle also generate pressure and shear waves in both materials. Generally speaking, the shear
wave will still remain elastic, but the reflected and transmitted waves will form a shock. To study
the effects of the shock waves, shock polar analysis [13], [14] can be implemented. This technique
will only briefly be mentioned here, but it is discussed in detail by Justin Brown in his thesis [13].
Essentially, one can borrow concepts from oblique wave studies in fluid dynamics by analyzing the
flow of material across a shock wave in the Eulerian frame, or the frame of the shock. In Figure
2.13a, the shock velocity and particle velocity are shown in the Lagrangian or laboratory frame.
This same situation can be expressed in the Eulerian frame, which is the frame of the stationary
shock, as in Figure 2.13b

In the Eulerian frame, the equations for mass and momentum conservation can be expressed as

P1U1 = P2u2 (2211)

and

P+ p1ui = Py + pou3, (2.2.12)
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(a) Lagrangian Frame (b) Eulerian Frame

Figure 2.13: Shock and particle velocities across a moving shock wave.

where state “1” refers to the upstream state of the shock, “2” refers to the downstream state, u is the
flow velocity, p is the density and P is the pressure. For high velocity impacts, the hydrodynamic
assumption can be used for the primary shock wave prior to the shear wave arrival — since the
pressure greatly exceeds the strength of the material. This allows for the angle of the transmitted
longitudinal shock wave to be determined, which is essential for the oblique wedge target design, to

be discussed later. For an oblique shock wave, the situation is illustrated in Figure 2.14.

Stationary Shock

Figure 2.14: Flow across an oblique shock wave incident on an interface in the frame of the shock.
[ is the angle of obliquity of the shock, ¢ is the flow velocity, n is the normal component of the flow
velocity, t is the tangential component of the flow velocity, and 6 is the deflection angle of the flow
across the shock. The subscripts 1 and 2 denote the upstream and downstream states across the
shock, respectively.
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Here the shock is described as “stationary”, which refers to the fact that the flow is observed in
the frame of the shock. 3 is the angle of obliquity of the shock wave, 6 is the deflection angle of the
flow downstream of the shock, ¢ is the flow velocity, n is the component of velocity normal to the
flow, and t is the component of velocity tangential to the flow. Since there is no pressure change
along the shock, applying the conservation of momentum for the Eulerian frame in Equation 2.2.12

results in

p1inity = panats (2.2.13)

and substituting in the conservation of mass implies the important result

ty = to, (2.2.14)

which indicates that the tangential component of velocity remains constant across a longitudinal
shock wave. Thus, only the change in the normal components across the wave front need to be

examined. Analyzing Figure 2.14, it is found that

qsinf =ny (2.2.15)
tanf = 1 (2.2.16)
ty
and
tan (B — 0) = % (2.2.17)
2

From Figure 2.13b, ny = Us and ny = Ug — up, which can be substituted into Equations 2.2.15 —

2.2.17 to find
sinp = U8 (2.2.18)
q1
U
tanf = TS (2.2.19)
1

and
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_Us—uy

tan (8 — 0) 5

(2.2.20)

Applying the trigonometric equation

tanB — tanf

t )= —
an (8 ) 1+ tanSBtané

(2.2.21)

to Equation 2.2.20 and then using the Pythagorean theorem for right triangles, which leads to
the relation U g + 12 = ¢}, the important relationship between shock velocity, particle velocity and

deflection angle is obtained

2 _ 7172
vai ~Us (2.2.22)

Q% - upUS .

tanf = u,
In order to relate the pressure to the flow angle downstream of the shock wave, the mass and
momentum conservation equations can once again be used to find the relation between pressure,

density, shock wave velocity and particle velocity, where it has been assumed that the upstream

pressure and particle velocity are zero. This gives

P2 = plUsup. (2223)

Equation 2.2.23 is then used in conjunction with the linear Us — u,;, relation in 2.2.7 to relate the
shock and particle velocities to the pressure, density and known empirical constants in the linear

Us — u,, relation resulting in the following equations

Co 4SP
= — — -1 2.2.24
and
Cy 45P
= — 1+ —+1 2.2.2
Us 5 + Pocg + ( 5)

These relations can then be substituted into Equation 2.2.22 to give the resulting pressure versus
deflection angle equations that are used in shock polar analysis.

Two situations, which must also be mentioned for completeness, that occur for oblique waves
incident on an interface are reflected shock waves or reflected expansion waves. In the former

situation, one must look at the re-shock Hugnoniot for pressure vs. volume, as shown in Figure
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2.15. Here the material reaches some state “+” after the primary incident shock at which point the
reflected shock wave changes the material to some state along the re-shock Hugoniot [64]. This final
state is found using the energy Equation 2.2.6 from the Rankine Hugoniot relations to relate the

energy states at the shock and re-shock states to the reference state as such

EH2(Vy=E* + % (P2(WV)+PY) (VT -V) (2.2.26a)
ET (V) = Eo + %P’” (V) (Vo —V) (2.2.26b)

and
ET =Ey+ %P* (Vo =V, (2.2.26¢)

where 2.2.26a relates the re-shock energy Ef? to the energy, pressure and volume after the first
shock, denoted by the “+” sign, and the pressure and volume at the re-shocked state P2 and V.
These energies at the re-shock and shocked states are then related to the reference state, 0, in 2.2.26b
and 2.2.26c. The three equations can then be substituted into the Mie-Griineisen equation of state
which is a thermodynamic equation of state that describes processes off of the Hugoniot curve. This
model is given by

(V)

PH2Z(V) - PH (V) = " [E72 (V) - E"], (2.2.27)

where P and Ef are any state along the principal Hugoniot and « is the Griineisen coefficient.

Finally, one can eliminate the energy terms in 2.2.27 using the relations in 2.2.26a — 2.2.26¢ to get

2
1- 2 (v+ —v)

PH (V) [1 =252 (VO - V)| + 252 P (VO - V)

PH2 (V) = (2.2.28)

Once again, momentum and mass conservation equations can be used to relate pressure to particle
and shock velocities and then to the deflection angle, much like the analysis done for the incident
shock wave.

Graphically, this analysis is shown in Figures 2.16 and 2.17. In Figure 2.16 , the flow across each
of the shock waves is shown. In both materials 1 and 2, the pressure and flow angle starts at zero
where the flow velocity, ¢; is equal for both. At this point the flow is deflected across the incident

wave into material 1 and the transmitted wave in material 2. Next, the flow is deflected across the
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Figure 2.15: Reshock Hugoniot for a reflected shock wave.

reflected shock wave at which point the no slip condition must be applied at the interface. Here
it is assumed that the pressure and deflection angle are equal for both the flow after the reflected
shock and the flow after the transmitted shock since it is along the same interface. The method to
find the pressure and deflection angles after each wave is shown in Figure 2.17. Here the pressure
vs. deflection angle shock polar is drawn for each of the states 1, 2, 3 and 4 and the intersections
are shown where these quantities are equal. Implementing such an analysis with the equations
discussed above yields results for the pressure and deflection angles which can then be used to find
the remaining properties in the flow from the above equations, specifically the angle of obliquity of

the transmitted shock which is given by 2.2.22, shown as 34 in Figure 2.16, where

2 U2
tanfBy = VI~ 53 (2.2.29)

@3 — upUss
In this equation, u, is the particle velocity and Ugs is the shock velocity of the transmitted shock-
wave. Note that here, the reason that the deflection angle is used to find the angle of obliquity of the
transmitted shock is that the angle with respect to the original position of the interface is sought,
which is given by the deflection angle of the flow. For the case of the reflected expansion wave, one

can refer to Section 2.2.3.2 in [13].
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Figure 2.16: Flow in two materials with an incident, reflected and transmitted shock wave.
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Figure 2.17: Shock polar analysis relating pressure to deflection angle of flow in two materials with
an incident, reflected and transmitted shock wave.
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Chapter 3

Oblique Wedge Configuration

3.1 Introduction

The oblique wedge configuration is a novel technique to test the effects of shear on a material.
In this experiment, a plane wave is generated upon impact in the driver material. As it propagates
through the driver, it encounters the inclined interface of the target where it is reflected back into
the driver and transmitted into the target as an oblique shock wave, followed by a shear wave.
By using shock polar analysis, described in Section 2.2.4, the angle of the transmitted shock wave
in the target is predicted, allowing the rear surface of the target to be machined parallel to the
angle of obliquity of this wave. This technique mitigates any angled reflections of the waves at the
target-window interface allowing for the shear response of the transverse wave to be measured.

Figure 3.1 shows the wave state in the composite target. Although shock polar analysis can
be used to determine the hydrodynamic state, the primary focus here is to measure the deviatoric
response from the shear wave that follows the transmitted shock wave, which results due to the
angle of obliquity of the incident shock with respect to the target. To study this response, particle
velocities can be measured at the rear surface of the target using interferometery discussed in
detail in Section 5.2. From these velocities, longitudinal and shear stresses can be calculated at the
target-window interface using Equations 2.2.5 and 2.2.8. Since the transmitted shock travels into
a quiescent material, and the shear wave travels into a material that has no shear velocity present,

the resulting equations for the two stresses are

o = poUsu, (3.1.1)

and
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Figure 3.1: Schematic of the oblique wedge impact experiment. Upon impact, a longitudinal shock
wave is generated in the driver and is reflected and transmitted at the driver-target interface where
it is followed by a shear wave.

T = poCsvp. (3.1.2)

3.2 Predicting the Shear Wave Angle

Similar to the case of an elastic wave approaching an interface at an angle, with a shock wave,
there are both longitudinal and shear waves present that are not parallel to one another. To find

the angle of the transmitted shear wave, Equation 2.1.54 can be used. For this case, it is found that

sinf3 _ sind

US_CS7

(3.2.1)

where § is the angle of the shear wave with respect to the interface. This angle is shown in Figure

3.2
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Figure 3.2: Incident and transmitted shocks with transmitted shear wave.
3.3 Analysis of Target Parameters

3.3.1 Longitudinal Stress vs. Angle of Obliquity

The oblique wedge configuration can be modified in a variety of ways ranging from the driver
and target materials, to the angle of obliquity of the target and the material of the impactor and
its impact velocity. In order to analyze how these modifications will affect the wave state in the
target, a variety of parameters were studied. The first of these was the longitudinal stress obtained
as a function of angle of obliquity. These parameters are especially important in studying the shear
response at different pressures. In order to find the longitudinal stress, shock polar analysis was
used to find the pressure — which estimates the longitudinal stress in these plots — for a variety of
different angles of obliquity. This analysis was conducted for a copper impactor at 1.0 km/s and 1.2
km/s impact velocity and aluminum 6061-t6 and tantalum targets. The driver materials used were
polymethylmethacrylate (PMMA), copper (Cu), molybdenum (Mo), and tantalum (Ta).

In both Figures 3.3a and 3.3b, it can be seen that with an increase of impact velocity, the lon-
gitudinal stress observed also increases. For both the aluminum and tantalum targets, the PMMA
driver continues to increase the stress with increasing angle of obliquity. The tantalum and copper
drivers both decrease in stress initially and then again increase for the aluminum target, and molyb-
denum continues to decrease in stress with increasing angle of obliquity. For the tantalum target,
the aluminum driver stays fairly constant in stress, whereas the molybdenum and copper drivers

cause a continued decrease in stress in the target. In this analysis, the angle of obliquity was cut off
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Figure 3.3: Longitudinal Stress vs. Angle of Obliquity for polymethylmethacrylate (PMMA),
copper (Cu), molybdenum (Mo), tantalum (Ta) and aluminum (Al) drivers with two different targets
and a copper impactor. In the legend, OW stands for oblique wedge, and ul is the impact velocity.
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Material Density Longitudinal Wavespeed Impedance
(g/cm®) (km/s) (kg/m?2/s)x108
Aluminum 6061-T6 2.703 6.4 17.3
Tantalum 16.656 4.16 69.29
PMMA 1.186 2.72 3.23
Copper 8.924 4.76 39.48
Molybdenum 10.208 6.44 65.74

Table 3.1: Density, longitudinal wavespeed and longitudinal impedance for 6061-t6 aluminum,
tantalum, polymethylmethacrylate (PMMA), copper and molybdenum [60]

at the point where the reflected shock (or expansion wave) separated from the interface, which is
marked by no intersection in the shock polars. Overall, it appears that an increase in impact velocity
results in a higher longitudinal stress state, but the effect of the material of the driver depends on
the material used. This latter observation can be elucidated by studying the impedance mismatch
in the driver and target.

