
Chapter 6

Discussion and Conclusion

The application of high-frequency seismograms to damage detection in civil structures was

investigated. Two novel methods for SHM were developed and validated using small-scale

experimental testing, existing structures in situ, and numerical testing.

The first method is developed for pre-Northridge steel-moment-resisting frame buildings

that are susceptible to weld fracture at beam-column connections. The method is based

on using the response of a structure to a nondestructive force (i.e., a hammer blow) to

approximate the response of the structure to a damage event (i.e., weld fracture). In Chapter

2, the method was applied to a small-scale experimental frame, where the impulse response

functions of the frame were generated during an impact hammer test. In Chapter 4, the

method was applied to a numerical model of a steel frame, in which weld fracture was modeled

as the tensile opening of a Mode I crack. Impulse response functions were experimentally

obtained for a steel moment-resisting frame building in situ. Results indicated that while

acceleration and velocity records generated by a damage event are best approximated by the

acceleration and velocity records generated by a colocated hammer blow, the method may

not be robust to noise. The method seems to be better suited to damage localization, where

information such as arrival times and peak accelerations can also provide indication of the

damage location. This is of significance for sparsely-instrumented civil structures.

The second SHM method is designed to extract features from high-frequency accelera-

tion records that may indicate the presence of damage. As short-duration high-frequency

signals (i.e., pulses) were observed to be indicative of damage, the method relies on the
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identification and classification of pulses in the acceleration records. Briefly, pulses observed

in the acceleration time series when the structure is known to be in an undamaged state

are compared with pulses observed when the structure is in a potentially damaged state.

By comparing the pulse signatures from these two situations, changes in the high-frequency

dynamic behavior of the structure can be identified, and damage signals can be extracted

and subjected to further analysis. It is recommended that, in practice, the method be com-

bined with a vibration-based method that can be used to estimate the loss of stiffness. In

Chapter 3, the method was successfully applied to a small-scale experimental shear beam

that was dynamically excited at its base using a shake table and damaged by loosening a

screw to create a moving part. Although the damage was observed to be aperiodic and non-

linear in nature, the damage signals were accurately identified, and the location of damage

was determined using the amplitudes and arrival times of the damage signal. In Chapter 5,

the method was also successfully applied to detect the occurrence of damage in a test bed

data set provided by the Los Alamos National Laboratory, in which nonlinear damage was

introduced into a small-scale steel frame by installing a bumper mechanism that inhibited

the amount of motion between two floors. The method was successfully applied and was

robust despite a low sampling rate, though false negatives (undetected damage signals) were

observed to occur at high levels of damage when the frequency of damage events increased.

The method was also applied to acceleration data recorded on a damaged cable-stayed bridge

in China, provided by the Center of Structural Monitoring and Control at the Harbin Insti-

tute of Technology. Acceleration records recorded after the date of damage showed a clear

increase in high-frequency short-duration pulses compared to those previously recorded. One

undamage pulse and two damage pulses were identified from the data. The occurrence of

the detected damage pulses was consistent with a progression of damage and matched the

known chronology of damage. The damage pulse originated between the end of the bridge

and the first accelerometer; damage may have occurred within this region.

The findings of each chapter are repeated below.
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Chapter 2: Experimental Study: Damage Detection Method for Weld Fracture

of Beam-Column Connections in Steel Moment-Resisting-Frame Buildings

An experimental study was conducted to provide insight into a damage detection method

that makes use of a prerecorded catalog of IRF templates and a cross-correlation method

to detect the occurrence and location of structural damage in an instrumented building.

Impulsive hammer blows and bolt fracture were applied to a small-scale steel frame to test the

feasibility of applying the method to a building. The similarity between structure responses

was evaluated using a cross-correlation method. The main findings of this chapter are:

1. IRFs were successfully obtained for an existing steel moment-resisting-frame building

in situ. Not only were the IRFs clearly observable over ambient noise, the waveforms

were also very consistent between trials with colocated sources, with correlation values

typically greater than 0.8. For IRFs generated by hammer blows at different locations,

significant differences were observed in arrival times, peak accelerations, and waveforms

using eight accelerometers recording at 100 kHz. The data supports the idea of using

hammer blow data to localize damage to a single column within a story. A sampling

rate of 100 sps, though preferably 500 sps, seems to be high enough to capture the

IRFs in the Factor building.

2. The application of the proposed damage detection method to the small-scale frame

suggests that the IRF is not a robust approximation of the response to bolt failure.

The method may also be suitable for damage localization, especially if it is combined

with information about the arrival times and peak accelerations. While the IRFs cross-

correlated well with each other and the responses to bolt fracture cross-correlated well

with each other when the sources were colocated, the IRFs and responses to bolt

fracture did not. However, in all considered cases, the IRF that had the highest

correlation value with the response of the frame to bolt failure was the colocated IRF.

Improvements in the correlation values were made by using an amplitude-dependent

normalization that scaled with the maximum amplitude of acceleration at each receiver

in response to bolt fracture. Information, such as arrival times and peak accelerations,
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can also be indicators of where damage occurred; this is of significance for sparsely-

instrumented structures.

3. The response of the frame to bolt fracture was observed to be surprisingly consistent

between trials (correlation values of 0.70-0.85 for responses with colocated sources).

This suggests that the mechanism that occurs at the moment of bolt failure is consistent

between trials, and a hammer blow does not well-characterize this source. This also

implicates that if a building were to undergo damage that resulted in the creation of a

repeating source, a repeating high-frequency, short-duration signal might be observed

in the acceleration time series. This could be generated by damage cases such as in the

case of a breathing crack that repeatedly opens and closes, or a change in boundary

conditions that increases the flexibility of a member and allows for the excitation of

traveling waves.

4. The pre-recorded IRFs differed significantly from the IRFs that were recorded when

the frame was in a damaged state, with typical cross-correlation values of 0.5, as com-

pared to pre-damage values of 0.8. By comparing the generation of waves propagating

through the frame, it was seen that the response of the damaged structure to a hammer

blow applied at a given location begins to diverge from the response of the undam-

aged structure only after the elastic waves recorded at a given receiver location passed

through the region of damage. This phenomenon is similar to the guided wave methods

used in acoustic damage detection methods, and it also has potential to be used for

damage detection in larger-scale structures. It would be necessary to use a repeatable

mechanism to excite the structure over time, preferably under similar environmental

conditions, and differences between the baseline signal and the subsequent recorded sig-

nal would be used to indicate damage. Damage might be located through an inverse

problem approach that makes use of a finite-element model.

5. The application of a hammer blow to a damaged connection resulted in a low correlation

value with the pre-recorded IRF generated by a colocated hammer blow. In this case,
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the damaged connection was observed to also act as a high-frequency source, most

likely due to motion generated at the interface of the beam and column. Applying a

hammer blow to a cracked beam or column in a real building may or may not result in

high-frequency energy generated at the crack interface. Presumably, if a beam has a

crack and the two sides of the crack are not held firmly together, e.g., a vertical crack in

a beam, a hammer blow applied in the vicinity of the crack could result in mechanical

slippage and impact caused by the relative motion at the crack interface. If, on the

other hand, the crack is firmly held closed, as might be the case for a horizontal crack

in a column, high-frequency energy might not be generated at the crack interface in

response to a nearby hammer blow.

6. As the responses to bolt fracture correlated just as well with pre-recorded IRFs as

they did with the post-damage IRFs, it may be desirable to record the IRFs after

an earthquake has occurred, when the building is in a potentially damaged state. In

this way, there is an additional chance of detecting any high-frequency energy that is

generated within a cracked interface at a damaged connection. (Also, if the building

is never subjected to a large earthquake, there will be no need to conduct the hammer

blow trials in the first place.) One advantage of having previously-recorded IRFs,

however, is that they can be directly compared with post-earthquake IRFs, in order to

detect damage in the frame by differences between them.

Chapter 3: Experimental Shear Beam

The effect of damage on the dynamic response of a civil structure was investigated exper-

imentally using a small-scale (0.75 meter tall) shear beam. Damage was introduced into the

shear beam by loosening the bolts connecting the columns to the floor, and a shake table

was used to apply a consistent pulse at the base of the beam. The main findings of this

chapter are outlined below:

1. A dynamic pulse was input at the base of the shake table. High-frequency acceleration

records could be used to immediately determine the presence and location of damage,
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based on the presence of short-duration high-frequency signals caused by mechanical

impact and slippage. Low-frequency acceleration records could also be used to im-

mediately determine the location of damage (i.e., which floor), based on the delayed

arrival times and amplitudes of the initial shear wave.

2. A damage detection method that is based on detecting pulses in both the undamaged

and potentially damaged acceleration records was found to be successful in detecting

the nonlinear, aperiodic occurrences of damage signals. The arrival times and ampli-

tudes were used to determine which floor was damaged. The advantage this strategy

has over current strategies is that it can detect early onset damage. It is also based

on the physical mechanism of damage in the structure, namely wave propagation, and

energy formulations or the combination of the method with a time-reversed reciprocal

method could give more information about the damage mechanism. The obvious dis-

advantage is that if there are no pulses (due not using a high-enough sampling rate, or

the absence of such a signal), the method will not work. Another disadvantage is that

the method cannot be used to determine the amount of damage (e.g., loss of stiffness),

it can only detect the occurrence of signals that may indicate damage. The method

could be combined with a vibration-based method.

3. A static tilt test was performed to estimate the severity of damage for Levels 1, 2,

and 3. The amount of damage was found to range from moderate to severe levels,

with estimated stiffness parameter kd/dud ranging from 0.27 to 0.74. The estimated

shear wave speeds obtained during dynamic testing were used to quantify the amount

of damage, and the level of damage was estimated to be less severe than the values

obtained from the stiffness test. The mean values (and standard deviations) of the

estimated inter-story lateral stiffnesses immediately beneath the damaged floor for

Damage Levels 1, 2, and 3, respectively, were found to be 0.93 (0.03), 0.70 (0.1), and

0.82 (0.23). The mean values (and standard deviations) of the estimated inter-story

lateral stiffness immediately above the damaged floor for Damage Levels 1, 2, and 3,

respectively, were found to be 0.94 (0.03), 0.67 (0.09), and 0.80 (0.24). The mean
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values (and standard deviations) of the estimated inter-story lateral stiffness in floors

not immediately above or below the damaged floor were calculated to be 0.99 (0.03),

0.95 (0.07), and 0.96 (0.05). The dynamic estimates could be improved by considering

a longer portion of the time series. The values could be tested using forward modeling

by determining the accompanying natural frequencies and mode shapes and comparing

those with the observed ones.

