
Chapter 3

Experimental Shear Beam

By studying the effects of damage on the dynamic behavior of small-scale structures, one

can form a better understanding of the effects of damage on actual buildings, thus aiding in

the development of damage detection methods for large-scale structures. To this end, the

effect of damage on the dynamic response of a civil structure is investigated experimentally

using a small-scale (0.75 meter tall) shear beam. Damage is introduced into the shear beam

by loosening the bolts connecting the columns to the floor, and a shake table is used to

apply a consistent pulse at the base of the beam. The structural response is analyzed in

both the time and frequency domains. The introduction of damage results in predictable

changes in vertical shear wave propagation within the beam, as well as the surprising presence

of repeating short-duration high-frequency signals that are presumably due to mechanical

slippage and impact at the damaged floor.

The shear beam used in this study does not serve as a representative small-scale version

of a real building, but rather serves as a mechanical system to which a damage detection

method can be applied for establishing proof of concept. In fact, the shear beam used in

this study is much stiffer than a typical full-scale five-story building. In tall buildings, a

phenomenon known as the P-∆ effect can occur when the building undergoes a significant

amount of lateral displacement, while considering the effects of gravity. The lateral movement

of a story mass to a deformed position generates second-order overturning moments that are

equal to the sum of the story weights P times the lateral displacements ∆ (Wilson, 2004).

The contribution to moment from the lateral force is equal to the force times the story height.
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Such a phenomenon cannot occur in the test specimen.

It is also worth mentioning that various sampling rates were used in the experiments,

depending on the objectives. When the experimental objective is to determine the modal

characteristics of the system, a lower sampling rate is used to record a longer segment of

data. When the objective is to capture the high-frequency signals emitted by the damage

events, a higher sampling rate, typically of 1 or 5 ksps but sometimes as high as 150 ksps, is

used at the expense of recording a shorter segment of data. This is analogous to the strategy

used in the continuous vibration monitoring of actual structures. Typically a lower sampling

rate is used during ambient loading conditions, and a higher sampling rate is used in the

event of an earthquake. As we will see in later chapters from the analysis of data recorded in

existing full-scale structures in situ, a sampling rate of 100 sps seems to be high enough to

detect high-frequency signals originating from structural damage events. For the structure

used in this chapter, ‘high-frequency’ seismograms refers to signals of frequencies above 25

Hz, the fifth modal frequency of the structure.

3.1 Experimental Setup and Method

The five-story aluminum structure is fixed at its base to a shake table, as shown in the

experimental setup in Figure 3.1. A high-sensitivity low-mass piezoelectric accelerometer is

attached at each floor. Each accelerometer is connected to a data acquisition system and

data logger (laptop computer). A list of the equipment and their specification sheets can be

found in the Appendix. The dimensions of the structure can be found in Figure 3.2.

The shake table is used to supply a consistent pulse at the base of the shear beam

that excites the structure over a broad range of frequencies. By using a repeatable source,

differences in the dynamic response of the structure between trials due to differences in the

source are minimized, and the effect of damage on the dynamic response of the structure

can be more readily analyzed. As is apparent from Figure 3.3, the modal response of the

structure is highly consistent between trials, though the introduction of damage results in the

presence of transient signals that generally originate at the damaged floor. These transient
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Figure 3.1: Uniform Shear Beam Experimental Setup. a, Input sources include an impulse hammer
and a shake table. A signal generator and power amplifier are used in conjunction with the shake table to
supply a consistent pulse at the base of the shear beam. b, The aluminum shear beam is firmly attached
at its base to a shake table and is instrumented via an accelerometer attached to each of the five floors as
well as the base. c, The low-mass piezoelectric accelerometers are connected to a power supply and signal
conditioner, and a data acquisition device and laptop are used to record and store the data.

70



x
0

76 cm

x
2

x
3

x
1

x
4

x
5

0.79 mm

10 cm

19 cm 11 cm 

1.9 cm

a b c

Figure 3.2: Uniform Shear Beam Models. a, The shear beam consists of two columns and six masses.
Each column is constructed from five rectangular aluminum plates that are firmly connected to each floor
by three screws per column. The masses are solid rectangular prisms. The shear beam is firmly screwed
into a shake table. The bottom mass is screwed into the shake table platform, and thus is not accounted for
in the five-degree-of-freedom model. Damage is introduced by loosening the screws connecting the columns
to a floor mass. To model damage, two different frameworks are considered: damage to the connection
and damage to the columns. b, In Damage Model I, the undamaged moment connection is replaced by a
semi-rigid connection. c, In Damage Model II, the undamaged columns above and below the damaged floor
are replaced by columns with reduced stiffness. In Damage Levels 1, 2, and 3, damage is introduced to the
shear beam by incrementally loosening the 6 screws attaching the 2 columns to one of the five floors. Damage
Level 1, 2, and 3 corresponds to a 1/6, 2/6, and 3/6 turn of each screw at the damaged floor, respectively.
The amount of space created by loosening the screws is very small. The length of the gap created on one
side is equal to 0.21 mm (0.0083”), 0.42 mm (0.017”), and 0.64 mm (0.025”) for Damage Levels 1, 2, and 3,
respectively.
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signals are clearly observed over the modal response of the structure, and are presumably

caused by mechanical slippage and impact at the loosened connections.

Structural damage is introduced into the shear beam by loosening the six screws attaching

the two vertical the columns to a floor, shown in Figure 3.2, have been loosened. Three levels

of damage are created by incrementally loosening the screws at the damaged floor. Damage

levels one, two, and three correspond to a rotation of each screw by 1/6 turns (60◦), 2/6 turns

(120◦), and 3/6 turns (180◦), respectively. The type of screw used is a 1/4-20 screw, which

has 20 turns in one inch. The amount of space created by loosening the screws is very small.

The length of the gap created on one side is equal to 0.21 mm (0.0083”), 0.42 mm (0.017”),

and 0.64 mm (0.025”) for Damage Levels 1, 2, and 3, respectively. By introducing damage

incrementally, it is possible to study changes in the behavior of the small-scale structure for

a progression of damage.

3.2 Theoretical Model:

Linear Multi-Degree of Freedom System

The frame is modeled as a linear, uniaxial, five-degree of freedom system. Each floor in

the model is constrained to displace along the horizontal x-axis; the vertical displacement

and rotation of each floor is neglected. Masses are lumped at each floor and accounted for

in the M matrix, columns contribute to the K matrix via their lateral stiffness, and either

proportional or modal damping C is considered. The differential equations of motion for the

model are given by:

Mẍ(t) + Cẋ(t) +Kx(t) = f(t). (3.1)

Let the displacement at the nth floor be denoted by xn(t), the displacement at the ground

be denoted by x0(t), and the external force applied to the nth floor be denoted by fn(t). Then
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Figure 3.3: Consistency Between Trials. a. The undamaged shear beam is subjected to a pulse at its
base via a shake table. Three separate trials are compared in each plot, and considerable agreement is shown
between trials. b. The damaged (Damage Level 2 at Floor 3) shear beam is subjected to a pulse at its base
via a shake table. Again, there is considerable agreement shown between trials. There are minor differences
in the occurrence of the transient signals, such as those present in the third floor accelerations at times 0.12
seconds and 0.2 seconds. These transient signals are presumably caused by mechanical slippage and impact
at the loosened connections, and the signals are clearly observed over the modal response of the structure.
There is also a less efficient transmission of high-frequency motion through the third floor, as can be seen by
the amplitudes of the high-frequency acceleration that accompany the initial pulse generated by the shake
table at time 0.015 seconds; the high-frequency energy seems to become trapped within the first and second
floors. The relative amplitudes in each plot have been preserved, as the acceleration time series have been
scaled proportional to the maximum amplitude of the initial pulse at the ground floor.
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the displacement vector x(t) and the force vector f(t) are given by:

x(t) =
(

x1(t) x2(t) x3(t) x4(t) x5(t)
)T

,

f(t) =
(

f1(t) f2(t) f3(t) f4(t) f5(t)
)T

.

