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Abstract

Two problems are considered in this thesis: the nonlinear dynamics of a cloud
of cavitation bubbles, and bubbly cavitating flows in a converging-diverging
nozzle. The focus of the first problem is to explore the characteristics of the
growth and collapse of a spherical cloud of bubbles. The prototypical problem
solved considers a finite cloud of nuclei that is exposed to a decrease in the
ambient pressure which causes the cloud to cavitate. A subsequent pressure
recovery then causes the cloud to collapse. This is typical of the transient be-
haviour exhibited by a bubble cloud as it passes a body or the blade of a ship
propeller. The simulations employ the fully nonlinear, non-barotropic, homo-

geneous two-phase flow equations coupled with the Rayleigh-Plesset equation



for the dynamics of individual bubbles. A Lagrangian integral method is de-
veloped to solve this set of equations. The computational results confirm the
idea put forward by Mgrch and his co-workers (Mgrch [1980], [1981], [1982];
Hanson et al. [1981]) who speculated that the collapse of the cloud involved
the formation of a shock wave on the surface of the cloud and that inward
propagation and geometric focusing of this shock would lead to very large
localized pressure pulses. The effects of varying the bubble population den-
sity, the cavitation number, and the ratio of the cloud size to the bubble size
are examined. The theoretical results are shown to provide a satisfactory ex-
planation for dynamic structures and acoustic signature observed in recently
conducted experiments of cloud cavitation at California Institute of Technol-
ogy (Reisman and Brennen [1996]; Brennen et al. [1996]). It is concluded
that the formation and focusing of bubbly shock waves are responsible for the
severe noise and damage potential in cloud cavitation.

The second problem investigates the nonlinear behavior of a bubbly cavi-
tating flow, both steady and unsteady, through a converging-diverging nozzle.
Two different flow regimes are found from steady state solutions: quasi-steady
and quasi-unsteady. The former is characterized by the large spatial fluctua-
tions in the downstream of the flow. Bifurcation occurs as the flow transitions
from one regime to the other. An analytical expression for the critical bub-
ble size at bifurcation is obtained. Finally, unsteady solutions in a period
of consecutive times are presented. These solutions are characterized by the
downstream spatial fluctuations coupled with large pressure pulses changing
in both magnitude and location with time. The characteristics of these pulses
are similar to the shock pulses of Part I and are produced by the local violent

collapse of the bubbles in the flow.
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General Introduction

Bubbly cavitating flows belong to a special category of the gas-liquid two-
phase flows. In cavitating flows bubble/flow interactions and bubble/bubble
interactions are important physical phenomena which strongly modify the flow
dynamics and acoustics compared to non-cavitating flows. In a cavitating
flow the nuclei are convected into a region of low pressure, grow explosively
to macroscopic size, and collapse violently when they are convected back to a
high pressure region. The bubble/flow interactions are highly nonlinear in such
a flow. Theoretically, an approximate model for individual traveling bubble
cavitation is the Rayleigh-Plesset equation (Plesset [1948]), which relates the
dynamics of a single bubble to the far-field pressure perturbation experienced
by the bubble. However, when the frequency of cavitation events increases in
space or time such that they begin to interact with one another, a whole new
set of phenomena may be manifest. The bubble/bubble interaction through
the hydrodynamics of the surrounding liquid may significantly influence the

whole flow field. This can result in more deleterious cavitation effects, namely



an increase in the cavitation erosion and noise.

The first part of this thesis is focused on a particularly violent type of
cavitation called “cloud cavitation,” a structure which consists of numer-
ous cavitating bubbles in close proximity. Most previous theoretical stud-
ies of the dynamics of cavitating clouds have been linear or weakly non-
linear analyses which have identified the natural frequencies and modes of
cloud oscillation (see, for example, d’Agostino and Brennen [1983], [1989];
Kumar and Brennen [1991], [1992], [1993]) but have not, as yet, shown how
a cloud would behave during the massively nonlinear response in a cavitating
flow. Experiments have demonstrated that the coherent collapse of bubble
clouds can result in greater noise generation and greater damage potential
than would be expected from the cumulative effect of the collapse of the in-
dividual bubbles which make up the cloud. However, the basic dynamics and
acoustics of cloud cavitation are still poorly understood.

To model the bubbly mixture, concepts from continuum mechanics was
adopted by many previous investigators. Two basic assumptions are integral
to this approach: 1) The size of bubbles are much larger than the kinetic
dimensions of molecules, such as distances between the molecules, mean free
path of molecules, etc. Thus in the dimension of the non-homogeneties (the
bubbles), large number of molecules are contained. 2) The bubbles are char-

acterized by a lengthscale many times smaller than characteristic lengths over



which the mixture properties vary. The first assumption enables us to employ
the conservation equations for classical fluid dynamics for each phase. The
second assumption makes it possible to use the method of ensemble averag-
ing of the conservation equations for each phase over an intermediate length
scale in which a large number of bubbles are included in any infinitesimal vol-
ume. Biesheuvel and van Wijngaarden [1984] derived a continuum mixture
model which included the effects of bubble dynamics, liquid compressibil-
ity and relative motion between two phases by volumetric averaging. This
model has been successfully applied to describe the phenomena of both small
amplitude and large amplitude wave propagation through liquids containing
small gas bubbles (see, for example, van Wijngaarden [1972]; Noordzij [1973];
Noordzij and van Wijngaarden [1974]; Kameda and Matsumoto [1995]). The
same mathematical model is used in this thesis except that the effects of
liquid compressiblity and relative motion between the phases are neglected.
Note that d’Agostino and Brennen [1989] examined the validity of both ap-
proximations and found that they have very little effect on the basic dy-
namics of the flow such as its natural frequencies. The main contribution
of these effects is the damping that they cause at the bubble resonant fre-
quency. This can be incorporated by taking an appropriate value of the effec-
tive viscosity in place of liquid viscosity used in the Rayleigh-Plesset equation

(Chapman and Plesset [1971]). Furthermore, present model is only valid for



a dilute bubbly mixture with small bubble void fraction. This is the case for
many engineering cavitating flows where the population density of upstream
nuclei is very small.

In bubbly cavitating flows, the inertia effects caused by the explosive ex-
pansion and collapse of bubbles can dominate all other effects. The pressure
changes in the surrounding liquid generate rapid bubble volume changes which
result in global accelerating velocity fields. Associated with the mixture ac-
celeration is a global pressure gradient which in turn effects the pressure en-
countered by each individual bubble in the mixture. These bubble/flow and
bubble/bubble interactions can only be accurately described when the dynam-
ics of the bubbles in the flow are modeled appropriately. The Rayleigh-Plesset
equation for the bubble radial pulsation is used in the present model. It will
be shown that the consequences of Rayleigh-Plesset dynamics cause many
difficulties in the numerical computation.

Another issue in the modeling of the bubbly cavitating flow is that the
incorporation of the Rayleigh-Plesset equation induces a different dynamic
scale (time or distance) to the flow. It is well known that the resonant period of
individual bubbles has a significant effect on the propagation of acoustic waves
as long as the period of the wave is close to or higher than the resonant period of
the bubbles. It is found in this thesis that for a mixture with finite dimension,

such as a bubble cloud, the ratio of the global dynamic scale (for example, the



time for an acoustic wave to travel across the cloud) to the microscale of the
bubble plays a critical role in determining the mixture dynamics both in the
linear and in the nonlinear regimes.

The first problem in this thesis investigates the characteristics of the col-
lapse dynamics of a cavitating cloud which has no acceleration with respect
to an inertial frame. However, many engineering cavitating flows are asso-
ciated with the flow acceleration, such as the cavitating flow on a hydrofoil.
Inertia effects of the mean flow must be included to properly model these
types of flow. The second model problem explored in this thesis concerns non-
linear bubbly cavitating flows through one-dimensional converging-diverging
nozzles. This is an important problem by itself in many engineering applica-
tions, but has not, previously, been studied in the context of bubble/bubble
interactions. The nozzle flow is also a useful model of any cavitating flow in
which a low pressure region causes the flow to accelerate, e.g., the cavitat-
ing flow on the suction surface of a hydrofoil. Therefore, study of the 1-D
accelerating flow with bubble cavitation effects may have value in building
up fully nonlinear solutions for the practical higher dimensional flows. Note
that Kubota et al. [1992] proposed a numerical modeling for unsteady cavitat-
ing flows on a two dimensional hydrofoil using the Navier-Stokes equations of
the mixture coupled with Rayleigh-Plesset bubble dynamics. Although their

model can exhibit the shedding of cavitation clouds and the generation of



vortex cavitation, the results showed very small pressure peaks on the suc-
tion surface of the foil. Many experiments all registered very large positive
pressure pulses in this kind of flow (see, for example, Wade and Acosta [1966];
Le et al. [1993]; Brennen et al. [1996]). One possible reason of this inconsis-
tency is that they employed some artificial diffusivities in both the mixture
momentum equation and the Rayleigh-Plesset equation to eliminate the in-
stability caused by the nonlinear convective terms in these equations. This
may suppress the large local acceleration caused by the violent collapse of the
bubbles in the flow and therefore eliminate the production of these pulses.
Parenthetically, it is shown in this thesis that very large pressure pulses can
occur due to the violent bubble collapse. Futhermore, it is these pulses that
cause the computational difficulties.

The same mathematical model as employed in the first problem is applied
for the accelerating nozzle flow. Both steady and unsteady solutions are in-
vestigated to explore the characteristics of this kind of flow. The Bernoulli
effect caused by the growing and collapsing bubbles in the nozzle generates
important interaction effects. In contrast to the spherical cloud, the inter-
nal flow configuration causes the dynamics of the bubbles to have a much
more dramatic influence on the mean flow through the mass and momentum

conservation equations of the confined mixture.
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Chapter 1

Introduction

In many flows of practical interest one observes the periodic formation and col-
lapse of a “cloud” of cavitation bubbles. Such a structure, which has a foamy
appearance and consists of numerous cavitating bubbles, is termed “cloud
cavitation.” The temporal periodicity may occur naturally as a result of the
shedding of cavitating vortices or it may be the response to a periodic distur-
bance imposed on the flow. Common examples of imposed fluctuations are
the interaction between rotor and stator blades in a pump or turbine and the
interaction between a ship’s propeller and the inhomogeneous wake created by
the hull.

Experimental studies have shown that intensive noise and damage poten-
tial are associated with the collapse of a cavitating cloud of bubbles (see,
for example, Bark and Berlekom [1978]; Shen and Peterson [1978], [1980];

Bark [1985]; Franc and Michel [1988]; Kubota et al. [1989]; Le et al. [1993];



Reisman et al. [1994]). Moreover, it is demonstrated that when clouds of cavi-
tation bubbles collapse coherently, they result in greater material damage (see,
for example, Soyama et al. [1992]) and greater noise generation (see, for exam-
ple, Reisman et al. [1994]) than would be expected from the cumulative effect
of the collapse of the individual bubbles which make up the cloud. However,
the precise physical phenomena involved in cloud cavitation have not, as yet,
been properly understood and the basic explanation of the enhanced noise and
damage potential is still not clear. In the first part of this thesis the nonlinear
growth and collapse of a spherical cloud of cavitation bubbles and the thereby
generated pressure and momentum pulses responsible for noise and erosion
are examined. A continuum mixture model coupled with the Rayleigh-Plesset
equation is solved numerically by a Lagrangian integral method. The results
show that the collapse of the cloud may be accompanied by the formation of
an inward propagating bubbly shock wave. As the shock passes the bubbles in
the cloud, very large pressure pulses are produced due to the violent collapse
of the bubbles. This in turn accelerates the mixture velocity and increases
the pressure gradient in the mixture. Due to these coupled effects and the
spherically geometric focusing, the shock speeds up and rapidly gains strength
as 1t approaches the center of the cloud. Very complicated bubble-bubble in-
teractions are observed when the shock propagates to the center of the cloud,

produces very high pressure, which then causes a rebound of the cloud. The
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first collapse and rebound, which induce a large volumetric acceleration of the
cloud, can cause a large peak in the far-field acoustic noise. The magnitudes
of the subsequent peaks in each collapse and rebound cycle decay continuously
due to the bubble damping mechanisms. After several cycles, the cloud be-
gins to oscillate at its natural frequency. Understanding such bubbly flow and
shock wave processes is important because these flow structures propagate the
noise and produce the impulsive loads on nearby solid surfaces in a cavitating
flow. The results of this thesis suggest that the formation and focusing of the
bubbly shock wave is one of the major mechanisms for the enhanced noise and

damage potential associated with cloud cavitation.