In Table 3.1, it can be seen that the only material that has a lower impedance than aluminum is
PMMA, which is the only material that results in an increased stress in the target with increasing
angle of obliquity. For the tantalum target, it is interesting to note that all of the drivers have a lower
impedance, but the PMMA still causes the same trend in this target as it does in the aluminum.
The aluminum driver also causes a slight increase in stress with increased obliquity, while the other
drivers cause a decrease. This result could be due to the large difference in impedance between
the PMMA and aluminum drivers with the tantalum target, whereas the other impedances are not
quite as different. From these observations, it is not very clear if the impedance mismatch directly
correlates with the behavior of the longitudinal stress with increased angle of obliquity, however, in
general the higher the impedance of the driver, the larger the resulting longitudinal stress in the

target for lower angles of obliquity. At higher angles, this trend seems to change.

3.3.2 Transmitted Shear Wave Angle vs. Transmitted Shock Wave Angle

Another parameter that can be analyzed is the transmitted shear wave angle as a function of
the transmitted shock wave angle. For this calculation, shock polar analysis was used to find the
transmitted shock wave angle for a variety of combinations of targets. To find the shear wave angle,
Equation 3.2.1 was used, where the shear wave velocity for a target was taken to be the elastic shear
wave speed [60] and the shock velocity was found by using impedance matching. The results of this
study are shown in Figures 3.4a and 3.4b.

From these figures, it can be seen that there is a linear relationship between the shear wave
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Figure 3.4: Shear Wave Angle vs. Transmitted Shock Wave Angle for polymethylmethacrylate
(PMMA), copper (Cu), molybdenum (Mo), tantalum (Ta) and aluminum 6061-t6 (Al) drivers with
two different targets and a copper impactor. In the legend, OW stands for oblique wedge, and ul is
the impact velocity.
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angle and shock wave angle and that, as the transmitted shock wave angle increases, so does the

transmitted shear wave angle. This is the case for a variety of drivers and increasing impact velocity.

3.3.3 Transmitted Shear Wave Angle vs. Angle of Obliquity

The final relationship of interest is the shear wave angle as a function of the angle of obliquity.
Once again, the shear wave angle was found using Equation 3.2.1 and the angle of obliquity was
varied independently. The impact velocities examined were also 1.0 km/s and 1.2 km/s. Figures 3.5a
and 3.5b show the results. In these two figures, it can be seen that the shear wave angle increases
with increasing angle of obliquity for all of the drivers. For both the aluminum and the tantalum
targets, the shear wave angle is larger for a smaller impact velocity. Furthermore, depending on the
given driver, the shear wave angle is also larger for a given angle of obliquity.

The three types of analyses described above can be used as a guide to determine the response of
the experiment for parameters the experimentor can control — angle of obliquity, impact velocity,
and the driver, target, and impactor materials. For instance, if an experimentor would like to
determine the shear response of the target with increasing longitudinal stress, they can increase the

impact velocity or, in some cases, increase the impedance of the driver.

3.4 Target Design

In order to design the composite target (driver and target) shown in Figure 3.1, the diameter of
the target as well as the thicknesses of each of the materials were considered. Initially, the target was
designed to be studied at the Caltech powder gun facility in the Mechanics of Materials Group. The
gun used, described in Section 5.1.1, utilizes an impactor that is 34 mm in diameter. For this reason,
the target was designed to be slightly smaller than this diameter — at 30 mm — in order to avoid any
edge effects that could occur upon impact. Although these experiments were eventually conducted
at Sandia National Laboratories, where the gun is much larger, as illustrated in Section 5.1.2, the
targets originally machined for the Caltech gun were still used. Another design consideration was
the actual wedged target sample, designed to have a controlled angle of obliquity out front, as well
as a rear surface angle that was parallel to the transmitted longitudinal wave previously discussed.
This study considered designing the rear surface to be either parallel to the shear wave or at 45
degrees with respect to the principal stresses, but it was determined that machining parallel to the

shock wave would be the best approach. Initially, it was thought that at 45 degrees with respect to
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the principal stresses, a maximum shear stress would be seen, but this only led to both the shear
and longitudinal waves being reflected at different angles at the rear surface at which point it was
difficult to determine the material response. Machining parallel to the shear wave was also thought
to mitigate reflections of the shear wave, nevertheless, since the longitudinal wave has a significant
effect on the longitudinal velocity component in the target, and its angled reflection produces a shear
response separate from the shear wave in question, its angled reflection at the rear surface was also a
problem. Simulations were conducted with this configuration and it was found that shear tractions
calculated from the transverse particle velocity deviated from the shear stress given by the stress
tensor. It was thus decided to design the rear surface of the wedge to be parallel to the shock. Upon
making this decision, the following considerations were made for the thicknesses of the composite

target, impactor and window.

3.4.1 Edge Wave Analysis

To study the full wave state behind the shock and subsequent shear wave, the material response
behind these waves prior to the arrival of the edge waves at the measurement surface must be seen.
The first step is to calculate the time for the shock wave to travel from the impactor-driver interface

to the closest point on the driver-target interface. This distance, labeled dy, is shown in Figure 3.6.

Driver

dy

Target

Figure 3.6: Distances waves must travel in each of the materials in the composite target.
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The time it takes the incident wave to travel distance d; is

dy
t1 = —, 3.4.1

where U sl? is the shock wave velocity of the incident wave, found by using impedance matching, see

Section 2.2.3, upon impact. The time for the transmitted shock to travel in the target is given by

da

tinfgy

(3.4.2)

where dy is perpendicular to the transmitted shock wave front and UST is the transmitted shock
velocity, found by using shock polar analysis 2.2.4. It should be noted here that time ¢; + t5 is equal

to the time it takes the incident wave to travel to the top of the target, or

ty=—5 =t +ta. (3.4.3)

Since the shear wave following the shock in the target propagates at a different angle with respect
to the rear surface, it can be estimated that an additional microsecond is needed to see the response
following it. A similar approach can be followed with the timing of the shear wave arrival as that
of the shock, however, the estimated angle of the shear wave only applies when the shear wave is
purely elastic. Nevertheless, since the shear modulus behind the shock changes, the calculated shear
wave velocity, given by c3 = %, may be different. This is of course only an estimate and thus to
check that the full shear response is observed, numerical simulations, discussed in Section 3.6, can
be implemented. With this estimate, the edge waves should come in no sooner than time ¢4 + 1
psec. A common estimate for edge wave arrival is to assume that edge waves travel radially inward
from the point of impact, as shown in Figure 3.7.

As can be seen in Figure 3.7, upon impact the initial waves are shown to travel radially into the
driver material. However, since the target itself is a wedge, it can be assumed that the front most
point of the material is where the edge waves begin to propagate in the wedge. It has been estimated
that the edge waves propagate at the same velocities as the shock waves in the materials, as a worst
case estimate. The distance that these waves must propagate are denoted as S; and Sy, where Sy
measures the distance from the corner of the driver to the closest corner of the target and Sy is the
distance between the latter corner and the center of the rear surface of the window. Note that here
it is assumed that the target and window are well matched and thus the edge wave continues to

travel into the window at the same velocity as in the target. With these estimates, one must then



47
Window

~
Nz

Driver

Figure 3.7: Edge waves propagating into the composite oblique wedge target after impact.

Target

make sure that the time it takes for the edge waves to travel these distances, given by

S S
5+ 2, (3.4.4)
Us Us

is greater than or equal to the time for the transmitted shear wave to arrive at the target-window

interface, defined in Equation 3.4.3, plus the estimated extra microsecond for the shear wave re-

sponse.

3.4.2 Impactor Thickness

The design of the impactor relies on the time that it takes for the entire shear response from
the experiment to be collected. As a rule of thumb, this time must occur before the incident
wave in the impactor reflects off its rear surface and travels back to the impactor-driver interface.

Mathematically,

2D

—Il > t4 + 1 psec, (3.4.5)
Us

where Dy is the thickness of the impactor and U, é is the velocity of the shock generated upon impact

in the impactor, found using impedance matching in Section 2.2.3.



48
3.4.3 Window Thickness

The final check is to make sure that the window is thick enough such that the information at the
target-window interface is gathered before the transmitted shock hits the rear surface of the window.
This calculation is made by using the velocity of the transmitted shock in the target and calculating
how long it would take for it to travel from the target-window interface to the rear surface of the
window; the time at which this wave arrives at the rear surface should occur after the shear response
is found. These calculations are estimates and hence a starting point for the design, which can be

refined by using numerical analysis.

3.5 Elastic Wave Simulations

To predict the magnitude of the shear response of the material in the oblique wedge design,
one dimensional elastic wave simulations were implemented. These simulations used the theory
presented in Section 2.1.2. Figure 2.4 has been overlaid onto the oblique wedge configuration in
order to demonstrate how this theory has been applied. This is shown in Figure 3.8. In these
simulations, the incident wave shown in Figure 3.8 is considered to be the incident wave in the
driver material, the transmitted shock and shear waves correspond to the transmitted P and S
waves, and the reflected shock and shear wave coincide with the reflected P and S waves in the
elastic case. Equations 2.1.50 and 2.1.53 can be used to solve for the wave state. Prior to using
these equations, some of the variables must be solved for in order to obtain an equivalent number
of unknown variables and equations. In Figure 3.8, angle /8 is the angle of obliquity, or the angle
of the incident wave with respect to the target, that allows for the normal nféo to be found. The
polarization vector zﬁ is parallel to the normal for a longitudinal wave. Impedance matching can
be used to find the particle velocity behind the incident shock; this is the magnitude of the velocity
vector in Equation 2.1.50, a9 ;. The elastic longitudinal wave velocity in Equation 2.1.54, cf, is
now set to the shock velocity of the incident wave, found using the linear Us — u,, relationship in
Equation 2.2.7. This velocity can then be used to calculate the equivalent Lame constant, A, which
is assumed to change from the elastic value due to the shock wave. This constant is found from the

definition of the longitudinal elastic wave velocity, giving

M= pAc’l42 —2u?, (3.5.1)

where ¢ is now replaced with U SD , p? is the initial density, and p? is the shear modulus of the
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Driver
(Material A)

Interface

Figure 3.8: Elastic wave theory for oblique incident wave applied to oblique wedge configuration.
The blue line represents the incident shock, the red is the reflected shock, the orange is the reflected
shear wave, the dark green is the transmitted shock and the light green is the transmitted shear
wave. n represents the normal to each wave and each ; is the angle with respect to the interface.