A schematic of both the undamaged and damaged shear beam models is shown in Figure

3.2.

3.2.1 Undamaged Frame

Assuming moment connections and uniform properties, the mass and stiffness matrices for

the undamaged frame are populated.

M = m























1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1























,

K = k























2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1























.

The model parameters used for the floor mass m and interstory shear stiffness k are

determined both theoretically, by using the properties of aluminum and the dimensions of

the experimental model, and experimentally. The experimental value for the mass m is

obtained by disconnecting and weighing one of the floors of the structure and is measured to

be 0.9355 kg. The corresponding theoretical value is found by multiplying the volume of a
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floor by the density of aluminum (2.7 g/cm3) and is calculated to be 1.008 kg. The weight of

the columns is neglected. The stiffness value k is determined theoretically by approximating

the column as an Euler-Bernoulli beam, using the material properties of aluminum and the

geometry of the experimental model, and is calculated to be 2.993 103 N/m.

Let λn and φn, for n = 1,2,3,4,5, denote the distinct eigenvalues and eigenvectors (nor-

malized with respect to the mass matrix) of M−1K.

Φ =
(

φ1 φ2 φ3 φ4 φ5

)

,

λn = ω2
n

= (2πfn)
2,

Mg = ΦTMΦ

= I5x5,

Kg = ΦTKΦ

=























ω2
1 0 0 0 0

0 ω2
2 0 0 0

0 0 ω2
3 0 0

0 0 0 ω2
4 0

0 0 0 0 ω2
5























.

The generalized coordinate vector x(t) is expressed in terms of the principal coordinate dis-

placement vector p(t). By converting from generalized coordinates x to principal coordinates

p, the differential equations of motions can be uncoupled.

x(t) = Φp(t),

p(t) = Φ−1x(t),

p(t) = Ip(t)

= ΦTMΦp(t)

= ΦTMx(t).
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Assume modal damping, with a modal damping value for the nth mode shape denoted by

ζn. The damping matrix C and the damped natural frequencies ωd are given by:

Cmodal =























2ζ1ω1 0 0 0 0

0 2ζ2ω2 0 0 0

0 0 2ζ3ω3 0 0

0 0 0 2ζ4ω4 0

0 0 0 0 2ζ5ω5























(3.2)

= ΦTCΦ,

Cmodal = ICmodalI

= ΦTMΦCmodalΦ
TMΦ

= ΦT (MΦCmodalΦ
TM)Φ,

C = MΦCmodalΦ
TM

= Φ−TCmodalΦ
−1,

ωd
n = ωn

√

1− ζ2n.

Modal damping is assumed for the numerical model, and the values are also determined

experimentally by integrating to obtain the displacement, applying the logarithmic decre-

ment method to estimate modal damping for the first mode and the half-power bandwidth

method to estimate modal damping for higher modes (Cole, 1971). The theoretical values

for damping are calculated assuming 2% proportional modal damping.

The differential equations of motion, Equation 3.1, are uncoupled by transforming to

principal coordinates and multiplying the equation by ΦT :

ΦTMΦp̈(t) + ΦTCΦṗ(t) + ΦTKΦp(t) = ΦTf(t),

Mgp̈(t) + Cmodalṗ(t) +Kgp(t) = ΦTf(t).

Letting gn(t) denote the nth generalized force term (the nth component of the vector
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ΦTf(t)), each of the five uncoupled equations is written as:

p̈n(t) + 2ζnωnṗn(t) + ω2
npn(t) = gn(t). (3.3)

3.2.2 Damaged Frame

Damage is introduced at a given floor by loosening the screws connecting the columns to

the floor. Damage is only introduced to one floor at a time; the other four floors and base

remain undamaged. In Damage Levels 1, 2, and 3, all six screws connecting the columns to

a floor are loosened, by 1/6, 2/6, and 3/6 turn, respectively. The amount of space created

by loosening the screws is very small. By loosening the screws to create damage, a short gap

of length 0.21 mm (0.008”), 0.42 mm (0.017”), and 0.64 mm (0.025”) is created on either

side of the damaged floor for Damage Levels 1, 2, and 3, respectively.

Damage to the system is modeled either as damage to the connection or as damage to

the columns: I) in Damage Model I, the original moment connection at the damaged floor is

replaced by a semi-rigid connection, and II) in Damage Model II, a reduction in inter-story

shear stiffness is introduced in the columns directly above and below the damaged floor.

Schematics of the damage models are shown in Figure 3.2.

The damage models are used to estimate the amount of damage from a static tilt test and

from a dynamic impulse test, and give insight into the mechanism of damage, as an exact

physical explanation for quantifying the amount of damage is unavailable. The percent

change in inter-story stiffness in an actual building due to structural damage could range

from a small percentage, in the case of damage to a few structural members at a floor, to

a large percentage, in the case of severe damage to a floor. It is important to quantify the

loss of stiffness that is present in the damaged shear beam in order to evaluate whether the

amount of damage is analogous to realistic losses of inter-story shear stiffness that could

be encountered in an actual civil structure, due to failure of structural members on that

story during an earthquake, or due to the progression of damage in a structure due to

environmental loading.
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3.2.2.1 Damage Model I

In Damage Model I, a reduction in stiffness is introduced at the beam-column connections

at the damaged floor by replacing the moment connections with semi-rigid connections.

The system still obeys the differential equations of motions given by Equation 3.1, but the

changes in boundary conditions at each floor are manifested in the stiffness matrix. The

stiffness matrix is updated according to the new lateral stiffness calculated while taking the

new boundary conditions into account. The mass matrix remains the same, but damping is

expected to increase, and is determined experimentally. In the matrices below, KI
m represents

the stiffness matrix for the structure with damage to the mth floor and assuming Damage

Model I. The level of damage is parameterized by introducing the scalar κ to represent a

torsion spring at the damaged connection, thus representing a semi-rigid connection. The

values for stiffness are calculated by approximating the column as a Euler-Bernoulli beam,

introducing a torsion spring at the damaged connection, and assuming a small angle of

rotation at the connection.

KI
1 = k























2 −1 0 0 0

−1 13+2κ
8+κ

−1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1























, KI
2 = k























13+2κ
8+κ

−1 3
8+κ

0 0

−1 2 −1 0 0

3
8+κ

−1 13+2κ
8+κ

−1 0

0 0 −1 2 −1

0 0 0 −1 1























,

KI
3 = k























2 −1 0 0 0

−1 13+2κ
8+κ

−1 3
8+κ

0

0 −1 2 −1 0

0 3
8+κ

−1 13+2κ
8+κ

−1

0 0 0 −1 1























, KI
4 = k























2 −1 0 0 0

−1 2 −1 0 0

0 −1 13+2κ
8+κ

−1 3
8+κ

0 0 −1 2 −1

0 0 3
8+κ

−1 5+κ
8+κ























,
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KI
5 = k























2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 5+2κ
4+κ

−1+κ
4+κ

0 0 0 −1+κ
4+κ

1+κ
4+κ























.