1.1 Theoretical Developments for the Dynam-

ics of Cavitation Clouds

Analytical studies of the dynamics of cavitation clouds can be traced to the
work of van Wijngaarden [1964] who first attempted to model the behavior of
a collapsing layer of bubbly fluid next to a flat wall and found higher average
pressures at the wall as result of the interactive effects of bubble dynamics.
The work of van Wijngaarden represents the earliest use of continuum mixture
models in the study of cloud dynamics. Later investigators employed several

different but equivalent mixture models to investigate shock wave propaga-
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tion in liquids containing small gas bubbles (see, for example, Noordzij [1973];
Noordzij and van Wijngaarden [1974]; Kameda and Matsumoto [1995]). The
oscillating structure of the bubbly shock waves and how some of the impor-
tant relaxation processes such as the bubble-liquid relative motions and the
heat transfer between phases affect the structural evolution of the shocks were
extensively studied by these work.

Continuing on the dynamics of cavity clouds, Chahine [1982b], [1982a] ex-
plored numerical methods which incorporate the individual bubbles using
matched asymptotic expansions. His model assumes instantaneous trans-
mission of ambient conditions to the individual bubble and thus neglects
the compressibility of the cloud. Later, d’Agostino and Brennen [1983] in-
vestigated the linearized dynamics of a spherical cloud of bubbles using a
continnum mixture model coupled with the Rayleigh-Plesset equation and
showed that the interaction between bubbles leads to a coherent dynam-
ics of the cloud, including natural frequencies that can be much smaller
than the natural frequencies of individual bubbles. Omta [1987] linearized
the Biesheuvel-van Wijngaarden homogeneous flow equations for bubbly mix-
tures (Biesheuvel and van Wijngaarden [1984]) and obtained solutions to the
flow in a spherical bubble cloud under a number of simplified assumptions.
Several conclusions he reached are similar to those of d’Agostino and Bren-

nen (d’Agostino and Brennen [1983]). Indeed the literature on the linearized
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dynamics of clouds of bubbles is growing rapidly (see also, for example,
d’Agostino et al. [1988], d’Agostino and Brennen [1989]; Prosperetti [1988]).
However, bubble clouds in engineering cavitating flows always experience large
amplitudes of pressure perturbations and it is well known that the dynamics
of a bubble can be highly nonlinear (see, for example, Prosperetti [1975]).
The nonlinear convective effects in pratical flows may also produce signifi-
cant nonlinear effects in the dynamics and acoustics of real bubble clouds.
An attempt to understand these nonlinear effects was undertaken in the
work of Kumar and Brennen [1991], [1992], [1993]. Using Fourier expansion
theory, they found weakly nonlinear solutions to a number of cloud prob-
lems by retaining only the terms that are quadratic in the amplitude. One
interesting phenomenon that emerges from this nonlinear analysis involves
the interactions between the bubbles of different size that would commonly
occur in any real cloud. The phenomenon, called “harmonic cascading”
(Kumar and Brennen [1992]), occurs when a relatively small number of larger
bubbles begins to respond nonlinearly to external excitation. Then the higher
harmonics produced by the nonlinearity will excite the much larger number of
smaller bubbles at their natural frequency. The process can then be repeated
to even smaller bubbles. In essence, this nonlinear effect causes a cascading of
fluctuation energy to smaller bubbles and higher frequencies.

Another approach to the modeling of the interaction dy-
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namics of cavities was developed by Chahine and his coworkers
(Chahine and Duraiswami [1992]; Chahine et al. [1992]). Three dimen-
sional Boundary Element Methods have been employed to simulate the
deformations of the individual bubbles within collapsing clouds in inhomo-
geneous flow fields or close to solid boundaries. It has been shown that the
bubbles on the periphery of the cloud develop inwardly directed reentrant
jets. However, most clouds contain many thousands of bubbles, impossible
to be handled by any high speed computer at this time. It therefore is
advantageous to examine the nonlinear behavior of cavitation clouds using
continuum mixture models. The recent numerical modeling of unsteady
cavitating flows on a hydrofoil by Kubota et al. [1992] is an important step
in the direction of engineering application using continuum bubbly mixture
models. However, the artificial diffusivities they used for the reason of
numerical stability may suppress the collapse of the bubbles so that to
eliminate some highly nonlinear phenomena such as the formation of shock
waves.

Another perspective on the subject of collapsing clouds was that in-
troduced by Mgrch, Hanson and Kedrinskii (Mgrch [1980], [1981], [1982];
Hanson et al. [1981]). They speculated that the collapse of a cloud of bub-
bles involves the formation and inward propagation of a shock wave and that

the geometric focusing of this shock at the center of a cloud creates the en-
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hancement of the noise and damage potential associated with cloud collapse.
However, they assumed that the bubbles are completely annihilated after the
shock passing. This implies that all the bubbles are filled with pure vapor.
But this implies no real sonic speed for the bubbly mixture and hence makes
the shock wave solutions inappropriate. Fully nonlinear solutions for spheri-
cal cloud dynamics were first obtained by Wang and Brennen [1994], [1995b],
[1995a]. Their computational results show that the continuum models of the
cloud indeed manifest the shock wave phenomena and thus confirm the idea

put forward by Mgrch and his coworkers.

1.2 Topics of Present Research

This thesis presents studies of the basic dynamics and the consequent acoustics
of a bubble cloud in a massively nonlinear cavitating flow. The model of the
spherical cloud problem is described in Chapter 2. Sections 2.1 and 2.2 describe
the non-dimensional quantities to be used and the basic problem to be solved.
Governing equations, initial conditions and boundary conditions are given in
Section 2.3. Section 2.4 describes the far-field pressure perturbation to be
experienced by the cloud. The typical response of a single bubble to this
pressure perturbation is also shown.

The numerical method for solving these equations is discussed in Chapter

3. The derivation of the Lagrangian integral equations is given in Section 3.1.
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Section 3.2 describes the iteration algorithms used to find the mixture pressure
coefficient and points out the inherent numerical difficulties of the problem.
Computational results and discussion are presented in Chapter 4. The
characteristics of the nonlinear dynamics of the cloud are described in Section
4.1. The development of a bubbly shock wave as well as the structure of the
shock during the collapse of the cloud are also described. Furthermore, a
typical strength of the pressure pulse produced by shock-induced local bubble
collapse is illustrated. Section 4.2 describes the inherent numerical difficulty
by showing a typical rate of convergence for solving the integral equation of
mixture pressure coefficient. The number of iterations at each time step is
directly affected by the strength of the shock pulse and grows very fast as
the shock moves into the cloud and accumulates its strength. Typical rates
of convergence for different iteration algorithms are also compared. Section
4.3 describes an important parameter in cloud dynamics. This parameter is
termed as the “bubble/cloud interaction parameter.” Physical meaning of this
parameter is discussed. It is shown that different values of the bubble/cloud
interaction parameter will result in different collapse scenarios of the cloud.
Three cloud collapse modes are identified and described in Section 4.4. The
phenomena of the formation and focusing of the shocks are different in each
mode. The characteristics of the far-field acoustic pulses produced by the

cloud dynamics are presented in Section 4.5. Power spectral density of the
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pulses shows several important features of the acoustic noise produced by
the nonlinear dynamics of the cloud. Some of these characteristics have been
observed in experiments. The far-field impulse generated by the cloud collapse
is examined in Section 4.6. The impulses generated during different collapse
modes are compared. Correlation of the acoustic impulses with various flow
parameters are also included. It is found that the impulse is strongly correlated
with the normalized maximum total volume of bubbles in the cloud. The rapid
increase of the speed of the shock as it propagates into the cloud is described
in Section 4.7. Results from three different initial void fractions are presented.
In Section 4.8, the present analytical results are compared with the recent
experimental results obtained here, at Caltech (Reisman and Brennen [1996];
Brennen et al. [1996]). Correlation of the measured pressure signals with high
speed movies of cloud cavitation associated with cavitating hydrofoil clearly
showed that the formation and subsequent collapse of large scale bubble clouds
produce very large pressure pulses which can be explained by the present

theory.
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Chapter 2

The Model Problem and Governing

Equations

A prototypical problem is constructed to explore the basic dynamics of the
nonlinear growth and collapse of a spherical cloud of bubbles. The spheri-
cal symmetry makes the problem tractable without losing the fundamental

dynamics.

2.1 Dimensionless Quantities

The variables in all the following figures and equations are non-dimensionalized
using the initial bubble radius, R, and a reference flow velocity, U*. All quan-
tities with superscript * represent dimensional values; without this superscript
the quantities are non-dimensional. For example, the non-dimensional bubble

radius R = R*/R§, the non-dimensional bubble population per unit liquid
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volume n = n*(R})?, the non-dimensional mixture velocity u = u*/U*, the
non-dimensional radial coordinate r = r*/ R, and the non-dimensional time
t = t*U*/Ry. The Reynolds number Re, Weber number We, pressure coeffi-

cient of the mixture C'p, and cavitation number ¢ are defined as follows:

Re = pLURg/ug
We = pZU*ZRS/S*
1 2
Cp = (7" =r)/(5pLU7)
1 2
o = 5P (5el")
where pj is the liquid density, u}, is the effective viscosity of liquid which
incorporates the various bubble-damping mechanisms, namely acoustic, ther-
mal, and viscous damping, described by Chapman and Plesset [1971], S* is
the surface tension of the liquid, pj is the vapor pressure inside the bubble,
p; 1s the initial equilibrium pressure in the mixture, and p* is the mixture
pressure. From the definition of cavitation number, o, we know that small
values of o indicate that the initial equilibrium pressure is close to the vapor

pressure and the bubbles therefore cavitate more readily.
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2.2 The Model Problem

Consider a spherical cloud of bubbles surrounded by an unbounded pure liquid
as shown in Figure 2.1. The liquid is at rest infinitly far from the cloud.
Compared to the large compressibility of the cloud, the pure liquid is assumed
incompressible. It is assumed that the population of bubbles per unit volume
of liquid, n, within the cloud, is piecewise uniform initially and that there is
no coalescence or break-up of bubbles. Since relative motion between the two
phases and the mass of liquid vaporized or condensed are both neglected, it
follows that n remains both constant and piecewise uniform within the cloud.
The radius of the cloud is represented by A(%), a function of time¢. The bubble
radius in the cloud is R(r,t), a function of radial coordinate r and time. The
bubbles are assumed to be spherical and to contain uniform water vapor and
residual permanent gas. The problem to be solved is as follows. The cloud
and the whole domain of liquid are initially in equilibrium. Starting at ¢ = 0,
a far-field driving pressure, Cpy(t), is imposed on the pure liquid at infinity

and the response of the cloud to this pressure perturbation is to be studied.

