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Abstract

Within the microcosm of information theory, I explore what it means for a system to be functionally

irreducible. This is operationalized as quantifying the extent to which cooperative or “synergistic”

e↵ects enable random variables X
1

, . . . , X
n

to predict (have mutual information about) a single

target random variable Y . In Chapter 1, we introduce the problem with some emblematic examples.

In Chapter 2, we show how six di↵erent measures from the existing literature fail to quantify this

notion of synergistic mutual information. In Chapter 3, we take a step towards a measure of synergy

which yields the first nontrivial lowerbound on synergistic mutual information. In Chapter 4, we

find that synergy is but the weakest notion of a broader concept of irreducibility. In Chapter 5, we

apply our results from Chapters 3 and 4 towards grounding Giulio Tononi’s ambitious � measure,

which attempts to quantify the magnitude of consciousness experience.
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Chapter 1

What is Synergy?

The prior literature [24, 30, 1, 6, 19, 36] has termed several distinct concepts as “synergy”. We

define synergy as a special case of irreducibility—specifically, synergy is irreducibility to atomic

elements. By definition, a group of two or more agents synergistically perform a task if and only if

the performance of that task decreases when the agents work “separately”, or in parallel isolation.

It is important to remember that it is the collective action that is irreducible, not the agents

themselves. A concrete example of irreducibility is the “agents” hydrogen and oxygen working to

extinguish fire. Even when H
2

and O
2

are both present in the same container, if working separately

neither extinguishes fire (on the contrary, fire grows!). But hydrogen and oxygen fused or “grouped”

into a single entity, H
2

O, readily extinguishes fire.

The concept of synergy spans many fields and theoretically could be applied to any non-subadditive

function. But within the confines of Shannon information theory, synergy—or more formally, syner-

gistic information—is a property of a set of n random variables X = {X
1

, X
2

, . . . , X
n

} cooperating

to predict, that is, reduce the uncertainty of, a single target random variable Y .

1.1 Notation and PI-diagrams

We use the following notation throughout. Let

n: The number of predictors X
1

, X
2

, . . . , X
n

. n � 2.

X
1...n

: The joint random variable (cartesian product) of all n predictors X
1

X
2

. . . X
n

.

X
i

: The i’th predictor random variable (r.v.). 1  i  n.

X: The set of all n predictors {X
1

, X
2

, . . . , X
n

}.

Y : The target r.v. to be predicted.

y: A particular state of the target r.v. Y .
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All random variables are discrete, all logarithms are log
2

, and all calculations are in bits. En-

tropy and mutual information are as defined by [9], H(X) ⌘
P

x2X

Pr(x) log 1

Pr(x)

, as well as

I(X :Y ) ⌘
P

x,y

Pr(x, y) log Pr(x,y)

Pr(x) Pr(y)

.

1.1.1 Understanding PI-diagrams

Partial information diagrams (PI-diagrams), introduced by [36], extend Venn diagrams to properly

represent synergy. Their framework has been invaluable to the evolution of our thinking on synergy.

A PI-diagram is composed of nonnegative partial information regions (PI-regions). Unlike the

standard Venn entropy diagram in which the sum of all regions is the joint entropy H(X
1...n

, Y ),

in PI-diagrams the sum of all regions (i.e. the space of the PI-diagram) is the mutual informa-

tion I(X
1...n

:Y ). PI-diagrams are immensely helpful in understanding how the mutual information

I(X
1...n

:Y ) is distributed across the coalitions and singletons of X.1

{12}

{1} {2}

{1,2}

(a) n = 2

{1} {2}

{3}

{12}

{13}

{23}

{1,2}

{1,3} {2,3}

{1,2,3}

{12,13} {12,23}
{12,13,23}

{2,13}{1,23}

{3,12}

{123}

{13,23}

*

**

(b) n = 3

Figure 1.1: PI-diagrams for two and three predictors. Each PI-region represents nonnegative in-
formation about Y . A PI-region’s color represents whether its information is redundant (yellow),
unique (magenta), or synergistic (cyan). To preserve symmetry, the PI-region “{12, 13, 23}” is dis-
played as three separate regions each marked with a “*”. All three *-regions should be treated as
though they are a single region.

How to read PI-diagrams. Each PI-region is uniquely identified by its “set notation” where

each element is denoted solely by the predictors’ indices. For example, in the PI-diagram for n = 2

1Formally, how the mutual information is distributed across the set of all nonempty antichains on the powerset of
X[35].
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(Figure 1.1a): {1} is the information about Y only X
1

carries (likewise {2} is the information

only X
2

carries); {1, 2} is the information about Y that X
1

as well as X
2

carries, while {12} is

the information about Y that is specified only by the coalition (joint random variable) X
1

X
2

. For

getting used to this way of thinking, common informational quantities are represented by colored

regions in Figure 5.5.

{12}

{1} {2}

{1,2}

(a) I(X
1

:
Y )

{12}

{1} {2}

{1,2}

(b) I(X
2

:
Y )

{12}

{1} {2}

{1,2}

(c) I
�
X

1

:
Y |X

2

�

{12}

{1} {2}

{1,2}

(d) I
�
X

2

:
Y |X

1

�

{12}

{1} {2}

{1,2}

(e) I(X
1

X

2

:
Y )

Figure 1.2: PI-diagrams for n = 2 representing standard informational quantities.

The general structure of a PI-diagram becomes clearer after examining the PI-diagram for n = 3

(Figure 1.1b). All PI-regions from n = 2 are again present. Each predictor (X
1

, X
2

, X
3

) can carry

unique information (regions labeled {1}, {2}, {3}), carry information redundantly with another

predictor ({1,2}, {1,3}, {2,3}), or specify information through a coalition with another predictor

({12}, {13}, {23}). New in n = 3 is information carried by all three predictors ({1,2,3}) as well

as information specified through a three-way coalition ({123}). Intriguingly, for three predictors,

information can be provided by a coalition as well as a singleton ({1,23}, {2,13}, {3,12}) or specified

by multiple coalitions ({12,13}, {12,23}, {13,23}, {12,13,23}).

1.2 Information can be redundant, unique, or synergistic

Each PI-region represents an irreducible nonnegative slice of the mutual information I(X
1...n

:Y )

that is either:

1. Redundant. Information carried by a singleton predictor as well as available somewhere else.

For n = 2: {1,2}. For n = 3: {1,2}, {1,3}, {2,3}, {1,2,3}, {1,23}, {2,13}, {3,12}.

2. Unique. Information carried by exactly one singleton predictor and available nowhere else.

For n = 2: {1}, {2}. For n = 3: {1}, {2}, {3}.

3. Synergistic. Any and all information in I(X
1...n

:Y ) that is not carried by a singleton predic-

tor. n = 2: {12}. For n = 3: {12}, {13}, {23}, {123}, {12,13}, {12,23}, {13,23}, {12,13,23}.

Although a single PI-region is either redundant, unique, or synergistic, a single state of the

target can have any combination of positive PI-regions, i.e. a single state of the target can convey

redundant, unique, and synergistic information. This surprising fact is demonstrated in Figure 3.4.
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1.2.1 Example Rdn: Redundant information

If X
1

and X
2

carry some of the same information2 (reduce the same uncertainty) about Y , then we

say the set X = {X
1

, X
2

} has some redundant information about Y . Figure 1.3 illustrates a simple

case of redundant information. Y has two equiprobable states: r and R (r/R for “redundant bit”).

Examining X
1

or X
2

identically specifies one bit of Y , thus we say set X = {X
1

, X
2

} has one bit of

redundant information about Y .

X
1

X
2

Y

r r r

1/2
R R R

1/2

(a) Pr(x
1

, x

2

, y)

½  r
½  R

(b) circuit diagram

0
0

0
+1

{12}

{1} {2}
{1,2}

(c) PI-diagram

Figure 1.3: Example Rdn. Figure 1.3a shows the joint distribution of r.v.’s X
1

, X
2

, and Y , and
the joint probability Pr(x

1

, x
2

, y) is along the right-hand side of (a), revealing that all three terms
are fully correlated. Figure 1.3b represents the joint distribution as an electrical circuit. Fig-
ure 1.3c is the PI-diagram indicating that set {X

1

, X
2

} has 1 bit of redundant information about
Y . I(X

1

X
2

:Y ) = I(X
1

:Y ) = I(X
2

:Y ) = H(Y ) = 1 bit.

1.2.2 Example Unq: Unique information

Predictor X
i

carries unique information about Y if and only if X
i

specifies information about Y that

is not specified by anything else (a singleton or coalition of the other n � 1 predictors). Figure 1.4

illustrates a simple case of unique information. Y has four equiprobable states: ab, aB, Ab, and

AB. X
1

uniquely specifies bit a/A, and X
2

uniquely specifies bit b/B. If we had instead labeled the

Y -states: 0, 1, 2, and 3, X
1

and X
2

would still have strictly unique information about Y . The state

of X
1

would specify between {0, 1} and {2, 3}, and the state of X
2

would specify between {0, 2} and

{1, 3}—together fully specifying the state of Y .

1.2.3 Example Xor: Synergistic information

A set of predictors X = {X
1

, . . . , X
n

} has synergistic information about Y if and only if the whole

(X
1...n

) specifies information about Y that is not specified by any singleton predictor. The canonical

example of synergistic information is the Xor-gate (Figure 1.5). In this example, the whole X
1

X
2

fully specifies Y ,

I(X
1

X
2

:Y ) = H(Y ) = 1 bit,

2

X

1

and X

2

providing identical information about Y is di↵erent from providing the same magnitude of information
about Y , i.e. I(X

1

:
Y ) = I(X

2

:
Y ). Example Unq (Figure 1.4) is an example where I(X

1

:
Y ) = I(X

2

:
Y ) = 1 bit yet

X

1

and X

2

specify “di↵erent bits” of Y . Providing the same magnitude of information about Y is neither necessary
or su�cient for providing some identical information about Y .
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X
1

X
2

Y

a b ab

1/4
a B aB

1/4
A b Ab

1/4
A B AB

1/4

(a) Pr(x
1

, x

2

, y)

½  a
½  A

½  b
½  B

(b) circuit diagram

+1
0

+1
0

{12}

{1} {2}
{1,2}

(c) PI-diagram

Figure 1.4: Example Unq. X
1

and X
2

each uniquely specify a single bit of Y .
I(X

1

X
2

:Y ) = H(Y ) = 2 bits. The joint probability Pr(x
1

, x
2

, y) is along the right-hand
side of (a).

but the singletons X
1

and X
2

specify nothing about Y ,

I(X
1

:Y ) = I(X
2

:Y ) = 0 bits.

With both X
1

and X
2

themselves having zero information about Y , we know that there can not be

any redundant or unique information about Y , that the three PI-regions {1} = {2} = {1, 2} = 0

bits. As the information between X
1

X
2

and Y must come from somewhere, by elimination we

conclude that X
1

and X
2

synergistically specify Y .

X
1

X
2

Y

0 0 0

1/4
0 1 1

1/4
1 0 1

1/4
1 1 0

1/4

(a) Pr(x
1

, x

2

, y)

½  0
½  1

½  0
½  1

X1

X2

YXOR

(b) circuit diagram

0
+1

0
0

{12}

{1} {2}
{1,2}

(c) PI-diagram

Figure 1.5: Example Xor. X
1

and X
2

synergistically specify Y . I(X
1

X
2

:Y ) = H(Y ) = 1 bit.
The joint probability Pr(x

1

, x
2

, y) is along the right-hand side of (a).
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Chapter 2

Six Prior Measures of Synergy

2.1 Definitions

2.1.1 Multivariate Mutual Information: MMI(X1; · · · ;Xn

;Y )

The first information-theoretic measure of synergy dates to 1954 from [24]. Inspired by Venn en-

tropy diagrams, they defined the multivariate mutual information (MMI), MMI(X
1

; · · · ;X
n

;Y ) ⌘
P

T✓{X1,...,Xn,Y }(�1)|T |+1H(T ). Negative MMI was understood to be synergy. Therefore the MMI

measure of synergy is,

S
MMI

(X
1

; · · · ;X
n

;Y ) ⌘ �
X

T✓{X1,...,Xn,Y }

(�1)|T|+1H(T )

=
X

T✓{X1,...,Xn,Y }

(�1)|T|H(T ) .
(2.1)

2.1.2 Interaction Information: II (X1; · · · ;Xn

;Y )

Interaction information (II), sometimes called the co-information, was introduced in [6] and tweaks

MMI synergy measure. Although intended to measure informational “groupness” [6], Interaction

Information is commonly interpreted as the magnitude of “information bound up in a set of variables,

beyond that which is present in any subset of those variables.”1

Interaction Information among the n predictors and Y is defined as,

II (X
1

; · · · ;X
n

;Y ) ⌘ (�1)n S
MMI

(X
1

; · · · ;X
n

;Y )

=
X

T✓{X1,...,Xn,Y }

(�1)n�|T|H(T ) .
(2.2)

1From http://en.wikipedia.org/wiki/Interaction_information.
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Interaction Information is a signed measure where a positive value signifies synergy and a negative

value signifies redundancy. Representing Interaction Information as a PI-diagram (Figure 2.1) reveals

an intimidating imbroglio of added and subtracted PI-regions.

{12}

{1} {2}

{1,2}

(a) II({X
1

, X

2

} :
Y )

{1} {2}

{3}

{12}

{13}

{23}

{1,2}

{1,3} {2,3}

{1,2,3}

{12,13} {12,23}
{12,13,23}

{2,13}{1,23}

{3,12}

{123}

{13,23}

*

**

(b) II (X
1

;X
2

;X
3

;Y )

Figure 2.1: PI-diagrams illustrating interaction information for n = 2 (left) and n = 3 (right). The
colors denote the added and subtracted PI-regions. WMS (X : Y ) is the green PI-region(s), minus
the orange PI-region(s), minus two times any red PI-region.

2.1.3 WholeMinusSum synergy: WMS(X : Y )

The earliest known sightings of bivariate WholeMinusSum synergy (WMS) are in [13, 12], with the

general case in [11]. WholeMinusSum synergy is a signed measure where a positive value signifies

synergy and a negative value signifies redundancy. WholeMinusSum synergy is defined by eq. (2.3)

and interestingly reduces to eq. (2.5)—the di↵erence of two total correlations.2

WMS (X : Y ) ⌘ I(X
1...n

:Y ) �
n

X

i=1

I(X
i

:Y ) (2.3)

=
n

X

i=1

H
�

X
i

|Y
�

� H
�

X
1...n

|Y
�

�

2

4

n

X

i=1

H(X
i

) � H(X
1...n

)

3

5 (2.4)

= TC (X
1

; · · · ;X
n

|Y ) � TC (X
1

; · · · ;X
n

) (2.5)

Representing eq. (2.3) for n = 2 as a PI-diagram (Figure 2.2a) reveals that WMS is the synergy

between X
1

and X
2

minus their redundancy. Thus, when there is an equal magnitude of synergy

and redundancy between X
1

and X
2

, WholeMinusSum synergy is zero—leading one to erroneously

2TC(X
1

; · · · ;Xn) = �H(X
1...n) +

Pn
i=1

H(Xi) per [17].
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conclude there is no synergy or redundancy present.3

The PI-diagram for n = 3 (Figure 2.2b) reaveals that WholeMinusSum double-subtracts PI-

regions {1,2}, {1,3}, {2,3} and triple-subtracts PI-region {1,2,3}, revealing that for n > 2 WMS (X : Y )

becomes synergy minus the redundancy counted multiple times.

{12}

{1} {2}

{1,2}

(a) WMS
�
{X

1

, X

2

} :
Y

�

{1} {2}

{3}

{12}

{13}

{23}

{1,2}

{1,3} {2,3}

{1,2,3}

{12,13} {12,23}
{12,13,23}

{2,13}{1,23}

{3,12}

{123}

{13,23}

*

**

(b) WMS
�
{X

1

, X

2

, X

3

} :
Y

�

Figure 2.2: PI-diagrams illustrating WholeMinusSum synergy for n = 2 (left) and n = 3 (right).
The colors denote the added and subtracted PI-regions. WMS (X : Y ) is the green PI-region(s)
minus the orange PI-region(s) minus two times any red PI-region.

2.1.4 WholeMinusPartitionSum: WMPS (X : Y )

WholeMinusPartitionSum, denoted WMPS (X : Y ), is a stricter generalization of WMS synergy for

n > 2. It was introduced in [34, 1] and is defined as,

WMPS (X : Y ) ⌘ I(X
1...n

:Y ) � max
P

|P|
X

i=1

I(P
i

:Y ) , (2.6)

where P enumerates over all partitions of the set of predictors {X
1

, . . . , X
n

}. WholeMinusPar-

titionSum is a signed measure where a positive value signifies synergy and a negative value signifies

redundancy.

For n = 3, there are four partitions of X resulting in four possible PI-diagrams—one for each

partition. Figure 2.3 depicts the four possible values of WMPS({X
1

, X
2

, X
3

} : Y ). Because

{X
1

, . . . , X
n

} is a possible partition of X, WMPS(X : Y )  WMS(X : Y ).

3This is deeper than [29]’s point that a mish-mash of synergy and redundancy across di↵erent states of y 2 Y can
average to zero. E.g., Figure 2.6 evaluates to zero for every state y 2 Y .
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*

**

(b) P = {X
1

, X

2

, X

3

}

{1} {2}

{3}

{12}

{13}

{23}

{1,2}

{1,3} {2,3}

{1,2,3}

{12,13} {12,23}
{12,13,23}

{2,13}{1,23}

{3,12}

{123}

{13,23}

*

**

(c) P = {X
1

X

2

, X

3

}

{1} {2}

{3}

{12}

{13}

{23}

{1,2}

{1,3} {2,3}

{1,2,3}

{12,13} {12,23}
{12,13,23}

{2,13}{1,23}

{3,12}

{123}

{13,23}

*

**

(d) P = {X
1

X

3

, X

2

}

{1} {2}

{3}

{12}

{13}

{23}

{1,2}

{1,3} {2,3}

{1,2,3}

{12,13} {12,23}
{12,13,23}

{2,13}{1,23}

{3,12}

{123}

{13,23}

*

**

(e) P = {X
2

X

3

, X

1

}

Figure 2.3: PI-diagrams depicting WholeMinusPartitionSum synergy for n = 2 (2.3a) and n = 3
(2.3b–2.3e). Each measure is the green PI-regions minus the orange PI-regions minus two times any
red PI-region. WMPS

�

{X
1

, X
2

, X
3

} : Y
�

is the minimum value over subfigures 2.3b–2.3e.

2.1.5 Imax synergy: Smax (X : Y )

I
max

synergy, denoted S
max

, was the first synergy measure derived from Partial Information Decomposition[36].

S
max

defines synergy as the whole beyond the state-dependent maximum of its elements,
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S
max

(X : Y ) ⌘ I(X
1...n

:Y ) � I
max

�

{X
1

, . . . , X
n

} : Y
�

(2.7)

= I(X
1...n

:Y ) �
X

y2Y

Pr(Y = y) max
i

I(X
i

:Y = y) , (2.8)

where I(X
i

:Y = y) is [10]’s “specific-surprise”,

I(X
i

:Y = y) ⌘ D
KL

h

Pr
�

X
i

|y
�

�

�

�

Pr(X
i

)
i

(2.9)

=
X

xi2Xi

Pr
�

x
i

|y
�

log
Pr(x

i

, y)

Pr(x
i

) Pr(y)
. (2.10)

There are two major advantages of S
max

synergy. S
max

is not only nonnegative, but also invariant

to duplicate predictors.

2.1.6 Correlational importance: � I (X;Y )

Correlational importance, denoted � I, comes from [27, 25, 26, 28, 21]. Correlational importance

quantifies the “informational importance of conditional dependence” or the “information lost when

ignoring conditional dependence” among the predictors decoding target Y . On casual inspection,

� I seems related to our intuitive conception of synergy. � I is defined as,

� I (X;Y ) ⌘ D
KL

h

Pr
�

Y |X
1...n

�

�

�

�

Pr
ind

(Y |X)
i

(2.11)

=
X

y,x2Y,X

Pr(y, x
1...n

) log
Pr
�

y|x
1...n

�

Pr
ind

(y|x)
, (2.12)

where Pr
ind

�

y|x
�

⌘ Pr(y)

Qn
i=1 Pr(xi|y)

P
y0 Pr(y

0
)

Qn
i=1 Pr(xi|y0)

. After some algebra4 eq. (2.12) becomes,

� I (X;Y ) = TC (X
1

; · · · ;X
n

|Y ) � D
KL

2

4Pr(X
1...n

)

�

�

�

�

�

�

X

y

Pr(y)
n

Y

i=1

Pr
�

X
i

|y
�

3

5 . (2.13)

� I is conceptually innovative, yet examples reveal that � I measures something ever-so-subtly

di↵erent from intuitive synergistic information.