4. The modal response of the structure was found to be highly consistent between trials,

though the introduction of damage results in the presence of transient signals that gen-

erally originate at the damaged floor. A decreased transmission through the damaged

floor of the high-frequency motion generated by the shake table was also observed.

Chapter 4: Numerical Study: Time-Reversed Reciprocal Method and Damage

Detection Method for Weld Fracture

To numerically test a method for damage detection, a steel frame’s response to two loading

cases, an impulse-like force and an opening crack tensile stress (Mode I crack), was computed

on a temporal scale of microseconds. It was found that the velocity waveform of a tensile

crack can be approximated by the velocity waveform of an impulse-like force applied at the

same beam-column connection of a steel frame. The results support the use of waveform

cross-correlation using a pre-event catalog of impulse response function templates to deter-

mine the location and time of occurrence of a subsequent fracture recorded on a network

of vibration sensors. However, the damage detection method may not be robust in a real

setting, and the method may be better suited for damage localization.

A time-reversed reciprocal method was applied to a two-story one-bay numerical steel

frame, as a proof of concept for applying the methodology to a complex structure such as a

bridge or building. The signal was not fully recovered, but the location and application time

of the impulse-like force were successfully determined. In applying this method to an actual

structure, an accurate numerical model would first need to be developed for the structure

in the frequency range of interest, which could be both challenging and computationally-
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expensive. Once a satisfactory numerical model is obtained, the experimental data, which

would contain some elements of noise, would be time-reversed and input to the model at the

original receiver locations. It would be interesting to see this method applied to a full-scale

experimental structure.

Chapter 5: Application of High-Frequency Damage Detection Methods to Bench-

mark Problems

The presence of high-frequency short-duration signals in the acceleration records were

observed to indicate damage in two benchmark problems, the LANL nonlinear frame and

the SMC damaged cable-stayed bridge. In each example, the damage signals were success-

fully isolated by applying a method to identify potential damage signals through feature

extraction of pulses. The method effectively uses the matched filter method to detect the

occurrence of repeating signals, and identify new pulses that could indicate damage.

In the LANL nonlinear frame example, the damage signal took the form of elastic waves

generated by the impact of a bumper mechanism. By using either high-pass filtering or a

time-frequency representation, the damage signal could be clearly detected as high-frequency

pulses in the acceleration records obtained on the two floors housing the bumper mechanism.

The method was observed to be robust despite the low sampling rate, though an increase in

false negatives was observed. Additional false negatives occur at high levels of damage when

there was little time separation between damage signals. However, the damage signal was

successfully isolated, and it was possible to localize the damage, based on the amplitudes of

the damage signals, to the top two floors of the structure.

Acceleration data was obtained from a damaged cable-stayed bridge in China. An in-

crease in high-frequency short-duration pulses is clearly observed in the acceleration records,

and the occurrence of these pulses alone might be used to indicate the presence of damage.

An abrupt decrease in acceleration levels that was caused by preventative measures taken

to limit traffic to prevent the collapse of the bridge indicated that the pulses are primarily

caused by traffic. One undamage (TUD
1 ) and two damage signals (TD

1 and TD
2 ) were isolated

using the feature extraction method. Damage signal TD
1 appears to be generated by vehicle
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loading on the south end of the bridge; signals TUD
1 and TD

2 seem to have been generated

by the same source mechanism and location, namely vehicle loading on the north end of the

bridge. All acceleration data (recorded during the same time period during light traffic) was

screened for the presence of the undamage and damage signals using a threshold value of

0.35. The undamage signal was detected multiple times in each dataset. The damage signals

were first detected in the March 30 acceleration record, and they were also detected multiple

times in all subsequent records. This is consistent with the occurrence of damage signal TD
1

indicating the progression of damage, and the change in the undamage signal TUD
1 indicating

a progression of damage. Assuming similar traffic loads were encountered on different days

at the same local time, it seems that when the bridge was in an undamaged state, a few

(presumably heavy) vehicles excited a large dynamic response in the structure. When dam-

age occurred in the bridge, a change in the physical properties of the bridge occurred that

resulted in the ability of most vehicles to excite a large dynamic response in the structure,

presumably due to an increase in flexibility. If the observed traveling wave is generated by

the rapid loading event that occurs as a vehicle drives onto a region of increased flexibility

on the bridge, this would indicate that the damage location is located between each outside

sensor and the closest end of the bridge (i.e., between the south end of the bridge and the

first sensor, and between the north end of the bridge and the fourteenth sensor). Additional

analysis would be needed to determine if the increased flexibility is caused by damage to

the stay cables, bridge girders, or other reasons. Low-frequency strain data recorded on the

cable stays could be used to assess cable damage. It would be advantageous to combine

this method with a traditional vibration method, as decreases in natural frequencies were

observed.

There is some art in choosing the threshold value; too high a threshold value will result

in false negatives (missed detections), and too low a threshold value will result in false

positives. It might be possible to determine an optimal threshold value by actively exciting

the structure using a few known sources (i.e. hammer blow or a known car of a given speed)

over the course of a few weeks and experimentally determining an appropriate range based

on the analysis of the method using the known signals.
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There is also some art in choosing the filtering threshold. It is relatively easier to do

this for simple experimental models that are excited along a single axis – a cut-off frequency

above the predominant modal frequencies of the structure is desired, and the number of

modes to consider is approximately given by the number of floors. For full-scale structures

in situ, different modes are excited during different environmental conditions, and numerical

models typically have a larger number of modes than are excited in the real structure. Model

reduction can be used to estimate the highest mode present in the real structure and hence

the highest mode above which to filter. Finally, some consideration must be given to the

frequency content of the damage signal. Different frequencies are expected to be emitted

for different damage mechanisms (e.g. acoustic emission, mechanical impact, generation of

a flexural wave).

Finally, while applying the feature detection method can successfully isolate the damage

signal in the case of known damage to a structure with a baseline recording, the ability

of the technique to quantitatively determine the severity of damage (i.e., loss in stiffness or

increase in flexibility), and hence to definitively determine the presence of damage, is lacking.

Changes in the dynamic behavior of the structure can be identified using outlier methods,

changes in damage severity can be determined qualitatively, and the damage signal can be

used to determine where damage occurred and give an energy estimate, but the damage

signal cannot on its own be used to determine the loss in stiffness of the structure, and

hence should be combined with knowledge of the structure (e.g., a finite-element model with

knowledge of potential damage locations and mechanisms), a statistical approach using data

recorded on multiple damaged structures of a similar type (these data would need to be

experimentally obtained), or a complementary vibration-based damage detection method.
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Appendix A

Appendix

A.1 Notation, Definitions, and Properties

These properties were found in Bracewell (1986).

Cross-correlation:

(xn ⋆ xm)(t) =

∫

∞

−∞

xn(τ)xm(t+ τ)dτ,

(xn ⋆ xm)[p] =
∞
∑

q=−∞

xn[q]xm[p+ q].

Convolution:

(xn ∗ xm)(t) =

∫

∞

−∞

xn(τ)xm(t− τ)dτ,

(xn ∗ xm)[p] =
∞
∑

q=−∞

xn[q]xm[p− q].
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Fourier Transform and Inverse Fourier Transform:

x̂n(ξ) = F{xn(t)} =

∫

∞

−∞

xn(t)e
−2πitξdt,

xn(t) = F−1{x̂n(ξ)} =

∫

∞

−∞

x̂n(ξ)e
2πitξdξ,

x̂n(ω) = F{xn(t)} =
1√
2π

∫

∞

−∞

xn(t)e
−iωtdt,

xn(t) = F−1{x̂n(ω)} =
1√
2π

∫

∞

−∞

x̂n(ξ)e
iωtdω,

Xn[p] =
N−1
∑

q=0

xn[q]e
−2πipn/N ,

xn[q] =
1

N

N−1
∑

p=0

Xn[q]e
2πiqn/N .

Laplace Transform and Fourier Transform:

L{xn(t)} = Xn(s) =

∫

∞

0

xn(t)e
−stdt,

L−1{Xn(s)} = xn(t) =
1

2πi
lim
T→∞

∫ γ+iT

γ−iT

Xn(s)e
stds,

Xn(s)|s=iω = F{xn(t)},

s = σ + iω.

Fourier Transform of Cross-correlation:

F{xn ⋆ xm} = F{xn}F{xm}.

Fourier Transform of Convolution:

F{xn ∗ xm} = F{xn}F{xm}.
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Properties of Convolution and Cross-correlation:

xn ∗ (xm + xp) = (xn ∗ xm) + (xn ∗ xp),

xn ∗ xm = xm ∗ xn,

xn ∗ (xm ∗ xp) = (xn ∗ xm) ∗ xp,

xn ∗ δ = xn,

d

dt
(xn ∗ xm) =

dxn

dt
∗ xm = xn ∗

dxm

dt
,

xn ⋆ xm = xn(−) ∗ xm,

(xn ∗ xm) ⋆ xp = xm(−) ∗ (xn ⋆ xp).

where xn(−) = xn(−t) denotes the time-reversed xn(t), and xn = xn(t) denotes the

complex conjugate of xn(t).

A.2 Publications

Heckman, V. M., Kohler, M. D., and Heaton, T. H. (2011b). A method to detect structural

damage using high-frequency seismograms. In Proceedings of Structural Health Monitor-

ing 2011: International Workshop on Structural Health Monitoring.