To work with a more manageable stiffness parameter that ranges from 0 to 1, introduce

stiffness parameter γ:

κ =
γ

1− γ
. (3.4)

As γ ranges from 0 to 1, the connection changes from a simple connection (no torsional

stiffness, i.e., κ = 0) to a moment connection (infinite torsional stiffness, i.e., κ → ∞). For

a moment connection, the stiffness matrices simplify to those for the undamaged case. For

a simple connection, the stiffness matrices simplify to those shown below:

KI
1 |κ=0 = k























2 −1 0 0 0

−1 13/8 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1























, KI
2 |κ=0 = k























13/8 −1 3/8 0 0

−1 2 −1 0 0

3/8 −1 13/8 −1 0

0 0 −1 2 −1

0 0 0 −1 1























,

KI
3 |κ=0 = k























2 −1 0 0 0

−1 13/8 −1 3/8 0

0 −1 2 −1 0

0 3/8 −1 13/8 −1

0 0 0 −1 1























, KI
4 |κ=0 = k























2 −1 0 0 0

−1 2 −1 0 0

0 −1 13/8 −1 3/8

0 0 −1 2 −1

0 0 3/8 −1 5/8























,
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KI
5 |κ=0 = k























2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 5/4 −1/4

0 0 0 −1/4 1/4























.

3.2.2.2 Damage Model II

In Damage Model II, a reduction in inter-story shear stiffness is introduced in the columns

directly above and below the damaged floor. Unlike Damage Model I, the moment connection

is assumed to be undamaged, but the columns immediately above and below are assumed

to have the same reduced lateral stiffness, with a value that is denoted by kd. The stiffness

parameter for this model is chosen to be the ratio kd/k, and it also ranges from 0 (no stiffness)

to 1 (no loss in stiffness).

KII
1 = k






















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
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




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
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,
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





















2 −1 0 0 0

−1 1 + kd/k −kd/k 0 0

0 −kd/k 2kd/k −kd/k 0

0 0 −kd/k 1 + kd/k −1

0 0 0 −1 1























,
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KII
4 = k























2 −1 0 0 0

−1 2 −1 0 0

0 − 1 + kd/k −kd/k 0

0 0 −kd/k 2kd/k −kd/k

0 0 0 −kd/k kd/k























, KII
5 = k























2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 1 + kd/k −kd/k

0 0 0 −kd/k kd/k























.

In Section 3.3.2, these models are used to estimate the reduction in stiffness that is caused

by damage.

3.3 Experimental Results

The following experimental results are presented.

Section 3.3.1 A set of experiments is conducted to verify the linearity of the damaged and

undamaged frame.

Section 3.3.2 A series of static tilt tests is performed. The stiffness of the damaged and

undamaged frames is estimated, and the amount of damage at each damage level

(expressed as a ratio of stiffnesses) is computed as a ratio of stiffnesses.

Section 3.3.3 A series of dynamic testing is performed with the frame damaged at each

floor at Damage Levels 1-3. Experimental results are shown for the undamaged frame,

and the damaged frame, at three different levels of damage. The raw and filtered

acceleration records are used for the time series analysis. Four repeated trials are

conducted for each damage case. The set of experiments was conducted with sampling

rates of 1 ksps, 5 ksps, and 150 ksps.

Section 3.3.4 A damage detection method is discussed, and a series of dynamic tests are

conducted in which damage is sequentially introduced to the frame, one bolt at a time.

A damage-detection method is presented and used to identify potential damage in the

frame.
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Section 3.3.5 A comparison of the experimental and theoretical data is presented, for the

frequency domain (i.e., mode shapes and modal frequencies) for the undamaged frame.

3.3.1 Linearity of the Damaged and Undamaged Shear Beam

Before applying techniques developed for a linear system, it is necessary to first verify that

the shear beam behaves as a linear system. A linear system is one in which the doubling of

the magnitude of the excitation force results in a doubling of the response, and the response

to two simultaneous inputs equals the sum of the responses to each independent input.

One way to test linearity is by inputing a pure sinusoidal signal at the base of the shear

beam. If the structure behaves linearly, then the response of the structure will consist of a

signal of only the input frequency. If the structure behaves nonlinearly, then either harmonic

distortion or frequency modulation will occur, and harmonics or sidebands will be present in

the frequency response of the structure (Farrar et al., 2007). As the shake table used is not

capable of inputing a pure sinusoidal wave, a different approach must be taken. According

to Ewins (1984), signs of nonlinear behavior include the following: 1) natural frequencies

vary with position and strength of excitation, 2) distorted frequency response plots, and 3)

unstable or unrepeatable data. The structure is thus subjected to a pulse at its base, and

the natural frequencies and modeshapes are analyzed for changes.

As seen in Figure 3.4, across a range in shake table gains from 2 to 6, there is no variation

in the observed natural frequencies and little variation in the observed modeshapes for the

undamaged shear beam. For the damaged shear beam (Damage Level 1 introduced at the

third floor), there is a slight decrease in the observed natural frequencies above a shake

table gain of 4. In order to remain within the linear response range of the shear beam, while

maintaining a high signal-to-noise ratio (which increases with an increased shake table gain),

a shake table gain of either 3 or 4 is used for the experiments in this chapter. There is a

possibility that the shaking of the structure causes the bolts to slightly loosen, however only

small variations in observed natural frequencies are observed between repeated trials.
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Figure 3.4: Verification of System Linearity. a. The undamaged shear beam is subjected to a series
of pulses at its base, over a range of shake table gains, and the modal properties are compared. There is
no change in the observed natural frequencies over the frequency range of interest, and the mass-normalized
modeshapes are also consistent. b. Damage (Damage Level I) is introduced at the third floor, and the
damaged shear beam is subjected to a similar series of pulses. The frequencies are unchanged until a gain
of 4, after which there is a slight decrease in two of the natural frequencies. The modeshapes are consistent
between rounds.
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3.3.2 Static Testing:

Stiffness Parameter Estimation via a Tilt Test

The stiffness and stiffness parameters are determined experimentally by performing a tilt

test. Complementing the dynamic testing of the structure, the tilt test provides an additional

method to estimate the stiffness for the small-scale structure by using its static response. The

undamaged model is rotated from −30◦ to 30◦ using a tilt table that rotates the structure

at precise angles, shown in Figure 3.5. The lateral force on each floor due to gravity can be

calculated using the measured mass of each floor. The structure is in static equilibrium; its

velocity and acceleration equals zero, and the resulting displacement at the top floor, x5 tilt,

is recorded. The differential equation of motion, Equation 3.1, for the static case is:

Kx = f. (3.5)

Solving for x by multiplying the equation by K−1 and substituting in the experimentally-

measured value mexp for m yields:

xtilt(θ) =
mg sin θ
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Figure 3.5: Static Testing: Tilt Table and Schematic a, The test structure is firmly fixed at its base
to a tilt table that precise controls the angle of tilt. The resulting relative displacement at the top of the
structure is determined for various angles between −30◦ and 30◦. b The lateral force is determined from the
tilt angle and weight of the structure
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Figure 3.6: Tilt Test: Damaged vs. Undamaged (Example). The resulting roof displacement for the
undamaged and damaged (Damage Level 1 introduced at Floor 1) frame is shown to the left. To the right, the
global stiffness, calculated using Equation 3.6, is plotted for each point. As expected, the damaged structure
experiences larger displacements and hence has reduced global stiffness than the undamaged structure. The
mean value of the global stiffness, kexp = 5.19x103N/m, for the undamaged case is indicated by the dashed
line.