4See Appendix 2.A for the steps between eqs. (2.12) and (2.13).
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2.2 The six prior measures are not equivalent

For n = 2, the four measures S
MMI

, II, WMS, and WMPS are equivalent. But in general, none

of these six measures are equivalent. Example And (Figure 2.4) shows that S
max

and � I are not

equivalent. Example XorMultiCoal (Figure 2.5) shows that S
MMI

, II, WMS, and WMPS are

not equivalent.

X
1

X
2

Y

0 0 0

1/4
0 1 0

1/4
1 0 0

1/4
1 1 1

1/4

(a) Pr(x
1

, x

2

, y)

c

b

a

b

(b) PI-diagram

0.189  c  0.5

0  b  0.311

0  a  0.311

Y
X1

X2

AND

(c) circuit diagram

Figure 2.4: Example And. The exact PI-decomposition of an AND-gate remains uncertain. But we
can bound a, b, and c using WMS and S

max

.

Example S
MMI

II WMS WMPS S
max

� I

And 0.189 0.189 0.189 0.189 1/2 0.104
XorMultiCoal 2 –2 1 0 1 1

Table 2.1: Examples demonstrating that the six prior measures are not equivalent.

2.3 Counter-intuitive behaviors of the six prior measures

2.3.1 Imax synergy: Smax

Despite several desired properties, S
max

sometimes miscategorizes merely unique information as

synergistic. This can be seen in example Unq (Figure 1.4). In example Unq, the wires in Figure 1.4b

don’t even touch, yet S
max

asserts there is one bit of synergy and one bit of redundancy—this is

palpably strange.

A more abstract way to understand why S
max

overestimates synergy is to imagine a hypothetical

example where there are exactly two bits of unique information for every state y 2 Y and no

synergy or redundancy. S
max

would be the whole (both unique bits) minus the maximum over both
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X
1

X
2

X
3

Y

ab ac bc 0

1/8
AB Ac Bc 0

1/8
Ab AC bC 0

1/8
aB aC BC 0

1/8

Ab Ac bc 1

1/8
aB ac Bc 1

1/8
ab aC bC 1

1/8
AB AC BC 1

1/8

(a) Pr(x
1

, x

2

, x

3

, y)

X2 PARITY Y

X1

X3

a/A b/B

c/C

(b) circuit diagram

+1

{1} {2}

{3}

{12}

{13}

{23}

{1,2}

{1,3} {2,3}

{1,2,3}

{12,13} {12,23}
{12,13,23}

{2,13}{1,23}

{3,12}

{123}

{13,23}

*

**

(c) PI-diagram

Figure 2.5: Example XorMultiCoal demonstrates how the same information can be specified by
multiple coalitions. In XorMultiCoal the target Y has one bit of uncertainty, H(Y ) = 1 bit,
and Y is the parity of three incoming wires. Just as the output of Xor is specified only after
knowing the state of both inputs, the output of XorMultiCoal is specified only after knowing
the state of all three wires. Each predictor is distinct and has access to two of the three incom-
ing wires. For example, predictor X

1

has access to the a/A and b/B wires, X
2

has access to the
a/A and c/C wires, and X

3

has access to the b/B and c/C wires. Although no single predictor
specifies Y , any coalition of two predictors has access to all three wires and fully specifies Y ,
I(X

1

X
2

:Y ) = I(X
1

X
3

:Y ) = I(X
2

X
3

:Y ) = H(Y ) = 1 bit. In the PI-diagram this puts
one bit in PI-region {12, 13, 23} and zero everywhere else.

predictors, which would be the max [1, 1] = 1 bit. The S
max

synergy would then be 2 � 1 = 1 bit of

synergy, even though by definition there was no synergy, but merely two bits of unique information.

Altogether, we conclude that S
max

overestimates the intuitive synergy by miscategorizing merely

unique information as synergistic whenever two or more predictors have unique information about

the target.

2.3.2 SMMI, II, WMS, WMPS

All four of these measures are equivalent for n = 2. Given this agreement, it is ironic that there

are counter-intuitive examples even for n = 2. A concrete example demonstrating a “synergy minus



17

redundancy” behavior for n = 2 is example RdnXor (Figure 2.6), which overlays examples Rdn and

Xor to form a single system. The target Y has two bits of uncertainty, i.e. H(Y ) = 2. Like Rdn,

either X
1

or X
2

identically specifies the letter of Y (r/R), making one bit of redundant information.

Like Xor, only the coalition X
1

X
2

specifies the digit of Y (0/1), making one bit of synergistic

information. Together this makes one bit of redundancy and one bit of synergy. We assert that for

n = 2, all four measures underestimate the synergy. Equivalently, we say that their answer for n = 2

is a lowerbound on the intuitive synergy.

Note that in RdnXor every state y 2 Y conveys one bit of redundant information and one bit

of synergistic information, e.g. for the state y = r0 the letter “r” is specified redundantly and the

digit “0” is specified synergistically.

X
1

X
2

Y

r0 r0 r0

1/8
r0 r1 r1

1/8
r1 r0 r1

1/8
r1 r1 r0

1/8

R0 R0 R0

1/8
R0 R1 R1

1/8
R1 R0 R1

1/8
R1 R1 R0

1/8

(a) Pr(x
1

, x

2

, y)

X2

XOR
Y

X1 r/R

(b) circuit diagram

0

+1

0
+1

{12}

{1} {2}
{1,2}

(c) PI-diagram

Figure 2.6: Example RdnXor has one bit of redundancy and one bit of synergy. Yet for this
example, the four most common measures of synergy arrive at zero bits.

Our next example, ParityRdnRdn (Figure 2.7), has one bit of synergy and two bits of redun-

dancy for a total of I(X
1

X
2

X
3

:Y ) = H(Y ) = 3 bits. It emphasizes the disagreement between II

and measures S
MMI

, WMS, and WMPS. If S
MMI

, WMS, or WMPS were always simply “synergy

minus redundancy”, then one of them would calculate 1 � 2 = �1 bits. But for this example all

three measures subtracts redundancies multiple times to calculate 1� (2 ·2) = �3 bits, signifying all

three bits of H(Y ) are specified redundantly. II makes a di↵erent misstep. Instead of subtracting

redundancy multiple times, for n = 3 II adds the maximum redundancy to calculate 1 + 2 = +3

bits, signifying three bits of synergy and no redundancy. Both answers are palpably mistaken.

2.3.3 Correlational importance: � I

The first concerning example is [29]’s Figure 4, where � I exceeds the mutual information I(X
1...n

:Y )

with � I (X;Y ) = 0.0145 and I(X
1...n

:Y ) = 0.0140. This fact alone prevents interpreting � I

the magnitude of mutual I(X
1...n

:Y ) arising from correlational dependence.

Could � I upperbound synergy instead? We turn to example And (Figure 2.4) with n = 2

independent binary predictors and target Y is the AND of X
1

and X
2

. Although And’s exact
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PI-region decomposition remains uncertain, we can still bound the synergy. For example, the

WMS({X
1

, X
2

} : Y ) ⇡ 0.189 and S
max

�

{X
1

, X
2

} : Y
�

= 0.5 bits. So we know the synergy must

be between (0.189, 0.5] bits. Despite this, � I (X;Y ) = 0.104 bits, thus � I does not upperbound

synergy either.

Taking both together, we conclude that � I measures something fundamentally di↵erent from

synergistic information.

Example S
MMI

II WMS WMPS S
max

� I

Unq 0 0 0 0 1 0
RdnXor 0 0 0 0 1 1
ParityRdnRdn –3 3 –3 –3 1 1
And 0.189 0.189 0.189 0.189 1/2 0.104

Table 2.2: Examples demonstrating that all six prior measures have shortcomings.
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(a) circuit diagram
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(c) PI-diagram
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(b) Pr(x
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, x
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, y)

Figure 2.7: Example ParityRdnRdn. Three predictors redundantly specify two bits of Y ,
I(X

1

:Y ) = I(X
2

:Y ) = I(X
3

:Y ) = 2 bits. At the same time, the three predictors holistically
specify the third and final bit of Y , I(X

1

X
2

X
3

:Y ) = H(Y ) = 3 bits.
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Appendix

2.A Algebraic simplification of �I

Prior literature [25, 26, 28, 21] defines � I (X;Y ) as,

� I (X;Y ) ⌘ D
KL

h

Pr
�

Y |X
1...n

�

�

�

�

Pr
ind

(Y |X)
i

(2.14)

=
X

x,y2X,Y

Pr(x, y) log
Pr
�

y|x
�

Pr
ind

(y|x)
. (2.15)

Where,

Pr
ind

(Y = y|X = x) ⌘ Pr(y) Pr
ind

(X = x|Y = y)

Pr
ind

(X = x)
(2.16)

=
Pr(y)

Q

n

i=1

Pr
�

x
i

|y
�

Pr
ind

(x)
(2.17)

Pr
ind

(X = x) ⌘
X

y2Y

Pr(Y = y)
n

Y

i=1

Pr
�

x
i

|y
�

(2.18)

The definition of � I, eq. (2.14), reduces to,
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� I (X;Y ) =
X

x,y2X,Y

Pr(x, y) log
Pr
�

y|x
�

Pr
ind

(y|x)
(2.19)

=
X

x,y2X,Y

Pr(x, y) log
Pr
�

y|x
�

Pr
ind

(x)

Pr(y)
Q

n

i=1

Pr
�

x
i

|y
� (2.20)

=
X

x,y2X,Y

Pr(x, y) log
Pr
�

x|y
�

Q

n

i=1

Pr
�

x
i

|y
�

Pr
ind

(x)

Pr(x)
(2.21)

=
X

x,y2X,Y

Pr(x, y) log
Pr
�

x|y
�

Q

n

i=1

Pr
�

x
i

|y
� +

X

x,y2X,Y

Pr(x, y) log
Pr

ind

(x)

Pr(x)

=
X

x,y2X,Y

Pr(x, y) log
Pr
�

x|y
�

Q

n

i=1

Pr
�

x
i

|y
� �

X

x2X

Pr(x) log
Pr(x)

Pr
ind

(x)
(2.22)

= D
KL

2

4Pr
�

X
1...n

|Y
�

�

�

�

�

�

�

n

Y

i=1

Pr
�

X
i

|Y
�

3

5� D
KL

⇥

Pr(X
1...n

)
�

�Pr
ind

(X)
⇤

= TC (X
1

; · · · ;X
n

|Y ) � D
KL

⇥

Pr(X
1...n

)
�

�Pr
ind

(X)
⇤

. (2.23)

where TC (X
1

; · · · ;X
n

|Y ) is the conditional total correlation among the predictors given Y .
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Part II

Making Progress
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Chapter 3

First Nontrivial Lowerbound on
Synergy

Remark: This chapter borrows liberally from the joint paper [14].

3.1 Introduction

Introduced in [36], Partial Information Decomposition (PID) is an immensely useful framework for

deepening our understanding of multivariate interactions, particularly our understanding of infor-

mational redundancy and synergy. To harness the PID framework, the user brings her own measure

of intersection information, I\(X
1

, . . . , X
n

:Y ), which quantifies the magnitude of information that

each of the n predictors X
1

, . . . , X
n

conveys “redundantly” about a target random variable Y . An

antichain lattice of redundant, unique, and synergistic partial informations is built from the inter-

section information.

In [36], the authors propose to use the following quantity, I
min

, as the intersection information

measure:

I
min

(X
1

, . . . , X
n

: Y ) ⌘
X

y

Pr(y) min
i

I(X
i

:Y = y)

=
X

y

Pr(y) min
i

D
KL

h

Pr
�

X
i

|y
�

�

�

�

Pr(X
i

)
i

,
(3.1)

where D
KL

is the Kullback-Leibler divergence.

Though I
min

is an intuitive and plausible choice for the intersection information, [15] showed that

I
min

has counterintuitive properties. In particular, I
min

calculates one bit of redundant information

for example unq (Figure 3.3). It does this because each input shares one bit of information with the

output. However, it is quite clear that the shared informations are, in fact, di↵erent: X
1

provides

the low bit, while X
2

provides the high bit. This led to the conclusion that I
min

over-estimates

the ideal intersection information measure by focusing only on how much information the inputs
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provide to the output. An ideal measure of intersection information must recognize that there are

non-equivalent ways of providing information to the output. The search for an improved intersection

information measure ensued, continued through [18, 7, 23], and today a widely accepted intersection

information measure remains undiscovered.

Here we do not definitively solve this problem, but we present a strong candidate intersection

information measure for the special case of zero-error information. This is useful in of itself because it

provides a template for how the yet undiscovered ideal intersection information measure for Shannon

mutual information could work. Alternatively, if a Shannon intersection information measure with

the same properties does not exist, then we have learned something significant.

In the next section, we introduce some definitions, some notation, and a necessary lemma. We also

extend and clarify the desired properties for intersection information. In Section 3.4 we introduce

zero-error information and its intersection information measure. In Section 3.5 we use the same

methodology to produce a novel candidate for the Shannon intersection information. In Section 3.6

we show the successes and shortcomings of our candidate intersection information measure using

example circuits. Finally, in Section 3.8 we summarize our progress towards the ideal intersection

information measure and suggest directions for improvement. The Appendix is devoted to technical

lemmas and their proofs, to which we refer in the main text.

3.2 Two examples elucidating desired properties for synergy

To help the reader develop intuition for any proper measure of synergy, we illustrate some desired

properties of synergistic information with pedagogical examples. Both examples are derived from

example Xor.

3.2.1 XorDuplicate: Synergy is invariant to duplicating a predictor

Example XorDuplicate (Figure 3.1) adds a third predictor, X
3

, a copy of predictor X
1

, to Xor.

Whereas in Xor the target Y is specified only by coalition X
1

X
2

, duplicating predictor X
1

as X
3

makes the target equally specifiable by coalition X
3

X
2

.

Although now two di↵erent coalitions identically specify Y , mutual information is invariant to

duplicates, e.g. I(X
1

X
2

X
3

:Y ) = I(X
1

X
2

:Y ) bit. For synergistic information to be likewise bounded

between zero and the total mutual information I(X
1...n

:Y ), synergistic information must similarly

be invariant to duplicates, e.g. the synergistic information between set {X
1

, X
2

} and Y must be

the same as the synergistic information between {X
1

, X
2

, X
3

} and Y . This makes sense because if

synergistic information is defined as the information in the whole beyond its parts, duplicating a part

does not increase the net information provided by the parts. Altogether, we assert that duplicating

a predictor does not change the synergistic information.



25

X
1

X
2

X
3

Y

0 0 0 0

1/4
0 1 0 1

1/4
1 0 1 1

1/4
1 1 1 0

1/4

(a) Pr(x
1

, x

2

, x

3

, y)

Y
X1

X2

X3

XOR

(b) circuit diagram

+1{1} {2}

{3}

{12}

{13}
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0
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{1,2}

XORDUPLICATE

XOR

(c) PI-diagram

Figure 3.1: Example XorDuplicate shows that duplicating predictor X
1

as X
3

turns the single-
coalition synergy {12} into the multi-coalition synergy {12, 23}. After duplicating X

1

, the coalition
X

3

X
2

as well as coalition X
1

X
2

specifies Y . Synergistic information is unchanged from Xor,
I(X

3

X
2

:Y ) = I(X
1

X
2

:Y ) = H(Y ) = 1 bit.

3.2.2 XorLoses: Adding a new predictor can decrease synergy

Example XorLoses (Figure 3.2) adds a third predictor, X
3

, to Xor and concretizes the distinction

between synergy and “redundant synergy”. In XorLoses the target Y has one bit of uncertainty,

and just as in example Xor the coalition X
1

X
2

fully specifies the target, I(X
1

X
2

:Y ) = H(Y ) = 1

bit. However, XorLoses has zero intuitive synergy because the newly added singleton predictor,

X
3

, fully specifies Y by itself. This makes the synergy between X
1

and X
2

completely redundant—

everything the coalition X
1

X
2

specifies is now already specified by the singleton X
3

.

3.3 Preliminaries

3.3.1 Informational Partial Order and Equivalence

We assume an underlying probability space on which we define random variables, as denoted by

capital letters (e.g., X, Y , and Z). In this paper, we consider only random variables taking values



26

X
1

X
2

X
3

Y

0 0 0 0

1/4
0 1 1 1

1/4
1 0 1 1

1/4
1 1 0 0

1/4

(a) Pr(x
1

, x

2

, x

3

, y)

Y

X3

X1

X2

XOR

XOR

(b) circuit diagram

+1

0
+1

0
0

{12}

{1} {2}
{1,2}

XOR

XORLOSES

{1} {2}

{3}

{12}

{13}

{23}

{1,2}

{1,3} {2,3}
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{12,13} {12,23}
{12,13,23}
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{3,12}
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{13,23}
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Figure 3.2: Example XorLoses. Target Y is fully specified by the coalition X
1

X
2

as well as by
the singleton X

3

. I(X
1

X
2

:Y ) = I(X
3

:Y ) = H(Y ) = 1 bit. Therefore, the information
synergistically specified by coalition X

1

X
2

is a redundant synergy.

on finite spaces.

Given random variables X and Y , we write X � Y to signify that there exists a measurable

function f such that X = f(Y ). In this case, following the terminology in [22], we say that X is

informationally poorer than Y ; this induces a partial order on the set of random variables. Similarly,

we write X ⌫ Y if Y � X, in which case we say X is informationally richer than Y .

If X and Y are such that X � Y and X ⌫ Y , then we write X ⇠= Y . In this case, again following

[22], we say that X and Y are informationally equivalent. In other words, X ⇠= Y if and only if

there’s an invertible function between X and Y , i.e., one can relabel the values of X to obtain a

random value that is equal to Y and vice versa.

This “information-equivalence” relation can easily be shown to be an equivalence relation, so that

we can partition the set of all random variables into disjoint equivalence classes. The � ordering is

invariant within these equivalence classes in the following sense: if X � Y and Y ⇠= Z, then X � Z.

Similarly, if X � Y and X ⇠= Z, then Z � Y . Moreover, within each equivalence class, the entropy



27

is invariant, as stated formally in Lemma 3.3.1 below.

3.3.2 Information Lattice

Next, we follow [22] and consider the join and meet operators. These operators were defined for

information elements, which are �-algebras, or, equivalently, equivalence classes of random variables.

We deviate from [22], though, by defining the join and meet operators for random variables, but we

do preserve their conceptual properties.

Given random variables X and Y , we define X g Y (called the join of X and Y ) to be an

informationally poorest (“smallest” in the sense of the partial order �) random variable such that

X � X g Y and Y � X g Y . In other words, if Z is such that X � Z and Y � Z, then X g Y � Z.

Note that XgY is unique only up to equivalence with respect to ⇠=. In other words, XgY does not

define a specific, unique random variable. Nonetheless, standard information-theoretic quantities

are invariant over the set of random variables satisfying the condition specified above. For example,

the entropy of X gY is invariant over the entire equivalence class of random variables satisfying the

condition above (by Lemma 3.3.1(a) below). Similarly, the inequality Z � X g Y does not depend

on the specific random variable chosen, as long as it satisfies the condition above. Note that the

pair (X,Y ) is an instance of X g Y .

In a similar vein, given random variables X and Y , we define XfY (called the meet of X and Y )

to be an informationally richest random variable (“largest” in the sense of ⌫) such that X fY � X

and X f Y � Y . In other words, if Z is such that Z � X and Z � Y , then Z � X f Y . Following

[16], we also call X f Y the common random variable of X and Y . Again, considering the entropy

of X f Y or the inequality Z � X f Y does not depend on the specific random variable chosen, as

long as it satisfies the condition above.