Abstract: “There has been recent interest in using acoustic techniques to detect damage

in instrumented civil structures. An automated damage detection method that analyzes

recorded data has application to building types that are susceptible to a signature type of

failure, where locations of potential structural damage are known a priori. In particular,

this method has application to the detection of brittle fractures in welded beam-column

connections in steel moment-resisting frames (MRFs). Such a method would be valuable if

it could be used to detect types of damage that are otherwise difficult and costly to iden-

tify. The method makes use of a prerecorded catalog of Greens function templates and a

matched filter method to detect the occurrence and location of structural damage in an in-
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strumented building. This technique is different from existing acoustic methods because it

is designed to recognize and use seismic waves radiated by the original brittle failure event

where the event is not known to have occurred with certainty and the resulting damage

may not be visible. The method is outlined as follows. First, identify probable locations of

failure in an undamaged building. In pre-Northridge steel MRFs, which are susceptible to

brittle failure of welded beam-column connections, those connections would be the locations

of probable failure for this type of building. Second, obtain a Greens function template for

each identified location of probable failure by applying a short-duration high-frequency pulse

(e.g. using a force transducer hammer) at that location. One underlying assumption of this

method is that the Greens function template specific to a potential location of failure can

be used to approximate the dynamic response of the structure to structural damage at that

location. Lastly, after a seismic event, systematically screen the recorded high-frequency

seismograms for the presence of waveform similarities to each of the catalogued Greens

function templates in order to detect structural damage. This is achieved by performing

a running cross-correlation between each Greens function template and a moving window

of the continuous data recorded during the earthquake. Damage that occurs at one of the

catalogued potential locations is expected to result in a high cross-correlation value when

using the correct Greens function template. This method, also known as the matched filter

method, has seen recent success in other fields, but has yet to be explored in the context

of acoustic damage detection in civil structures. Preliminary experimental results from tap

tests performed on a small-scale laboratory frame are presented. Cross-correlation calcula-

tions highlight similarities among events generated at the same source location and expose

differences among events generated at different source locations. Finally, a blind tap test

is performed to test whether cross-correlation techniques and catalogued Greens function

templates can be used to identify the occurrence of and pinpoint the location of an assumed-

unknown event (Heckman et al., 2011b).”

Heckman, V., Kohler, M., and Heaton, T. (2011a). A damage detection method for in-

strumented civil structures using prerecorded greens functions and cross-correlation. In
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Proceedings of ANCRiSST2011: The 6th International Workshop on Advanced Smart

Materials and Smart Structures Technology.

Abstract: “Automated damage detection methods have application to instrumented

structures that are susceptible to types of damage that are difficult or costly to detect.

The presented method has application to the detection of brittle fracture of welded beam-

column connections in steel moment-resisting frames (MRFs), where locations of potential

structural damage are known a priori. The method makes use of a prerecorded catalog of

Greens function templates and a cross-correlation method to detect the occurrence, location,

and time of structural damage in an instrumented building. Unlike existing methods, the

method is designed to recognize and use mechanical waves radiated by the original brittle

fracture event, where the event is not known to have occurred with certainty and the result-

ing damage may not be visible. An experimental study is conducted to provide insight into

applying the method to a building. A tap test is performed on a small-scale steel frame to test

whether cross-correlation techniques and catalogued Greens function templates can be used

to identify the occurrence and location of an assumed-unknown event. Results support the

idea of using a nondestructive force to characterize the building response to high-frequency

dynamic failure such as weld fracture (Heckman et al., 2011a).”

Heckman, V. M., Kohler, M. D., and Heaton, T. H. (2011c). A method to detect struc-

tural damage using high-frequency seismograms. In Proceedings of the 8th International

Conference on Urban Earthquake Engineering.

Abstract: “A numerical study is performed to gain insight into applying a novel method

to detect high-frequency dynamic failure in buildings. The method relies on prerecorded cat-

alog of Green’s functions for instrumented buildings. Structural failure during a seismic event

is detected by screening continuous data for the presence of waveform similarities to each of

the cataloged building responses. In the first part of this numerical study, an impulse-like

force is applied to a beam column connection in a linear elastic steel frame. A time-reversed
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reciprocal method is used to demonstrate that the resulting simulated displacements can

be used to determine the absolute time and location of the applied force. In the second

part of the study, a steel frame’s response to two loading cases, an impulse-like force and

an opening crack tensile stress, is computed on a temporal scale of microseconds. Results

indicate that the velocity waveform generated by a tensile crack can be approximated by the

velocity waveform generated by an impulse-like force load applied at the proper location.

These results support the idea of using a nondestructive impulse-like force (e.g. hammer

blow) to characterize the building response to high-frequency dynamic failure (e.g. weld

fracture) (Heckman et al., 2011c).”

Heckman, V., Kohler, M., and Heaton, T. (2010). Detecting failure events in buildings: A

numerical and experimental analysis. In Proceedings of the 9th U.S. National 10th

Canadian Conference on Earthquake Engineering. Earthquake Engineering Research

Institute.

Abstract: “A numerical method is used to investigate an approach for detecting the

brittle fracture of welds associated with beam-column connections in instrumented build-

ings in real time through the use of time-reversed Greens functions and wave propagation

reciprocity. The approach makes use of a prerecorded catalog of Greens functions for an

instrumented building to detect failure events in the building during a later seismic event

by screening continuous data for the presence of waveform similarities to one of the prere-

corded events. This study addresses whether a set of Greens functions in response to an

impulsive force load can be used to approximate the response of the structure to a localized

failure event such as a brittle weld fracture. Specifically, we investigate whether prerecorded

Greens functions can be used to determine the absolute time and location of a localized

failure event in a building. We also seek to differentiate between sources such as a weld

fracture that are structurally damaging and sources such as falling or colliding furniture and

other non-structural elements that do not contribute to structural failure. This is explored

numerically by comparing the dynamic response of a finite-element cantilevered beam model
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structure to a variety of loading mechanisms. A finite-element method is employed to de-

termine the behavior of the resulting elastic waves and to obtain a general understanding of

the structural response (Heckman et al., 2010).”

Kohler, M. D., Heaton, T. H., and Heckman, V. M. (2009). A time-reversed reciprocal

method for detecting high-frequency events in civil structures with accelerometer arrays.

In Proceedings of ANCRISST 2009 - The Fifth International Workshop on Advanced

Smart Structures and Technology.

Abstract: “A high-frequency experimental method of detecting a failure event in engi-

neered structures is presented that uses the property of wave propagation reciprocity and

time-reversed reciprocal Greens functions. The premise is that if a numerical database of

pre-event, source-receiver Greens functions can be compiled for multiple locations of poten-

tial damage in a structure, that database can subsequently be used to identify the location

and time of occurrence of a real failure event in the structure. Once a fracture source

emits a wavefield that is recorded on a distributed set of accelerometers in the structure,

time-reversed waves can be obtained by convolving the displacements with the database of

time-reversed Greens functions and stacking the results. The correct location and time of

the fracture source can be inferred from the subset of Greens functions that exhibits the

best focus in the form of a delta function. The 17-story, steel moment-frame UCLA Factor

building contains a cutting-edge, continuously recording, 72-channel, seismic array. The ac-

celerometers 500 sample-per-second recordings have been used to verify the ability to observe

impulse-like sources in a full-scale structure. Application of an impulse-like source on the

3rd and 15th floors of the Factor building shows that the associated displacements serve as

useful approximations to the buildings Greens functions in the far field, and can be used in

investigations of scenario fracture location and timing (Kohler et al., 2009).”
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A.3 Uniform Shear Beam

Consider a simple undamped shear beam model that is fixed at the base with a height H

= 100 m, shear wave velocity β = 200 m/s, and with sensors located at each 1/10 of the

height of the building recording at 100 sps. The shear wave velocity, β, is proportional to

the square root of the stiffness, β =
√

µ/ρ, where µ is the interstory shear modulus, and ρ

is the density. The beam is subjected to displacement at the base, u0(t),

∂2u

∂2t
= β2∂

2u

∂x2
,

u = u(x, t),

u(0, t) = u0(t),

∂u

∂x
(H, t) = 0.

Its solution at the nth floor is given by the D’Alembert solution to the wave equation with

fixed-free boundary conditions (Sasani et al., 2006). The horizontal ground motion generates

a vertically propagating shear wave. The fixed-base period, T, is 4H/c. The building motion

consists of a sum of upgoing and downgoing waves, and is given by:

un(t) = u0(t−
nT

40
)− u0(t) +

2t/T+n/20
∑

m=1

(−1)m+1u0(t−
(2m− n/10)T

4
)

+

2t/T−n/20
∑

m=1

(−1)m+1u0(t−
(2m+ n/10)T

4
).

(A.1)

Using this model, one can directly compare the response of the shear beam from applying

an impulsive displacement at the base to the impulse response (with simulated noise applied

at the base) and cross-correlations (with simulated noise applied at the base), as shown in

Figure A.1. To simulate ambient noise at the base of the shear beam, displacements are

drawn from a uniform distribution over the range [-0.05, 0.05] meters. Results have been

stacked over 10 trials.
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Figure A.1: Simple Shear Beam Synthetics. A, An impulsive shear wave travels up the simple shear
beam, is reflected at the top floor, and is reflected again at the fixed base. B, Deconvolution is used to
obtain the impulse response function from synthetic ambient noise motion at the base. C, Normalized
cross-correlation is performed between each record and the base record under ambient noise conditions.

The natural frequencies are:

ωn =
(2n− 1)πβ

2H
;n = 1, 2, 3, ... (A.2)

If an interface is introduced into the shear beam at height Hinterface, so that there are

now two separate regions A and B, then the differential equations governing the motion of

the beam are as follows:

Region A: 0 <= x3 <= Hinterface,

∂2uA

∂2t
= β2

A

∂2uA

∂x2
,

uA = uA(x3, t),

uA(0, t) = u0(t).
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Region B: Hinterface <= x3 <= H,

∂2uB

∂2t
= β2

B

∂2uB

∂x2
,

uB = uB(x3, t),

∂uB

∂x
(H, t) = 0.