When performing a matrix inversion, it is important to check the condition number. The

condition number is used to estimate the accuracy of the results of the inversion and, for

a matrix, is equal to the ratio of the largest singular value to the smallest singular value.

The condition number for K is calculated to be 45, or 103.8, which is a reasonably small

value. This means that about four digits of accuracy might be lost in addition to the loss of

precision from arithmetic methods; the larger the condition number, the more ill-conditioned

the system (Cheney and Kincaid, 2012).

A set of tilt tests is performed for each of the 15 damaged configurations of the structure

in order to assess the change in stiffness and corresponding value of the stiffness parameter

that accompanies the level and location of damage. The displacement at the top floor, x5 tilt,

is recorded when the damaged shear beam is rotated through various angles between −30◦
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and 30◦. The stiffness at the undamaged floors is assumed to be equal to the experimentally-

obtained undamaged stiffness kexp. For each data point, the stiffness parameter is solved for

using Equation 3.5, and the stiffness parameter depends on which model of damage is used.

For Damage Model I, the stiffness parameter estimated is γ, given by Equation 3.4; for

Damage Model II, the stiffness parameter estimated is the ratio of the reduced stiffness

value to the undamaged stiffness value kd/k.

As inverting the stiffness matrices for the damaged frame is more difficult than it was for

the undamaged case, the inversion is formulated as a numerical optimization problem. For

damage introduced at the nth floor, using stiffness matrix K for the undamaged system with

stiffness value kexp, and assuming Damage Model I, the stiffness parameter γ is estimated

as:

γtilt = arg min
γ∈[0 1]

|x5 tilt −
(

0 0 0 0 1
)

K−1
damaged(kexp, γ)fg|

2.

The term ‘arg min’ simply means the value of γ within the range of [0 1] that mini-

mizes the argument to the right of the expression. Stiffness matrix Kdamaged is written as

K−1
damaged(kexp, γ) to emphasize its dependence on the parameters. The force vector fg is a

5x1 vector of forces due to gravity, with each term equal to mexpg.

Similarly, assuming Damage Model II under the same conditions, the stiffness parameter

kd/k is estimated as:

(kd/k)tilt =
1

kexp
arg min

kd∈[0 kexp]
|x5 tilt −

(

0 0 0 0 1
)

K−1
2 n(kexp, kd)fg|

2.

The estimated values for the stiffness parameters, listed in Table 3.2 and plotted in Figure

3.7, can be used as reference values in relating differences observed in the dynamic response

of the structure to the reduction in stiffness of the frame. Moderate levels of damage are

created by the slight loosening of the bolts. If damage is modeled as a loss of stiffness in

the connection, as in Damage Model I, then as expected, higher values of γ are observed for

lower levels of damage. This means that the damaged connection behaves more like a simple

87



−30 −20 −10 0 10 20 30

−20

−15

−10

−5

0

5

10

15

20

Tilt Angle (°)

R
o

o
f 
D

is
p

la
c
e

m
e

n
t 
(m

m
)

 

 
Undamaged

Floor 1: DLevel 1

Floor 1: DLevel 2

Floor 1: DLevel 3

Floor 2: DLevel 1

Floor 2: DLevel 2

Floor 2: DLevel 3

Floor 3: DLevel 1

Floor 3: DLevel 2

Floor 3: DLevel 3

Floor 4: DLevel 1

Floor 4: DLevel 2

Floor 4: DLevel 3

Floor 5: DLevel 1

Floor 5: DLevel 2

Floor 5: DLevel 3

−30 −20 −10 0 10 20 30
2

2.5

3

3.5

4

4.5

5

5.5

Tilt Angle (°)
G

lo
b

a
l 
s
ti
ff
n

e
s
s
 (

k
N

/m
)

0 1 2 3
0

0.2

0.4

0.6

0.8

Damage Level

D
a

m
a

g
e

 M
o

d
e

l 
I 
P

a
ra

m
e

te
r:

 γ
 

 

 

Floor 1 Damage
Floor 2 Damage
Floor 3 Damage
Floor 4 Damage
Floor 5 Damage

0 1 2 3

Damage Level

D
a

m
a

g
e

 M
o

d
e

l 
II
 P

a
ra

m
e

te
r:

 k
d
/k

a b

c d

1

0

0.2

0.4

0.6

0.8

1

Figure 3.7: Tilt Test: Damaged vs. Undamaged (All Cases). a, The undamaged or damaged (Levels
1-3, Floors 1-5) structure is tilted at various angles between -30◦ and 30◦, and the resulting roof displacement
is recorded. b, The global stiffness is determined using Equation 3.6. As expected, the undamaged model
has the highest global stiffness, with the global stiffness decreasing from Levels 1 to 2 and 3. c Damage Model
I is assumed, and the tilt angle and recorded displacement are used to solve for the stiffness parameter, as
in Equation 3.7. d Damage Model II is assumed, and the tilt angle and recorded displacement are used to
solve for the stiffness parameter, as in Equation 3.7. As expected, the stiffness parameter decreases with
increasing damage. The stiffness parameters for damage introduced to Floors 4 and 5 are lower than those
estimated for damage to Floors 1, 2, and 3. 88



connection and less like a moment connection for higher levels of damage than it does for

lower levels of damage. If instead damage is modeled as a loss of interstory stiffness adjacent

to the damaged floor, then higher values of kd/k are observed for lower levels of damage.

This means that, for lower levels of damage, the stiffness of the damaged columns is closer

to that of the undamaged columns, and the column stiffness decreases for higher levels of

damage.

Level of Model Type Damaged Floor

Damage and Parameter 1 2 3 4 5

Undamaged DM I: γ 1.00 1.00 1.00 1.00 1.00

DM II: kd/k 1.00 1.00 1.00 1.01 1.04

Level 1 DM I: γ 0.93 0.93 0.94 0.89 0.69

DM II: kd/k 0.72 0.74 0.74 0.63 0.54

Level 2 DM I: γ 0.86 0.74 0.80 0.48 0.38

DM II: kd/k 0.57 0.49 0.50 0.34 0.36

Level 3 DM I: γ 0.68 0.59 0.61 0.21 0.11

DM II: kd/k 0.42 0.39 0.38 0.27 0.27

Table 3.1: Estimated Stiffness Parameters from the Tilt Test. To quantify the amount of damage
introduced to the frame in Damage Levels 1-3, a static tilt test is performed, and a model for damage is
assumed. The tilt angle and resulting rotation is used with the model to determine the amount of stiffness
in the damaged connection. Moderate levels of damage are created by the slight loosening of the bolts.

.

In addition to the expected trend of decreasing stiffness with increasing levels of damage,

there appears to be a trend of decreasing stiffness for damage to increasing floor numbers for

a given level of damage. We expect stiffness values to be uniform across different floors for

the same level of damage. The general trends in the table suggest that there is a phenomenon

that exists in the real system, such as rotation or a nonlinear stiffness mechanism, that is

not captured by the simple damage models.