The g and f operators satisfy the algebraic properties of a lattice [22]. In particular, the following

hold:

• commutative laws: X g Y ⇠= Y gX and X f Y ⇠= Y fX

• associative laws: X g (Y g Z) ⇠= (X g Y ) g Z and X f (Y f Z) ⇠= (X f Y ) f Z

• absorption laws: X g (X f Y ) ⇠= X and X f (X g Y ) ⇠= X)

• idempotent laws: X gX ⇠= X and X fX ⇠= X

• generalized absorption laws: if X � Y , then X g Y ⇠= Y and X f Y ⇠= X .

Finally, the partial order � is preserved under g and f, i.e., if X � Y , then X g Z � Y g Z and

X f Z � X f Z.
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3.3.3 Invariance and Monotonicity of Entropy

Let H(·) represent the entropy function, and H
�

·|·
�

the conditional entropy. To be consistent with

the colon in the intersection information, we denote the Shannon mutual information between X

and Y by I(X :Y ) instead of the more common I(X;Y ). Lemma 3.3.1 establishes the invariance and

monotonicity of the entropy and conditional entropy functions with respect to ⇠= and �.

Lemma 3.3.1. The following hold:

(a) If X ⇠= Y , then H(X) = H(Y ), H(X|Z) = H(Y |Z), and H(Z|X) = H(Z|Y ).

(b) If X � Y , then H(X)  H(Y ), H(X|Z)  H(Y |Z), and H(Z|X) � H(Z|Y ).

(c) X � Y if and only if H(X|Y ) = 0.

Proof. Part (a) follows from [22], Proposition 1. Part (c) follows from [22], Proposition 4. The first

two desired inequalities in part (b) follow from [22], Proposition 5. Now we show that if X � Y , then

H
�

Z|X
�

� H
�

Z|Y
�

. Suppose that X � Y . Then, by the generalized absorption law, X g Y ⇠= Y .

We have

I(Z :Y ) = H(Y ) � H(Y |Z)

= H(X g Y ) � H(X g Y |Z) by part (a)

= I(Z :X g Y )

= I(Z :X) + I(Z :Y |X)

� I(Z :X) .

Substituting I(Z :Y ) = H(Z)�H(Z|Y ) and I(Z :X) = H(Z)�H(Z|X), we obtain H(Z|X) � H(Z|Y )

as desired.

Remark: Because (X,Y ) ⇠= X g Y as noted before, we also have H(X,Y ) = H(X g Y ) by

Lemma 3.3.1(a).

3.3.4 Desired Properties of Intersection Information

There are currently 12 intuitive properties that we wish the ideal intersection information measure

I\ to satisfy. Some are new (e.g. (M
1

), (Eq), (LB)), but most were introduced earlier, in various

forms, Refs. [36, 15, 18, 7, 23]. They are as follows:

(GP) Global Positivity: I\(X
1

, . . . , X
n

:Y ) � 0, and I\(X
1

, . . . , X
n

:Y ) = 0 if Y is a constant.

(Eq) Equivalence-Class Invariance: I\(X
1

, . . . , X
n

:Y ) is invariant under substitution of X
i

(for any

i = 1, . . . , n) or Y by an informationally equivalent random variable.
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(TM) Target Monotonicity: If Y � Z, then I\(X
1

, . . . , X
n

:Y )  I\(X
1

, . . . , X
n

:Z).

(M
0

) Weak Monotonicity: I\(X
1

, . . . , X
n

,W :Y )  I\(X
1

, . . . , X
n

:Y ) with equality if there exists

Z 2 {X
1

, . . . , X
n

} such that Z � W .

(S
0

) Weak Symmetry: I\(X
1

, . . . , X
n

:Y ) is invariant under reordering of X
1

, . . . , X
n

.

Remark: If (S
0

) is satisfied, the first argument of I\(X
1

, . . . , X
n

:Y ) can be treated as a set of

random variables rather than a list. In this case, the notation I\
�

{X
1

, . . . , X
n

} :Y
�

would also be

appropriate.

For the next set of properties, I (X :Y ) is a given normative measure of information between

X and Y . For example, I (X :Y ) could denote the Shannon mutual information; i.e., I (X :Y ) =

I(X :Y ). Alternatively, as discussed in the next section, we might take I (X :Y ) to be the zero-error

information. Yet other possibilities for I (X :Y ) include the Wyner common information [38] or the

quantum mutual information [8]. The following are desired properties of intersection information

relative to the given information measure I.

(LB) Lowerbound: If Q � X
i

for all i = 1, . . . , n, then I\(X
1

, . . . , X
n

:Y ) � I (Q :Y ). Under a mild

assumption,1 this equates to I\(X
1

, . . . , X
n

:Y ) � I (X
1

f · · · fX
n

:Y ).

(SR) Self-Redundancy: I\(X
1

:Y ) = I (X
1

:Y ). The intersection information a single predictor X
1

conveys about the target Y is equal to the information between the predictor and the target

given by the information measure I.

(Id) Identity: I\(X,Y :X g Y ) = I(X : Y ).

(LP
0

) Weak Local Positivity: I\(X
1

, X
2

:Y ) � I (X
1

:Y ) + I (X
2

:Y ) � I (X
1

gX
2

:Y ). In other

words, for n = 2 predictors, the derived “partial informations” defined in [36] are nonnegative

when both (LP
0

) and (GP) hold.

Finally, we have the less obvious “strong” properties.

(M
1

) Strong Monotonicity: I\(X
1

, . . . , X
n

,W :Y )  I\(X
1

, . . . , X
n

:Y ) with equality if there exists

Z 2 {X
1

, . . . , X
n

, Y } such that Z � W .

(S
1

) Strong Symmetry: I\(X
1

, . . . , X
n

:Y ) is invariant under reordering of X
1

, . . . , X
n

, Y .

(LP
1

) Strong Local Positivity: For all n, the derived “partial informations” defined in [36] are non-

negative.

1See Lemmas 3.C.1 and 3.C.2 in Appendix 3.C.1.
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Properties (Eq), (LB), and (M
1

) are novel and are introduced for the first time here. Given I\,

X
1

, . . . , X
n

, Y , and Z, we define the conditional I\ as:

I\(X
1

, . . . , X
n

:Z|Y ) ⌘ I\(X
1

, . . . , X
n

:Y g Z) � I\(X
1

, . . . , X
n

:Y ) .

This definition of I\(X
1

, . . . , X
n

:Z|Y ) gives rise to the familiar “chain rule”:

I\(X
1

, . . . , X
n

:Y g Z) = I\(X
1

, . . . , X
n

:Y ) + I\(X
1

, . . . , X
n

:Z|Y ) .

Some provable2 properties are:

• I\(X
1

, . . . , X
n

:Z|Y ) � 0.

• I\(X
1

, . . . , X
n

:Z|Y ) = I\(X
1

, . . . , X
n

:Z) if Y is a constant.

3.4 Candidate Intersection Information for Zero-Error Infor-

mation

3.4.1 Zero-Error Information

Introduced in [37], the zero-error information, or Gács-Körner common information, is a stricter

variant of Shannon mutual information. Whereas the mutual information I(A :B) quantifies the

magnitude of information A conveys about B with an arbitrarily small error ✏ > 0, the zero-error

information, denoted I0(A :B), quantifies the magnitude of information A conveys about B with

exactly zero error, i.e., ✏ = 0. The zero-error information between A and B equals the entropy of

the common random variable AfB,

I0(A :B) ⌘ H(AfB) .

An algorithm for computing an instance of the common random variable between two random

variables is provided in [37], and straightforwardly generalizes to n random variables.3

Zero-error information has several notable properties, but the most salient is that it is nonnegative

and bounded by the mutual information,

0  I0(A :B)  I(A :B) .

2See Lemma 3.C.3 in Appendix 3.C.1.
3See Appendix 3.A.
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This generalizes to arbitrary n:

0  I0(X
1

: · · · : X
n

)  min
i,j

I
�

X
i

:X
j

�

.

3.4.2 Intersection Information for Zero-Error Information

It is pleasingly straightforward to define a palatable intersection information for zero-error infor-

mation (i.e., setting I = I0 as the normative measure of information). We propose the zero-error

intersection information, I0f(X
1

, . . . , X
n

:Y ), as the maximum zero-error information I0(Q :Y ) that

some random variable Q conveys about Y , subject to Q being a function of each predictor X
1

, . . . , X
n

:

I0f(X
1

, . . . , X
n

:Y ) ⌘ max
Pr(Q|Y )

I0(Q :Y )

subject to 8i 2 {1, . . . , n} : Q � X
i

.

(3.2)

Basic algebra4 shows that a maximizing Q is the common random variable across all predictors.

This substantially simplifies eq. (3.2) to:

I0f(X
1

, . . . , X
n

:Y ) = I0(X
1

f · · · fX
n

:Y )

= H
⇥

(X
1

f · · · fX
n

) f Y
⇤

= H(X
1

f · · · fX
n

f Y ) . (3.3)

Importantly, the zero-error information, I0f(X
1

, . . . , X
n

:Y ) satisfies ten of the twelve desired

properties from Section 3.3.4, leaving only (LP
0

) and (LP
1

) unsatisfied.5

3.5 Candidate Intersection Information for Shannon Infor-

mation

In the last section, we defined an intersection information for zero-error information which satisfies

the vast majority of desired properties. This is a solid start, but an intersection information for

Shannon mutual information remains the goal. Towards this end, we use the same method as

in eq. (3.2), leading to If, our candidate intersection information measure for Shannon mutual

information,

If(X
1

, . . . , X
n

: Y ) ⌘ max
Pr(Q|Y )

I(Q :Y )

subject to Q � X
i

8i 2 {1, . . . , n} .

(3.4)

4See Lemma 3.D.1 in Appendix 5.D.
5See Lemmas 3.C.4, 3.C.5, 3.C.6 in Appendix 3.C.2.
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With some algebra6 this similarly simplifies to,

If(X
1

, . . . , X
n

: Y ) = I(X
1

f · · · fX
n

:Y ) . (3.5)

Unfortunately If does not satisfy as many of the desired properties as I0f. However, our candidate

If still satisfies 7 of the 12 properties (Table 3.1), most importantly the enviable (TM),7 which has,

until now, not been satisfied by any proposed measure. Table 3.1 lists the desired properties satisfied

by I
min

, If, and I0f. For reference, we also include I
red

, the proposed measure from [18].

Comparing the three subject intersection information measures,8 we have:

0  I0f(X
1

, . . . , X
n

: Y )  If(X
1

, . . . , X
n

: Y )  I
min

(X
1

, . . . , X
n

: Y ) . (3.6)

Property I
min

I
red

If I0f
(GP) Global Positivity X X X X
(Eq) Equivalence-Class Invariance X X X X
(TM) Target Monotonicity X X
(M

0

) Weak Monotonicity X X X
(S

0

) Weak Symmetry X X X X
(LB) Lowerbound X X X X
(SR) Self-Redundancy X X X X
(Id) Identity X X
(LP

0

) Weak Local Positivity X X
(M

1

) Strong Monotonicity X
(S

1

) Strong Symmetry X
(LP

1

) Strong Local Positivity X

Table 3.1: The I\ desired properties each measure satisfies.

Despite not satisfying (LP
0

), If remains an important stepping-stone towards the ideal Shannon

I\. First, If captures what is inarguably redundant information (the common random variable);

this makes If necessarily a lower bound on any reasonable redundancy measure. Second, it is the

first proposal to satisfy target monotonicity and the associated chain rule. Lastly, If is the first

measure to reach intuitive answers in many canonical situations, while also being generalizable to

an arbitrary number of inputs.

6See Lemma 3.D.2 in Appendix 5.D.
7See Lemmas 3.C.7, 3.C.8, 3.C.9 in Appendix 3.C.3.
8See Lemma 3.D.3 in Appendix 5.D.
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3.6 Three Examples Comparing Imin and If

Examples Unq and RdnXor illustrate If’s successes, and example ImperfectRdn illustrates If’s

paramount deficiency. For each example we show the joint distribution Pr(x
1

, x
2

, y), a diagram, and

the decomposition derived from setting I
min

/ If as the I\ measure. At each lattice junction, the

left number is the I\ value of that node, and the number in parentheses is the I
@

value.9 Readers

unfamiliar with the n = 2 partial information lattice should consult [36], but in short, I
@

measures

the amount of “new” information at this node in the lattice compared to nodes lower in the lattice.

Except for ImperfectRdn, measures If and I0f reach the same decomposition for all presented

examples. Per [36], the four partial informations are calculated as follows:

I
@

(X
1

, X
2

: Y ) = I\(X
1

, X
2

:Y )

I
@

(X
1

: Y ) = I(X
1

:Y ) � I\(X
1

, X
2

:Y )

I
@

(X
2

: Y ) = I(X
2

:Y ) � I\(X
1

, X
2

:Y )

I
@

(X
1

gX
2

: Y ) = I(X
1

gX
2

:Y ) � I(X
1

:Y ) � I(X
2

:Y ) + I\(X
1

, X
2

:Y )

= I(X
1

gX
2

:Y ) � I
@

(X
1

: Y ) � I
@

(X
2

: Y ) � I
@

(X
1

, X
2

: Y ) .

(3.7)

Example Unq (Figure 3.3). The desired decomposition for this example is two bits of unique

information; X
1

uniquely specifies one bit of Y , and X
2

uniquely specifies the other bit of Y . The

chief criticism of I
min

in [15] was that I
min

calculated one bit of redundancy and one bit of synergy for

Unq (Figure 3.3c). We see that unlike I
min

, If satisfyingly arrives at two bits of unique information.

This is easily seen by the inequality,

0  If(X
1

, X
2

:Y )  H(X
1

fX
2

)  I(X
1

:X
2

) = 0 bits . (3.8)

Therefore, as I(X
1

:X
2

) = 0, we have If(X
1

, X
2

:Y ) = 0 bits leading to I
@

(X
1

: Y ) = 1 bit and

I
@

(X
2

: Y ) = 1 bit (Figure 3.3d).

Example RdnXor (Figure 3.4). In [15], RdnXor was an example where I
min

shined by reaching

the desired decomposition of one bit of redundancy and one bit of synergy. We see that If finds this

same answer. If extracts the common random variable within X
1

and X
2

, the r/R bit, and calculates

the mutual information between the common random variable and Y to arrive at If(X
1

, X
2

:Y ) = 1

bit.

Example ImperfectRdn (Figure 3.5). ImperfectRdn highlights the foremost shortcoming

of If; If does not detect “imperfect” or “lossy” correlations between X
1

and X
2

. Given (LP
0

),

9This is the same notation used in [7].
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Figure 3.3: Example Unq. This is the canonical example of unique information. X
1

and X
2

each
uniquely specify a single bit of Y . This is the simplest example where I

min

calculates an undesirable
decomposition (c) of one bit of redundancy and one bit of synergy. If and I0f each calculate the
desired decomposition (d).

X
1

X
2

Y

r0 r0 r0

1/8
r0 r1 r1

1/8
r1 r0 r1

1/8
r1 r1 r0

1/8

R0 R0 R0

1/8
R0 R1 R1

1/8
R1 R0 R1

1/8
R1 R1 R0

1/8

(a) Pr(x
1

, x

2

, y)

XOR

½  r
½  R

½  0
½  1

½  0
½  1

(b) circuit diagram

I(X
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I(X
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I
min

�

{X
1

, X
2

} :Y
�

= 1

If(X
1

, X
2

:Y ) = 1
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1 (1)

1 (0) 1 (0)

(c) I
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2 (1)

1 (1)

1 (0) 1 (0)

(d) If and I0f

Figure 3.4: Example RdnXor. This is the canonical example of redundancy and synergy coexisting.
I
min

and If each reach the desired decomposition of one bit of redundancy and one bit of synergy.
This is the simplest example demonstrating If and I0f correctly extracting the embedded redundant
bit within X

1

and X
2

.
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we can determine the desired decomposition analytically. First, I(X
1

gX
2

:Y ) = I(X
1

:Y ) = 1 bit;

therefore, I
�

X
2

:Y |X
1

�

= I(X
1

gX
2

:Y ) � I(X
1

:Y ) = 0 bits. This determines two of the partial

informations—the synergistic information I
@

(X
1

gX
2

:Y ) and the unique information I
@

(X
2

:Y ) are

both zero. Then, the redundant information I
@

(X
1

, X
2

:Y ) = I(X
2

:Y ) � I
@

(X
2

: Y ) = I(X
2

:Y ) =

0.99 bits. Having determined three of the partial informations, we compute the final unique infor-

mation I
@

(X
1

:Y ) = I(X
1

:Y ) � 0.99 = 0.01 bits.

How well do I
min

and If match the desired decomposition of ImperfectRdn? We see that I
min

calculates the desired decomposition (Figure 3.5c); however, If does not (Figure 3.5d). Instead,

If calculates zero redundant information, that I\(X
1

, X
2

:Y ) = 0 bits. This unpleasant answer

arises from Pr(X
1

= 1, X
2

= 0) > 0. If this were zero, ImperfectRdn reverts to the example

Rdn (Figure ?? in Appendix 3.E) where both If and I
min

reach the desired one bit of redundant

information. Due to the nature of the common random variable, If only sees the “deterministic”

correlations between X
1

and X
2

—add even an iota of noise between X
1

and X
2

and If plummets to

zero. This highlights a related issue with If—it is not continuous; an arbitrarily small change in the

probability distribution can result in a discontinuous jump in the value of If. As with traditional

information measures, such as the entropy and the mutual information, it may be desirable to have

an I\ measure that is continuous over the simplex.

To summarize, ImperfectRdn shows that when there are additional “imperfect” correlations

between A and B, i.e. I(A :B|AfB) > 0, If sometimes underestimates the ideal I\(A,B :Y ).

3.7 Negative synergy and state-dependent (GP)

In ImperfectRdn we saw If calculate a synergy of �0.99 bits (Figure 3.5d). What does this mean?

Could negative synergy be a “real” property of Shannon information? When n = 2, it’s fairly easy

to diagnose the cause of negative synergy from the equation for I
@

(X
1

, X
2

: Y ) in eq. (3.7). Given

(GP) and (SR), negative synergy occurs if and only if,

I(X
1

gX
2

:Y ) < I(X
1

:Y ) + I(X
2

:Y ) � I\(X
1

, X
2

:Y )

= I[(X
1

, X
2

:Y ) .
(3.9)

From eq. (3.9), we see negative synergy occurs when I\ is small, perhaps too small. Equivalently,

negative synergy occurs when the joint r.v. conveys less about Y than the two r.v.’s X
1

and X
2

convey separately—mathematically, when I(X
1

gX
2

:Y ) < I[(X
1

, X
2

: Y ).10 On the face of it

this sounds strange. No usable structure in X
1

or X
2

“disappears” after they are combined by

10I\ and I[ are duals related by the inclusion–exclusion principle. For arbitrary n, this is I[(X
1

, . . . , Xn :
Y ) =

P
S✓{X1,...,Xn}(�1)|S|+1 I\

⇣
S

1

, . . . , S|S| :Y
⌘
.
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(e) I0f

Figure 3.5: Example ImperfectRdn. If is blind to the noisy correlation between X
1

and X
2

and
calculates zero redundant information. An ideal I\ measure would detect that all of the information
X

2

specifies about Y is also specified by X
1

to calculate I\(X
1

, X
2

:Y ) = 0.99 bits.
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Z = X
1

gX
2

. By the definition of g, there are always functions f
1

and f
2

such that X
1

⇠= f
1

(Z)

and X
2

⇠= f
2

(Z). Therefore, if your favorite I\ measure does not satisfy (LP
0

), it is likely too strict.

This means that, to our surprise, our measure I0f does not account for the full zero-information

overlap between I0(X
1

:Y ) and I0(X
2

:Y ). This is shown in example Subtle (Figure 3.6) where

I0f calculates a synergy of �0.252 bits. Defining a zero-error I\ that satisfies (LP
0

) is a matter of

ongoing research.

3.7.1 Consequences of state-dependent (GP)

In [15] it’s argued that I
min

upperbounds the ideal I\. Inspired by I
min

assuming state-dependent

(SR) and (M
0

) to achieve a tighter upperbound on I\, we assume state-dependent (GP) to achieve

a tighter lowerbound on I\ for n = 2. Our bound, denoted I
smp

for “sum minus pair”, is defined as,

I
smp

(X
1

, X
2

: Y ) ⌘
X

y2Y

Pr(y) max
⇥

0, I(X
1

:y) + I(X
2

:y) � I(X
1

gX
2

:y)
⇤

, (3.10)

where I(• :y) is the same Kullback-Liebler divergence from eq. (3.1).