Interface:

uB(Hinterface, t) = uB(Hinterface, t),

∂uA

∂x
(Hinterface, t) =

∂uB

∂x
(Hinterface, t).

The reflection and transmission coefficients for a vertically-incident wave generated at

the base are:

T =
AT

AI

=
2

1 + β2/β1

,

R =
AR

AI

=
β1/β2 − 1

β1/β2 + 1
.

A schematic for wave propagation in a shear beam, presented for a variety of boundary

conditions, is given in Figure A.2.

The transmission and reflection coefficients for an infinite shear beam with a low-velocity
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Figure A.2: Wave Propagation in a Shear Beam: Transmission and Reflection Coefficients for

a Variety of Boundary Conditions. Wave propagation in a shear beam is presented for a variety of
boundary conditions.
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layer, shown in Figure A.3, are computed as:

T1 = AT/AI

=
2

1 + β2/β1

,

R1 = AR/AI

=
β1/β2 − 1

β1/β2 + 1
,

T2 = T1
2

1 + β1/β2

=
2

1 + β2/β1

,

R2 = T1
β2/β1 − 1

β2/β1 + 1

=
2

1 + β2/β1

β2/β1 − 1

β2/β1 + 1
,

T3 = R2
2

1 + β1/β2

=
2

1 + β2/β1

β2/β1 − 1

β2/β1 + 1

2

1 + β2/β1

,

R3 = R2
β2/β1 − 1

β2/β1 + 1

=
2

1 + β2/β1

β2/β1 − 1

β2/β1 + 1

2

1 + β2/β1

β2/β1 − 1

β2/β1 + 1
,

Tn = Rn−1
2

1 + β1/β2

=
2

1 + β2/β1

β1/β2 − 1

β2/β1 + 1
(
β2/β1 − 1

β2/β1 + 1
)n−2,

Rn = Rn−1
β2/β1 − 1

β2/β1 + 1

=
2

1 + β2/β1

(
β2/β1 − 1

β2/β1 + 1
)n−1.

A wave is trapped within the lower velocity layer. It takes the wave h/β2 seconds to

travel through the length h of this layer. The amplitude of the wave changes signs each time
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it is reflected, and so the period is equal to Ttrapped =
2h
β2

, and it decays as (β2/β1−1
β2/β1+1

)2 β2

2h
.

An upgoing shear wave is propagated through an infinite shear beam with a low velocity

layer. A series of transmitted and reflected waves are generated. Differences in arrival times

and wave amplitudes are observed in the beam with the low velocity layer, compared to a

uniform shear beam.

A.4 Application of State Space Method to Accelera-

tion of a High-Rise Building in Osaka

In the dynamic excitation of a structure to a repeating source, the response of the damaged

structure does not begin to diverge from the response of the undamaged structure until

elastic waves have propagated through the region of damage. Motivated by these findings,

the impulse response function of an existing high-rise building in Osaka is generated from

the building’s response to ambient noise and studied as a means for damage detection.

In dynamically exciting the experimental shear beam studied in Chapter 3, it was ob-

served that the introduction of damage to a single floor of the structure resulted in a slowing

of the initial shear wave pulse as it passed through the damaged region, resulting in a clear

delay in the arrival time (compared with the arrival time for the undamaged data) on floors

above the damaged floor. By using a high sampling rate, the presence and location of dam-

age could be immediately determined, despite the low modal frequencies of the structure

(less than 25 Hz) and hence low spatial resolution for damage detection. Motivated by this

finding, a numerical study is conducted by introducing damage to a numerical model of an

existing high-rise building in the Osaka prefecture. Damage is simulated in the numerical

model by reducing the interstory shear stiffness. A horizontal pulse applied at the base of

the structure is used as the excitation source. The input pulse at the base of the structure is

based on the experimental input pulse obtained by applying correlation methods to the ac-

celeration of the structure during ambient conditions to estimate its IRF. It is found that the

low-frequency nature of the noise source generates a broad input pulse that makes damage
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detection difficult using this method.

Previous studies have been performed in the context of seismic interferometry of struc-

tures. A comparison is made using the simulated IRFs for the damaged and undamaged mod-

els. Kohler et al. (2007) deconvolved the subbasement records in UCLA Factor building from

upper floor records for 20 earthquakes. The authors developed an ETABS model that agrees

with the experimental data. The impulse response function of a building can also be gener-

ated using cross-correlation of ambient noise (Prieto et al., 2010). It is common (research)

practice in civil engineering to perform modal identification using the cross-correlations of

the recorded accelerations of the structure excited by ambient noise (Brincker et al., 2000).

Properties of the substructure, such as interstory stiffness, are typically estimated from the

modal values.

A.4.1 Experimental Setup

Hayashi et al. (2012) have been monitoring the consecutive vibration characteristics of a

high-rise steel building located in the Osaka prefecture. The building, shown in Figures A.4

and A.5, has 21 stories with two stories for the penthouse, and four stories under the ground

level. It is a steel moment-resisting frame above ground and a steel-reinforced concrete

frame with shear walls under the ground level. It is densely instrumented, with seismometers

installed along the center of the structure. Thirteen seismometers (V403BT accelerometers

at a sampling interval of 100Hz) are installed on floors B4F and 22F, as well as every other

floors from 1F to 21FL. Hayashi et al. have estimated the first three NS natural frequencies

to be 0.56 Hz, 1.65 Hz, and 2.97 Hz, and the EW natural frequencies to be 0.56 Hz, 1.65

Hz, 2.91 Hz, from the result of stacking transfer functions recorded for small earthquakes

(Hayashi et al., 2012). Impulse responses obtained from earthquake data have been found

to be similar to those obtained using microtremor data. The current design analysis models

are a multistory shear model and flexure shear model.

The Osaka high-rise building is modeled as a lumped mass system, as shown in Figure

A.5. The design parameters were used by Satow Engineers to compute the effective masses
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Figure A.4: Osaka High-Rise: Photo of the Building. The building, shown in Figures A.4 and A.5, has
21 stories with two stories for the penthouse, and four stories under the ground level. It is a steel moment-
resisting frame above ground and a steel-reinforced concrete frame with shear walls under the ground level.
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and stiffnesses; they are listed in Table A.6 along with the accompanying floor names and

heights (Satow, 1962). The motion of the model is constrained to the horizontal plane; no

vertical or torsional motion is incorporated into the model. The N-S and E-W motions are

assumed to be independent. For convenience, let x(t) denote the N-S component of motion

and y(t) denote the E-W component of displacement. The lumped model does not account

for flexibility at the base; the base is assumed to be perfectly rigid. A state-space formulation

is developed to numerically subject the model building to a pulse at its base.

A.5 State Space Formulation

The state of a system is a minimum set of numbers (state variables), which contain suffi-

cient information about the history of the system or process to allow computation of future

behavior (Timothy and Bona, 1968).

A.5.0.1 Differential Equations of Motion

The 23-degree-of-freedom lumped mass model is fixed at its base to the ground. Each mass in

the model is approximated from the effective mass of the building floors, and is constrained

to motion in the horizontal plane. Horizontal springs connect the masses, and their values

are approximated from the effective inter-story shear stiffness. We first derive the state

space formulation for the N-S direction. As the E-W motion is assumed to be independent,

a similar set of equations can be reached by following the same derivation. The differential

equations of motion are given by:

Mẍ(t) + Cẋ(t) +Kx(t) = f(t), (A.3)

where displacement vector x(t) contains the generalized coordinates for the system, force

vector f(t) defined below in Equation A.7, and the mass, stiffness, and damping matrices

(assuming Rayleigh damping) are given by:
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Figure A.5: Osaka High-Rise: Building Schematic and Model

The building is modeled as a 23-degree-of-freedom lumped mass system. It is densely
instrumented with 13 seismometers located along the center of the building.
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x(t) =

















x1(t)

x2(t)
...

x23(t)

















M =

















m1 0 . . . 0

0 m2 . . . 0
...

...
. . .

...

0 0 . . . m23

















,

K =



































k1 + k2 −k2 0 . . . 0 0 0

−k2 k2 + k3 −k3 . . . 0 0 0

0 −k3 k3 + k4 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . k21 + k22 −k22 0

0 0 0 . . . −k22 k22 + k23 −k23

0 0 0 . . . 0 −k23 k23



































C = αK + βM.

These equations can be verified by drawing a free-body diagram for each mass in the

mass-spring system. Ground motion is incorporated into the differential equations of motion

by replacing it with an equivalent force, f0(t), applied to mass m1. There are contributions

of αk1x0 and αk1ẋ0 to f0(t) from the first floor spring and the Rayleigh damper, respectively,

that arise from their connection between mass m1 and the ground. These contributions to

the equivalent force can be verified by drawing a free body diagram for m1 that includes the

effects of Rayleigh damping; a schematic for Rayleigh damping can be found in Figure A.6.

fext(t) =
(

f1(t) f2(t) . . . f23(t)
)T

, (A.4)

f0(t) = k1x0(t) + αk1ẋ0(t), (A.5)

B :=
(

k1 0 . . . 0
)T

, (A.6)

f(t) = Bx0(t) + αBẋ0(t) + fext(t). (A.7)

175



x
1

x
0

x
2

x
22 Spring

Mass

Force

Displacement

Damper
f

2

αk
1 

f
22   

 m
22

f
1 m

1
 

k
1 

αk
2 

βm
1 

m
2
 

k
2 

βm
2 

βm
22 

x
23

f
23

αk
23 

m
23

 

k
23 

βm
23 

Figure A.6: Mass-Spring System with Rayleigh Damping

The model is represented as a mass-spring system with linear viscous damping that is
consistent with Rayleigh damping. The contribution from the ground motion can be

incorporated into the model as an equivalent force transmitted to the first floor mass via
the damper and spring connecting the ground floor to the first floor.

A.5.0.2 Canonical Equations

A change of variables is introduced to transform from the generalized coordinates to the

state vector, xstate, which contains the state variables, and from the force vector and ground

motion to the input vector u. An output vector is denoted by y. The state vector and output

vector can be rewritten as:

xstate = f(xstate(t0), u),

y = g(xstate(t0), u).