The transmitted L wave in Figure 3.8 coincides with the transmitted shock wave, whose velocity
is obtained using shock polar analysis in Section 2.2.4, and is used instead of the elastic longitudinal
wave velocity ¢ in Equation 2.1.54. Once again the Lame constant is found by using the definition

of the wavespeed,

AB = pBcB® _ 9B, (3.5.2)

where cP = UL, pP is the initial density, and p? is the shear modulus of the material. It is assumed
that the reflected shock wave has the same velocity and angle of obliquity as the incident shock
wave, in congruence with a true elastic model. The shear wave velocities are assumed to be the
elastic values for the materials and the remaining angles of the waves with respect to the interface
are found using Equation 2.1.54, from which the remaining normal and polarization vectors of each
wave can be found. Incorporating this information, the only unknowns are the remaining particle

velocity magnitudes in 2.1.50, which can be found by combining this with 2.1.53 to get 4 equations.
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3.5.1 Applying Elastic Wave Theory

The premise behind using a pseudo-elastic wave theory approach for the oblique wedge configu-
ration was to be able to predict the particle velocity behind the shear wave in the target such that
experiments could be optimized without having to resort to time consuming numerical simulations.
However, it was found that this approach essentially analyzed two hypothetical materials whose elas-
tic properties matched the material properties after the shock wave propagated through them. For
instance, for an oblique wedge configuration with a copper impactor, PMMA driver, and aluminum
6061-t6 target with a 10 degree angle for the incident wave and a 1000 m/s impact velocity, the

calculated particle velocities after the transmitted longitudinal shock were

385
qu = ozBLiz m/s
106

and the predicted particle velocities after the transmitted shear wave were

394
UES:OéBL]i—FOéBs]ﬁ: m/s.
41

To check if these one dimensional calculations matched with more detailed two dimensional
numerical simulations, the program CTH was used — discussed in Section 3.6. Using material
models and running the simulations showed that the velocities did not coincide. However, when a
purely elastic approach was implemented using the Mie-Griineisen equation of state for all of the
materials with an elastic strength model, that implemented the modified Poisson’s ratios after shock
propagation for both the PMMA driver and aluminum target, the velocities agreed quite well with
the elastic theory calculation. It should be noted here that the Poisson’s ratios were calculated using

the equation [12]

A

Y= (3.5.3)

where the modified Lame constants found in 3.5.1 and 3.5.2 were used due to the parameter require-
ments for the elastic perfectly plastic strength model in CTH. This model requires a Poisson’s ratio
as well as a yield strength, the latter of which was set to 100 GPa such that the material did not
yield.

Figure 3.9 shows the results of the CTH simulation. The timing of the particle velocities is not
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Figure 3.9: Particle velocities in target using elastic model for driver and target for oblique wedge
configuration with copper impactor, polymethylmethacrylate driver, aluminum 6061-t6 target and
lithium fluoride window for a 1000 m/s impact and 10 degree angle of obliquity.

of particular interest, but a tracer well into the target was chosen at which to find these velocities
such that the separation between the longitudinal and shear waves could be studied. As can be
seen, the longitudinal velocity here initially is 398 m/s and rises to 411 m/s, while the shear particle
velocity starts out at 130 m/s and drops down to 59 m/s. Although these sets of velocities are not
in exact agreement with velocities predicted in the elastic wave analysis, they are much closer to the
1D elastic predictions than the results found using actual material models, discussed in Section 3.6.
What this result shows is that a numerical technique must be implemented that accounts for material
strength to predict the shear response since the elastic wave analysis does not encompass the true
nature of the experiment. Thus it can be concluded that when the target yields, the magnitude of
the shear wave transmitted into the target can no longer be predicted. While shock polar analysis
can be used to determine the longitudinal response, this wave analysis cannot be used to determine

the shear wave magnitude.

3.6 CTH 2D Simulations

To have a better notion of the shear response of the material in the oblique wedge configuration,
CTH hydrocode was used. CTH was developed by Sandia National Laboratories to model large
deformation events and has the ability to analyze strong shock situations. It uses a two-step process
to integrate the conservation equations starting with a Lagrangian step that allows the mesh to

distort in order to follow material motion, followed by a remapping to the original mesh in the
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Material P0 Co S Yo
(g/em?) (J/Kg/K) (km/s)

Beryllium 1.850 7.92 1.124 1.19
Aluminum 6061-T6 2.703 5.22 1.37 1.97
Lithium Fluoride 2.638 5.15 1.35 1.69
Copper 8.930 3.94 1.489 1.99
Polymethylmethacrylate 1.186 2.30 1.75 1.91
Tantalum 16.654 3.39 1.22 1.60
Molybdenum 10.210 5.03 1.265 1.49
Sapphire SESAME EOS

Table 3.2: Equation of state parameters for materials used in the CTH simulations [73].

Eulerian frame. Although the simulation is mapped back into the original mesh, the code has the

ability to update flow properties at given Lagrangian tracer locations [46].

3.6.1 Models

Two types of models used in CTH were the Equation of State (EOS) and the strength models.
The EOS relates the pressure and internal energy, both thermodynamic quantities, to the density and
temperature of a material. This type of model depicts the hydrodynamic response of the material.
The main model used in these simulations was the Mie-Griineisen model, discussed in Section 2.2.4,
which uses shock Hugoniot data, found through experiments, to define an EOS. This is one of the
most common models used in plate impact experiments. For the materials used in this research, the
EOS was centered on the linear Us — u, Hugoniot, the parameters of which are given in Table 3.2.
The linear Hugoniot was used to define the shock pressure, P¥ (V), and internal energy, E (V),

in Equation 2.2.27, by

Py = Py + poUsuy (361)

and

Ey = Ey +1/2u, (3.6.2)

which result from the shock jump equations of momentum and energy. The Griineisen parameter
in Equation 2.2.27 was assumed to be a function of volume, and the energy was given as a relation
of a constant-volume specific heat, and temperature [55]. The only material whose EOS was not
described by the Mie-Griineisen model was Sapphire. For this material, a tabular form of the EOS
given in the SESAME library was used.
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The deviotoric response of the material is described by the strength models. Primarily, the
Steinberg-Guinan-Lund Plasticity model was implemented for most of the materials for its ability to
handle high pressures. However, for those materials that were outside the scope of this model — and
in the case where the elastic response was required — a linearly elastic, perfectly plastic approach
was used. The latter is based on the Von Mises yield surface. It uses the Von Mises yield criteria,
defined in Equation 2.1.68, and the yield strength in simple tension, 0¥, to test if the material is
yielding. Prior to yield, stress can be related to strain by Equation 2.1.61. At yield, the material
remains at the yield stress value. For the Steinberg-Guinan-Lund constitutive relation, which models

a viscoplastic response, the expression for yield is strain-rate dependent and is given by

G(P,T)

Y = [V (6T) + Yaf () g,

(3.6.3)

where Y7, Y4, f, and G are described by

-1
. 1 2U% Yr\?  Co

P=(_— — 1 - —= = 3.6.4
€ (Clexp T ( Yp) +YT ) ) ( a)
Yaf(?)=Ya[l+B(ep+e€)]" <Y, (3.6.4b)

and
P

G(P,T)=Gy |1+ Am — B(T —0.02585¢V) | . (3.6.4c)

Here, Y, is the yield strength at the Hugoniot Elastic Limit, Y7 is the thermally activated part of
Y, Y} .. is the work hardening maximum, Gy is the initial shear modulus, C; is the exponential
prefactor, C5 is the coefficient of drag term, Uy is the activation energy, Yp is the Peierls stress,
n and B are work hardening parameters, A is the pressure dependence of the shear modulus and
B is the temperature dependence of the shear modulus. These constants are all dependent on the
material. €P is equivalent plastic strain, €P is the equivalent plastic strain-rate, €; is the intial plastic

strain, P is pressure, T is temperature, 7 = p/po is compression, where pg is the initial density, and

G is the bulk shear modulus [73]. To test for melting, the Lindemann law is used, where

Ty = Tnoexp [2a (1 — 1 /)] n?o—a=1/3), (3.6.5)

Equation 3.6.5 is used to test for when temperature, T', exceeds T, at which point Y and G are set
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Be Al LiF Cu Ta Mo Sa
po(g/cm?) 1.85 2.703 2.638 8.930 16.690 10.200 -
Tmo(eV) 1.568e-1  1.051e-1 1.275e-1 1.542e-1 3.740 e-1  3.154e-1 -
a 1.0 1.5 1.4 1.5 1.3 1.3 -
Yo 1.11 1.97 1.69 2.02 1.67 1.59 -
A((dynes/em?)™! 1.54e-12  6.52e-12  5.0e-12  2.83e-12  1.45e-12  1.14e-12 -
B(eV™) 2.994 7.149 7.172 4.375 1.509 1.764 -
n 7.8e-1 1.0e-1 0 4.5e-1 1.0e-1 1.0e-1 -
Ci(sec™) 4.0e8 0 0 0 7.1e5 3.52¢7 -
Cs(dynes — sec/cm?) 1.2¢5 0 0 0 1.2¢5 1.2¢4 -
Go(dynes/cm?) 1.51el2  2.76ell 4.9el1 4.77ell 6.9ell 1.25e12 -
153 2.6el 1.25e2 0 3.6el 1.0el 1.0el -
€ 0 0 0 0 0 0 -
Yr(dynes/cm?) 3.0e9 0 0 0 8.2e9 1.67e10 —
Uk (eV) 3.1e-1 0 0 0 3.1le-1 3.72e-1 -
Y% 0o (dynes/cm?) 1.31e10 0 0 0 4.5e9 1.6e10 -
Ya(dynes/cm?) 2.8¢9 0 0 0 3.75e9 9.0e9 -
Yo(dynes/cm?) 3.3e9 2.9¢9 3.6e9 1.2e9 7.7¢9 1.6e10  3.55€9
Yo (dynes/cm?) 1.31e10 6.8€9 3.6e9 6.4e9 1.1e10 2.8e10 -
v 0.18 0.33 0.25 0.333 0.3 0.375 0.28

Table 3.3: Strength parameters for materials used in the CTH simulations [73]. Materials are
abbreviated as Be for beryllium, Al for aluminum 6061-t6, LiF for lithium fluoride, Cu for ohfc-
copper, Ta for tantalum, Mo for molybdenum, and Sa for sapphire.

to zero. In this equation, T}, is the melt temperature at constant volume, a is the coefficient of the
volume dependence of the Griineisen coefficent, and -y is initial value of the Griineisen coefficient.
A summary of the parameters used for the materials in these simulations is given in Table 3.3 for
both the Steinberg-Guinan-Lund and elastic perfectly plastic strength models. The only material in
this table that uses the latter model is sapphire. It should be noted that PMMA, although not listed

in Table 3.3, uses a viscoelastic-plastic model in CTH, the description of which is export controlled.

3.6.2 Slip at Material Interface

Since a shear wave is being transmitted into the specimen, slip can occur at the interface. CTH
does not model slip and assumes materials are welded together at the interface, hence there is no
easy way to accurately model this due to the inherent random nature of slip. Furthermore, samples
are not perfectly flat in experiments as they are in CTH and often times two identical experiments
can be conducted where one exhibits slip and the other does not. For this reason, experimentors

will conduct the same experiment several times to determine if slip occurs.
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3.6.3 Oblique Wedge Setup in CTH

After determining the appropriate materials to be used, the impact velocity and the angle of
obliquity of the incident shock, the configuration was set up in CTH to be numerically analyzed.
For ease of analysis, the configuration was first rotated in Matlab such that the rear surface of the
target was parallel to the y-axis. This is shown in Figure 3.10. The reason for this was that the
velocities obtained at the rear surface would coincide with those measured at the rear surface of the
target in a given experiment. In other words, the transverse velocity would be along the y-axis and

the longitudinal velocity would be perpendicular to the rear surface, along the x-axis in CTH.
LiF
Copper Impactor PMMA Driver Window
P(GPa)

1
l10

0
110

Transmitted
Shock

Aluminum Target Lagrangian Tracer Location

Figure 3.10: Two dimensional pressure plot for an oblique wedge configuration consisting of a cop-
per impactor, polymethylmethacrylate (PMMA) driver, aluminum 6061-t6 (Al) target and lithium
fluoride (LiF) window. Impact velocity is specified at 1000 m/s with a 10 degree angle of obliquity
for the incident wave.