For example Subtle, the target Y ⇠= X
1

gX
2

, therefore per (Id), I\(X
1

, X
2

:Y ) = I(X
1

:X
2

) =

0.252 bits. However, given state-dependent (GP), applying I
smp

yields I\(X
1

, X
2

:Y ) � 0.390.

Therefore, (Id) and state-dependent (GP) are incompatible. Secondly, given state-dependent

(GP), example Subtle additionally illustrates a conjecture from [7] that the intersection infor-

mation two predictors have about a target can exceed the mutual information between them, i.e.,

I\(X
1

, X
2

:Y ) 6 I(X
1

:X
2

).

3.8 Conclusion and Path Forward

We’ve made incremental progress on several fronts towards the ideal Shannon I\.

Desired Properties. We have tightened, expanded, and pruned the desired properties for I\.

Particularly,

• (LB) is a non-contentious yet tighter lower-bound on I\ than (GP).

• Motivated by the natural equality I\(X
1

, . . . , X
n

:Y ) = I\(X
1

, . . . , X
n

, Y :Y ), we introduce

(M
1

) as a desired property.

• What was before an implicit assumption, we introduce (Eq) to better ground one’s thinking.

• A separate chain-rule property is superfluous. Any desirable properties of conditional I\ are

simply consequences of (GP) and (TM).
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Figure 3.6: Example Subtle. In this example both If and I0f calculate a synergy of �0.252 bits
of synergy. What kind of redundancy must be captured for a nonnegative decomposition for this
example?
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A new measure. Based on the Gács-Körner common random variable, we introduced a new

Shannon I\ measure. Our measure, If, is theoretically principled and the first to satisfy (TM).

How to improve. We identified where If fails; it does not detect “imperfect” correlations

between X
1

and X
2

. One next step is to develop a less stringent I\ measure that satisfies (LP
0

) for

simple nondeterministic examples like ImperfectRdn while still satisfying (TM).

To our surprise, example Subtle shows that I0f does not satisfy (LP
0

)! This suggests that I0f is

too strict—what kind of zero-error informational overlap is I0f not capturing? A separate next step

is to formalize what exactly is required for a zero-error I\ to satisfy (LP
0

). From Subtle we can

likewise see that for zero-error information, (LP
0

) is incompatible with (Id).

Finally, we showed that state-dependent (GP), a seemingly reasonable property, is incompatible

with (Id) and moreover entails that I\(X
1

, X
2

:Y ) can exceed I(X
1

:X
2

).
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Appendix

3.A Algorithm for Computing Common Random Variable

Given n random variables X
1

, . . . , X
n

, the common random variable X
1

f · · · fX
n

is computed by

steps 1–3 in Appendix 3.B.

3.B Algorithm for Computing If

1. For each X
i

for i = 1, . . . , n, take its states x
i

and place them as nodes on a graph. At the

end of this process there will be
P

n

i=1

|X
i

| nodes on the graph.

2. For each pair of RVs X
i

, X
j

(i 6= j), draw an undirected edge connecting nodes x
i

and x
j

if

Pr
�

x
i

, x
j

�

> 0. At the end of this process the undirected graph will consist of k connected

components 1  k  min
i

|X
i

|. Denote these k disjoint components as c
1

, . . . , c
k

.

3. Each connected component of the graph constitutes a distinct state of the common random

variable Q, i.e., |Q| = k. Denote the states of the common random variable Q by q
1

, . . . , q
k

.

4. Construct the joint probability distribution Pr(Q, Y ) as follows. For every state (q
i

, y) 2 Q⇥Y ,

the joint probability is created by summing over the entries of Pr(x
1

, . . . , x
n

, y) in component

i. More precisely,

Pr(Q = q
i

, Y = y) =
X

x1,...,xn

Pr(x
1

, . . . , x
n

, y) if {x
1

, . . . , x
n

} ✓ c
i

.

5. Using Pr(Q, Y ), compute If(X
1

, . . . , X
n

:Y ) simply by computing the Shannon mutual infor-

mation between Q and Y , i.e., I(Q :Y ) = D
KL

⇥

Pr(Q, Y )
�

�Pr(Q) Pr(Y )
⇤

.

3.C Lemmas and Proofs

3.C.1 Lemmas on Desired Properties

Lemma 3.C.1. If (LB) holds, then I\(X
1

, . . . , X
n

:Y ) � I (X
1

f · · · fX
n

:Y ).
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Proof. Assume that (LB) holds. By definition, X
1

f · · · f X
n

� X
i

for i = 1, . . . , n. So, by

(LB), we immediately conclude that I\(X
1

, . . . , X
n

:Y ) � I (X
1

f · · · fX
n

:Y ), which is the desired

result.

For the converse, we need the following assumption:

(IM) If X
1

� X
2

, then I (X
1

:Y )  I (X
2

:Y ).

Lemma 3.C.2. Suppose that (IM) holds, and that I\(X
1

, . . . , X
n

:Y ) � I (X
1

f · · · fX
n

:Y ).

Then (LB) holds.

Proof. Assume that I\(X
1

, . . . , X
n

:Y ) � I (X
1

f · · · fX
n

:Y ). Let Q � X
i

for i = 1, . . . , n. Be-

cause X
1

f · · · f X
n

is the largest (informationally richest) random variable that is information-

ally poorer than X
i

for i = 1, . . . , n, it follows that Q � X
1

f · · · f X
n

. Therefore, by (IM),

I (X
1

f · · · fX
n

:Y ) � I (Q :Y ). Hence, I\(X
1

, . . . , X
n

:Y ) � I (Q :Y ) also, which completes the

proof.

Remark: Assumption (IM) is satisfied by zero-error information and Shannon mutual informa-

tion.

Lemma 3.C.3. Given I\, X1

, . . . , X
n

, Y , and Z, consider the conditional intersection information

I\(X
1

, . . . , X
n

:Z|Y ) = I\(X
1

, . . . , X
n

:Y g Z) � I\(X
1

, . . . , X
n

:Y ) .

Suppose that (GP), (Eq), and (TM) hold. Then, the following properties hold:

• I\(X
1

, . . . , X
n

:Z|Y ) � 0.

• I\(X
1

, . . . , X
n

:Z|Y ) = I\(X
1

, . . . , X
n

:Z) if Y is a constant.

Proof. We have Y � Y gZ. Therefore, by (TM), it immediately follows that I\(X
1

, . . . , X
n

:Z|Y ) �

0.

Next, suppose that Y is a constant. Then Y � Z, and hence YgZ ⇠= Z. By (Eq), I\(X
1

, . . . , X
n

:Y g Z) =

I\(X
1

, . . . , X
n

:Z). Moreover, by (GP), I\(X
1

, . . . , X
n

:Y ) = 0. Thus, I\(X
1

, . . . , X
n

:Z|Y ) =

I\(X
1

, . . . , X
n

:Z) as desired.

3.C.2 Properties of I0f

Lemma 3.C.4. The measure of intersection information I0f(X
1

, . . . , X
n

:Y ) satisfies (GP), (Eq),

(TM), (M
0

), and (S
0

), but not (LP
0

).
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Proof. (GP): The inequality I0f(X
1

, . . . , X
n

: Y ) � 0 follows immediately from the identity I0f(X
1

, . . . , X
n

: Y ) =

H(X
1

f · · · fX
n

f Y ) and the nonnegativity of H(·). Next, if Y is a constant, then by the gener-

alized absorption law, X
1

f · · · fX
n

f Y ⇠= Y . Thus, by the invariance of H(·) (Lemma 3.3.1(a)),

H(X
1

f · · · fX
n

f Y ) = H(Y ) = 0.

(Eq): Consider X
1

f· · ·fX
n

fY . The equivalence class (with respect to ⇠=) in which this random

variable resides is closed under substitution of X
i

(for i = 1, . . . , n) or Y by an informationally

equivalent random variable. Hence, because I0f(X
1

, . . . , X
n

: Y ) = H(X
1

f · · · fX
n

f Y ) and H(·)

is invariant over the equivalence class of random variables that are informationally equivalent to

X
1

f · · · fX
n

f Y (by Lemma 3.3.1(a)), the desired result holds.

(TM): Suppose that Y � Z. Then, X
1

f · · · fX
n

f Y � X
1

f · · · fX
n

f Z. Then, we have

I0f(X
1

, . . . , X
n

: Y ) = H(X
1

f · · · fX
n

f Y )

 H(X
1

f · · · fX
n

f Z) by monotonicity of H(·) (Lemma 3.3.1(b))

= I0f(X
1

, . . . , X
n

: Z) ,

as desired.

(M
0

): By the generalized absorption law, X
1

f · · ·fX
n

fW f Y � X
1

f · · ·fX
n

f Y . Hence,

I0f(X
1

, . . . , X
n

,W : Y ) = H(X
1

f · · · fX
n

fW f Y )

 H(X
1

f · · · fX
n

f Y ) by monotonicity of H(·) (Lemma 3.3.1(b))

= I0f(X
1

, . . . , X
n

: Y ) ,

as desired.

Next, suppose that there exists Z 2 {X
1

, . . . , X
n

} such that Z � W . Then, by the generalized

absorption law, X
1

f · · · fX
n

fW f Y ⇠= X
1

f · · · fX
n

f Y . Hence,

I0f(X
1

, . . . , X
n

,W : Y ) = H(X
1

f · · · fX
n

fW f Y )

= H(X
1

f · · · fX
n

f Y ) by invariance of H(·) (Lemma 3.3.1(a))

= I0f(X
1

, . . . , X
n

: y) ,

as desired.

(S
0

): By the commutativity law, X
1

f · · · f X
n

f Y is invariant (with respect to ⇠=) un-

der reordering of X
1

, . . . , X
n

. Hence, the desired result follows immediately from the identity

I0f(X
1

, . . . , X
n

: Y ) = H(X
1

f · · · fX
n

f Y ) and the invariance of H(·) (Lemma 3.3.1(a)).
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(LP
0

): For I0f, (LP
0

) relative to zero-error information can be written as

H(X
1

fX
2

f Y ) � H(X
1

f Y ) + H(X
2

f Y ) � H
�

(X
1

gX
2

) f Y
�

. (3.11)

However, this inequality does not hold in general. To see this, suppose that it does hold for arbitrary

X
1

, X
2

, and Y . Note that (X
1

gX
2

) f Y � Y , which implies that H
�

(X
1

gX
2

) f Y
�

 H(Y ) (by

monotonicity of H(·)). Hence, the inequality (3.11) implies that

H(X
1

fX
2

f Y ) � H(X
1

f Y ) + H(X
2

f Y ) � H(Y ) .

Rewriting this, we get

H(X
1

f Y ) + H(Y fX
2

)  H(X
1

f Y fX
2

) + H(Y ) .

But this is the supermodularity law for common information, which is known to be false in general;

see [22], Section 5.4.

Lemma 3.C.5. With respect to zero-error information, the measure of intersection information

I0f(X
1

, . . . , X
n

:Y ) satisfies (LB), (SR), and (Id).

Proof. (LB): Suppose that Q � X
i

for i = 1, . . . , n. Because X
1

f · · ·fX
n

is the largest (informa-

tionally richest) random variable that is informationally poorer than X
i

for i = 1, . . . , n, it follows

that Q � X
1

f · · · fX
n

. This implies that X
1

f · · · fX
n

f Y ⌫ Qf Y . Therefore,

I0f(X
1

, . . . , X
n

: Y ) = H(X
1

f · · · fX
n

f Y )

� H(Qf Y ) by monotonicity of H(·) (Lemma 3.3.1(b))

= I0(Q :Y ) ,

as desired.

(SR): We have I0f(X
1

: Y ) = H(X
1

f Y ) = I0(X
1

:Y ).

(Id): By the associative and absorption laws, we have X f Y f (X g Y ) ⇠= X f Y . Thus,

I0f(X,Y : X g Y ) = H
�

X f Y f (X g Y )
�

= H(X f Y ) by invariance of H(·) (Lemma 3.3.1(a))

= I0(X :Y ) ,

as desired.
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Lemma 3.C.6. The measure of intersection information I0f(X
1

, . . . , X
n

:Y ) satisfies (M
1

) and

(S
1

), but not (LP
1

).

Proof. (M
1

): The desired inequality is identical to (M
0

), so it remains to prove the su�cient

condition for equality. Suppose that there exists Z 2 {X
1

, . . . , X
n

, Y } such that Z � W . Then, by

the generalized absorption law, X
1

f · · · fX
n

fW f Y ⇠= X
1

f · · · fX
n

f Z. Hence,

I0f(X
1

, . . . , X
n

,W : Y ) = H(X
1

f · · · fX
n

fW f Y )

= H(X
1

f · · · fX
n

f Z) by invariance of H(·) (Lemma 3.3.1(a))

= I0f(X
1

, . . . , X
n

: Z) ,

as desired.

(S
1

): By the commutativity law, X
1

f · · · f X
n

f Y is invariant (with respect to ⇠=) un-

der reordering of X
1

, . . . , X
n

, Y . Hence, the desired result follows immediately from the identity

I0f(X
1

, . . . , X
n

: Y ) = H(X
1

f · · · fX
n

f Y ) and the invariance of H(·) (Lemma 3.3.1(a)).

(LP
1

): This follows from not satisfying (LP
0

).

3.C.3 Properties of If

Lemma 3.C.7. The measure of intersection information If(X
1

, . . . , X
n

:Y ) satisfies (GP), (Eq),

(TM), (M
0

), and (S
0

), but not (LP
0

).

Proof. (GP): The inequality If(X
1

, . . . , X
n

: Y ) � 0 follows immediately from the identity If(X
1

, . . . , X
n

: Y ) =

I(X
1

f · · · fX
n

:Y ) and the nonnegativity of mutual information. Next, suppose that Y is a con-

stant. Then H(Y ) = 0. Moreover, Y � X
1

f · · ·fX
n

by definition of f. Thus, by Lemma 3.3.1(c),

H
�

Y |X
1

f · · · fX
n

�

= 0, and

If(X
1

, . . . , X
n

: Y ) = I(X
1

f · · · fX
n

:Y )

= I(Y :X
1

f · · · fX
n

)

= H(Y ) � H
�

Y |X
1

f · · · fX
n

�

= 0.

(Eq): Consider X
1

f · · · fX
n

. The equivalence class (with respect to ⇠=) in which this random

variable resides is closed under substitution of X
i

(for i = 1, . . . , n) or Y by an informationally
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equivalent random variable. Hence, because

If(X
1

, . . . , X
n

: Y ) = H(Y ) � H
�

Y |X
1

f · · · fX
n

�

= H(X
1

f · · · fX
n

) � H
�

X
1

f · · · fX
n

|Y
�

,

by Lemma 3.3.1(a), the desired result holds.

(TM): Suppose that Y � Z. For simplicity, let Q = X
1

f · · · fX
n

. Then,

If(X
1

, . . . , X
n

: Y ) = H(Q) � H
�

Q|Y
�

 H(Q) � H
�

Q|Z
�

by Lemma 3.3.1(b)

= If(X
1

, . . . , X
n

: Z) ,

as desired.

(M
0

): By definition of f, we have X
1

f · · · fX
n

fW � X
1

f · · · fX
n

. Hence,

If(X
1

, . . . , X
n

,W : Y ) = H(X
1

f · · · fX
n

fW ) � H
�

X
1

f · · · fX
n

fW |Y
�

 H(X
1

f · · · fX
n

) � H
�

X
1

f · · · fX
n

|Y
�

by Lemma 3.3.1(b)

= If(X
1

, . . . , X
n

: Y ) ,

as desired.

Next, suppose that there exists Z 2 {X
1

, . . . , X
n

} such that Z � W . Then, by the algebraic

laws of f, we have X
1

f · · · fX
n

fW ⇠= X
1

f · · · fX
n

. Hence,

If(X
1

, . . . , X
n

,W : Y ) = H(X
1

f · · · fX
n

fW ) � H
�

X
1

f · · · fX
n

fW |Y
�

= H(X
1

f · · · fX
n

) � H
�

X
1

f · · · fX
n

|Y
�

by Lemma 3.3.1(a)

= If(X
1

, . . . , X
n

: Y ) ,

as desired.

(S
0

): By the commutativity law, X
1

f · · ·fX
n

is invariant (with respect to ⇠=) under reordering

of X
1

, . . . , X
n

. Hence, the desired result follows immediately from the identity If(X
1

, . . . , X
n

: Y ) =

H(X
1

f · · · fX
n

) � H
�

X
1

f · · · fX
n

|Y
�

and Lemma 3.3.1(a).

(LP
0

): A counterexample is provided by ImperfectRdn (Figure 3.5).

Lemma 3.C.8. With respect to mutual information, the measure of intersection information If (X
1

, . . . , X
n

:Y )

satisfies (LB) and (SR), but not (Id).
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Proof. (LB): Suppose that Q � X
i

for i = 1, . . . , n. Because X
1

f · · ·fX
n

is the largest (informa-

tionally richest) random variable that is informationally poorer than X
i

for i = 1, . . . , n, it follows

that Q � X
1

f · · · fX
n

. Therefore,

If(X
1

, . . . , X
n

: Y ) = H(X
1

f · · · fX
n

) � H
�

X
1

f · · · fX
n

|Y
�

� H(Q) � H
�

Q|Y
�

by Lemma 3.3.1(b)

= I(Q :Y ) ,

as desired.

(SR): By definition, If(X
1

: Y ) = I(X
1

:Y ).

(Id): We have X f Y � X g Y by definition of f and g. Thus,

If(X,Y : X g Y ) = I(X f Y :X g Y )

= H(X f Y ) � H
�

X f Y |X g Y
�

= H(X f Y ) by Lemma 3.3.1(a)

= I0(X :Y )

6= I(X :Y ) .

Lemma 3.C.9. The measure of intersection information If(X
1

, . . . , X
n

:Y ) does not satisfy (M
1

),

(S
1

), and (LP
1

).

Proof. (M
1

): A counterexample is provided in ImperfectRdn (Figure 3.5), where If(X
1

: Y ) =

0.99 bits, yet If(X
1

, Y : Y ) = 0 bits.

(S
1

): A counterexample. We show If(X,X :Y ) 6= If(X,Y :X).

If(X,X :Y ) � If(X,Y :X) = I(X :Y ) � If(X,Y :X)

= I(X :Y ) � I(X f Y :X)

= I(X :Y ) � H(X f Y ) � H
�

X f Y |X
�

= I(X :Y ) � H(X f Y )

6= 0 .

(LP
1

): This follows from not satisfying (LP
0

).
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3.D Miscellaneous Results

Simplification of I0f

Lemma 3.D.1. We have I0f(X
1

, . . . , X
n

:Y ) = H(X
1

f · · · fX
n

f Y ).

Proof. By definition,

I0f(X
1

, . . . , X
n

:Y ) ⌘ max
Pr(Q|Y )

I0(Q :Y )

subject to Q � X
i

8i 2 {1, . . . , n}

= max
Pr(Q|Y )

H(Qf Y )

subject to Q � X
i

8i 2 {1, . . . , n}

Let Q be an arbitrary random variable satisfying the constraint Q � X
i

for i = 1, . . . , n. Because

X
1

f· · ·fX
n

is the largest random variable (in the sense of the partial order �) that is informationally

poorer than X
i

for i = 1, . . . , n, we have Q � X
1

f · · · f X
n

. By the property of f pointed

out before, we also have Q f Y � X
1

f · · · f X
n

f Y . By Lemma 3.3.1(b), this implies that

H(Qf Y )  H(X
1

f · · · fX
n

f Y ). Therefore, I0f(X
1

, . . . , X
n

:Y ) = H(X
1

f · · · fX
n

f Y ).

Simplification of If

Lemma 3.D.2. We have If(X
1

, . . . , X
n

:Y ) = I(X
1

f · · · fX
n

:Y ).