A linear differential system characterized by the state equations of the canonical form:

ẋstate = Axstate +Bu,

y = Cxstate +Du,

always has a unique solution for xstate.

Single Input System We first consider the case where the source consists purely of ground

motion, i.e., fext(t) = 0. During events such as earthquakes, where the building response
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is predominantly seismic, the external forces applied to the model contribute a negligible

amount to building motion and can subsequently be ignored.

Introduce the state vector xstate, state variables x1 state and x2 state, and input vector u as:

xstate =
(

x1 state x2 state

)T

,

x1 state = x,

x2 state = ẋ− αM−1Bx0,

u = x0.

Note that the second term in the equation for x2 state has been introduced to prevent the

dependence of the state variables on u̇. Rearranging Equation A.3, we find:

ẍ− αM−1Bẋ0 = M−1Bx0 −M−1Cẋ−M−1Kx.

The derivatives of the state variables can now be expressed in terms of the input and state

variables:

ẋ1 state = ẋ

= x2 state + αM−1Bx0

= x2 state + αM−1Bu,

ẋ2 state = ẍ− αM−1Bẋ0

= M−1Bx0 −M−1Cẋ−M−1Kx

= M−1Bu−M−1Cẋ1 state −M−1Kx1 state

= M−1Bu−M−1Cx2 state − αM−1CM−1Bu−M−1Kx1 state.

Finally, the relation between the state variable and its derivative is expressed in matrix form:

ẋstate =





023x23 I23x23

−M−1K −M−1C



xstate +





αM−1B

(I − αM−1C)M−1B



u. (A.8)
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The system is now in expressed in canonical form in Equation A.8. In the canonical state

equations, Equations A.9a and A.9b,

ẋstate = Astatexstate +Bstateu, (A.9a)

y = Cstatexstate +Dstateu, (A.9b)

the matrices Cstate and Dstate are defined to give the desired output. For example, to

output all of the model displacements, take Cstate =
(

I 023x23

)

and Dstate = 0. If there is

a single output, the system is referred to as a SISO (single-input-single-output) system. If

there are multiple outputs, the system is referred to as a SIMO (single-input-multiple-output)

system. For our application, Cstate is selected to output only the model displacements on

floors with accelerometers.

Multiple Input System Consider the case where the source consists of an external force

(e.g. wind loading) applied to each floor as well as ground motion at the base of the structure.

The external forces have a larger impact on the motion of the building during ambient

conditions than they do during seismic conditions. We follow the same derivation as in the

previous section, while modifying the force vector, Equation A.5, to include the external

forces:

f(t) =

















f1(t)

f2(t)
...

f23(t)

















+

















f0(t)

0
...

0

















= fext(t) + Bx0(t) + αBẋ0(t).

(A.10)
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The modified state variables are:

x1 state = x,

x2 state = ẋ−
(

αM−1B 023x23

)

,





x0

fext





u =





x0

fext



 .

Rearranging Equation A.3, we have:

ẍ− αM−1Bẋ0 = M−1Bx0 +M−1fext −M−1Cẋ−M−1Kx.

The derivatives of the state variables are calculated to be:

ẋ1 state = ẋ

= x2 state +
(

αM−1B 023x23

)





x0

fext





= x2 state +
(

αM−1B 023x23

)

u,

ẋ2 state = ẍ− αM−1Bẋ0

= M−1Bx0 +M−1fext −M−1Cẋ−M−1Kx

=
(

M−1B M−1

)

u−M−1Cẋ1 state −M−1Kx1 state

=
(

M−1B M−1

)

u−M−1Cx2 state −
(

αM−1CM−1B 023x23

)

u−M−1Kx1 state

=
(

(I − αM−1C)M−1B M−1

)

u−M−1Cx2 state −M−1Kx1 state.

And hence,
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ẋstate =





023x23 I23x23

−M−1K −M−1C



xstate +





αM−1B 023x23

(I − αM−1C)M−1B M−1



u. (A.11)

As there are multiple inputs to the system, x0, it is known as a multiple input system. If

there is a single output, the system is referred to as a MISO (multiple-input-single-output)

system. If there are multiple outputs, the system is referred to as a MIMO (multiple-input-

multiple-output) system.

Alternate Formulation Using Principal Coordinates By converting to principal co-

ordinates and reformulating the state space equations, the numerical accuracy of the solution

can be improved. Let λn and φn, n = 1,2,...,23, denote the eigenvalues and normalized eigen-

vectors of M−1K. Then x(t) can be expressed in terms of the principal coordinates p(t):

λn = ω2
n = (2πfn)

2,

Φ =
(

φ1 φ2 . . . φ23

)

,

x(t) = Φp(t),

p(t) = Φ−1x(t),

ΦTKΦ = [ω2] =

















ω2
1 0 . . . 0

0 ω2
2 . . . 0

...
...

. . .
...

0 0 . . . ω2
23

















,

ΦTMΦ = I.

The differential equations of motion, Equation A.3, are uncoupled by expressing x in

terms of the principal coordinates p and multiplying both sides of the equation by ΦT :

ΦTMΦp̈(t) + ΦTCΦṗ(t) + ΦTKΦp(t) = ΦTf(t),
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p̈(t) + ΦTCΦṗ(t) + ΦTKΦp(t) = ΦTf(t). (A.12)

Single-Input System

If we assume a single input, x0(t), then we can rewrite Equation A.12 as:

p̈− αΦTBẋ0 = ΦTBx0 − ΦTCΦṗ− ΦTKΦp.

The modified state variable is:

x1 state = p,

x2 state = ṗ− αΦTBx0,

u = x0.

By taking the derivatives of the state variables, we arrive at the state equation:

ẋstate =





023x23 I23x23

−ΦTKΦ −ΦTCΦ



 ẋstate +





αΦTB

(I23x23 − αΦTCΦ)ΦTB



u. (A.13)

To output all of the model displacements, convert back to the original coordinates from

the principal coordinates by taking Cstate =
(

Φ 023x23

)

and Dstate = 0.

Multiple-Input System

If we assume multiple inputs x0(t) and fext(t), then we can rewrite Equation A.12 as:

p̈− αΦTBẋ0 = ΦTBx0 + ΦTfext − ΦTCΦṗ− ΦTKΦp.

The state variable becomes:

x1 state = p,

x2 state = ṗ− αΦTBx0,

u = x0.
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By taking the derivatives of the state variables, we arrive at the state equation:

ẋstate =





023x23 I23x23

−ΦTKΦ −ΦTCΦ



 ẋstate +





αΦTB 023x23

(I23x23 − αΦTCΦ)ΦTB ΦT



u. (A.14)

To output all of the model displacements, convert back to the original coordinates from

the principal coordinates by taking Cstate =
(

Φ 023x23

)

and Dstate = 0.

State Space Coordinate Change and Transfer Function More generally, a coordinate

change can be made for the state space system by introducing the transformation x̃ = Tx,

where T is a nonsingular matrix (Timothy and Bona, 1968). The state space matrices

are also transformed. In the equations below, the subscript “state” has been dropped for

convenience:

Ã = TAT−1,

B̃ = TB,

C̃ = CT−1,

D̃ = D.

The coefficent matrix A is transformed by what is known as a similarity transformation;

the eigenvalues of the transformed matrix are the same as those of the original matrix. To

convert back to the original state space coordinates, take x = T−1x̃.

We can convert to a transfer function representation of the system by taking the Laplace

transform of the state space equations. The transfer function H(s) relates the output of the
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model to the input. Assuming zero initial conditions, we find that:

sX(s) = AX(s) + BU(s),

X(s) = (sI − A)−1BU(s),

Y (s) = CX(s) +DU(s),

= (C(sI − A)−1B +D)U(s).

By considering a change of coordinates, we show that the transfer system remains the same

for the new formulation. In changing from a state space representation with state vari-

ables defined by the generalized coordinates to a representation with state variables defined

by the principal coordinates, as was done in the previous section, we were performing a

transformation from one state space to another with T = Φ.

H(s) =
Y (s)

U(s)

= C(sI − A)−1B +D,

H̃(s) = C̃(sI − Ã)−1B̃ + D̃

= CT−1(sI − TAT−1)−1TB +D

= CT−1(T (sI − A)T−1)−1TB +D

= CT−1T (sI − A)−1T−1TB +D

= C(sI − A)−1B +D

= H(s).

Consider a state space formulation where D = 0, as it is the case for the lumped mass

model. By rewriting the transfer function using the property that for an invertible matrix

M , M−1 = adj{M}/|M |, where ‘adj’ stands for the adjugate matrix, the denominator of the

transfer function can be in terms of the characteristic equation of A. Hence the poles of the
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transfer functions are the eigenvalues of the matrix A:

H(s) =
Y (s)

U(s)

=
Cadj(sI − A)B

|sI − A| .

A.5.0.3 State Space Solution

According to Ljung (1987), the general solution for the state vector xstate(t) is given by:

xstate(t) = Φ(t, t0)xstate(t0) +

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ,

where the state transition matrix Φ(t, t0) is the unique solution to:

xstate(t) = Φ(t, t0)x0 state,

d

dt
Φ(t, t0) = A(t)Φ(t, t0).

Assuming zero initial conditions (x0 state = 0), an initial time of zero (t0 = 0), and that

the system is linear and time-invariant, the solution for xstate(t) simplifies to:

Φ(t, t0) = eA(t−t0),

eAt :=
∞
∑

k=0

Aktk

k!
,

xstate(t) =

∫ t

0

Φ(t, τ)Bu(τ) dτ

=

∫ t

0

eA(t−τ)Bu(τ) dτ.

This solution can be checked by hand by substituting it into Equation A.9a.