In Figure 3.10, a two dimensional pressure profile is shown to illustrate the wave state in the
oblique wedge target. The incident, reflected and transmitted shocks can all be seen here, where
the transmitted shock is parallel to the rear surface of the aluminum target. The Lagrangian tracer
point shown in red is located at the aluminum-lithium fluoride interface and is the main point of
interest since it demonstrates what would be measured in an experiment. Additional points are
shown in the plot in the dotted black line and are used to study the wave propagation through the
specimen. A two-dimensional rectangular mesh was used with Adaptive Mesh Refinement (AMR)

in the target of interest in order to accurately depict what occurs in this region. A square mesh
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was created throughout the entire problem ranging from 128 cells in the outer materials to 512 cells
in the inner target. Convergence studies were performed on the mesh size to ensure that results
remained consistent. Cell size was decreased until the stress and velocity outputs from the simulation
no longer varied, at which point the largest possible cell size that produced no change in the results

was chosen.

3.6.4 Progression of the Shear Wave

In these experiments, uniform loading is desired throughout the target. Furthermore, it is optimal
to have the target respond to a maximum amount of shear stress in order to test its strength. To
study if the shear wave is steady such that it has not dissipated once it propagates into the target,
shear particle velocities throughout the target were plotted and are shown in Figure 3.11. The initial
velocity is at a tracer point just after the driver-target interface and the final velocity profile is just
before the target-window interface. The remainder of the velocity profiles, shown in a variety of
different colors, are evenly distributed between these two points. In the first configuration, Figure
3.11a, the impactor and driver are beryllium (Be), the target is aluminum 6061-t6 (Al), the window
is lithium fluoride (LiF), the impact velocity is 1000 m/s, and the angle of obliquity of the incident
shock is 10 degrees. It can be seen that there is slight attenuation in velocity, although the profile
remains similar throughout the specimen. The second configuration, shown in Figure 3.11b, consists
of a copper (Cu) impactor, polymethylmethacrylate (PMMA) driver, an aluminum 6061-t6 target, a
lithium fluoride window, has an impact velocity of 1000 m/s and an obliquity of 10 degrees. Here the
wave is quite steady where the velocity profile remains constant throughout. Figure 3.11c¢ shows the
copper impactor, copper driver, tantalum (Ta) target, and lithium fluoride window configuration.
In this setup, it is evident that there is some attenuation. In this case, the impact velocity was
1300 m/s with an angle of obliquity of 10 degrees. Closer to the target-window interface, reflections
can be seen that appear to increase the velocity profile. The velocities at the last two tracers must
experience edge effects since the velocity decreases rather than increases upon reflections from the
window. The final configuration in Figure 3.11d is the molybdenum (Mo) impactor, molybdenum
driver, tantalum target, and sapphire window with a 1000 m/s impact velocity and a 10 degree angle
of obliquity. Here the velocity has some oscillation which could be due to the artificial viscosity in
CTH. There is definitely some attenuation here of the wave as well as the effects of the reflected

wave off of the window.



Velocity(m/s)

Velocity(m/s)
>

-
o
T

o7

o
T

3 L L L L ! 1 L
0 0.1 0.2 03 04 05 0.6 0.7 0.8
Time(usec)
(a) Be Be Al LiF
20 ; : :
15} g
5 b
10 L i 1 1 1 L
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time(usec)

(b) Cu PMMA Al LiF



o8

Velocity(m/s)

10 L L I
0 0.2 0.4 0.6 0.8 1 1.2

Time(usec)

(c¢) Cu Cu Ta LiF

Velocity{m/s)
> >

o

-5 L L !
0 0.5 1 1.5 2

Time(usec)

(d) Mo Mo Ta Sa

Figure 3.11: Progression of shear particle velocity within oblique wedge targets for four configura-
tions. Initial velocity is at the tracer just within the target after the driver-target interface and the
final velocity is at the tracer just within the target before the target-window interface; the remainder
of the velocities are evenly distributed between these two points. The names of each simulation are
abbreviated for impactor, driver, target, and window; i.e., for Be Be Al LiF, the impactor and driver
are beryllium, the target is aluminum 6061-t6 and the window is lithium fluoride.

3.6.5 Strain-Rate Analysis

In order to calculate the strain-rate at which these simulations occur, Equation 2.1.19 can be

used. Assuming that the problem is one dimensional in strain, this reduces to

de  Ov

The difference of the output of the particle velocity in the x direction between two adjacent tracers
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and their distance from one another can be used to find the strain-rate for each point in time. This
calculation, performed at a tracer point just inside the target at the target-window interface for
the four main configurations discussed above, is shown in Figure 3.12. As can be seen, the peak
strain rates are 4.8x10°/s for the Be Be Al LiF configuration, 4.1x10¢/s for the Cu PMMA Al LiF
configuration, 2.3x10°/s for the Cu Cu Ta LiF configuration, and 2.3x10%/s for the Mo Mo Ta Sa

configuration. The peak strain-rates occur at different times due to the geometry of each composite

target.
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Figure 3.12: Strain-rate at target-window interface for four oblique wedge configurations. The
first configuration is the beryllium impactor, beryllium driver, aluminum 6061-t6 target and lithium
fluoride window with a 1000 m/s impact velocity. The second configuration is the copper impactor,
polymethylmethacrylate driver, aluminum 6061-t6 target and lithium fluoride window with a 1000
m/s impact velocity. The third configuration is the copper impactor, copper driver, tantalum target
and lithium fluoride window with a 1300 m/s impact velocity. The last configuration consists of a
molybdenum impactor and driver, a tantalum target and a sapphire window for a 1000 m/s impact
velocity. All of these configurations assumed a 10 degree angle of obliquity.

3.6.6 Stress Calculation

As previously mentioned, particle velocities at the rear surface of the target can be used to
calculate the longitudinal and shear stresses. These were found in the simulation using the velocity
outputs at the rear surface Lagrangian tracer, shown in Figure 3.13. It can be seen in Figure 3.13
that the shear wave arrives later in time than the longitudinal shock, as expected. Times t;, and tg
indicate the time of arrival at the rear surface of the target-window interface. By shifting the time

scale so that time zero indicates arrival at the front surface of the wedge target, the arrival at the
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rear surface of each wave can be used to find the time it takes each wave to propagate and hence

the shock and shear wave velocities can be found, where these velocities are respectively defined as

pr = 9r (3.6.7a)
tr
and
d
Cg = -+ (3.6.7b)
ts

The distance dr is measured halfway up the target. It must be noted that, although the shear wave
comes in at an angle with respect to the rear surface of the target, the effect of this on the observed
wave velocity is negligible. Using the initial density — since velocity is measured in the Lagrangian
frame — as well as the wave velocities and particle velocities, v, and u,, the shear and longitudinal

stresses are calculated from Equations 3.1.1 and 3.1.2.
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Figure 3.13: Longitudinal and shear velocity profiles at the rear surface of an oblique wedge target.

Time is shifted such that time zero indicates shock arrival at the front surface of the target. uzf is

the longitudinal particle velocity, ug is the shear particle velocity, and ¢;, and tg are the arrivals of
the longitudinal and shear waves at the rear surface of the wedge target, respectively.

3.6.7 Comparison of Stresses vs. Yield

The process described above for stress calculation was repeated for a variety of different configu-
rations. The four that are highlighted here correspond to the targets described above in the analysis

to find if the shear wave was steady. The first configuration is Be Be Al LiF and is the theoretical
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configuration proposed by Justin Brown in his Ph.D. thesis [13]. This theoretical case led to the
study of this target design specifically because its shear stress matched closely to the maximum shear
stress in the material, which could then be used to calculate strength. The impact velocity in this
simulation was 1000 m/s, with an angle of obliquity of 10 degrees and resulted in a transmitted wave
angle of 6.96 degrees with respect to the front edge of the target. The second design from above
for Cu PMMA Al LiF resulted in a transmitted wave angle of 5.33 degrees. The Cu Cu Ta LiF
configuration resulted in a 8.2 degree transmitted wave angle and the Mo Mo Ta Sa configuration
resulted in a 7.0 degree transmitted wave angle. The windows were chosen to be as closely matched
in impedance to the target as possible to mitigate angled reflections at the target-window interface
for all but the Cu Cu Ta LiF. LiF was chosen here to test whether reflections off of its surface would
result in a larger change in particle velocity. It was thought that it would be easier to determine
variations in these velocities as oppposed to those resulting from reflections off the sapphire.

Since the strength of the material is of interest, the maximum stress was compared to the
calculated shear stress to see if the shear stress reached in the experiment could be used to find the
strength of the material. To calculate the maximum stress, the Von Mises yield criteria was used,

giving

oy
Tmaz = \/*a
3

where 0¥ is the yield strength and is a material property. To find out whether the material yields,

(3.6.8)

Equation 2.1.68 can be used. The stresses used in these equations were found from the Lagrangian

tracer point output in CTH and results of this analysis are shown in Figure 3.14.
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Figure 3.14: Shear stress, shear stress using Mises Yield criteria, calculated shear stress from trans-
verse particle velocity and maximum shear stress for four oblique wedge configurations. Calculations
were performed from CTH simulation results.

In Figure 3.14a, the theoretical case is shown — since beryllium is toxic and not well suited for a
lab environment it is only a theoretical study here. In this figure, the shear stress, shown in blue from
the stress tensor output, matches quite well with the shear stress calculated using the transverse
particle velocity — 0.199 GPa for the calculated shear stress and 0.189 GPa for the average shear
stress in the peak region. It is also close to the results using the Von Mises yield criteria, shown
in black, the average of which is 0.27 GPa. The next two configurations, however, differ quite
significantly from the Mises criteria value. Again, the calculated shear stress matches well for the
Cu PMMA Al LiF in 3.14b, Cu Cu Ta LiF in 3.14¢, and the Mo Mo Cu Sa in 3.14d, composite
targets with 0.07 GPa vs. 0.075 GPa, 0.198 GPa vs. 0.189 GPa, and 0.428 GPa vs. 0.486 GPa,

respectively, for the average shear stress from the tensor output vs. the calculated shear stress. The
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Configuration Impact Angle of Transmitted Shear Calculated Mises Maximum
Velocity Obliquity Shock Wave  Stress Shear Shear Shear
(m/s) (deg) Angle CTH Stress Stress Stress
(deg) Output (GPa) (GPa) (GPa)

(GPa)

Be Be Al LiF 1000 10 6.96 0.189 0.199 0.270 0.167
Cu PMMA Al LiF 1000 10 5.33 0.070 0.075 0.255 0.167
Cu Cu Ta LiF 1300 10 8.2 0.198 0.189 0.614 0.444
Mo Mo Ta Sa 1000 10 7.0 0.428 0.486 0.960 0.444

Table 3.4: Summary of four oblique wedge configurations. Impact velocity and angle of obliquity
were independent variables, while the transmitted shock wave angle was calculated using shock polar
analysis. “Shear stress CTH output” is the mean shear stress at the peak region at the rear surface
of the target. “Calculated shear stress” was found using the transverse velocity. “Mises shear stress”
was found using the Von Mises yield criteria. “Maximum shear stress” is the yield stress in simple
tension divided by the square root of three, a material property.

Mises shear stress, however, is much higher for each of these configurations — 0.255 GPa, 0.614 GPa
and 0.960 GPa, respectively. It should be noted here that the shear stress analyses for the Cu Cu
Ta LiF and Mo Mo Ta Sa configurations were made at a Lagrangian tracer point midway into the
target. The reason for this was the attenuation of the velocity profile further into the target and the
reflections off of the windows, as described in Section 3.6.4. If these particular configurations were
of interest in an experiment, it would be prudent to design a target larger in diameter to avoid any
edge effects that could be causing the attenuation. These results are summarized in Table 3.4.

