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Abstract

Moving mesh methods (also called r-adaptive methods) are space-adaptive strategies used

for the numerical simulation of time-dependent partial differential equations. These meth-

ods keep the total number of mesh points fixed during the simulation, but redistribute them

over time to follow the areas where a higher mesh point density is required. There are a

very limited number of moving mesh methods designed for solving field-theoretic partial

differential equations, and the numerical analysis of the resulting schemes is challenging.

In this thesis we present two ways to construct r-adaptive variational and multisymplectic

integrators for (1+1)-dimensional Lagrangian field theories. The first method uses a varia-

tional discretization of the physical equations and the mesh equations are then coupled in a

way typical of the existing r-adaptive schemes. The second method treats the mesh points

as pseudo-particles and incorporates their dynamics directly into the variational principle.

A user-specified adaptation strategy is then enforced through Lagrange multipliers as a

constraint on the dynamics of both the physical field and the mesh points. We discuss the

advantages and limitations of our methods. The proposed methods are readily applicable

to (weakly) non-degenerate field theories—numerical results for the Sine-Gordon equation

are presented.

In an attempt to extend our approach to degenerate field theories, in the last part

of this thesis we construct higher-order variational integrators for a class of degenerate

systems described by Lagrangians that are linear in velocities. We analyze the geometry

underlying such systems and develop the appropriate theory for variational integration.

Our main observation is that the evolution takes place on the primary constraint and the

‘Hamiltonian’ equations of motion can be formulated as an index 1 differential-algebraic

system. We then proceed to construct variational Runge-Kutta methods and analyze their

properties. The general properties of Runge-Kutta methods depend on the ‘velocity’ part

of the Lagrangian. If the ‘velocity’ part is also linear in the position coordinate, then we
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show that non-partitioned variational Runge-Kutta methods are equivalent to integration

of the corresponding first-order Euler-Lagrange equations, which have the form of a Poisson

system with a constant structure matrix, and the classical properties of the Runge-Kutta

method are retained. If the ‘velocity’ part is nonlinear in the position coordinate, we observe

a reduction of the order of convergence, which is typical of numerical integration of DAEs.

We also apply our methods to several models and present the results of our numerical

experiments.
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Chapter 1

Introduction

The main purpose of this thesis is to design, analyze, and implement variational and mul-

tisymplectic integrators for Lagrangian partial differential equations with space-adaptive

meshes. We combine geometric numerical integration and r-adaptive methods for the nu-

merical solution of PDEs, and we show that these two fields are compatible—mostly due

to the fact that in r-adaptation the number of mesh points remains constant and we can

treat them as additional pseudo-particles whose dynamics is coupled to the dynamics of the

physical field of interest.

Variational integrators

Geometric (or structure-preserving) integrators are numerical methods that preserve ge-

ometric properties of the flow of a differential equation (see [23], [42], [57]). This class

encompasses symplectic integrators for Hamiltonian systems, variational integrators for

Lagrangian systems, and numerical methods on manifolds, including Lie group methods

and integrators for constrained mechanical systems. The main motivation for developing

structure-preserving algorithms lies in the fact that they show excellent numerical behavior,

especially for long-time integration of equations possessing geometric properties. Geomet-

ric integrators proved to be extremely useful for numerical computations in astronomy,

molecular dynamics, mechanics, and theoretical physics.

An important class of structure-preserving integrators are variational integrators for

Lagrangian systems ([23], [41]). This type of integrators is based on discrete variational

principles. The variational approach provides a unified framework for the analysis of many

symplectic algorithms and is characterized by a natural treatment of the discrete Noether
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theorem, as well as forced, dissipative, and constrained systems. Variational integrators were

first introduced in the context of finite-dimensional mechanical systems, but later Marsden

& Patrick & Shkoller [39] generalized this idea to field theories. Variational integrators have

since then been successfully applied in many computations, for example in elasticity ([36]),

electrodynamics ([59]), or fluid dynamics ([47]). The existing variational integrators so far

have been developed on static, mostly uniform spatial meshes.

Moving mesh methods

Adaptive meshes used for the numerical solution of partial differential equations fall into

three main categories: h-adaptive, p-adaptive, and r-adaptive. R-adaptive methods, which

are also known as moving mesh methods ([7], [28]), keep the total number of mesh points

fixed during the simulation, but relocate them over time. These methods are designed to

minimize the error of computations by optimally distributing the mesh points, contrasting

with h-adaptive methods, for which the accuracy of the computations is obtained via inser-

tion and deletion of mesh points. Moving mesh methods are a large and interesting research

field of applied mathematics, and their role in modern computational modeling is growing.

Despite the increasing interest in these methods in recent years, they are still in a relatively

early stage of development compared to the more matured h-adaptive methods.

There are three logical steps to r-adaptation:

• Discretization of the physical PDE;

• Mesh adaptation strategy;

• Coupling the mesh equations to the physical equations.

The key ideas of this thesis regard the first and the last step. Following the general spirit of

variational integrators, we discretize the underlying action functional rather than the PDE

itself, and then derive the discrete equations of motion. We base our adaptation strategies

on the equidistribution principle and the resulting moving mesh partial differential equations

(MMPDEs). We interpret MMPDEs as constraints, which allows us to consider novel ways

of coupling them to the physical equations. Note that we will restrict our explanations to

one time and one space dimension for the sake of simplicity. As an application example we

apply our space-adaptive methods to the Sine-Gordon equation.
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Lagrangians linear in velocities

We further attempt to extend these r-adaptive methods to degenerate field theories, e.g.,

the nonlinear Schrödinger equation. The main difficulty is the fact that upon spatial dis-

cretization the nonlinear Schrödinger equation turns into a (finite-dimensional) mechanical

system whose Lagrangian is linear in velocities. Low-order variational time integrators for

such systems were proposed in [56] and [65], but due to stiffness, space-adaptive methods

usually require higher-order integration. Therefore, in the last part of this thesis we turn our

attention to Lagrangians linear in velocities, develop general variational integration theory,

and construct variational partitioned Runge-Kutta methods for such systems.

Theoretical aspects of variational integration are well understood in the case when the

Lagrangian describing the considered system is regular, that is, when the corresponding

Legendre transform is (at least locally) invertible. However, the corresponding theory for

degenerate Lagrangian systems is less developed. The analysis of degenerate systems be-

comes a little more cumbersome, because the Euler-Lagrange equations may cease to be

second order, or may not even make any sense at all. In the latter case one needs to de-

termine if there exists a submanifold of the configuration bundle TQ on which consistent

equations of motion can be derived. This can be accomplished by applying the Dirac theory

of constraints or the pre-symplectic constraint algorithm (see [18], [38]).

A particularly simple case of degeneracy occurs when the Lagrangian is linear in veloc-

ities. In that case, the dynamics of the system is defined on the configuration manifold Q

itself, rather than its tangent bundle TQ, provided some regularity conditions are satisfied.

Such systems arise in many physical applications, including interacting point vortices in the

plane (see [45], [56], [65]), or partial differential equations such as the nonlinear Schrödinger

([16]), KdV ([11], [19]) or Camassa-Holm equations ([8], [9]). In Chapter 7 we show how

certain Poisson systems can be recast as Lagrangian systems whose Lagrangians are linear

in velocities. Therefore, our approach offers a new perspective on geometric integration of

Poisson systems, which often arise as semi-discretizations of some integrable nonlinear par-

tial differential equations, e.g., the Toda or Volterra lattice equations, and play an important

role in the modeling of many physical phenomena (see [13], [33], [60]).
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Outline and contributions

This thesis is organized as follows. In Chapter 2 and Chapter 3 we present an overview

of geometric integration and moving mesh methods, respectively. Chapters 4-7 constitute

the main contributions of the thesis. In Chapter 4 we propose two general ideas on how to

combine geometric integration and moving mesh methods, namely the control-theoretic and

the Lagrange multiplier strategies, and construct several r-adaptive variational integrators.

In Chapter 5 we show how similar integrators can be be constructed using the covariant

formalism of multisymplectic field theory. In Chapter 6 we apply our integrators to the Sine-

Gordon equation and we present our numerical results. In Chapter 7 we analyze systems

with Lagrangians linear in velocities, investigate how the theory of variational integration

differs from the non-degenerate case, and then proceed to construct variational partitioned

Runge-Kutta schemes for such systems. We summarize our work in Chapter 8 and discuss

several directions in which it can be extended. Chapters 4-6 were published in [63], and

Chapter 7 in [64].
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Chapter 2

Background:
Geometric integration

In this chapter we review the basics of geometric mechanics, multisymplectic field theory

and geometric numerical integration. We focus on the most important aspects which are

critical for the understanding of the later chapters of this thesis. We refer the interested

reader to literature for proofs and more details.

2.1 Hamiltonian mechanics

Let Q be the n-dimensional configuration manifold of a system. The evolution of a Hamil-

tonian system is defined on the cotangent bundle T ∗Q, also called the phase space. Let qµ

denote local coordinates on Q, where µ = 1, . . . , n, and let (qµ, pµ) denote the corresponding

canonical coordinates on T ∗Q. A Hamiltonian system is defined by specifying a smooth

function H ∶ T ∗QÐ→ R, the so-called Hamiltonian.

The cotangent bundle T ∗Q possesses an intrinsic symplectic structure. We first define

the canonical Cartan one-form Θ ∶ T ∗QÐ→ T ∗T ∗Q by the formula

Θ(ω) = (πT ∗Q)∗ω (2.1.1)

for any ω ∈ T ∗Q, where πT ∗Q ∶ T ∗QÐ→ Q is the cotangent bundle projection, and (πT ∗Q)∗

denotes the pull-back by πT ∗Q. In canonical coordinates we have

Θ = pµdqµ, (2.1.2)

where summation over repeated Greek indices is implied. The canonical symplectic two-



6

form is then defined by

Ω = −dΘ = dqµ ∧ dpµ. (2.1.3)

A vector field Z ∶ T ∗Q Ð→ TT ∗Q on the cotangent bundle is called Hamiltonian, if it

satisfies the equation

iZΩ = dH, (2.1.4)

where iZΩ is the interior product of Z and Ω (also denoted by Z ⌟ Ω), i.e., the one-form

such that iZΩ ⋅ V = Ω(Z,V ) for any vector field V on T ∗Q. The Hamiltonian equations for

H are the system of differential equations satisfied by the flow FHt ∶ T ∗Q Ð→ T ∗Q for Z,

that is,

d

dt
FHt = Z ○ FHt . (2.1.5)

If in canonical coordinates (qµ(t), pµ(t)) = FHt (q̄µ, p̄µ) for some initial condition (q̄µ, p̄µ),

then the Hamiltonian equations take the well-known form

q̇µ = ∂H

∂pµ
,

ṗµ = −
∂H

∂qµ
. (2.1.6)

The most important properties of Hamiltonian systems are summarized in the following

theorems.

Theorem 2.1.1. The flow FHt for (2.1.6) preserves the Hamiltonian, that is, H ○FHt =H

for all t ∈ R.

Theorem 2.1.2. The flow FHt for (2.1.6) is symplectic, that is,

(FHt )∗Ω = Ω, ∀t ∈ R. (2.1.7)

Expressed in canonical coordinates, the symplecticity condition takes the form
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(DFHt )T
⎛
⎜
⎝

0 I

−I 0

⎞
⎟
⎠
DFHt =

⎛
⎜
⎝

0 I

−I 0

⎞
⎟
⎠
, ∀t ∈ R, (2.1.8)

where DFHt denotes the Jacobian of the local coordinate representative of the flow FHt , and

I is the n × n identity matrix.

We refer the reader to [23] and [38] for the proofs of these theorems and more information

on Hamiltonian systems.

2.2 Symplectic integrators for Hamiltonian systems

2.2.1 Basic definitions

The purpose of the numerical integration of the Hamiltonian system (2.1.6) is to determine

an approximate solution at the discrete set of times tk = kh, where h is the time step

and k = 0,1,2, . . . A numerical scheme is defined by specifying a map Fh ∶ T ∗Q Ð→ T ∗Q

which approximates the exact Hamiltonian flow FHh . Let us consider canonical coordinates,

and for brevity denote q = (q1, . . . , qn) and p = (p1, . . . , pn). Given the initial condition

(q0, p0) ∈ T ∗Q, the numerical solution is defined by the iteration

(qk+1, pk+1) = Fh(qk, pk), (2.2.1)

where (qk, pk) approximates the exact solution at time t = tk. Of particular interest is the

rate at which Fh converges to FHh as h Ð→ 0. One usually considers a local error (error

made after one step) and a global error (error made after many steps). We will assume the

following definitions (see [23], [24], [26], [41]).

Definition 2.2.1. A numerical scheme for the Hamiltonian system (2.1.6) defined by the

map Fh is of order r if there exists an open set U ⊂ T ∗Q and constants C > 0 and h̄ > 0

such that

∥Fh(q, p) − FHh (q, p)∥ ≤ Chr+1 (2.2.2)

for all (q, p) ∈ U and h ≤ h̄.
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Definition 2.2.2. A numerical scheme for the Hamiltonian system (2.1.6) defined by the

map Fh is convergent of order r if there exists an open set U ⊂ T ∗Q and constants C > 0,

h̄ > 0 and T̄ > 0 such that

∥(Fh)K(q, p) − FHT (q, p)∥ ≤ Chr+1, (2.2.3)

where h = T /K, for all (q, p) ∈ U , h ≤ h̄, and T ≤ T̄ .

Under some smoothness assumptions, one can show that if the method Fh is of order r,

then it is also convergent of order r (see [24]).

The symplectic structure of Hamiltonian systems has many important physical and

mathematical consequences, therefore it is beneficial to preserve it in numerical computa-

tions as well. This gives rise to the class of symplectic integrators.

Definition 2.2.3. A numerical scheme for the Hamiltonian system (2.1.6) defined by the

map Fh is called symplectic if in canonical coordinates Fh satisfies the condition

(DFh)T
⎛
⎜
⎝

0 I

−I 0

⎞
⎟
⎠
DFh =

⎛
⎜
⎝

0 I

−I 0

⎞
⎟
⎠
, (2.2.4)

where DFh denotes the Jacobian of the numerical flow Fh, and I is the n×n identity matrix.

Example: Symplectic Euler scheme. The so-called symplectic Euler scheme is a sim-

ple integrator for (2.1.6) and is given by the formula

qk+1 = qk + h
∂H

∂p
(qk+1, pk),

pk+1 = pk − h
∂H

∂q
(qk+1, pk). (2.2.5)

This system of equations implicitly defines Fh: given (qk, pk), it has to be solved (using

Newton’s method for instance) for (qk+1, pk+1). It can be shown that the symplectic Euler

method is symplectic and first-order accurate (see [23]).
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2.2.2 Runge-Kutta methods

Higher-order symplectic integrators can be constructed as Runge-Kutta and partitioned

Runge-Kutta methods. Let us review Runge-Kutta methods first.

Definition 2.2.4. Let bi, aij (i, j = 1, . . . , s) be real numbers and let ci = ∑sj=1 aij. An

s-stage Runge-Kutta method for the Hamiltonian system (2.1.6) is defined by

Q̇i =
∂H

∂p
(Qi, Pi), i = 1, . . . , s,

Ṗi = −
∂H

∂q
(Qi, Pi), i = 1, . . . , s,

Qi = qk + h
s

∑
j=1

aijQ̇j , i = 1, . . . , s,

Pi = pk + h
s

∑
j=1

aijṖj , i = 1, . . . , s,

qk+1 = qk + h
s

∑
i=1
biQ̇i,

pk+1 = pk + h
s

∑
i=1
biṖi. (2.2.6)

If aij = 0 for i ≤ j, then the method is called explicit, and the internal stages Qi, Pi, Q̇i,

and Ṗi are determined by a series of explicit assignments. Otherwise the method is called

implicit, and the system (2.2.6) has to be simultaneously solved for all Qi, Pi, Q̇i, and Ṗi
before one can compute qk+1 and pk+1. The coefficients aij , bi, and ci are often arranged

into a table, the so-called Butcher’s tableau of the Runge-Kutta method,

c1 a11 ⋯ a1s

⋮ ⋮ ⋮

cs as1 ⋯ ass

b1 ⋯ bs

(2.2.7)

Verner’s method of order 6 is an example of an 8-stage explicit Runge-Kutta method (see

Table 2.1). The 3-stage Radau IIA scheme is implicit and fifth order (see Table 2.2). This

method is also stiffly accurate, that is, its coefficients satisfy asj = bj for j = 1, . . . , s, so the

numerical value of the solution at the new time step is equal to the value of the last internal

stage, which is beneficial when solving differential-algebraic equations. The Radau IIA
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0
1
6

1
6

4
15

4
75

16
75

2
3

5
6 −8

3
5
2

5
6 −165

64
55
6 −425

64
85
96

1 12
5 −8 4015

612 −11
36

88
255

1
15 − 8263

15000
124
75 −643

680 − 81
250

2484
10625 0

1 3501
1720 −300

43
297275
52632 − 319

2322
24068
84065 0 3850

26703

3
40 0 875

2244
23
72

264
1955 0 125

11592
43
616

Table 2.1: Verner’s method of order 6

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

Table 2.2: The 3-stage Radau IIA method of order 5

methods are in general known for their excellent stability properties when applied to stiff

differential equations (see [26]). Of particular interest to us is the family of Gauss methods,

whose first three members are shown in Table 2.3. The 1-stage Gauss method is also known

as the midpoint rule.

The following general convergence results can be proved (see [23], [26]).

Theorem 2.2.5. The s-stage Gauss method is of order 2s.

Theorem 2.2.6. The s-stage Radau IIA method is of order 2s − 1.

The Hamiltonian equations (2.1.6) have a natural partitioned structure, namely the q

and the p variables. The idea of partitioned Runge-Kutta methods is to take two different

Runge-Kutta methods, and apply the first one to the q variables, and the other to the p

variables.
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1
2

1
2

1

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

1
2 −

√
15

10
5
36

2
9 −

√
15

15
5
36 −

√
15

30

1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24

1
2 +

√
15

10
5
36 +

√
15

30
2
9 +

√
15

15
5
36

5
18

4
9

5
18

Table 2.3: Gauss methods of order 2, 4, and 6

Definition 2.2.7. Let bi, aij and b̄i, āij (i, j = 1, . . . , s) be the coefficients of two Runge-

Kutta methods. An s-stage partitioned Runge-Kutta method for the Hamiltonian system

(2.1.6) is defined by

Q̇i =
∂H

∂p
(Qi, Pi), i = 1, . . . , s,

Ṗi = −
∂H

∂q
(Qi, Pi), i = 1, . . . , s,

Qi = qk + h
s

∑
j=1

aijQ̇j , i = 1, . . . , s,

Pi = pk + h
s

∑
j=1

āijṖj , i = 1, . . . , s,

qk+1 = qk + h
s

∑
i=1
biQ̇i,

pk+1 = pk + h
s

∑
i=1
b̄iṖi. (2.2.8)

The symplectic Euler method (2.2.5) is an example of a partitioned Runge-Kutta method,

where the implicit Euler scheme b1 = 1, a11 = 1 is combined with the explicit Euler scheme

b̄1 = 1, ā11 = 0. Of particular interest to us are the Lobatto IIIA-IIIB pairs, that is,

partitioned Runge-Kutta methods combining the Lobatto IIIA and Lobatto IIIB schemes

(see Table 2.4, Table 2.5, and Table 2.6). The 2-stage Lobatto IIIA-IIIB is also known as

Störmer-Verlet.

The following convergence result can be proved (see [23], [26]).

Theorem 2.2.8. The s-stage Lobatto IIIA-IIIB method is of order 2s − 2.
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0 0 0

1 1
2

1
2

1
2

1
2

1
2

1
2 0

1
2

1
2 0

1
2

1
2

Table 2.4: Lobatto IIIA-IIIB pair of order 2

0 0 0 0

1
2

5
24

1
3 − 1

24

1 1
6

2
3

1
6

1
6

2
3

1
6

0 1
6 −1

6 0

1
2

1
6

1
3 0

1 1
6

5
6 0

1
6

2
3

1
6

Table 2.5: Lobatto IIIA-IIIB pair of order 4

0 0 0 0 0

5−
√

5
10

11+
√

5
120

25−
√

5
120

25−13
√

5
120

−1+
√

5
120

5+
√

5
10

11−
√

5
120

25+13
√

5
120

25+
√

5
120

−1−
√

5
120

1 1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

0 1
12

−1−
√

5
24

−1+
√

5
24 0

5−
√

5
10

1
12

25+
√

5
120

25−13
√

5
120 0

5+
√

5
10

1
12

25+13
√

5
120

25−
√

5
120 0

1 1
12

11−
√

5
24

11+
√

5
24 0

1
12

5
12

5
12

1
12

Table 2.6: Lobatto IIIA-IIIB pair of order 6
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Symplecticity. In this thesis we are mainly interested in symplectic Runge-Kutta meth-

ods. The following criterion for symplecticity holds (see [23], [26], [42], [57]).

Theorem 2.2.9. If the coefficients of a partitioned Runge-Kutta method (2.2.8) satisfy

biāij + b̄jaji = bib̄j , i, j = 1, . . . , s,

bi = b̄i, i = 1, . . . , s, (2.2.9)

then it is symplectic.

Note that the Runge-Kutta method (2.2.6) is a special case of a partitioned method with

āij = aij and b̄i = bi, therefore Theorem 2.2.9 is applicable in that case, too. Consequently,

we have:

Theorem 2.2.10. The Gauss methods are symplectic.

Theorem 2.2.11. The Lobatto IIIA-IIIB methods are symplectic.

2.2.3 Backward error analysis

Consider a system of ordinary differential equations

ẏ = f(y). (2.2.10)

A numerical method Fh produces a sequence of approximations y0, y1, y2, . . . , such that

yk−y(kh) = O(hr+1), where r is the (global) order of the method (cf. Definition 2.2.2). The

idea of backward error analysis is to search for a modified differential equation of the form

˙̃y = f(ỹ) + hf2(ỹ) + h2f3(ỹ) + . . . , (2.2.11)

such that yk = ỹ(kh), and study how this equation is different from (2.2.10).

The true power of symplectic integrators for Hamiltonian equations is revealed through

their backward error analysis: a symplectic integrator for the Hamiltonian system (2.1.6)

defines the exact flow for a nearby Hamiltonian system, whose Hamiltonian can be expressed

as the asymptotic series
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H̃(q, p) =H(q, p) + hH2(q, p) + h2H3(q, p) + . . . , (2.2.12)

that is, the modified differential equation (2.2.11) is also Hamiltonian. Owing to this fact,

under some additional assumptions, symplectic numerical schemes nearly conserve the orig-

inal Hamiltonian H(q, p) over exponentially long time intervals (see [23] for details).

2.3 Lagrangian mechanics

We will now review the Lagrangian description of mechanics. Unlike in the Hamiltonian

approach, the dynamics of a Lagrangian system is defined on the tangent bundle TQ.

Let (qµ, q̇µ), where µ = 1,2, ..., n, denote local bundle coordinates on TQ. The system is

described by defining the Lagrangian L ∶ TQÐ→ R and the corresponding action functional

S[q(t)] = ∫
b

a
L(qµ(t), q̇µ(t))dt. (2.3.1)

The dynamics is obtained through Hamilton’s principle, which seeks the curves q(t) for

which the functional S[q(t)] is stationary under variations of q(t) with fixed endpoints, i.e.,

we seek q(t) such that

dS[q(t)] ⋅ δq(t) = d

dε
∣
ε=0
S[qε(t)] = 0 (2.3.2)

for all δq(t) with δq(a) = δq(b) = 0, where qε(t) is a smooth family of curves satisfying q0 = q

and d
dε
∣
ε=0qε = δq. By using integration by parts, the Euler-Lagrange equations follow as

∂L

∂qµ
− d

dt

∂L

∂q̇µ
= 0. (2.3.3)

The Lagrangian defines the Legendre transformation FL ∶ TQ Ð→ T ∗Q, which is the fiber

derivative of L, and is intrinsically defined by

FL(vq) ⋅wq =
d

dε
∣
ε=0
L(vq + εwq), (2.3.4)
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where vq,wq ∈ TqQ. In local bundle coordinates we have

FL(qµ, q̇µ) = (qµ, ∂L
∂q̇µ

), (2.3.5)

that is,

pµ =
∂L

∂q̇µ
. (2.3.6)

If FL is a local diffeomorphism, then L is said to be regular. If FL is actually a global

diffeomorphism of TQ and T ∗Q, then we say L is hyperregular. Otherwise L is called

degenerate. The Legendre transform allows to introduce a symplectic structure on TQ. We

define the Lagrangian two-form

ΩL = (FL)∗Ω, (2.3.7)

where Ω was defined in (2.1.3). If L is regular, then ΩL is a symplectic form, i.e., it is closed

and non-degenerate. If L is degenerate, then ΩL also becomes degenerate and is then called

pre-symplectic. We further define the energy E ∶ TQ Ð→ R associated with the Lagrangian

L as

E(vq) = FL(vq) ⋅ vq −L(vq), (2.3.8)

where vq ∈ TqQ. In local bundle coordinates this takes the form

E(qµ, q̇µ) = ∂L

∂q̇ν
q̇ν −L(qµ, q̇µ). (2.3.9)

We are now in a position to introduce the notion of a Lagrangian vector field. By definition,

a Lagrangian vector field Z ∶ TQÐ→ TTQ satisfies the equation

iZΩL = dE. (2.3.10)

Theorem 2.3.1. The flow FLt ∶ TQ Ð→ TQ of a Lagrangian vector field Z preserves the

energy associated with the Lagrangian, that is, E ○ FLt = E for all t ∈ R.

If the Lagrangian L is regular, then there exists a unique vector field Z satisfying

(2.3.10), and its flow FLt satisfies the Euler-Lagrange equations (2.3.3). Moreover, one can
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prove the following result.

Theorem 2.3.2. If the Lagrangian L is regular, then the flow FLt ∶ TQ Ð→ TQ of the

Lagrangian vector field Z is symplectic on TQ, that is, (FLt )∗ΩL = ΩL for all t ∈ R.

If the Lagrangian L is hyperregular, then it is possible to relate Lagrangian mechanics

on TQ to Hamiltonian mechanics on T ∗Q by defining the Hamiltonian H = E ○ (FL)−1. We

then have the following equivalence result.

Theorem 2.3.3. Let L be the hyperregular Lagrangian, and H = E○(FL)−1 the correspond-

ing Hamiltonian. If FLt is the flow of the Lagrangian vector field Z on TQ and FHt the flow

of the Hamiltonian vector field ZH on T ∗Q, then the relationship between the evolution on

the tangent and cotangent bundles is given by

Z = (FL)∗ZH , FLt = (FL)−1 ○ FHt ○ FL. (2.3.11)

In coordinates this means that the Hamiltonian equations (2.1.6) are equivalent to the

Euler-Lagrange equations (2.3.3). This becomes more evident if one rewrites the Euler-

Lagrange equations in the implicit Hamiltonian form as

pµ =
∂L

∂q̇µ
(q, q̇),

ṗµ =
∂L

∂qµ
(q, q̇). (2.3.12)

If the Lagrangian is hyperregular, then the first equation can be solved for q̇ in terms of

q and p. This relationship can be then substituted in the second equation, and the whole

system will take the form (2.1.6). If the Lagrangian is only regular, then Theorem 2.3.3 has

a local character, i.e., the relation between the Lagrangian and Hamiltonian pictures holds

in some open neighborhoods of the tangent and cotangent bundles.