We can choose to numerically solve for xstate by computing the difference xstate(t+∆t)−
xstate(t), converting from a continuous system to a discrete system, and deriving a recurrence

relation for xstate. Time step ∆t is chosen so that the dynamics of the system are well-

constrained (i.e., ∆t = T23

10
, where TN is the modal period of the highest considered mode N
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of the model):

xstate(t+∆t) =

∫ t+∆τ

0

eA(t+∆t−τ)Bu(τ) dτ

= eA∆t

∫ t

0

eA(t−τ)Bu(τ) dτ +

∫ t+∆t

t

eA(t+∆t−τ)Bu(τ) dτ

= eA∆txstate(t) +

∫ t+∆t

t

eA(t+∆t−τ)Bu(τ) dτ

≈ eA∆txstate(t) +
∆t

2
Bu(t+∆t) +

∆t

2
eA∆tBu(t).

In the last step, the trapezoidal rule was applied to approximate the integral
∫ t+∆t

t
eA(t+∆t−τ)Bu(τ) dτ. This step can also be worked out by hand to verify. If we denote

xn = xstate(n∆t) and un = u(n∆t), we end up with a recurrence relation for xstate:

xn+1 = eA∆txn +
∆t

2
Bun+1 +

∆t

2
eA∆tBun, (A.15)

qn = Cxn +Dun. (A.16)

We can now numerically solve for xstate using Equation A.15, by starting at n = 0 and

incrementally solving for x1, x2..., xN . Note that matrices A and B are defined in Equation

A.8. Once we are done computing xstate, we use Equation A.16 to output the displacements

in the generalized coordinates. It is also possible to solve for xstate in the frequency domain.

In Figure A.7, the state-space method was used to generate the impulse response functions

to both an impulse applied at the ground floor, and to a force impulse applied at the 15th

floor. Note that the force impulse imparts positive net momentum into the system, exciting

the rocking response of the building. If the force were being applied inside the building, the

net momentum introduced to the system would necessarily sum to zero. A sample frequency

response function is shown in Figure A.8. The phase goes to zero near the natural frequency.
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Figure A.7: Numerical Impulse Response Functions. The amplitude at each floor has been normalized
proportionally to the maximum amplitude of the input floor, thus preserving the relative amplitudes. The
floor to which the impulse is applied is highlighted in red. The numerical impulse response functions are
calculated using the state space method with the design parameters for the N-S direction.
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Figure A.8: Numerical Frequency Response Function. The frequency response function at the top
floor in response to a displacement impulse applied at the first floor was calculated numerically by using
the state-space method and the Fourier transform. The amplitude (black), imaginary component (red),
and real component (blue) are shown for the first three N-S modes. The amplitudes have been normalized
proportionally to the maximum amplitude of the input floor, thus preserving the relative amplitude.
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A.5.1 Modal Analysis Using the Laplace Transform Method

We can alternatively use the Laplace transform method to solve for x(t). Consider the

uncoupled differential equation for the generalized coordinates, Equation A.12, and take the

Laplace transform of each side. Assume zero initial conditions. Let ζn = (αωn + β/ωn)/2

denote the nth modal damping ratio. The damped natural frequency for the nth mode is

equal to ωn

√

1− ζ2n. Equation A.12 becomes:

(s2I + s(α[ω2] + βI) + [ω2])P (s) = ΦTF (s).

Converting back to generalized coordinates using the relation X(s) = ΦP (s), and inverting

the diagonal matrix yields:

X(s) = Φ

















(s2 + 2ζ1ω1s+ ω2
1)

−1 0 . . . 0

0 (s2 + 2ζ2ω2s+ ω2
2)

−1 . . . 0
...

...
. . .

...

0 0 . . . (s2 + 2ζ23ω23s+ ω2
23)

−1

















ΦTF (s).

Let us first consider the case with zero external forces, i.e., fext(t) = 0. Then the force

acting on the system is equal to the equivalent force f0(t), given by Equation A.5, acting on

the first floor mass m1. The equation for X(s) simplifies to:

X(s) = k1(1 + αs)

















∑23
p=1 φ

1
pφ

1
p(s

2 + 2ζpωps+ ω2
p)

−1

∑23
p=1 φ

1
pφ

2
p(s

2 + 2ζpωps+ ω2
p)

−1

...
∑23

p=1 φ
1
pφ

23
p (s2 + 2ζpωps+ ω2

p)
−1

















X0(s).

This expression gives a vector of transfer functions multiplied by the transformed input

ground motion, which is the equivalent of convolution of the impulse response function with

the input in the time domain. The 46 distinct poles common to the transfer functions are
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given by {−ωn(ζn ± i
√

1− ζ2n)}. The real parts of the poles are negative, consistent with a

stable system. The transfer functions also have a common zero at −1
α
.

Let us now consider the case where the only source is a force applied at the mth floor,

i.e., fn(t) = 0 ∀n 6= m, and x0(t) = 0. Again, the result is given by a vector of transfer

functions multiplied by the transformed input force Fm(s). In the time domain, the solution

is equivalent to a vector of convolutions of the impulse response functions with the input

force. All transfer functions for the system have the same poles:

X(s) =

















∑23
p=1 φ

m
p φ

1
p(s

2 + 2ζpωps+ ω2
p)

−1

∑23
p=1 φ

m
p φ

2
p(s

2 + 2ζpωps+ ω2
p)

−1

...
∑23

p=1 φ
m
p φ

23
p (s2 + 2iζpωps+ ω2

p)
−1

















Fm(s).

The transfer functions and impulse response functions are given by:

Gn0(s) =
23
∑

p=1

k1(1 + αs)

s2 + 2ζpωps+ ω2
p

, (A.17)

Gnm(s) =
23
∑

p=1

φm
p φ

n
p

s2 + 2ζpωps+ ω2
p

, (A.18)

gn0(t) =
23
∑

p=1

φ1
pφ

n
pk1L−1

{

1 + αs

s2 + 2ζpωps+ ω2
p

}

=
23
∑

p=1

φ1
pφ

n
pk1e

−ζpωpt

wp

√

1− ζ2p

(

(1 + αζpωp) sin (ωp

√

1− ζ2p t)− 2αωp

√

1− ζ2p cos (ωp

√

1− ζ2p t)
)

,

gnm(t) =
23
∑

p=1

φm
p φ

n
pL−1

{

1

s2 + 2ζpωps+ ω2
p

}

=
23
∑

p=1

φ1
pφ

n
p

1

wp

√

1− ζ2p
e−ζpωpt sin

(

ωp

√

1− ζ2p t
)

. (A.19)

The inverse Laplace transforms are calculated using complex integration by considering

a half-circle contour of a finite radius in the complex plane, taking the limits as the radius

tends towards infinity, and applying the Cauchy Residue Theorem (Fokas, 2003).
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The transfer functions Gn0(s), Gnm(s) are expressed in terms of the Laplace variable

s = σ+ iω. The impulse response functions {gn0(t), gnm(t)} are equal to the inverse Laplace

transform of the transfer functions, and they give the response of system to an impulse.

The frequency response functions Gn0(iω) = ĝn0(ω) and Gnm(iω) = ĝnm(ω) can be directly

computed from the transfer functions by taking s = ıω, and they are equal to the Fourier

transform of the impulse response functions.

The solution to arbitrary inputs is given by the convolution integral with the impulse

response functions:

xn(t) =

∫

∞

−∞

gn0(τ)x0(t+ τ)dτ +
23
∑

m=1

∫

∞

−∞

gnm(τ)fm(t+ τ)dτ.

As convolution in the time domain is equivalent to multiplication in the frequency domain,

the solution could alternatively be calculated by transforming the inputs to the frequency

domain, multiplying the transformed inputs with the transfer functions, and taking the

inverse transform of the resulting product:

xn(t) = F−1{ĝn0x̂0}+
23
∑

m=1

F−1{ĝnmf̂m}.

For a number of applications, calculating the solution in the frequency domain is much

faster than calculating the solution in the time domain. For example, consider the convolu-

tion of two discrete time series of length N. The time-domain solution necessitates performing

N multiplications in calculating the sum of the product of the two time series N times, a total

of N2 multiplications. The frequency-domain solution consists in performing N multiplica-

tions to calculate the product of the two transformed vectors, and performing two discrete

Fourier transforms and two inverse Fourier transforms. As a fast Fourier transform requires

O(N logN) operations, for large values of N , it is much faster to use a frequency domain

solver.
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A.5.2 Transfer Functions, Cross-Correlation, Convolution, and De-

convolution

There are three main techniques for obtaining the impulse response function of a system:

cross-correlation, deconvolution, and cross-correlation with deconvolution. An investigation

of error with each of these methods is presented below.

A.5.2.1 Transfer Functions

As seen in the previous section, the displacement at each floor of our model, xn(t), can be

expressed as sum of convolutions of the impulse response functions with the ground motion

and external forces. We are particularly interested in obtaining the set of impulse response

functions relating the input displacement at the ground floor to the output displacement at

above-ground floors {g0n} for (n = 1, ..., Ndof ), as we are interested in obtaining the seismic

response of the structure. If, on the other hand, we were more interested in studying the

effects of wind on the structure, we would be more interested in obtaining the set of impulse

response functions relating the external force applied at each floor to the displacement {gnm}
for (n = 1, ..., Ndof ) and (m = 1, ..., Ndof ). The displacement on each floor is given by:

xn(t) = (gn0 ∗ x0)(t) +

Nf
∑

m=1

(gnm ∗ fm)(t). (A.20)
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A.5.2.2 Cross-Correlation

Express the displacement at the nth floor in terms of the impulse response functions and

cross correlate it with the displacement at the ground floor to find:

C0n(t) = (x0 ⋆ xn)(t) (A.21)

= x0 ⋆ (gn0 ∗ x0 +

Nf
∑

m=1

gnm ∗ fm)

= x0(−) ∗ (gn0 ∗ x0 +

Nf
∑

m=1

gnm ∗ fm)

= (x0(−) ∗ x0) ∗ gn0 +
Nf
∑

m=1

(x0(−) ∗ fm) ∗ gnm

= (x0 ⋆ x0) ∗ gn0 +
Nf
∑

m=1

(x0 ⋆ fm) ∗ gnm.