In all four cases, the target has yielded since the Mises stress that is calculated exceeds the
maximum shear stress for each material. What this indicates is that, although the material is
yielding, it is not yielding from pure shear, otherwise the shear stress would match or exceed the
maximum shear stress value. For the Be Be Al LiF and Mo Mo Ta Sa cases, the shear stress is
close to the maximum value. These could be slightly off due to yielding caused by the other stress
components. Since the Mises stress is higher in all of the cases than the maximum shear stress, the

yield surface must be analyzed to determine the mechanism causing yield to occur.

3.6.8 Yield Surface and Stress Path

The yield surface can be found using Equation 2.1.68 to further elucidate the yielding process
in the oblique wedge setup. The analysis can be simplified assuming a 1D strain state as defined in

Section 2.1.3.2, and superimposing a shear stress, resulting in the tensor
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0oy gy O |- (3.6.9)

Applying 2.1.69 and substituting this into Equation 2.1.68 results in an equation for the shear stress

as a function of the longitudinal, lateral, and yield stresses given by

02 B 2
Oy = \/UY (U? ) ' (3.6.10)

This equation is the yield surface and allows for the stress path followed by the target material to be
found by plotting o, as a function of 4/ M from the stress tensor output in CTH. The stress
path as compared to the yield surface is shown for each of the configurations in Figures 3.15a-3.15d.

In Figure 3.15a the aluminum target in the Be Be Al LiF configuration first follows the yield
surface and then exceeds it, ending up in a state of mostly shear, rather than the longitudinal and
lateral stresses. Here, initial yield in simple tension is analyzed and since the stress path exceeds
the surface, this result could indicate that the yield stress is strain-rate and pressure dependent,
changing throughout the experiment, which results in a new yield surface. Nevertheless, since the
material ends up in a state of pure shear, the measured transverse velocity can be used to calculate
the shear stress and the yield strength thereafter. On the contrary, Figure 3.15b, the Cu PMMA Al
LiF configuration, shows that the stress path follows the yield surface and is yielding, but it is not
in pure shear at the end of the experiment. The same is true for the Cu Cu Ta LiF configuration in
Figure 3.15c. Although in this case the stress path is not quite on the yield surface, it is evident in
Figure 3.14c that it is yielding. The reason the stress path is off the yield surface could be due to the
assumption of 1D strain with superimposed shear. In this assumption, oy, and o, were assumed
to be equal. Thus, o,, could be separately contributing to the yielding of the material. The final
case in Figure 3.15d for the Mo Mo Ta Sa composite target indicates that the stress path follows the
yield surface closely and ultimately ends up near the maximum value of shear stress, much like the
Be Be Al LiF case. Overall, the four configurations have the ability to measure the shear stress, but

not necessarily the strength, although this is promising with the Mo Mo Ta Sa composite target.

3.6.9 Higher Impact Velocities

At higher velocities it appears that the assumption of a constant shear wavespeed breaks down

and thus the arrival time can not be used to calculate the shear wave velocity for the entire exper-
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Figure 3.15: Stress path and yield surface calculations for four oblique wedge configurations The
names of the configurations have been abbreviated as impactor, driver, target, and window.
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iment. This is apparent in a higher velocity impact of the Cu PMMA Al LiF configuration, the
results of which are shown in Figure 3.16. Note that, the region where the shear wave propagates
in the target prior to reflection is in the first peak of the shear stress from the stress tensor. As
can be seen, the target is yielding since the Mises criteria is much higher than the maximum shear
stress. While the calculated shear — 0.145 GPa — is relatively close to the maximum value — 0.167
GPa — it is still quite a bit higher than the shear stress from the tensor, the average peak value
of which is 0.107 GPa. The reason that the calculated value is higher than the actual shear stress
value is attributed to the fact that shear wave velocity is assumed to be a constant value, when in
reality it depends on the shear modulus which could be significantly different at higher pressures in

comparison to the nominal value for the material.
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Figure 3.16: Shear stress, shear stress using Von Mises yield criteria, calculated shear stress from
transverse particle velocity and maximum shear stress for the Cu PMMA Al LiF configuration at
1300m/s impact. Calculations were made from simulations in CTH hydrocode.

3.6.10 Impedance Matching to find In-Situ Velocities

Another concern with the oblique wedge design is that measurements are being made through
a window. Though this is generally not a problem for planar shocks, it becomes an issue when
the transmitted waves are not parallel to the rear surface. Specifically, this is a concern for the
transverse velocity measurement since the shear wave is not parallel to the longitudinal shock and
thus reflects off of the target-window interface at an angle. Figure 3.17 shows an x-t diagram for
the waves propagating into the window.

In Figure 3.17 the target and window are assumed to be in a quiescent state — zero pressure and

velocity. After the longitudinal wave propagates into the target, the state contains a longitudinal
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Figure 3.17: x-t diagram for the target and window in an oblique wedge configuration.

velocity u and stress of . This is simplified since this state involves a three dimensional stress tensor
in reality, however, a hydrostatic pressure prior to shear wave arrival may be assumed. Following
this state, the shear wave arrives in the target and superimposes a transverse velocity v{ and stress
7{'. Some portion of the longitudinal wave reflects off the window and the rest transmits into it.
Assuming continuity of stresses and particle velocities at the target-window interface, the state in
the window, with velocity u}" and stress o}V, is set equal to state u and o in the target. Finally,
the shear wave reaches the window and the state is superimposed with shear velocity and stress of
vV and 7/, respectively, which is equal to state vJ and 7 in the target . Equations 2.2.5 and

2.2.8 can be used to relate velocities measured in the window to the in-situ velocities in the target.

Applying these equations for the longitudinal direction in the window and target results in

o — oy =py UY (ui’ —ul), (3.6.11a)
of —o5 =pgUs (uf — ), (3.6.11Db)

and
o3 —of =—ps US (uj —ui), (3.6.11¢)

where Equation 3.6.11c incorporates the fact that the reflected wave travels in the negative direction

with respect to the coordinate system. Since the transmitted shock wave enters a quiescent state,

it can be assumed that ul = of = 0. The window is also initially at rest so uf’ = o}’ = 0.
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Applying continuity of tractions and velocities at the interface, results in u}" = u = uh, ui = up,
and ol = o}V. Substituting in these assumptions and combining Equations 3.6.11a-3.6.11c, an

expression for the in-situ particle velocity is found:

_ (o UY + 5 US) uy
205 U§

(3.6.12)

<
"o

Here u), is the measured velocity, py’ and p{ are known values, and UZ can be measured based on
the arrival of the shock and the thickness of the target. The shock velocity in the window, U, can
be found from Equation 2.2.7 using the measured particle velocity, uzl] The same approach can be

applied to the transverse direction to get the relation for the in-situ shear velocity:

(p6' CE +PE CF) vy

0
v, = , 3.6.13
’ 205 C% (3:6.43)
where 1)11) is the measured shear particle velocity, CgV is assumed to be the elastic value for the shear

wavespeed in the window, and Cg is measured based on arrival of the shear wave and the thickness
of the target.

For the case of an aluminum target with a lithium fluoride window, the two materials are so
well matched that this approach seems to work well. Figures 3.18a and 3.18b show the velocities
measured in the window, the calculated in-situ velocity and the actual in-situ velocity from the
simulation described above for the Cu PMMA Al LiF configuration with a 10 degree angle of
obliquity and 1000 m/s impact. The window and calculated in-situ velocities appear time shifted
due to the fact that they occur later since they are from the tracer in the window rather than the
target. From Figures 3.18a and 3.18b, it appears that it is not necessary to use impedance matching
to find the in-situ velocities. Furthermore, the longitudinal velocity in the window is actually slightly
closer to the in-situ velocity than the calculated velocity.

This approach can also be applied to the Cu Cu Ta LiF configuration with the 10 degree angle of
obliquity and 1000 m/s impact, where Ta and LiF are not well matched. These results are shown in
Figure 3.19. In Figure 3.19a, it does appear that Equation 3.6.12 estimates the longitudinal in-situ
velocity quite well from the window measurement. Nevertheless, 3.19b shows that the transverse
velocity is not well matched. The simulation was repeated for a larger target and it was found
that the peak in-situ velocity for no attenuation was 9.2 m/s rather than 8.7 m/s in the attenuated
case and, while the non attenuated velocity was higher, performing impedance matching on the

velocity measured at the target-window interface still yielded similar results to Figure 3.19b . Upon
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Figure 3.18: Longitudinal and transverse velocity profiles for Cu PMMA Al LiF oblique wedge
configuration including velocities in the window, in-situ velocities in the target and calculated in-situ
velocities from the window measurement. Calculations made using numerical simulations in CTH
hydrocode.
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further investigation, it was concluded that this result is not due to the attenuation of the wave but
rather the inability of the impedance matching technique to capture the in-situ shear velocity for the
oblique wedge setup. Another concern is that the window could also be yielding, which would mean
that the maximum shear from target is not being transferred into the window and thus the shear
measured through the window would relate more to the window response rather than the target
response to the shear wave. It was concluded that a different approach would need to be used to

obtain in-situ measurements.

3.6.11 Oblique Wedge Configuration Using Anvil Backing

As a solution to some of the issues exhibited with the rear surface window approach, an anvil
can be used instead. The case of Mo Mo Ta Sa, described in Section 3.6.7, was re-examined to
determine if sapphire was yielding. Equation 3.6.8 was used to determine the maximum shear stress
the window would support, where o%- was stored in CTH as 0.355 GPa, and Equation 2.1.68 was
implemented to see if the window yielded. Figure 3.20 shows that the window does in fact yield. In
this case, the window was modeled as elastic perfectly plastic and thus the stress does not exceed
yield value, however, it does reach it which indicates that the material is yielding.

As mentioned in Section 3.6.10, the window yielding would not allow the maximum shear stress
in the target to be transmitted and since this is the case here, an alternative technique must be
approached. This new technique would also mitigate concerns in finding the in-situ velocities in the
target since it was shown above that angled reflections at the target-window interface cause issues.
Since the Mo Mo Ta Sa design exhibited a shear stress that was close to the maximum value, this
oblique wedge design was used with the sapphire replaced by tungsten carbide (WC). WC was used
because it has a higher strength than Ta — with initial yield strength o = 4.46GPa for the WC
and 09 = 0.77GPa for the Ta [73] — and hence should allow for all of the shear stress from the
Tantalum to be transmitted into it.