If the Lagrangian is degenerate, then the solutions of (2.3.10) may not be unique, or

may not even exist at all. In that case one needs to use, e.g., the pre-symplectic constraint

algorithm (see [18]) to determine if there is any submanifold of TQ on which (2.3.10) can

be solved.

More information on the geometry of Lagrangian systems and variational principles can

be found in [38] and [18].
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2.4 Variational integrators for Lagrangian systems

2.4.1 Discrete Mechanics

As indicated in Section 2.2, the main purpose of symplectic integration is to preserve at the

discrete level the symplectic structure underlying continuous Hamiltonian systems. Simi-

larly, the central idea of variational integration is to preserve the variational structures of

Lagrangian systems. This leads to so-called Discrete Mechanics and the underlying idea

of discretization due to Veselov. For a Veselov-type discretization we consider the discrete

state space Q×Q, which serves as a discrete approximation of the tangent bundle (see [41]).

We define a discrete Lagrangian Ld as a smooth map Ld ∶ Q×QÐ→ R and the corresponding

discrete action

S =
N−1
∑
k=0

Ld(qk, qk+1). (2.4.1)

The variational principle now seeks a sequence q0, q1, ..., qN that extremizes S for variations

holding the endpoints q0 and qN fixed. The Discrete Euler-Lagrange equations follow

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0. (2.4.2)

Assuming that these equations can be solved for qk+1, i.e., Ld is non-degenerate, they

implicitly define the discrete Lagrangian map FLd
∶ Q ×QÐ→ Q ×Q such that

FLd
(qk−1, qk) = (qk, qk+1). (2.4.3)

Let (qµ, q̄µ) denote local coordinates on Q ×Q. We can define the discrete Legendre trans-

forms FL+d ,FL−d ∶ Q ×QÐ→ T ∗Q, which in local coordinates on Q ×Q and T ∗Q are respec-

tively given by

F+Ld(q, q̄) = (q̄,D2Ld(q, q̄)),

F−Ld(q, q̄) = (q,−D1Ld(q, q̄)), (2.4.4)

where q = (q1, . . . , qn) and q̄ = (q̄1, . . . , q̄n). The Discrete Euler-Lagrange equations (2.4.2)

can be equivalently written as
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F+Ld(qk−1, qk) = F−Ld(qk, qk+1). (2.4.5)

Using either of the transforms, one can define the discrete Lagrange two-form on Q ×Q by

ωLd
= (F±Ld)∗Ω̃, which in coordinates gives

ωLd
= ∂2Ld
∂qµ∂q̄ν

dqµ ∧ dq̄ν . (2.4.6)

It then follows that the discrete flow FLd
is symplectic, i.e., F ∗

Ld
ωLd

= ωLd
.

Using the Legendre transforms we can pass to the cotangent bundle and define the

discrete Hamiltonian map F̃Ld
∶ T ∗QÐ→ T ∗Q by

F̃Ld
= F±Ld ○ FLd

○ (F±Ld)−1. (2.4.7)

This map is also symplectic, i.e., F̃ ∗
Ld

Ω = Ω, where Ω is the canonical symplectic form

on T ∗Q. Using (2.4.4), the discrete Euler-Lagrange equations (2.4.2) can be equivalently

rewritten in the position-momentum formulation on T ∗Q as

pk = −D1Ld(qk, qk+1),

pk+1 =D2Ld(qk, qk+1). (2.4.8)

This system implicitly defines the discrete Hamiltonian map: given (qk, pk), one can solve

(2.4.8) for (qk+1, pk+1).

2.4.2 Correspondence between discrete and continuous systems

To relate discrete and continuous mechanics it is necessary to introduce a timestep h ∈ R. If

the continuous Lagrangian L is non-degenerate, it is possible to define a particular choice of

discrete Lagrangian which gives an exact correspondence between discrete and continuous

systems (see [41]), the so-called exact discrete Lagrangian.

Definition 2.4.1. The exact discrete Lagrangian LEd for the non-degenerate Lagrangian

L ∶ TQÐ→ R is



19

LEd (q, q̄) = ∫
h

0
L(qE(t), q̇E(t))dt, (2.4.9)

for sufficiently small h and q̄ sufficiently close to q, where qE(t) is the solution to (2.3.3)

that satisfies the boundary conditions qE(0) = q and qE(h) = q̄.

The discrete Legendre transforms F±LEd associated with LEd can be related to the con-

tinuous Legendre transform FL.

Theorem 2.4.2. A regular Lagrangian L and the corresponding exact discrete Lagrangian

LEd have Legendre transforms related by

F+LEd (q, q̄) = FL(qE(h), q̇E(h)),

F−LEd (q, q̄) = FL(qE(0), q̇E(0)), (2.4.10)

for sufficiently small h and q̄ sufficiently close to q, where qE(t) is the solution to (2.3.3)

that satisfies the boundary conditions qE(0) = q and qE(h) = q̄.

Solving the discrete Euler-Lagrange equations (2.4.2) associated with LEd yields the dis-

crete trajectory q0, q1, . . . such that qk coincides with the exact solution of the continuous

Euler-Lagrange equations (2.3.3) at time tk = kh. This important property can be summa-

rized in the following theorem, which we cite after [41].

Theorem 2.4.3. Consider a regular Lagrangian L, its corresponding exact discrete La-

grangian LEd , and the pushforward of both the continuous and discrete systems to T ∗Q,

yielding a Hamiltonian system with Hamiltonian H and a discrete Hamiltonian map F̃LE
d
,

respectively. Then, for a sufficiently small timestep h, the flow of the Hamiltonian system

equals the discrete Hamiltonian map, that is,

FHh = F̃LE
d
. (2.4.11)

For a given continuous system described by the regular Lagrangian L, a variational

integrator is constructed by choosing a discrete Lagrangian Ld which approximates the

exact discrete Lagrangian LEd . The precision of this approximation can be measured by

defining the order of accuracy of the discrete Lagrangian.



20

Definition 2.4.4. A discrete Lagrangian Ld ∶ Q ×Q Ð→ R is of order r if there exists an

open subset U ⊂ TQ with compact closure and constants C > 0 and h̄ > 0 such that

∣Ld(q(0), q(h)) −LEd (q(0), q(h))∣ ≤ Chr+1 (2.4.12)

for all solutions q(t) of the Euler-Lagrange equations (2.3.3) with initial conditions (q(0),q̇(0))∈

U and for all h ≤ h̄.

As discussed in Section 2.4.1, the discrete Lagrangian Ld defines the discrete Hamiltonian

map F̃Ld
on the cotangent bundle T ∗Q. This map is a numerical scheme for the Hamiltonian

system corresponding to the Lagrangian L (cf. Theorem 2.3.3), and so Definition 2.2.1 and

Definition 2.2.2 apply. If the Lagrangian L is regular, then one can show that the discrete

Lagrangian Ld is of order r if and only if the associated discrete Hamiltonian map F̃Ld
is

of order r (see [41]).

Example: Symplectic Euler scheme revisited. Consider a regular Lagrangian L and

the following discrete Lagrangian

Ld(q, q̄) = hL(q̄,
q̄ − q
h

). (2.4.13)

One can check that this discrete Lagrangian is first-order. A variational numerical integrator

is obtained by forming the discrete Euler-Lagrange equations (2.4.8). It is straightforward

to verify that these equations are equivalent to (2.2.5), i.e., the symplectic Euler scheme,

where the Hamiltonian H and the Lagrangian L are related as in Theorem 2.3.3.

2.4.3 Variational partitioned Runge-Kutta methods

To construct higher-order variational integrators, one may consider a class of partitioned

Runge-Kutta methods similar to partitioned Runge-Kutta methods for Hamiltonian sys-

tems. We will construct an s-stage variational partitioned Runge-Kutta integrator for the

regular Lagrangian L by considering the discrete Lagrangian

Ld(q, q̄) = h
s

∑
i=1
biL(Qi, Q̇i), (2.4.14)

where the internal stages Qi, Q̇i, i = 1, . . . , s, satisfy the relation
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Qi = q + h
s

∑
j=1

aijQ̇j , (2.4.15)

and are chosen so that the right-hand side of (2.4.14) is extremized under the constraint

q̄ = q + h
s

∑
i=1
biQ̇i. (2.4.16)

A variational integrator is then obtained by forming the corresponding discrete Euler-

Lagrange equations (2.4.8). We have the following result:

Theorem 2.4.5. The s-stage variational partitioned Runge-Kutta method based on the

discrete Lagrangian (2.4.14) with the coefficients aij and bi is equivalent to the following

partitioned Runge-Kutta method applied to the implicit Hamiltonian equations (2.3.12):

Pi =
∂L

∂q̇
(Qi, Q̇i), i = 1, . . . , s,

Ṗi =
∂L

∂q
(Qi, Q̇i), i = 1, . . . , s,

Qi = q + h
s

∑
j=1

aijQ̇j , i = 1, . . . , s,

Pi = p + h
s

∑
j=1

āijṖj , i = 1, . . . , s,

q̄ = q + h
s

∑
j=1

bjQ̇j ,

p̄ = p + h
s

∑
j=1

bjṖj , (2.4.17)

where the coefficients satisfy the condition

biāij + bjaji = bibj , ∀i, j = 1, . . . , s, (2.4.18)

and (q, p) denote the current values of position and momentum, (q̄, p̄) denote the respective

values at the next time step, and Qi, Q̇i, Pi, Ṗi are the internal stages.

If the Lagrangian L is regular, then (2.4.17) is equivalent to the symplectic partitioned

Runge-Kutta method (2.2.6), where H and L are related as in Theorem 2.3.3. We there-

fore have that the Gauss and Lobatto IIIA-IIIB methods discussed in Section 2.2.2 are
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variational (cf. Theorem 2.2.10 and Theorem 2.2.11).

More information on variational integrators can be found in [41].

2.5 Constrained mechanical systems

Below we present a short overview of how the theory discussed in the previous sections

applies to constrained mechanical systems and variational integration of such systems.

2.5.1 Lagrangian and Hamiltonian descriptions of constrained systems

Suppose we have a Lagrangian system with a configuration manifold Q and a regular La-

grangian L ∶ TQ Ð→ R, but we restrict the allowable configurations of the system to the

submanifold N = g−1(0) ⊂ Q, where g ∶ QÐ→ Rd is the constraint function and we assume 0

is a regular value of g (so that N is indeed a submanifold; see [38]). Note that, if i ∶ N Ð→ Q

is the inclusion map, then Ti ∶ TN Ð→ TQ provides a canonical way to embed TN in TQ,

and TN can be regarded as a submanifold of TQ. In fact, in a local bundle chart on TQ

we have the characterization

TN = {(q, q̇) ∈ TQ ∣ g(q) = 0 and Dg(q)q̇ = 0}, (2.5.1)

where Dg(q) denotes the Jacobi matrix of the (local representative of) constraint function

g(q). We can therefore consider the restricted Lagrangian system with the configuration

manifold N and the Lagrangian LN = L∣TN , and the theory presented in Section 2.3 can be

directly applied. However, it is often more elegant and convenient to consider this restricted

system as a constrained version of the larger system defined on Q. It is particularly useful

in numerical computations when Q has a vector space structure, which is easier to handle

than the possibly nonlinear structure of the constraint submanifold N .

It can be shown that if L is regular, so is LN (see [41]). Therefore, TN can be endowed

with the Lagrangian symplectic form ΩLN , as explained in Section 2.3, and this form is

preserved by the flow of the Lagrangian vector field associated with LN . It can be further

shown that this symplectic structure on TN is compatible with the symplectic structure on

TQ, that is, ΩLN = (Ti)∗ΩL, where ΩL is the Lagrangian form on TQ.

The action functional for the unconstrained system is given by (2.3.1). This functional
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is defined on the set of all smooth curves C(Q) = {q ∶ [a, b] Ð→ Q}, that is, S ∶ C(Q) Ð→ R.

The action functional SN ∶ C(N) Ð→ R for the Lagrangian LN is given by an analogous

formula. Since N ⊂ Q and TN ⊂ TQ are submanifolds, we have SN = S∣C(N). The dynamics

of the constrained system is given by Hamilton’s principle, i.e., extremizing SN . To consider

this dynamics in the embedding space, we further introduce the augmented configuration

manifold Q ×Rd and the augmented Lagrangian LC ∶ T (Q ×Rd)Ð→ R defined by

LC(q, λ, q̇, λ̇) = L(q, q̇) − ⟨λ, g(q)⟩, (2.5.2)

where λ ∈ Rd denotes the vector of Lagrange multipliers and ⟨., .⟩ is the standard scalar

product on Rd. The corresponding augmented action functional SC ∶ C(Q)×C(Rd)Ð→ R is

given by

SC[q(t), λ(t)] = ∫
b

a
LC(q(t), λ(t), q̇(t), λ̇(t))dt = S[q(t)] − ∫

b

a
⟨λ(t), g(q(t))⟩dt. (2.5.3)

The relation between the dynamics of the restricted system on N and the augmented system

on Q ×Rd is given by the following theorem (see [38]).

Theorem 2.5.1 (Lagrange multiplier theorem). The following statements are equiva-

lent:

1. The curve q ∶ RÐ→ N ⊂ Q is an extremum of SN ;

2. The pair of curves q ∶ [a, b]Ð→ Q and λ ∶ [a, b]Ð→ Rd is an extremum of SC .

The curves extremizing the augmented action functional SC satisfy the Euler-Lagrange

equations associated with LC , the so-called constrained Euler-Lagrange equations,

∂L

∂qµ
− d

dt

∂L

∂q̇µ
= ⟨λ, ∂g

∂qµ
⟩,

g(q) = 0. (2.5.4)

Deriving the equations of motion for constrained Hamiltonian systems is a little more

cumbersome. Suppose we have a Hamiltonian system with the Hamiltonian H ∶ T ∗QÐ→ R,
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but we restrict the dynamics to the constraint submanifold N = g−1(0) ⊂ Q as before. The

main complication is the fact that there is no canonical way of embedding T ∗N in T ∗Q,

and it is not obvious how to define an appropriate Hamiltonian HN on T ∗N . However,

if the Hamiltonian H is hyperregular, that is, there exists a corresponding hyperregular

Lagrangian L on TQ, as in Theorem 2.3.3, then one can realize T ∗N as a symplectic

submanifold of T ∗Q by defining the embedding η ∶ T ∗N Ð→ T ∗Q as η = FL ○ Ti ○ (FLN)−1.

Using canonical coordinates on T ∗Q, we have the following characterization

η(T ∗N) = {(q, p) ∈ T ∗Q ∣ g(q) = 0 and Dg(q)∂H
∂p

= 0}. (2.5.5)

It is straightforward to show that the canonical symplectic form ΩN on T ∗N is then com-

patible with the canonical symplectic form Ω on T ∗Q, that is, ΩN = η∗Ω. We can further

take HN = H ○ η. The Hamiltonian equations on T ∗N will be defined by (2.1.4), and the

theory discussed in Section 2.1 directly applies. However, it is again useful to consider the

dynamics of this constrained system in the embedding space. We have the natural embed-

ding Tη ∶ TT ∗N Ð→ TT ∗Q, so the Hamiltonian vector field ZN on T ∗N can be regarded

as a vector field on η(T ∗N). This leads to the following constrained equations on motion

on T ∗Q:

q̇µ = ∂H

∂pµ
,

ṗµ = −
∂H

∂qµ
− ⟨λ, ∂g

∂qµ
⟩,

g(q) = 0, (2.5.6)

where λ again denotes Lagrange multipliers. If the Lagrangian L is hyperregular, then

(2.5.6) and (2.5.4) are equivalent, as in Theorem 2.3.3.

For more information on the geometry of constrained Lagrangian and Hamiltonian sys-

tems we refer the reader to [38].

2.5.2 Variational integrators for constrained systems

Variational integration of constrained Lagrangian systems follows the main ideas presented

in Section 2.4. We start with a regular discrete Lagrangian Ld ∶ Q ×Q Ð→ R. The discrete
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dynamics is restricted to the constraint submanifold N ×N ⊂ Q ×Q, where N = g−1(0) ⊂ Q

as before. We consider the augmented discrete state space (Q × Rd) × (Q × Rd) and the

augmented discrete Lagrangian LCd ∶ (Q ×Rd) × (Q ×Rd)Ð→ R,

LCd (q, λ, q̄, λ̄) = Ld(q, q̄) − ⟨λ, g(q)⟩. (2.5.7)

The discrete Euler-Lagrange equations (2.4.2) for LCd yield

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) =Dg(qk)Tλk,

g(qk+1) = 0, (2.5.8)

where Dg denotes the Jacobi matrix of the constraint function g, and λk denotes the column

vector of Lagrange multipliers. If qk−1, qk are known, then (2.5.8) can be solved for qk+1

and λk.

The discrete Lagrangian Ld is chosen to approximate the exact discrete Lagrangian

for L. However, the exact discrete Lagrangian for a constrained system is not simply the

standard exact discrete Lagrangian (2.4.9) restricted to the constraint submanifold N ×N ,

as that would be the action along an unconstrained trajectory. Instead, the constrained

exact discrete Lagrangian LN,Ed ∶ N ×N Ð→ R is defined by

LN,Ed (q, q̄) = ∫
h

0
LN(qE(t), q̇E(t))dt, (2.5.9)

where qE(t) is the solution to the constrained Euler-Lagrange equations (2.5.4) satisfying

the boundary conditions qE(0) = q and qE(h) = q̄.

Lobatto IIIA-IIIB pair. Higher-order variational integrators for constrained systems

can be constructed as in Section 2.4.3: a variational Runge-Kutta method for a constrained

Lagrangian system described by a regular Lagrangian L is equivalent to a symplectic par-

titioned Runge-Kutta method applied to the constrained Hamiltonian equations (2.5.6).

Consider a Hamiltonian system H ∶ T ∗QÐ→ R with the holonomic constraint g ∶ QÐ→

Rd, and two Runge-Kutta methods with the coefficients aij , bi and āij , b̄i, respectively. An

s-stage constrained partitioned Runge-Kutta method is the map
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Fh ∶ η(T ∗N) ∋ (q, p)Ð→ (q̄, p̄) ∈ η(T ∗N), (2.5.10)

implicitly defined by the system of equations

Q̇i =
∂H

∂p
(Qi, Pi), i = 1, . . . , s, (2.5.11a)

Ṗi = −
∂H

∂q
(Qi, Pi) −Dg(Qi)TΛi, i = 1, . . . , s, (2.5.11b)

0 = g(Qi), i = 1, . . . , s, (2.5.11c)

Qi = q + h
s

∑
j=1

aijQ̇j , i = 1, . . . , s, (2.5.11d)

Pi = p + h
s

∑
j=1

āijṖj , i = 1, . . . , s, (2.5.11e)

q̄ = q + h
s

∑
i=1
biQ̇i, (2.5.11f)

p̄ = p + h
s

∑
i=1
b̄iṖi, (2.5.11g)

0 =Dg(q̄)∂H
∂p

(q̄, p̄), (2.5.11h)

where Qi, Q̇i, Pi, Ṗi and Λi are the internal stages of the method. However, this system

is not solvable for an arbitrary choice of the Runge-Kutta methods—note we have only

(4s+2)n+sd unknowns (the internal stages and q̄, p̄), but (4s+2)n+(s+1)d equations. It can

be shown that (2.5.11) is solvable if one chooses the coefficients of the s-stage Lobatto IIIA-

IIIB method (see Section 2.2.2). For the Lobatto IIIA-IIIB schemes we have a1j = 0 for

j = 1, . . . , s (cf. Table 2.4, Table 2.5, and Table 2.6), therefore in (2.5.11d) we have Q1 = q.

If we assume g(q) = 0, i.e., the initial position is consistent with the constraint, then d

equations in (2.5.11c) for i = 1 are automatically satisfied, and the whole system becomes

solvable. Further, the Lobatto IIIA-IIIB schemes satisfy asj = bj for j = 1, . . . , s, so from

(2.5.11d) and (2.5.11f) we have q̄ = Qs, and consequently, by (2.5.11c), we also have g(q̄) = 0,

i.e., the new position of the system is consistent with the constraint. This result, together

with (2.5.11h), means that (q̄, p̄) ∈ η(T ∗N), that is, (2.5.11) indeed defines an integrator for

the constrained Hamiltonian system. The following theorem can be proved (see [31], [23]).

Theorem 2.5.2. The s-stage constrained Lobatto IIIA-IIIB scheme (2.5.11) is symplectic
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on η(T ∗N) and convergent of order 2s − 2.

If one defines the discrete Lagrangian Ld ∶ Q ×QÐ→ R as

Ld(q, q̄) = h
s

∑
i=1
biL(Qi, Q̇i), (2.5.12)

where Qi and Q̇i satisfy (2.5.11), then the resulting variational integrator will be equivalent

to the constrained Lobatto IIIA-IIIB scheme, where L andH are related as in Theorem 2.3.3.

More information on variational and symplectic integration of constrained mechanical

systems can be found in [23], [26], and [41].

2.6 Field theory and multisymplectic geometry

In the previous sections we focused on finite-dimensional mechanics. Here we turn our

attention to field theories and review their underlying multisymplectic geometry. Multi-

symplectic geometry provides a covariant formalism for the study of field theories in which

time and space are treated on equal footing.

Multisymplectic geometry. Let X be an oriented manifold representing the (n + 1)-

dimensional spacetime with local coordinates (x0, x1, . . . , xn) ≡ (t, x), where x0 ≡ t is time

and (x1, . . . , xn) ≡ x are space coordinates. Physical fields are sections of a configuration

fiber bundle πXY ∶ Y Ð→ X , that is, continuous maps φ ∶ X Ð→ Y such that πXY ○ φ = idX .

This means that for every (t, x) ∈ X , φ(t, x) is in the fiber over (t, x), which is Y(t,x) =

π−1
XY ((t, x)). The evolution of the field takes place on the first jet bundle J1Y , which is the

analog of TQ for mechanical systems. J1Y is the affine bundle over Y with the fibers J1
yY

defined as

J1
yY = {ϑ ∶ T(t,x)X → TyY ∣ TπXY ○ ϑ = idT

(t,x)X
} (2.6.1)

for y ∈ Y(t,x), where the linear maps ϑ represent the tangent mappings T(t,x)φ for local

sections φ such that φ(t, x) = y. The local coordinates (xµ, ya) on Y induce the coordinates

(xµ, ya, vaµ) on J1Y . Intuitively, the first jet bundle consists of the configuration bundle

Y , and of the first partial derivatives of the field variables with respect to the independent

variables. Let φ(x0, . . . , xn) = (x0, . . . , xn, y1, . . . , ym) in coordinates and let vaµ = ya,µ =
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∂ya/∂xµ denote the partial derivatives. We can think of J1Y as a fiber bundle over X .

Given a section φ ∶ X Ð→ Y , we can define its first jet prolongation

j1φ ∶ X ∋ (t, x)Ð→ T(t,x)φ ∈ J1Y, (2.6.2)

in coordinates given by

j1φ(x0, x1, . . . , xn) = (x0, x1, . . . , xn, y1, . . . , ym, y1
,0, . . . , y

m
,n), (2.6.3)

which is a section of the fiber bundle J1Y over X . For higher-order field theories we

consider higher-order jet bundles, defined iteratively by J2Y = J1(J1Y ) and so on. The

local coordinates on J2Y are denoted (xµ, ya, vaµ,waµ, κaµν). The second jet prolongation

j2φ ∶ X Ð→ J2Y is given in coordinates by j2φ(xµ) = (xµ, ya, ya,µ, ya,µ, ya,µ,ν).

Lagrangian dynamics. Lagrangian density for first order field theories is defined as a

map L ∶ J1Y Ð→ R. The corresponding action functional is

S[φ] = ∫
U
L(j1φ)dn+1x, (2.6.4)

where U ⊂ X . Hamilton’s principle seeks fields φ(t, x) that extremize S, that is,

d

dλ
∣
λ=0

S[ηλY ○ φ] = 0 (2.6.5)

for all ηλY that keep the boundary conditions on ∂U fixed, where ηλY ∶ Y Ð→ Y is the flow of

a vertical vector field V on Y . This leads to the Euler-Lagrange equations

∂L
∂ya

(j1φ) − ∂

∂xµ
( ∂L
∂vaµ

(j1φ)) = 0, (2.6.6)

where Einstein’s summation convention is used.

Multisymplectic form formula. Given the Lagrangian density L one can define the

Cartan (n + 1)-form ΘL on J1Y , in local coordinates given by

ΘL =
∂L
∂vaµ

dya ∧ dnxµ + (L − ∂L
∂vaµ

vaµ)dn+1x, (2.6.7)
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where dnxµ = ∂µ ⌟ dn+1x. The multisymplectic (n + 2)-form is then defined by

ΩL = −dΘL. (2.6.8)

Let P be the set of solutions of the Euler-Lagrange equations, that is, the set of sections φ

satisfying (2.6.5) or (2.6.6). For a given φ ∈ P, let F be the set of first variations, that is,

the set of vector fields V on J1Y such that (t, x)→ ηεY ○φ(t, x) is also a solution, where ηεY
is the flow of V . The multisymplectic form formula states that if φ ∈ P then for all V and

W in F ,

∫
∂U

(j1φ)∗(j1V ⌟ j1W ⌟ΩL) = 0, (2.6.9)

where j1V is the jet prolongation of V , that is, the vector field on J1Y whose flow is the

first jet prolongation of the flow ηεY for V , i.e.,

j1V = d

dε
∣
ε=0
j1ηεY . (2.6.10)

The local representation is given by

j1V = (V µ, V a,
∂V a

∂xµ
+ ∂V

a

∂yb
vbµ − vaν

∂V ν

∂xµ
), (2.6.11)

where V = (V µ, V a) in local coordinates. The multisymplectic form formula is the multisym-

plectic counterpart of the fact that in finite-dimensional mechanics, the flow of a mechanical

system consists of symplectic maps, as discussed in Section 2.1 and Section 2.3.

Higher-order field theories. For a kth-order Lagrangian field theory with the La-

grangian density L ∶ JkY Ð→ R, analogous geometric structures are defined on J2k−1Y .

In particular, for a second-order field theory the multisymplectic (n+2)-form ΩL is defined

on J3Y and a similar multisymplectic form formula can be proven. If the Lagrangian den-

sity does not depend on the second order time derivatives of the field, it is convenient to

define the subbundle J2
0Y ⊂ J2Y such that J2

0Y = {ϑ ∈ J2Y ∣κa00 = 0}.

For more information about the geometry of jet bundles, see [58]. The multisymplectic

formalism in field theory is discussed in [21]. The multisymplectic form formula for first-

order field theories is derived in [39], and generalized for second-order field theories in [34].
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Higher-order field theory is considered in [20].

2.7 Multisymplectic variational integrators

Veselov-type discretization. Veselov-type discretization can be generalized to multi-

symplectic field theory. We take X = Z × Z = {(j, i)}, where for simplicity we consider

dimX = 2, i.e., n = 1. The configuration fiber bundle is Y = X ×F for some smooth mani-

fold F . The fiber over (j, i) ∈ X is denoted Yji and its elements yji. A rectangle ◻ of X is

an ordered 4-tuple of the form ◻ = ((j, i), (j, i + 1), (j + 1, i + 1), (j + 1, i)) = (◻1,◻2,◻3,◻4).