The number of external forces in our model, Nf , equals 23. If the source consists of

perfectly uncorrelated noise, such that (x0 ⋆ x0)(t) = Nσ2
0δ(t) and (x0 ⋆ fm)(t) = 0, then

the cross-correlation between the ground floor displacement and the nth floor displacement

yields the relevant impulse response function multiplied by a constant. In this case, we can

normalize C0n(t) by Nσ2
0 to recover the impulse response function:

C0n(t) =
(x0 ⋆ xn)(t)

Nσ2
0

(A.22)

= gn0(t).

Note that in the above derivations, we cross-correlated displacement time series with

displacement time series to uncover the impulse response functions. We could have instead

cross-correlated acceleration time series with acceleration time series. In this case,

C0n(t) = (ẍ0 ⋆ ẍn)(t)

= (ẍ0 ⋆ ẍ0) ∗ gn0 +
M
∑

m=1

(ẍ0 ⋆ f̈m) ∗ gnm.
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If the source consists of perfectly uncorrelated noise, such that (ẍ0 ⋆ ẍ0)(t) = Nσ2
0δ(t)

and (ẍ0 ⋆ f̈m)(t) = 0, then we could again normalize by Nσ2
0 to uncover the impulse response

function.

We introduce errors to the recorded displacement time series, such that x̃0(t) = x0(t) +

e0(t) and x̃n(t) = xn(t) + en(t), where the recorded displacements x̃0(t) and x̃n(t) are equal

to the “true” displacements plus an error term. Assume the errors have zero mean. Then

Equation A.22 becomes:

C0n =
x̃0 ⋆ x̃n

Nσ̃2
0

=
1

Nσ̃2
0



(x0 ⋆ x0 + e0 ⋆ x0) ∗ gn0 +
Nf
∑

m=1

(x0 ⋆ fm + e0 ⋆ fm) ∗ gnm + (x0 ⋆ en) + (e0 ⋆ en)



 ,

σ̃2
0 = E[

(

x̃0 − E [x̃0])
2]

= E
[

(x0 + e0 − E[x0 + e0])
2]

= E
[

(x0 + e0 − E[x0]− E[e0])
2]

= E
[

(x0 + e0)
2]

= E
[

x2
0 + e20 + 2x0e0

]

= E
[

x2
0

]

+ E
[

e20
]

+ E [2x0e0]

= σ2
0 + σ2

e + 2Cov [x0, e0]

= σ2
0

(

1 +
σ2
e + 2Cov [x0, e0]

σ2
0

)

.

If the errors are uncorrelated to other errors, forces, and displacements, and (ẍ0⋆ẍ0)(t) =

Nσ2
0δ(t), this simplifies to:

C0n =
1

1 + σ2
e

σ2

0

gn0 +
1

Nσ2
0

1

1 + σ2
e

σ2

0





Nf
∑

m=1

(x0 ⋆ fm) ∗ gnm



 .
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We see that in the case of an input error, cross-correlation does not recover the true

amplitude of the impulse response function gn0. Instead, its amplitude is reduced by the

fraction 1
1+σ2

e/σ
2

0

.

A.5.2.3 Deconvolution

Let D0n denote the deconvolution of the displacement of the ground floor from the displace-

ment at the nth floor:

D0n(t) = F−1

{

x̂n

x̂0

}

(A.23)

= F−1

{

ĝn0x̂0 +
∑Nf

m=1 ĝnmf̂m
x̂0

}

= F−1







x̂0

x̂0

ĝn0 +

Nf
∑

m=1

f̂m
x̂0

ĝnm







= gn0(t) +

Nf
∑

m=1

(

F−1

{

f̂m
x̂0

}

∗ gnm
)

(t).

If an error is added to the recorded displacement time series, Equation A.23 becomes:

D0n(t) = F−1

{

ˆ̃xn

ˆ̃x0

}

= F−1









ĝn0 +

Nf
∑

m=1

ĝnm
f̂m
x̂0

+
ên
x̂0





1

1 + ê0
x̂0







.

When the error is introduced, a term ên
x̂0

resulting from the added error en is added to

the transfer function ĝn0. The transfer function is also multiplied by the term ê0
x̂0

, whose

amplitude can be bounded by using the triangle inequality. Let us express the complex term

ê0
x̂0

in polar form as reiθ, with amplitude r = r(ξ) and phase θ = θ(ξ). Then we find that the

fractional term is bound by the following:
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1

1 +
∣

∣

∣

ê0
x̂0

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

1 + ê0
x̂0

∣

∣

∣

∣

∣

≤ 1
∣

∣

∣
1−

∣

∣

∣

ê0
x̂0

∣

∣

∣

∣

∣

∣

, (A.24)

1

1 + r
≤
∣

∣

∣

∣

∣

1

1 + ê0
x̂0

∣

∣

∣

∣

∣

≤ 1

|1− r| , (A.25)

arg

{

1

1 + ê0
x̂0

}

= arg

{

1

1 + reiθ

}

. (A.26)

If r ≈ 0, (i.e., a relatively small spectral input error ê0 compared to x̂0 for a given

frequency), then the recovered impulse response function is close to that of the true impulse

response function, as the amplitude and phase of the fraction are close to one and zero,

respectively. If r ≫ 1, (i.e., a relatively large spectral input error ê0 compared to x̂0 for

a given frequency), then the amplitude of the recovered impulse response function will be

reduced by a factor of about x̂0

ê0
, and its phase will change by a value of −θ. If r ≈ 1, then

both the amplitude and phase of the recovered transfer function are highly variable and

dependent on the phase θ.

A.5.2.4 Cross-Correlation with Deconvolution

Instead of normalizing cross-correlation C0n in the time domain, as in Equation A.22, we

can choose to normalize the cross-correlation in the frequency domain, technically combining

cross-correlation with deconvolution. By doing so, we can relax the conditions on the type

of the source, so that the source does not need to be flat in the frequency domain, merely

broadband in the frequency range of interest, while still being uncorrelated with the other
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noise sources. The cross-correlation becomes:

C0n(t) = F−1

{

x̂0x̂n

x̂0x̂0

}

(A.27)

= F−1

{

x̂0(ĝn0x̂0 +
∑Nf

m=1 ĝnmf̂m)

x̂0x̂0

}

= F−1







x̂0x̂0

x̂0x̂0

ĝn0 +

Nf
∑

m=1

x̂0f̂m

x̂0x̂0

ĝnm







= gn0(t) +

Nf
∑

m=1

F−1

{

x̂0f̂m

x̂0x̂0

}

∗ gnm(t).

If the noise sources are uncorrelated, this recovers the impulse response function gn0(t),

otherwise, there is some contribution from the other impulse response functions. Note that

in this case, since we are effectively dividing out the effects of the source in the frequency

domain, the source can consist of colored noise. In dividing by x̂0(ξ)x̂0(ξ), we have implicitly

assumed that x̂0(ξ)x̂0(ξ) > 0, i.e., broadband excitation is needed over the frequency range of

interest. Signal conditioning techniques, such as waterleveling, can be employed to prevent

dividing by zero in the frequency domain. These techniques are touched upon in the following

section.

If we add an error to the recorded displacement time series, Equation A.27 becomes:

C0n(t) = F−1

{

ˆ̃x0
ˆ̃xn

ˆ̃x0
ˆ̃x0

}

= F−1









ĝn0 +

Nf
∑

m=1

f̂m
x̂0

ĝnm +
ên
x̂0





1

1 + ê0
x̂0







.

Again, a spectral error term ên
x̂0

is added to the transfer function ĝn0, and the entire sum

is multiplied by a factor of 1

1+
ê0
x̂0

.
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Figure A.9: Experimental Impulse Response Functions. The experimental impulse response functions
were obtained by applying cross-correlation and convolution to an 8 hour segment of ambient data.
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A.5.2.5 Experimental Results

The impulse response functions, shown in Figure A.9, were obtained experimentally by ap-

plying cross-correlation with deconvolution (Equation A.27) to an 8 hour segment of ambient

data. This method was not observed to excite a strong torsional response (e.g., N-S motion

generated by an E-W pulse at the base). The following signal conditioning techniques are

employed to improve numerical stability and reduce artifacts:

Hamming Window The time series data is rescaled via a Hamming window before con-

verting to the frequency domain. This is done in order to reduce artifacts that arise from

taking the Fourier transform of a signal of finite duration. In this numerical study, the

Hamming window is selected to be 0.2Nt, where Nt is the length of the data. Only the first

0.1Nt and last 0.1Nt data points are scaled by the Hamming window.

Waterleveling Waterleveling is applied to the Fourier transformed data to prevent divid-

ing by zero when division is performed in the frequency domain. Waterleveling is accom-

plished by replacing any values that have an absolute value less than a predefined “waterlevel”

( chosen to be a fraction of the mean absolute value or max absolute value of the Fourier

transformed data) with the phase-preserved waterlevel.

Clipping Clipping is applied to decrease the contribution of an earthquake or other large-

amplitude event to a time series. Clipping can be applied either by rescaling a data point

that is larger than a predefined amplitude while preserving the sign (or phase). In this sense,

it is the opposite of waterleveling.

Whitening Whitening can be applied in either the time domain or the frequency domain

to reduce the effect of an earthquake, or to artificially whiten a signal that has colored

components. It is performed by rescaling each point inversely proportionally to the sum of

amplitudes in a window centered at that point.
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Figure A.10: Numerically Computed IRFs. Shear wave propagation in a damaged (red curves) and
undamaged (black curves) numerical model of a high rise building. The blue curve indicates the damaged
floor.

Filtering A filter (Butterworth) is applied to the resulting data to further separate the

targeted signal.