Proof. By definition,

If(X
1

, . . . , X
n

:Y ) ⌘ max
Pr(Q|Y )

I(Q :Y )

subject to Q � X
i

8i 2 {1, . . . , n}

= H(Y ) � min
Pr(Q|Y )

H
�

Y |Q
�

subject to Q � X
i

8i 2 {1, . . . , n}

Let Q be an arbitrary random variable satisfying the constraint Q � X
i

for i = 1, . . . , n. Because

X
1

f· · ·fX
n

is the largest random variable (in the sense of the partial order �) that is informationally

poorer than X
i

for i = 1, . . . , n, we have Q � X
1

f · · · fX
n

. By Lemma 3.3.1(b), this implies that

H
�

Y |Q
�

� H
�

Y |X
1

f · · · fX
n

f Y
�

. Therefore, If(X
1

, . . . , X
n

:Y ) = I(X
1

f · · · fX
n

:Y ).

Proof that If(X
1

, . . . , X
n

:Y )  I
min

(X
1

, . . . , X
n

: Y )

Lemma 3.D.3. We have If(X
1

, . . . , X
n

:Y )  I
min

(X
1

, . . . , X
n

: Y )
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Proof. Starting from the definitions,

If(X
1

, . . . , X
n

:Y ) ⌘ I(X
1

f · · · fX
n

:Y )

=
X

y

Pr(y) I(X
1

f · · · fX
n

:y)

I
min

�

{X
1

, . . . , X
n

} :Y
�

⌘
X

y

Pr(y) min
i

I(X
i

:y) .

For a particular state y, without loss of generality we define the minimizing predictor X
m

by X
m

⌘

argmin
Xi

I(X
i

:y) and the common random variable Q ⌘ X
1

f · · · f X
n

. It then remains to show

that I(Q :y)  I(X
m

:y).

By definition of f, we have Q � X
m

. Hence,

I(X
m

:y) = H(X
m

) � H
�

X
m

|Y = y
�

� H(Q) � H
�

Q|Y = y
�

by Lemma 3.3.1(b)

= I(Q :y) .

State-dependent zero-error information

We define the state-dependent zero-error information, I0(X :Y = y) as,

I0(X :Y = y) ⌘ log
1

Pr(Q = q)
,

where the random variable Q ⌘ XfY and Pr(Q = q) is the probability of the connected component

containing state y 2 Y . This entails that Pr(y)  Pr(q)  1. Similar to the state-dependent

information, E
Y

I0(X :y) = I0(X :Y ), where E
Y

is the expectation value over Y .

Proof. We define two functions f and g:

• f : y ! q s.t. Pr
�

q|y
�

= 1 where q 2 Q and y 2 Y .

• g : q ! {y
1

, . . . , y
k

} s.t. Pr
�

q|y
i

�

= 1 where q 2 Q and y 2 Y .

Now we have,

E
Y

I0(X :y) ⌘
X

y2Y

Pr(y) log
1

Pr
�

f(y)
� .

Since each y is associated with exactly one q, we can reindex the
P

y2Y

. We then simplify to
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achieve the result.

X

y2Y

Pr(y) log
1

Pr
�

f(y)
� =

X

q2Q

X

y2g(q)

Pr(y) log
1

Pr
�

f(y)
�

=
X

q2Q

X

y2g(q)

Pr(y) log
1

Pr(q)
=
X

q2Q

log
1

Pr(q)

X

y2g(q)

Pr(y)

=
X

q2Q

log
1

Pr(q)
Pr(q) =

X

q2Q

Pr(q) log
1

Pr(q)

= H(Q) = I0(X :Y ) .

3.E Misc Figures

X
1

X
2

Y

r r r

1/2
R R R

1/2

(a) Pr(x
1

, x

2

, y)

½  r
½  R

(b) circuit diagram

I(X
1

X
2

:Y ) = 1

I(X
1

:Y ) = 1

I(X
2

:Y ) = 1

I
min

�

{X
1

, X
2

} :Y
�

= 1

If(X
1

, X
2

:Y ) = 1

1 (0)

1 (1)

1 (0) 1 (0)

(c) I
min

1 (0)

1 (1)

1 (0) 1 (0)

(d) If and I0f

Figure 3.7: Example Rdn. In this example I
min

and If reach the same answer yet diverge drastically
for example ImperfectRdn.
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Chapter 4

Irreducibility is Minimum Synergy
among Parts

In this chapter we explore how a collective action can be “irreducible to the actions performed by

its parts”. First, we show that computing synergy among four common notions of “parts” gives

rise to a spectrum of four distinct measures of irreducibility. Second, using Partial Information

Decomposition[36], we introduce a nonnegative expression for each notion of irreducibility. Third,

we delineate these four notions of irreducibility with exemplary binary circuits.

4.1 Introduction

Before we discussed computing synergy among random variables. Now we show that we can define

broader notions of irreducibility by computing synergy among joint random variables. Therefore,

a measure of synergy will allow us to quantify a myriad of notions of irreducibility. One pertinent

application of quantifying irreducibility is finding the most useful granularity for analyzing a complex

system in which interactions occur at multiple scales. Prior work [6, 19, 1, 36] has proposed measures

of irreducibility, but there remains no consensus which measure is most valid.

4.1.1 Notation

In our treatment of irreducibility, the n agents are random variables {X
1

, . . . , X
n

}, and the collective

action the agents perform is predicting (having mutual information about) a single target random

variable Y . We use the following notation throughout. Let

X: The set of n elementary random variables (r.v.). X ⌘ {X
1

, X
2

, . . . , X
n

}. n � 2.

X
1...n

: The whole, the joint r.v. (cartesian product) of all n elements, X
1...n

⌘ X
1

g · · · gX
n

.

Y : The “target” random variable to be predicted.
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P(X): The set of all parts (random variables) derivable from a nonempty, proper subset of X. For a set

of n elements there are 2n�2 possible parts. Formally, P(X) ⌘
n

S
1

g · · · g S|S| : S ⇢ X,S 6= ;
o

.

P: A set of m parts P ⌘ {P
1

, P
2

, . . . , P
m

}, 2  m  n. Each part P
i

is an element (random

variable) in the set P(X). The joint random variable of all m parts is always informationally

equivalent to X
1...n

, i.e., P
1

g · · ·gP
m

⇠= X
1...n

. Hereafter, the terms “part” and “component”

are used interchangeably.

A
i

: The i’th “Almost”. An “Almost” is a part (joint random variable) only lacking the element

X
i

. 1  i  n. Formally, A
i

⌘ X
1

g · · · gX
i�1

gX
i+1

g · · · gX
n

.

All capital letters are random variables. All bolded capital betters are sets of random variables.

4.2 Four common notions of irreducibility

Prior literature [11, 1, 6, 29] has intuitively conceptualized the irreducibility of the information a

whole X
1...n

conveys about Y in terms of how much information about Y is lost upon “breaking

up” X
1...n

into a set of parts P. We express this intuition formally by computing the aggregate

information P has about Y , and then subtracting it from the mutual information I(X
1...n

:Y ). But

what are the parts P? The four most common choices are:

1. The singleton elements. We take the set of n elements, X, compute the mutual information

with Y when all n elements work separately, and then subtract it from I(X
1...n

:Y ). Information

beyond the Elements (IbE) is the weakest notion of irreducibility. In the PI-diagram[36] of

I(X
1...n

:Y ), IbE is the sum of all synergistic PI-regions.

2. Any partition of (disjoint) parts. We enumerate all possible partitions of set X. Formally,

a partition P is any set of parts {P
1

, . . . , P
m

} such that, P
i

fP
j

� X
k

where i, j 2 {1, . . . ,m},

i 6= j, and k 2 {1, . . . , n}. For each partition, we compute the mutual information with Y

when its m parts work separately. We then take the maximum information over all partitions

and subtract it from I(X
1...n

:Y ). Information beyond the Disjoint Parts (IbDp) quantifies

I(X
1...n

:Y )’s irreducibility to information conveyed by disjoint parts.

3. Any two parts. We enumerate all “part-pairs” of set X. Formally, a part-pair P is any set of

exactly two elements in P(X). For each part-pair, we compute the mutual information with Y

when the parts work separately. We then take the maximum mutual information over all part-

pairs and subtract it from I(X
1...n

:Y ). Information beyond the Two Parts (Ib2p) quantifies

I(X
1...n

:Y )’s irreducibility to information conveyed by any pair of parts.
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4. All possible parts. We take the set of all possible parts of set X, P(X), and compute the

information about Y conveyed when all 2n � 2 parts work separately and subtract it from

I(X
1...n

:Y ). Information beyond All Parts (IbAp) is the strongest notion of irreducibility. In

the PI-diagram of I(X
1...n

:Y ), IbAp is the value of PI-region {1 . . . n}.

4.3 Quantifying the four notions of irreducibility

To calculate the information in the whole beyond its elements, the first thing that comes to mind is to

take the whole and subtract the sum over the elements, i.e., I(X
1...n

:Y ) �
P

n

i=1

I(X
i

:Y ). However,

the sum double-counts when over multiple elements convey the same information about Y . To avoid

double-counting the same information, we need to change the sum to “union”. Whereas summing

adds duplicate information multiple times, unioning adds duplicate information only once. This

guiding intuition of “whole minus union” leads to the definition of irreducibility as the information

conveyed by the whole minus the “union information” over its parts.

We provide expressions for IbE, IbDp, Ib2p, and IbAp for arbitrary n. All four equations are

the information conveyed by the whole, I(X
1...n

:Y ), minus the maximum union information about

Y over some parts P, I[(P
1

, . . . , P
m

:Y ). In PID, I[ is the dual to I\; they are related by the

inclusion–exclusion principle. Thus if we only have a I\ measure we can always express the I[ by,

I[(P
1

, . . . , P
m

:Y ) =
X

S✓{P1,...,Pm}

(�1)|S|+1 I\
⇣

S
1

, . . . , S|S| :Y
⌘

.

There are currently several candidate definitions of the union information[15, 14], but for our

measures to work all that is required is that the I[ measure satisfy:

(GP) Global Positivity: I[(P
1

, . . . , P
m

:Y ) � 0, and I[(P
1

, . . . , P
m

:Y ) = 0 if Y is a constant.

(Eq) Equivalence-Class Invariance: I[(P
1

, . . . , P
m

:Y ) is invariant under substitution of P
i

(for any

i = 1, . . . ,m) or Y by an informationally equivalent random variable.

(M
0

) Weak Monotonicity: I[(P
1

, . . . , P
m

,W :Y ) � I[(P
1

, . . . , P
m

:Y ) with equality if there exists

P
i

2 {P
1

, . . . , P
m

} such that W � P
i

.

(S
0

) Weak Symmetry: I[(P
1

, . . . , P
m

:Y ) is invariant under reordering of P
1

, . . . , P
m

.

(SR) Self-Redundancy: I[(P
1

:Y ) = I(P
1

:Y ). The union information a single part P
1

conveys about

the target Y is equal to the mutual information between P
1

and the target.

(UB) Upperbound: I[(P
1

, . . . , P
m

:Y )  I(P
1

g · · · g P
m

:Y ). In this particular case, the joint r.v.

P
1

g · · · g P
m

⇠= X
1...n

, so this equates to I[(P
1

, . . . , P
m

:Y )  I(X
1...n

:Y ).
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4.3.1 Information beyond the Elements

Information beyond the Elements, IbE(X : Y ) quantifies how much information in I(X
1...n

:Y ) isn’t

conveyed by any element X
i

for i 2 {1, . . . , n}. The Information beyond the Elements is,

IbE(X : Y ) ⌘ I(X
1...n

:Y ) � I[(X
1

, . . . , X
n

: Y ) . (4.1)

Information beyond the Elements, or synergistic mutual information[15], quantifies the amount

of information in I(X
1...n

:Y ) that only coalitions of elements convey.

4.3.2 Information beyond Disjoint Parts: IbDp

Information beyond Disjoint Parts, IbDp(X : Y ), quantifies how much information in I(X
1...n

:Y )

isn’t conveyed by any partition of set X. Like IbE, IbDp is the total information minus the “union

information” over components. Unlike IbE, the components are not the n elements but the parts

of a partition. Some algebra proves that the partition with the maximum mutual information will

always be a bipartition; thus we can safely restrict the maximization to bipartitions.1 Therefore to

quantify I(X
1...n

:Y )’s irreducibility to disjoint parts, we maximize over all 2n�1 � 1 bipartitions of

set X. Altogether, the Information beyond Disjoint Parts is,

IbDp(X : Y ) ⌘ I(X
1...n

:Y ) � max
P12P(X)...
Pm2P(X)

PifPj�Xk, 8i 6=j k2{1,...,n}

I[(P
1

, . . . , P
m

:Y ) (4.2)

= I(X
1...n

:Y ) � max
S2P(X)

I[
�

S,X \ S : Y
�

. (4.3)

4.3.3 Information beyond Two Parts: Ib2p

Information beyond Two Parts, Ib2p(X : Y ), quantifies how much information in I(X
1...n

:Y ) isn’t

conveyed by any pair of parts. Like IbDp, Ib2p subtracts the maximum union information over two

parts. Unlike IbDp, the two parts aren’t disjoint. Some algebra proves that the part-pair conveying

the most information about Y will always be a pair of “Almosts”.2 Thus, we can safely restrict the

maximization over all pairs of Almosts, and we maximize over the
�

n

2

�

= n(n�1)

2

pairs of Almosts.

Altogether, the Information beyond Two Parts is,

Ib2p(X
1

, . . . , X
n

: Y ) ⌘ I(X
1...n

:Y ) � max
P12P(X)

P22P(X)

I[(P
1

, P
2

:Y ) (4.4)

= I(X
1...n

:Y ) � max
i,j2{1,...,n}

i 6=j

I[
�

A
i

, A
j

:Y
�

. (4.5)

1See Appendix 4.B.1 for a proof.
2See Appendix 4.B.2 for a proof.
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4.3.4 Information beyond All Parts: IbAp

Information beyond All Parts, IbAp(X : Y ), quantifies how much information in I(X
1...n

:Y ) isn’t

conveyed by any part. Like Ib2p, IbAp subtracts the union information over overlapping parts.

Unlike Ib2p, the union is not over two parts, but all possible parts. Some algebra proves that the

entirety of the information conveyed by all 2n � 2 parts working separately is equally conveyed by

the n Almosts working separately.3 Thus we can safely contract the union information to the n

Almosts. Altogether, the Information beyond All Parts is,

IbAp (X
1

, . . . , X
n

: Y ) ⌘ I(X
1...n

:Y ) � I[
�

P(X) :Y
�

= I(X
1...n

:Y ) � I[(A
1

, A
2

, . . . , A
n

:Y ) .
(4.6)

Whereas Information beyond the Elements quantifies the amount of information in I(X
1...n

:Y )

only conveyed by coalitions, Information beyond All Parts, or holistic mutual information, quantifies

the amount of information in I(X
1...n

:Y ) only conveyed by the whole.

By properties (GP) and (UB), our four measures are nonnegative and bounded by I(X
1...n

:Y ).

Finally, each succeeding of notion of components is a generalization of the prior. This successive

generality gives rise to the handy inequality:

IbAp(X : Y )  Ib2p(X : Y )  IbDp(X : Y )  IbE(X : Y ) . (4.7)

4.4 Exemplary Binary Circuits

For n = 2, all four notions of irreducibility are equivalent; each one is simply the value of PI-region

{12} (see subfigures 4.2a–d). The canonical example of irreducibility for n = 2 is example Xor

(Figure 4.1). In Xor, the irreducibility of X
1

and X
2

specifying Y is analogous to irreducibility of

hydrogen and oxygen extinguishing fire. The whole X
1

X
2

fully specifies Y , I(X
1

X
2

:Y ) = H(Y ) = 1

bit, but X
1

and X
2

separately convey nothing about Y , I(X
1

:Y ) = I(X
2

:Y ) = 0 bits.

X
1

X
2

Y

0 0 0

1/4
0 1 1

1/4
1 0 1

1/4
1 1 0

1/4

(a) Pr(x
1

, x

2

, y)

½  0
½  1

½  0
½  1

X1

X2

YXOR

(b) circuit diagram

0
+1

0
0

{12}

{1} {2}
{1,2}

(c) PI-diagram

Figure 4.1: Example Xor. X
1

X
2

irreducibly specifies Y . I(X
1

X
2

:Y ) = H(Y ) = 1 bit.

3See Appendix 4.B.3 for a proof.
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For n > 2, the four notions of irreducibility diverge; subfigures 4.2e–j depicts IbE, IbAp, IbDp,

and Ib2p when n = 3. We provide exemplary binary circuits delineating each measure. Every circuit

has n = 3 elements, meaning X = {X
1

, X
2

, X
3

}, and build atop example Xor.

4.4.1 XorUnique: Irreducible to elements, yet reducible to a partition

To concretize how a collective action could be irreducible to elements, yet still reducible to a partition,

consider a hypothetical set of agents {X
1

, X
2

, . . . , X
100

} where the first 99 agents cooperate to specify

Y , but agent X
100

doesn’t cooperate with the joint random variable X
1

· · ·X
99

. The IbE among

these 100 agents would be positive, however, IbDp would be zero because the work that X
1

· · ·X
100

performs can be reduced to two disjoint parts, X
1

· · ·X
99

and X
100

, working separately.

Example XorUnique (Figure 4.3) is analogous to the situation above. The whole specifies two

bits of uncertainty, I(X
1

X
2

X
3

:Y ) = H(Y ) = 2 bits. The doublet X
1

X
2

solely specifies the “digit-

bit” of Y (0/1), I(X
1

X
2

:Y ) = 1 bit, and the singleton X
3

solely specifies the “letter-bit” of Y (a/A),

I(X
3

:Y ) = 1 bit. We apply each notion of irreducibility to XorUnique:

IbE How much of X
1

X
2

X
3

’s information about Y can be reduced to the information conveyed

by the singleton elements working separately? Working alone, X
3

still specifies the letter-

bit of Y , but X
1

nor X
2

can unilaterally specify the digit-bit of Y , I(X
1

:Y ) = 0 and

I(X
2

:Y ) = 0 bits. As only the letter-bit is specified when the three singletons work separately,

IbE (X : Y ) = I(X
1

X
2

X
3

:Y ) � 1 = 2 � 1 = 1 bit.

IbDp How much of X
1

X
2

X
3

’s information about Y can be reduced to the information conveyed

by disjoint parts working separately? Per subfigures 4.2g–i, there are three bipartitions of

X
1

X
2

X
3

, and one of them is {X
1

X
2

, X
3

}. The doublet part X
1

X
2

specifies the digit-bit of

Y , and the singleton part X
3

specifies the letter-bit of Y . As there is a partition of X
1

X
2

X
3

that fully accounts for X
1

X
2

X
3

’s specification of Y , IbDp(X : Y ) = 2 � 2 = 0 bits.

Ib2p/IbAp How much of X
1

X
2

X
3

’s information about Y can be reduced to the information conveyed by

two parts working separately? From above we see that IbDp is zero bits. Per eq. (4.7), Ib2p

and IbAp are stricter notions of irreducibility than IbDp, therefore Ib2p and IbAp must also be

zero bits.

4.4.2 DoubleXor: Irreducible to a partition, yet reducible to a pair

In example DoubleXor (Figure 4.4), the whole specifies two bits, I(X
1

X
2

X
3

:Y ) = H(Y ) = 2

bits. The doublet X
1

X
2

solely specifies the “left-bit”, and the doublet X
2

X
3

solely specifies the

“right-bit”. Applying each notion of irreducibility to DoubleXor:
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IbE How much of X
1

X
2

X
3

’s information about Y can be reduced to the information conveyed by

singleton elements? The three singleton elements specify nothing about Y , I(X
i

:Y ) = 0

bits 8i. This means the whole is utterly irreducible to its elements, making IbE (X : Y ) =

I(X
1

X
2

X
3

:Y ) � 0 = 2 bits.

IbDp How much of X
1

X
2

X
3

’s information about Y can be reduced to the information conveyed

by disjoint parts? Per subfigures 4.2g–i, the three bipartitions of X
1

X
2

X
3

are: {X
1

X
2

, X
3

},

{X
1

X
3

, X
2

}, and {X
2

X
3

, X
1

}. In the first bipartition, {X
1

X
2

, X
3

}, the doublet X
1

X
2

specifies

the left-bit of Y and the singleton X
3

specifies nothing for a total of one bit. Similarly, in

the second bipartition, {X
2

X
3

, X
1

}, X
2

X
3

specifies the right-bit of Y and the singleton X
1

specifies nothing for a total of one bit. Finally, in the bipartition {X
2

X
3

, X
1

} both X
2

X
3

and

X
1

specify nothing for a total of zero bits. Taking the maximum over the three bipartitions,

max[1, 1, 0] = 1, we discover disjoint parts specify at most one bit, leaving IbDp(X : Y ) =

I(X
1

X
2

X
3

:Y ) � 1 = 2 � 1 = 1 bit.