The set of all rectangles in X is denoted X◻. A point (j, i) is touched by a rectangle if it is

a vertex of that rectangle. Let U ⊂ X . Then (j, i) ∈ U is an interior point of U if U contains

all four rectangles that touch (j, i). The interior intU is the set of all interior points of

U . The closure clU is the union of all rectangles touching the interior points of U . The

boundary of U is defined by ∂U = (U ∩ clU)/intU . A section of Y is a map φ ∶ U ⊂ X → Y

such that φ(j, i) ∈ Yji. We can now define the discrete first jet bundle of Y as

J1Y = {(yji, yj i+1, yj+1 i+1, yj+1 i) ∣ (j, i) ∈ X , yji, yj i+1, yj+1 i+1, yj+1 i ∈ F}

= X◻ ×F 4. (2.7.1)

Intuitively, the discrete first jet bundle is the set of all rectangles together with four values

assigned to their vertices. Those four values are enough to approximate the first derivatives

of a smooth section with respect to time and space using, for instance, finite differences.

The first jet prolongation of a section φ of Y is the map j1φ ∶ X◻ → J1Y defined by

j1φ(◻) = (◻, φ(◻1), φ(◻2), φ(◻3), φ(◻4)). For a vector field V on Y , let Vji be its restriction

to Yji.

Discrete Euler-Lagrange equations. Define a discrete Lagrangian L ∶ J1Y → R, L =

L(y1, y2, y3, y4), where for convenience we omit writing the base rectangle. The associated

discrete action is given by

S[φ] = ∑
◻⊂U

L ○ j1φ(◻).
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The discrete variational principle seeks sections that extremize the discrete action, that is,

mappings φ(j, i) such that

d

dλ
∣
λ=0

S[φλ] = 0 (2.7.2)

for all vector fields V on Y that keep the boundary conditions on ∂U fixed, where φλ(j, i) =

F
Vji

λ (φ(j, i)) and F
Vji

λ is the flow of Vji on F . This is equivalent to the discrete Euler-

Lagrange equations

∂L

∂y1
(yji, yj i+1, yj+1 i+1, yj+1 i) +

∂L

∂y2
(yj i−1, yji, yj+1 i, yj+1 i−1)+

+ ∂L

∂y3
(yj−1 i−1, yj−1 i, yji, yj i−1) +

∂L

∂y4
(yj−1 i, yj−1 i+1, yj i+1, yji) = 0 (2.7.3)

for all (j, i) ∈ intU , where we adopt the convention φ(j, i) = yji.

Discrete multisymplectic form formula. In analogy to the Veselov discretization of

mechanics, we can define four 2-forms Ωl
L on J1Y , where l = 1,2,3,4 and Ω1

L+Ω2
L+Ω3

L+Ω4
L =

0, that is, only three 2-forms of these forms are independent. The 4-tuple (Ω1
L,Ω2

L,Ω3
L,Ω4

L)

is the discrete analog of the multisymplectic form ΩL. We refer the reader to the literature

for details, e.g. [39]. By analogy to the continuous case, let P be the set of solutions of

the discrete Euler-Lagrange equations (2.7.3). For a given φ ∈ P, let F be the set of first

variations, that is, the set of vector fields V on J1Y defined as in the continuous case. The

discrete multisymplectic form formula then states that if φ ∈ P, then for all V and W in F ,

∑
◻

◻∩U /=∅

⎛
⎝ ∑l
◻

l
∈∂U

[(j1φ)∗(j1V ⌟ j1W ⌟Ωl
L)](◻)

⎞
⎠
= 0, (2.7.4)

where the jet prolongations are defined to be

j1V (y◻1 , y◻2 , y◻3 , y◻4) = (V◻1(y◻1), V◻2(y◻2), V◻3(y◻3), V◻4(y◻4)). (2.7.5)

The discrete form formula (2.7.4) is in direct analogy to the multisymplectic form formula

(2.6.9) that holds in the continuous case.
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Discrete Lagrangian. Given a continuous Lagrangian density L one chooses a corre-

sponding discrete Lagrangian as an approximation

L(y◻1 , y◻2 , y◻3 , y◻4) ≈ ∫
◻
L ○ j1φ̄ dxdt, (2.7.6)

where ◻ is the rectangular region of the continuous spacetime that contains ◻ and φ̄(t, x) is

the solution of the Euler-Lagrange equations corresponding to L, with the boundary values

at the vertices of ◻ corresponding to y◻1 , y◻2 , y◻3 , and y◻4 .

Higher-order discrete field theory. The discrete second jet bundle J2Y can be defined

by considering ordered 9-tuples

⊞ = ((j − 1, i − 1), (j − 1, i), (j − 1, i + 1), (j, i − 1),

(j, i), (j, i + 1), (j + 1, i − 1), (j + 1, i), (j + 1, i + 1))

= (⊞1,⊞2,⊞3,⊞4,⊞5,⊞6,⊞7,⊞8,⊞9) (2.7.7)

instead of rectangles ◻, and the discrete subbundle J2
0Y can be defined by considering

6-tuples

� = ((j, i − 1), (j, i), (j, i + 1), (j + 1, i + 1), (j + 1, i), (j + 1, i − 1))

= (�1,�2,�3,�4,�5,�6). (2.7.8)

Similar constructions then follow and a similar discrete multisymplectic form formula can

be derived for a second order field theory.

Multisymplectic variational integrators for first order field theories are introduced in

[39], and generalized for second-order field theories in [34].
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Chapter 3

Background:
Moving mesh methods

In this chapter we review r-adaptive methods for time-dependent partial differential equa-

tions, also known as moving mesh methods. As mentioned in Chapter 1, even though it is

still in a relatively early stage of development, the field of moving mesh methods is already

quite large, with many applications studied and research directions investigated. It is be-

yond the scope of this chapter to review the full spectrum of topics related to moving mesh

methods. Instead, we focus only on one-dimensional problems in space, and we highlight

only the most important aspects that will later allow us to put our approach to mesh adap-

tation in context. For a comprehensive summary of the field we refer the reader to [28] and

[7], and the references therein.

For clarity, we will consider a concrete example, namely Burgers’ equation

∂u

∂t
+ u ∂u

∂X
= ν ∂

2u

∂X2 , (3.0.1)

where u = u(X, t) satisfies the boundary conditions u(0, t) = uL and u(Xmax, t) = uR, and

we will discuss how r-adaptive meshes can be applied to this model.

3.1 Discretization of the PDE on a nonuniform mesh

The first logical step of r-adaptation is the discretization of the physical PDE on a nonuni-

form mesh. It is often convenient to introduce a suitable coordinate transformation. Specif-

ically, we assume for the moment that a time-dependent coordinate transformation X ∶

[0,Xmax] × R Ð→ [0,Xmax], X = X(x, t), is given, where X represents the spatial coor-
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dinate in the physical domain, and x denotes the spatial coordinate in the computational

domain. This transformation is chosen such that the solution in the transformed variable,

ϕ(x, t) = u(X(x, t), t), (3.1.1)

is smooth, and can be accurately approximated on a uniform mesh in the computational

domain. A finite difference discretization of Burgers’ equation on this uniform mesh can

be derived using the so-called quasi-Lagrange approach. We transform (3.0.1) to the com-

putational domain and derive the corresponding PDE for ϕ(x, t). By the chain rule we

have

uX(X(x, t), t) = ϕx(x, t)
Xx(x, t)

,

uXX(X(x, t), t) = 1
Xx(x, t)

( ϕx(x, t)
Xx(x, t)

)
x

,

ut(X(x, t), t) = ϕt(x, t) −
ϕx(x, t)
Xx(x, t)

Xt(x, t), (3.1.2)

where subscripts denote differentiation with respect to appropriate variables. Burgers’

equation becomes

ϕt −
ϕx
Xx

Xt + ϕ
ϕx
Xx

= ν

Xx
( ϕx
Xx

)
x

. (3.1.3)

Let us discretize this equation in the computational domain by considering the uniformly

spaced mesh points xi = i ⋅ ∆x for i = 0,1, . . . ,N + 1, where ∆x = Xmax/(N + 1). Denote

Xi(t) = X(xi, t) and yi(t) = ϕ(xi, t). Note that Xi(t) describes the position of the i-th

mesh point in the physical space at time t. The spatial derivatives can be approximated

using finite differences, for instance

ϕx(xi, t) ≈
yi+1 − yi

∆x
, Xx(xi, t) ≈

Xi+1 −Xi

∆x
. (3.1.4)

The semi-discretization of (3.1.3) becomes

ẏi −
yi+1 − yi
Xi+1 −Xi

Ẋi + yi
yi+1 − yi
Xi+1 −Xi

= ν
yi+2−yi+1
Xi+2−Xi+1

− yi+1−yi

Xi+1−Xi

Xi+1 −Xi
. (3.1.5)
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If the functionsXi(t) are known, then (3.1.5), together with the boundary conditions y0 = uL
and yN+1 = uR, forms a system of ordinary differential equations for y1, . . ., yN , and can

be integrated in time using any numerical scheme. However, in practice we usually do not

know the mesh point trajectories ahead of time, and we would like the mesh to dynamically

adapt to the changes in the solution. We will therefore need additional equations describing

the evolution of the mesh itself. An approach based on the equidistribution principle is

discussed in the next section.

3.2 Moving mesh partial differential equations

3.2.1 Equidistribution principle

The concept of equidistribution is the most popular paradigm of r-adaptation (see [7], [28]).

Given a continuous mesh density function ρ(X), the equidistribution principle seeks to find

a mesh 0 =X0 <X1 < ... <XN+1 =Xmax such that the following holds

∫
X1

0
ρ(X)dX = ∫

X2

X1
ρ(X)dX = ... = ∫

Xmax

XN

ρ(X)dX, (3.2.1)

that is, the quantity represented by the density function is equidistributed among all cells.

In the continuous setting we will say that the reparametrization X = X(x) equidistributes

ρ(X) if

∫
X(x)

0
ρ(X)dX = x

Xmax
σ, (3.2.2)

where σ = ∫
Xmax

0 ρ(X)dX is the total amount of the equidistributed quantity. Differentiate

this equation with respect to x to obtain

ρ(X(x))∂X
∂x

= 1
Xmax

σ. (3.2.3)

It is still a global condition in the sense that σ has to be known. For computational

purposes it is convenient to differentiate this relation again and consider the following

partial differential equation (also called moving mesh PDE, or MMPDE)

∂

∂x
(ρ(X(x))∂X

∂x
) = 0 (3.2.4)
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with the boundary conditions X(0) = 0, X(Xmax) = Xmax. An example discretization of

this MMPDE on a uniform mesh in the computational domain can be

1
∆x

(ρi+1 + ρi
2

Xi+1 −Xi

∆x
− ρi + ρi−1

2
Xi −Xi−1

∆x
) = 0, (3.2.5)

where ρi = ρ(X(xi)). Together with the boundary conditions X0 = 0 and XN+1 = Xmax,

(3.2.5) provides a way to dynamically adapt the mesh in (3.1.5), as will be discussed in

Section 3.3.

The choice of the mesh density function ρ(X) is typically problem-dependent and the

subject of much research. A popular example is the generalized solution arclength given by

ρ =
√

1 + α2( ∂u
∂X

)
2
=
√

1 + α2( ϕx
Xx

)
2
, (3.2.6)

where α is an adjustable scaling parameter. It is often used to construct meshes that can

follow moving fronts with locally high gradients ([7], [28]). With this choice, equation (3.2.4)

is equivalent to

α2ϕxϕxx +XxXxx = 0, (3.2.7)

assuming Xx > 0, which we demand anyway. A finite difference discretization on the mesh

xi = i ⋅∆x gives us the set of contraints

gi(y1, ..., yN ,X1, ...,XN) =

α2(yi+1 − yi)2 + (Xi+1 −Xi)2 − α2(yi − yi−1)2 − (Xi −Xi−1)2 = 0, (3.2.8)

with the previously defined yi’s and Xi’s. Another popular example is the curvature-based

mesh density

ρ = 4

√
1 + α2( ∂

2u

∂X2 )
2
. (3.2.9)

The resulting mesh is denser in the areas of high curvature in the solution. In some applica-

tions the curvature-based density function gives significantly more accurate results than the

arclength density function, although it may be computationally more costly and prone to
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instabilities. Yet another example are mesh density functions based on scaling invariance.

Scaling invariance is an important property of a broad class of partial differential equations

whose solutions blow up in finite time. Such blowups typically occur on increasingly smaller

length scales and application of adaptive meshes greatly improves the accuracy of numerical

computations. One may choose a density function such that the resulting MMPDE remains

invariant under the same scaling, for instance

ρ = uγ , (3.2.10)

where γ is an appropriately chosen coefficient related to the scaling symmetry of the physical

PDE.

3.2.2 Mesh smoothing

The main idea of moving mesh methods is to concentrate the mesh points in the areas

where higher accuracy is required, for instance in the areas where the function u(X, t) is

not smooth or varies rapidly. This may be achieved by considering the equidistribution

principle and the related partial differential equation (3.2.4). However, the mesh density

function ρ computed this way may also change abruptly, which may introduce significant

stiffness and slow down numerical computations. In order to improve the efficiency and

accuracy of the computations one may apply certain smoothing techniques.

Spatial smoothing. It is a common practice in computations involving moving mesh

methods to smooth out the mesh density function in space at each timestep, so that the

MMPDE is easier to integrate and the resulting mesh is smoother. Smoothing the mesh

density, e.g. by some local averaging procedure, can considerably improve the performance

and accuracy of computations, as the iterations of the method may converge faster and

larger time steps may be applied. A simple example is given by weighted averaging, i.e.,

ρi ∶=
1
4
ρi−1 +

1
2
ρi +

1
4
ρi+1, i = 1, . . . ,N,

ρ0 ∶=
1
2
ρ0 +

1
2
ρ1,

ρN+1 ∶=
1
2
ρN + 1

2
ρN+1, (3.2.11)
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where ∶= denotes the assignment operation. Several sweeps of this procedure may be applied

at each integration step.

More generally, a smoothed density function ρ̃ can be obtained by using an elliptic

operator, such as the Laplacian, or an approximation to it. For instance, one can consider

the boundary value problem

(1 − β−2 d
2

dx2 )ρ̃ = ρ,

dρ̃

dx
(0) = dρ̃

dx
(Xmax) = 0, (3.2.12)

where β > 0 is a parameter which can be fine-tuned, and ρ and ρ̃ are regarded as functions of

x. For a given ρ, the new mesh density ρ̃ will have higher regularity. For more information

see [29].

Temporal smoothing. The equidistribution principle leads to the boundary value prob-

lem (3.2.4), which does not involve time derivatives of the time-dependent coordinate trans-

formation X(x, t). As a result, the semi-discretizations (3.2.5) or (3.2.8) are a set of al-

gebraic constraints, which, when coupled to the semi-discretization (3.1.5), form a set of

differential-algebraic equations (DAEs), as will be discussed in Section 3.3. There are sev-

eral advantages of modifying (3.2.4), so that it contains the mesh speed. First of all, a

semi-discretization will then give a set of ODEs, which are numerically easier to handle

than DAEs. In addition, including the mesh speed in the mesh equations allows for the

introduction of a certain level of temporal smoothing for mesh movement. In order to con-

struct such modifications, it is convenient to consider the inverse coordinate transformation,

that is, x = x(X, t). The MMPDE (3.2.4) is then transformed into

∂

∂X
( 1
ρ(X, t)

∂x

∂X
) = 0 (3.2.13)

with the boundary conditions x(0, t) = 0 and x(Xmax, t) = Xmax. It is easy to see that the

solution to this problem is a minimizer of the functional

I[x(X, t)] = 1
2 ∫

Xmax

0

1
ρ(X, t)

( ∂x
∂X

)
2
dX, (3.2.14)
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that is, (3.2.13) is equivalent to δI/δx = 0 with appropriate boundary conditions. As a way

to introduce the mesh speed, we can consider the gradient flow equation, which has the form

∂x

∂t
= −P

ε

δI

δx
, (3.2.15)

where P is some positive-definite differential operator, and ε > 0 is a user-specified pa-

rameter that controls the response time of mesh movement to changes in ρ(X, t). The

theoretical advantage of using the inverse transformation x = x(X, t) is the fact that the

functional (3.2.14) is quadratic and the associated PDE (3.2.13) is linear, which makes the

analysis of existence, uniqueness, and well-posedness easier. However, it is not practical

in computations, since x(X, t) does not directly specify the location of the mesh points in

the physical domain. Let us transform back to the formulation with the reparametrization

X =X(x, t). The gradient flow equation takes the form

∂X

∂t
= 1
ε

∂X

∂x
P(ρ∂X

∂x
)
−2

(∂X
∂x

)
−1
∂

∂x
(ρ∂X

∂x
), (3.2.16)

By choosing various P ’s, we can obtain different modifications of (3.2.4). For instance, for

P = (ρXx)2 we get the so-called MMPDE5 (see [27])

(MMPDE5): ∂X

∂t
= 1
ε

∂

∂x
(ρ∂X

∂x
), (3.2.17)

whereas for

P = −(∂X
∂x

)
−1

( ∂

∂x
ρ
∂

∂x
)
−1

(ρ∂X
∂x

)
2
∂X

∂x
(3.2.18)

we obtain

(MMPDE4): ∂

∂x
(ρ∂Xt

∂x
) = −1

ε

∂

∂x
(ρ∂X

∂x
), (3.2.19)

and

P = −(∂X
∂x

)
−1

( ∂2

∂x2)
−1

(ρ∂X
∂x

)
2
∂X

∂x
(3.2.20)

results in
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(MMPDE6): ∂2Xt

∂x2 = −1
ε

∂

∂x
(ρ∂X

∂x
), (3.2.21)

where Xt ≡ ∂X/∂t is the mesh speed. We may refer to the equidistribution relation (3.2.4)

as MMPDE0. Note that MMPDE4-6 all contain the left-hand side term of MMPDE0, that

is,

1
ε

∂

∂x
(ρ∂X

∂x
). (3.2.22)

This term is zero if the mesh equidistributes the quantity represented by ρ. When it is

non-zero, then it provides a driving force that draws the mesh back to equidistribution.

This can be interpreted as attraction and repulsion pseudoforces which prevent the mesh

points from collapsing or crossing each other.

Discretization of MMPDEs on a uniform mesh in the computational domain can be

done in a way similar to (3.2.5) or (3.2.8). For instance, for MMPDE5 we may consider the

following semi-discretization

εẊi =
1

∆x
(ρi+1 + ρi

2
Xi+1 −Xi

∆x
− ρi + ρi−1

2
Xi −Xi−1

∆x
). (3.2.23)

If we use the generalized arclength density (3.2.6), a similar discretization of MMPDE5 may

take the form

εẊi =
1

∆x2
α2(yi+1 − yi)2 + (Xi+1 −Xi)2 − α2(yi − yi−1)2 − (Xi −Xi−1)2

√
(yi+1 − yi−1)2 + (Xi+1 −Xi−1)2

, (3.2.24)

or simply εẊi = gi(y1, ..., yN ,X1, ...,XN), if one absorbs some positive terms into the defini-

tion of ε, where gi was defined in (3.2.8). Note that (3.2.23) or (3.2.24) form a set of ODEs,

unlike (3.2.5) or (3.2.8).

Information about other types of MMPDEs can be found in [27] and [30].

3.3 Coupling the mesh equations to the physical equations

The last logical step of an r-adaptive method consists of coupling the mesh equations

discussed in Section 3.2 to the physical equations discussed in Section 3.1. This can be
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achieved in two general ways, either by using the quasi-Lagrange approach or the rezoning

approach. For the quasi-Lagrange approach, the physical PDE and the mesh equation can

be further solved simultaneously or alternately. In this thesis we use only the simultaneous

quasi-Lagrange approach, but for completeness we present a short overview of each strategy.

3.3.1 Quasi-Lagrange approach

In the quasi-Lagrange strategy, the mesh points are considered to move continuously in time.

The physical time derivatives are therefore transformed into derivatives along the mesh

trajectories, as in (3.1.2), and the physical PDE (3.0.1) is transformed into (3.1.3). This

transformed PDE is then solved together with the mesh equation, say (3.2.4) or (3.2.17),

for both the physical solution and the mesh configuration. This system can be integrated

in time either simultaneously or alternately.

Simultaneous solution. The semi-discretization (3.1.5) of Burgers’ equation and the

semi-discretization (3.2.5) together form the differential-algebraic system

ẏi −
yi+1 − yi
Xi+1 −Xi

Ẋi + yi
yi+1 − yi
Xi+1 −Xi

= ν
yi+2−yi+1
Xi+2−Xi+1

− yi+1−yi

Xi+1−Xi

Xi+1 −Xi
,

0 = 1
∆x

(ρi+1 + ρi
2

Xi+1 −Xi

∆x
− ρi + ρi−1

2
Xi −Xi−1

∆x
), (3.3.1)

which needs to be solved for the functions yi(t) andXi(t), where i = 1, . . . ,N and y0(t) = uL,

yN+1(t) = uR, X0(t) = 0, XN+1(t) =Xmax. This can be done with the help of an appropriate

numerical DAE solver (see [6], [26], [22]). If we consider the MMPDE5 (3.2.17) instead, we

obtain the following ODE system

ẏi −
yi+1 − yi
Xi+1 −Xi

Ẋi + yi
yi+1 − yi
Xi+1 −Xi

= ν
yi+2−yi+1
Xi+2−Xi+1

− yi+1−yi

Xi+1−Xi

Xi+1 −Xi
,

εẊi =
1

∆x
(ρi+1 + ρi

2
Xi+1 −Xi

∆x
− ρi + ρi−1

2
Xi −Xi−1

∆x
), (3.3.2)

which can be solved using any ODE solver.

The main advantage of this approach is the fact it is conceptually simple. Moreover,

since at each time step we solve the equations simultaneously for yi(t) and Xi(t), the mesh



42

responds promptly to any change occurring in the physical solution. However, the coupling

between the mesh and the physical solution is highly nonlinear, even if one considers a

linear PDE instead of Burgers’ equation. As a result, (3.3.1) and (3.3.2) are more difficult

and expensive to solve. This is the main reason why simultaneous solution has been limited

mainly to one-dimensional problems in space.

Alternate solution. In order to decouple the mesh equations from the physical equations,

one may try to solve them separately. Suppose we are looking for a solution at the discrete

set of times 0 = t0 < t1 < t2 < . . ., where the increments ∆tn = tn+1 − tn do not have to be

uniform over the integration interval, and denote yni = yi(tn) and Xn
i = Xi(tn). The idea

of the alternate solution procedure is to first generate a mesh Xn+1 at the new time level

using the mesh and the physical solution (Xn, yn) at the current time level, and then solve

for the physical solution yn+1 at the new time level. As an example, consider the following

discretization of (3.3.2):

ε
Xn+1
i −Xn

i

∆tn
= 1

∆x
(
ρni+1 + ρni

2
Xn+1
i+1 −Xn+1

i

∆x
−
ρni + ρni−1

2
Xn+1
i −Xn+1

i−1
∆x

), (3.3.3a)

yn+1
i − yni

∆tn
− 1

2
(
yni+1 − yni
Xn
i+1 −Xn

i

+
yn+1
i+1 − yn+1

i

Xn+1
i+1 −Xn+1

i

)
Xn+1
i −Xn

i

∆tn

+ 1
2
(yni

yni+1 − yni
Xn
i+1 −Xn

i

+ yn+1
i

yn+1
i+1 − yn+1

i

Xn+1
i+1 −Xn+1

i

)

= 1
2
ν(

yn
i+2−y

n
i+1

Xn
i+2−X

n
i+1

− yn
i+1−y

n
i

Xn
i+1−X

n
i

Xn
i+1 −Xn

i

+
yn+1

i+2 −y
n+1
i+1

Xn+1
i+2 −X

n+1
i+1

− yn+1
i+1 −y

n+1
i

Xn+1
i+1 −X

n+1
i

Xn+1
i+1 −Xn+1

i

). (3.3.3b)

We see that equation (3.3.3a) is decoupled and can be solved for the new mesh (M), i.e.

Xn+1
i . The new mesh can be then substituted into (3.3.3b), and the equation can be solved

for the updated physical solution (P ), i.e. yn+1
i . This is referred to as the MP procedure.

The main advantage of the alternate solution procedure is the fact that the mesh and

physical equations decouple, and each can be solved more efficiently. However, the new

mesh Xn+1 adapts only to the current physical solution yn, which introduces a time lag

in mesh movement. This may cause instabilities in the computations if the mesh is not

generated accurately enough at one time step. As a consequence, much smaller time steps

∆tn may be required.
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3.3.2 Rezoning approach

In the rezoning strategy the mesh points are considered to move in a discontinuous fashion

in time. Let us briefly describe this procedure. Suppose that at time tn we have the

physical solution yn and the mesh Xn. The physical solution ỹn+1 at the new time level is

computed by holding the mesh Xn fixed. Naturally, the updated physical solution ỹn+1 on

the mesh Xn will not, in general, satisfy the equidistribution principle. Using the values

ỹn+1
0 , . . . , ỹn+1

N+1 and the mesh points Xn
0 , . . . ,X

n
N+1, the physical solution is interpolated, and

a new equidistributing mesh Xn+1 and corresponding yn+1 are then computed, for instance

by solving (3.2.4). Interpolation of the physical solution is a crucial step for the success of

this approach, and often has to be done in a special way. We refer the interested reader to

[28] for more information.



44

Chapter 4

R-adaptive variational integrators

In this chapter we propose two ideas on how moving mesh methods can be applied in

geometric integration of Lagrangian partial differential equations. Let us consider a (1+1)-

dimensional scalar field theory with the action functional

S[φ] = ∫
Tmax

0 ∫
Xmax

0
L(φ,φX , φt)dX dt, (4.0.1)

where φ ∶ [0,Xmax] × [0, Tmax] Ð→ R is the field and L ∶ R × R × R Ð→ R its Lagrangian

density. For simplicity, we assume the following fixed boundary conditions

φ(0, t) = φL,

φ(Xmax, t) = φR. (4.0.2)

In order to further consider moving meshes, let us perform a change of variables X =

X(x, t) such that for all t the map X(., t) ∶ [0,Xmax]Ð→ [0,Xmax] is a ‘diffeomorphism’—

more precisely, we only require that X(., t) is a homeomorphism such that both X(., t)

and X(., t)−1 are piecewise C1. In the context of mesh adaptation the map X(x, t) is

going to represent the spatial position at time t of the mesh point labeled by x. Define

ϕ(x, t) = φ(X(x, t), t). Then the partial derivatives of φ are φX(X(x, t), t) = ϕx/Xx and

φt(X(x, t), t) = ϕt − ϕxXt/Xx. Plugging these equations in (4.0.1) we get

S[φ] = ∫
Tmax

0 ∫
Xmax

0
L(ϕ, ϕx

Xx
, ϕt −

ϕxXt

Xx
)Xx dxdt =∶ S̃[ϕ], S̃[ϕ,X] (4.0.3)
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where the last equality defines two modified, or ‘reparametrized’, action functionals. For the

first one, S̃ is considered as a functional of ϕ only, whereas in the second one we also treat

it as a functional of X. This leads to two different approaches to mesh adaptation, which

we dub the control-theoretic strategy and the Lagrange multiplier strategy, respectively.