The goal of this new model would be to create an experiment that would allow for the in-situ
measurement to be determined. To do this, a similar technique to that used in the elastic wave
simulations, Section 3.5, was implemented. In Figure 3.21, the wave state is shown. Here it has
been assumed that the incident shock wave is nominally parallel to the rear surface of the target and
hence only causes longitudinal reflected and transmitted waves. Although the incident shear wave
is not parallel to the rear surface, it is assumed that it is not a shock and hence any longitudinal

reflected and transmitted waves due to the oblique shear waves will not have much effect on the
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Figure 3.19: Longitudinal and transverse velocity profiles for Cu Cu Ta LiF oblique wedge configu-
ration from CTH simulation including velocities in window, in-situ velocities in target and calculated
in-situ velocities from window measurement.
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Figure 3.20: Maximum shear stress and Mises shear stress for oblique wedge configuration of Mo
Mo Ta Sa using a CTH simulation.

state after the shock. Hence, transverse reflected and transmitted waves from the incident shear
wave are only considered. These two assumptions simplify the problem. In Figure 3.21, angles By
and Byg are the angles of the incident waves with respect to the target-anvil interface, where By, is
assumed to be zero. fyg is found using geometry and is given by the difference between the angle of
the shear wave with respect to the driver-target interface and the angle of the target, the former of
which is found from Equation 3.2.1. The wavespeeds in the target, c¢; 4 and ¢4, are found by using
the shock and shear wave arrival times at the rear surface of the target and the thickness of the
target midway up. In an actual experiment, the arrival time at the rear surface of the target would
need to be measured by using a technique such as VISAR probes, tilt pins, etc., outside the anvil
diameter, but within the target diameter. To find the time that the shock traveled in the target, one
would need to subtract travel time in the driver, which could be found by either finding travel time
in a second experiment with just the flyer and driver or by using the Hugoniot of the driver. For
higher impact velocities where the shear wave velocity is not a constant, either the elastic value can
be used or the calculation with the arrival time can be used as an estimate. It can also be shown
that the shear strain resulting from the transverse wave is quite low and hence it can be assumed
that the wave travels at its elastic wavespeed. To show this, Equation 2.1.61 can be used to find the
shear strain as a function of shear stress in the target, given by

g12

€12 = —, (3614)
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where p is the shear modulus and can be found from the definition of the transverse wavespeed

resulting in the equation

w=co’p. (3.6.15)

Using the results in Table 3.4 for the calculated shear stress in each of the four configurations previ-
ously studied along with the wavespeeds and densities for both 6061 T6 Aluminum and Tantalum,
it is found that the strain is 0.0037, 0.0014, 0.0013, and 0.0033 for the Be Be Al LiF, Cu PMMA Al
LiF, Cu Cu Ta LiF, and Mo Mo Ta Sa configurations, respectively. The wavespeeds used were 3.15
km/s for the Al and 2.09 km/s for the Ta and the respective densities were 2.703 g/cm?® and 16.656
g/cm? [60]. For further accuracy, simulations must be studied. Whichever method is used to find
the wavespeeds, they can be used to calculate the equivalent Lame constant, A, and shear modulus,

1, where

M = pAch? _ouh, (3.6.16)

as in Equation 3.5.1 and the shear modulus is given by

= 0‘242;)‘4. (3.6.17)

In these equations, the definitions of the wavespeeds have once again been used. It is assumed that
the anvil is elastic and hence its defined material properties can be implemented. For tungsten
carbide, p? = 15.4 g/cm3, cop = 4.3 km/s, and ¢15 = 6.858 km/s [37]. From these values, the shear
modulus and Lame constant can be found. As mentioned, the incident longitudinal wave angle was
assumed to be parallel to the rear surface of the target meaning that 53 = 83 = 0. Then, using
Equation 2.1.54, the remaining angles were found to be 82 = Bgg and B4 = sin™! (%) From
these angles, the normal and polarization vectors can be calculated.

To find the in-situ velocities in the target using the information from the target-anvil interface,

continuity of velocities and tractions at the interface are applied. An approach similar to Equation

2.1.50 is used to obtain the continuity of velocity equation,

a%L]ﬁJra%SﬁJraALiJraAS]ﬁ:aBLiJraBsgﬁ. (3.6.18)

Using Equations 2.1.51 and 2.1.52 at the target-anvil interface yields the continuity of traction
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Interface (Material B)

Figure 3.21: Wave state at target-anvil interface upon incidence of the shock and shear wave. The
dark green line represents the incident shock, the light green is the incident shear wave, the dark
blue line is the reflected shock, the light blue is the reflected shear wave, the red is the transmitted
shock and the orange is the transmitted shear wave. (; is the angle with respect to the interface for
each wave and n is the normal for each wave, where the subscripts S and L refer to the shear and
longitudinal waves, respectively, and the superscripts refer to material A or B. The superscript A0
refers to an incident wave.

relation

1 1 1
(ABchBXL(,) agLﬁJr <ABICAB§SO> agsgﬁJr (ABchB}L) OzAL]ﬁ-l-
“ “ “ (3.6.19)

1 1 1
(cABchBXS> QAsDE = (CBBchBgL> apLpl + (CBBICBBES) apsps-
2 1 2

As noted above, the material properties are obtained from the wave velocities, which can also be
used for the stiffness matrices C. The angles are also known values along with the particle velocity
amplitudes at the interface, given by apy, and agg. These amplitudes can be found in the simulation

from the particle velocities at the target-anvil interface, giving

Vﬁ + Vij = aBinLB = apr, (00353% + sinﬂgj') = apLi. (3.6.20)

In Equation 3.6.20, V> and VyL refer to the particle velocities normal and perpendicular to the rear
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surface of the target, respectively, after the longitudinal wave arrives in the anvil. Since this wave

is nominally parallel to the rear surface, V,/ = apr and VyL = (0. Similarly for the shear wave,

V>2i4 V7 = apLpf + apsp§ = apr (00853% + Sinﬂ?ﬁ) +
(3.6.21)

aBsg (—sinﬂéﬁ + cosﬂﬁ) = (apr — apssinfy) i + apgcosBa].

The assumption that the longitudinal wave is parallel to the rear surface was used in Equation
3.6.21 to eliminate the angle dependence of B3. With this decoupled equation, apg can be directly
solved for using Vys and 4. Combining Equations 3.6.18-3.6.21 leads to a system of equations with
the unknowns a9, 0‘?457 aar, and asg. These equations can be used to find the in-situ particle

velocities in the target given by

a2, (3.6.22)

after the longitudinal wave, and

Q%Lﬂ‘f'a%slﬁ» (3.6.23)

after the shear wave.

Taking this approach one step further, the rear surface velocities at the anvil can be used to find
the in-situ velocities within the anvil and the subsequent in-situ velocities in the target. This method
could be used to find the in-situ velocities from the rear surface measurements in an experiment.
In this case, Figure 3.22 shows the wave state. In Figure 3.22, it can be seen that the transmitted
longitudinal and shear waves from Figure 3.21 are now the incident waves on the rear surface of the
anvil. Furthermore, since the window is parallel to the rear surface of the target, the angles of the
waves remain the same. Although the waves don’t actually hit the rear surface at the same time,
they are shown as they would appear at the rear surface when they arrive there. Using Equation
2.1.54 it can be shown the reflected angles are respectively the same as the incident angles for each

wave. Using continuity of velocity at the rear surface of the anvil, the following relations can found

(OZ]L — aRL) — (aIS + Olgs) sinﬁ4 = V;nd (3624)

and
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(ars — aprs) cosPy = Vye"d. (3.6.25)

Anvil
(Material B)

Figure 3.22: Wave state at rear surface of anvil for the oblique wedge setup. The red line is the
incident shock wave, the orange is the incident shear wave, the dark blue is the reflected shock and
the light blue is the reflected shear. ; is the angle with respect to the interface for each wave and n
is the normal for each wave, where the subscripts S and L refer to the shear and longitudinal waves,
respectively, and the superscripts BI and BR indicate an incident or reflected wave in material B,
the anvil, respectively. The incident waves don’t hit the rear surface at the same time, but have
been shown as they would appear at the rear surface.

Here, ajr, agrp, ars,and agrs are the amplitudes of the particle velocities across the incident and
reflected longitudinal waves, and the incident and reflected shear waves, respectively. V"¢ and V;"d
are the particle velocities measured at the rear surface of the anvil. Applying continuity of tractions,

where the rear surface tractions are set to zero, results in the equations

A+2 2ucosB4sin
K (arr + agr) — M(

ars —ags) =0 (3.6.26)
1 C2

I (0032ﬂ4 — sin2ﬁ4)
C2

(ars + ars) = 0. (3.6.27)

From 3.6.27, it is found that a;s = —args and substituting this result into 3.6.25 leads to
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(3.6.28)

Substituting in the results of Equation 3.6.27 for (ays + agrs) into Equation 3.6.24, and combining

this with Equation 3.6.26 solves for ajy,, where

2uciargcosfBysiniy Vf”d
arr =
Co ()\ + 2,[1/) 2

(3.6.29)

The results of Equations 3.6.28 and 3.6.29 can finally be used to find the in-situ particle velocities
in the anvil which can then be used to find the in-situ velocities in the target through the approach
described by Equations 3.6.18 and 3.6.19.

To test whether these theories could be used for velocities measured in experiments, CTH was
implemented to model the setup. WC was modeled in CTH with the Mie-Griineisen EOS. These
parameters are not in the model database in CTH and hence had to be found through outside
sources. The parameters used for this model were p = 15.4 g/cm?3, Cy = 4.93 km/s, S = 1.309,
¢y = 238 J/Kg/K, and 79 = 1.44 where p is the density, Cy is the sound speed in Equation 2.2.7, S is
the empirical constant in Equation 2.2.7, ¢, is the specific heat, and g is the Griineisen parameter.
Deunsity, sound speed and the empirical constant .S were all found in [40], ¢, was found from [23], and
the Griineisen parameter was determined from [59]. The linearly elastic perfectly plastic strength
model was used, as a more detailed model was not available in CTH, with parameters Poisson’s ratio
v = 0.2 and yield strength in tension o9 = 4.46 GPa [37]. The results of this simulation are shown
in Figures 3.23 and 3.24.

In Figures 3.23 and 3.24, the longitudinal and transverse particle velocities are shown for the
Mo Mo Ta WC oblique wedge configuration at a 10 degree angle of obliquity and 1000 m/s impact.
In these figures, u, and v, are the longitudinal and transverse particle velocities in the target. The
“calculated u, in target from anvil” and “calculated v, in target from anvil” use Equations 3.6.18-
3.6.23 to calculate in-situ particle velocities in the target from the particle velocities in the anvil
measured after the passage of the longitudinal shock and shear wave into the anvil. “Calculated wu,
in target using impedance” uses impedance matching techniques for a shock wave, much like the
approach described in Figure 3.17 for a window, and uses the particle velocity in the anvil to make
these calculations. “u, in anvil” and “v, in anvil” are the particle velocities in the anvil after the
passage of the transmitted shock and shear waves. “Calculated u, in target using end velocity” and

“calculated v, in target using end velocity” implement Equations 3.6.24-3.6.29 to find the in-situ
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Figure 3.23: Longitudinal particle velocities for Mo Mo Ta WC oblique wedge configuration. u,, is
the velocity in the target, “calculated w, in target from anvil” is the longitudinal velocity calculated
from the particle velocity in the anvil. “Calculated u, in target using impedance” uses impedance
matching techniques for a shock wave using particle velocity in the anvil. “u, in anvil” is the particle
velocity in the anvil. “Calculated u, in target using end velocity” is the particle velocity in the target
calculated using the velocity measured at the rear surface of the anvil. “Calculated u, in target using
impedance from end velocity” uses impedance matching techniques for shock waves from the rear
surface of the anvil. “End velocity” is the particle velocity at the rear surface of the anvil.
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Figure 3.24: Transverse particle velocities for Mo Mo Ta WC oblique wedge configuration. v, is
the velocity in the target. “Calculated v, in target from anvil” is the transverse velocity calculated
from the particle velocity in the anvil. “v, in anvil” is the particle velocity in the anvil. “Calculated
vp in target using end velocity” is the particle velocity in the target calculated using the velocity
measured at the rear surface of the anvil. “End velocity” is the particle velocity at the rear surface
of the anvil.
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velocities in the anvil from the rear surface measurements of the anvil and subsequently find the
in-situ particle velocities in the target using Equations 3.6.18-3.6.23 with these calculated velocities
in the anvil. “Calculated u,, in target using impedance from end velocity” uses impedance matching
techniques for shock waves once again, but starting from the rear surface of the anvil to find the
in-situ velocity in the target. This results in dividing the rear surface velocity in half, which gives
the in-situ velocity in the anvil, and then using the same approach as that in Figure 3.17 to find
the velocity in the target. Finally “end velocity” in both figures is the particle velocity at the rear
surface of the anvil.