Finally, if damage is introduced by the loosening of only one screw, then the amount of
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displacement at the top floor for a given angle of rotation is observed to equal the amount of

displacement at the top floor for the undamaged frame. This means that there is no observed

loss of inter-story stiffness for this damage case.

3.3.3 Dynamic Testing: Damage Levels 1, 2, and 3

The shear beam is excited by a repeatable pulse at its base by a shake table. By using a

repeatable pulse at the base, the baseline response of the frame in an undamaged configura-

tion can be directly compared to the response of the frame for levels of increasing damage.

Differences in the dynamic response of the structure between trials due to differences in the

source are minimized, and the effect of damage on the dynamic response of the structure

can be more readily analyzed.

As mentioned previously, in Damage Levels 1, 2, and 3, damage is introduced to the shear

beam by incrementally loosening the six screws attaching the two columns to one of the five

floors. Damage Levels 1, 2, and 3 correspond to a 1/6, 2/6, and 3/6 turn of each screw at

the damaged floor, respectively. The amount of space created by loosening the screws is very

small. The length of the gap created on one side is equal to 0.21 mm (0.0083”), 0.42 mm

(0.017”), and 0.64 mm (0.025”) for Damage Levels 1, 2, and 3, respectively.

A schematic of the typical dynamic response recorded at 1 ksps is shown in Figure 3.8.

The pulse at the base of the structure excites a shear wave that travels up the height of

the building and is reflected at the top. The response of the structure can be filtered into

its low-frequency and high-frequency components. The low-frequency component consists of

the predominant modal response of the structure that includes the five lowest modes. The

high-frequency component consists of the initial slip of the shake table as well as mechanical

slippage and impact that occurs at the damaged floor. When the screws are loosened, the

gap allows for motion of the columns and washers.

The unfiltered dynamic response of the frame in all 15 damaged cases (three levels of

damage, five different damage locations) is plotted against the undamaged case in Figure

3.9. A few features in the damaged data stand out. The low-frequency response of the
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Figure 3.8: Dynamic Testing: Explanatory Schematic. The shear beam is excited by a repeatable
pulse at its base by a shake table. Three different levels of damage are introduced into one floor of the the
shear beam; in this case Floor 3 is damaged. A total of six accelerometers instrument the shear beam, one
attached to each floor and one attached to the shake table; the sampling rate is 1 ksps. By using a repeatable
pulse at the base, the response of the frame in an a undamaged configuration can be directly compared to
the response of the frame for levels of increasing damage (b Damage Level 1, c Damage Level 2, d Damage
Level 3). The response of the structure is filtered into its low-frequency and high-frequency components. The
low-frequency response of the structure consists of the predominant modal response (first five modes) and is
obtained using a 4th order Butterworth filter with a 50 Hz cutoff frequency. The high-frequency response is
obtained by applying a 4th order high-pass Butterworth filter. The high-frequency components decay much
more rapidly than do the low-frequency components. The primary sources of the high-frequency signals are
the initial slip of shake table as well as mechanical slippage and impact at the damaged floor. These data
were recorded at a rate of 5 ksps. 91
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structure is indicative of damage. Much like a vertical SH wave traveling through a low

velocity layer, the shear wave that propagates through the structure is slowed down when it

passes through the region of damage, which consists of the damaged floor and the columns

immediately above and below that floor. The low velocity zone results in increasing delays in

arrival times for increasing levels of damage in records obtained above the damaged floor. A

reflected wave is generated at the interface between the undamaged frame and the damaged

frame, which results in slightly larger amplitudes in the shear wave pulse at the floor just

below the damaged interface.

According to Timoshenko, a body’s reaction to a suddenly applied force is not present

at all parts of the body at once. The remote portions of the body remain unaffected during

early times. Deformation propagates through the body in the form of elastic waves (Timo-

shenko, 1951). This concept can be applied to elastic waves that travel through the damaged

region. The response of the damaged frame does not begin to differ from the response of

the undamaged frame until elastic waves have had time to propagate through the damaged

region and reach the location of a receiver. In this sense, there is some amount of time that

passes before information of damage has been disseminated throughout the medium.

The high-frequency response of the structure is also highly indicative of damage. The

initial pulse of the shake table generates a high-frequency pulse across all five floors in

addition to exciting the predominant modal response of the structure. In the damaged

frame, it appears that there is a decreased transmission of this high frequency energy from the

damaged floor to the above floors. The energy appears to essentially become trapped at the

level of the damaged floor, where the excitation of the loose connections generates mechanical

vibrations that result in short-duration high-frequency accelerations (pulses) recorded on the

damaged floor. As the structure continues to deform in free vibration, additional pulses are

recorded. These pulses occur more often as the level of damage progresses.

Using the uniform shear beam model outlined in the Appendix, the arrival time delays

(plotted in Figure 3.10) are estimated from the low-pass filtered data shown in Figure 3.20.

The ratio of inter-story lateral stiffness, kdamaged/kundamaged, is calculated as the the ratio of

the squares of the computed inter-story shear wave speeds, β2
damaged/β

2
undamaged. The mean
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Figure 3.10: Arrival Time Delays: Damaged Frame. The arrival time delays are estimated from the
low-pass filtered data, and are calculated relative to the arrival times obtained for the undamaged frame.
Little to no change in arrival times is observed for floors below the damaged region. An increase in the
arrival time delay occurs during the region of damage, and that increase in arrival time remains constant in
floors above the damaged region.

values (and standard deviations) of the estimated inter-story lateral stiffness immediately

beneath the damaged floor for Damage Levels 1, 2, and 3, respectively, are 0.93 (0.03), 0.70

(0.1), and 0.82 (0.23). The mean values (and standard deviations) of the estimated inter-

story lateral stiffness immediately above the damaged floor for Damage Levels 1, 2, and 3,

respectively, are 0.94 (0.03), 0.67 (0.09), and 0.80 (0.24). The mean values (and standard

deviations) of the estimated inter-story lateral stiffness in floors not immediately above or

below the damaged floor are calculated to be 0.99 (0.03), 0.95 (0.07), and 0.96 (0.05). The

calculated stiffness ratios are much higher than those computed during the static testing.

The estimate could be improved by taking a different approach, such as assuming a damped

mass-spring model, using the shake table motion as input, and calculating the maximum

likelihood estimates of model parameters that determine the best least-squares fit to the

recorded floor accelerations. By using the entire time series, this approach would take much

more information from the data into account in calculating the inter-story lateral stiffnesses.

The amplitudes of the initial shear wave pulse (Figure 3.17) can also be used for a quick

assessment of damage detection, but the presence of the transient pulses can make amplitude
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estimation more difficult.