The ‘reparametrized’ field theories defined by S̃[ϕ] and S̃[ϕ,X] are both intrinsically

covariant; however, it is convenient for computational purposes to work with a space-time

split and formulate the field dynamics as an initial value problem. Therefore, in this chapter

we take the view of infinite dimensional manifolds of fields as configuration spaces, and

develop the control-theoretic and Lagrange multiplier strategies in that setting. It allows us

to discretize our system in space first and consider time discretization later on. It is clear

from our exposition that the resulting integrators are variational. In Chapter 5 we show

how similar integrators can be constructed using the covariant formalism of multisymplectic

field theory.

4.1 Control-theoretic approach to r-adaptation

At first glance, it appears that the simplest and most straightforward way to construct

an r-adaptive variational integrator would be to discretize the physical system in a similar

manner to the general approach to variational integration, i.e., discretize the underlying

variational principle (see Section 2.4 and Section 2.7), and then derive the mesh equations

and couple them to the physical equations in a way typical of the existing r-adaptive

algorithms (see Section 3.3). We explore this idea in this section and show that it indeed

leads to space adaptive integrators that are variational in nature. However, we also show

that those integrators do not exhibit the behavior expected of geometric integrators, such

as good energy conservation.

4.1.1 Reparametrized Lagrangian

For the moment let us assume that X(x, t) is a known function. We denote by ξ(X, t)

the function such that ξ(., t) = X(., t)−1, that is ξ(X(x, t), t) = x 1. We thus have S̃[ϕ] =

S[ϕ(ξ(X, t), t)].

1We allow a little abuse of notation here: X denotes both the argument of ξ and the change of variables
X(x, t). If we wanted to be more precise, we would write X = h(x, t).
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Proposition 4.1.1. Extremizing S[φ] with respect to φ is equivalent to extremizing S̃[ϕ]

with respect to ϕ.

Proof. The variational derivatives of S and S̃ are related by the formula

δS̃[ϕ] ⋅ δϕ(x, t) = δS[ϕ(ξ(X, t), t)] ⋅ δϕ(ξ(X, t), t). (4.1.1)

Suppose φ(X, t) extremizes S[φ], i.e., δS[φ] ⋅δφ = 0 for all variations δφ. Given the function

X(x, t), define ϕ(x, t) = φ(X(x, t), t). Then, by the formula above we have δS̃[ϕ] = 0, so

ϕ extremizes S̃. Conversely, suppose ϕ(x, t) extremizes S̃, that is, δS̃[ϕ] ⋅ δϕ = 0 for

all variations δϕ. Since we assume X(., t) is a homeomorphism, we can define φ(X, t) =

ϕ(ξ(X, t), t). Note that an arbitrary variation δφ(X, t) induces the variation δϕ(x, t) =

δφ(X(x, t), t). Then we have δS[φ] ⋅ δφ = δS̃[ϕ] ⋅ δϕ = 0 for all variations δφ, so φ(X, t)

extremizes S[φ].

The corresponding instantaneous Lagrangian L̃ ∶ Q ×W ×RÐ→ R is

L̃[ϕ,ϕt, t] = ∫
Xmax

0
L̃(ϕ,ϕx, ϕt, t)dx (4.1.2)

with the Lagrangian density

L̃(ϕ,ϕx, ϕt, x, t) = L(ϕ,
ϕx
Xx

, ϕt −
ϕxXt

Xx
)Xx. (4.1.3)

The function spaces Q and W must be chosen appropriately for the problem at hand, so

that (4.1.2) makes sense. For instance, for a free field we will have Q = H1([0,Xmax]) and

W = L2([0,Xmax]). Since X(x, t) is a function of t, we are looking at a time-dependent

system. Even though the energy associated with (4.1.2) is not conserved, the energy of the

original theory associated with (4.0.1)

E = ∫
Xmax

0
(φt

∂L
∂φt

(φ,φX , φt) −L(φ,φX , φt))dX (4.1.4)

= ∫
Xmax

0
[(ϕt −

ϕxXt

Xx
) ∂L
∂φt

(ϕ, ϕx
Xx

, ϕt −
ϕxXt

Xx
) −L(ϕ, ϕx

Xx
, ϕt −

ϕxXt

Xx
)]Xx dx (4.1.5)
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is conserved. To see this, note that if φ(X, t) extremizes S[φ] then dE/dt = 0 (computed

from (4.1.4)). Trivially, this means that dE/dt = 0 when formula (4.1.5) is invoked as well.

Moreover, as we have noted earlier, φ(X, t) extremizes S[φ] iff ϕ(x, t) extremizes S̃[ϕ].

This means that the energy (4.1.5) is constant on solutions of the reparametrized theory.

4.1.2 Spatial Finite Element discretization

We begin with a discretization of the spatial dimension only, thus turning the original

infinite-dimensional problem into a time-continuous finite-dimensional Lagrangian system.

Let ∆x =Xmax/(N+1) and define the reference uniform mesh xi = i ⋅∆x for i = 0,1, ...,N+1,

and the corresponding piecewise linear finite elements

ηi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x−xi−1
∆x , if xi−1 ≤ x ≤ xi,

−x−xi+1
∆x , if xi ≤ x ≤ xi+1,

0, otherwise.

(4.1.6)

We now restrict X(x, t) to be of the form

X(x, t) =
N+1
∑
i=0

Xi(t)ηi(x) (4.1.7)

with X0(t) = 0, XN+1(t) = Xmax and arbitrary Xi(t), i = 1,2, ...,N as long as X(., t) is a

homeomorphism for all t. In our context of numerical computations, the functions Xi(t)

represent the current position of the ith mesh point. Define the finite element spaces

QN =WN = span(η0, ..., ηN+1) (4.1.8)

and assume that QN ⊂ Q, WN ⊂ W . Let us denote a generic element of QN by ϕ and a

generic element of WN by ϕ̇. We have the decompositions

ϕ(x) =
N+1
∑
i=0

yiηi(x), ϕ̇(x) =
N+1
∑
i=0

ẏiηi(x). (4.1.9)

The numbers (yi, ẏi) thus form natural (global) coordinates on QN ×WN . We can now

approximate the dynamics of system (4.1.2) in the finite-dimensional space QN ×WN . Let

us consider the restriction L̃N = L̃∣QN×WN×R of the Lagrangian (4.1.2) to QN ×WN ×R. In

the chosen coordinates we have
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L̃N(y0, ..., yN+1, ẏ0, ..., ẏN+1, t) = L̃[
N+1
∑
i=0

yiηi(x),
N+1
∑
i=0

ẏiηi(x), t]. (4.1.10)

Note that, given the boundary conditions (4.0.2), y0, yN+1, ẏ0, and ẏN+1 are fixed. We will

thus no longer write them as arguments of L̃N .

The advantage of using a finite element discretization lies in the fact that the symplectic

structure induced on QN ×WN by L̃N is strictly a restriction (i.e., a pull-back) of the

(pre-)symplectic structure2 on Q ×W . This establishes a direct link between symplectic

integration of the finite-dimensional mechanical system (QN ×WN , L̃N) and the infinite-

dimensional field theory (Q ×W, L̃)

4.1.3 DAE formulation and time integration

We are now going to consider time integration of the Lagrangian system (QN ×WN , L̃N). If

the functions Xi(t) are known, then one can perform variational integration in the standard

way, that is, define the discrete Lagrangian L̃d ∶ R × QN × R × QN → R and solve the

corresponding discrete Euler-Lagrange equations (see Section 2.4 and [41], [23]). Let tn =

n ⋅∆t for n = 0,1,2, . . . be an increasing sequence of times and {y0, y1, . . .} the corresponding

discrete path of the system in QN . The discrete Lagrangian Ld is an approximation to the

exact discrete Lagrangian LEd , such that

L̃d(tn, yn, tn+1, y
n+1) ≈ L̃Ed (tn, y

n, tn+1, y
n+1) ≡ ∫

tn+1

tn
L̃N(y(t), ẏ(t), t)dt, (4.1.11)

where yn = (yn1 , ..., ynN), yn+1 = (yn+1
1 , ..., yn+1

N ), and y(t) is the solution of the Euler-Lagrange

equations corresponding to L̃N , with the boundary values y(tn) = yn, y(tn+1) = yn+1. De-

pending on the quadrature we use to approximate the integral in (4.1.11), we obtain different

types of variational integrators. As will be discussed below, in r-adaptation one has to deal

with stiff differential equations or differential-algebraic equations, therefore higher-order in-

tegration in time is required. We are going to employ variational partitioned Runge-Kutta

methods (see Section 2.4.3). An s-stage Runge Kutta method is constructed by choosing

2In most cases the symplectic structure of (Q ×W, L̃) is only weakly-nondegenerate; see [18]
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L̃d(tn, yn, tn+1, y
n+1) = (tn+1 − tn)

s

∑
i=1
biL̃N(Yi, Ẏi, ti), (4.1.12)

where ti = tn + ci(tn+1 − tn), the right-hand side is extremized under the constraint yn+1 =

yn + (tn+1 − tn)∑si=1 biẎi, and the internal stage variables Yi, Ẏi are related by Yi = yn +

(tn+1 − tn)∑sj=1 aij Ẏj . It can be shown that the variational integrator with the discrete

Lagrangian (4.1.12) is equivalent to an appropriately chosen symplectic partitioned Runge-

Kutta method applied to the Hamiltonian system corresponding to L̃N (see Section 2.4.3 and

[41], [23]). With this in mind we turn our semi-discrete Lagrangian system (QN ×WN , L̃N)

into the Hamiltonian system (QN ×W ∗
N , H̃N) via the standard Legendre transform (see

Section 2.3)

H̃N(y1, ..., yN , p1, ..., pN ;X1, ...,XN , Ẋ1, ..., ẊN) =
N

∑
i=1
piẏi − L̃N(y1, ..., yN , ẏ1, ..., ẏN , t),

(4.1.13)

where pi = ∂L̃N/∂ẏi, and we explicitly state the dependence on the positions Xi and veloc-

ities Ẋi of the mesh points. The Hamiltonian equations take the form3

ẏi =
∂H̃N

∂pi
(y, p;X(t), Ẋ(t)), (4.1.14)

ṗi = −
∂H̃N

∂yi
(y, p;X(t), Ẋ(t)).

Suppose that the functions Xi(t) are C1 and HN is smooth as a function of the yi’s, pi’s,

Xi’s, and Ẋi’s (note that these assumptions are used for simplicity, and can be easily

relaxed if necessary, depending on the regularity of the considered Lagrangian system).

Then the assumptions of Picard’s theorem are satisfied and there exists a unique C1 flow

Ft0,t = (F yt0,t, F
p
t0,t

) ∶ QN ×W ∗
N → QN ×W ∗

N for (4.1.14). This flow is symplectic.

However, in practice we do not know the Xi’s and we in fact would like to be able to

adjust them ‘on the fly’, based on the current behavior of the system. We are going to do

that by introducing additional constraint functions gi(y1, ..., yN ,X1, ...,XN) and demanding

3It is computationally more convenient to directly integrate the implicit Hamiltonian system pi =

∂L̃N/∂ẏi, ṗi = ∂L̃N/∂yi, but as long as system (4.0.1) is at least weakly-nondegenerate there is no the-
oretical issue with passing to the Hamiltonian formulation, which we do for the clarity of our exposition.
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that the conditions gi = 0 be satisfied at all times4. The choice of these functions may be

based on the equidistribution principle, as discussed in Section 3.2; for instance we may

take (3.2.8). This leads to the following differential-algebraic system of index 1 (see [6],

[26], [22])

ẏi =
∂H̃N

∂pi
(y, p;X, Ẋ), (4.1.15)

ṗi = −
∂H̃N

∂yi
(y, p;X, Ẋ),

0 = gi(y,X),

yi(t0) = y(0)i ,

pi(t0) = p(0)i

for i = 1, ...,N . Note that an initial condition for X is fixed by the constraints. This system

is of index 1, because one has to differentiate the algebraic equations once with respect to

time in order to reduce it to an implicit ODE system. In fact, the implicit system will take

the form

ẏ = ∂H̃N

∂p
(y, p;X, Ẋ), (4.1.16)

ṗ = −∂H̃N

∂y
(y, p;X, Ẋ),

0 = ∂g
∂y

(y,X)ẏ + ∂g

∂X
(y,X)Ẋ,

y(t0) = y(0),

p(t0) = p(0),

X(t0) =X(0),

where X(0) is a vector of arbitrary initial condition for the Xi’s. Suppose again that HN

is a smooth function of y, p, X, and Ẋ. Futhermore, suppose that g is a C1 function of

y, X, and ∂g
∂X − ∂g

∂y
∂2HN

∂Ẋ∂p
is invertible with its inverse bounded in a neighborhood of the

4In the context of Control Theory the constraints gi = 0 are called strict static state feedback. See [46].
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exact solution.5 Then, by the Implicit Function Theorem equations (4.1.16) can be solved

explicitly for ẏ, ṗ, Ẋ and the resulting explicit ODE system will satisfy the assumptions

of Picard’s theorem. Let (y(t), p(t),X(t)) be the unique C1 solution to this ODE system

(and hence to (4.1.16)). We have the trivial result:

Proposition 4.1.2. If g(y(0),X(0)) = 0, then (y(t), p(t),X(t)) is a solution to (4.1.15).6

In practice we would like to integrate system (4.1.15). A question arises regarding in

what sense is this system symplectic, and in what sense a numerical integration scheme for

this system can be regarded as variational. Let us address these issues.

Proposition 4.1.3. Let (y(t), p(t),X(t)) be a solution to (4.1.15) and use this X(t) to

form the Hamiltonian system (4.1.14). Then we have that

y(t) = F yt0,t(y
(0), p(0)), p(t) = F pt0,t(y

(0), p(0))

and

g(F yt0,t(y
(0), p(0)),X(t)) = 0,

where Ft0,t(ŷ, p̂) is the symplectic flow for (4.1.14).

Proof. Note that the first two equations of (4.1.15) are the same as (4.1.14), therefore

(y(t), p(t)) trivially satisfies (4.1.14) with the initial conditions y(t0) = y(0) and p(t0) =

p(0). Since the flow map Ft0,t is unique, we must have y(t) = F yt0,t(y
(0), p(0)) and p(t) =

F pt0,t(y
(0), p(0)). Then we also must have that g(F yt0,t(y

(0), p(0)),X(t)) = 0, that is, the

constraints are satisfied along one particular integral curve of (4.1.14) that passes through

(y(0), p(0)) at t0.

Suppose we now would like to find a numerical approximation of the solution to (4.1.14)

using an s-stage partitioned Runge-Kutta method with coefficients aij , bi, āij , b̄i, ci (see

Section 2.2.2 and [24], [23]). The numerical scheme will take the form
5Again, these assumptions can be relaxed if necessary.
6Note that there might be other solutions, as for any given y(0) there might be more than one X(0) that

solves the constraint equations.
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Ẏ i = ∂H̃N

∂p
(Y i, P i;X(tn + ci∆t), Ẋ(tn + ci∆t)), (4.1.17)

Ṗ i = −∂H̃N

∂y
(Y i, P i;X(tn + ci∆t), Ẋ(tn + ci∆t)),

Y i = yn +∆t
s

∑
j=1

aij Ẏ
j , P i = pn +∆t

s

∑
j=1

āijṖ
j ,

yn+1 = yn +∆t
s

∑
i=1
biẎ

i, pn+1 = pn +∆t
s

∑
i=1
b̄iṖ

i,

where Y i, Ẏ i, P i, Ṗ i are the internal stages and ∆t is the integration timestep. Let us apply

the same partitioned Runge-Kutta method to (4.1.15). In order to compute the internal

stages Qi, Q̇i of the X variable we use the state-space form approach, that is, we demand

that the constraints and their time derivatives be satisfied (see [26]). The new step value

Xn+1 is computed by solving the constraints as well. The resulting numerical scheme is

thus

Ẏ i = ∂H̃N

∂p
(Y i, P i;Qi, Q̇i), Ṗ i = −∂H̃N

∂y
(Y i, P i;Qi, Q̇i), (4.1.18)

Y i = yn +∆t
s

∑
j=1

aij Ẏ
j , P i = pn +∆t

s

∑
j=1

āijṖ
j ,

0 = g(Y i,Qi), 0 = ∂g
∂y

(Y i,Qi) Ẏ i + ∂g

∂X
(Y i,Qi) Q̇i,

yn+1 = yn +∆t
s

∑
i=1
biẎ

i, pn+1 = pn +∆t
s

∑
i=1
b̄iṖ

i,

0 = g(yn+1,Xn+1).

We have the following trivial observation.

Proposition 4.1.4. If X(t) is defined to be a C1 interpolation of the internal stages Qi,

Q̇i at times tn + ci∆t (that is, if the values X(tn + ci∆t), Ẋ(tn + ci∆t) coincide with Qi,

Q̇i), then the schemes (4.1.17) and (4.1.18) give the same numerical approximations yn,

pn to the exact solution y(t), p(t).

Intuitively, Proposition 4.1.4 states that we can apply a symplectic partitioned Runge-

Kutta method to the DAE system (4.1.15), which solves both for X(t) and (y(t), p(t)), and
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the result will be the same as if we performed a symplectic integration of the Hamiltonian

system (4.1.14) for (y(t), p(t)) with a known X(t).

4.1.4 Example

To illustrate these ideas let us consider the Lagrangian density

L(φ,φX , φt) =
1
2
φ2
t −W (φX). (4.1.19)

The reparametrized Lagrangian (4.1.2) takes the form

L̃[ϕ,ϕt, t] = ∫
Xmax

0
[1

2
Xx(ϕt −

ϕx
Xx

Xt)
2
−W( ϕx

Xx
)Xx]dx. (4.1.20)

Let N = 1 and φL = φR = 0. Then

ϕ(x, t) = y1(t)η1(x), X(x, t) =X1(t)η1(x) +Xmax η2(x). (4.1.21)

The semi-discrete Lagrangian is

L̃N(y1, ẏ1, t) =
X1(t)

6
(ẏ1 −

y1
X1(t)

Ẋ1(t))
2
+ Xmax −X1(t)

6
(ẏ1 +

y1
Xmax −X1(t)

Ẋ1(t))
2

−W( y1
X1(t)

)X1(t) −W( − y1
Xmax −X1(t)

)(Xmax −X1(t)). (4.1.22)

The Legendre transform gives p1 = ∂L̃N/∂ẏ1 = Xmaxẏ1/3, hence the semi-discrete Hamilto-

nian is

H̃N(y1, p1;X1, Ẋ1) =
3

2Xmax
p2

1 −
1
6

XmaxẊ
2
1

X1(Xmax −X1)
y2

1

+W( y1
X1

)X1 +W( − y1
Xmax −X1

)(Xmax −X1). (4.1.23)

The corresponding DAE system is
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ẏ1 =
3

Xmax
p1, (4.1.24)

ṗ1 =
1
3

XmaxẊ
2
1

X1(Xmax −X1)
y1 −W ′( y1

X1
) +W ′( − y1

Xmax −X1
),

0 = g1(y1,X1).

This system is to be solved for the unknown functions y1(t), p1(t), and X1(t). It is of

index 1, because we have three unknown functions and only two differential equations—the

algebraic equation has to be differentiated once in order to obtain a missing ODE.

4.1.5 Backward error analysis

As argued in Section 2.2.3, the true power of symplectic integration of Hamiltonian equa-

tions is revealed through backward error analysis: it can be shown that a symplectic inte-

grator for a Hamiltonian system with the Hamiltonian H(q, p) defines the exact flow for a

nearby Hamiltonian system, whose Hamiltonian can be expressed as the asymptotic series

H (q, p) =H(q, p) +∆tH2(q, p) +∆t2H3(q, p) + . . . (4.1.25)

As a consequence, under some additional assumptions, symplectic numerical schemes nearly

conserve the original Hamiltonian H(q, p) over exponentially long time intervals. See [23]

for details.

Let us briefly review the results of backward error analysis for the integrator (4.1.18).

Suppose g(y,X) satisfies the assumptions of the Implicit Function Theorem. Then, at least

locally, we can solve the constraint X = h(y). The Hamiltonian DAE system (4.1.15) can

be then written as the following (implicit) ODE system for y and p

ẏ = ∂H̃N

∂p
(y, p;h(y), h′(y)ẏ), (4.1.26)

ṗ = −∂H̃N

∂y
(y, p;h(y), h′(y)ẏ).

Since we used the state-space formulation, the numerical scheme (4.1.18) is equivalent to
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applying the same partitioned Runge-Kutta method to (4.1.26), that is, we have Qi =

h(Y i) and Q̇i = h′(Y i)Ẏ i. We computed the corresponding modified equation for several

symplectic methods, namely Gauss and Lobatto IIIA-IIIB quadratures (see Section 2.2.2).

Unfortunately, none of the quadratures resulted in a form akin to (4.1.26) for some modified

Hamiltonian function H̃N related to H̃N by a series similar to (4.1.25). This hints at the

fact that we should not expect this integrator to show excellent energy conservation over

long integration times. One could also consider the implicit ODE system (4.1.16), which

has an obvious triple partitioned structure, and apply a different Runge-Kutta method to

each variable y, p, and X. Although we did not pursue this idea further, it seems unlikely

it would bring a desirable result.

We therefore conclude that the control-theoretic strategy, while yielding a perfectly

legitimate numerical method, does not take full advantage of the underlying geometric

structures. Let us point out that, while we used a variational discretization of the governing

physical PDE, the mesh equations were coupled in a manner that is typical of the existing

r-adaptive methods (see Section 3.3 and [7], [28]). We now turn our attention to a second

approach, which offers a novel way of coupling the mesh equations to the physical equations.

4.2 Lagrange multiplier approach to r-adaptation

As we saw in Section 4.1, discretization of the variational principle alone is not sufficient if we

would like to accurately capture the geometric properties of the physical system described

by (4.0.1). In this section we propose a new technique of coupling the mesh equations

to the physical equations. Our idea is based on the observation that in r-adaptation the

number of mesh points is constant, therefore we can treat them as pseudo-particles, and we

can incorporate their dynamics into the variational principle. We show that this strategy

results in integrators that much better preserve the energy of the considered system.

4.2.1 Reparametrized Lagrangian

In this approach, we treatX(x, t) as an independent field, that is, another degree of freedom,

and we are going to treat the ‘modified’ action (4.0.3) as a functional of both ϕ and X:

S̃ = S̃[ϕ,X]. For the purpose of the derivations below, we assume that ϕ(., t) and X(., t)

are continuous and piecewise C1. One could consider the closure of this space in the
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topology of either Hilbert or Banach space of sufficiently integrable functions and interpret

differentiation in a sufficiently weak sense, but this functional-analytic aspect is of little

importance for the developments in this section. We refer the interested reader to [12] and

[14]. As in Section 4.1.1, let ξ(X, t) be the function such that ξ(., t) = X(., t)−1, that is,

ξ(X(x, t), t) = x. Then S̃[ϕ,X] = S[ϕ(ξ(X, t), t)]. We begin with two propositions and one

corollary which will be important for the rest of our exposition.

Proposition 4.2.1. Extremizing S[φ] with respect to φ is equivalent to extremizing S̃[ϕ,X]

with respect to both ϕ and X.

Proof. The variational derivatives of S and S̃ are related by the formula

δ1S̃[ϕ,X] ⋅ δϕ(x, t) = δS[ϕ(ξ(X, t), t)] ⋅ δϕ(ξ(X, t), t), (4.2.1)

δ2S̃[ϕ,X] ⋅ δX(x, t) = δS[ϕ(ξ(X, t), t)] ⋅ ( − ϕx(ξ(X, t), t)
Xx(ξ(X, t), t)

δX(ξ(X, t), t)),

where δ1 and δ2 denote differentiation with respect to the first and second argument, respec-

tively. Suppose φ(X, t) extremizes S[φ], i.e., δS[φ] ⋅ δφ = 0 for all variations δφ. Choose an

arbitrary X(x, t), such that X(., t) is a (sufficiently smooth) homeomorphism, and define

ϕ(x, t) = φ(X(x, t), t). Then by the formula above we have δ1S̃[ϕ,X] = 0 and δ2S̃[ϕ,X] = 0,

so the pair (ϕ,X) extremizes S̃. Conversely, suppose the pair (ϕ,X) extremizes S̃, that

is, δ1S̃[ϕ,X] ⋅ δϕ = 0 and δ2S̃[ϕ,X] ⋅ δX = 0 for all variations δϕ and δX. Since we as-

sume X(., t) is a homeomorphism, we can define φ(X, t) = ϕ(ξ(X, t), t). Note that an

arbitrary variation δφ(X, t) induces the variation δϕ(x, t) = δφ(X(x, t), t). Then we have

δS[φ] ⋅ δφ = δ1S̃[ϕ,X] ⋅ δϕ = 0 for all variations δφ, so φ(X, t) extremizes S[φ].

Proposition 4.2.2. The equation δ2S̃[ϕ,X] = 0 is implied by the equation δ1S̃[ϕ,X] = 0.

Proof. As we saw in the proof of Proposition 4.2.1, the condition δ1S̃[ϕ,X] ⋅ δϕ = 0 implies

δS = 0. By (4.2.1), this in turn implies δ2S̃[ϕ,X] ⋅ δX = 0 for all δX. Note that this

argument cannot be reversed: δ2S̃[ϕ,X] ⋅ δX = 0 does not imply δS = 0 when ϕx = 0.
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Corollary 4.2.3. The field theory described by S̃[ϕ,X] is degenerate and the solutions to

the Euler-Lagrange equations are not unique.

4.2.2 Spatial Finite Element discretization

The Lagrangian of the ‘reparametrized’ theory L̃ ∶ Q ×G ×W ×Z Ð→ R

L̃[ϕ,X,ϕt,Xt] = ∫
Xmax

0
L(ϕ, ϕx

Xx
, ϕt −

ϕxXt

Xx
)Xx dx (4.2.2)

has the same form as (4.1.2) (we only treat it as a functional of X and Xt as well), where Q,

G, W , and Z are spaces of continuous and piecewise C1 functions, as mentioned before. We

again let ∆x = Xmax/(N + 1), and define the uniform mesh xi = i ⋅∆x for i = 0,1, ...,N + 1.

Define the finite element spaces

QN = GN =WN = ZN = span(η0, ..., ηN+1), (4.2.3)

where we used the finite elements (4.1.6). We have QN ⊂ Q, GN ⊂ G, WN ⊂W , ZN ⊂ Z. In

addition to (4.1.9) we also consider

X(x) =
N+1
∑
i=0

Xiηi(x), Ẋ(x) =
N+1
∑
i=0

Ẋiηi(x). (4.2.4)

The numbers (yi,Xi, ẏi, Ẋi) thus form natural (global) coordinates on QN×GN×WN×ZN . We

again consider the restricted Lagrangian L̃N = L̃∣QN×GN×WN×ZN
. In the chosen coordinates

L̃N(y1, ..., yN ,X1, ...,XN , ẏ1, ..., ẏN , Ẋ1, ..., ẊN) = L̃[ϕ(x),X(x), ϕ̇(x), Ẋ(x)], (4.2.5)

where ϕ(x), X(x), ϕ̇(x), Ẋ(x) are defined by (4.1.9) and (4.2.4). Once again, we refrain

from writing y0, yN+1, ẏ0, ẏN+1, X0, XN+1, Ẋ0, and ẊN+1 as arguments of L̃N in the

remainder of this section, as those are not actual degrees of freedom.