In Figure 3.23, the longitudinal velocity in the target prior to the shear wave arrival is 448.8m/s.
Interestingly enough the velocity does increase to 453.5 m/s after the shear wave passes which
does indicate an effect of the oblique shear wave on longitudinal velocity, however, this is only a
1.05% growth and hence the assumption that only the shock wave affects the longitudinal velocity
suffices. The remainder of the velocities are shown in Table 3.5. As can be seen from the results, the
impedance matching technique works much better for finding the in-situ velocities as opposed to the
psuedo-elastic wave analysis, where the difference for the impedance matched in-situ velocity is 3.63%
using the rear surface velocity versus 10.23% for the psuedo-elastic technique. In Figure 3.24, it can
be seen that the shear velocity is not level and peaks at a certain point. This trend could be due to
a variety of reasons such as wave reflections from the shock wave (if it is not perfectly parallel to the
rear surface), as well as the unsteady nature of the wave due to the changing viscosity of the material.
For this case, impedance matching was not used since it was shown for the windowed example that it
did not work well. Furthermore, it is clear that the shear wave is not parallel to the rear surface and
impedance matching does not take this into account. Using the psuedo-elastic approach described
above, the in-situ velocities calculated from the in-situ anvil particle velocity and rear surface particle
velocity are shown in Table 3.6 and are 14.85% and 11.16% different, respectively, than the actual
transverse in-situ particle velocity in the target, given by the simulation. Here it should be noted
that the peak velocity was taken for all but the “rear surface” and “in-situ calculated from rear
surface” velocity values. In these cases, the average peak value was found. In the latter case, it is
apparent in Figure 3.24 that there is an oscillatory nature to the velocity perhaps due to an issue
with the mesh if there were two materials in one cell and hence the average value had to be taken.
Although the error here is higher than for the longitudinal velocity found using impedance matching,
the values are still promising and show that this technique could be used in an experiment.

The final analysis that needs to be made is to determine whether the anvil is yielding. Using
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up Target up Target up Impedance up Anvil up Target up Impedance up, End
from Anvil from End from End

Velocity 448.8 532.2 457.7 407.2 494.7 432.5 770.0
(m/s)
Difference n/a 16.58 1.98 n/a 10.23 3.63 n/a
from in-situ
in Target
(%)

Table 3.5: Longitudinal particle velocities in Mo Mo Ta WC oblique wedge configuration.

vp Target v Target from Anvil vy Anvil v, Target from End v, End
Velocity (m/s) 8.42 717 6.13 748 12.19
Difference n/a 14.85 n/a 11.16 n/a
from in-situ
in Target
(%)

Table 3.6: Transverse particle velocities in Mo Mo Ta WC oblique wedge configuration.

the same approach outlined for the Mo Mo Ta Sa configuration, where Equation 3.6.8 was used to
find the maximum shear strength the anvil could support, it was found that the anvil does yield.
Once again, a linearly elastic perfectly plastic model was used with % = 4.46 GPa [37]. The results
of this study are shown in Figure 3.25. As with the sapphire window, the analysis shows that the
material is yielding, but it is not clear by how much since o3 could be strain-rate dependent and
not a constant value. Nevertheless, although yielding does occur, this approach still seems to be

working which could indicate that the material is just starting to yield. A more detailed model for

tungsten carbide could be used in the future to study this phenomenon.

3.7 Conclusions

Theoretically, a variety of driver materials, impactor materials, angles of obliquity and impact
velocities can be implemented in the oblique wedge configuration to study the response to shear
stress at a wide range of pressures. This study has shown that with an increased impact velocity,
a greater state of longitudinal stress can be created at which the shear response can be tested.
Furthermore, with an increase in the angle of obliquity for the incident wave, a larger shear wave
angle will form. It has been shown that this setup can measure shear stress for both tantalum
and aluminum, but it has limitations. For the case of Be Be Al LiF, the maximum shear stress
was close to the shear stress in the experiment, while this was not true for the Cu PMMA Al LiF

configuration. An explanation for this could be that the PMMA may have yielded while the Be did
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Figure 3.25: Maximum shear stress and Mises shear stress for oblique wedge configuration of Mo
Mo Ta WC in the WC anvil calculated from CTH simulation.

not and hence the shear wave transmitted into the Al was weaker, causing the material to yield from
longitudinal and lateral stresses, rather than shear. To mitigate a similar problem in the Cu Cu Ta
LiF configuration, Mo was used as a driver since it has a higher shear impedance and yield strength
than Cu which resulted in a higher transmitted shear in Ta that was close to maximum shear stress
and could be used to calculate the strength of the material. Thus, it was concluded that the driver
material must have a higher shear impedance and strength than the target for the target to reach
the maximum shear stress value in a state of pure shear.

At higher impact velocities, it was found that a constant shear wavespeed cannot be assumed.
Impedance matching for transverse waves is also difficult since they are not parallel to the transmitted
longitudinal waves and is an issue when dealing with targets and windows that are not very close
in impedance. A solution to the latter problem could be the implementation of high strength anvils
that remain elastic throughout the experiment such that the elastic oblique wave analysis can be
used to relate the measured particle velocities at the rear surface of the anvil to the in-situ velocities
in the target. Using the Mo Mo Ta Sa configuration and replacing the sapphire with tungsten

carbide, it was shown that such an approach could work.



83

Chapter 4

Y-Cut Quartz Sandwich
Configuration

4.1 Introduction

Another novel method to test the effects of shear on materials is by using y-cut quartz as a
shear generator. Upon impact, y-cut quartz generates two waves due to its anisotropic nature [75],
[77]. The first wave, called “quasi-longitudinal” (QL), travels at a faster velocity than the second
“quasi-transverse” (QT') wave, however, both waves contain longitudinal and shear particle velocity
components. If the sample is cut such that the crystallographic Y direction is normal to the surface
and Z is parallel, then the waves will always travel in the direction of the Y axis, with velocity
components in the Y and Z directions [18]. In Figure 4.1, a schematic of a y-cut quartz sandwich
configuration is shown. Note that, in the simulations conducted for this study, the impact is in the
x direction in the experiment coordinate frame, and the crystallographic Y direction of the quartz
is oriented in this direction with the quartz Z direction in the z direction of the simulation. Both
coordinate systems are shown in Figure 4.1, with the quartz coordinates denoted by upper cases
letters and the superscript q. Upon impact, the waves travel into the quartz where the components of
velocity are transmitted into the target of interest. These velocity components generate both pressure
and shear waves in the target. Using an anvil that remains elastic throughout the experiment allows
the velocity to be measured at the rear surface, which can be used to find the stress state in the

target, defined by equations

0= —piCiuy, (4.1.1)

and
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1
T= ipOACﬁvfs. (4.1.2)

In these equations, pg is the initial density of the anvil, C’f and C’g‘ are the elastic longitudinal and
shear wavespeeds in the anvil, respectively, and us, and vy, are the longitudinal and transverse free

surface velocities, respectively.

Quartz Target Anvil y

QT QL

Impactor Wave State in Target

Projectile

Figure 4.1: Schematic of the y-cut quartz sandwich configuration to test material response to
shear. Upon impact, a quasi-longitudinal (QL) and quasi-transverse (QT) wave is generated due to
the anisotropic nature of the quartz. Each wave has a shear and longitudinal component of velocity
that is transmitted into the target. The coordinate systems for the simulations and the quartz are
shown. Simulation coordinates are in lower case letters and quartz coordinates are in upper case
with the superscript q.

4.2 Oblique Gun Experiments

To study shear response and strength measurement in materials, the pressure-shear experiment
has been used. Many of these types of experiments were conducted using an oblique (or slotted
barrel) gun. In this experimental setup, the impactor and target are oriented parallel to one another,
but at an angle with respect to the horizontal axis. Rotation of the projectile is eliminated by
implementing a key that is guided by a keyway in the gun barrel [2]. The velocity vector of the
projectile contains both longitudinal and shear components due to the skewed angle and hence, both
pressure and shear waves are generated upon impact. One dimensional wave theory, as discussed in
Section 2.1.3, can be used to analyze the effects of the waves propagating into the specimen since
the target is loaded uniformly. This analysis is no longer valid when cylindrical unloading waves

from the edges of the target reach the point of observation.
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Figure 4.2: Schematic of slotted barrel gun.

A basic schematic of this setup is shown in Figure 4.2. In this type of experiment, the impactor
can be either a solid material, or consist of a hard anvil backed by a material with a different
impedance in order to conduct strain-rate change tests [76]. The target can also be either a solid
material, or a thin sample backed by a high strength anvil. To maintain high shear strain-rates, thin
foil samples (< 500 pm) sandwiched between plates that remain elastic are used [58], [30]. Within
the specimen, the stress state rings up until it is uniform throughout the sample and is continuous
at each of the anvil-specimen interfaces. For this reverberation to occur, the target and flyer plates
must have a higher impedance than the sample. The longitudinal velocity difference causes the
material to be compressed due to the 1D strain assumption, at which point it reaches a steady state
and the velocity is continuous. If the specimen responds elastically, the velocity will be continuous
throughout, however, if it behaves plastically, the shear velocity is discontinuous and the difference

between the front and back surfaces can be used to find the strain-rate [42], where

VUF —UB

- (4.2.1)

Here, 7 is the strain-rate, vy and vp are the velocities at the front and back surfaces of the specimen,
respectively, and h is the thickness of the specimen and is assumed to be a known value. The velocity
at the back surface of the specimen, vg, is assumed to be continuous with the velocity in the anvil
and is given by

1

UB = 5Vfs (4.2.2)

which can be shown to be the case by using the characteristic in Equation 2.1.60b. The development
of the longitudinal and shear stress states is shown in Figures 4.3a and 4.3b. As can be seen in Figure
4.3a, the impactor begins to travel at ug, which for the oblique gun is equal to Vhcosfd — where
Vo is the impact velocity and 6 is the angle of inclination of the impactor and target. Once the

impactor hits the thin sample, the sample reaches some stress state and continues to reverberate
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between the two Hugoniots, shown in red and beige in Figure 4.3a. Although initially these are
the target and impactor Hugoniots, since the two anvils are assumed to be the same material, their
Hugoniots actually reflect onto one another as the sample wave reverberates between the two plates.
The shear stress state, however, is slightly different. Here, the sample reaches some stress state as
it is impacted by the flyer and, after a few reverberations (not shown in Figure 4.3b), the sample
reaches a shear stress state at which point it begins to flow. The anvil unloads at the rear surface
at some free surface velocity, vys, and zero stress. The stress must be continuous across the sample
and hence the impactor anvil and target anvil at the interfaces with the sample must be at the same
shear stress. Velocities are not necessarily continuous and hence the front of the sample reaches some
velocity, vg, while the in-situ velocity in the anvil backing plate, vg, matches that of the sample’s
back surface. This technique was found to be advantageous to using a homogeneous target where

the wave profile attenuates and shear strain-rates diminish.

4.3 Y-Cut Quartz Sandwich Configuration

The concept of the sandwich configuration that is used with the oblique gun can be employed
in a normal impact gun by using y-cut quartz to generate the shear wave. Figure 4.4 depicts the
x-t diagram for such a configuration. In this case, there are two anvils, unlike the setup shown in
Figure 4.1. Upon impact, the QL and QT waves propagate into the y-cut quartz and generate two
longitudinal (P) waves and two shear (S) waves due to each wave having both longitudinal and shear
particle velocity components in the quartz. It is assumed here that since the specimen is so thin,
the waves propagate in the second anvil without an impact to their velocity.