Level of Damaged Lateral Stiffness between Floors

Damage Floor 0− 1 1− 2 2− 3 3− 4 4− 5

Undamaged 1 1.00 1.00 1.00 1.00 1.00

Level 1 1 0.92b 0.92a 0.97 0.98 1.00

2 0.93 0.91b 0.91a 1.02 0.99

3 0.99 0.96 0.98b 0.74a 1.04

4 0.99 1.00 0.96 0.95b 0.84a

5 1.00 1.00 0.99 0.98 0.91b

Level 2 1 0.81b 0.86a 0.98 0.98 0.97

2 0.86 0.77b 0.86a 1.02 0.89

3 1.00 0.89 0.73b 1.05a 0.89

4 0.99 1.00 0.78 0.58b 0.42a

5 0.99 1.00 0.99 0.94 0.60b

Level 3 1 0.89b 0.73a 0.97 0.98 0.96

2 0.89 1.01b 0.57a 0.96 0.99

3 0.99 0.89 1.04b 0.22a 1.05

4 1.00 1.00 0.83 0.53b 0.29a

5 1.00 1.00 0.99 0.91 0.61b

Table 3.2: Estimated Damage Parameters from Dynamic Testing. The ratio of inter-story lateral
stiffness, kdamaged/kundamaged, is calculated as the the ratio of the squares of the computed inter-story
shear wave speeds, β2

damaged/β
2

undamaged. A uniform shear beam model is assumed. The mean values (and
standard deviations) of the estimated inter-story lateral stiffness immediately beneath the damaged floor for
Damage Levels 1, 2, and 3, respectively, are 0.93 (0.03), 0.70 (0.1), and 0.82 (0.23). The mean values (and
standard deviations) of the estimated inter-story lateral stiffness immediately above the damaged floor for
Damage Levels 1, 2, and 3, respectively, are 0.94 (0.03), 0.67 (0.09), and 0.80 (0.24). The mean values (and
standard deviations) of the estimated inter-story lateral stiffness in floors not immediately above or below
the damaged floor are calculated to be 0.99 (0.03), 0.95 (0.07), and 0.96 (0.05).
a = Immediately above damaged floor
b = Immediately below damaged floor
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3.3.4 Dynamic Testing:

Damage Detection Method Based on Pulse Identification

It has become apparent that 1) the presence of short-duration high-frequency signals (call

them pulses) can be indicative of damage, 2) some types of damage result in the generation of

a new high-frequency source mechanism in the structure, and 3) the response of a structure

is consistent between trials when a similar source mechanism is applied at the same location.

Information about repeating pulses present in the acceleration time series has potential use

for damage detection. A schematic of the idea is illustrated in Figure 3.11. The basic idea

is to compare pulses observed in the acceleration time series when the structure is in a

potentially damaged state to pulses observed when the structure was known to be in an

undamaged state. By comparing the pulses in these two situations, a change in this type

of high-frequency dynamic behavior of the structure can be identified. The approximate

location of the damage source can be determined from the arrival times and amplitudes of

the pulses. These regions can be analyzed in the context of potential nearby sources of high-

frequency excitation, including the possibility of damage. Pulses can be generated by various

mechanisms related to damage, including acoustic emission generated by the propagation of

a crack tip, elastic waves generated by mechanical impact of loose parts, or multi-modal

traveling waves that can occur during the dynamic loading of flexible structural members

such as the propagation of a flexural wave through a beam. Pulses can also be generated by

environmental mechanisms, such as a car driving over a bump on a bridge, the collapse of

a bookshelf during an earthquake, or an impact hammer. Hence, it is preferable to have a

baseline recording to which possible damage features can be compared.

A series of dynamic tests is conducted on the shear beam in order to experimentally test

this method. In Damage State A, damage is introduced to the frame by loosening a single

screw. In Damage State B, the frame is further damaged by loosening a screw at a second

location. A static tilt test was performed on the structure with a single screw loosened,

and the resulting roof displacements due to tilt did not deviate from those recorded for the

undamaged frame; the same global stiffness was recorded, and no loss in interstory stiffness
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Figure 3.11: Shear Beam: Damage Detection Method Using the Detection of Repeating Pulses.
By comparing pulses observed in the acceleration time series when the structure is in a potentially undamaged
state to pulses observed when the structure was known to be in an undamaged state, changes in the dynamic
behavior of the structure that could indicate damage can be identified.

was observed. The frame is subjected to a repeatable pulse at its base when it is in both an

undamaged and a damaged state. The recorded accelerations, both unfiltered and high-pass

filtered, are shown in Figure 3.12. The loosening of the screw allows the washer located

between the head of the screw and the frame to move during loading, enough to impact the

head of the bolt, on one side, or the floor column, on the other side.

In the undamaged data, shown in Figure 3.12, two distinct pulse signals are identified

in the undamaged acceleration time series, and their occurrence in the time series is plotted

in gray. The pulses result from the motion of the shake table, which is itself a stick-slip

event of sorts. The matched filter method is applied for each identified pulse to detect

its repeating presence in the high-pass filtered acceleration time series. This is done by

performing a running cross-correlation that is normalized by the autocorrelation values, as

given by Equations 2.1 and 2.2. Only the accelerations recorded on Floors 1-5 are used in

calculating the correlation values. A threshold value of 1/3 is chosen, and whenever the

cross-correlation value exceeds the threshold, the pulse is said to have been detected in the

data. There is some art in choosing the threshold value; an increase in the probability of

false negatives accompanies higher threshold values, and a decrease in the probability of false

positives accompanies lower threshold values. The first identified signal, TUD
1 , occurs twice
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Figure 3.12: Shear Beam: Raw and High-Frequency Accelerations. The unfiltered and high-pass
filtered (Butterworth filter, 4th order, 250 Hz) are shown above for the undamaged frame, frame with one
loosened screw (Damage State A), frame with two loosened screws (Damage State B). The motion of the
shake table results in a transient pulse present across all five floors. Damage results in the presence of many
high-frequency pulses. The relative amplitudes have been preserved.
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in the data set. The second identified signal, TUD
2 , occurs three times, two times during

which it is embedded in TUD
1 .

In Damage State A, shown in Figure 3.13, the undamaged signals TUD
1 and TUD

2 are

clearly identified in the data at the correct time (when the shake table supplies the initial

pulse). From the remaining unidentified pulses in the Damage State A acceleration records,

three damage signals, TDA
1 , TDA

2 , and TDA
3 are detected. These damage signals are method-

ically identified. First, the first unidentified pulse that appears to consist of a single event is

classified as a damage signal TDA
1 . Similar pulses are detected in the Damage State A accel-

eration records by applying the matched filter method and using a threshold value of 1/3 to

identify signals in the record that have a higher correlation value. The procedure is repeated

using the remaining unidentified pulses until all pulses have been classified. The damage

signal templates were formed using only one of the pulses, but averaging the template over

the detected occurrences could improve the signal-to-noise ratio of the damage signal. The

final set of three identified damage signals is used to screen the undamaged data. This is

done to determine whether one of the damage signals is present in the undamaged data set,

which would suggest that it be reclassified as an undamaged signal. Damage signals TDA
1 ,

TDA
2 , and TDA

3 are not detected in the undamaged data.

The identified damage signals all have the largest amplitudes and first arrival times on

the Floor 2, and damage can be concluded to have originated at this floor. Damage was,

in fact, introduced to this floor, to a screw on the opposite side of the accelerometers. An

interesting phenomenon is observed by noting trends in the Floor 2 raw acceleration record

when damage signals TDA
1 (yellow) and TDA

3 (blue) occur. TDA
1 (yellow) only occurs near the

local maxima in the Floor 2 acceleration records, when the second floor is at its minimum

displacement along the axis of shaking and is changing direction. TDA
3 (blue) only occurs

after the local minima in the Floor 2 acceleration records, when the floor is at a maximum

displacement and is beginning to change directions. Hence, two different signals are generated

by two mechanisms resulting from the same source, namely the impact of the washer against

either the head of the bolt or the side of the column. The damage events are nonlinear and

aperiodic in nature. As the second damage signal TDA
2 only occurs once and has a similar
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Figure 3.13: Acceleration Pulses: Undamage Signals. Two different pulse signals are identified in the
undamaged acceleration time series, and their occurrence in the time series is plotted in gray. The pulses are
due to the input pulse supplied by the shake table. A threshold value of 1/3 is chosen, and only Floors 1-5
are used in the analysis. The first identified signal, TUD

1
, occurs twice in the data set. The second identified

signal, TUD
2

, occurs three times, two times during which it is embedded in the first identified signal.
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waveform and time of occurrence to TDA
3 , it is likely that the second and third identified

damage signals are generated by the same mechanism.