4.2.3 Invertibility of the Legendre Transform

For simplicity, let us restrict our considerations to Lagrangian densities of the form
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L(φ,φX , φt) =
1
2
φ2
t −R(φX , φ). (4.2.6)

We chose a kinetic term that is most common in applications. The corresponding ‘reparametrized’

Lagrangian is

L̃[ϕ,X,ϕt,Xt] = ∫
Xmax

0

1
2
Xx(ϕt −

ϕx
Xx

Xt)
2
dx − . . . , (4.2.7)

where we kept only the terms that involve the velocities ϕt and Xt. The semi-discrete

Lagrangian becomes

L̃N =
N

∑
i=0

Xi+1 −Xi

6
[(ẏi −

yi+1 − yi
Xi+1 −Xi

Ẋi)
2
+ (ẏi −

yi+1 − yi
Xi+1 −Xi

Ẋi)(ẏi+1 −
yi+1 − yi
Xi+1 −Xi

Ẋi+1)

+ (ẏi+1 −
yi+1 − yi
Xi+1 −Xi

Ẋi+1)
2
] − . . . (4.2.8)

Let us define the conjugate momenta via the Legendre Transform (see Section 2.3)

pi =
∂L̃N
∂ẏi

, Si =
∂L̃N

∂Ẋi

, i = 1,2, ...,N. (4.2.9)

This can be written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p1

S1

⋮

pN

SN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= M̃N(y,X) ⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ẏ1

Ẋ1

⋮

ẏN

ẊN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.2.10)

where the 2N × 2N mass matrix M̃N(y,X) has the following block tridiagonal structure
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M̃N(y,X) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A1 B1

B1 A2 B2

B2 A3 B3

⋱ ⋱ ⋱

⋱ ⋱ BN−1

BN−1 AN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.2.11)

with the 2 × 2 blocks

Ai =
⎛
⎜
⎝

1
3δi−1 + 1

3δi −1
3δi−1γi−1 − 1

3δiγi

−1
3δi−1γi−1 − 1

3δiγi
1
3δi−1γ

2
i−1 +

1
3δiγ

2
i

⎞
⎟
⎠
, Bi =

⎛
⎜
⎝

1
6δi −1

6δiγi

−1
6δiγi

1
6δiγ

2
i

⎞
⎟
⎠
, (4.2.12)

where

δi =Xi+1 −Xi, γi =
yi+1 − yi
Xi+1 −Xi

. (4.2.13)

From now on we will always assume δi > 0, as we demand that X(x) = ∑N+1
i=0 Xiηi(x) be a

homeomorphism. We also have

detAi =
1
9
δi−1δi(γi−1 − γi)2. (4.2.14)

Proposition 4.2.4. The mass matrix M̃N(y,X) is non-singular almost everywhere (as a

function of the yi’s and Xi’s) and singular iff γi−1 = γi for some i.

Proof. We are going to compute the determinant of M̃N(y,X) by transforming (4.2.11) into

a block upper triangular form by zeroing the blocks Bi below the diagonal. Let us start with

the block B1. We use linear combinations of the first two rows of the mass matrix to zero

the elements of the block B1 below the diagonal. Suppose γ0 = γ1. Then it is easy to see

that the first two rows of the mass matrix are not linearly independent, so the determinant

of the mass matrix is zero. Assume γ0 ≠ γ1. Then by (4.2.14) the block A1 is invertible. We

multiply the first two rows of the mass matrix by B1A
−1
1 and subtract the result from the

third and fourth rows. This zeroes the block B1 below the diagonal and replaces the block

A2 by
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C2 = A2 −B1A
−1
1 B1. (4.2.15)

We now zero the block B2 below the diagonal in a similar fashion. After n − 1 steps of this

procedure the mass matrix is transformed into

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C1 B1

C2 B2

⋱ ⋱

Cn Bn

Bn An+1 ⋱

⋱ ⋱ BN−1

BN−1 AN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.2.16)

In a moment we are going to see that Cn is singular iff γn−1 = γn and in that case the two

rows of the matrix above that contain Cn and Bn are linearly dependent, thus making the

mass matrix singular. Suppose γn−1 ≠ γn, so that Cn is invertible. In the next step of our

procedure the block An+1 is replaced by

Cn+1 = An+1 −BnC−1
n Bn. (4.2.17)

Together with the condition C1 = A1 this gives us a recurrence. By induction on n we find

that

Cn =
⎛
⎜
⎝

1
4δn−1 + 1

3δn −1
4δn−1γn−1 − 1

3δnγn

−1
4δn−1γn−1 − 1

3δnγn
1
4δn−1γ

2
n−1 + 1

3δnγ
2
n

⎞
⎟
⎠

(4.2.18)

and

detCi =
1
12
δi−1δi(γi−1 − γi)2, (4.2.19)

which justifies our assumptions on the invertibility of the blocks Ci. We can now express

the determinant of the mass matrix as detC1 ⋅ ... ⋅ detCN . The final formula is

det M̃N(y,X) =
δ0δ

2
1 ...δ

2
N−1δN

9 ⋅ 12N−1 (γ0 − γ1)2...(γN−1 − γN)2. (4.2.20)
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We see that the mass matrix becomes singular iff γi−1 = γi for some i, and this condition

defines a measure zero subset of R2N .

Remark I. This result shows that the finite-dimensional system described by the semi-

discrete Lagrangian (4.2.8) is non-degenerate almost everywhere. This means that, unlike

in the continuous case, the Euler-Lagrange equations corresponding to the variations of

the yi’s and Xi’s are independent of each other (almost everywhere), and the equations

corresponding to the Xi’s are in fact necessary for the correct description of the dynamics.

This can also be seen in a more general way. Owing to the fact we are considering a finite

element approximation, the semi-discrete action functional S̃N is simply a restriction of S̃,

and therefore formulas (4.2.1) still hold. The corresponding Euler-Lagrange equations take

the form

δ1S̃[ϕ,X] ⋅ δϕ(x, t) = 0, (4.2.21)

δ2S̃[ϕ,X] ⋅ δX(x, t) = 0,

which must hold for all variations δϕ(x, t)=∑Ni=1 δyi(t)ηi(x) and δX(x, t)=∑Ni=1 δXi(t)ηi(x).

Since we are working in a finite dimensional subspace, the second equation now does not

follow from the first equation. To see this, consider a particular variation δX(x, t) =

δXk(t)ηk(x) for some k, where δXk /≡ 0. Then we have

− ϕx
Xx

δXk(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−γk−1 δXk(t)ηk(x), if xk−1 ≤ x ≤ xk,

−γk δXk(t)ηk(x), if xk ≤ x ≤ xk+1,

0, otherwise,

(4.2.22)

which is discontinuous at x = xk and cannot be expressed as ∑Ni=1 δyi(t)ηi(x) for any δyi(t),

unless γk−1 = γk. Therefore, we cannot invoke the first equation to show that δ2S̃[ϕ,X] ⋅

δX(x, t) = 0. The second equation becomes independent.

Remark II. It is also instructive to realize what exactly happens when γk−1 = γk. This

means that locally in the interval [Xk−1,Xk+1] the field φ(X, t) is a straight line with
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Figure 4.2.1: Left: If γk−1 ≠ γk, then any change to the middle point changes the local shape
of φ(X, t). Right: If γk−1 = γk, then there are infinitely many possible positions for (Xk, yk)
that reproduce the local linear shape of φ(X, t).

the slope γk. It also means that there are infinitely many values (Xk, yk) that reproduce

the same local shape of φ(X, t). This reflects the arbitrariness of X(x, t) in the infinite-

dimensional setting. In the finite element setting, however, this holds only when the points

(Xk−1, yk−1), (Xk, yk) and (Xk+1, yk+1) line up. Otherwise any change to the middle point

changes the shape of φ(X, t). See Figure 4.2.1.

4.2.4 Existence and uniqueness of solutions

Since the Legendre Transform (4.2.10) becomes singular at some points, this raises a ques-

tion about the existence and uniqueness of the solutions to the Euler-Lagrange equations

(4.2.21). In this section we provide a partial answer to this problem. We will begin by

computing the Lagrangian symplectic form (see Section 2.3)

Ω̃N =
N

∑
i=1
dyi ∧ dpi + dXi ∧ dSi, (4.2.23)

where pi and Si are given by (4.2.9). For notational convenience we will collectively de-

note q = (y1,X1, ..., yN ,XN)T and q̇ = (ẏ1, Ẋ1, ..., ẏN , ẊN)T . Then in the ordered basis

( ∂
∂q1
, ..., ∂

∂q2N
, ∂
∂q̇1
, ..., ∂

∂q̇2N
) the symplectic form can be represented by the matrix

Ω̃N(q, q̇) =
⎛
⎜
⎝

∆̃N(q, q̇) M̃N(q)

−M̃N(q) 0

⎞
⎟
⎠
, (4.2.24)
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where the 2N × 2N block ∆̃N(q, q̇) has the further block tridiagonal structure

∆̃N(q, q̇) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Γ1 Λ1

−ΛT1 Γ2 Λ2

−ΛT2 Γ3 Λ3

⋱ ⋱ ⋱

⋱ ⋱ ΛN−1

−ΛTN−1 ΓN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4.2.25)

with the 2 × 2 blocks

Γi =
⎛
⎜
⎝

0 − ẏi+1−ẏi−1
3 − Ẋi−1+2Ẋi

3 γi−1 + 2Ẋi+Ẋi+1
3 γi

ẏi+1−ẏi−1
3 + Ẋi−1+2Ẋi

3 γi−1 − 2Ẋi+Ẋi+1
3 γi 0

⎞
⎟
⎠
,

Λi =
⎛
⎜
⎝

− Ẋi+Ẋi+1
2 − ẏi+1−ẏi

6 + Ẋi+2Ẋi+1
3 γi

ẏi+1−ẏi

6 + 2Ẋi+Ẋi+1
3 γi − Ẋi+Ẋi+1

2 γ2
i

⎞
⎟
⎠
. (4.2.26)

In this form, it is easy to see that

det Ω̃N(q, q̇) = (det M̃N(q))
2
, (4.2.27)

so the symplectic form is singular whenever the mass matrix is.

The energy corresponding to the Lagrangian (4.2.8) can be written as (see Section 2.3)

ẼN(q, q̇) = 1
2
q̇T M̃N(q) q̇ +

N

∑
k=0
∫

xk+1

xk

R(γk, ykηk(x) + yk+1ηk+1(x))
Xk+1 −Xk

∆x
dx. (4.2.28)

In the chosen coordinates, dẼN can be represented by the row vector dẼN = (∂ẼN/∂q1, ..., ∂ẼN/∂q̇2N).

It turns out that

dẼTN(q, q̇) =
⎛
⎜
⎝

ξ

M̃N(q)q̇

⎞
⎟
⎠
, (4.2.29)

where the vector ξ has the following block structure
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ξ =

⎛
⎜⎜⎜⎜⎜
⎝

ξ1

⋮

ξN

⎞
⎟⎟⎟⎟⎟
⎠

. (4.2.30)

Each of these blocks has the form ξk = (ξk,1, ξk,2)T . Through basic algebraic manipulations

and integration by parts, one finds that

ξk,1 =
ẏk+1(2Ẋk+1 + Ẋk) + ẏk(Ẋk+1 − Ẋk−1) − ẏk−1(Ẋk + 2Ẋk−1)

6

+
Ẋ2
k + ẊkẊk−1 + Ẋ2

k−1
3

γk−1 −
Ẋ2
k+1 + Ẋk+1Ẋk + Ẋ2

k

3
γk

+ 1
∆x ∫

xk

xk−1

∂R

∂φX
(γk−1, yk−1ηk−1(x) + ykηk(x))dx

− 1
∆x ∫

xk+1

xk

∂R

∂φX
(γk, ykηk(x) + yk+1ηk+1(x))dx (4.2.31)

+ 1
γk−1

[R(γk−1, yk) −
1

∆x ∫
xk

xk−1
R(γk−1, yk−1ηk−1(x) + ykηk(x))dx]

− 1
γk

[R(γk, yk) −
1

∆x ∫
xk+1

xk

R(γk, ykηk(x) + yk+1ηk+1(x))dx],

and

ξk,2 =
ẏ2
k−1 + ẏk−1ẏk − ẏkẏk+1 − ẏ2

k+1
6

−
Ẋ2
k + ẊkẊk−1 + Ẋ2

k−1
6

γ2
k−1 +

Ẋ2
k+1 + Ẋk+1Ẋk + Ẋ2

k

6
γ2
k

− γk−1
∆x ∫

xk

xk−1

∂R

∂φX
(γk−1, yk−1ηk−1(x) + ykηk(x))dx

+ γk
∆x ∫

xk+1

xk

∂R

∂φX
(γk, ykηk(x) + yk+1ηk+1(x))dx (4.2.32)

+ 1
∆x ∫

xk

xk−1
R(γk−1, yk−1ηk−1(x) + ykηk(x))dx

− 1
∆x ∫

xk+1

xk

R(γk, ykηk(x) + yk+1ηk+1(x))dx.

We are now ready to consider the generalized Hamiltonian equation (see Section 2.3)

iZΩ̃N = dẼN , (4.2.33)
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which we solve for the vector field Z = ∑2N
i=1 αi ∂/∂qi +βi ∂/∂q̇i. In the matrix representation

this equation takes the form

Ω̃T
N(q, q̇) ⋅

⎛
⎜
⎝

α

β

⎞
⎟
⎠
= dẼTN(q, q̇). (4.2.34)

Equations of this form are called (quasilinear) implicit ODEs (see [53], [55]). If the sym-

plectic form is nonsingular in a neighborhood of (q(0), q̇(0)), then the equation can be solved

directly via

Z = [Ω̃T
N(q, q̇)]−1dẼTN(q, q̇)

to obtain the standard explicit ODE form and standard existence/uniqueness theorems (Pi-

card’s, Peano’s, etc.) of ODE theory can be invoked to show local existence and uniqueness

of the flow of Z in a neighborhood of (q(0), q̇(0)). If, however, the symplectic form is singular

at (q(0), q̇(0)), then there are two possibilities. The first case is

dẼTN(q(0), q̇(0)) /∈ Range Ω̃T
N(q(0), q̇(0)), (4.2.35)

and it means there is no solution for Z at (q(0), q̇(0)). This type of singularity is called an

algebraic one and it leads to so called impasse points (see [48]-[53], [55]).

The other case is

dẼTN(q(0), q̇(0)) ∈ Range Ω̃T
N(q(0), q̇(0)), (4.2.36)

and it means that there exists a nonunique solution Z at (q(0), q̇(0)). This type of singularity

is called a geometric one. If (q(0), q̇(0)) is a limit of regular points of (4.2.34) (i.e., points

where the symplectic form is nonsingular), then there might exist an integral curve of Z

passing through (q(0), q̇(0)). See [48], [49], [50], [51], [52], [53], [55] for more details.

Proposition 4.2.5. The singularities of the symplectic form Ω̃N(q, q̇) are geometric.

Proof. Suppose that the mass matrix (and thus the symplectic form) is singular at (q(0), q̇(0)).

Using the block structures (4.2.24) and (4.2.29) we can write (4.2.34) as the system
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−∆̃N(q(0), q̇(0))α − M̃N(q(0))β = ξ,

M̃N(q(0))α = M̃N(q(0)) q̇(0). (4.2.37)

The second equation implies that there exists a solution α = q̇(0). In fact this is the only

solution we are interested in, since it satisfies the second order condition: the Euler-Lagrange

equations underlying the variationl principle are second order, so we are only interested in

solutions of the form Z = ∑2N
i=1 q̇i ∂/∂qi + βi ∂/∂q̇i. The first equation can be rewritten as

M̃N(q(0))β = −ξ − ∆̃N(q(0), q̇(0)) q̇(0). (4.2.38)

Since the mass matrix is singular, we must have γk−1 = γk for some k. As we saw in

Section 4.2.3, this means that the two rows of the kth ‘block row’ of the mass matrix (i.e.,

the rows containing the blocks Bk−1, Ak and Bk) are not linearly independent. In fact, we

have

(Bk−1)2∗ = −γk(Bk−1)1∗, (Ak)2∗ = −γk(Ak)1∗, (Bk)2∗ = −γk(Bk)1∗, (4.2.39)

where am∗ denotes the mth row of the matrix a. Equation (4.2.38) will have a solution for β

iff the RHS satisfies a similar scaling condition in the the kth ‘block element’. Using formulas

(4.2.26), (4.2.31), and (4.2.32) we show that −ξ − ∆̃N q̇
(0) indeed has this property. Hence,

dẼTN(q(0), q̇(0)) ∈ Range Ω̃T
N(q(0), q̇(0)) and (q(0), q̇(0)) is a geometric singularity. Moreover,

since γk−1 = γk defines a hypersurface in R2N ×R2N , (q(0), q̇(0)) is a limit of regular points.

Remark I. Numerical time integration of the semi-discrete equations of motion (4.2.34)

has to deal with the singularity points of the symplectic form. While there are some

numerical algorithms allowing one to get past singular hypersurfaces (see [53]), it might not

be very practical from the application point of view. Note that, unlike in the continuous

case, the time evolution of the meshpoints Xi’s is governed by the equations of motion, so
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the user does not have any influence on how the mesh is adapted. More importantly, there

is no built-in mechanism that would prevent mesh tangling. Some preliminary numerical

experiments show that the mesh points eventually collapse when started with nonzero initial

velocities.

Remark II. The singularities of the mass matrix (4.2.11) bear some similarities to the

singularities of the mass matrices encountered in the Moving Finite Element method. In

[44] and [43], the authors proposed introducing a small ‘internodal’ viscosity which penalizes

the method for relative motion between the nodes and thus regularizes the mass matrix. A

similar idea could be applied in our case: one could add some small ε kinetic terms to the

Lagrangian (4.2.8) in order to regularize the Legendre Transform. In light of the remark

made above, we did not follow this idea further, and decided to take a different route instead,

as described in the following sections. However, investigating further similarities between

our variational approach and the Moving Finite Element method might be worthwhile.

There also might be some connection to the r-adaptive method presented in [68]: the

evolution of the mesh in that method is also set by the equations of motion, although the

authors considered a different variational principle and different theoretical reasoning to

justify the validity of their approach.

4.2.5 Constraints and adaptation strategy

As we saw in Section 4.2.4, upon discretization we lose the arbitrariness of X(x, t) and the

evolution of Xi(t) is governed by the equations of motion, while we still want to be able to

select a desired mesh adaptation strategy, like (3.2.8). This could be done by augmenting

the Lagrangian (4.2.8) with Lagrange multipliers corresponding to each constraint gi (see

Section 2.5.1). However, it is not obvious that the dynamics of the constrained system as

defined would reflect in any way the behavior of the approximated system (4.2.6). We are

going to show that the constraints can be added via Lagrange multipliers already at the

continuous level (4.2.6), and the continuous system as defined can be then discretized to

arrive at (4.2.8) with the desired adaptation constraints.

4.2.5.1 Global constraint

As mentioned before, eventually we would like to impose the constraints
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gi(y1, ..., yN ,X1, ...,XN) = 0, i = 1, ...,N (4.2.40)

on the semi-discrete system (4.2.8). Let us assume that g ∶ R2N Ð→ RN , g = (g1, ..., gN)T is

C1 and 0 is a regular value of g, so that (4.2.40) defines a submanifold. To see how these

constraints can be introduced at the continuous level, let us select uniformly distributed

points xi = i ⋅∆x, i = 0, ...,N + 1, ∆x =Xmax/(N + 1) and demand that the constraints

gi(ϕ(x1, t), ..., ϕ(xN , t),X(x1, t), ...,X(xN , t)) = 0, i = 1, ...,N (4.2.41)

be satisfied by ϕ(x, t) and X(x, t). One way of imposing these constraints is solving the

system

δ1S̃[ϕ,X] ⋅ δϕ(x, t) = 0 for all δϕ(x, t), (4.2.42)

gi(ϕ(x1, t), ..., ϕ(xN , t),X(x1, t), ...,X(xN , t)) = 0, i = 1, ...,N.

This system consists of one Euler-Lagrange equation that corresponds to extremizing S̃

with respect to ϕ (we saw in Section 4.2.1 that the other Euler-Lagrange equation is not

independent) and a set of constraints enforced at some pre-selected points xi. Note, that

upon finite element discretization on a mesh coinciding with the pre-selected points this

system reduces to the approach presented in Section 4.1: we minimize the discrete action

with respect to the yi’s only, and supplement the resulting equations with the constraints

(4.2.40).

Another way that we want to explore consists in using Lagrange multipliers. Define the

auxiliary action functional

S̃C[ϕ,X,λk] = S̃[ϕ,X] −
N

∑
i=1
∫

Tmax

0
λi(t) ⋅ gi(ϕ(x1, t), ..., ϕ(xN , t),X(x1, t), ...,X(xN , t))dt.

(4.2.43)

We are going to assume that the Lagrange multipliers λi(t) are at least continuous in time.

According to the method of Lagrange multipliers (see Section 2.5.1), we seek the stationary
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points of S̃C . This leads to the following system of equations

δ1S̃[ϕ,X] ⋅ δϕ(x, t) −
N

∑
i=1

N

∑
j=1
∫

Tmax

0
λi(t)

∂gi
∂yj

δϕ(xj , t)dt = 0 for all δϕ(x, t),

δ2S̃[ϕ,X] ⋅ δX(x, t) −
N

∑
i=1

N

∑
j=1
∫

Tmax

0
λi(t)

∂gi
∂Xj

δX(xj , t)dt = 0 for all δX(x, t),

gi(ϕ(x1, t), ..., ϕ(xN , t),X(x1, t), ...,X(xN , t)) = 0, i = 1, ...,N, (4.2.44)

where for clarity we suppressed writing the arguments of ∂gi

∂yj
and ∂gi

∂Xj
.

Equation (4.2.42) is more intuitive, because we directly use the arbitrariness of X(x, t),

and simply restrict it further by imposing constraints. It is not immediately obvious how

solutions of (4.2.42) and (4.2.44) relate to each other. We would like both systems to be

‘equivalent’ in some sense, or at least their solution sets to overlap. Let us investigate this

issue in more detail.

Suppose (ϕ,X) satisfy (4.2.42). Then it is quite trivial to see that (ϕ,X,λ1, ..., λN)

such that λk ≡ 0 satisfy (4.2.44): the second equation is implied by the first one and the

other equations coincide with those of (4.2.42). At this point it should be obvious that

system (4.2.44) may have more solutions for ϕ and X than system (4.2.42).

Proposition 4.2.6. The only solutions (ϕ,X,λ1, ..., λN) to (4.2.44) that satisfy (4.2.42) as

well are those with λk ≡ 0 for all k.

Proof. Suppose (ϕ,X,λ1, ..., λN) satisfy both (4.2.42) and (4.2.44). System (4.2.42) implies

that δ1S̃ ⋅ δϕ = 0 and δ2S̃ ⋅ δX = 0. Using this in system (4.2.44) gives

N

∑
j=1
∫

Tmax

0
dt δϕ(xj , t)

N

∑
i=1
λi(t)

∂gi
∂yj

= 0 for all δϕ(x, t),

N

∑
j=1
∫

Tmax

0
dt δX(xj , t)

N

∑
i=1
λi(t)

∂gi
∂Xj

= 0 for all δX(x, t). (4.2.45)

In particular, this has to hold for variations δϕ and δX such that δϕ(xj , t) = δX(xj , t) =

ν(t) ⋅ δkj , where ν(t) is an arbitrary continuous function of time. If we further assume that

for all x ∈ [0,Xmax] the functions ϕ(x, .) and X(x, .) are continuous, both ∑Ni=1 λi(t)
∂gi

∂yk

and ∑Ni=1 λi(t)
∂gi

∂Xk
are continuous and we get
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Dg(ϕ(x1, t), ..., ϕ(xN , t),X(x1, t), ...,X(xN , t))
T
⋅ λ(t) = 0 (4.2.46)

for all t, where λ = (λ1, ..., λN)T , and the N × 2N matrix Dg = [ ∂gi

∂yk

∂gi

∂Xk
]
i,k=1,...,N

is the

derivative of g. Since we assumed that 0 is a regular value of g and the constraint g = 0

is satisfied by ϕ and X, we have that for all t the matrix Dg has full rank—that is, there

exists a nonsingular N ×N submatrix Ξ. Then the equation ΞTλ(t) = 0 implies λ ≡ 0.

We see that considering Lagrange multipliers in (4.2.43) makes sense at the continuous

level. We can now perform a finite element discretization. The auxiliary Lagrangian L̃C ∶

Q ×G ×W ×Z ×RN Ð→ R corresponding to (4.2.43) can be written as

L̃C[ϕ,X,ϕt,Xt, λk] = L̃[ϕ,X,ϕt,Xt] −
N

∑
i=1
λi ⋅ gi(ϕ(x1), ..., ϕ(xN),X(x1), ...,X(xN)),

(4.2.47)

where L̃ is the Lagrangian of the unconstrained theory and has been defined by (4.2.2). Let

us choose a uniform mesh coinciding with the pre-selected points xi. As in Section 4.2.2,

we consider the restriction L̃CN = L̃C ∣QN×GN×WN×ZN×RN and we get

L̃CN(yi,Xj , ẏk, Ẋl, λm) = L̃N(yi,Xj , ẏk, Ẋl) −
N

∑
i=1
λi ⋅ gi(y1, ..., yN ,X1, ...,XN). (4.2.48)

We see that the semi-discrete Lagrangian L̃CN is obtained from the semi-discrete Lagrangian

L̃N by adding the constraints gi directly at the semi-discrete level, which is exactly what

we set out to do at the beginning of this section. However, in the semi-discrete setting we

cannot expect the Lagrange multipliers to vanish for solutions of interest. This is because

there is no semi-discrete counterpart of Proposition 4.2.6. On one hand, the semi-discrete

version of (4.2.42) (that is, the approach presented in Section 4.1) does not imply that

δ2S̃ ⋅δX = 0, so the above proof will not work. On the other hand, if we supplement (4.2.42)

with the equation corresponding to variations of X, then the finite element discretization

will not have solutions, unless the constraint functions are integrals of motion of the system

described by L̃N(yi,Xj , ẏk, Ẋl), which generally is not the case. Nonetheless, it is reasonable
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to expect that if the continuous system (4.2.42) has a solution, then the Lagrange multipliers

of the semi-discrete system (4.2.48) should remain small.

Defining constraints by Equations (4.2.41) allowed us to use the same finite element

discretization for both L̃ and the constraints, and to prove some correspondence between

the solutions of (4.2.42) and (4.2.44). However, constraints (4.2.41) are global in the sense

that they depend on the values of the fields ϕ and X at different points in space. Moreover,

these constraints do not determine unique solutions to (4.2.42) and (4.2.44), which is a little

cumbersome when discussing multisymplecticity (see Chapter 5).