2.3 Basic Equations

The basic equations used are those of d’Agostino and Brennen [1983], [1988],

[1989] except that all the nonlinear convective terms are retained since these
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are important in the context of the highly nonlinear growth and collapse of the
cloud. The dimensionless forms of the continuity and momentum equations

for the spherical bubbly flow are:

1 9(r*u)  12mnR* DR

= : <
(2.1) T or “3vamiE Dl TS A(t)
Du 1 . 9Cp
. —_ — : <
(2.2) i 6(3 + 4mnR°) 5 TS A(t)

where D/ Dt = 0/0t + ud/0r is the Lagrangian derivative, u(r,t) is the mix-
ture velocity, R(r,t) is the individual bubble radius, Cp(r,t) is the mixture
pressure coefficient defined in Section 2.1, and A(¢) is the radius of the cloud.
The bubble population per unit liquid volume, 7, is related to the void frac-
tion, a, by (37 R*)n = a/(1 — a). The definition of « is the total volume of
bubbles per unit mixture volume. Interactions of the bubble dynamics with
the flow are modeled by the Rayleigh-Plesset equation (Knapp et al. [1970];
Plesset and Prosperetti [1977]) which connects the local mixture pressure co-

efficient, C'p, to the bubble radius, R:

DR 3 /DR\?> o 4 1 DR
. == — [l —R3F oy —
(23) R + 2<Dt> T L= B e n

2
We

+ [R—l — R-Bk] + %CP =0
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where the definitions of cavitation number, o, Weber number, We, and the
Reynolds number, Re, are all given in Section 2.1. It has been assumed that
the non-condensable gas inside the bubbles behaves polytropically with an
index k. If £ = 1, a constant bubble temperature is implied and & = 7,
the ratio of specific heats, would model adiabatic behavior. Bubble growth
due to rectified diffusion has been ignored since that takes place on a much
slower timescale than in the process of violent collapse in cavitating flows.
Furthermore, the above Rayleigh-Plesset equation neglects the local pressure
perturbations experienced by the individual bubble due to the growth or col-
lapse of its neighbor. In other words, effects of the nonzero volume variation
of the neighboring bubbles are excluded in this bubble dynamic model. It has
been shown that for randomly distributing bubbles the correction factors are of
order of o (Nigmatulin [1991]), or higher (Sangani [1991]). These corrections
could be incorporated theoretically or numerically. However, in the present
work the void fractions considered are only few percent so that the correction
factors are neglected. d’Agostino and Brennen [1989] also estimated the error
in neglecting these effects to be very small.

The mathematical model of equations (2.1), (2.2), and (2.3) is complete
and after applying appropriate initial and boundary conditions can, in theory,
be solved to find the unknowns Cp(r,t), u(r,¢), and R(r,t) for any bubbly

cavitating flow with spherical symmetry. However, the nonlinearities in the
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Rayleigh-Plesset equation and in the Lagrangian derivative, D/Dt, present
considerable computational impediments.

The boundary condition on the surface of the cloud, r = A(t), is obtained
as follows. The spherically symmetric incompressible liquid flow outside the

cloud, r > A(t), must have a solution of the form:

(2.4) u(ryt) = 25> A@)

2dC(t)  CX(1)

(25) Cp(T,i) = Cpoo(t) + S 4 ;or > A(t)

where C(t) is an integration constant and Cp,(¢) is the imposed driving pres-
sure coefficient at infinity which will be described in Section 2.4. By substi-
tuting the values of v and r at the boundary of the cloud in (2.4), C(¢) can

be determined as

(2.6) C(t) = u(Ao, t)r*( Ao, 1)

Combining (2.4) and (2.5) and substituting r = A(%), we obtain the time-

dependent boundary condition at the surface of the cloud:

@ Cp(A(D).1) = Cros(t) + AZ) d[AQ(t)I;EA(t),i)]uz( A),1)
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At the center of cloud, the symmetry of the problem requires
(2.8) u(0,t) =0

Initial conditions are also required and, in the context of cavitating flows,
it is appropriate to assume that, at time ¢ < 0, the whole flow field is in
equilibrium. It is also assumed, for simplicity, that all the bubbles have the

same initial size. Therefore, the following initial conditions should be applied:

(2.9)  R(r0) =1, %(T,O):o, w(r,0) =0, Cp(r,0)=0

2.4 The Far-field Driving Pressure, Cp.(t)

In (2.7), Cpoo(t) represents the far-field pressure perturbation experienced by

the cloud in a typical cavitating flow. A simple sinusoidal form is chosen for

Cpes(t):

%CPMIN {1 — COS(%t)] 0 <t <ig

(2.10) Cpo(t) =
0 t<O0and? > {g

where Cparry is the minimum driving pressure coefficient and ¢ is the non-

dimensional duration of the pressure perturbation. Consequently, for a cloud

flowing with velocity U* past a body of size D*, the order of magnitude of ¢4
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will be D*/ Rg, and Cpprv will be the minimum pressure coefficient of the flow.
In order to characterize how Cpy(t) and the cavitation number, o, influence
the occurrence of cavitation, an example of Cpu,(t) with Cpprry = -0.5 and ig
= 500 is given in Figure 2.2. Any flow, whether cavitating or not, has some
value of o, which is set as 0.4 in the present example. From the definitions of
pressure coefficient and cavitation number, we know that when Cpu,(¢) < —0
the driving pressure is lower than the vapor pressure, p},, and will cause nuclei
in the flow to cavitate. Figure 2.3 shows a typical dynamic response of a single
bubble to this pressure perturbation by solving the Rayleigh-Plesset equation
numerically; it also demonstrates the strong nonlinearity of the equation. The
fast growth rate of the cavitating bubble, after Cp.,(¢) < —o, makes it con-
tinue to expand even after the ambient pressure has recovered and is higher
than vapor pressure. In other words, the maximum bubble size occurs after
the minimum pressure. Then the bubble collapses catastrophically, and this
is followed by successive rebounds and collapses. In the absence of dissipa-
tion mechanisms such as viscosity, these rebounds would continue indefinitely
without attenuation. Each collapse and rebound will result in extremely large

radiated pressure pulses and thus cause noise and material damage.
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Chapter 3

Numerical Method

3.1 The Lagrangian Integral Method

The natural coordinate system in the present problem is the Lagrangian co-
ordinate system based on the mixture velocity, in which all the nonlinear con-
vective terms in the mixture momentum equation and bubble dynamics are
eliminated. A numerical scheme based on the integral representation of the
continuity and momentum equations in the Lagrangian coordinates, (ro,t),
has been developed, where ry is the radial distance from the center of the
cloud at initial time ¢ = 0. The values of quantities at ¢ = 0 are denoted
by a subscript 0. For example, po = p(ro,0) is the mixture density at ¢t = 0.

Therefore, the local density of a mixture material element, p(ro,?), is related
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to its initial density, po(ro), by

p(ro,t) _ 1
(3.1) olro) T

where J is the Jacobian of the coordinate transformation from Lagrangian
coordinates to Eulerians: ro — r(ro,t), and has the following expression in
the spherically symmetric configuration:

(3.2) J="

r2 dro

This also represents the ratio of the current material volume to its initial
volume. The position of a mixture particle can be obtained by integrating

equation (3.1).

3 ro 1/3
(3.3) r(ro,t) = {3 e [} £ [3 -+ 47r77b33(§,t)] df}

where ¢ is the dummy variable of the integration and we approximate
p(ro,t)/po(ro) = [1 — a(ro,t)]/[1 — ao(ro)] due to the fact of large ratio of
liquid to vapor density. Note that the boundary condition r(rg,¢) = 0 at the

center of the cloud has been used to eliminate the integration constant. The
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mixture velocity can be obtained by differentiating equation (3.3) as follows:

or(ro,t)

(3.4) u(ro,t) = T

R*(€,1)&%d¢

1277 /”’ OR(¢,t)
(3 +4mn)ri(ro,t) Jo ot
The mixture momentum equation, (2.2), and the boundary condition at the
surface of the cloud, (2.7), have the following forms in the Lagrangian coordi-
nate framework:

9Cp(ro,t) _ 6 Ju(ro,t) dr(re,t)
87'0 N 3+ 47T77R3(7’0, t) ot or

(3.5)

(36)  Cp(Ao,t) = Crolt) + - 2 Ao, )u( Ao, )] — u*(Ao, 1)

d 2
(Ao, 1) dt [

After substituting equations (3.3) and (3.4) in the right-hand side of (3.5)
and integrating from ro to Ao using the boundary condition (3.6), an integral

equation for mixture pressure coefficient, Cp is found:

Ao . — 9 u2 .
(3.7)  Cp(ro,?) 3 +64m[ f(g’t’cp)ﬂé t()g’t) (g’t)ﬁzde
Zf(AO’t)

+m — u2(A0,t) + Cpoo(t)
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where

T ¢
68 fencn) = gt [ B -]

4 OR((,1)
" Re 0Ot
+3h |y - o L

+ RGO [R(6,0) — 1]

Here the Rayleigh-Plesset equation, (2.3), has been used to substitute for the
bubble wall acceleration, 9*R(ro,t)/dt*. As we will see in the next chapter,
it 1s the very large value of this acceleration at the instant of bubble collapse
and rebound which causes numerical difficulties.

A complete integration time step therefore proceeds as follows.

1) At each Lagrangian node, ro, R(ro,t + At) and OR(ro,t + At)/0t
are calculated using an explicit time marching scheme (a Runge-Kutta
scheme) based on the known solution at the previous time step, R(rg, 1),

IOR(ro,t)/0t and 0?R(ro,t)/0t>.

2) With R(ro,t+ At) and R(ro,t + At)/0t, equations (3.3) and (3.4) can

be integrated to obtain r(rg,t + At) and u(re,t + At).

3) With the results of steps 2 and 3, we can iterate upon equation (3.7)
to find Cp(ro,t + At). Then the Rayleigh-Plesset equation (2.3) can be

used to find 0*R(ro,t + At)/0t>.
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4) Proceed to next time step.

3.2 Iteration Algorithms to Find Cp

Under-relaxation must be used in the iteration step 3 to achieve convergence.

To explain this, rewrite equation (3.7) into the following symbolic form:
(3.9) Cp=T(r,R,u,Cp)+ g(r, R,u)

where operator T' represents the double integration in (3.7) combined with
(3.8) and the inhomogeneous term ¢(r, R, u) includes all the other terms with-
out Cp. Recall that, at this stage all the quantities, except Cp, are known
so we need to iterate the above equation to find Cp. Denote all quantities at

node ro; with subscript j. At each stage in the iteration, the residuals, ¢;, are
(3.10) ¢; = Tj(r, R,u, C3%) + g;(r, R,u) — Cf

where C#? is the result of the last iteration. In general, the iteration algorithm

assumes the following form:

new el €5
(3.11) CPJ. = Plj‘.f +w—Jj
i
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in which w is the relaxation factor and «; represents the estimation of the
rate of the change of the residual ¢; with respect to Cp;. If vy, = 1, (3.11)
corresponds to the algorithm of weighted average. It is found that, in general,
w must be much less than 1 to make the iteration procedure converge. This
results in large computational time. The source of this difficulty can be seen
from the following discussion. First, approximate equation (3.9) by the set of

difference equations:

N
(3.12) a;Cpi+ Y bk)Cpi+gi =0, j=1---N
k=1, k#j

in which the operator of double integral, T', has been approximated by the
trapezoidal rule, a(j) and b(k) are the known coefficients, and N is the to-
tal number of Lagrangian nodes. Equation (3.12) can be put into a matrix
form, QCp = g, with a; as the diagonal elements of the coefficient matrix Q.
This can be used to find the unknown vector Cp. However, in the present
computation, the equation is close to being ill-conditioned. The local collapse
and rebound of bubbles produce very large bubble wall accelerations which in
turn contribute to the magnitude of the off-diagonal coefficient, b(k), at that
location and cause the matrix @) to be far from diagonally dominant. As we
will see in Section 4.2, the stronger the shock wave, the worse the situation.
However, the iteration algorithm (3.11) can still reach convergence by limiting

the relaxation factor w to a very small number, and it is found that the best
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choice of v; in (3.11) are the diagonal elements in equation (3.12), namely, a;.
The rates of convergence for different v; will be shown in Section 4.2.