Ib2p How much of X
1

X
2

X
3

’s information about Y can be reduced to the information conveyed

by two parts? Per subfigures 4.2k–j, there are three pairs of Almosts, and one of them is

{X
1

X
2

, X
1

X
3

}. The Almost X
1

X
2

specifies the left-bit of Y , and the Almost X
1

X
3

specifies

the right-bit of Y . As there is a pair of parts that fully accounts for X
1

X
2

X
3

’s specification

of Y , Ib2p(X : Y ) = 0 bits.

IbAp How much of X
1

X
2

X
3

’s information about Y can be reduced to the information conveyed by

all possible parts? From above we see that Ib2p is zero bits. Per eq. (4.7), IbAp is stricter than

Ib2p, therefore IbAp is also zero bits.

4.4.3 TripleXor: Irreducible to a pair of components, yet still reducible

Example TripleXor (Figure 4.5) has trifold symmetry and the whole specifies three bits,

I(X
1

X
2

X
3

:Y ) = H(Y ) = 3 bits. Each bit is solely specified by one of three doublets: X
1

X
2

, X
1

X
3

,

or X
2

X
3

. Applying each notion of irreducibility to TripleXor:

IbE Working individually, the three elements specify absolutely nothing about Y ,

I(X
1

:Y ) = I(X
2

:Y ) = I(X
3

:Y ) = 0 bits. Thus, the whole is utterly irreducible to elements,

making IbE (X : Y ) = I(X
1

X
2

X
3

:Y ) � 0 = 3 bits.

IbDp The three bipartitions of X
1

X
2

X
3

are: {X
1

X
2

, X
3

}, {X
1

X
3

, X
2

}, and {X
2

X
3

, X
1

}. In the first

bipartition, {X
1

X
2

, X
3

}, the doublet X
1

X
2

specifies one bit of Y and the singleton X
3

specifies

nothing for a total of one bit. By TripleXor’s trifold symmetry, we get the same value for

bipartitions {X
1

X
2

, X
3

} and {X
2

X
3

, X
1

}. Taking the maximum over the three bipartitions,
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max[1, 1, 1] = 1, we discover a partition specifies at most one bit, leaving IbDp (X : Y ) =

I(X
1

X
2

X
3

:Y ) � 1 = 2 bits.

Ib2p There are three pairs of Almosts: {X
1

X
2

, X
2

X
3

}, {X
1

X
2

, X
1

X
3

}, and {X
1

X
3

, X
2

X
3

}. Each

pair of Almosts specifies exactly two bits. Taking the maximum over the pairs, max[2, 2, 2] = 2,

we discover a pair of parts specifies at most two bits, leaving

Ib2p (X : Y ) = I(X
1

X
2

X
3

:Y ) � 2 = 3 � 2 = 1 bit.

IbAp The n Almosts of X
1

X
2

X
3

are {X
1

, X
2

, X
1

X
3

, X
2

X
3

}. Each Almost specifies one bit of Y ,

for a total of three bits, making IbAp (X : Y ) = I(X
1

X
2

X
3

:Y ) � 3 = 0 bits.

4.4.4 Parity: Complete irreducibility

In example Parity (Figure 4.6), the whole specifies one bit of uncertainty, I(X
1

X
2

X
3

:Y ) = H(Y ) = 1

bit. No singleton or doublet specifies anything about Y , I(X
i

:Y ) = I
�

X
i

X
j

:Y
�

= 0 bits 8i, j.

Applying each notion of irreducibility to Parity:

IbE The whole specifies one bit, yet the elements {X
1

, X
2

, X
3

} specify nothing about Y . Thus the

whole is utterly irreducible to elements, making IbE (X : Y ) = I(X
1

X
2

X
3

:Y ) � 0 = 1 bit.

IbDp The three bipartitions of X are: {X
1

X
2

, X
3

}, {X
1

X
3

, X
2

}, and {X
2

X
3

, X
1

}. By the above

each doublet and singleton specifies nothing about Y , and thus each partition specifies nothing

about Y . Taking the maximum over the bipartitions yields max[0, 0, 0] = 0, making

IbDp(X : Y ) = 1 � 0 = 1 bit.

Ib2p The pairs of X’s Almosts are: {X
1

X
2

, X
1

X
3

}, {X
1

X
2

, X
2

X
3

}, and {X
1

X
3

, X
2

X
3

}. As before,

each doublet specifies nothing about Y , and a pair of nothings is still nothing. Taking the

maximum yields max[0, 0, 0] = 0, making Ib2p(X : Y ) = 1 � 0 = 1 bit.

IbAp The three Almosts of X are: {X
1

X
2

, X
1

X
3

, X
2

X
3

}. Each Almost specifies nothing, and a

triplet of nothings is still nothing, making IbAp(X : Y ) = 1 � 0 = 1 bit.

Table 4.1 summarizes the results of our four irreducibility measures applied to our examples.

4.5 Conclusion

Within the Partial Information Decomposition framework[36], synergy is the simplest case of the

broader notion of irreducibility. PI-diagrams, a generalization of Venn diagrams, are immensely

helpful in improving one’s intuition for synergy and irreducibility.
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Example I(X
1...n

:Y ) IbE IbDp Ib2p IbAp

Rdn (Fig. 1.3) 1 0 0 0 0
Unq (Fig. 1.4) 2 0 0 0 0
Xor (Fig. 1.5) 1 1 1 1 1

XorUnique (Fig. 4.3) 2 1 0 0 0
DoubleXor (Fig. 4.4) 2 2 1 0 0
TripleXor (Fig. 4.5) 3 3 2 1 0
Parity (Fig. 4.6) 1 1 1 1 1

Table 4.1: Irreducibility values for our exemplary binary circuits.

We define the irreducibility of the mutual information a set of n random variables X = {X
1

, . . . , X
n

}

convey about a target Y as the information the whole conveys about Y , I(X
1...n

:Y ), minus the max-

imum union-information conveyed by the “parts” of X. The four common notions of X’s parts are:

(1) the set of the n atomic elements; (2) all partitions of disjoint parts; (3) all pairs of parts; and

(4) the set of all 2n � 2 possible parts. All four definitions of parts are equivalent when the whole

consists of two atomic elements (n = 2), but they diverge for n > 2.
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Figure 4.2: PI-diagrams depicting our four irreducibility measures when n = 2 and n = 3 in
subfigures (a)–(d) and (e)–(l) respectively. For n = 3: IbE is (e), IbAp is (f), IbDp is the minimum
value over subfigures (g)–(i), and Ib2p is the minimum value over subfigures (j)–(l).
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(c) PI-diagram

Figure 4.3: Example XorUnique. Target Y has two bits of uncertainty. The doublet
X

1

X
2

specifies the “digit bit”, and the singleton X
3

specifies the “letter bit” for a total of
I(X

1

X
2

:Y ) + I(X
3

:Y ) = H(Y ) = 2 bits. X
1

X
2

X
3

’s specification of Y is irreducible to
singletons yet fully reduces to the disjoint parts {X

1

X
2

, X
3

}.

X2

XOR

Y

X1

X3
XOR

l/L

r/R

(a) circuit diagram

See Appendix 4.A for the joint distribution.
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(c) PI-diagram

Figure 4.4: Example DoubleXor. Target Y has two bits of uncertainty. The doublet X
1

X
2

specifies
the “left bit” (l/L) and doublet X

2

X
3

specifies the “right bit” (r/R) for a total of I(X
1

X
2

:Y ) +
I(X

2

X
3

:Y ) = H(Y ) = 2 bits. X
1

X
2

X
3

’s specification of Y is irreducible to disjoint parts yet fully
reduces to the pair of parts {X

1

X
2

, X
2

X
3

}.
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See Appendix 4.A for the joint distribution.
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(c) PI-diagram

Figure 4.5: Example TripleXor. Target Y has three bits of uncertainty. Each doublet part of
X

1

X
2

X
3

specifies a distinct bit of Y , for a total of I(X
1

X
2

:Y )+I(X
1

X
3

:Y )+I(X
2

X
3

:Y ) = H(Y ) = 3
bits. The whole’s specification of Y is irreducible to any pair of Almosts yet fully reduces to all
Almosts.
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(c) PI-diagram

Figure 4.6: Example Parity. Target Y has one bit of uncertainty, and only the whole specifies
Y , I(X

1

X
2

X
3

:Y ) = H(Y ) = 1 bit. X
1

X
2

X
3

’s specification of Y is utterly irreducible to any
collection of X

1

X
2

X
3

’s parts, and IbAp({X
1

, X
2

, X
3

} : Y ) = 1 bit.
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Appendix

4.A Joint distributions for DoubleXor and TripleXor

X
1

X
2

X
3

Y

0 00 0 lr

1/16
0 01 0 lR

1/16
0 10 0 Lr

1/16
0 11 0 LR

1/16
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1/16
0 01 1 lr

1/16
0 10 1 LR

1/16
0 11 1 Lr

1/16

1 00 0 Lr

1/16
1 01 0 LR

1/16
1 10 0 lr

1/16
1 11 0 lR

1/16

1 00 1 LR

1/16
1 01 1 Lr

1/16
1 10 1 lR

1/16
1 11 1 lr

1/16

Figure 4.7: Joint distribution Pr(x
1

, x
2

, x
3

, y) for example DoubleXor.

4.B Proofs

Lemma 4.B.1. We prove that Information beyond the Bipartition, Ib2p(X : Y ), equals Information

beyond the Disjoint Parts, IbDp(X : Y ) by showing,

IbDp(X : Y )  Ib2p(X : Y )  IbDp(X : Y ) .
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Figure 4.8: Joint distribution Pr(x
1

, x
2

, x
3

, y) for example TripleXor.

Proof. We first show that IbDp(X : Y )  Ib2p(X : Y ). By their definitions:

IbDp(X : Y ) ⌘ I(Y :X
1...n

) � max
P

I[ (Y : P) (4.8)

IbB(X : Y ) ⌘ I(Y :X
1...n

) � max
S⇢X

I[
�

Y : {S,X \ S}
�

(4.9)

= I(Y :X
1...n

) � max
P

|P|=2

I[ (Y : P) , (4.10)

where P enumerates over all disjoint parts of X.

By removing the restriction that |P| = 2 from the minimized union-information in IbB, we arrive
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at IbDp. As removing a restriction can only decrease the minimum, therefore

IbDp(X : Y )  IbB(X : Y ).

We next show that IbB(X : Y )  IbDp (X : Y ). Meaning we must show that,

I(X
1...n

:Y ) � max
P

|P|=2

I[ (P : Y )  I(X
1...n

:Y ) � max
P

I[ (P : Y ) . (4.11)

Proof. By subtracting I(X
1...n

:Y ) from each side and multiplying each side by �1 we have,

max
P

|P|=2

I[ (P : Y ) � max
P

I[ (P : Y ) . (4.12)

Without loss of generality, we take any individual subset/part S in X. Then we have a bipartition

B of parts {S,X\S}. We then further partition the part X\S into k disjoint subcomponents denoted

{T
1

, . . . , T
k

} where 2  k  n � |S|, creating an arbitrary partition P = {S, T
1

, . . . , T
k

}. We now

need to show that,

I[
⇣

�

S,X \ S
 

: Y
⌘

� I[
�

{S, T
1

, . . . , T
k

} : Y
�

. (4.13)

By the monotonicity axiom (M), we can append each subcomponent T
1

, . . . , T
k

to B without

changing the union-information, because every subcomponent T
i

is a subset of the element X \ S.

Then, using the symmetry axiom (S
0

), we re-order the parts so that S, T
1

, . . . , T
k

come first. This

yields,

I[
⇣

�

S, T
1

, . . . , T
k

,X \ S
 

: Y
⌘

� I[
�

{S, T
1

, . . . , T
k

} : Y
�

. (4.14)

Applying the monotonicity axiom (M) again, we know that adding the entry X \ S can only

increase the union information. Therefore, we prove eq. (5.13), which proves eq. (4.11).

Finally, by the squeeze theorem we complete the proof of eq. (5.11), that

IbB(X : Y ) = IbDp(X : Y ).

Lemma 4.B.2. Proof that pairs of Almosts cover Ib2p. We prove that the maximum union-

information over all possible pairs of parts {P
1

, P
2

}, equates to the maximum union-information

over all pairs of Almosts {A
i

, A
j

} i 6= j. Mathematically,

max
P1,P2

P1,P2⇢X

I[
�

{P
1

, P
2

} : Y
�

= max
i,j2{1,...,n}

i 6=j

I[
⇣

�

A
i

, A
j

 

: Y
⌘

. (4.15)
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Proof. By the right-monotonicity lemma (RM), the union-information can only increase when in-

creasing the size of the parts P
1

and P
2

. We can therefore ignore all parts P
1

, P
2

of size less than

n � 1,

max
P1,P2

P1,P2⇢X

I[
�

{P
1

, P
2

} : Y
�

= max
P1,P2

P1,P22P(X)

|P1|=|P2|=n�1

I[
�

{P
1

, P
2

} : Y
�

(4.16)

= max
i,j2{1,...,n}

I[
�

{A
i

, A
j

} : Y
�

. (4.17)

Then by the idempotency axiom (I) and the monotonicity axiom (M), having i 6= j can only

increase the union information. Therefore,

max
i,j2{1,...,n}

I[
�

{A
i

, A
j

} : Y
�

= max
i,j2{1,...,n}

i 6=j

I[
⇣

�

A
i

, A
j

 

: Y
⌘

. (4.18)

With eq. (4.18) in hand, we easily show that the Information beyond all pairs of Subsets, Ib2p,

equates to the information beyond all pairs of Almosts:

Ib2p (X : Y ) ⌘ I(X
1...n

:Y ) � max
P1,P2

P1,P22P(X)

I[
�

{P
1

, P
2

} : Y
�

(4.19)

= I(X
1...n

:Y ) � max
i,j2{1,...,n}

i 6=j

I[
⇣

�

A
i

, A
j

 

: Y
⌘

. (4.20)

Lemma 4.B.3. Proof that Almosts cover IbAp. We wish to show that the union-information over

all distinct parts of n elements, P(X), is equivalent to the union information over the n Almosts.

Mathematically,

I[
�

P(X) : Y
�

= I[
�

{A
1

, . . . , A
n

} : Y
�

. (4.21)

Proof. Every element in the set of parts P(X) that isn’t an Almost is a subset of an Almost.

Therefore, by the monotonicity axiom (M) we can remove this entry. Repeating this process, we

remove all entries except the n Almosts. Therefore, I[
�

P(X) : Y
�

= I[
�

{A
1

, . . . , A
n

} : Y
�

.
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Part III

Applications
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Chapter 5

Improving the � Measure

5.1 Introduction

The measure of integrated information, �, is an attempt to a quantify the magnitude of conscious

experience. It has a long history [31, 3, 33], and at least three di↵erent measures have been called

�. Here we consider some adjustments to the � measure from [3] to correct perceived deficiencies.1

The � measure aims to quantify a system’s “functional irreducibility to disjoint parts.” As

discussed in Chapter 4, we can use Partial Information Decomposition (PID) to derive a princi-

pled measure of irreducibility to disjoint parts. This revised measure,  , has numerous desirable

properties over �.

5.2 Preliminaries

5.2.1 Notation

We use the following notation throughout this chapter:

n: the number of indivisible elements in network X. n � 2.

P: a partition of the n indivisible nodes clustered into m parts. Each part has at least one node

and each partition has at least two parts, so 2  m  n.

XP

i

: a random variable representing a part i at time =0. 1  i  m.

Y P

i

: a random variable representing part i after t updates. 1  i  m.

X: a random variable representing the entire network at time=0. X ⌘ XP

1

· · ·XP

m

.

1We chose the 2008 version [3] because it is the most recent purely information-theoretic �. The most recent
version from [33] uses the Hamming Distance among states and thus changes depending on the chosen labels. We
are aware of no other info-theoretic measure that changes under relabeling. Secondly, the measure in [33] is in units
bits-squared, which has no known information-theoretic interpretation.
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Y : a random variable representing the entire network after t applications of the neural network’s

update rule. Y ⌘ Y P

1

· · ·Y P

m

.

y: a single state of the random variable Y .

X: The set of n indivisible elements at time=0.

For readers accustomed to the notation in [3], the translation is X ⌘ X
0

, Y ⌘ X
1

, XP

i

⌘ M i

0

,

and Y P

i

⌘ M i

1

.

For pedagogical purposes we confine this paper to deterministic networks. Therefore all remaining

entropy at time t conveys information about the past, i.e., I(X :Y ) = H(Y ) and I
�

X :Y P

i

�

= H
�

Y P

i

�

where I(• :•) is the mutual information and H(•) is the Shannon entropy[9]. Our model generalizes to

probabilistic units with any finite number of discrete—but not continuous—states[5]. All logarithms

are log
2

. All calculations are in bits.

5.2.2 Model assumptions

(A) The � measure is a state-dependent measure, meaning that every output state y 2 Y has

its own � value. To simplify cross-system comparisons, some researchers[5] prefer to consider

only the averaged �, denoted h�i. Here we adhere to the original theoretical state-dependent

formulation. But when comparing large numbers of networks we use h�i for convenience.

(B) The � measure aims to quantify “information intrinsic to the system”. This is often thought

to be synonymous with causation, but it’s not entirely clear. But for this reason, in [3] all

random variables at time=0, i.e. X and XP

1

, . . . , XP

m

are made to follow an independent discrete

uniform distribution. There are actually several plausible choices for the distribution on X ,

but for easier comparison to [3], here we also take X to be an independent discrete uniform

distribution. This means that H(X) = log
2

|X|, H
�

XP

i

�

= log
2

�

�XP

i

�

� where | • | is the number

of states in the random variable, and I
⇣

XP

i

:XP

j

⌘

= 0 8i 6= j.

(C) We set t = 1, meaning we compute these informational measures for a system undergoing a

single update from time=0 to time=1. This has no impact on generality (see Appendix 5.E).

To analyze real biological networks one would sweep t over all reasonable timescales, choosing

the t that maximizes the complexity metric.

5.3 How � works

The � measure has four steps and proceeds as follows:

1. For a given state y 2 Y , [3] first defines the state’s e↵ective information, quantifying the total

magnitude of information the state y conveys about X, the r.v. representing a maximally
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ignorant past. This turns out to be identical to the “specific-surprise” measure, I(X :y), from

[10],

ei(X ! y) = I(X :y) = D
KL

h

Pr
�

X|y
�

�

�

�

Pr(X)
i

. (5.1)

Given X follows a discrete uniform distribution (assumption (B)), ei(X ! y) simplifies to,

ei(X ! y) = H(X) � H
�

X|y
�

= H(X) �
X

x2X

Pr
�

x|y
�

log
1

Pr
�

x|y
� .

(5.2)

In the nomenclature of [20], ei(X ! y) can be understood as the “total causal power” the

system exerts when transitioning into state y.

2. The � measure aims to quantify a system’s irreducibility to disjoint parts, and the second step

is to quantify how much of the total causal power isn’t accounted for by the disjoint parts

(partition) P. To do this, they define the e↵ective information beyond partition P ,

ei (X ! y/P) ⌘ D
KL

2

4Pr(X|y)

�

�

�

�

�

�

m

Y

i=1

Pr
⇣

XP

i

�

�

�

yP
i

⌘

3

5 . (5.3)

The intuition behind ei(X ! y/P) is that it quantifies the amount of causal power in

ei(X ! y) that is irreducible to the parts P operating independently.2

3. After defining the causal power beyond an arbitrary partition P, the third step is to find

the partition that accounts for as much causal power as possible. This partition is called the

Minimum Information Partition, or MIP. They define the MIP for a given state y as,3

MIP(y) ⌘ argmin
P

ei(X ! y/P)

(m � 1) · min
i

H
�

XP

i

� . (5.4)

Finding the MIP of a system by brute force is incredibly computationally expensive, as it re-

quires enumerating all partitions of n nodes scales O(n!) and even for supercomputers becomes

intractable for n > 32 nodes.