4.2.5.2 Local constraint

In Section 3.2 we discussed how some adaptation constraints of interest can be derived from

certain partial differential equations based on the equidistribution principle, for instance

equation (3.2.7). We can view these PDEs as local constraints that only depend on pointwise

values of the fields ϕ, X, and their spatial derivatives. Let G = G(ϕ,X,ϕx,Xx, ϕxx,Xxx, ...)

represent such a local constraint. Then, similarly to (4.2.42), we can write our control-

theoretic strategy from Section 4.1 as

δ1S̃[ϕ,X] ⋅ δϕ(x, t) = 0 for all δϕ(x, t), (4.2.49)

G(ϕ,X,ϕx,Xx, ϕxx,Xxx, ...) = 0.

Note that higher-order derivatives of the fields may require the use of higher degree basis

functions than the ones in (4.1.6), or of finite differences instead.

The Lagrange multiplier approach consists in defining the auxiliary Lagrangian (see

Section 2.5.1)

L̃C[ϕ,X,ϕt,Xt, λ] = L̃[ϕ,X,ϕt,Xt] − ∫
Xmax

0
λ(x) ⋅G(ϕ,X,ϕx,Xx, ϕxx,Xxx, ...)dx.

(4.2.50)

Suppose that the pair (ϕ,X) satisfies (4.2.49). Then, much like in Section 4.2.5.1, one can

easily check that the triple (ϕ,X,λ ≡ 0) satisfies the Euler-Lagrange equations associated

with (4.2.50). However, an analog of Proposition 4.2.6 does not seem to be very interesting
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in this case, therefore we are not proving it here.

Introducing the constraints this way is convenient, because the Lagrangian (4.2.50)

then represents a constrained multisymplectic field theory with a local constraint, which

makes the analysis of multisymplecticity easier (see Chapter 5). The disadvantage is that

discretization of (4.2.50) requires mixed methods. We are going to use the linear finite

elements (4.1.6) to discretize L̃[ϕ,X,ϕt,Xt], but the constraint term will be approximated

via finite differences. This way we again obtain the semi-discrete Lagrangian (4.2.48), where

gi represents the discretization of G at the point x = xi.

In summary, the methods presented in Section 4.2.5.1 and Section 4.2.5.2 both lead to

the same semi-discrete Lagrangian, but have different theoretical advantages.

4.2.6 DAE formulation of the equations of motion

The Lagrangian (4.2.48) can be written as

L̃CN(q, q̇, λ) = 1
2
q̇T M̃N(q) q̇ −RN(q) − λT g(q), (4.2.51)

where

RN(q) =
N

∑
k=0
∫

xk+1

xk

R(γk, ykηk(x) + yk+1ηk+1(x))
Xk+1 −Xk

∆x
dx. (4.2.52)

The Euler-Lagrange equations thus take the form (see Section 2.5.1)

q̇ = u,

M̃N(q) u̇ = f(q, u) −Dg(q)T λ,

g(q) = 0, (4.2.53)

where

fk(q, u) = −
∂RN
∂qk

+
2N
∑
i,j=1

(1
2
∂(M̃N)ij
∂qk

− ∂(M̃N)ki
∂qj

)uiuj . (4.2.54)

System (4.2.53) is to be solved for the unknown functions q(t), u(t), and λ(t). This is

a DAE system of index 3, since we are lacking a differential equation for λ(t) and the
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constraint equation has to be differentiated three times in order to express λ̇ as a function

of q, u, and λ, provided that certain regularity conditions are satisfied. Let us determine

these conditions. Differentiate the constraint equation twice with respect to time to obtain

the acceleration level constraint

Dg(q) u̇ = h(q, u), (4.2.55)

where

hk(q, u) = −
2N
∑
i,j=1

∂2gk
∂qi∂qj

uiuj . (4.2.56)

We can then write (4.2.55) and the second equation of (4.2.53) together as

⎛
⎜
⎝

M̃N(q) Dg(q)T

Dg(q) 0

⎞
⎟
⎠

⎛
⎜
⎝

u̇

λ

⎞
⎟
⎠
=
⎛
⎜
⎝

f(q, u)

h(q, u)

⎞
⎟
⎠
. (4.2.57)

If we could solve this equation for u̇ and λ in terms of q and u, then we could simply

differentiate the expression for λ one more time to obtain the missing differential equation,

thus showing system (4.2.53) is of index 3. System (4.2.57) is solvable if its matrix is

invertible. Hence, for system (4.2.53) to be of index 3, the following condition

det
⎛
⎜
⎝

M̃N(q) Dg(q)T

Dg(q) 0

⎞
⎟
⎠

/= 0 (4.2.58)

has to be satisfied for all q, or at least in a neighborhood of the points satisfying g(q) = 0.

Note that with suitably chosen constraints this condition allows the mass matrix to be

singular.

We would like to perform time integration of this mechanical system using the symplectic

(variational) Lobatto IIIA-IIIB quadratures for constrained systems (see Section 2.5.2 and

[23], [26], [31], [32], [41]). However, due to the singularity of the Runge-Kutta coefficient

matrices (aij) and (āij) for the Lobatto IIIA and IIIB schemes (see Table 2.4, Table 2.5

and Table 2.6), the assumption (4.2.58) does not guarantee that these quadratures define a

unique numerical solution: the mass matrix would need to be invertible. To circumvent this

numerical obstacle we resort to a trick described in [32]. We embed our mechanical system

in a higher dimensional configuration space by adding slack degrees of freedom r and ṙ, and
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form the augmented Lagrangian L̃AN by modifying the kinetic term of L̃N to read

L̃AN(q, r, q̇, ṙ) = 1
2
( q̇T ṙT ) ⋅

⎛
⎜
⎝

M̃N(q) Dg(q)T

Dg(q) 0

⎞
⎟
⎠
⋅
⎛
⎜
⎝

q̇

ṙ

⎞
⎟
⎠
−RN(q). (4.2.59)

Assuming (4.2.58), the augmented system has a non-singular mass matrix. If we multiply

out the terms we obtain simply

L̃AN(q, r, q̇, ṙ) = L̃N(q, q̇) + ṙTDg(q) q̇. (4.2.60)

This formula in fact holds for general Lagrangians, not only for (4.2.8). In addition to g(q) =

0 we further impose the constraint r = 0. Then the augmented constrained Lagrangian takes

the form

L̃ACN(q, r, q̇, ṙ, λ, µ) = L̃N(q, q̇) + ṙTDg(q) q̇ − λT g(q) − µT r. (4.2.61)

The corresponding Euler-Lagrange equations are

q̇ = u,

ṙ = w,

M̃N(q) u̇ +Dg(q)T ẇ = f(q, u) −Dg(q)T λ,

Dg(q) u̇ = h(q, u) − µ,

g(q) = 0,

r = 0. (4.2.62)

It is straightforward to verify that r(t) = 0, w(t) = 0, µ(t) = 0 is the exact solution, and

the remaining equations reduce to (4.2.53), that is, the evolution of the augmented system

coincides with the evolution of the original system, by construction. The advantage is that

the augmented system is now regular, and we can readily apply the Lobatto IIIA-IIIB

method for constrained systems to compute a numerical solution. It should be intuitively
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clear that this numerical solution will approximate the solution of (4.2.53) as well. What

is not immediately obvious is whether a variational integrator based on (4.2.60) can be

interpreted as a variational integrator based on L̃N . This can be elegantly justified with

the help of exact constrained discrete Lagrangians (see Section 2.5.2 and Section 2.4.2). Let

N ⊂ QN ×GN be the constraint submanifold defined by g(q) = 0. The exact constrained

discrete Lagrangian L̃C,EN ∶ N ×N Ð→ R is defined by

L̃C,EN (q(1), q(2)) = ∫
∆t

0
L̃N(q(t), q̇(t))dt, (4.2.63)

where q(t) is the solution to the constrained Euler-Lagrange equations (4.2.53), such that

it satisfies the boundary conditions q(0) = q(1) and q(∆t) = q(2). Note that N × {0} ⊂

(QN×GN)×RN is the constraint submanifold defined by g(q) = 0 and r = 0. Since necessarily

r(1) = r(2) = 0, we can define the exact augmented constrained discrete Lagrangian L̃A,C,EN ∶

N ×N Ð→ R by

L̃A,C,EN (q(1), q(2)) = ∫
∆t

0
L̃AN(q(t), r(t), q̇(t), ṙ(t))dt, (4.2.64)

where q(t), r(t) are the solutions to the augmented constrained Euler-Lagrange equations

(4.2.62), such that the boundary conditions q(0) = q(1), q(∆t) = q(2), and r(0) = r(∆t) = 0

are satisfied.

Proposition 4.2.7. The exact discrete Lagrangians L̃A,C,EN and L̃C,EN are equal.

Proof. Let q(t) and r(t) be the solutions to (4.2.62) such that the boundary conditions

q(0) = q(1), q(∆t) = q(2), and r(0) = r(∆t) = 0 are satisfied. As argued before, we in fact

have r(t) = 0 and q(t) satisfies (4.2.53) as well. By (4.2.60) we have

L̃AN(q(t), r(t), q̇(t), ṙ(t)) = L̃N(q(t), q̇(t))

for all t ∈ [0,∆t], and consequently L̃A,C,EN = L̃C,EN .

This means that any discrete Lagrangian L̃d ∶ (QN ×GN) × RN × (QN ×GN) × RN Ð→ R

that approximates L̃A,C,EN to order s also approximates L̃C,EN to the same order, that is,

a variational integrator for (4.2.62), in particular our Lobatto IIIA-IIIB scheme, is also a
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variational integrator for (4.2.53).

Backward error analysis. The advantage of the Lagrange multiplier approach is the fact

that upon spatial discretization we deal with a constrained mechanical system. Backward

error analysis of symplectic/variational numerical schemes for such systems shows that the

modified equations also describe a constrained mechanical system for a nearby Hamiltonian

(see [23]). Therefore, we expect the Lagrange multiplier strategy to demonstrate better

performance in terms of energy conservation than the control-theoretic strategy. The La-

grange multiplier approach makes better use of the geometry underlying the field theory

we consider, the key idea being to treat the reparametrization field X(x, t) as an additional

dynamical degree of freedom on equal footing with ϕ(x, t).
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Chapter 5

R-adaptive multisymplectic
integrators

In Chapter 4 we took the view of infinite dimensional manifolds of fields as configuration

spaces, and presented a way to construct space-adaptive variational integrators in that for-

malism. We essentially applied symplectic integrators to semi-discretized Lagrangian field

theories. In this chapter we show how r-adaptive integrators can be described in the more

general framework of multisymplectic geometry (see Section 2.6). In particular we show

that some of the integrators obtained in Chapter 4 can be interpreted as multisymplectic

variational integrators (see Section 2.7). Multisymplectic geometry provides a covariant for-

malism for the study of field theories in which time and space are treated on equal footing,

as a conseqence of which multisymplectic variational integrators allow for more general dis-

cretizations of spacetime, such that, for instance, each element of space may be integrated

with a different timestep (see [36]).

5.1 Analysis of the control-theoretic approach

Continuous setting

We are now going to discuss a multisymplectic setting for the approach presented in Sec-

tion 4.1. Let the computational spacetime be X = R × R with coordinates (t, x) and

consider the trivial configuration bundle Y = X × R with coordinates (t, x, y). Let U =

[0, Tmax] × [0,Xmax], and let our scalar field be represented by a section ϕ̃ ∶ U Ð→ Y

with the coordinate representation ϕ̃(t, x) = (t, x,ϕ(t, x)). Let (t, x, y, vt, vx) denote local

coordinates on J1Y . In these coordinates the first jet prolongation of ϕ̃ is represented
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by j1ϕ̃(t, x) = (t, x,ϕ(t, x), ϕt(t, x), ϕx(t, x)). Then the Lagrangian density (4.1.3) can be

viewed as a mapping L̃ ∶ J1Y Ð→ R. The corresponding action (4.0.3) can now be expressed

as

S̃[ϕ̃] = ∫
U
L̃(j1ϕ̃)dt ∧ dx. (5.1.1)

Just like in Section 4.1, let us for the moment assume that the function X ∶ U Ð→ [0,Xmax]

is known, so that we can view L̃ as being time and space dependent. The dynamics is

obtained by extremizing S̃ with respect to ϕ̃, that is, by solving for ϕ̃ such that

d

dλ
∣
λ=0

S̃[ηλY ○ ϕ̃] = 0 (5.1.2)

for all ηλY that keep the boundary conditions on ∂U fixed, where ηλY ∶ Y Ð→ Y is the flow of

a vertical vector field V on Y (see Section 2.6). Therefore, for an a priori known X(t, x)

the multisymplectic form formula (2.6.9) is satisfied for solutions of (5.1.2).

Consider the additional bundle πXB ∶ B = X × [0,Xmax]Ð→ X whose sections X̃ ∶ U Ð→

B represent our diffeomorphisms. Let X̃(t, x) = (t, x,X(t, x)) denote a local coordinate

representation, and assume X(t, .) is a diffeomorphism. Then define Ỹ = Y ⊕ B. We have

JkỸ ≅ JkY ⊕ JkB. In Section 4.2.5.2 we argued that the moving mesh partial differential

equation (3.2.4) can be interpreted as a local constraint on the fields ϕ̃, X̃ and their spatial

derivatives. This constraint can be represented by a function G ∶ JkỸ Ð→ R. Sections ϕ̃

and X̃ satisfy the constraint if G(jkϕ̃, jkX̃) = 0. Therefore our control-theoretic strategy

expressed in equations (4.2.49) can be rewritten as

d

dλ
∣
λ=0

S̃[ηλY ○ ϕ̃] = 0,

G(jkϕ̃, jkX̃) = 0, (5.1.3)

for all ηλY , as previously defined. Let us argue how to interpret the notion of multisym-

plecticity for this problem. Intuitively, multisymplecticity should be understood in a sense

similar to Proposition 4.1.3. We first solve the problem (5.1.3) for ϕ̃ and X̃, given some

initial and boundary conditions. Then we substitute this X̃ into the problem (5.1.2). Let P

be the set of solutions to this problem. Naturally, ϕ̃ ∈ P. The multisymplectic form formula
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(2.6.9) will be satisfied for all fields in P, but the constraint G = 0 will be satisfied only for

ϕ̃.

Discretization

Discretize the computational spacetime R×R by picking the discrete set of points tj = j ⋅∆t,

xi = i ⋅ ∆x, and define X = {(j, i) ∣ j, i ∈ Z}. Let X◻ and X� be the set of rectangles

and 6-tuples in X , respectively. The discrete configuration bundle is Y = X × R, and for

convenience of notation let the elements of the fiber Yji be denoted by yji . Let U = {(j, i) ∣ j =

0,1, . . . ,M+1, i = 0,1, . . . ,N+1}, where ∆x =Xmax/(N+1) and ∆t = Tmax/(M+1). Suppose

we have a discrete Lagrangian L̃ ∶ J1Y Ð→ R and the corresponding discrete action S̃ that

approximates (5.1.1), where we assume that X(t, x) is known and of the form (4.1.7). A

variational integrator is obtained by solving

d

dλ
∣
λ=0

S̃[ϕ̃λ] = 0 (5.1.4)

for a discrete section ϕ̃ ∶ U Ð→ Y , as described in Section 2.7. This integrator is multisym-

plectic, i.e., the discrete multisymplectic form formula (2.7.4) is satisfied.

Example: Midpoint rule. In (4.1.17) consider the 1-stage symplectic partitioned Runge-

Kutta method with the coefficients a11 = ā11 = c1 = 1/2 and b1 = b̄1 = 1. This method is often

called the midpoint rule and is a 2-nd order member of the Gauss family of quadratures (see

Section 2.2.2). It can be easily shown (see [23], [41]) that the discrete Lagrangian (4.1.12)

for this method is given by

L̃d(tj , yj , tj+1, y
j+1) = ∆t ⋅ L̃N(y

j + yj+1

2
,
yj+1 − yj

∆t
, tj +

1
2

∆t), (5.1.5)

where ∆t = tj+1 − tj and yj = (yj1, . . . , y
j
N). Using (4.1.2) and (4.1.10) we can write

L̃d(tj , yj , tj+1, y
j+1) =

N

∑
i=0
L̃(yji , y

j
i+1, y

j+1
i+1 , y

j+1
i ), (5.1.6)

where we defined the discrete Lagrangian L̃ ∶ J1Y Ð→ R by the formula
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L̃(yji , y
j
i+1, y

j+1
i+1 , y

j+1
i ) = ∆t∫

xi+1

xi

L̃(ϕ̄(x), ϕ̄x(x), ϕ̄t(x), x, tj +
1
2

∆t)dx (5.1.7)

with

ϕ̄(x) =
yji + y

j+1
i

2
ηi(x) +

yji+1 + y
j+1
i+1

2
ηi+1(x),

ϕ̄x(x) =
1
2
yji+1 − y

j
i

∆x
+ 1

2
yj+1
i+1 − y

j+1
i

∆x
,

ϕ̄t(x) =
yj+1
i − yji

∆t
ηi(x) +

yj+1
i+1 − y

j
i+1

∆t
ηi+1(x). (5.1.8)

Given the Lagrangian density L̃ as in (4.1.3), and assuming X(t, x) is known, one can

evaluate the integral in (5.1.7) explicitly. It is now a straightforward calculation to show

that the discrete variational principle (5.1.4) for the discrete Lagrangian L̃ as defined is

equivalent to the Discrete Euler-Lagrange equations (2.4.2) for L̃d, and consequently to

(4.1.17).

This shows that the 2-nd order Gauss method applied to (4.1.17) defines a multisym-

plectic method in the sense of formula (2.7.4). However, for other symplectic partitioned

Runge-Kutta methods of interest to us, namely the 4-th order Gauss and the 2-nd/4-th

order Lobatto IIIA-IIIB methods (see Section 2.2.2), it is not possible to isolate a discrete

Lagrangian L̃ that would only depend on four values yji , y
j
i+1, y

j+1
i+1 , y

j+1
i . The mentioned

methods have more internal stages, and the equations (4.1.17) couple them in a nontrivial

way. Effectively, at any given time step the internal stages depend on all the values yj1, . . . ,

yjN and yj+1
1 , . . . , yj+1

N , and it it not possible to express the discrete Lagrangian (4.1.12) as a

sum similar to (5.1.6). The resulting integrators are still variational, since they are derived

by applying the discrete variational principle (5.1.4) to some discrete action S̃, but this

action cannot be expressed as the sum of L̃ over all rectangles. Therefore, these integrators

are not multisymplectic, at least not in the sense of formula (2.7.4).

Constraints. Let the additional bundle be B = X × [0,Xmax], and denote by Xn
j the

elements of the fiber Bji. Define Ỹ = Y ⊕ B. We have JkỸ ≅ JkY ⊕ JkB. Suppose

G ∶ JkỸ Ð→ R represents a discretization of the continuous constraint. For instance, one
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can enforce a uniform mesh by defining G ∶ J1Ỹ → R, G(j1ϕ̃, j1X̃) =Xx−1 at the continuous

level. The discrete counterpart will be defined on the discrete jet bundle J1Ỹ by the formula

G(yji , y
j
i+1, y

j+1
i+1 , y

j+1
i ,Xj

i ,X
j
i+1,X

j+1
i+1 ,X

j+1
i ) =

Xj
i+1 −X

j
i

∆x
− 1. (5.1.9)

Arc-length equidistribution can be realized by enforcing (3.2.7), that is, G ∶ J2
0 Ỹ → R,

G(j2
0 ϕ̃, j

2
0X̃) = α2ϕxϕxx +XxXxx. The discrete counterpart will be defined on the discrete

subbundle J2
0 Ỹ by the formula

G(y�l ,X�r) = α2(y�3 − y�2)2 + (X�3 −X�2)2 − α2(y�2 − y�1)2 − (X�2 −X�1)2, (5.1.10)

where for convenience we used the notation introduced in (2.7.8), and l, r = 1, . . . ,6. Note

that (5.1.10) coincides with (3.2.8). In fact, gi in (3.2.8) is nothing else but G computed on

an element of J2
0 Ỹ over the base 6-tuple � such that �2 = (j, i). The only difference is that

in (3.2.8) we assumed gi might depend on all the field values at a given time step, while G

only takes arguments locally, i.e., it depends on at most 6 field values on a given 6-tuple.

A numerical scheme is now obtained by simultaneously solving the discrete Euler-

Lagrange equations (2.7.3) resulting from (5.1.4) and the equation G = 0. If we know

yj−1
i , Xj−1

i , yji , and X
j
i for i = 1, . . . ,N , this system of equations allows us to solve for yj+1

i ,

Xj+1
i . This numerical scheme is multisymplectic in the sense similar to Proposition 4.1.4.

If we take X(t, x) to be a sufficiently smooth interpolation of the values Xj
i and substitute

it in the problem (5.1.4), then the resulting multisymplectic integrator will yield the same

numerical values yj+1
i .

5.2 Analysis of the Lagrange multiplier approach

Continuous setting

We now turn to describing the Lagrange multiplier approach in a multisymplectic setting.

Just like in Section 5.1, let the computational spacetime be X = R × [0,Xmax] with coor-

dinates (t, x), and consider the trivial configuration bundles πXY ∶ Y = X × R Ð→ X and

πXB ∶ B = X × [0,Xmax]Ð→ X . Let our scalar field be represented by a section ϕ̃ ∶ X Ð→ Y

with the coordinate representation ϕ̃(t, x) = (t, x,ϕ(t, x)), and our diffeomorphism by a
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section X̃ ∶ X Ð→ B with the local representation X̃(t, x) = (t, x,X(t, x)). Let the total

configuration bundle be Ỹ = Y ⊕ B. Then the Lagrangian density (4.1.3) can be viewed

as a mapping L̃ ∶ J1Ỹ ≅ J1Y ⊕ J1B Ð→ R. The corresponding action (4.0.3) can now be

expressed as

S̃[ϕ̃, X̃] = ∫
U
L̃(j1ϕ̃, j1X̃)dt ∧ dx, (5.2.1)

where U = [0, Tmax] × [0,Xmax]. As before, the MMPDE constraint can be represented by

a function G ∶ JkỸ Ð→ R. Two sections ϕ̃ and X̃ satisfy the constraint if

G(jkϕ̃, jkX̃) = 0. (5.2.2)

Vakonomic formulation. We now face the problem of finding the right equations of

motion. We want to extremize the action functional (5.2.1) in some sense, subject to the

constraint (5.2.2). Note that the constraint is essentially nonholonomic, as it depends on the

derivatives of the fields. Assuming G is a submersion, G = 0 defines a submanifold of JkỸ ,

but this submanifold will not in general be the k-th jet of any subbundle of Ỹ . Two distinct

approaches are possible here. One could follow the Lagrange-d’Alembert principle and take

variations of S̃ first, but choosing variations V (vertical vector fields on Ỹ ) such that the jet

prolongations jkV are tangent to the submanifold G = 0, and then enforce the constraint

G = 0. On the other hand, one could consider the variational nonholonomic problem (also

called vakonomic), and minimize S̃ over the set of all sections (ϕ̃, X̃) that satisfy the con-

straint G = 0, that is, enforce the constraint before taking the variations. If the constraint

is holonomic, both approaches yield the same equations of motion. However, if the con-

straint is nonholonomic, the resulting equations are in general different. Which equations

are correct is really a matter of experimental verification. It has been established that the

Lagrange-d’Alembert principle gives the right equations of motion for nonholonomic me-

chanical systems, whereas the vakonomic setting is appropriate for optimal control problems

(see [3], [4], [5]).

We are going to argue that the vakonomic approach is the right one in our case. In

Proposition 4.2.1 we showed that in the unconstrained case extremizing S[φ] with respect

to φ was equivalent to extremizing S̃[ϕ̃, X̃] with respect to ϕ̃, and in Proposition 4.2.2
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we showed that extremizing with respect to X̃ did not yield new information. This is

because there was no restriction on the fields ϕ̃ and X̃, and for any given X̃ there was a

one-to-one correspondence between φ and ϕ̃ given by the formula ϕ(t, x) = φ(t,X(t, x)),

so extremizing over all possible ϕ̃ was equivalent to extremizing over all possible φ. Now,

let N be the set of all smooth sections (ϕ̃, X̃) that satisfy the constraint (5.2.2) such that

X(t, .) is a diffeomorphism for all t. It should be intuitively clear that under appropriate

assumptions on the mesh density function ρ, for any given smooth function φ(t,X), equation

(3.2.4) together with ϕ(t, x) = φ(t,X(t, x)) define a unique pair (ϕ̃, X̃) ∈ N (since our

main purpose here is to only justify the application of the vakonomic approach, we do

not attempt to specify those analytic assumptions precisely). Conversely, any given pair

(ϕ̃, X̃) ∈ N defines a unique function φ through the formula φ(t,X) = ϕ(t, ξ(t,X)), where

ξ(t, .) = X(t, .)−1, as in Section 4.2.1. Given this one-to-one correspondence and the fact

that S[φ] = S̃[ϕ̃, X̃] by definition, we see that extremizing S with respect to all smooth φ

is equivalent to extremizing S̃ over all smooth sections (ϕ̃, X̃) ∈ N . We conclude that the

vakonomic approach is appropriate in our case, since it follows from Hamilton’s principle

for the original, physically meaningful, action functional S.

Let us also note that our constraint depends on spatial derivatives only. Therefore, in

the setting presented in Chapter 4 it can be considered holonomic, as it restricts the infinite-

dimensional configuration manifold of fields that we used as our configuration space. In that

case it is valid to use Hamilton’s principle and minimize the action functional over the set of

all allowable fields, i.e., those that satisfy the constraint G = 0. We did that by considering

the augmented instantaneous Lagrangian (4.2.50).

In order to minimize S̃ over the set of sections satisfying the constraint (5.2.2) we will

use the bundle-theoretic version of the Lagrange multiplier theorem, which we cite below

after [40].

Theorem 5.2.1 (Lagrange multiplier theorem). Let πM,E ∶ E Ð→ M be an inner

product bundle over a smooth manifold M, Ψ a smooth section of πM,E , and h ∶M Ð→ R

a smooth function. Setting N = Ψ−1(0), the following are equivalent:

1. σ ∈ N is an extremum of h∣N ,

2. there exists an extremum σ̄ ∈ E of h̄ ∶ E Ð→ R such that πM,E(σ̄) = σ,
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where h̄(σ̄) = h(πM,E(σ̄)) − ⟨σ̄,Ψ(πM,E(σ̄))⟩E .

Let us briefly review the ideas presented in [40], adjusting the notation to our problem,

and generalizing when necessary. Let

C∞
U (Ỹ ) = {σ = (ϕ̃, X̃) ∶ U ⊂ X Ð→ Ỹ } (5.2.3)

be the set of smooth sections of π
X Ỹ on U . Then S̃ ∶ C∞

U (Ỹ ) Ð→ R can be identified with

h in Theorem 5.2.1, whereM = C∞
U (Ỹ ). Furthermore, define the trivial bundle

πXV ∶ V = X ×RÐ→ X , (5.2.4)

and let C∞
U (V) be the set of smooth sections λ̃ ∶ U Ð→ V, which represent our Lagrange

multipliers, and in local coordinates have the representation λ̃(t, x) = (t, x, λ(t, x)). The set

C∞
U (V) is an inner product space with ⟨λ̃1, λ̃2⟩ = ∫U λ1λ2 dt ∧ dx. Take

E = C∞
U (Ỹ ) ×C∞

U (V). (5.2.5)

This is an inner product bundle over C∞
U (Ỹ ) with the inner product defined by

⟨(σ, λ̃1), (σ, λ̃2)⟩
E
= ⟨λ̃1, λ̃2⟩. (5.2.6)

We now have to construct a smooth section Ψ ∶ C∞
U (Ỹ )Ð→ E that will realize our constraint

(5.2.2). Define the fiber-preserving mapping G̃ ∶ JkỸ Ð→ V such that for ϑ ∈ JkỸ

G̃(ϑ) = (π
X ,JkỸ (ϑ),G(ϑ)). (5.2.7)

For instance, for k = 1, in local coordinates we have G̃(t, x, y, vt, vx) = (t, x,G(t, x, y, vt, vx)).