In addition, the program automatically adjusts the interval of each time
step to ensure that the maximum fractional change of bubble radius in the
cloud between any two consecutive times does not exceed some specific value

(typically, 5%). This is essential for time marching through a violent bubble

collapse.
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Chapter 4

Results and Discussion

The typical flow condition chosen for illustrated purposes in the present study
is as follows. A cloud of nuclei, composed of air bubbles of initial radius
R;=100 pm in water at 20°C, flows with velocity U*=10 m/sec through a re-
gion of low pressure characterized by Cpprryv = —0.75 and the non-dimensional
duration of the low pressure perturbation, ¢¢ (in equation (2.10)), of 50, 100,
500, and 1000. The computation is performed for different combinations of
the following parameters: initial void fraction, agp, of 0.03%, 0.3%, and 3%;
cavitation number, o, of 0.45, 0.55, and 0.65; the non-dimensional cloud ra-
dius, Ag, of 32, 100, and 312. These ranges of values of Ay and ¢g corre-
spond to the ratio of the length scale of the low pressure perturbation to the
initial radius of the cloud, D/Ap, of 0.5 to 31.25. The Reynolds number,
Re = U*Rp} /13, based on the reference flow velocity, initial bubble radius,

the liquid density, and the effective viscosity, is 20 in all the cases presented.
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As mentioned in Chapter 2, the effective liquid viscosity, ug, is used in place of
actual liquid viscosity to incorporate the various bubble damping mechanisms

(Chapman and Plesset [1971]).

4.1 Nonlinear Dynamics of the Spherical

Cloud

Figure 4.1 presents typical bubble-size time histories for five different La-
grangian locations within the cloud, from the surface, ro = Ap, to the
center, ro = 0. The characteristics of the growth of the cloud are sim-
ilar to those of a single bubble and that all bubbles in the cloud grow
in phase. However, because of the strong bubble interaction effects, bub-
ble growth is severely restrained and the bubble growth rate within the
cloud is much smaller than that near the surface. Under these circum-
stances all bubbles away from the near-surface region grow to a smaller
maximum size. In other words, the bubbles in the interior are shielded to
some extent by the outer shell of bubbles. The shielding effect is typical
of the bubble-bubble interacting phenomenon appearing in the earlier in-
vestigations of cloud dynamics (Omta [1987]; d’Agostino and Brennen [1989];
Chahine and Duraiswami [1992]). After the recovery of the ambient pressure,

bubbles on the surface of the cloud start to collapse first. The flow acceleration
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induced by the collapse of the surface bubbles promotes more violent collapse
of the neighboring bubbles and then the strengthening collapse spreads in-
ward, as shown in Figure 4.1. The shielding effect causes the bubbles in the
interior region to continue to grow even after the surface-layer bubbles have
totally collapsed.

As a result of the collapse of the surface layer, a bubbly shock wave
develops and propagates inward through the cloud. A typical structure of
this shock wave is illustrated in Figures 4.2 and 4.3. The wave front of
the shock can be easily identified by the collapse front of bubbles. Unlike
aerodynamic shock waves, the bubbly shock has an oscillatory structure be-
hind the shock front which involves a series of rebounds and secondary col-
lapses and is very similar to that of the gas/liquid shocks investigated by
Noordzij and van Wijngaarden [1974] and other investigators (see, for exam-
ple, Kameda and Matsumoto [1995]). The series of zones with small bubble
size represent regions of low void fraction and higher pressure due to the local
bubble collapse. A schematic representation of the spherical shock is shown
in Figure 4.4. Parenthetically, Mgrch, Kedrinskii and Hanson (Mgrch [1980],
[1980]; Hanson et al. [1981]) first speculated that the collapse of a cloud of
bubbles is driven by an inwardly propagating shock wave. Results of the
present analysis confirm this idea (see also Wang and Brennen [1994], [1995b],

[1995a]).
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As the shock front passes bubbles and causes them to collapse, a very
large pressure pulse can be produced, as shown in Figure 4.5. This pressure
peak, which has a typical magnitude of about 40 atm in practice, corresponds
to the violent collapse of bubbles at the shock front (located at 50% of the
cloud radius at the moment of time depicted in Figure 4.4). The shock wave
strengthens considerably as it propagates into the cloud primarily because of

the focusing effect of the spherical configuration.

4.2 Inherent Numerical Difficulties

As mentioned in Section 3.2, there is an inherent numerical difficulty associated
with the cavitating flows with bubble dynamic effects. In the computational
procedures developed in Section 3.1, an essential step was the solution of an
integral equation for the mixture pressure coefficient. It is shown in Part IT of
this thesis that, instead of the integral equation, mathematically, we can derive
a Poisson-type second order differential equation for the pressure coefficient.
But, in either method, we need to integrate the pressure field through the
very large local pressure pulse produced by the violent bubble collapse where
the spatial derivative of the pressure is discontinuous. An example of this
can be seen in Figure 4.5. The pressure pulse increases in amplitude as the
shock propagates inwards and is focused geometrically. The instantaneous

non-dimensional magnitude can be as high as O(10°) with discontinuity of
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slope.

Figure 4.6 shows a typical convergence history for solving the integral equa-
tion (3.7) by the iteration algorithm (3.11) in which ;=1 is used. In this ex-
ample the cloud reaches its maximum size at about ¢=220 and then collapses.
As a part of this collapse, we know that a shock wave is developed and is
focused into the cloud. Each local peak of the fast oscillation in Figure 4.6
corresponds the presence of a large pressure pulse in the cloud which in turn
requires larger number of iterations. As the shock moves toward the cloud
center, the iteration number increases with the increase of the magnitude of
the pressure pulse. At ¢t ~ 370, when the shock arrives to the center of the
cloud, the number of iteration reaches its maximum and then reduces suddenly
as a result of cloud rebound. Comparison of the convergence history for dif-
ferent combinations of w and +; in (3.11) are shown in Figure 4.7. The choice
of w=0.03 and v; = a(y), the diagonal element in equation (3.12), results in

better convergence.

4.3 The Bubble/Cloud Interaction Parameter

In Wang and Brennen [1995a], parameters such as the cavitation number, o,
initial void fraction, ag, ratio of initial cloud size to bubble size, Ag/ Ry, ratio
of the low pressure perturbation length scale to cloud size, D/Aq, and Cpprin

were exercised in order to explore the range of possible phenomena. The char-
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acteristics dynamics were found to be strongly dependent on the parameter,
B = ao(l — ag)A2/RE, which will be termed the “bubble/cloud interaction
parameter.” Earlier linear and weakly nonlinear studies of cloud dynam-
ics (see d’Agostino and Brennen [1983], [1989], Kumar and Brennen [1991],
[1992], [1993]) show that this parameter is crucial in determination of the
cloud natural frequency. If this parameter is much less than order of unity,
the natural frequency of the cloud is close to that of the individual bubbles in
the cloud. In other words, the bubbles in the cloud tend to behave as indi-
vidual voids in an infinite fluid and the bubble/bubble interaction effects are
minor. These imply that the dynamic effects of the cloud are approximately
the direct sum of the effects of the individual bubbles in the cloud. On the
other hand the bubble interaction effects in the cloud are dominant when the
value of 3 is greater than order one. The collective oscillation of bubbles in
the cloud can result in a cloud natural frequency which is much lower than
the natural frequency of individual bubbles.

The complexity of multiphase flows comes from the existence of different
characteristic times or length scales in the flows and the interactions between
them. The fluid dynamic phenomena are different for the flow fields with
different interaction effects. In cloud cavitation one of the most important
effect is that of the bubble dynamics on the global flow fields and the control

parameter of this effect is 4. In the expression of 3, Ay is the macroscopic
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length scale in the flow, Ry characterizes the microscale, and ap(1 — ap) = ap
represents the concentration of the dispersed phase. The physical meaning of
3 is more clear if we rewrite it into another form. The sonic speed in a bubbly
mixture of void fraction «g without viscosity and surface tension effects is

approximately (see, for example, Brennen [1995], Section 6.2)

kp*
4.1 N . S
(41) . ﬁo(l_ao)pz

where p* is the mixture pressure and k is the polytropic index of the gas inside

the bubble. (Recall that all quantities with * are dimensional). The natural

frequency of bubbles in the mixture is approximately

3kp*
it

(4.2) w

Oy *

where Rj is the bubble radius. But the global length scale of the flow is the
radius of the cloud, A} and, consequently, there are two dynamic time scales
in the flow: the time scale of bubble dynamics, T} = 1/wj, and the time scale

of wave propagation given by

(4.3) Tr=— =20
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The ratio of these two characteristic times has the expression of

(4.4) TE ~ \/ao (1 — ap) A _ \/ag (1 — ap) A2 _ \/B

T; % R

Therefore, # determines the ratio of the two characteristic times in the flow.
If 3 is small, the bubbles will not feel the large scale perturbation in the flow
and there is no interaction from bubble dynamics. On the contrary, if 3 is
larger than order one, the bubble dynamics can effectively influence the large

scale perturbation and contribute to the global dynamics of the cloud.

4.4 Cloud Collapse Modes

Depending on the magnitude of 3, three modes of collapse have been identified
and are described as follows. Figure 4.1 presents the first mode of collapse for
B> 1 (8 ~ 300). Time histories of bubble radius at five different Lagragian
locations, from the cloud surface, ro = Ao, to the cloud center, 7y = 0, are
presented to illustrate this collapse mode. Because of the strong bubble/cloud
interaction effects, bubble growth is severely restrained and the bubble growth
rate within the cloud is quite uniform. All bubbles away from the cloud surface
grow to about the same maximum size. During the collapse phase, bubbles
on the surface of the cloud collapse first and then the collapse propagates and

strengthens inward. As a result of these collapses, a shock wave develops and
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propagates inward through the cloud. The structure of the shock has been
described in Figures 4.2 and 4.3. Figure 4.1 also shows that the closer the
bubbles are to the cloud center, the smaller size they collapse. This is due to
the strengthening of the shock. Very complicated bubble-bubble interactions
are observed when the focusing shock reaches the center of the cloud (at ¢ ~
746), produces very high pressures, and then causes a rebound of the cloud.
An outspreading expansion wave causes all bubbles to grow and starts the
next dynamic cycle of the cloud.

On the other hand, when 3 < 1, the bubbles tend to behave as they would
in an infinite fluid and as illustrated in Figure 4.8. The behavior of the cloud is
quite different under this circumstance. The bubbles can grow more “freely” to
larger sizes than when 3 > 1. However, the bubbles closer to cloud center grow
more slowly than the bubbles near the surface and, therefore, the bubbles with
the smallest maximum size occur at the center of the cloud. The maximum size
of the bubbles on the surface can be up to an order of magnitude larger than
that of the bubbles near the center. As a result, the central bubbles collapse
first and the collapse spreads outward as an innocuous expansion wave. There
is no shock-enhancing process involved and the resulting acoustic impulse is
much smaller than that of the previous mode of collapse as is shown in Section
4.6.

There is an intermediate type of collapse when 3 has an intermediate value,
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as illustrated in Figure 4.9. The collapse starts at mid-radius (about 0.74g
in Figure 4.9) and spreads inward and outward from this location. From the
figure we know that the shielding effect is still strong in the core region of the
cloud so that the growth of core bubbles continues even after outer bubbles
have collapsed. The outward moving collapse front tends to cancel the inward
acceleration of the flow caused by the collapse of the bubbles on the surface
of the cloud. The inward moving collapse has a structure similar to the shock
wave described earlier. However, the shock- focusing effect is weaker due to the
reduced “effective collapse size” of the cloud. The resulting acoustic impulse

will be an intermediate value between the previous two modes.