A second screw is loosened in Damage State B, and the acceleration records are plotted

in Figure 3.15. Again, the initial pulse of the shake table is identified using the prerecorded

undamaged signals TUD
1 and TUD

2 . Two of the Damage State A damage signals are also

detected. From the remaining unidentified pulses in Damage State B, three different damage

signals are detected, TDB
1 (yellow), TDB

2 (dark blue), and TDB
3 (red). Damage signal TDB

1

seems to initiate at Floor 2, and it occurs at similar points in the time history as TDA
3 . By

looking for the presence of TDB
1 in the Damage State A data, we find that the damage signal

TDB
1 is detected twice, while TDB

2 and TDB
3 are not detected. We conclude that TDA

3 and

TDB
1 must be generated by the same source and mechanism. Both TDB

2 and TDB
3 originate

and have the largest peak accelerations on the fourth floor. Moreover, they seem to occur

at the local minima and maxima, respectively, in the Floor 4 acceleration records. Hence,

we conclude that damage signals TDB
2 and TDB

3 are caused by two different mechanisms at

the same source, namely a washer at Floor 4 impacting the head of the bolt or the side of

the column. Damage was, in fact, introduced to this floor, to a screw on the same side as

the accelerometers.

3.3.5 Comparison of Experimental and Theoretical Models: Un-

damaged Frame

There is considerable agreement between the numerical model and experimental data for

the undamaged frame. A comparison of modeshapes is presented in Figure 3.16 and Table

3.3. The numerical model is computed using parameters obtained experimentally as well

as parameters obtained numerically based on the material properties of aluminum and the

geometry of the model. As there is much better agreement between the data and the model

using the experimental parameters than there is between the data and the model using the

numerical parameters, the subsequent numerical analysis is conducted using the model with

the experimental parameters.
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Figure 3.14: Acceleration Pulses: Damage Signals (Damage State A). The pulses generated by the
shake table are accurately identified using the prerecorded undamaged signals TUD

1
and TUD

2
, and their

occurrence is highlighted in gray. Undamaged signal TUD
1

is detected once in the data set, and TUD
2

is
detected three times, one time during which it is embedded in TUD

1
. Damage signals are generated by

a washer between the head of the loosened screw and the frame that is able to move when the screw
is loosened. Three damage signals, TDA

1
(orange, 11 occurrences), TDA

2
(green, 1 occurrence), and TDA

3

(blue, 5 occurrences) are detected based on the unidentified pulses. The damage signals all have the largest
amplitudes and first arrival times on the Floor 2, and damage can be concluded to have originated at
this floor. Damage signals TDA

1
and TDA

3
appear to be caused by different mechanisms. An interesting

phenomenon is observed by noting trends in the Floor 2 raw acceleration record when damage signals TDA
1

(yellow) and TDA
3

(blue) occur. Damage signal TDA
1

(yellow) only occurs near the local maxima in the Floor
2 acceleration records, when the second floor is at its minimum displacement along the axis of shaking and is
changing direction. TDA

3
(blue) only occurs after the local minima in the Floor 2 acceleration records, when

the floor is at a maximum displacement and is beginning to change directions. Hence, two different signals
are generated by two mechanisms resulting from the same source, namely the impact of the washer against
either the head of the bolt or the side of the column. The damage events are nonlinear and aperiodic in
nature. It is likely that the second and third identified damage signals are generated by the same mechanism.
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Figure 3.15: Acceleration Pulses: Damage Signals (Damage State B). The initial pulse of the shake
table is identified using the prerecorded undamaged signals, and the occurrence of the undamaged signals is
highlighted in gray. Again, the first undamaged signal TUD

1
appears once in the data set, and the second

undamaged signal TUD
2

occurs three times, one time during which it is embedded in the first signal. Two of
the Damage State A damage signals are detected, with 11 detected occurrences of TDA

1
(orange) and four

detected occurrences of TDA
3

(light blue). From the remaining unidentified pulses in Damage State B, three
different damage signals are detected. Damage signal TDB

1
(yellow) occurs seven times, TDB

2
(dark blue)

occurs three times, and TDB
3

(red) occurs seven times. Damage signal TDB
1

seems to initiate at Floor 2,
and it occurs at similar points in the time history as TDA

3
. Hence, it is likely that this signal is caused by

the same source and mechanism that causes TDA
3

. This is tested by looking for the presence of TDA
3

in the
Damage State A data. In the Damage State A data, the damage signal TDA

3
shows up two times, while

TDA
1

and TDA
2

show up zero times, and we conclude that TDA
3

and TDB
1

are generated by the same source
and mechanism. Both TDB

2
and TDB

3
originate and have the largest peak accelerations on the fourth floor.

Moreover, they seem to occur at the local maxima and minima in the Floor 4 acceleration records. Hence,
we conclude that damage signals TDB

2
and TDB

3
are caused by two different mechanisms at the same source,

namely a washer at Floor 4 impacting the head of the bolt or the side of the column.
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There is considerable consistency in the response of the structure between different exper-

imental trials. The raw acceleration waveforms recorded in three different trials are compared

in Figure 3.3 for both a damaged and undamaged frame. Both the shape and amplitude of

the resulting accelerations show considerable consistency for the shear wave that propagate

within the structure. There is greater agreement between different trials for the undamaged

frame than there is for the damaged frame. There is a seemingly stochastic occurrence of

transient signals in the undamaged trial that may be due to slipping and impact between

different structural members in the shear beam that lead to momentarily high accelerations.

Mode Observed Experimental Parameters Numerical Parameters

Undamped Damped Undamped Damped

1 3.27 Hz 3.38 Hz 3.38 Hz 2.47 Hz 2.47 Hz

2 9.62 Hz 9.85 Hz 9.82 Hz 7.20 Hz 7.19 Hz

3 15.27 Hz 15.52 Hz 15.45 Hz 11.36 Hz 11.31 Hz

4 19.97 Hz 19.94 Hz 19.79 Hz 14.59 Hz 14.49 Hz

5 22.43 Hz 21.74 Hz 21.54 Hz 16.64 Hz 16.49 Hz

Table 3.3: Natural Frequencies of the Undamaged Shear Beam. The ‘Observed’ natural frequencies
are those experimentally observed during dynamic testing of the structure with an impulse input at the
base. The theoretical natural frequencies are computed using a five-degree-of-freedom model. Both the
experimentally-determined parameters (weighing the floor mass, static tilt test to determine the global
stiffness value) and theoretically-determined parameters (using the geometry and material properties of
aluminum) are used. Proportional modal damping is assumed, with 2% for the first mode. Good agreement is
shown between the observed data and the theoretical data (using the experimentally-determined parameters).