Then we can define

Ψ(σ) = (σ, G̃ ○ jkσ). (5.2.8)

The set of allowable sectionsN ⊂ C∞
U (Ỹ ) is now defined byN = Ψ−1(0). That is, (ϕ̃, X̃) ∈ N

provided that G(jkϕ̃, jkX̃) = 0.

The augmented action functional S̃C ∶ E Ð→ R is now given by
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S̃C[σ̄] = S̃[πM,E(σ̄)] − ⟨σ̄,Ψ(πM,E(σ̄))⟩E , (5.2.9)

or denoting σ̄ = (ϕ̃, X̃, λ̃)

S̃C[ϕ̃, X̃, λ̃] = S̃[ϕ̃, X̃] − ⟨λ̃, G̃ ○ (jkϕ̃, jkX̃)⟩

= ∫
U
L̃(j1ϕ̃, j1X̃)dt ∧ dx − ∫

U
λ(t, x)G(jkϕ̃, jkX̃)dt ∧ dx

= ∫
U
[L̃(j1ϕ̃, j1X̃) − λ(t, x)G(jkϕ̃, jkX̃)]dt ∧ dx. (5.2.10)

Theorem 5.2.1 states, that if (ϕ̃, X̃, λ̃) is an extremum of S̃C , then (ϕ̃, X̃) extremizes S̃ over

the set N of sections satisfying the constraint G = 0. Note that using the multisymplectic

formalism we obtained the same result as (4.2.50) in the instantaneous formulation, where

we could treat G as a holonomic constraint. The dynamics is obtained by solving for a

triple (ϕ̃, X̃, λ̃) such that

d

dε
∣
ε=0
S̃C[ηεY ○ ϕ̃, ηεB ○ X̃, ηεV ○ λ̃] = 0 (5.2.11)

for all ηεY , ηεB, ηεV that keep the boundary conditions on ∂U fixed, where ηε denotes the flow

of vertical vector fields on respective bundles.

Note that we can define ỸC = Y ⊕B⊕V and L̃C ∶ JkỸC Ð→ R by setting L̃C = L̃−λ ⋅G, i.e.,

we can consider a k-th order field theory. If k = 1,2 then an appropriate multisymplectic

form formula in terms of the fields ϕ̃, X̃, and λ̃ will hold. Presumably, this can be generalized

for k > 2 using the techniques put forth in [34]. However, it is an interesting question whether

there exists any multisymplectic form formula defined in terms of ϕ̃, X̃, and objects on

JkỸ only. It appears to be an open problem. This would be the multisymplectic analog of

the fact that the flow of a constrained mechanical system is symplectic on the constraint

submanifold of the configuration space (see Section 2.5.1).

Discretization

Let us use the same discretization as discussed in Section 5.1. Assume we have a discrete

Lagrangian L̃ ∶ J1Ỹ Ð→ R, the corresponding discrete action S̃[ϕ̃, X̃], and a discrete con-

straint G ∶ J1Ỹ Ð→ R or G ∶ J2
0 Ỹ Ð→ R. Note that S̃ is essentially a function of 2MN
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variables, and we want to extremize it subject to the set of algebraic constraints G = 0.

The standard Lagrange multiplier theorem proved in basic calculus textbooks applies here.

However, let us work out a discrete counterpart of the formalism introduced at the contin-

uous level. This will facilitate the discussion of the discrete notion of multisymplecticity.

Let

CU(Ỹ ) = {σ = (ϕ̃, X̃) ∶ U ⊂ X Ð→ Ỹ } (5.2.12)

be the set of discrete sections of π
X Ỹ ∶ Ỹ Ð→ X . Similarly, define the discrete bundle V =

X ×R and let CU0(V) be the set of discrete sections λ̃ ∶ U0 Ð→ V representing the Lagrange

multipliers, where U0 ⊂ U is defined below. Let λ̃(j, i) = (j, i, λ(j, i)) with λji ≡ λ(j, i) be the

local representation. The set CU0(V) is an inner product space with ⟨λ̃, µ̃⟩ = ∑(j,i)∈U0 λ
j
iµ
j
i .

Take E = CU(Ỹ ) ×CU0(V). Just like at the continuous level, E is an inner product bundle.

However, at the discrete level it is more convenient to define the inner product on E in a

slightly modified way. Since there are some nuances in the notation, let us consider the

cases k = 1 and k = 2 separately.

Case k=1. Let U0 = {(j, i) ∈ U ∣ j ≤M, i ≤ N}. Define the trivial bundle V̂ = X◻ ×R and

let CU◻(V̂) be the set of all sections of V̂ defined on U◻. For a given section λ̃ ∈ CU0(V) we

define its extension λ̂ ∈ CU◻(V̂) by

λ̂(◻) = (◻, λ(◻1)), (5.2.13)

that is, λ̂ assigns to the square ◻ the value that λ̃ takes on the first vertex of that square.

Note that this operation is invertible: given a section of CU◻(V̂) we can uniquely determine

a section of CU0(V). We can define the inner product

⟨λ̂, µ̂⟩ = ∑
◻⊂U

λ(◻1)µ(◻1). (5.2.14)

One can easily see that we have ⟨λ̂, µ̂⟩ = ⟨λ̃, µ̃⟩, so by a slight abuse of notation we can

use the same symbol ⟨., .⟩ for both inner products. It will be clear from the context which

definition should be invoked. We can now define an inner product on the fibers of E as
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⟨(σ, λ̃), (σ, µ̃)⟩
E
= ⟨λ̂, µ̂⟩ = ⟨λ̃, µ̃⟩. (5.2.15)

Let us now construct a section Ψ ∶ CU(Ỹ )Ð→ E that will realize our discrete constraint G.

First, in analogy to (5.2.7), define the fiber-preserving mapping G̃ ∶ J1Ỹ Ð→ V̂ such that

G̃(y◻l ,X◻r) = (◻,G(y◻l ,X◻r)), (5.2.16)

where l, r = 1,2,3,4. We now define Ψ by requiring that for σ ∈ CU(Ỹ ) the extension (5.2.13)

of Ψ(σ) is given by

Ψ̂(σ) = (σ, G̃ ○ j1σ). (5.2.17)

The set of allowable sections N ⊂ CU(Ỹ ) is now defined by N = Ψ−1(0)—that is, (ϕ̃, X̃) ∈ N

provided that G(j1ϕ̃, j1X̃) = 0 for all ◻ ∈ U◻. The augmented discrete action S̃C ∶ E Ð→ R

is therefore

S̃C[σ, λ̃] = S̃[σ] − ⟨(σ, λ̃),Ψ(σ)⟩
E

= S̃[σ] − ⟨λ̂, G̃ ○ j1σ⟩

= ∑
◻⊂U

L̃(j1σ) − ∑
◻⊂U

λ(◻1)G(j1σ)

= ∑
◻⊂U

(L̃(j1σ) − λ(◻1)G(j1σ)). (5.2.18)

By the standard Lagrange multiplier theorem, if (ϕ̃, X̃, λ̃) is an extremum of S̃C , then

(ϕ̃, X̃) is an extremum of S̃ over the set N of sections satisfying the constraint G = 0. The

discrete Hamilton principle can be expressed as

d

dε
∣
ε=0
S̃C[ϕ̃ε, X̃ε, λ̃ε] = 0 (5.2.19)

for all vector fields V on Y , W on B, and Z on V that keep the boundary conditions on ∂U

fixed, where ϕ̃ε(j, i) = F
Vji
ε (ϕ̃(j, i)) and F Vji

ε is the flow of Vji on R, and similarly for X̃ε and

λ̃ε. The discrete Euler-Lagrange equations can be conveniently computed if in (5.2.19) one

focuses on some (j, i) ∈ intU . With the convention ϕ̃(j, i) = yji , X̃(j, i) = Xj
i , λ̃(j, i) = λ

j
i ,
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we write the terms of S̃C containing yji , X
j
i and λji explicitly as

S̃C = . . . + L̃(yji , y
j
i+1, y

j+1
i+1 , y

j+1
i ,Xj

i ,X
j
i+1,X

j+1
i+1 ,X

j+1
i )

+ L̃(yji−1, y
j
i , y

j+1
i , yj+1

i−1 ,X
j
i−1,X

j
i ,X

j+1
i ,Xj+1

i−1 )

+ L̃(yj−1
i−1 , y

j−1
i , yji , y

j
i−1,X

j−1
i−1 ,X

j−1
i ,Xj

i ,X
j
i−1)

+ L̃(yj−1
i , yj−1

i+1 , y
j
i+1, y

j
i ,X

j−1
i ,Xj−1

i+1 ,X
j
i+1,X

j
i )

+ λjiG(yji , y
j
i+1, y

j+1
i+1 , y

j+1
i ,Xj

i ,X
j
i+1,X

j+1
i+1 ,X

j+1
i )

+ λji−1G(yji−1, y
j
i , y

j+1
i , yj+1

i−1 ,X
j
i−1,X

j
i ,X

j+1
i ,Xj+1

i−1 )

+ λj−1
i−1G(yj−1

i−1 , y
j−1
i , yji , y

j
i−1,X

j−1
i−1 ,X

j−1
i ,Xj

i ,X
j
i−1)

+ λj−1
i G(yj−1

i , yj−1
i+1 , y

j
i+1, y

j
i ,X

j−1
i ,Xj−1

i+1 ,X
j
i+1,X

j
i ) + . . . (5.2.20)

The discrete Euler-Lagrange equations (see Section 2.7) are obtained by differentiating with

respect to yji , X
j
i , and λ

j
i , and can be written compactly as

∑
l,◻

(j,i)=◻l

[ ∂L̃
∂yl

(y◻1 , . . . , y◻4 ,X◻1 , . . . ,X◻4)+

+ λ◻1
∂G

∂yl
(y◻1 , . . . , y◻4 ,X◻1 , . . . ,X◻4)] = 0,

∑
l,◻

(j,i)=◻l

[ ∂L̃
∂X l

(y◻1 , . . . , y◻4 ,X◻1 , . . . ,X◻4)+

+ λ◻1
∂G

∂X l
(y◻1 , . . . , y◻4 ,X◻1 , . . . ,X◻4)] = 0,

G(yji , y
j
i+1, y

j+1
i+1 , y

j+1
i ,Xj

i ,X
j
i+1,X

j+1
i+1 ,X

j+1
i ) = 0 (5.2.21)

for all (j, i) ∈ intU . If we know yj−1
i , Xj−1

i , yji , X
j
i , and λ

j−1
i for i = 1, . . . ,N , this system of

equations allows us to solve for yj+1
i , Xj+1

i , and λji .

Note that we can define ỸC = Y ⊕B⊕V, and the augmented Lagrangian L̃C ∶ J1ỸC Ð→ R

by setting
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L̃C(j1ϕ̃, j1X̃, j1λ̃) = L̃(j1ϕ̃, j1X̃) − λ(◻1) ⋅G(j1ϕ̃, j1X̃), (5.2.22)

that is, we can consider an unconstrained field theory in terms of the fields ϕ̃, X̃, and λ̃.

Then the solutions of (5.2.21) satisfy the multisymplectic form formula (2.7.4) in terms of

objects defined on J1ỸC .

Case k=2. Let U0 = {(j, i) ∈ U ∣ j ≤M,1 ≤ i ≤ N}. Define the trivial bundle V̂ = X� ×R

and let CU�(V̂) be the set of all sections of V̂ defined on U�. For a given section λ̃ ∈ CU0(V)

we define its extension λ̂ ∈ CU�(V̂) by

λ̂(�) = (�, λ(�2)), (5.2.23)

that is, λ̂ assigns to the 6-tuple � the value that λ̃ takes on the second vertex of that

6-tuple. Like before, this operation is invertible. We can define the inner product

⟨λ̂, µ̂⟩ = ∑
�⊂U

λ(�2)µ(�2) (5.2.24)

and the inner product on E as in (5.2.15). Define the fiber-preserving mapping G̃ ∶ J2
0 Ỹ Ð→ V̂

such that

G̃(y�l ,X�r) = (�,G(y�l ,X�r)), (5.2.25)

where l, r = 1, . . . ,6. We now define Ψ by requiring that for σ ∈ CU(Ỹ ) the extension (5.2.23)

of Ψ(σ) is given by

Ψ̂(σ) = (σ, G̃ ○ j2
0σ). (5.2.26)

Again, the set of allowable sections is N = Ψ−1(0). That is, (ϕ̃, X̃) ∈ N provided that

G(j2
0 ϕ̃, j

2
0X̃) = 0 for all � ∈ U�. The augmented discrete action S̃C ∶ E Ð→ R is therefore
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S̃C[σ, λ̃] = S̃[σ] − ⟨(σ, λ̃),Ψ(σ)⟩
E

= S̃[σ] − ⟨λ̂, G̃ ○ j2
0σ⟩

= ∑
◻⊂U

L̃(j1σ) − ∑
�⊂U

λ(�2)G(j2
0σ). (5.2.27)

By writing out the terms involving yji , X
j
i , and λji explicitly, as in (5.2.20), and invoking

the discrete Hamilton principle (5.2.19), one obtains the discrete Euler-Lagrange equations,

which can be compactly expressed as

∑
l,◻

(j,i)=◻l

∂L̃

∂yl
(y◻1 , . . . , y◻4 ,X◻1 , . . . ,X◻4)+

+ ∑
l,�

(j,i)=�l

λ�2
∂G

∂yl
(y�1 , . . . , y�6 ,X�1 , . . . ,X�6) = 0,

∑
l,◻

(j,i)=◻l

∂L̃

∂X l
(y◻1 , . . . , y◻4 ,X◻1 , . . . ,X◻4)+

+ ∑
l,�

(j,i)=�l

λ�2
∂G

∂X l
(y�1 , . . . , y�6 ,X�1 , . . . ,X�6) = 0,

G(yji−1, y
j
i , y

j
i+1, y

j+1
i+1 , y

j+1
i , yj+1

i−1 ,X
j
i−1,X

j
i ,X

j
i+1,X

j+1
i+1 ,X

j+1
i ,Xj+1

i−1 ) = 0 (5.2.28)

for all (j, i) ∈ intU . If we know yj−1
i , Xj−1

i , yji , X
j
i , and λ

j−1
i for i = 1, . . . ,N , this system of

equations allows us to solve for yj+1
i , Xj+1

i , and λji .

Let us define the extension L̃ext ∶ J2
0 Ỹ Ð→ R of the Lagrangian density L̃ by setting

L̃ext(y�1 , . . . ,X�6) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

L̃(y◻1 , . . . ,X◻4) if �2 = (j,0), (j,N + 1),

where ◻ = � ∩ U ,
1
2 ∑◻⊂� L̃(y◻1 , . . . ,X◻4) otherwise.

(5.2.29)
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Let us also set G(y◻1 , . . . ,X◻4) = 0 if �2 = (j,0), (j,N + 1). Define A = {� ∣�2,�5 ∈ U}.

Then (5.2.27) can be written as

S̃C[σ, λ̃] = ∑
�∈A

[L̃ext(j2
0σ) − λ(�2)G(j2

0σ)] = ∑
�∈A

L̃C(j2
0σ, j

2
0 λ̃), (5.2.30)

where the last equality defines the augmented Lagrangian L̃C ∶ J2
0 ỸC Ð→ R for ỸC = Y ⊕

B ⊕ V. Therefore, we can consider an unconstrained second-order field theory in terms of

the fields ϕ̃, X̃, and λ̃, and the solutions of (5.2.28) will satisfy a discrete multisymplectic

form formula very similar to the one proved in [34]. The only difference is the fact that the

authors analyzed a discretization of the Camassa-Holm equation, and were able to consider

an even smaller subbundle of the second jet of the configuration bundle. As a result, it was

sufficient for them to consider a discretization based on squares ◻ rather than 6-tuples �.

In our case there will be six discrete 2-forms Ωl
L̃C

for l = 1, . . . ,6 instead of just four.

Remark. In both cases we showed that our discretization leads to integrators that are

multisymplectic on the augmented jets JkỸC . However, just like in the continuous setting,

it is an interesting problem whether there exists a discrete multisymplectic form formula in

terms of objects defined on JkỸ only.

Example: Trapezoidal rule. Consider the semi-discrete Lagrangian (4.2.8). We can

use the trapezoidal rule to define the discrete Lagrangian (4.1.11) as

L̃d(yj ,Xj , yj+1,Xj+1) = ∆t
2
L̃N(yj ,Xj ,

yj+1 − yj

∆t
,
Xj+1 −Xj

∆t
)

+ ∆t
2
L̃N(yj+1,Xj+1,

yj+1 − yj

∆t
,
Xj+1 −Xj

∆t
), (5.2.31)

where yj = (yj1, . . . , y
j
N) and Xj = (Xj

1 , . . . ,X
j
N). The constrained version (see Section 2.5.2

and [41]) of the Discrete Euler-Lagrange equations takes the form
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D2L̃d(qj−1, qj) +D1L̃d(qj , qj+1) =Dg(qj)Tλj ,

g(qj+1) = 0, (5.2.32)

where for brevity qj = (yj1,X
j
1 , . . . , y

j
N ,X

j
N), λj = (λj1, . . . , λ

j
N), and g is an adaptation

constraint, for instance (3.2.8). If qj−1, qj are known, then (5.2.32) can be used to compute

qj+1 and λj . It is easy to verify that the condition (4.2.58) is enough to ensure solvability of

(5.2.32), assuming the time step ∆t is sufficiently small, so there is no need to introduce slack

degrees of freedom as in (4.2.59). If the mass matrix (4.2.11) was constant and nonsingular,

then (5.2.32) would result in the SHAKE algorithm, or in the RATTLE algorithm if one

passes to the position-momentum formulation (see [23], [41]).

Using (4.2.2) and (4.2.5) we can write

L̃d(yj ,Xj , yj+1,Xj+1) =
N

∑
i=0
L̃(yji , y

j
i+1, y

j+1
i+1 , y

j+1
i ,Xj

i ,X
j
i+1,X

j+1
i+1 ,X

j+1
i ), (5.2.33)

where we defined the discrete Lagrangian L̃ ∶ J1Ỹ Ð→ R by the formula

L̃(yji , y
j
i+1, y

j+1
i+1 , y

j+1
i ,Xj

i ,X
j
i+1,X

j+1
i+1 ,X

j+1
i ) =

∆t
2 ∫

xi+1

xi

L̃(ϕ̄j(x), X̄j(x), ϕ̄jx(x), X̄j
x(x), ϕ̄t(x), X̄t(x))dx

+∆t
2 ∫

xi+1

xi

L̃(ϕ̄j+1(x), X̄j+1(x), ϕ̄j+1
x (x), X̄j+1

x (x), ϕ̄t(x), X̄t(x))dx

(5.2.34)

with

ϕ̄j(x) = yji ηi(x) + y
j
i+1ηi+1(x),

ϕ̄jx(x) =
yji+1 − y

j
i

∆x
,

ϕ̄t(x) =
yj+1
i − yji

∆t
ηi(x) +

yj+1
i+1 − y

j
i+1

∆t
ηi+1(x), (5.2.35)
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and similarly for X̄(x). Given the Lagrangian density L̃ as in (4.2.7), one can compute

the integrals in (5.2.34) explicitly. Suppose that the adaptation constraint g has a ‘local’

structure, for instance

gi(yj ,Xj) = G(yji , y
j
i+1, y

j+1
i+1 , y

j+1
i ,Xj

i ,X
j
i+1,X

j+1
i+1 ,X

j+1
i ), (5.2.36)

as in (5.1.9) or

gi(yj ,Xj) = G(y�l ,X�r), where �2 = (j, i), (5.2.37)

as in (5.1.10). It is straightforward to show that (5.2.21) or (5.2.28) are equivalent to

(5.2.32), that is, the variational integrator defined by (5.2.32) is also multisymplectic.

For reasons similar to the ones pointed out in Section 5.1, the 2-nd and 4-th order

Lobatto IIIA-IIIB methods that we used for our numerical computations are not multisym-

plectic.
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Chapter 6

Numerical experiments

We applied the methods discussed in the previous chapters to the Sine-Gordon equation.

This interesting model arises in many physical applications. For instance, it governs the

propagation of dislocations in crystals, the evolution of magnetic flux in a long Josephson-

junction transmission line, or the modulation of a weakly unstable baroclinic wave packet

in a two-layer fluid. It also has applications in the description of one-dimensional organic

conductors, one-dimensional ferromagnets, liquid crystals, or in particle physics as a model

for baryons (see [11], [54]).

6.1 The Sine-Gordon equation

The Sine-Gordon equation takes the form

∂2φ

∂t2
− ∂2φ

∂X2 + sinφ = 0, (6.1.1)

and describes the dynamics of the (1+1)-dimensional scalar field theory with the Lagrangian

density

L(φ,φX , φt) =
1
2
φ2
t −

1
2
φ2
X − (1 − cosφ). (6.1.2)

The Sine-Gordon equation has interesting soliton solutions. A single soliton traveling

at the speed v is given by

φS(X, t) = 4 arctan [ exp(X −X0 − vt√
1 − v2

)]. (6.1.3)
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Figure 6.1.1: The single-soliton solution of the Sine-Gordon equation.

It is depicted in Figure 6.1.1. The backscattering of two solitons, each traveling with the

velocity v, is described by the formula

φSS(X, t) = 4 arctan
⎡⎢⎢⎢⎢⎣

v sinh( X√
1−v2 )

cosh( vt√
1−v2 )

⎤⎥⎥⎥⎥⎦
. (6.1.4)

It is depicted in Figure 6.1.2. Note that if we restrict X ≥ 0, then this formula also gives

a single-soliton solution satisfying the boundary condition φ(0, t) = 0, that is, a soliton

bouncing from a rigid wall.

6.2 Generating consistent initial conditions

Suppose we specify the following initial conditions

φ(X,0) = a(X),

φt(X,0) = b(X), (6.2.1)

and assume they are consistent with the boundary conditions (4.0.2). In order to determine

appropriate consistent initial conditions for (4.1.15) and (4.2.62) we need to solve several

equations. First we solve for the yi’s and Xi’s. We have y0 = φL, yN+1 = φR, X0 = 0,

XN+1 =Xmax. The rest are determined by solving the system
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Figure 6.1.2: The two-soliton solution of the Sine-Gordon equation.



97

yi = a(Xi),

0 = gi(y1, . . . , yN ,X1, . . . ,XN), (6.2.2)

for i = 1, . . . ,N . This is a system of 2N nonlinear equations for 2N unknowns. We solve

it using Newton’s method. Note, however, that we do not a priori know good starting

points for Newton’s iterations. If our initial guesses are not close enough to the desired

solution, the iterations may converge to the wrong solution or may not converge at all. In

our computations we used the constraints (3.2.8). We found that a very simple variant of

a homotopy continuation method worked very well in our case. Note that for α = 0 the set

of constraints (3.2.8) generates a uniform mesh. In order to solve (6.2.2) for some α > 0,

we split [0, α] into d subintervals by picking αk = (k/d) ⋅ α for k = 1, . . . , d. We then solved

(6.2.2) with α1 using the uniformly spaced mesh points X(0)i = (i/(N + 1)) ⋅Xmax as our

initial guess, resulting in X(1)i and y(1)i . Then we solved (6.2.2) with α2 using X(1)i and y(1)i
as the initial guesses, resulting in X(2)i and y(2)i . Continuing in this fashion, we got X(d)i

and y(d)i as the numerical solution to (6.2.2) for the original value of α. Note that for more

complicated initial conditions and constraint functions, predictor-corrector methods should

be used—see [1] for more information. Another approach to solving (6.2.2) could be based

on relaxation methods (see [7], [28]).

Next, we solve for the initial values of the velocities ẏi and Ẋi. Since ϕ(x, t) = φ(X(x, t), t),

we have ϕt(x, t) = φX(X(x, t), t)Xt(x, t)+φt(X(x, t), t). We also require that the velocities

be consistent with the constraints. Hence the linear system

ẏi = a′(Xi)Ẋi + b(Xi), i = 1, . . . ,N

0 = ∂g
∂y

(y,X)ẏ + ∂g

∂X
(y,X)Ẋ. (6.2.3)

This is a system of 2N linear equations for the 2N unknowns ẏi and Ẋi, where y =

(y1, . . . , yN) and X = (X1, . . . ,XN). We can use those velocities to compute the initial

values of the conjugate momenta. For the control-theoretic approach we use pi = ∂L̃N/∂ẏi,

as in Section 4.1.3, and for the Lagrange multiplier approach we use (4.2.10). In addition,
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for the Lagrange multiplier approach we also have the initial values for the slack variables

ri = 0 and their conjugate momenta Bi = ∂L̃AN/∂ṙi = 0. It is also useful to use (4.2.57) to

compute the initial values of the Lagrange multipliers λi that can be used as initial guesses

in the first iteration of the Lobatto IIIA-IIIB algorithm. The initial guesses for the slack

Lagrange multipliers are trivially µi = 0.

6.3 Convergence

In order to test the convergence of our methods as the number of mesh points N is increased,

we considered a single soliton bouncing from two rigid walls at X = 0 and X = Xmax = 25.

We imposed the boundary conditions φL = 0 and φR = 2π, and as initial conditions we used

(6.1.3) with X0 = 12.5 and v = 0.9. It is possible to obtain the exact solution to this problem

by considering a multi-soliton solution to (6.1.1) on the whole real line. Such a solution

can be obtained using a Bäcklund transformation (see [11], [54]). However, the formulas

quickly become complicated and, technically, one would have to consider an infinite number

of solitons. Instead, we constructed a nearly exact solution by approximating the boundary

interactions with (6.1.4):

φexact(X, t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

φSS(X −Xmax, t − (4n + 1)T) + 2π if t ∈ [4nT, (4n + 2)T),

φSS(X, t − (4n + 3)T) if t ∈ [(4n + 2)T, (4n + 4)T),
(6.3.1)

where n is an integer number, and T satisfies φSS(Xmax/2, T ) = π (we numerically found

T ≈ 13.84). Given how fast (6.1.3) and (6.1.4) approach its asymptotic values, one may

check that (6.3.1) can be considered exact to machine precision.