4. Fourth and finally, the system’s causal irreducibility when transitioning into state y 2 Y , �(y),

is the e↵ective information beyond y’s MIP,

�(y) ⌘ ei

�

X ! y
�

P = MIP(y)
�

.

2In [3] they deviated slightly from this formulation, using a process termed “perturbing the wires”. However,
subsequent work[32, 33] disavowed perturbing the wires and thus we don’t use it here. For discussion see Appendix
5.C

3In [3] they additionally consider the total partition as a special case. However, subsequent work[32, 33] disavowed
the total partition and thus we don’t use it here.
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5.3.1 Stateless � is h�i

In [3] � is defined for every state y 2 Y , and a single system can have a wide range of �-values. In

[5], they found this medley of state-dependent �-values unwieldy, and they decided to get a single

number per system by averaging the e↵ective information over all states y. This gives rise to the

four corresponding stateless measures:

⌦

ei(Y )
↵

⌘ E
y

ei(X ! y) = I(X :Y )

⌦

ei(Y/P)
↵

⌘ E
y

ei (X ! y/P) = I(X :Y ) �
m

X

i=1

I
⇣

XP

i

:Y P

i

⌘

hMIPi ⌘ argmin
P

⌦

ei(Y/P)
↵

(m � 1) · min
i

H
�

XP

i

�

h�i ⌘
D

ei

�

Y
�

P = hMIPi
�

E

.

(5.5)

Although the distinction has yet to a↵ect qualitative results, researchers should note that h�i 6=

E
Y

�(y). This is because whereas each y state can have a di↵erent MIP, for h�i there’s only one MIP

for all states.

5.4 Room for improvement in �

�(y) can exceed H(X). Figure 5.1 shows examples OR-GET and OR-XOR. On average, each

looks fine—they each have H(X) = 2, I(X :Y ) = 1.5, and h�i = 1.189 bits—nothing peculiar. This

changes when examining the individual states y 2 Y .

For OR-GET, the �(y = 10) ⇡ 2.58 bits. Therefore �(y) exceeds the entropy of the entire system,

H(XY ) = H(X) = 2 bits. This means that for y = 10, the “irreducible causal power” exceeds not

just the total causal power, ei(X ! y), but ei’s upperbound of H(X)! This is concerning.

For OR-XOR, �(y = 11) ⇡ 1.08 bits. This does not exceed H(X), but it does exceed I(X :y = 11) =

1 bit. Per eq. (5.5), in expectation
⌦

ei(Y/P)
↵

 I(X :Y ) for any partition P. An information-

theoretic interpretation of the state-dependent case would be more natural if likewise ei(X!y/P) 

I(X :Y = y) for any partition P. Note this issue is not due simply to normalizing in eq. (5.4). For

OR-GET and OR-XOR there’s only one possible partition, and thus the normalization has no e↵ect.

The oddity arises from the equation for the e↵ective information beyond a partition, eq. (5.3).

� sometimes decreases with duplicate computation. In Figure 5.2 we take a simple

system, AND-ZERO, and duplicate the AND gate yielding AND-AND. We see the two systems

remain exceedingly similar. Each has H(X) = 2 and I(X :Y ) = 0.811 bits. Likewise, each has

two Y states occurring with probability 3/4 and 1/4, giving ei(X ! y) equal to 0.42 and 2.00 bits,

respectively. However, their � values are quite di↵erent.



71

1 1

(a) OR-GET network

1 XOR

(b) OR-XOR network

X
OR- OR-
GET XOR

00 ! 00 00

01 ! 10 11

10 ! 11 11

11 ! 11 10

Transition table for (a), (b)

OR-GET (a) OR-XOR (b)

00 01 10 11 00 01 10 11

Pr(y) 1/4 - 1/4 1/2 1/4 - 1/4 1/2
ei(y) 2.00 - 2.00 1.00 2.00 - 2.00 1.00
�(y) 1.00 - 2.58 0.58 1.00 - 1.58 1.08

Figure 5.1: Example OR-GET shows that �(y) can exceed not only ei(X ! y), but H(X)! A
dash means that particular y is unreachable for the network. The concerning � values are bolded.

If we only knew that the �’s for AND-AND and AND-ZERO were di↵erent, we’d expect AND-

AND’s � to be higher because an AND node “does more” than a ZERO node (simply shutting o↵).

But instead we get the opposite—AND-AND’s highest � is less than AND-ZERO’s lowest �! An

ideal measure of integrated information might be invariant or increase with duplicate computation,

but it certainly wouldn’t decrease!

� does not increase with cooperation among diverse parts. The � measure is often

thought of as corresponding to the juxtaposition of “functional segregation” and “functional inte-

gration”. In a similar vein, � is also intuited as corresponding to “interdependence/cooperation

among diverse parts”. Figure 5.3 presents four examples showing that these similar intuitions are

not captured by the existing � measure.

In the first example, SHIFT (Figure 5.3a), each bit one step clockwise—nothing more, nothing

less. The nodes are homogeneous and each node is determined by its preceding node.

In the three remaining networks (Figures 5.3b–d), each node is a function of all nodes in its

network (including itself). This is to maximize interdependence among the nodes, making the

network highly “functionally integrated”. Having established high cooperation, we increase the

diversity/“functional segregation” from Figure 5.3b to 5.3d.

By the aforementioned intuitions, we’d expect SHIFT (Figure 5.3a) to have the lowest � and

4321 (Figure 5.3d) to have the highest. But this is not the case. Instead, SHIFT, the network with

the least cooperation (every node is a function of one other) and the least diverse mechanisms (all

nodes have threshold 1) has a � far exceeding the others; SHIFT’s lowest � value at 2.00 bits dwarfs

the � values in Figures 5.3b–d.
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2 1
(a) AND-ZERO network

2 2

(b) AND-AND network

X
AND- AND-
ZERO AND

00 ! 00 00

01 ! 00 00

10 ! 00 00

11 ! 10 11

Transition table for (a), (b)

AND-ZERO (a) AND-AND (b)

00 01 10 11 00 01 10 11

Pr(y) 3/4 - 1/4 - 3/4 - - 1/4
ei(y) 0.42 - 2.00 - 0.42 - - 2.00
�(y) 0.33 - 1.00 - 0.25 - - 0.00

Figure 5.2: Examples AND-ZERO and AND-AND show that �(y) sometimes decreases with dupli-
cate computation. Here, the highest � of AND-AND is less than the lowest � of AND-ZERO. This
carries into the average case with AND-ZERO’s h�i = 0.5 and AND-AND’s h�i = 0.189 bits. A
dash means that particular y is unreachable for the network.

SHIFT having the highest � is unexpected, but it’s not outright absurd. In SHIFT each node is

wholly determined by an external force (the preceding node); so in some sense SHIFT is “integrated”.

Whether it makes sense for SHIFT to have the highest integrated information ultimately comes down

to precisely what is meant by the term “integration”. But even accepting that SHIFT is in some

sense integrated, network 4321 is integrated for a stronger sense of the term. Therefore, until there’s

some argument that the awareness of SHIFT should be higher than 4321, from a purely theoretical

perspective it makes sense to prefer 4321 over SHIFT.
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1 1

11

(a) SHIFT

4 4

22

(b) 4422

4 3

22

(c) 4322

4 3

12

(d) 4321

Network I(X :Y ) min
y

�(y) max
y

�(y) h�i

SHIFT 4.000 2.000 2.000 2.000
4422 1.198 0.000 0.673 0.424
4322 1.805 0.322 1.586 1.367
4321 2.031 0.322 1.682 1.651

Figure 5.3: State-dependent � and h�i tell the same story—the � value of SHIFT (a) trounces the
� of the other three networks. Neither � measure is representative of cooperation among diverse
parts.
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5.5 A Novel Measure of Irreducibility to a Partition

Our proposed measure  quantifies the magnitude of information in I(X :y) (eq. (5.1)) that is

irreducible to a partition of the system at time=0. We define our measure as,

 (X : y) ⌘ I(X :y) � max
P

I[
⇣

XP

1

, . . . , XP

m

:y
⌘

, (5.6)

where P enumerates over all partitions of set X, and I[ is the information about state y conveyed

by the “union” across the m parts at time=0. To compute the union information I[ we use the

Partial Information Decomposition (PID) framework. In PID, I[ is the dual to I\; they are related

by the inclusion–exclusion principle. Thus we can express I[ by,

I[
⇣

XP

1

, . . . , XP

m

:y
⌘

=
X

S✓{XP
1 ,...,X

P
m}

(�1)|S|+1 I\
⇣

S
1

, . . . , S|S| :y
⌘

.

Conceptually, the intersection information I\
⇣

S
1

, . . . , S|S| :y
⌘

is the magnitude of information

about state y that is conveyed “redundantly” by each S
i

2 S. Although there currently remains

some debate[7, 14] about what is the best measure of I\, there’s consensus that the intersection

information n arbitrary random variables Z
1

, . . . , Z
n

convey about state Y = y must satisfy the

following properties:

(GP) Global Positivity: I\(Z
1

, . . . , Z
n

:y) � 0 with equality if Pr(y) = 0 or Pr(y) = 1.

(M
0

) Weak Monotonicity: I\(Z
1

, . . . , Z
n

,W :y)  I\(Z
1

, . . . , Z
n

:y) with equality if there exists

Z
i

2 {Z
1

, . . . , Z
n

} such that H(Z
i

|W ) = 0.

(S
0

) Weak Symmetry: I\(Z
1

, . . . , Z
n

:y) is invariant under reordering Z
1

, . . . , Z
n

.

(SR) Self-Redundancy: I\(Z
1

:y) = I(Z
1

:y) = D
KL

h

Pr
�

Z
1

|y
�

�

�

�

Pr(Z
1

)
i

. The intersection informa-

tion a single predictor Z
1

conveys about the target state Y = y is equal to the “specific

surprise”[10] between the predictor and the target state.

(Eq) Equivalence-Class Invariance: I\(Z
1

, . . . , Z
n

:y) is invariant under substituting Z
i

(for any i =

1, . . . , n) by an informationally equivalent random variable4.[14] Similarly, I\(Z
1

, . . . , Z
n

:y) is

invariant under substituting state y for state w if Pr
�

w|y
�

= Pr
�

y|w
�

= 1.

Instead of choosing a particular I\ that satisfies the above properties, we will simply use these

properties directly to bound the range of possible  values. Leveraging (M
0

), (S
0

), and (SR),

4Meaning that I\ is invariant under substituting Zi with W if H
�
Zi|W

�
= H

�
W |Zi

�
= 0.
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eq. (5.6) simplifies to,5

 (X : y) = I(X :y) � max
A⇢X

I[(A,B :y)

= I(X :y) � max
A⇢X

⇥

I(A :y) + I(B :y) � I\(A,B :y)
⇤

,
(5.7)

where A 6= ; and B ⌘ X \ A.

From eq. (5.7), the only term left to be defined is I\(A,B :y). Leveraging (GP), (M
0

), and

(SR), we can bound this by 0  I\(A,B :y)  min
⇥

I(A :y) , I(B :y)
⇤

.

Finally, we bound  by plugging in the above bounds on I\(A,B :y) into eq. (5.7). With some

algebra and leveraging assumption (B), this becomes,6

 
min

(X : y) = min
A⇢X

D
KL

h

Pr(X
1...n

|y)
�

�

�

Pr
�

A|y
�

Pr
�

B|y
�

i

 
max

(X : y) = min
i2{1,...,n}

D
KL

⇥

Pr(X
1...n

|y)
�

�Pr(X
i

) Pr(X⇠i

|y)
⇤

,
(5.8)

where X⇠i

is the random variable of all nodes in X excluding node i. Then,  
min

(X : y)   (X :

y)   
max

(X : y).

5.5.1 Stateless  is h i

Matching how h�i is defined in Section 5.3.1, to compute h i we weaken the properties in Section 5.5

so that they only apply to the average case, i.e., the properties (GP), (M
0

), (S
0

), (SR), and (Eq)

don’t have to apply for each I\(Z
1

, . . . , Z
n

:y), but merely for the average case I\(Z
1

, . . . , Z
n

:Y ).

Via the same algebra7, h i simplifies to,

h i(X
1

, . . . , X
n

: Y ) ⌘ I(X :Y ) � max
P

I[
⇣

XP

1

, . . . , XP

m

:Y
⌘

= I(X :Y ) � max
A⇢X

I[(A,B :Y )

= I(X :Y ) � max
A⇢X

⇥

I(A :Y ) + I(B :Y ) � I\(A,B :Y )
⇤

,

(5.9)

where A 6= ; and B ⌘ X \ A. Using the weakened properties, we have 0  I\(A,B :Y ) 

min
⇥

I(A :Y ) , I(B :Y )
⇤

. Plugging in these I\ bounds, we achieve the analogous bounds on h i,8

h i
min

(X : Y ) = min
A⇢X

I(A :B|Y )

h i
max

(X : Y ) = min
i2{1,...,n}

D
KL

⇥

Pr(X,Y )
�

�Pr(X⇠i

, Y ) Pr(X
i

)
⇤

,
(5.10)

5See Appendix 5.B.1 for a proof.
6See Appendix 5.B.2 for proofs.
7See Appendix 5.B.1 for a proof.
8See Appendix 5.B.3 for proofs.
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where X⇠i

is the random variable of all nodes in X excluding node i. Then,

h i
min

(X : Y )  h i(X : Y )  h i
max

(X : Y ).

5.6 Contrasting  versus �

Theoretical benefits. The overarching theoretical benefit of  is that it is entrenched within the

rigorous Partial Information Decomposition framework[36]. PID builds a theoretically principled ir-

reducibility measure from a redundancy measure I\. Here we only take the most accepted properties

of I\ to bound  from above and below. As the complexity community converges on the additional

properties I\ must satisfy[7, 14], the derived bounds on  will contract.

The first benefit of  ’s principled underpinning is that whereas �(y) can exceed the entropy of

the whole system, i.e., �(y) 6 H(X),  (y) is bounded by specific-surprise, i.e.,  (y)  I(X :y) =

D
KL

h

Pr
�

X|y
�

�

�

�

Pr(X)
i

. This gives  the natural info-theoretic interpretation for the state-dependent

case which � lacks. A second benefit is that PID provides justification for  not needing a MIP

normalization, and thus eliminates a longstanding concern about �[2]. The third benefit is that PID

is a flexible framework that enables quantifying irreducibility to overlapping parts should we decide

to explore it9.

One final perk is that  is substantially faster to compute. Whereas computing � scales10 O(n!),

computing  scales11 O(2n)—a substantial improvement that may improve even further as the

complexity community converges on additional properties of I\.

Practical di↵erences. The first row in Figure 5.4 shows two ways a network can be irre-

ducible to atomic elements (the nodes) yet still reducible to disjoint parts. Compare AND-ZERO

(Figure 5.4g) to AND-ZERO+KEEP (Figure 5.4a). Although AND-ZERO is irreducible, AND-

ZERO+KEEP reduces to the bipartition separating the AND-ZERO component and the KEEP

node. This reveals how fragile measures like  and � are—add a single disconnected node and they

plummet to zero. Example 2x AND-ZERO (Figure 5.4b) shows that a reducible system can be

composed entirely of irreducible parts.

Example KEEP-KEEP (Figure 5.4c) highlights the only known relative drawback of  : its

current upperbound12 is painfully loose. The desired irreducibility for KEEP-KEEP is zero bits,

and indeed,  
min

is 0 bits, but  
max

is a monstrous 1 bit! We rightly expect tighter bounds for such

easy examples like KEEP-KEEP. Tighter bounds on I\ (and thus  ) is an area of active research

but as-is the bounds are loose.

Example GET-GET (Figure 5.4d) epitomizes the most striking di↵erence between  and �.

9Technically there are multiple irreducibilities to overlapping parts as, unlike disjoint parts, the maximum union
information over two overlapping parts is not equal to the maximum union information over m overlapping parts.

10This comes from eq. (5.4) enumerating all partitions (Bell’s number) of n elements.
11This comes from eq. (5.7) enumerating all 2n�1 � 1 bipartitions of n elements.
12The current upperbounds are  

max

in eq. (5.8) and h i
max

in eq. (5.10).
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By property (Eq), the  values for KEEP-KEEP and GET-GET are provably equal (making the

desired  for GET-GET also zero bits), yet their � values couldn’t be more di↵erent. Although �

agrees KEEP-KEEP is zero, � firmly places GET-GET at the maximal (!) two bits of irreducibility.

Whereas  views GET nodes akin to a system-wide KEEP, � views GET nodes as highly integrative.

The primary benefit of making KEEPs and GETs equivalent is that  is zero for chains of

GETs such as the SHIFT network (Fig. 5.3a). This enables  to better match our intuition for

“cooperation among diverse parts”. For example, in Figure 5.3 the network with the highest � is

the counter-intuitive SHIFT; on the other hand, the network with the highest  is the more sensible

4321 (see bottom table in Figure 5.4).

The third row in Figure 5.4 shows a di↵erence related to KEEPs vs GETs—how  and � respec-

tively treat self-connections. In ANDtriplet (Figure 5.4e) each node integrates information about

two nodes. Likewise, in iso-ANDtriplet (Figure 5.4f) each node integrates information about two

nodes, but the information is about itself and one other.

Just as  views KEEP and GET nodes equivalently,  views self and cross connections equiva-

lently. In fact, by property (Eq) the  values for ANDtriplet and iso-ANDtriplet are provably equal.

On the other hand, � considers self and cross connections di↵erently in that � can only decrease

when adding a self-connection. As such, the � for iso-ANDtriplet is less than ANDtriplet.

The fourth row in Figure 5.4 shows this same self-connections business carrying over to duplicate

computations. Although AND-AND (Figure 5.4h) and AND-ZERO (Figure 5.4g) perform the same

computation, AND-AND has an additional self-connection that pushes AND-AND’s � below that

of AND-ZERO. By (Eq),  is provably invariant under such duplicate computations.

5.7 Conclusion

Regardless of any connection to consciousness, and purely as a measure of functional irreducibility,

we have three concerns about �: (1) state-dependent � can exceed the entropy of the entire system;

(2) � often decreases with duplicate computation; (3) � doesn’t match the intuition of “cooperation

among diverse parts”.

We introduced a new irreducibility measure,  , that solves all three concerns and otherwise stays

close to the original spirit of �—i.e., the quantification of a system’s irreducibility to disjoint parts.

Based in Partial Information Decomposition,  has other desirable properties, such as not needing

a MIP normalization and being substantially faster to compute.

Finally, we contrasted  versus � with simple, concrete examples.

Although we recommend using  over �, the  measure remains imperfect. The most notable

areas for improvement are:

1. The current  bounds are too loose. We need to tighten the I\ bounds, which will tighten the
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2 1

1

(a) AND-ZERO+KEEP

2 1

2 1

(b) 2x AND-ZERO

1 1

(c) KEEP-KEEP

1 1

(d) GET-GET

2

2 2

(e) ANDtriplet

2

2 2

(f) iso-ANDtriplet

2 1
(g) AND-ZERO

2 2

(h) AND-AND

Network I(X :Y ) h�i h i
min

h i
max

AND-ZERO+KEEP (a) 1.81 0 0 0.50
2x AND-ZERO (b) 1.62 0 0 0.50

KEEP-KEEP (c) 2.00 0 0 1.00
GET-GET (d) 2.00 2.00 0 1.00

SHIFT (Fig. 5.3a) 4.00 2.00 0 1.00
4422 (Fig. 5.3b) 1.20 0.42 0.33 0.50
4322 (Fig. 5.3c) 1.81 1.37 0.68 0.88
4321 (Fig. 5.3d) 2.03 1.65 0.78 1.00

ANDtriplet (e) 2.00 2.00 0.16 0.75
iso-ANDtriplet (f) 2.00 1.07 0.16 0.75

AND-ZERO (g) 0.81 0.50 0.19 0.5
AND-AND (h) 0.81 0.19 0.19 0.5

Figure 5.4: Contrasting h�i versus h i for exemplary networks.
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derived bounds on  and h i.

2. Justify why a measure of conscious experience should privilege irreducibility to disjoint parts

over irreducibility to overlapping parts.