A.5.3 Numerical Results:

Damaged vs. Undamaged Building

Damage is created in the numerical model by changing the stiffness between floors, with a

reduction of 25% in interstory damage, 50% in interstory damage, and 75% in interstory

damage, and only small changes in the IRF are observed. As the source consists of mostly

low-frequency energy, as opposed to the shake table used for the experimental shear beam,

damage detection based on detecting changes in the arrival time of the initial traveling

wave generated in the estimated IRF is difficult. Hence, the frequency content and variable

nature of the input signal limits the feasibility of this method for damage detection. Results

from these simulated experiments indicate that a 30% reduction in single inter-story stiffness

provides a measurable change in the amplification and transmission coefficients of the initial
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pulse, and a 50% reduction in inter-story stiffness yields an observable change in the wave

speed. The method is limited by the nature of the input signal, which tends to consist of

lower-frequency energies and be variable over time.

Floor Height Weight N-S Stiffness E-W Stiffness Model Instrument

PHR 90.8 355080 1.442e8 1.500e8 x23, y23 −
PHF 86.8 331390 3.883e8 3.697e8 x22, y22 −
F22 84.1 879170 4.599e8 4.129e8 x21, y21 13

F21 79.6 699080 6.698e8 6.090e8 x20, y20 12

F20 75.8 717690 7.414e8 6.718e8 x19, y19 −
F19 72.0 717690 7.757e8 7.188e8 x18, y18 11

F18 68.2 717690 8.169e8 7.532e8 x17, y17 −
F17 64.4 717690 8.483e8 7.934e8 x16, y16 10

F16 60.6 717690 9.140e8 8.678e8 x15, y15 −
F15 56.8 717690 9.581e8 8.934e8 x14, y14 9

F14 53.0 717690 9.856e8 9.208e8 x13, y13 −
F13 49.2 717690 1.022e9 9.9601e8 x12, y12 8

F12 45.4 733900 1.049e9 1.010e9 x11, y11 −
F11 41.6 733900 1.071e9 1.042e9 x10, y10 7

F10 37.8 717690 1.158e9 1.136e9 x9, y9 −
F09 34.0 717690 1.147e9 1.164e9 x8, y8 6

F08 30.2 717690 1.139e9 1.194e9 x7, y7 −
F07 26.4 717690 1.155e9 1.224e9 x6, y6 5

F06 22.6 717690 1.204e9 1.274e9 x5, y5 −
F05 18.8 717690 1.320e9 1.360e9 x4, y4 4

F04 15.0 717690 1.325e9 1.357e9 x3, y3 −
F03 10.4 917750 1.278e9 1.251e9 x2, y2 3

F02 05.7 1042210 1.482e9 1.411e9 x1, y1 −
F01 00.0 362010 4.176e10 5.537e10 x0, y0 2

B01 −4.0 2606600 6.278e10 7.148e10 − −
B02 −7.6 5878800 8.714e10 8.890e10 − −
B03 −11.2 9170900 6.427e10 8.163 − −
B04 −18 12802300 − − − 1

Table A.1: Osaka High-Rise: Design Parameters. The design parameters used in the model were
obtained by Satow Architects, Design, and Engineers, based on the designed structure. The units are:
height (m), weight (kg), stiffness (N/m).
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A.6 Equipment List

Specifications Value Units

Sensor Supply Current 2-20, Adjustable mA

Number of Sensor Channels 16

Sensor Excitation Voltage (Compliance Voltage) +24 VDC

Voltage Gain UNITY

Front Panel D’Arsonval Panel Meter

F.S. DC Volts +24 VDC

F.S. DC mA 20 mA

Output Coupling Capacitor (Each Channel) 10 µF

Coupling Time Constant

With 10 Megohm Load 9.0 SEC

With 1 Megohm Load 5.0 SEC

Lower -3db Frequency

With 10 Megohm Load 0.017 Hz

With 1 Megohm Load 0.032 Hz

High Frequency Response Determined by

Sensor and

Cable Length

Noise, Wideband 150 µV

Sensor Connectors, Rear Panel (16) BNC Jack

Output Connectors, Rear Panel (16) BNC Jack

Power Cord, 3-Wire with Chassis Ground 3-Wire Plug 6 ft

Power Required Model 13.0 VA

Line Voltage Required (standard model) 115 VAC 50-400 Hz

Line Voltage Required (‘E’ version) 230 VAC 50-400 Hz

Size, H x W x D 1.75 x 19.0 x 11.1 IN

Weight 5.0/2.3 Lbs./kG.

Table A.2: Instrument Specifications: Accelerometer Power Rack. Specifications for the Model 4116
sixteen-channel, rack-mounted power unit with adjustable sensor drive current.
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Specifications Value Units

Physical

Weight 3.8 grams

Size (Hex x Height) .50 x .53 inches

Mounting Provision 10-32, UNF-2B

Connector, Coaxial, Radially Mounted 10-32, UNF-2A

Case Material Anodized Alum.

Connector Material Stainless Steel

Performance

Sensitivity, +10%/-5% Measured at 100 Hz

3150A5 500 mV/G

3150A3 100 mV/G

Range F.S. for +/- 4 Volts Out 3150A5 +/- 4 G’s

Range F.S. for +/- 5 Volts Out 3150A3 +/- 50 G’s

Frequency Response, +/- 5% 1-3000 Hz

Mounted Resonant Frequency, Nom. 8 (12) kHz

Phase Response, +/- 5 Degrees Phase Shift 1-3000 Hz

Equivalent Electrical Noise (Resolution) .0001 G, RMS

Transverse Sensitivity, Max. 5 Percent

Strain Sensitivity .001 G, RMS

Amplitude Non-linearity

(Zero Based Best Fit St. Line Method) 2.0 % F.S., Max

Transverse Sensitivity, Max. 5 Percent

Strain Sensitivity .001 250 G’s/µσ

Environmental

Maximum Vibration 50 G’s, RMS

Maximum Shock 1000 G’s, Peak

Temperature Range -60 to +250 degF

Thermal Coefficient of Sensitivity 0.1 % / deg F

Electrical

Excitation (Compliance) Voltage Range +20 to + 30 VDC

Excitation Current Range 2 to 20 mA

Output Impedance, Nom. 100 OHMS

Output Bias Voltage, +/- Volt 12 VDC

Discharge Time Constant, Min. 1 VDC

Output Signal Polarity for Acceleration Toward Top Positive Going

Table A.3: Instrument Specifications: Accelerometer. Specifications for the Model 3150A3 and
31250A5 high-sensitivity, low-mass LIVM accelerometer.
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Specifications Value Units

Dynamic Performance

Voltage Sensitivity 100 mV/g

Measurement Range 50 ±g pk

Frequency Range

±5% 1-4000 Hz

±10% 0.7-7000 Hz

±3 dB 0.35-12000 Hz

Mounted Resonant Frequency ≥22 kHz

Resolution - Broadband 0.001 g pk

Amplitude Linearity % ±1

Transverse Sensitivity % ≤5

Environmental

Shock Limit (Maximum) 10000 ±g pk

Operating Temperature Range -65 to +250 degF

Strain Sensitivity ≤0.0002 g/µǫ

Electrical

Excitation Voltage/Constant Current 18-30/2-20 VDC/mA

Output Impedance <100 ohms

Output Bias 8-12 VDC

Discharge Time Constant ≥0.5 sec

Warm Up Time (within 10% of output bias) 45 µV rms

Broadband Electrical Noise (1-10 kHz) 45 µV rms

Spectral Noise

1 Hz 320 µg/
√
Hz

10 Hz 70 µg/
√
Hz

100 Hz 18 µg/
√
Hz

1 kHz 6.4 µg/
√
Hz

Ground Isolation None (Optional) ohms

Mechanical

Sensing Element Quartz/Shear Material/Geometry

Housing Titanium Material

Housing Welded Hermetic Sealing

Size (hex x height) 0.75 x 0.85 inch

Weight 0.88 oz

Electrical Connector 10-32 Coaxial/Side Type/Location

Mounting Thread 10-32 Female Size

Table A.4: Instrument Specifications: Hammer. Specifications for the Quartz Shear ICP accelerometer
used in the force-transducer hammer.
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Model No. 482A 482A04

Specification Units Value Value

Supply Voltage +V 24 24/Channel

Excitation Current

(Constant Current Source) mA 2-20 2-20/Channel

Coupling Capacitor µF 10 10

DC Offset

(Max) (w/1 Megohm Load at ”Scope” Output) mV 30 30

Output Noise, Wideband, Pk-Pk (Max) µF 300 300

Voltage Gain 1:1 1:1

Fault Monitor Meter V/FS 24 24

Power Required (40 to 400 Hz) V/A 105 to 125/.12 105 to 125/.12

Power Cord (3-Wire) ft 6 6

Connectors:

Input (XDCR) (Microdot) THD 10-32 10-32

Output (Scope) Jack BNC BNC

Size (H x W x D) in 4.3 x 1.8 x 6.0 4.3 x 1.8 x 6.0

Weight lbs 2 2

Table A.5: Instrument Specifications: Hammer Power Unit. Specifications for the PCB Piezotronics
ICP line power unit.
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Specification Value

Analog Input

Channels 32, 16

Single-Ended Channels 32

Differential Channels 16

Resolution 16 bits

Sample Rate 2 MS/s

Throughput (All Channels) 1 MS/s

Max Voltage 10 V

Maximum Voltage Range -10 V, 10 V

Minimum Voltage Range -0.1 V, 0.1 V

Number of Ranges 7

Simultaneous Sampling No

Analog Output

Channels 4

Resolution 16 bits

Max Voltage 10 V

Maximum Voltage Range -10 V, 10 V

Minimum Voltage Range -5 V, 5 V

Update Rate 2.86 MS/s

Current Drive Single 5 mA

Digital I/O

Bidirectional Channels 48

Input-Only Channels 0

Output-Only Channels 0

Timing Software, Hardware

Clocked Lines 32

Maximum Clock Rate 1 MHz

Logic Levels TTL

Input Current Flow Sinking, Sourcing

Output Current Flow Sinking, Sourcing

Programmable Input Filters Yes

Supports Programmable Power-Up States? Yes

Current Drive Single 24 mA

Current Drive All 1 A

Table A.6: Instrument Specifications: Data Acquisition System. Specifications for the National
Instruments NI USB-6363 X Series multifunction data acquisition.
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