4.5 The Far-field Acoustic Noise

It 1s important to determine the acoustic consequences associated with the
cloud dynamics. For this reason we shall examine the far-field acoustic noise
produced by the volumetric acceleration of the cloud. The noise is a conse-
quence of the large momentary mass flux involved in the process of cloud
collapse and rebound. Acoustic effects generateded by individual bubbles
are minor in the far-field and will be neglected. If we denote the dimen-
sional time-varying volume of the cloud by V*(¢*), it follows that the dimen-

sional form of the time-varying far-field acoustic pressure is given by (see
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Dowling and Williams [1983]; Blake [1986])

=4 * (4% )07: ko )
. 7)) =
(4 O) pa( ) 4 'f'* dt*z

where p? is the radiated acoustic pressure and r* is the distance from the cloud
center to the point of measurement. In considering the far-field noisethe noise
radiated by individual bubble is neglected

A non-dimensional far-field acoustic pressure can be defined by

_opyrt 2R
iy UD- D

46)  pa(t) A2 EAD o (d_@) }

dt? dt

where the normalizing length scale was chosen to be D*, the typical length of
low pressure perturbation experienced by the cloud (see Section 2.4). In real
flows, D* can be the size of the body or the chord of propeller blade. The time
history of the radius of the cloud is shown in Figure 4.10. Note that, unlike
single bubbles, the cloud radius, A(%), only decreases to a size marginally
smaller than its equilibrium size during the collapse process. However, the
local void fraction within the cloud undergoes large changes due to the sweep of
the shock. This is consistent with the recent experimental observation for cloud
collapse by Reisman and Brennen [1996]. When the enhanced shock wave
moves to the center of the cloud, extremely high pressures are produced; an

outwardly expanding wave then follows. This process can result in very large
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volumetric accelerations and thus cause a large peak in the radiated acoustic
noise as illustrated in Figure 4.10. The magnitudes of the subsequent peaks
decay with time with each cloud collapse and rebound. After several cycles,
the cloud begins to oscillate at its natural frequency (for natural frequency of
the cloud, see d’Agostino and Brennen [1983], [1989]).

The power spectral density of the acoustic noise in Figure 4.10 is shown
as a function of dimensionless frequency in Figure 4.11. This spectrum ex-
hibits the f~2 behavior for the frequency range below 0.2 (or 20 kHz in
dimensional value) which is typical of cavitation noise (see, for example,
Arakeri and Shangumanathan [1985], Blake et al. [1977]). Other cases exhib-
ited an f~" behavior with n in the range of 0.5 to 2. The spectrum has large
peaks at the lowest cloud natural frequency and its higher harmonics. The
first large peak in Figure 4.11 corresponds to the first natural frequency of
the cloud which is located at f=0.02 (or 2 kHz) in the present case. It is
contributed by the regular oscillations of the cloud which occur toward the
end of the collapse and rebound process. The higher harmonics have large
amplitudes and indicate high degree of nonlinearity of the cloud dynamics.
Note that the natural frequency of the individual bubble in the cloud is 0.158
(15.8 kHz) in this case. The most significant feature of the spectrum is that
most of the energy is in the lower frequency range (with respect to the bubble

natural frequency), and is due to the coherent dynamics of the cloud. It is
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noted that Marboe et al. [1986] and Arakeri and Shangumanathan [1985] ob-
served the tendency of the noise spectrum to shift towards lower frequencies
than expected from single bubble dynamics considerations. The effects of
bubble interactions in cavitating flows were suspected to be the source of this
phenomenon. The linear analyses by d’Agostino and Brennen [1983], [1989]
confirmed that the cloud can indeed have much lower natural frequency than
that of the individual bubble. Furthermore, the present analysis shows that
the shift of the spectrum is also caused by the nonlinear harmonics in cloud

dynamics.

4.6 Acoustic Impulses of the Cloud

A good measure of the strength of the collapse noise is the acoustic impulse,

I, defined as the area under the acoustic pulse or

(4.7) - [ 2 (bt

where ¢, and ¢, are times before and after the pulse at which p, is zero. Figures
4.12 to 4.15 illustrate the acoustic impulses as a function of the bubble/cloud
interation parameter, 3, for flows with different cavitation number, o, and dif-
ferent ratio of the low pressure perturbation length to initial cloud size, D/Ay.

In all cases, the impulse increases with increasing 3 and the rate of increase
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is more pronounced as (3 transitions from order one to order ten. Moreover,
for larger D/Ag, the difference of the impulse levels for different cavitation
numbers is obvious, as shown in Figures 4.12 and 4.13. This is because the
recovery of the ambient pressure of the cloud is slower and, therefore, the
bubbles have more time to cavitate. Under this circumstance the degree of
the cavitation in the cloud and the resulting acoustic impulse increases with
the decrease of the cavitation number. On the other hand, if D/Aq is small
(Figures 4.14 and 4.15), the cloud will not have cavitated much before the
recovery of the ambient pressure. Therefore, the influence of the cavitation
number is smaller.

To investigate the relationship of the acoustic impulses to various param-
eters of the flow, calculations using a wide variety of parameter choices (45
permutations) are performed. It is found that the acoustic impulses are lin-
early correlated with the maximum total volume of the bubbles in the cloud
normalized by the length of the low pressure perturbation, Vpyax/(0.5D)3,
as shown in Figure 4.16. Moreover, as illustrated in Figure 4.17, this total vol-
ume decreases with increasing cavitation number and with increase in initial

void fraction. It also varies with D/A,.
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4.7 Shock Speed

Figure 4.18 shows the inward propagation speed of the spherical bubbly shock
wave as a function of the location of the shock front for three different initial
void fractions, ap, of 0.03%, 0.3% and 3%. Note that the shock speed has been
non-dimensionalized by the reference velocity U*=10 m/sec. In each case, the
speed of the shock when it is initially formed in the surface layer of the cloud
is of the order of 10 m/sec. However, the speed increases as it propagates into
the cloud. The rate of the increase of the speed is quite linear as the shock
moves in and is very pronounced over the last 20% of the collapse. This shows
the strong focusing of the shock especially in the inner region of the cloud.
The shock speed near the center of the cloud is an order of magnitude
larger than that in the outer region. The speed can reach about 800 m/sec for
the cases of larger void fractions and can be as large as 1000 m /sec in the case
of small void fraction (ap=0.03%). If these moving pulses passed over some
pressure transducer in a cavitating flow, the typical durations of the output
signals will be the order of tenths of milliseconds to the order of tenths of
microseconds. Furthermore, Figure 4.18 shows that the shock speed is smaller
for larger initial void fraction. This trend is consistent with the void fraction

dependence of the sonic speed in bubbly mixtures.
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4.8 Comparisons of Experiments and Analyt-

ical Results

Earlier measurements of noise produced by cloud cavitation are characterized
by pressure pulses of very short duration and large magnitude (see, for exam-
ple, Bark and Berlekom [1978]; Shen and Peterson [1978], [1980]; Bark [1985];
Le et al. [1993]; Reisman et al. [1994]). However, the basic mechanisms for
the production of these pulses were not clear. The present theory suggests
that the formation and concentration of the bubbly shock waves should be
responsible for these phenomena. Recently, experimental investigations of the
large unsteady and impulsive pressures which are experienced on the suction
surface of an oscillating hydrofoil as a result of cloud cavitation were con-
ducted at California Institute of Technology (Reisman and Brennen [1996];
Brennen et al. [1996]). The experiments used piezo-electric transducers to
measure the unsteady pressures at four locations along the chord of the foil
and at two locations along the walls of the tunnel test section. The trans-
ducers on the foil surface registered very large positive pressure pulses with
amplitudes of the order of tens of atmospheres and with durations of the or-
der of tenths of milliseconds. These orders of magnitudes are in the range
of present theoretical results. Correlation of the transducer output with high

speed movies of the cavitation revealed that these pulses were produced by



48

the large scale collapse of a cloud of bubbles. Experiments also showed that
substantial local pressure pulses were produced by the passage of low void frac-
tion regions over pressure transducers. These regions appear to be bounded
by bubbly shock waves which were propagating within the massive sheet cav-
itation on the foil suction surface. The transducers on the wall recorded the
far-field acoustic pulses produced by the collapse of clouds. The magnitudes of
these far-field pulses were of the order of one atmosphere which are also in the
same order of magnitude as the theoretical far-field acoustic noise described
in Section 4.5. Propagation speeds of the experimental pressure pulses were
also studied by Brennen et al. [1996]. It was found that the pressure pulses
moved with speeds from 10-100 m/sec in agreement with the range predicted
by the present theory (see Figure 4.18). Furthermore, the present analysis
shows that the pressure pulse increases in amplitude as the shock propagates
inwards. The magnitudes of the pressure pulses in the present analysis for
the case of low void fraction have an average value of hundreds of Mpa and
can be as high as thousands of Mpa. While such predictions may seem exces-
sively large, it should be noted that Avellan and Farhat [1989] recorded very
large magnitude pressure pulses with average of 900 Mpa in magnitude (and

extreme values of 2200 Mpa) during a study of cavitation vortex collapse.
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Chapter 5

Concluding Remarks

The nonlinear growth and collapse of a spherical cloud of cavitation bub-
bles has been studied. Fully nonlinear mixture equations coupled with the
Rayleigh-Plesset equation for the dynamics of the bubbles are solved by a La-
grangian integral method. It has been shown that a bubbly shock wave can
develop as part of the nonlinear collapse of the bubble cloud. The shock forms
on the surface of the cloud and strengthens both in magnitude and speed as
it propagates into the cloud. Very high pressure pulses are produced when
the shock wave passes the bubbles in the cloud and causes them to collapse.
Moreover, the focusing of the shock produces very high pressures at the center
of the cloud and then causes the rebound of the cloud. The volumetric accel-
eration of the cloud induces a large pulse in the far-field noise. Understanding
such bubbly flow and shock wave processes is important because these flow

structures propagate the noise and produce the impulsive loads on nearby solid
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surfaces in a cavitating flow. The present results suggest that bubbly shock
formation and focusing is one of the major mechanisms for the enhanced noise
and damage potential associated with cloud cavitation.

The theoretical results shed some light on the previous experimental
observations (Bark and Berlekom [1978]; Shen and Peterson [1978], [1980];
Bark [1985]; Franc and Michel [1988]; Kubota et al. [1989]; Le et al. [1993];
Reisman et al. [1994]; Reisman and Brennen [1996]; Brennen et al. [1996]).
Experimental measurements of the far-field noise noise produced by cloud
cavitation all exhibit pressure pulses of very short duration and large ampli-
tude. These pulses can have magnitudes on the order of tens of atmospheres
with typical durations of the order of tens of milliseconds. Even magnitudes
as high as thousands of Mpa had been recorded. High-speed movies have
also demonstrated that the passage of low void fraction regions over pressure
transducers causes large pressure pulses, which are attributed to propagating
shock waves. Correlation of the movie and the transducer outputs showed
that the collapse of a large scale bubble cloud results in very large pressure
pulses with propagating speeds ranging from tens of m/sec to hundreds of
m/sec. These speeds are consistent with the present theory. Comparisons of
the magnitudes of the pulses in the experiments and the theoretical analyses
also show consistency.

The characteristics of the nonlinear cloud dynamics are shown to be
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strongly dependent on the parameter § = ag(l — ag)A2/R% where g is the
initial void fraction of the cloud, Ay is the initial cloud radius and Ry is the
initial bubble radius. Physically, 3 = TZ/T% is the square of the ratio of
two dynamic characteristic times in the two-phase flow where Tt is the global
dynamic time scale for wave propagation through the cloud and Tp is the
characteristic time of bubble pulsation. Three modes of collapse have been
identified for a spherical cloud. Most notably, the formation and inward fo-
cusing of the shock and the intensity of the generated acoustic impulse is most
pronounced when 8 > 1. Fundamentally, this requires either the initial void
fraction or the ratio of cloud size to bubble size be sufficiently large and this,
in turn, is qualitatively in accord with the observation that cavitation must be
quite extensive for the cloud phenomenon to be manifest. Furthermore, this
implies that bubble interaction effects play a crucial role in cloud cavitation
noise and damage.