3. Reformalize the work on qualia in [4] using  .

4. Although not specific to  , there needs to be a stronger justification for the chosen distribution

on X.
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Appendix

5.A Reading the network diagrams

We present eight doublet networks and their transition tables so you can see how the network diagram

specifies the transition table. Figure 5.5 shows eight network diagrams to build your intuition. The

number inside each node is that node’s activation threshold. A node updates to 1 (conceptually an

“ON”) if there are at least as many of inputs ON as its activation threshold; e.g. a node with an

inscribed 2 updates to a 1 if two or more incoming wires are ON. An activation threshold of 1
means the node always updates to 0 (conceptually an “OFF”). A binary string denotes the state of

the network, read left to right.

We take the AND-ZERO network (Figure 5.5g) as an example. Although the AND-ZERO

network can never output 01 or 11 (Fig. 1b), we still consider states 01, 11 as equally possible

states at time=0. This is because X
0

is uniformly distributed per assumption (A). The state of the

AND-node (left) at time=1 is a function of both nodes at time=0. For example, in the AND-ZERO

gate, the left binary digit is the state of the AND-node and the right binary digit is the state of the

ZERO-node.
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1 1

(a) ZERO-ZERO

1 1

(b) KEEP-ZERO

1 1

(c) GET-ZERO

1 1

(d) KEEP-KEEP

1 1

(e) GET-KEEP

1 1

(f) GET-GET

2 1

(g) AND-ZERO

2 XOR

(h) AND-XOR

X
ZERO- KEEP- GET- KEEP- GET- GET- AND- AND-
ZERO ZERO ZERO KEEP KEEP GET ZERO XOR

00 ! 00 00 00 00 00 00 00 00

01 ! 00 00 10 01 11 10 00 01

10 ! 00 10 00 10 00 01 00 01

11 ! 00 10 10 11 11 11 10 10

Figure 5.5: Eight doublet networks with transition tables.



82

XOR 1

(a) XOR-ZERO

XOR 1

(b) XOR-KEEP

XOR 1

(c) XOR-GET

XOR XOR

(d) XOR-XOR

XOR 2

(e) XOR-AND

X
XOR- XOR- XOR- XOR- XOR-
ZERO KEEP GET XOR AND

00 ! 00 00 00 00 00

01 ! 10 11 10 11 10

10 ! 10 10 11 11 10

11 ! 00 01 01 00 01

Network I(X :Y ) h�i h i
min

h i
max

ZERO-ZERO (Fig. 5.5a) 0 0 0 0
KEEP-ZERO (Fig. 5.5b) 1.0 0 0 0
KEEP-KEEP (Fig. 5.5d) 2.0 0 0 1.0
GET-ZERO (Fig. 5.5c) 1.0 1.0 0 0
GET-KEEP (Fig. 5.5e) 1.0 0 0 0
GET-GET (Fig. 5.5f) 2.0 2.0 0 1.0

AND-ZERO (Fig. 5.2a) 0.811 0.5 0.189 0.5
AND-KEEP 1.5 0.189 0 0.5
AND-GET 1.5 1.189 0 0.5
AND-AND (Fig. 5.2b) 0.811 0.189 0.189 0.5
AND-XOR (Fig. 5.5h) 1.5 1.189 0.5 1.0

XOR-ZERO (a) 1.0 1.0 1.0 1.0
XOR-KEEP (b) 2.0 1.0 0 1.0
XOR-GET (c) 2.0 2.0 0 1.0
XOR-AND (e) 1.5 1.189 0.5 1.0
XOR-XOR (d) 1.0 1.0 1.0 1.0

Figure 5.6: Networks, transition tables, and measures for the diagnostic doublets.
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5.B Necessary proofs

5.B.1 Proof that the max union of bipartions covers all partitions

Lemma 5.B.1. Given properties (S
0

) and (M
0

), the maximum union information conveyed by a

partition of predictors X = {X
1

, . . . , X
n

} about state Y = y equals the maximum union information

conveyed by a bipartition of X about state Y = y.

Proof. We prove that the maximum Information conveyed by a Partition, IbDp(X : y), equals

Information conveyed by a Bipartition, IbB(X : y) by showing,

IbDp(X : y)  IbB(X : y)  IbDp(X : y) . (5.11)

We first show that IbB(X : y)  IbDp(X : y). By their definitions,

IbDp(X : y) ⌘ max
P

I[(P :y)

IbB(X : y) ⌘ max
P

|P|=2

I[(P :y) ,
(5.12)

where P enumerates over all partitions of set X.

By removing the restriction that |P| = 2 from the maximization in IbB we arrive at IbDp. As

removing a restriction can only increase the maximum, thus IbB(X : y)  IbDp(X : y).

We next show that IbDp(X : y)  IbB (X : y), meaning we must show that,

max
P

I[(P :y)  max
P

|P|=2

I[(P :y) . (5.13)

Without loss of generality, we choose an arbitrary subset/part S ⇢ X. This yields the bipartition

of parts {S,X\S}. We then further partition the second part, X\S, into k disjoint subcomponents

denoted {T
1

, . . . , T
k

} where 2  k  n � |S|, creating an arbitrary partition P = {S, T
1

, . . . , T
k

}.

We now need to show that,

I[(S, T
1

, . . . , T
k

:y)  I[
�

S,X \ S :y
�

.

By (M
0

) equality condition, we can append each subcomponent T
1

, . . . , T
k

to {S,X\S} without

changing the union-information, because every subcomponent T
i

� X \ S. Then applying (S
0

), we

re-order the parts so that S, T
1

, . . . , T
k

come first. This yields,

I[(S, T
1

, . . . , T
k

:y)  I[
�

S, T
1

, . . . , T
k

,X \ S :y
�

.
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Applying (M
0

) inequality condition, adding the predictor X\S can only increase the union infor-

mation. Therefore we prove eq. (5.13), which proves eq. (5.11), that IbDp(X : y) = IbB(X : y).
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5.B.2 Bounds on  (X1, . . . , Xn

: y)

Lemma 5.B.2. Given (M
0

), (SR) and the predictors X
1

, . . . , X
n

are independent, i.e. H(X
1...n

) =
P

n

i=1

H(X
i

), then,

 (X
1

, . . . , X
n

: y)  min
i2{1,...,n}

D
KL



Pr(X
1...n

|y)
�

�

�

�

Pr(X
i

) Pr
⇣

X
1...n\i

�

�

�

y
⌘

�

.

Proof. Applying (M
0

) inequality condition, we have I\(A,B :y)  min
⇥

I(A :y) , I(B :y)
⇤

. Via the

inclusion-exclusion rule, this entails I[(A,B :y) � max
⇥

I(A :y) , I(B :y)
⇤

, and we use this to upper-

bound  (X
1

, . . . , X
n

: y). The random variable A 6= ;, B ⌘ X \ A, and AB ⌘ X
1...n

.

 (X
1

, . . . , X
n

: y) = I(X
1...n

:y) � max
A⇢X

I[(A,B :y)

 I(X
1...n

:y) � max
A⇢X

max
⇥

I(A :y) , I(B :y)
⇤

By symmetry of complementary bipartitions, every B will be an A at some

point. So we can drop the B term.

= I(X
1...n

:y) � max
A⇢X

I(A :y) .

For two random variables A and A0 such that A � A0, I(A :y)  I
�

A0 :y
�

.13 Therefore, there will

always be a maximizing subset of X with size n � 1.

 (X
1

, . . . , X
n

: y)  I(X
1...n

:y) � max
A⇢X

|A|=n�1

I(A :y)

= I(X
1...n

:y) � max
i2{1,...,n}

I
⇣

X
1...n\i :y

⌘

= min
i2{1,...,n}

I(X
1...n

:y) � I
⇣

X
1...n\i :y

⌘

= min
i2{1,...,n}

I
⇣

X
i

:y
�

�

�

X
1...n\i

⌘

= min
i2{1,...,n}

D
KL



Pr(X
1...n

|y)
�

�

�

�

Pr
⇣

X
i

�

�

�

X
1...n\i

⌘

Pr
⇣

X
1...n\i

�

�

�

y
⌘

�

.

Now applying that the predictors X are independent, Pr
⇣

x
i

�

�

�

x
1...n\i

⌘

= Pr(x
i

). This yields,

 (X
1

, . . . , X
n

: y)  min
i2{1,...,n}

D
KL



Pr(X
1...n

|y)
�

�

�

�

Pr(X
i

) Pr
⇣

X
1...n\i

�

�

�

y
⌘

�

.

13I(A :
y)  I

�
A

0 :
y

�
because I

�
A

0 :
y

�
= I(A :

y) + I
�
A

0 :
y|A

�
.



86



87

Lemma 5.B.3. Given (GP), (SR) and predictors X
1

, . . . , X
n

are independent, i.e. H(X
1...n

) =
P

n

i=1

H(X
i

), then,

 (X
1

, . . . , X
n

: y) � min
A⇢X

I(A :B|y)

= min
A⇢X

D
KL

h

Pr
�

X
1...n

|y
�

�

�

�

Pr
�

A|y
�

Pr
�

B|y
�

i

.

Proof. First, from the definition of I[, I[(A,B :y) = I(A :y) + I(B :y) � I\(A,B :y). Then applying

(GP), we have I[(A,B :y)  I(A :y) + I(B :y). We use this to lowerbound  (X
1

, . . . , X
n

: y). The

random variable A 6= ;, B ⌘ X \ A, and AB ⌘ X
1...n

.

 (X
1

, . . . , X
n

: y) = I(X
1...n

:y) � max
A⇢X

I[(A,B :y)

� I(X
1...n

:y) � max
A⇢X

⇥

I(A :y) + I(B :y)
⇤

= min
A⇢X

I(AB :y) � I(A :y) � I(B :y)

= min
A⇢X

I
�

A :y|B
�

� I(A :y)

= min
A⇢X

D
KL

h

Pr(AB|y)
�

�

�

Pr
�

B|y
�

Pr
�

A|B
�

i

� D
KL

⇥

Pr(A|y)
�

�Pr(A)
⇤

= min
A⇢X

X

a,b

Pr
�

ab|y
�

log
Pr
�

ab|y
�

Pr
�

b|y
�

Pr
�

a|b
� +

X

a

Pr
�

a|y
�

log
Pr(a)

Pr
�

a|y
� .

We now add
P

b

Pr(b|ay) in front of the right-most
P

a

. We can do this because
P

b

Pr(b|ay) =

1.0. This then yields,

 (X
1

, . . . , X
n

: y) � min
A⇢X

X

a,b

Pr
�

ab|y
�

log
Pr
�

ab|y
�

Pr
�

b|y
�

Pr
�

a|b
� + Pr(b|ay) Pr

�

a|y
�

log
Pr(a)

Pr
�

a|y
�

= min
A⇢X

X

a,b

Pr
�

ab|y
�

"

log
Pr
�

ab|y
�

Pr
�

b|y
�

Pr
�

a|b
� + log

Pr(a)

Pr
�

a|y
�

#

= min
A⇢X

X

a,b

Pr(ab|y) log
Pr
�

ab|y
�

Pr(a)

Pr
�

a|y
�

Pr
�

b|y
�

Pr
�

a|b
� .

Now applying that the predictors X are independent, Pr
�

a|b
�

= Pr(a); thus we can cancel Pr(a)
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for Pr
�

a|b
�

. This yields,

 (X
1

, . . . , X
n

: y) � min
A⇢X

X

a,b

Pr(ab|y) log
Pr
�

ab|y
�

Pr
�

a|y
�

Pr
�

b|y
�

= min
A⇢X

D
KL

h

Pr
�

X
1...n

|y
�

�

�

�

Pr
�

A|y
�

Pr
�

B|y
�

i

.
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5.B.3 Bounds on h i(X1, . . . , Xn

: Y )

Lemma 5.B.4. Given (M
0

), (SR) and the predictors X
1

, . . . , X
n

are independent, i.e. H(X
1...n

) =
P

n

i=1

H(X
i

), then,

h i(X
1

, . . . , X
n

: Y )  min
i2{1,...,n}

D
KL



Pr(X
1...n

, Y )

�

�

�

�

Pr
⇣

X
1...n\i, Y

⌘

Pr(X
i

)

�

.

Proof. First, using the same reasoning in Lemma 5.B.2, we have,

h i(X : Y )  I(X
1...n

:Y ) � max
i2{1,...,n}

I
⇣

X
1...n\i :Y

⌘

= min
i2{1,...,n}

I(X
1...n

:Y ) � I
⇣

X
1...n\i :Y

⌘

= min
i2{1,...,n}

I
⇣

X
i

:Y
�

�

�

X
1...n\i

⌘

= min
i2{1,...,n}

D
KL



Pr(X
1...n

, Y )

�

�

�

�

Pr
⇣

X
i

�

�

�

X
1...n\i

⌘

Pr
⇣

X
1...n\i, Y

⌘

�

.

Now applying that the predictors X are independent, Pr
⇣

X
i

�

�

�

X
1...n\i

⌘

= Pr(X
i

). This yields,

h i(X : Y )  min
i2{1,...,n}

D
KL



Pr(X
1...n

, Y )

�

�

�

�

Pr
⇣

X
1...n\i, Y

⌘

Pr(X
i

)

�

.

Lemma 5.B.5. Given (GP), (SR) and predictors X
1

, . . . , X
n

are independent, i.e. H(X
1...n

) =
P

n

i=1

H(X
i

), then,

h i(X
1

, . . . , X
n

: Y ) � min
A⇢X

I(A :B|Y ) .

Proof. First, using the same reasoning in Lemma 5.B.3, we have,

h i(X
1

, . . . , X
n

: Y ) � I(X
1...n

:Y ) � max
A⇢X

⇥

I(A :Y ) + I(B :Y )
⇤

= min
A⇢X

I(AB :Y ) � I(A :Y ) � I(B :Y )

= min
A⇢X

I(A :B|Y ) � I(A :B) .
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Now applying that the predictors X are independent, I(A :B) = 0. This yields,

h i(X
1

, . . . , X
n

: Y ) � min
A⇢X

I(A :B|Y ) .
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5.C Definition of intrinsic ei(y/P) a.k.a. “perturbing the

wires”

State-dependent ei across a partition, fully written as ei

�

X ! y/P
�

and abbreviated ei

�

y/P
�

,

is defined by eq. (5.14). The probability distribution of the “intrinsic information” in the entire

system, Pr(X ! y), is simply Pr
�

X|y
�

(eq. (5.15)).14

ei

�

X ! y/P
�

⌘ D
KL

2

4Pr⇤(X ! y)

�

�

�

�

�

�

m

Y

i=1

Pr
⇣

XP

i

! yP
i

⌘

3

5 (5.14)

= D
KL

2

4Pr
�

X|y
�

�

�

�

�

�

�

m

Y

i=1

Pr⇤
�

XP

i

�

�yP
i

�

3

5 . (5.15)

Balduzzi/Tononi [3] define the probability distribution describing the intrinsic information from

the whole system X to state y as,

Pr(X ! y) = Pr
�

X|y
�

=
n

Pr
�

x|y
�

: 8x 2 X
o

.

They then define probability distribution describing the intrinsic information from a part XP

i

to

a state yP
i

as,

Pr⇤
�

XP

i

! yP
i

�

⌘ Pr⇤
�

XP

i

�

�Y P

i

= yP
i

�

=
n

Pr⇤
�

xP

i

�

�yP
i

�

: 8xP

i

2 XP

i

o

.

First we define the fundamental property of the Pr⇤ distribution. Given a state xP

i

, the proba-

bility of a state yP
i

is computed by probability that each node in the state yP
i

independently reaches

the state specified by yP
i

,

Pr⇤
�

yP
i

�

�xP

i

�

⌘
|Pi|
Y

j=1

Pr
⇣

yP
i,j

�

�

�

xP

i

⌘

. (5.16)

Then we define the join distribution relative to eq. (5.16):

Pr⇤
�

xP

i

, yP
i

�

= Pr⇤
�

xP

i

�

Pr⇤
�

yP
i

�

�xP

i

�

= Pr⇤
�

xP

i

�

Q|Pi|
j=1

Pr
⇣

yP
i,j

�

�

�

xP

i

⌘

.

Then applying assumption (B), X follows a discrete uniform distribution, so Pr⇤
�

xP

i

�

⌘ Pr
�

xP

i

�

=

14It’s worth nothing that Pr⇤
�
X|y

�
6= Pr

�
X|y

�
.
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1/|XP

i

|. This gives us the complete definition of Pr⇤
�

xP

i

, yP
i

�

,

Pr⇤
�

xP

i

, yP
i

�

= Pr
�

xP

i

�

Q|Pi|
j=1

Pr
⇣

yP
i,j

�

�

�

xP

i

⌘

. (5.17)

With the joint Pr⇤ distribution defined, we can compute anything we want by summing over the

eq. (5.17)—such as the expressions for Pr⇤
�

yP
i

�

and Pr⇤
�

xP

i

�

�yP
i

�

,

Pr⇤
�

yP
i

�

=
X

x

P
i 2X

P
i

Pr⇤
�

xP

i

, yP
i

�

Pr⇤
�

xP

i

�

�yP
i

�

=
Pr⇤

�

xP

i

, yP
i

�

Pr⇤
�

yP
i

� .
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5.D Misc proofs

Given the properties (GP), (SR), and the predictors X
1

, . . . , X
n

are independent, i.e. H(X
1...n

) =
P

n

i=1

H(X
i

), we show that h�i 6 h i. This is equivalent to,

h i
min

(X : Y )  h�i(X : Y ) .

Proof. We prove the above by showing that for any bipartition P, that h i
min

(X : Y ) 
⌦

ei(Y/P)
↵

.

For a bipartition P,

h i
min

(X : Y ) = I
⇣

XP

1

:XP

2

�

�

�

Y
⌘

= I
⇣

XP

1

:XP

2

�

�

�

Y
⌘

� I
⇣

XP

1

:XP

2

⌘

= I(X :Y ) � I
⇣

XP

1

:Y
⌘

� I
⇣

XP

2

:Y
⌘

hei(Y/P)i = I(X :Y ) � I
⇣

XP

1

:Y P

1

⌘

� I
⇣

XP

1

:Y P

1

⌘

.

hei(Y/P)i � h i
min

(X : Y ) = I(X :Y ) � I
⇣

XP

1

:Y P

1

⌘

� I
⇣

XP

1

:Y P

1

⌘

� I(X :Y ) + I
⇣

XP

1

:Y
⌘

+ I
⇣

XP

2

:Y
⌘

= I
⇣

XP

1

:Y
⌘

� I
⇣

XP

1

:Y P

1

⌘

+ I
⇣

XP

2

:Y
⌘

� I
⇣

XP

2

:Y P

2

⌘

= I
⇣

XP

1

:Y P

2

�

�

�

Y P

1

⌘

+ I
⇣

XP

2

:Y P

1

�

�

�

Y P

2

⌘

� 0 .

And we complete the proof that h i
min

 h�i. Therefore, h�i 6 h i.
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5.E Setting t = 1 without loss of generality

Given t stationary surjective functions that may be di↵erent or the same, denoted f
1

· · · f
t

, we define

the state of system at time t, denoted X
t

, as the application of the t functions to the state of the

system at time 0, denoted X
0

,

X
t

= f
t

✓

f
t�1

⇣

· · · f
2

�

f
1

(X
0

)
�

· · ·
⌘

◆

.

We instantiate an empty “dictionary function” g (•). Then for every x
0

2 X
0

we assign,

g (x
0

) ⌘ f
t

✓

f
t�1

⇣

· · · f
2

�

f
1

(x
0

)
�

· · ·
⌘

◆

. 8x
0

2 X
0

At the end of this process we have a function g that accomplishes any chain of stationary functions

f
1

· · · f
t

in a single step for the entire domain of f
1

. So instead of studying the transformation,

X
0

f1···ft�! X
t

,

we can equivalently study the transformation,

X
0

g�! Y .

Here’s an example using mechanism f
1

= f
2

= f
3

= f
4

= AND-GET.

time=0 t = 1 t = 2 t = 3 t = 4

00 ! 00 ! 00 ! 00 ! 00

01 ! 00 ! 00 ! 00 ! 00

10 ! 01 ! 00 ! 00 ! 00

11 ! 11 ! 11 ! 10 ! 00

g (•) AND-GET AND-AND AND-ZERO ZERO-ZERO

Table 5.1: Applying the update rule “AND-GET”, over four timesteps.
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