Although in the oblique gun sandwich experiment the specimen front surface velocity can be
found by using the impact velocity and impedance matching, using y-cut quartz complicates the
problem. Thus, to find the front surface velocity and be able to calculate the strain-rate, one could
monitor the velocity by using interferometry techniques with a probe monitoring the rear surface
of the anvil through a notch in the full target or by conducting a separate experiment with the
impactor and target, where the target would consist of the quartz backed by the anvil. The free
surface measurement off of the WC would match the in-situ measurement in the full target setup
with the specimen and the anvil. This in-situ measurement — let it be called v;g — can be used
with the jump conditions to find the front surface velocity for the specimen. Figure 4.5 shows the
shear stress-particle velocity Hugoniot for such a configuration. It is similar to Figure 4.3b, however,

v is now an unknown since the WC driver is stationary. Furthermore, this time the Hugoniots are
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Figure 4.3: Development of stress state in sample for the pressure-shear experiment.
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Figure 4.4: x-t diagram for a y-cut quartz sandwich configuration with two anvils.

labeled as forward and backward for each of the WC plates. The reason for this is that, initially,
the shear wave travels forward into the WC and the driver reaches some shear stress 77g. At this
point, the wave travels forward into the sample, but part of it is reflected into the WC driver;
thus the stress state in the driver can be found along the backward Hugoniot. As the wave in the
sample travels forward, it is reflected at the sample-backing interface, and a wave is sent forward
into the backing anvil plate, where its stress state lies along the forward Hugoniot. At this point
the sample reaches some stress state 75, and the backing anvil must unload to zero stress and some
free surface velocity vss. It is assumed that the sample reaches a steady state and the shear stress
is uniform throughout such that the front surface velocity at the WC driver-sample interface lies on

the backward Hugoniot. Equation 2.2.8 can be used to find the following relations from Figure 4.5:

TIS = PWCC2VIS, (4.3.1)
TS = PWCC2VUB; (4.3.2)

and
Trs = Ts + pwoca (VP — vrs) (4.3.3)

where 775 is the in-situ shear stress in the WC and 7g is the shear stress throughout the specimen.
Equation 4.3.1 can be used to solve for 775 in order to substitute it into Equation 4.3.3. The stress
in the specimen, 7g, can be calculated using the free surface velocity in the two driver setup to find

vp and plugging it into Equation 4.3.2. Finally, vp can then be found from Equation 4.3.3.
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Figure 4.5: Shear stress-particle velocity Hugoniot for y-cut quartz two driver configuration.

4.3.1 Laslo Simulations

To design targets for testing, numerical simulations were performed using Laslo (Lagrangian
Analysis and Simulation of Loading in One dimension) [70]. Developed at Sandia National Lab-
oratories, Laslo is a 1D transient dynamics — time history analysis — code and uses an updated
Lagrangian formulation to solve the conservation equations. To integrate these equations, it dis-
cretizes spatially with linear two-node elements and uses a central difference scheme to integrate in

time. The theory behind this code is covered in [11].

4.3.1.1 Models

As mentioned, at high pressures, solid materials behave in a fluid like manner, however, to model
shock wave discontinuities, artificial viscosity is used [15]. This term is implemented to “smooth”
the shock front. The user can choose to describe viscosity with either a linear or quadratic equation,

given by [11]

g = cop (Du)® + cpap | Aul (4.3.4)

where Au is the jump in velocity across the element, ¢y and ¢y, are non-dimensional constants, p is

density and a is sound speed.
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Tungsten Carbide [39] Y-Cut Quartz [47]
p (kg/m?) 15400 2650
C11 (GPa) 720.0 86.8
C12 (GPa) 254.0 7.0
C13 (GPa) 151.0 11.9
C14 (GPa) 0.0 -18.0
015 (GPG,) 0.0 0.0
016 (GPa) 0.0 0.0
Ca2 (GPa) 720.0 86.8
Co3 (GPa) 151.0 11.9
024 (GPa) 0.0 18.0
025 (GPG) 0.0 0.0
026 (GPCL) 0.0 0.0
Cs3 (GPa) 972.0 105.8
034 (GPCL) 0.0 0.0
035 (GPG) 0.0 0.0
036 (GPG) 0.0 0.0
Ci4 (GPa) 328.0 58.2
045 (GPCL) 0.0 0.0
Cy6 (GPa) 0.0 0.0
Css (GPa) 328.0 58.2
Cs6 (GPa) 0.0 -36.0
Ce6 (GPa) 233.0 39.9

Table 4.1: FElastic constants for the stiffness matrices of tungsten carbide and y-cut quartz. The
parameter p is density and Cij is each term in the stiffness matrix.

Tungsten carbide was used for the anvil in all of the simulations due to its high strength so that
it could be used for a variety of specimens since it stays elastic at higher pressures. A linear elastic
model was used for both y-cut quartz and WC, with parameters for the stiffness matrix given in
Table 4.1. The theory to predict wave propagation in y-cut quartz is based on the work by Johnson
[47], [48].

The remaining materials, tantalum and aluminum 6061-t6, used a Mie-Griineisen EOS, see Sec-
tion 3.6.1, and a Johnson-Cook strength model with the parameters set such that the model was
essentially linear elastic perfectly plastic. The reason for the latter step is that the linear plas-
tic model does not work in Laslo and hence the Johnson-Cook model can be used instead. The

Johnson-Cook model describes strength in the following way:

Y = (a+be") (1+clogeé) (1—T"T), (4.3.5)

where Y is the strength and is strain-rate dependent. The value a is the initial yield strength, € is
the equivalent plastic strain, ¢ is the strain-rate, and 7™ is the non-dimensional temperature defined

by
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Aluminum 6061-T6 [73] Tantalum [73] Polyurethane [73], [54]

p (kg/m?) 2703 16654 1265
v 0.34 0.33 0.18
a(GPa) 0.29 0.77 0.0021
b 0 0 0

c 0 0 0
m 1 1 1

n 0 0 0
T* (K) 273 273 273
tres (K) 208 208 298
o (J/Kg/K) 1070 160 86
5 1.97 1.60 1.55
S 1.37 1.22 1.577
Co (m/s) 5220 3390 2486

Table 4.2: Parameters for the Mie-Griineisen EOS and Johnson-Cook Strength models. p is density,
v is poisson’s ratio, a is the initial yield strength, b, ¢, and n are strain-rate hardening factors, m is
a thermal-softening factor, 7™ is a nondimensional temperature, ¢,y is the initial temperature, c,
is the specific heat capacity, v is the Griineisen parameter, S is the linear coefficient and Cj is the
sound speed in the Ug — u, Hugoniot.

(4.3.6)

where T;. is the room temperature, T}, is the melt temperature and T is the temperature which
is somewhere between the two, T,. < T < T, . The remaining parameters, b, ¢, and n, are all
strain-rate hardening factors and the constant m is a thermal-softening factor [62]. The parameters

for these models are given in Table 4.2.

4.3.2 Two Driver Target Design

The first approach used was the y-cut quartz (YQ) sandwich design with a WC and YQ driver
followed by a thin sample and a WC anvil bounding plate. Simulations were performed with an
aluminum 6061-t6 impactor at 400, 450, and 500 m/s. It was determined that 400 m/s was the choice
of interest due to material yielding, which will be discussed later. Although it does not necessarily
matter what impacts the quartz, x-cut quartz and aluminum 6061-t6 are most commonly used as
they are both well matched to the quartz and therefore produce a close to symmetric impact. The
advantage of using aluminum is that it is light-weight and hence can be thick such that reflections
will not be a problem during the experiment.

Figure 4.6 shows the x-t diagram for part of the configuration. As can be seen, upon impact the

waves generated correspond to those discussed for Figure 4.4. Figures 4.7a and 4.7b show the velocity
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profiles at the tracers shown in red and green on Figure 4.6. The tracer at 0.01 m corresponds to
the interface between the YQ and WC, and the green tracer at 0.015 m is midway through the WC.
Times t; and t5 indicate the arrival times for QL and QT at the YQ-WC interface. The times t3, t4,
ts, and tg indicate the times of arrival of the pressure and shear waves due to QL and the pressure

and shear waves due to QT, respectively, at the tracer midway through the WC.

/\t

Aluminum Y-Cut Quartz Tungsten-Carbide
Impactor

Qr

v

0.01m 0.015m

Figure 4.6: x-t diagram for the two driver y-cut quartz sandwich configuration for the impactor
and two drivers, YQ and WC.

The distance traveled and the individual arrival times can be used to find the wave velocities in

each material, where the wave velocities of QL and QT in the YQ are given by

0.01
Che = = = 6031.36 m/s (4.3.7)
and
0.01
Cof = = 0 4391.74 m/s, (4.3.8)
2

respectively. Since the WC remains elastic, both pressure and shear waves should travel at the same
elastic longitudinal and transverse velocities, respectively, and thus only the first arrival time for
each wave needs to be used for the calculation. These velocities are

0.005 m

C” C="" " = 6849.32 m/s 4.3.9
L
t3 —t1

and
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Figure 4.7: Longitudinal and shear particle velocities for y-cut quartz (YQ) two driver sandwich
configuration. The second driver and anvil are tungsten carbide (WC). Tracer locations are shown
in (m).
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0.005
oye = 7;“ = 4629.63 m/s. (4.3.10)

la—t
The goal in this experiment is to subject the specimen to the largest amount of shear, which will
occur from the response to the first wave, QL, since its transverse component of velocity is larger.
Figure 4.8 shows the entire x-t diagram for the composite target. In this schematic, times t¢7, g,
tg, and t1o correspond to the first and second longitudinal and transverse waves arriving at the rear
surface of the WC bounding plate. The goal here is to maximize the amount of time the state after
ts and prior to t1g is seen. These times can be calculated by dividing the distance traveled by the

velocity of each wave,

DWC

tr=t1+ —wo (4.3.11)
Cr
DWC
ts =t + —we (4.3.12)
Cg
DWC
Cr
DWC
th - t2 + WO (4314)
Cg
where DW (' is the entire thickness of the two WC plates with the specimen.
/\t
Aluminum Y-Cut Quartz Tungsten-Carbide Sample Tungsten-Carbide
Impactor A
[
dAl dYQ dwr1 dg dwm

Figure 4.8: x-t diagram for full y-cut quartz two driver sandwich configuration using tungsten
carbide as the second driver and the anvil.

The first consideration is to see the entire shear response from the first transverse wave plus a
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given read time prior to edge wave arrival. Figure 4.9 illustrates the propagation of edge waves in the
composite target. Upon impact, waves begin to propagate in from the corners of the YQ. Since YQ
is an anisotropic material, the waves will travel at different velocities depending on the direction of
analysis, which results in an elliptical wave front [26]. As a safe measure, the fastest wavespeed can
be used to approximate the wave traveling in a cylindrical manner, which is assumed to be traveling
at the same velocity as QL. Assuming edge waves travel at the same velocity as the fastest wave is
a common practice in the analysis of plate impact experiments. The time it takes for the waves to
travel is the distance along the shortest path divided by the velocity of the wave. It is assumed here
that the edge waves travel inwards until they reach a certain diameter at the WC interface at which
point they continue to propagate towards the center, but this time at the elastic longitudinal wave
speed of the WC. The first step is to calculate the shear wave arrival plus some given read time and
make certain this occurs prior to edge wave arrival. This step results in

tg +t, <tyq+ (4.3.15)

wc-
C*L

Y-Cut Quartz Tungsten-Carbide Tungsten-Carbide

A
v

dyg dwe ds dye

Figure 4.9: Edge wave propagation in two driver y-cut quartz sandwich configuration.

As defined above, tg is the arrival of the first shear wave at the rear surface of the second WC
plate and the term ¢, is the read time after the wave arrives. The sum of these times is set equal to
the arrival of the edge waves at the rear surface of the target, which is the time it takes the first set
of edge waves to propagate through the quartz, ¢,,, and the time for the second set to propagate

through the remainder of the target, C% The most conservative estimate of the time for the edge
L

(in\/§

e and the time for the waves to travel
QL

waves to travel until they affect diameter d; in the WC is
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