Another important issue is the scaling for cloud cavitation. Up to now,
the scaling laws between the experiments of model scale and full scale are still
unknown. This is because the precise physical phenomena in cloud cavitation
has not been properly understood. This thesis has explored the collapse dy-
namics of nonlinear cavitating clouds and the resulting pressure pulses respon-
sible for noise and erosion. It appears that an understanding of the collapse

shock dynamics and acoustics has important consequences and implications
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for the scaling of cloud cavitation noise and damage. For example, the far-field
acoustic impulses were found to have strong correlation with the normalized
maximum total volume of cavitating bubbles in the cloud. Further verification
of this result will require the invention of reliable experimental techniques for
the measurement of the void fraction in the cloud.

The scaling problem arises from the possiblity that the model test could
have very different 3 values than the prototype. Even if the nuclei have the
same size distribution, population and void fraction in the model and proto-
type, the bubble/cloud interaction effects could be much larger in the proto-
type due to the larger value of (.

Of course, most clouds are not spherical. Nevertheless the collapse of all or
part of non-spherical clouds will produce points at which shock waves focus to
produce large local and radiated pulses. Sturtevant and Kulkarny [1976] (see
also Howard [1996]) present a useful review of the various foci of gasdynamic
shock waves including shocks traveling in inhomogeneous media. However,
it is not currently clear what three-dimensional forms or what types of foci
the propagating bubbly shocks might take in the highly non-uniform bubbly

environments which occur in real flows.
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Figure 2.2 An example of the sinusoidal low pressure region, Cps,(t), (equation
(2.10)), with tg = 500, Cparrny = —0.5. Cavitation number, o shown is 0.4.
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Figure 2.2.
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Figure 4.1 The time history of the dimensionless bubble size at five different
positions in the cloud. Parameters used are o = 0.45, Cppyiy = —0.75, ag = 3%,
Ao = 100, and the ratio of the low pressure perturbation length to initial cloud
radius, D/Ag = 5 (corresponds to t = 500). The bubble interactive parameter, 3,
is approxmately 300 in this case.
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Figure 4.2 The structure of a bubbly shock wave accompanying the collapse of
the spherical cloud of cavitation bubbles. Shown are the dimensionless bubble-size
distribution, R(r,t),in the cloud as a function of the dimensionless radial coordinate,
r, at the dimensionless time, £ = 359.61. Parameters used are 0=0.45, Cpprrin=-
0.75, ap=0.5%, Ap=100, and the ratio of the low pressure perturbation length to

initial cloud radius, D/Ag = 2.5, which corresponds to the duration of the low
pressure perturbation, tg=250.
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Figure 4.4 Notation for the structure of an inwardly propagating bubbly shock
wave in a spherical cloud of cavitating bubbles.
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Figure 4.6 A typical convergence history for integrating the mixture pressure
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Figure 4.8 The time history of the dimensionless bubble size at five different
positions in the cloud. Parameters used are ag = 0.03%, D/Ao = 10 (corresponds
to tg = 1000). Other parameters as in Figure 4.1. The bubble interative parameter,
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Figure 4.9 The time history of the dimensionless bubble size at five different
positions in the cloud. Parameters used are g = 0.3%, D/Ap = 10 (corresponds to
tg = 1000). Other parameters as in Figure 4.4. The bubble interative parameter,
3, is approxmately 30 in this case.
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Figure 4.12 The impulse of the normalized far field acoustic noise as a function of
the bubble interactive parameter, 5. The ratio of the length scale of the low pressure
perturbation to initial cloud radius, D/Ag, is 10 (corresponds to tg = 1000). Data
is shown for three different cavitation numbers, o. Other parameters used are
Cpyin = —0.75 and Ag/Ro = 100.
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Figure 4.13 The impulse of the normalized far field acoustic noise as a function
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Figure 4.14 The impulse of the normalized far field acoustic noise as a function
of the bubble interactive parameter, 8. The ratio of the length scale of the low
pressure perturbation to initial cloud radius, D/Ap, is 1 (corresponds to tg = 100).
Data is shown for three different cavitation numbers, o. Other parameters as in
Figure 4.12.
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Ao/ Ry, of 31, 100, and 312.
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Chapter 1

Introduction

One-dimensional bubbly liquid flows in ducts and nozzles represent the sim-
plest confined gas-liquid flow configurations. Understanding of the character-
istics of these flows is important not only for the practical applications such as
gas-liquid pipeline transport, liquid metal MHD propulsion, industrial bubble
columns and so on, but for the development of appropriate analytical models
for other types of cavitating flow.

It is well known that a very small number of bubbles can have a substan-
tial effect on the fluid dynamics of the suspending liquid. Furthermore, the
dynamics of the mixture both in the linear and in the nonlinear regimes are
strongly dependent on the concentration of the bubbles and on the interface
interactions, namely the mass, momentum and energy interactions between
the two phases. Therefore, different interactive effects will produce different

phenomena. For example, the friction and the relative motion between the
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bubbles and the liquid often cause wave dispersion in the mixture. If the
frequency of the wave is close to the natural frequency of the bubbles, in ad-
dition to further dispersion, an oscillatory structure will occur on the wave
because of the bubble radial pulsations. In some flows it is possible to estab-
lish a barotropic relation, p = f(p), which assumes that the mixture pressure
is the function of mixture density only. This implies that all effects caused
by bubble content are disregarded except for the compressibility and that the
mixture can be regarded as a new single-phase compressible substance. Then
the equations of motion of the flow will become purely hyperbolic. In this
case one can anticipate that the flow phenomena and the methods used to
solve the equations will be similar to those in single-phase gas dynamics. In
practice this would only be the case if the typical frequencies experienced by
the bubbles in the flow are very much smaller than the natural frequencies of
the bubbles themselves and if the perturbation imposed on the flow is small
enough such that the bubbles do not cavitate. Under these circumstances the
bubbles would behave quasistatically and the mixture would be barotropic.
Tangren et al. [1949] first addressed the barotropic nozzle flow. A summary
of this subject can be found, for example, in Brennen [1995]. In many practi-
cal flows, however, the barotropic criterion is not met. Then the dynamics of
individual bubbles have to be incorporated into the dynamics of the mixture.

The present paper addresses a cavitating bubbly flow through a converging-
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diverging nozzle. The dynamic effects of the flow acceleration in the nozzle
cause bubbles to cavitate so that they do not behave quasistatically. Under
this circumstance the mixture is not barotropic. The growth and collapse of
cavitating bubbles may dramatically change or destabilize the flow.

The flow model used here is similar to that discussed in Part L
Namely, the continuum mixture equations coupled with the Rayleigh-
Plesset equation for bubble dynamics. This model was proposed first by
van Wijngaarden [1968], [1972] and has been used for studying steady and
transient shock wave propagation in bubbly liquids without the acceleration
of the mean flow (see, for example, Noordzij and van Wijngaarden [1974],
Kameda and Matsumoto [1995]). Ounly a few papers have addressed problems
with flowing bubbly liquids. Ishii et al. [1993] studied steady bubbly flows
through a converging-diverging nozzle but with the assumption that the gas
pressure inside the bubbles is equal to the ambient fluid pressure so that the
bubble radial dynamics (as represented by the Rayleigh-Plesset equation) are
neglected. Morioka and Matsui [1980] and Morioka and Toma [1984] investi-
gated the acoustic dispersion relation for a flowing bubbly liquid using van
Wijngaarden’s model. Toma and Morioka [1986] examined characteristics of
different acoustic modes in flowing bubbly liquid using the same model. How-
ever, for an accelerating flow, the linearization of the equations of motion is

impossible since the mean flow quantities are changing with both space and
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time and the perturbation with respect to constant mean values can not be
performed. Of course, one can perturb the flow equations with respect to
the steady state solutions to make the equations linear. However, the steady
state solutions are complicated enough (see Chapter 3) so that an analyti-
cal analysis is intractable. Toma et al. [1988] conducted the experiments with
bubbly liquid flows in a converging-diverging nozzle and recorded the tempo-
ral fluctuation characteristics of this kind of flow. However, fully nonlinear
solutions of the accelerating bubbly flows with bubble cavitation effects have
not, previously, been obtained.

Nonlinear solutions for a cavitating nozzle flow are presented here. It is
found that the characteristics of the flow change dramatically even when the
upstream void fraction is very small. Large downstream spatial fluctuations
can be induced by the pulsations of cavitating bubbles. When the flow is
unsteady, the effects of bubble dynamics cause instant large pressure pulses
which move back and forth downstream of the throat.

Chapter 2 describes the basic equations for the present problem. Chapter
3 describes steady state solutions. Two different flow regime are found. Bi-
furcation occurs as the bubbles grow to a critical size and the flow transitions
from a quasistatically stable regime to the quasistatically unstable regime. An
analytical expression of this critical bubble size is derived in Section 3.3.

Chapter 4 addresses the problem of the unsteady cavitating nozzle flow.
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The system of the unsteady equations is rewritten based on the Lagrangian
formulation and are described in Section 4.1. An explicit computational proce-
dure for solving the equations is suggested in Section 4.2. Section 4.3 presents
some solutions obtained for a particular case. These solutions are character-
ized by downstream spatial fluctuations coupled with large pressure pulses
changing in both magnitude and location with time. The characteristics of
these pulses are similar to the shock pulses shown in Part I and are produced

by the local violent collapse of the bubbles in the flow.
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Chapter 2

Basic Equations

The variables and equations in this part of thesis are all in dimensionless
form. The definitions of the non-dimensional quantities are similar to those in
Section 2.1, Part I, but are now based on the upstream conditions of the nozzle:
z = z*/ R} is the non-dimension Eulerian coordinate, R = R*/R} is the non-
dimensional bubble radius, u = u*/u} is the non-dimensional mixture velocity,
Cp = (p*— p:)/%pZuzz is the mixture pressure coefficient, and A = A*/A¥ is
the normalized cross-sectional area of the nozzle. Here R} is upstream bubble
radius, u} is the upstream mixture velocity, p¥ is the upstream pressure, AZ
is the upstream cross-sectional area of the duct, and pj is the liquid density.
Again, all quantities with superscript * denote dimensional values.

Referring to Figure 2.1, consider a one-dimensional converging-diverging
nozzle with length L and cross-sectional area A(z). Here the non-dimensional

Eulerian coordinate, z, is positive in the direction of the flow. The inlet of the
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nozzle is located at z,. The mixture continuity and momentum equations are

(2.1) %[(1 — o)Al + %{(1 —a)ud] =0
8u 5u 1 aOp
(22) o Y9z T Ta1=a) 0z

where a(z,1), the bubble void fraction, is related to the bubble radius, R(z,t),
by a(z,t) = dnnR*(z,t)/[1 4+ 27nR3(x,t)] and 7 is the bubble population per
unit liquid volume. The non-dimensional mixture density has been approxi-
mated by p & (1 —«) by neglecting the density of gas phase. It is also assumed
that the liquid phase is incompressible. The dynamics of the individual bub-

bles are modeled by the Rayleigh-Plesset equation:

(2.3) R

Dt? +2
2

1
R -1 _ p-3k - —
+ g (BT = B+ 5Cp =0

D? 2 4
R 3<DR> +%[1_R_3k]+_1DR

Dt Re R Dt

where D/Dt = 0/0t + ud/0x is the Lagrangian derivative. The definitions of
cavitation number, o, Weber number, We, and the Reynolds number, Re, can
be found in Section 2.1, Part I, but now are based on the upstream velocity and
pressure. As before, the index £ is used to model the polytropic behavior of

the permanent gas inside the bubble. All the basic assumptions used to write
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down the above equations are the same as in Section 2.2, Part 1. Furthermore,
friction between the mixture and the duct wall is neglected.