The natural frequencies (Figure 3.18 and Table 3.4), damping values (Table 3.5), and

mode shapes (Figure 3.19) for the damaged frame are obtained using the eigensystem real-

ization algorithm (ERA) (Juang and Pappa, 1985). The ERA consists of two major parts,

basic formulation of the minimum-order realization and modal parameter identification. Note

that the process of constructing a state space representation from experimental data is called

system realization. As expected, with increasing damage, there is a decrease in natural fre-
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Figure 3.16: Shear Beam: Analytical vs. Experimental Modeshapes. There is good agreement
between the observed and modeled modeshapes of the undamaged uniform shear beam. The theoretical
mode shapes were computed using experimentally-obtained parameters.

quencies and and increase in damping.

3.4 Conclusion

The effect of damage on the dynamic response of a civil structure was investigated experi-

mentally using a small-scale (0.75 meter tall) shear beam. Damage was introduced into the

shear beam by loosening the bolts connecting the columns to the floor, and a shake table

was used to apply a consistent pulse at the base of the beam. The main findings of this

chapter are outlined below:

1. A dynamic pulse was input at the base of the shake table. High-frequency acceleration

records could be used to immediately determine the presence and location of damage,

based on the presence of short-duration high-frequency signals caused by mechanical

impact and slippage. Low-frequency acceleration records could also be used to im-

mediately determine the location of damage (i.e., which floor), based on the delayed

arrival times and amplitudes of the initial shear wave.
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2. A damage detection method that is based on detecting pulses in both the undamaged

and potentially damaged acceleration records was found to be successful in detecting

the nonlinear, aperiodic occurrences of damage signals. The arrival times and ampli-

tudes were used to determine which floor was damaged. The advantage this strategy

has over current strategies is that it can detect early onset damage. It is also based

on the physical mechanism of damage in the structure, namely wave propagation, and

energy formulations or the combination of the method with a time-reversed recipro-

cal method could give more information about the damage mechanism. The obvious

disadvantage is that if there are no pulses (due to not using a high-enough sampling

rate, or the absence of such a signal), the method will not work. Another disadvantage

is that the method cannot be used to determine the amount of damage (e.g., loss of

stiffness), it can only detect the occurrence of signals that may indicate damage. The

method could be combined with a vibration-based method.

3. A static tilt test was performed to estimate the severity of damage for Levels 1, 2,

and 3. The amount of damage was found to range from moderate to severe levels,

with estimated stiffness parameter kd/dud ranging from 0.27 to 0.74. The estimated

shear wave speeds obtained during dynamic testing were used to quantify the amount

of damage, and the level of damage was estimated to be less severe than the values

obtained from the stiffness test. The mean values (and standard deviations) of the

estimated inter-story lateral stiffnesses immediately beneath the damaged floor for

Damage Levels 1, 2, and 3, respectively, were found to be 0.93 (0.03), 0.70 (0.1), and

0.82 (0.23). The mean values (and standard deviations) of the estimated inter-story

lateral stiffness immediately above the damaged floor for Damage Levels 1, 2, and 3,

respectively, were found to be 0.94 (0.03), 0.67 (0.09), and 0.80 (0.24). The mean

values (and standard deviations) of the estimated inter-story lateral stiffness in floors

not immediately above or below the damaged floor were calculated to be 0.99 (0.03),

0.95 (0.07), and 0.96 (0.05). The dynamic estimates could be improved by considering

a longer portion of the time series. The values could be tested using forward modeling
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Damaged Damage Mode Number
Floor Level 1st 2nd 3rd 4th 5th
- 0 3.25 Hz 9.72 Hz 15.38 Hz 20.10 Hz 22.52 Hz

1 1 2.77 Hz 9.18 Hz 14.77 Hz 18.79 Hz 22.09 Hz
2 2.64 Hz 9.04 Hz 14.40 Hz 18.41 Hz 22.17 Hz
3 2.59 Hz 9.07 Hz 14.27 Hz 18.50 Hz 22.32 Hz

2 1 2.86 Hz 9.60 Hz 14.50 Hz 18.95 Hz 22.11 Hz
2 2.30 Hz 9.49 Hz 13.58 Hz 18.12 Hz 21.44 Hz
3 2.30 Hz 9.18 Hz 13.44 Hz 16.74 Hz 21.02 Hz

3 1 3.09 Hz 9.13 Hz 14.91 Hz 19.64 Hz 21.19 Hz
2 2.71 Hz 8.28 Hz 14.14 Hz 19.29 Hz 20.42 Hz
3 2.50 Hz 7.71 Hz 13.67 Hz 18.63 Hz 20.40 Hz

4 1 3.11 Hz 8.39 Hz 14.44 Hz 18.29 Hz 22.21 Hz
2 2.84 Hz 7.12 Hz 12.97 Hz 16.84 Hz 21.46 Hz
3 2.79 Hz 6.79 Hz 12.35 Hz 15.58 Hz 21.27 Hz

5 1 3.25 Hz 9.25 Hz 14.22 Hz 19.00 Hz 22.16 Hz
2 3.19 Hz 8.22 Hz 12.72 Hz 18.40 Hz 22.01 Hz
3 3.16 Hz 7.52 Hz 12.30 Hz 18.26 Hz 22.03 Hz

Table 3.4: Shear Beam: Observed Natural Frequencies (Damaged and Undamaged Frame). The
natural frequencies were determined using the ERA from the IRF generated by inputing a pulse at the base
of the structure with a sampling rate of 1000 sps. As expected, there are considerable decreases in the
natural frequencies with increasing levels of damage.

by determining the accompanying natural frequencies and mode shapes and comparing

those with the observed ones.

4. The modal response of the structure was found to be highly consistent between trials,

though the introduction of damage results in the presence of transient signals that gen-

erally originate at the damaged floor. A decreased transmission through the damaged

floor of the high-frequency motion generated by the shake table was also observed.
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Damaged Damage Mode Number
Floor Level 1st 2nd 3rd 4th 5th
- 0 0.016 0.005 0.004 0.003 0.005

1 1 0.019 0.005 0.007 0.008 0.004
2 0.019 0.013 0.009 0.006 0.015
3 0.026 0.016 0.008 0.010 0.022

2 1 0.031 0.010 0.009 0.013 0.011
2 0.077 0.026 0.022 0.022 0.008
3 0.076 0.017 0.029 0.015 0.002

3 1 0.010 0.010 0.003 0.006 0.026
2 0.025 0.020 0.007 -0.003 0.010
3 0.018 0.028 0.018 0.010 0.012

4 1 0.019 0.017 0.004 0.015 0.015
2 0.025 0.023 0.022 0.020 0.003
3 0.028 0.027 0.028 0.034 0.004

5 1 0.017 0.010 0.010 0.001 0.006
2 0.015 0.025 0.015 0.003 0.002
3 0.032 0.034 0.022 0.004 0.006

Table 3.5: Shear Beam: Observed Modal Damping Ratios (Damaged and Undamaged Frame).
The modal damping ratios were computed using ERA from the IRF generated by inputing a pulse at the
base of the structure with a sampling rate of 1000 sps. As expected, there are considerable increases in the
damping ratios, though the structure is very lightly damped.
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Figure 3.19: Experimental Shear Beam: Modeshapes (Damaged and Undamaged). Experimental
modeshapes of the undamaged uniform shear beam.
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