Equations (2.1), (2.2) and (2.3) represent a simple model of one-
dimensional flowing bubbly mixture with nonlinear bubble dynam-
ics.  Previous investigations have resulted in the dispersion and sta-
bility properties of this model in the linear regimes (see, for ex-
ample, Biesheuvel and van Wijngaarden [1984]; Morioka and Matsui [1980];
Morioka and Toma [1984]; Toma and Morioka [1986]; Toma et al. [1988]).
These results helped to identify the propagation modes and the dispersion
characteristics of the acoustic waves in a flowing bubbly liquid. However, if
the flow is accelerating, simple linearization of the equations of motion is im-
possible since the mean flow quantities are changing rapidly with both space
and time and the perturbation with respect constant and uniform mean values
can not be performed. Analyses of the dynamics of this model then become
significantly more complicated and new phenomena may be manifest due to

the coupling of flow acceleration and bubble pulsation.
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Chapter 3

Steady State Solutions

The first question which arises concerns the existence of steady state solutions
and their characteristics. For an unsteady nozzle flow, the system of equations
(2.1), (2.2) and (2.3) set up an initial boundary value problem. The problem
could be ill-posed since the dispersion relation of this system results in complex
acoustic wave numbers and makes the system non-hyperbolic. However, when
steady solutions are considered, the problem becomes an initial value problem

and is free from ill-posedness.

3.1 Steady Equations

Assume that equations (2.1), (2.2) and (2.3) have steady state solutions for a
constant mass flow rate with upstream conditions denoted by p}, v}, and p} ~
pi(l—as)=pi /(1 + %wnR:S), where R* and oy are the upstream nuclei size

and void fraction respectively. After dropping all the time derivative terms,
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the governing equations become a system of ordinary differential equations

with one independent variable, z:

(3.1) (1 —a)uld = (1 — o) = constant

du 1 dCp
2 — = ——
(32) Yz 2(1 — ) dz

d*R dudR 2u® (dR 4 udR

2071t auah cu” fan Suahk

(33) R (u dx? +ud:c dw) 3 (d:z:) + Re R dx
2 1 o

tive (7 ) +5 (1 7m) + 300 =0

The non-dimensional initial conditions arise from the upstream conditions and

are given by:

(3.4) Rlz=0)=1, u(z=0)=1, Cp(z=0)=0

We choose to examine a simple nozzle, A(x), such that

1+ iC 1 — cos (%= sz, <z <L
53 g d VIO [ cos ()

1 cr<z,andz > L

This profile will produce a simple sinusoidal pressure distribution in the case
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of incompressible flow with the minimum pressure coefficient, C'ppsrn, located
at the nozzle throat. The value of —Cppsrn relative to the cavitation number,
o, represents the intensity of tension in the flow. If —Cppsrn is greater than
the cavitation number, o, the minimum mixture pressure experienced by the
individual bubbles will be lower than vapor pressure and the bubbles will

cavitate (see also Section 2.4, Part I).

3.2 Results and Discussion

A fourth order Runge-Kutta scheme was used to integrate equations (3.2) and
(3.3). The following flow conditions were chosen to illustrate the structures of
the steady state solutions in flows which might occur in practice. A bubbly
liquid, composed of air bubbles (k = 1.4) in water at 20°C (p; = 1000kg/m,
S* = 0.073N/m), is flowing through a nozzle with profile given by equation
(3.5). The inlet of the nozzle is located at z = 0 (or z, = 0 in Figure 2.1) and
the non-dimensional length of the nozzle is L = 500. The minimum pressure
coefficient, C'pasyn, for a pure liquid flow is chosen as -1. The upstream cavita-
tion number, o, is set at 0.8 smaller than —Cpps7n and cavitation will occur.
The Reynolds number, Re, is taken as 1000 in which only the liquid viscosity
are considered. Other damping mechanisms can be included by using an “ef-
fective viscosity” (Chapman and Plesset [1971]). Five different upstream void

fractions, ay, of the order of 1076 are used in the computation and the results
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are shown in Figures 3.1 to 3.4.

Flows which are both quasistatically stable and quasistatically unstable
were found. Furthermore, it was found that a bifurcation occurs between the
two types of flow. Figure 3.1 illustrates the mixture velocity in the flow. The
case of as = 0 corresponds to the incompressible pure liquid flow. It is notable
that even for an upstream void fraction as small as 2 x 107%, the characteristics
of the flow are changed. Radial pulsation of bubbles results in the downstream
fluctuations of the flow. The amplitude of the velocity fluctuation is 10% of
that of the incompressible flow in this case. As a, increases further, the
amplitude as well as the wavelength of the fluctuations increase. However,
the velocity dose eventually return to the upstream value. In other words, the
flow is still quasistatically stable. However, as a; increases to a critical value,
ap (about 2.862 x 107 in the present calculation), a bifurcation occurs. The
velocity increases dramatically and the flow becomes quasistatically unstable.
The physical picture of this instability is quite simple indeed: Growth of the
cavitation bubbles will increase the mixture velocity according to the mass
conservation of the flow. The increase of the velocity then cause the mixture
pressure to decrease due to the Bernoulli effect. The decrease of the pressure is
fed back to the Rayleigh-Plesset dynamics and results in more bubble growth.

The corresponding variations in the mixture pressure coefficient are shown

in Figure 3.2. In addition to the two different flow regimes, another important
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feature in the quasistatically stable flow is the typical frequency associated
with the downstream periodicity. This “ringing” will result in acoustic radi-
ation at frequencies corresponding to this interval. How this ring frequency
relates to the upstream flow condition remains to be studied. Furthermore,
since some energy is contained in the oscillatory structure, the downstream
pressure coeflicient has a lower level than that of the upstream value except
in the case of pure liquid flow.

Figure 3.3 illustrates the void fraction distribution in the flow. When the
flow becomes quasistatically unstable, the bubble void fraction, a(z), quickly
approaches unity. This means that the flow is flashing to vapor. When «
becomes large, our model equations, which are limited to flows with small
void fraction, lose their validity.

Figure 3.4 indicates the non-dimensional bubble radius distribution in the
flow. The bubbles grow without bound after reaching a critical radius, F.,
which is found to be dependent on the cavitation number and the upstream

void fraction. The analytical expression for R. is derived in the next section.
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3.3 Bifurcation Parameters of the Steady So-

lutions

Due to the time lag of bubble growth phase, bubbles reach the maximum size
after passing the nozzle throat (Figure 3.4). With increase in the upstream
void fraction, the maximum size of the bubbles increases and is shifted further
downstream. The bifurcation occurs when a critical value, R., is reached.
From Figure 3.4 we know that dR/dz and d?*R/dz* both vanish at R = R..

Substitution of these conditions into (3.3) gives

2 tpmi_peaky o la
(3.6) e [R;' — R; }+20pc_0

Here Cp. can be found by integrating (3.1) and (3.2) by putting A = 1 (as-
suming that the flow exits the nozzle into a length of constant area duct

downstream of the nozzle):

24mnR3 1
3.7 C e = _ 1] — —
@0 =iy ()

Since R. > 1, all the higher order terms (1/R3* in (3.6) and 1/R? in (3.7))

can be neglected. After combining these two equations, one can write

(3.8) R~
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in which 27n = a,/(1 — a;) has been used. The third term in (3.8) can be
neglected because, in addition to R. > 1, practical values for 2/We are about
an order of magnitude less than the values of ¢/2 in the second term. Thus,

finally we have:

5 =[]~

If R > R, the flow becomes quasistatically unstable. In the cases presented
here (0/2a,)"/® ~ 51. Examination of Figure 3.4 shows that this value is
accurate. With known R, the expressions for the critical pressure coefficient

can be obtained from (3.7):

(3.10) Cpe =204(l —0s) —o = —0
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Chapter 4

Unsteady Flows

In this chapter, a method for the numerical modeling of bubbly cavitating
flows will be developed and used to investigate the one-dimensional unsteady
bubbly cavitating flows in ducts or nozzles. The numerical approach was
first used by Nigmatulin and his coworkers (Nigmatulin [1991]) to study the
nonstationary wave motions of bubbly liquids in a straight pipe without mean
flow. The method presented here is based on the same idea but is extended
to the accelerating flows in ducts with variable cross-section area.

The natural coordinate system for an individual bubble in the flow is the
Lagrangian coordinate system. It is much easier to calculate the effects of
bubble volume pulsation on the global fluid dynamics by moving with the
bubbles. In this way, all the nonlinear convective terms contained in the La-
grangian derivative, D/Dt, in equation (2.3) can be transformed into regular

time derivatives in the moving coordinate system. However, the boundary con-
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ditions of the nozzle flow are essentially Eulerian. In order to solve equations
(2.1), (2.2), and (2.3), two Eulerian boundary conditions must be prescribed
at each end of the flow. In practice, these may be reservoir conditions with
known values of pressure. Therefore, the situation here is unlike that in Part

I, in which the boundary of the cloud is moving with the Lagrangian grid.

4.1 Lagrangian Formulation

The non-dimensional Lagrangian coordinates are denoted by (zo,t), where zq
is the distance from a Lagrangian particle to the origin of an inertial frame at
initial time, ¢ = 0. The origin is set at the inlet to the pipe. All quantities
with subscript 0 denote values at ¢ = 0. For example, Ay = A(xo) is the cross-
section area felt by a Lagrangian particle located at z¢ at t = 0, g = a(zo,0)
is the bubble void fraction distribution at ¢ = 0, Ry = R(z0,0) is the bubble
size distribution at ¢ = 0, and so on. The coordinate transformation from the
Lagrangian coordinate, zq, to the Eulerian position, z, namely o — z(zq, t),
is given by

633 _ AOPO ~ Ao(] — O(())
dro  Ap ~ A(l—a)

(4.1)
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After some algebra, instead of equations (2.1), (2.2), and (2.3), the following

system of equations are obtained in the Lagrangian coordinates:

0*°C oC
(4.2) ax;’ +K axp +NCp+M=0
0 4]
where
- . N 2(1 - Olo)A() dA 1 dAo l d&o
K(zo,ti7) = (1 —a)A? dz " Aodze | 1 — ap dxo
_ _ 3a (1 — a0)2 Al
Naotiz) = =g =i
21— ao)’ AR? |2 (dAN?  dPA
M(zo,tiz) = — (1 —a)A3 A\dr) — da?
b6 (1 - a0)2 A(2) 0 /5 3k 2 —3k ~1
— (R =1 — (R™%% —
e |3 )+ B
4w 1 , 1dA
DR
= —w
(4'3) bDZi) 1 o 2 4 w 3 1
Pw _ 2% g3k 1 4 pe3k pely w9 5 1
b =R |3 (8 )+ g (B B) = g 9% —30r
Dz
4.4 g
(4.4) o = ¢
) D4 g

Dt~ 2A0(1 — ag) Do
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The derivation of equation (4.2) is given in Appendix A. Equations (4.3) con-
stitute the Rayleigh-Plesset equation, (2.3), where the Lagrangian bubble wall
velocity, w = DR/Dt, is used as a new variable. Equation (4.4) is a simple
kinematic relation. Equation (4.5) is the Lagrangian expression of the mix-
ture momentum equation, equation (2.2). Note that equations (4.3) to (4.5)
only contain the Lagrangian time derivative and can therefore be integrated
by any time-marching scheme in the Lagrangian coordinate system. On the
other hand, equation (4.2) contains only spatial derivatives and is a second
order Poisson equation. If all of the quantities, «, z, R, w, and u, are known
at an instance of time, this equation can be integrated to obtain the pressure
distribution at that time. This result is due to the incompressibility of the
liquid phase. Recall that for incompressible flow one can always combine the
continuity and momentum equations to obtain a Poisson equation for the pres-
sure field. For a bubbly flow with incompressible carrier liquid, suppose that,
at some point in time, all the other quantities mentioned above are known by
some method. Then, at that instant, all the bubbles in the flow have known
size and the mixture is simply an incompressible substance with many un-
changing voids. The separation of the spatial and Lagrangian time derivatives
in the above formulation makes it possible to solve the problem by an explicit

numerical scheme, as shown in the next section.
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4.2 Numerical Method to Solve Equations
(4.2) to (4.5)

Assume that the computational domain is [0,z.] in the Eulerian space. Also
assume that at time ¢, a Lagrangian grid is generated in this domain with N
grid points located at zo1 = 0,z02,...,Ton-1,Zony = z. and that the value
of the quantities, R(xo,t), w(zo,t), z(xo,t), and u(xzo,?), are known at these
points. Note that the void fraction, «, is related to the bubble radius, E, by

%WT]R3

4.6 -3 "
(4.6) @ 1+ %W?]R?’

A complete integration time step from ¢ to ¢ + At then proceeds as follows.

1) With the prescribed pressure boundary conditions, Cp(0,t) and
Cp(ze,t), equation (4.2) can be integrated to find Cp(xo,t) at the grid
points. A relaxation method (see, for example, Press et al. [1992]) is

used in the integration of this boundary value problem.

2) With known Cp(zo,1), %%’-(xo,t), equations (4.3) to (4.5) can be inte-
grated by time-marching schemes to find R(zo,t + At), w(zo,t + At),
z(zo,t + At), and u(zo,t + At), at each Lagrangian node. A fifth order
Runge-Kutta method is used in the present computation. Note that the

Eulerian end point z. may not coincide with the Eulerian position of
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any of new grid locations. Assume that zp <z. < app1, M < N.

3) Before proceeding to the next time step, we re-define the new Lagrangian
grid by zo1 = 0,202 = 21,...,%0Mm = Twm,ToM+1 = Te, Where z; (1 =
1... M) are the Eulerian positions at time ¢t + At. In other words, the
total number of Lagrangian nodes is now changed to M +1. However, the
values of R (and thus «), w, and v are unknown at the end points, z¢; = 0
and zopr41 = Z.. Polynomial interpolation is used to find these values at
Zopr+1 based on the known values at the neighboring points. For the inlet
point, zg; = 0, the values of R(zo1,t + At) =1 and w(xe,t + At) =0
are used. Physically, this means that all the entering nuclei have the
same initial size and are assumed stable (with zero initial bubble wall
velocities). However, the inlet mixture velocity, u(zo1,t + At), can not
be prescribed since the flow is going to adjust itself in an unsteady way.
Polynomial extrapolation is used to find wu(zg;,t + At) in the present

computation.

4) With the new value of u(zo1,t+ At), the values of w, u, Cp, o, Re, and
We are re-normalized by this new upstream velocity. (Recall that the

non-dimensionalization is based on the upstream conditions.)

5) Proceed to next time step.

A numerical difficulty similar to that experienced in Part I (see Section 3.2 and
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Section 4.2, Part I) is found when integrating equation (4.2). Large number

of iterations are necessary if there is a violent bubble collapse in the flow.

4.3 Results and Discussion

One selective case is chosen to illustrate the unsteady characteristics of the
flow. In practice, solutions with a downstream oscillating structure are more
interesting since these are the flows which manifest bubble dynamic effects.
Surprisingly, the oscillation solutions are only found in the cases of very small
upstream void fraction (2 x 107° in the current case). For time ¢ < 0 the
flow is assumed to be in a steady state; the pressure coefficient at the exit
end is about - 0.066 (see Figure 4.1 (a)). At t=0, the exit pressure coeflicient
is lowered suddenly to -0.2. We will examine the response of the flow to this
sudden change.

Figures 4.1 (a) to (h) show the results of the unsteady mixture pressure
coefficient at a series of consecutive times, 0 < t; < ty < --- < tg99. The
unsteady solutions are characterized by alternating growth and decay of the
individual pressure pulses in the flow downstream of the throat. The instanta-
neous magnitudes of these pulses can be very large. Their location is changing
with time; typically they move back and forth between the nozzle exit and
zo. The characteristics of these pulses are similar to the shock pulses shown

in Part I (see Figure 4.5, Part I). They are produced by the local collapse of
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the bubbles in the flow.

During the same series of times, the distributions of mixture velocity and
bubble size do not change much from the steady state solution. Interesting
questions one may ask are: Is there any new steady state solution for the flow?
Are the above unsteady phenomena transient? Unfortunately, the questions
can not be answered yet. The inherent numerical difficulty mentioned before
strongly impedes the progress of the computation. This generic problem must

be solved before more unsteady characteristics can be explored.
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Chapter 5

Concluding Remarks

Cavitating bubbly flows through a converging-diverging nozzle have been ex-
amined in this part of thesis. It was found that the nonlinear dynamics of
bubbles coupled with the equations of motion of the mixture strongly affect
the structure of the flow even for very small bubble populations. Both steady
state and unsteady solutions were investigated. Two different flow regimes,
determined by the parameter R, = (o/2a,)'/?, (where o is the cavitation
number of the flow and «; is the upstream void fraction) are revealed in the
steady state solutions. The flow becomes quasistatically unstable if the ra-
dius of the cavitating bubbles is greater than R.. In this circumstance, the
growth of bubbles increases the mixture velocity due to mass conservation of
the flow. The velocity increase then causes the mixture pressure to decrease
according to the momentum equation. The decrease of the pressure is fed back

to the Rayleigh-Plesset equation and results in further bubble growth. In this
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case velocity and void fraction of the mixture increase and pressure coefficient
of the flow decreases significantly beyond the upstream values and the flow
is flashing. On the other hand, if the bubbles do not grow beyond R., the
flow is quasistatically stable and is characterized by large amplitude spatial
fluctuations downstream of the throat.

An explicit computational method was proposed to explore the features
of the unsteady solutions. This method is based on the re-formulation of the
governing equations in the Lagrangian coordinate system. The Lagrangian
time derivative and the spatial derivative were separated in this approach. Due
to the incompressibility of the liquid phase, the mixture pressure equation was
found to have the form of Poisson equation at any instant of time. Actually,
this method is very similar to that in Part I in which the pressure equation
was put into the form of an integral equation.

An unsteady solution was presented showing the evolution of the flow
through a series of consecutive times. These solutions are characterized by
downstream spatial fluctuations coupled with large pressure pulses changing
with time in both magnitude and location. Further numerical experiments
were impeded because of an inherent numerical difficulty; these should be

focused on in the future.
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Appendix A

Derivation of Equation (4.2)

Three useful relations are:

(A1)

(A.2)

(A.3)

drg Ap \(R Dt A Dt

Dp _ 3ap DR

Dt R Dt

Do 3ol —a) DR

Dt R Dt

where DA/Dt = udA/dz since A(z) is not function of time. Now we present

the proofs of these relations. First write the continuity equations for the liquid
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and gas phases in Lagrangian coordinates:

D (1—-0)A% Ou
(A.4) 1—);[(1 — o)Al + Aopy Ozg 0
D et o
(A.5) 77 PeaA) + I

in which the coordinate transformation (4.1) has been used to substitute 9/0z
by 8/0xq and p, = p;/p}, is the non-dimensional density of the gaseous phase

inside the bubble. Since mass transfer between phases is neglected, one has

(A.6) P—(%@ =0

Expanding the first terms in equations (A.4) and (A.5) and adding the two

equations, one can have

ou Aopo (a Dp, _1_DA)

(A7) dzo Ap \p, Dt A Dt

Substituting equation (A.6) into equation (A.7), one can get equation (A.1).
Equation (A.2) can be obtained by rewriting the mixture continuity equation,
(2.1), in the Lagrangian coordinates and by substituting equation (A.1) into
it. Equation (A.3) is obtained immediately by differentiating (4.6).

Now we derive equation (4.2). The Lagrangian form of the mixture mo-
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mentum equation, (2.2), is

Du A 0Cp
(AS) T)—t— B ——QAO'OO 8:1:0

Differentiating (A.8) with respect to zg gives

8 Du A ach
A (Ldpy 1 ddo 10AY Ok
2A0p0 Po dl‘o AO dxo AaiL'o 8%
where
(A10) doy ~ 9my 00 = 5 = A @

Taking the Lagrangian derivative of equation (A.1) and then substituting equa-

tions (A.2) and (A.3) into it, one can obtain

2 2
(A.11) _?__ _l_)_tﬁ — ! gf_l 9Cp + poAou 2 fgé
Oz \ Dt 2pA dzx ) Oxg pAZ | A\ dz
d*A 3ape Ao Dw 1 dA 5
_dacQJ - DARE R — 2Ruw—— + 2w

Dt Adzx

where the order of D/Dt and 0/0z on the left-hand side has been exchanged
since they are independent in the Lagrangian coordinate system; also the

variable w = DR/ Dt has been used.
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Substituting the Rayleigh-Plesset equation (2.3) into the right-hand side of
(A.11), equating (A.9) and (A.11), and rearranging the result, one can finally

have equation (4.2):

9*C LoC
(A.12) (%{ + K 8:5:-,) +NCp+M=0
where
- 2(1 - Ofo)Ao dA 1 dA() 1 O,(Ol()
K i: e e A —
(2o, 2) (1 —a)A? dz Apdzg 1 — opdag
- 3a (1 — ap)? A2
N(:EO)t’ ':I") - - (1 L a)AzRZ
2(1 —ag)® A2u? | 2 [dA\? &2A
M t; - - - — =
(@0,4;2) 1—-a)A® |A\de dz?
6o (1 — a0)2 AS[o sk 2 —3k -1
+ (1 —a)A2R? Z(R —1)+W6 (R - f )
4w 1 , 1dA
TRl gw — QRuwZEE-:I
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Figure 2.1 Notation for bubbly liquid flow in a converging-diverging nozzle.
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Figure 3.1 The non-dimensional mixture velocity distribution as a function of
the non-dimensional position in the flow for five different upstream void fractions.
Labels of a; = o and a, = a/g' correspond to «; just below and above the critical
value a; = 2.862 x 1076, The dimensionless length of the nozzle, L, is 500 with the
throat located at 250. Other parameters are o = 0.8, Cpyry = —1.0, Re = 1000,

and We = 137.
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Figure 3.2 The mixture pressure coefficient as a function of the non-dimensional
position in the flow for five different upstream void fractions. Labels of oy = a5
and oz = %’r correspond to «, just below and above the bifurcation value ap =
2.862 x 1075, All parameters as in Figure 3.1.
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Figure 3.3 The void fraction distribution as a function of the non-dimensional
position in the flow for five different upstream void fractions. Labels of oy = o, and
o, = a;' correspond to a; just below and above the critical value o = 2.862 x 1078.
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imensional Bubble

Non-d

119

70
60 | 0,=2.9%10" \ o=0,”
0,=2.8x10"° , %=
50
o) =2x10°°
% (04 X \ ”\\ /‘\ /\'\ /
a0 | ‘ Voo
u;\ R-P Solution . ‘,\ - \\ I' ,‘ I 3
-2 1 y " l'I ! ' " “
u 30 I - ,| " “ . ‘ T ' \ : \‘-
E ' “ [] r' U y
ATUTATAVAY AR 412
20 | At | iy
NERHA 1E!
ol ; H qLE ' |
1N I , f
HHEEENAREHR AL
0 l 1N a1 , I

0 250 500 750 1000 1250 1500

Position in the Flow, x
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Figure 4.1 (a)-(h): The distribution of the mixture pressure coefficient at a series
of consecutive times: 0 < #; < 3 < --+ < #39. The initial condition of the flow is
labeled ¢t = 0. Parameters of the nozzle are: L = 500, z,, = 500, and Cpyrry = —1.0.
The pressure coefficient at z. = 2000 is initially set as 0.2. The upstream void
fraction is 2 x 107%. Other parameters have the following initial values: o = 0.8,
Re = 1000, and We = 137.
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