We performed numerical integration with the constant time step ∆t = 0.01 up to the

time Tmax = 50. For the control-theoretic strategy we used the 1-stage and 2-stage Gauss

method (2-nd and 4-th order respectively), and the 2-stage and 3-stage Lobatto IIIA-IIIB

method (also 2-nd/4-th order). For the Lagrange multiplier strategy we used the 2-stage

and 3-stage Lobatto IIIA-IIIB method for constrained mechanical systems (2-nd/4-th or-

der). See Section 2.2.2, Section 2.5.2, and [23], [24], [26] for more information about the

mentioned symplectic Runge-Kutta methods. We used the constraints (3.2.8) based on the

generalized arclength density (3.2.6). We chose the scaling parameter to be α = 2.5, so that
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approximately half of the available mesh points were concentrated in the area of high gra-

dient. A few example solutions are presented in Figure 6.3.1-6.3.4. Note that the Lagrange

multiplier strategy was able to accurately capture the motion of the soliton with merely 17

mesh points (that is, N = 15). The trajectories of the mesh points for several simulations

are depicted in Figure 6.3.6 and Figure 6.3.7. An example solution computed on a uniform

mesh is depicted in Figure 6.3.5.

For the convergence test, we performed simulations for severalN in the range 15-127. For

comparison, we also computed solutions on a uniform mesh for N in the range 15-361. The

numerical solutions were compared against the solution (6.3.1). The L∞ errors are depicted

in Figure 6.3.8. The L∞ norms were evaluated over all nodes and over all time steps. Note

that in case of a uniform mesh the spacing between the nodes is ∆x =Xmax/(N+1), therefore

the errors are plotted versus (N + 1). The Lagrange multiplier strategy proved to be more

accurate than the control-theoretic strategy. As the number of mesh points is increased,

the uniform mesh solution becomes quadratically convergent, as expected, since we used

linear finite elements for spatial discretization. The control-theoretic strategy also shows

near quadratic convergence, whereas the Lagrange multiplier method seems to converge

slightly slower. While there are very few analytical results regarding the convergence of

r-adaptive methods, it has been observed that the rate of convergence depends on several

factors, including the chosen mesh density function. Our results are consistent with the

convergence rates reported in [2] and [67]. Both papers deal with the viscous Burgers’

equation, but consider different initial conditions. Computations with the arclength density

function converged only linearly in [2], but quadratically in [67].

Throughout all simulations the ratio κ = ∆Xmax/∆Xmin of the largest and smallest

spacing between the mesh points was on average κ ≈ 12, reaching κ ≈ 21 when the soliton

bounced off of the walls.

6.4 Energy conservation

As we pointed out in Section 2.2.3, the true power of variational and symplectic integrators

for mechanical systems lies in their excellent conservation of energy and other integrals of

motion, even when a big time step is used. In order to test the energy behavior of our

methods, we performed simulations of the Sine-Gordon equation over longer time intervals.
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Figure 6.3.1: The single-soliton solution obtained with the Lagrange multiplier strategy for
N = 15. Integration in time was performed using the 4-th order Lobatto IIIA-IIIB scheme
for constrained mechanical systems. The soliton moves to the right with the initial velocity
v = 0.9, bounces from the right wall at t = 13.84, and starts moving to the left wall with the
velocity v = −0.9, from which it bounces at t = 41.52.
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Figure 6.3.2: The single-soliton solution obtained with the Lagrange multiplier strategy for
N = 22. Integration in time was performed using the 4-th order Lobatto IIIA-IIIB scheme
for constrained mechanical systems.
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Figure 6.3.3: The single-soliton solution obtained with the control-theoretic strategy for
N = 22. Integration in time was performed using the 4-th order Gauss scheme. Integration
with the 4-th order Lobatto IIIA-IIIB yields a very similar level of accuracy.
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Figure 6.3.4: The single-soliton solution obtained with the control-theoretic strategy for
N = 31. Integration in time was performed using the 4-th order Gauss scheme. Integration
with the 4-th order Lobatto IIIA-IIIB yields a very similar level of accuracy.
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Figure 6.3.5: The single-soliton solution computed on a uniform mesh with N = 31. In-
tegration in time was performed using the 4-th order Gauss scheme. Integration with the
4-th order Lobatto IIIA-IIIB yields a very similar level of accuracy.
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Figure 6.3.6: The mesh point trajectories (with zoomed-in insets) for the Lagrange multi-
plier strategy for N = 22 (left) and N = 31 (right). Integration in time was performed using
the 4-th order Lobatto IIIA-IIIB scheme for constrained mechanical systems.
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Figure 6.3.7: The mesh point trajectories (with zoomed-in insets) for the control-theoretic
strategy for N = 22 (left) and N = 31 (right). Integration in time was performed using the
4-th order Gauss scheme. Integration with the 4-th order Lobatto IIIA-IIIB yields a very
similar result.
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Figure 6.3.8: Comparison of the convergence rates of the discussed methods. Integration in
time was performed using the 4-th order Lobatto IIIA-IIIB method for constrained systems
in the case of the Lagrange multiplier strategy, and the 4-th order Gauss scheme in the
case of both the control-theoretic strategy and the uniform mesh simulation. The 4-th
order Lobatto IIIA-IIIB scheme for the control-theoretic strategy and the uniform mesh
simulation yields a very similar level of accuracy. Also, using 2-nd order integrators gives
very similar error plots.
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We considered two solitons bouncing from each other and from two rigid walls at X = 0

and Xmax = 25. We imposed the boundary conditions φL = −2π and φR = 2π, and as initial

conditions we used φ(X,0) = φSS(X − 12.5,−5) with v = 0.9. We ran our computations

on a mesh consisting of 27 nodes (N = 25). Integration was performed with the time step

∆t = 0.05, which is rather large for this type of simulations. The scaling parameter in (3.2.8)

was set to α = 1.5, so that approximately half of the available mesh points were concentrated

in the areas of high gradient. An example solution is presented in Figure 6.4.1.

The exact energy of the two-soliton solution can be computed using (4.1.4). It is possible

to compute that integral explicitly to obtain E = 16/
√

1 − v2 ≈ 36.71. The energy associated

with the semi-discrete Lagrangian (4.2.8) can be expressed by the formula

EN = 1
2
q̇T M̃N(q) q̇ +RN(q), (6.4.1)

where RN was defined in (4.2.52), and for our Sine-Gordon system is given by

RN(q) =
N

∑
k=0

[1
2
( yk+1 − yk
Xk+1 −Xk

)
2
+ 1 − sin yk+1 − sin yk

yk+1 − yk
](Xk+1 −Xk), (6.4.2)

and MN is the mass matrix (4.2.11). The energy EN is an approximation to (4.1.4) if the

field φ(X, t) is sampled at the nodesX0,. . .,XN+1, and then piecewise linearly approximated.

In fact, for N = 25 and the initial conditions described above, we have the exact value

EN ≈ 35.58354. We used a time discretization of (6.4.1) to compute the energy of our

numerical solutions.

The energy plots for the Lagrange multiplier strategy are depicted in Figure 6.4.2. We

can see that the energy stays nearly constant in the presented time interval, showing only

mild oscillations, which are reduced as higher order of integration in time is used. The

energy plots for the control-theoretic strategy are depicted in Figure 6.4.3. In this case

the discrete energy is more erratic and not nearly as preserved. Moreover, the symplectic

Gauss and Lobatto methods show virtually the same energy behavior as the non-symplectic

Radau IIA method, which is known for its excellent stability properties when applied to

stiff differential equations (see [26]). It seems that we do not gain much by performing

symplectic integration in this case. It is consistent with our observations in Section 4.1.5,

and shows that the control-theoretic strategy does not take full advantage of the underlying

geometry.
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Figure 6.4.1: The two-soliton solution obtained with the control-theoretic and Lagrange
multiplier strategies for N = 25. Integration in time was performed using the 4-th order
Gauss quadrature for the control-theoretic approach, and the 4-th order Lobatto IIIA-
IIIB quadrature for constrained mechanical systems in the case of the Lagrange multiplier
approach. The solitons initially move towards each other with the velocities v = 0.9, then
bounce off of each other at t = 5 and start moving towards the walls, from which they
bounce at t = 18.79. The solitons bounce off of each other again at t = 32.57. This solution
is periodic in time with the period Tperiod = 27.57. The nearly exact solution was constructed
in a similar fashion as (6.3.1). As the simulation progresses, the Lagrange multiplier solution
gets ahead of the exact solution, whereas the control-theoretic solution lags behind.
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Figure 6.4.2: The discrete energy EN for the Lagrange multiplier strategy. Integration in
time was performed with the 2-nd (top) and 4-th (bottom) order Lobatto IIIA-IIIB method
for constrained mechanical systems. The spikes correspond to the times when the solitons
bounced off of each other or of the walls. Note that the numerical energy oscillates around
the exact value EN ≈ 35.58354.

As we did not use adaptive time-stepping, and did not implement any mesh smoothing

techniques (see Section 3.2.2), the quality of the mesh deteriorated with time in all the

simulations, eventually leading to mesh crossing, i.e., two mesh points collapsing or crossing

each other. The control-theoretic strategy, even though less accurate, retained good mesh

quality longer, with the break-down time Tbreak > 1000, as opposed to Tbreak ∼ 600 in the

case of the Lagrange multiplier approach (both using a rather large constant time step).

We discuss extensions to our approach for increased robustness in Chapter 8.
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Figure 6.4.3: The discrete energy EN for the control-theoretic strategy. Integration in time
was performed with the 4-th order Gauss (top), 4-th order Lobatto IIIA-IIIB (middle), and
non-symplectic 5-th order Radau IIA (bottom) methods.
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6.5 Computational cost

The main goal of this work is to design space-adaptive variational integrators. We fo-

cused our attention on the analysis of the geometric aspects of such integrators, and their

conservation and convergence properties. We were less concerned about the efficiency of

our computations, and in fact we made little effort to optimize our codes. However, for

completeness, in this section we present a preliminary analysis of the computational cost

of our algorithms. We caution the reader that we implemented our algorithms in Math-

ematica 8.0.4.0. Nevertheless, each of our implementations used a very similar level of

optimization, so we believe that our comparative cost analysis below is instructive.

We performed a cost analysis of the computations presented in Section 6.3. We inves-

tigated the average CPU time needed to perform one time step of the control-theoretic

and Lagrange multiplier strategies, and the uniform mesh simulations. For concreteness we

focused on the computations that used 4-th order integration in time. In the case of the

Lagrange multiplier strategy, the most computationally expensive operation at each time

step is solving the nonlinear system (2.5.11) corresponding to the augmented semi-discrete

Lagrangian (4.2.60). For the control-theoretic strategy, at each time step one needs to solve

the nonlinear system (4.1.18). Finally, in the case of the computations on a uniform mesh,

the most expensive step is solving the nonlinear system (2.4.17). The average CPU times

needed to perform those operations are depicted in Figure 6.5.1. We see that the computa-

tional time scales linearly with the number of mesh points N , as expected. The deviation

from linearity for larger N is likely caused by Mathematica’s memory management.

Even this simple analysis leads to interesting conclusions. The Lagrange multiplier

strategy introduces additional variables and additional internal stages. As a consequence,

the resulting nonlinear equations one needs to solve at each time step are much more com-

plicated than in the case of uniform mesh computations. One could expect that this would

make this approach too costly and inefficient. However, it turns out that the Lagrange

multiplier strategy outperforms both the control-theoretic strategy and uniform mesh com-

putations. The Lagrange multiplier strategy with N = 15 yields a similar level of accuracy

as computations on a uniform mesh with N = 180 (cf. Figure 6.3.8). However, one step of

the Lagrange multiplier strategy takes on average 0.5241s, whereas the uniform mesh sim-

ulation requires 1.1965s when the 4-th order Gauss method is used, and 1.6584s when the



111

15 22 31 44 63 90 127 180 255 361
10

−2

10
−1

10
0

10
1

10
2

N

C
P

U
 ti

m
e 

pe
r 

st
ep

 [s
]

 

 

Lagrange multiplier, 4th order Lobatto IIIA−IIIB
Control−theoretic, 4th order Gauss
Control−theoretic, 4th order Lobatto IIIA−IIIB
Uniform mesh, 4th order Gauss
Uniform mesh, 4th order Lobatto IIIA−IIIB

~N

~N2

Figure 6.5.1: The average CPU time (in seconds) required to perform one time step of the
computations.
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4-th order Lobatto IIIA-IIIB method is used. Similarly, the Lagrange multiplier strategy

with N = 31 yields a comparable level of accuracy as the control-theoretic strategy with

N = 90. However, one step of the Lagrange multiplier strategy takes 1.3447s, whereas one

step of the control-theoretic strategy requires 1.418s when the 4-th order Gauss method is

used, and 2.2247s when the 4-th order Lobatto IIIA-IIIB method is used. The Lagrange

multiplier strategy has the added benefit of nearly preserving energy. Let us also note that

the control-theoretic strategy itself outperforms uniform mesh computations. For instance,

for N = 22 the control theoretic strategy gives a more accurate solution than a uniform

mesh simulation for N = 90, but one step of the control-theoretic strategy takes 0.2542s

(4-th order Gauss) and 0.3417s (4-th order Lobatto IIIA-IIIB), whereas the uniform mesh

simulation requires 0.4975s and 0.6333s, respectively.

We used Newton’s method (by means of Mathematica’s FindRoot function) to solve

the aforementioned nonlinear systems of equations. The efficiency of the nonlinear solve

can be greatly improved by using the simplified Newton iterations appropriate for implicit

Runge-Kutta methods (see [26]) and by taking advantage of the banded structure of the

Jacobians for the systems in question.
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Chapter 7

Lagrangians linear in velocities

In Chapter 4 we proposed two general ways to construct r-adaptive variational integrators

for Lagrangian field theories, but we specialized our considerations to Lagrangian densities

of the form (4.2.6). As a result, the corresponding semi-discrete Lagrangian (4.2.8) was

quadratic in velocities and non-degenerate almost everywhere, and consequently we were

able to apply standard techniques of variational integration. There are, however, many inter-

esting degenerate field theories whose Lagrangian densities are linear in φt, for instance the

nonlinear Schrödinger, KdV, or Camassa-Holm equations. The semi-discrete Lagrangians

for these theories will be linear in velocities, and little is known about variational integration

of such systems (see [56], [65]). This is our main motivation for constructing higher-order

variational integrators for Lagrangians linear in velocities. However, this topic is also in-

teresting on its own, as there are many situations in which such Lagrangians arise—see

Chapter 1. Therefore, even though related to the previous parts of the thesis, this chapter

is independent and stands on its own.

Outline of the chapter

This chapter is organized as follows. In Section 7.1 we introduce a proper geometric setup

and discuss the properties of systems linear in velocities which are important for further

analysis of numerical integrators. In Section 7.2 we analyze the general properties of vari-

ational integrators and point out how the relevant theory differs from the non-degenerate

case. In Section 7.3 we introduce variational partitioned Runge-Kutta methods and discuss

their relation to numerical integration of differential-algebraic systems. In Section 7.4 we

present the results of our numerical experiments for Kepler’s problem, a system of two

interacting vortices, and the Lotka-Volterra model.
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7.1 Geometric setup

Let Q be the configuration manifold and TQ its tangent bundle. Throughout this chapter

we will assume that the dimension of the configuration manifold dimQ = n is even. We will

further assume Q is a vector space and by a slight abuse of notation we will denote by q

both an element of Q and the vector of its coordinates q = (q1, . . . , qn) in a local chart on

Q. It will be clear from the context which definition is invoked. Consider the Lagrangian

L ∶ TQÐ→ R given by

L(vq) = ⟨α, vq⟩ −H(q), (7.1.1)

where α ∶ Q Ð→ T ∗Q is a smooth one-form, H ∶ Q Ð→ R is the Hamiltonian, and vq ∈ TqQ.

Let (qµ, q̇µ) denote canonical coordinates on TQ, where µ = 1, . . . , n. In these coordinates

we can consider

L(q, q̇) = αµ(q) q̇µ −H(q), (7.1.2)

where summation over repeated Greek indices is implied.

7.1.1 Equations of motion

The Lagrangian (7.1.1) is degenerate, since the associated Legendre transform (see Sec-

tion 2.3)

FL ∶ TQ ∋ vq Ð→ αq ∈ T ∗Q (7.1.3)

is not invertible. The local representation of the Legendre transform is

FL(qµ, q̇µ) = (qµ, ∂L
∂q̇µ

) = (qµ, αµ(q)), (7.1.4)

that is,

pµ = αµ(q), (7.1.5)

where (qµ, pµ) denote canonical coordinates on T ∗Q. The dynamics is defined by the action
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functional

S[q(t)] = ∫
b

a
L(q(t), q̇(t))dt (7.1.6)

and Hamilton’s principle, which seeks the curves q(t) such that the functional S[q(t)] is

stationary under variations of q(t) with fixed endpoints, i.e., we seek q(t) such that

dS[q(t)] ⋅ δq(t) = d

dε
∣
ε=0
S[qε(t)] = 0 (7.1.7)

for all δq(t) with δq(a) = δq(b) = 0, where qε(t) is a smooth family of curves satisfying q0 = q

and d
dε
∣
ε=0qε = δq. The resulting Euler-Lagrange equations

Mµν(q) q̇ν = ∂µH(q) (7.1.8)

form a system of first-order ODEs, where we assume that the even-dimensional antisymmet-

ric matrix Mµν(q) = ∂µαν(q)−∂ναµ(q) is invertible for all q ∈ Q. Without loss of generality

we can further assume that the coordinate mapping pµ = αµ(q) is invertible and the inverse

is smooth: if the Jacobian ∂αµ/∂qν is singular, we can redefine αµ(q) → αµ(q) + bµ(qµ),

where bµ(qµ) are arbitrary functions; the Euler-Lagrange equations remain the same, and

with the right choice of the functions bµ(qµ) the redefined Jacobian can be made nonsingu-

lar. Let B =M−1. Then (7.1.8) can be equivalently written as the Poisson system

q̇µ = Bµν(q)∂νH(q). (7.1.9)

The Euler-Lagrange equations (7.1.8) can also be formulated as the implicit ‘Hamilto-

nian’ system (see Section 2.3)

pµ = αµ(q),

ṗµ = ∂µαν(q) q̇ν − ∂µH(q). (7.1.10)

Since the Lagrangian L is degenerate, (7.1.10) is an index 1 DAE system, rather than a

Hamiltonian ODE system: the Legendre transform is an algebraic equation and has to be
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differentiated once with respect to time in order to turn this system into (7.1.8). This

reflects the fact that the evolution of the considered degenerate system takes place on the

primary constraint N = FL(TQ) ⊊ T ∗Q. It is easy to see that the primary constraint

N is (locally) diffeomorphic to the configuration manifold Q, where the diffeomorphism

η ∶ Q ∋ q Ð→ αq ∈ N is locally, in the coordinates on T ∗Q, given by

η(q) = (q,α(q)), (7.1.11)

where by a slight abuse of notation α(q) = (α1(q), . . . , αn(q)). This shows that qµ can also

be used as local coordinates on N . Note that η is simply the restriction of α to N , i.e.,

η = α∣QÐ→N .

7.1.2 Symplectic forms

The spaces Q, TQ, T ∗Q and N can be equipped with several symplectic or pre-symplectic

forms. It is instructive to investigate the relationships between them in order to later

avoid confusion regarding the sense in which variational integrators for Lagrangians linear

in velocities are symplectic. On the configuration space Q we can define the two-form

Ω = −dα, (7.1.12)

which in local coordinates can be expressed as

Ω = −dαµ ∧ dqµ = −Mµν(q)dqµ ⊗ dqν . (7.1.13)

The two-form Ω is symplectic if it is nondegenerate, i.e., if the matrix Mµν is invertible for

all q.

The cotangent bundle T ∗Q is equipped with the canonical Cartan one-form Θ̃ ∶ T ∗QÐ→

T ∗T ∗Q, which is intrinsically defined by the formula (see Section 2.1)

Θ̃(ω) = (πT ∗Q)∗ω (7.1.14)

for any ω ∈ T ∗Q, where πT ∗Q ∶ T ∗Q Ð→ Q is the cotangent bundle projection. In canonical

coordinates we have
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Θ̃ = pµdqµ. (7.1.15)

We further have the canonical symplectic two-form

Ω̃ = −dΘ̃ = dqµ ∧ dpµ. (7.1.16)

The symplectic forms Ω and Ω̃ are related by

Ω = α∗Ω̃. (7.1.17)

This follows from the simple calculation

α∗Θ̃ ⋅ vq = Θ̃(αq) ⋅ Tα(vq) = αq ⋅ TπT ∗Q ○ Tα(vq) = αq ⋅ T (πT ∗Q ○ α)(vq) = αq ⋅ vq, (7.1.18)

where we used (7.1.14) and the fact that πT ∗Q ○ α = idQ. Hence α∗Θ̃ = α, and taking the

exterior derivative on both sides we obtain (7.1.17).

Using the Legendre transform (7.1.3) we can define the Lagrangian two-form Ω̃L on TQ

by Ω̃L = FL∗Ω̃ (see Section 2.3), which in canonical coordinates (qµ, q̇µ) is given by

Ω̃L = dqµ ∧ dαµ = −Mµν(q)dqµ ⊗ dqν . (7.1.19)

The Lagrangian form Ω̃L is only pre-symplectic, because it is degenerate. Noting that

FL = α ○ πTQ, where πTQ ∶ TQÐ→ Q is the tangent bundle projection, we can relate Ω and

Ω̃L through the formula

Ω̃L = (πTQ)∗α∗Ω̃ = (πTQ)∗Ω. (7.1.20)

The symplectic structure on N can be introduced in two ways: by pushing forward Ω

from Q, or pulling back Ω̃ from T ∗Q. Both ways are equivalent

Ω̃N = η∗Ω = i∗Ω̃, (7.1.21)

where i ∶ N Ð→ T ∗Q is the inclusion map. This follows from the calculation
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η∗Ω = (η−1)∗α∗Ω̃ = (α ○ η−1)∗Ω̃ = i∗Ω̃, (7.1.22)

where we used α = i ○ η. If we use qµ as coordinates on N , then the local representation of

Ω̃N will be given by (7.1.13).

7.1.3 Symplectic flows

Let ϕt ∶ QÐ→ Q denote the flow of (7.1.8) or (7.1.9). This flow is symplectic on Q, that is

ϕ∗t Ω = Ω. (7.1.23)

This fact can be proven by considering the Hamiltonian or Poisson properties of Equation

(7.1.8) or Equation (7.1.9) (see [23], [38]). It also follows directly from the action principle

(7.1.7) (see [56]).

Since the Lagrangian (7.1.1) is degenerate, the dynamics of the system is defined on Q

rather than TQ. However, we can obtain the associated flow on TQ through lifting ϕt by

its tangent map Tϕt ∶ TQÐ→ TQ. This flow preserves the Lagrangian two-form

(Tϕt)∗Ω̃L = Ω̃L. (7.1.24)

This can be seen from the calculation

(Tϕt)∗Ω̃L = (Tϕt)∗(πTQ)∗Ω = (πTQ ○ Tϕt)∗Ω = (ϕt ○ πTQ)∗Ω = (πTQ)∗ϕ∗t Ω = Ω̃L, (7.1.25)

where we used (7.1.20), (7.1.23), and the property πTQ ○ Tϕt = ϕt ○ πTQ.

The flow ϕt induces the flow ϕ̃t ∶ N Ð→ N in a natural way as

ϕ̃t = η ○ ϕt ○ η−1. (7.1.26)

This flow is symplectic on N , i.e.,

ϕ̃∗t Ω̃N = Ω̃N , (7.1.27)

which can be established through the simple calculation
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ϕ̃∗t Ω̃N = (η ○ ϕt ○ η−1)∗η∗Ω = (η−1)∗ϕ∗t η∗(η−1)∗Ω = η∗ϕ∗t Ω = Ω̃N , (7.1.28)

where we used (7.1.21) and (7.1.23). The flow ϕ̃t can be interpreted as the symplectic flow

for the ‘Hamiltonian’ DAE (7.1.10).

7.2 Veselov discretization and Discrete Mechanics

7.2.1 Discrete Mechanics and exact discrete Lagrangian

For a Veselov-type discretization we consider the discrete state space Q ×Q, as discussed

in Section 2.4.1. Suppose we have a regular discrete Lagrangian Ld ∶ Q ×Q Ð→ R. Then

the evolution of the discrete system is governed by the discrete Euler-Lagrange equations

(2.4.2).

To relate discrete and continuous mechanics it is necessary to introduce a timestep h ∈ R.

If the continuous Lagrangian L is non-degenerate, it is possible to define a particular choice

of discrete Lagrangian which gives an exact correspondence between discrete and continuous

systems (see Section 2.4.2 and [41]), the so-called exact discrete Lagrangian

LEd (q, q̄) = ∫
h

0
L(qE(t), q̇E(t))dt, (7.2.1)

where qE(t) is the solution to the continuous Euler-Lagrange equations associated with L

such that it satisfies the boundary conditions qE(0) = q and qE(h) = q̄. Note, however, that

in the case of a regular Lagrangian the associated Euler-Lagrange equations are second

order, therefore boundary value problems are solvable, at least for sufficiently small h and

q̄ sufficiently close to q. In the case of the Lagrangian (7.1.1) the associated Euler-Lagrange

equations (7.1.8) are first order in time, therefore we have the freedom to choose an initial

condition either at t = 0 or t = h, but not both. An exact discrete Lagrangian analogous

to (7.2.1) cannot thus be defined on whole Q ×Q. We will therefore assume the following

definition:

Definition 7.2.1. Let Γ(ϕh) = {(q,ϕh(q)) ∈ Q×Q} be the graph of ϕh. The exact discrete

Lagrangian LEd ∶ Γ(ϕh)Ð→ R for the Lagrangian (7.1.1) is
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LEd (q, q̄) = ∫
h

0
L(qE(t), q̇E(t))dt, (7.2.2)

where qE(t) is the solution to (7.1.8) that satisfies the initial condition qE(0) = q.

Note that in this definition we automatically have qE(h) = q̄.

7.2.2 Singular perturbation problem

As mentioned, the purpose of introducing an exact discrete Lagrangian is to establish an ex-

act correspondence between the continuous and discrete systems. For a regular Lagrangian

L and its exact discrete Lagrangian LEd , one can show that the exact discrete Hamiltonian

map F̃LE
d
is equal to ϕ̃h, where ϕ̃t is the symplectic flow for the Hamiltonian system associ-

ated with L (cf. Theorem 2.4.3). The problem is that the exact discrete Lagrangian (7.2.2)

is not defined on the whole space Q×Q, so the discrete Euler-Lagrange equations (2.4.2) do

not make sense, and it is not entirely clear how to define the associated discrete Lagrangian

map FLE
d
. One possible way to deal with this issue is to consider a singular perturbation

problem. Assume that Q is a Riemannian manifold equipped with the nondegenerate scalar

product ⟪., .⟫. Define the ε-regularized Lagrangian

Lε(vq) =
ε

2
⟪vq, vq⟫ + ⟨α, vq⟩ −H(q), (7.2.3)

or in coordinates

Lε(q, q̇) = ε
2
gµν q̇

µ q̇ν + αµ(q) q̇µ −H(q), (7.2.4)

where gµν denotes the local coordinates of the metric tensor. Without loss of generality

assume that in the chosen coordinates gµµ = 1 and gµν = 0 if µ /= ν. For ε > 0 this Lagrangian

is nondegenerate and the Legendre transform FLε ∶ TQÐ→ T ∗Q is given by

FL(qµ, q̇µ) = (qµ, gµν q̇ν + αµ(q)), (7.2.5)

that is,
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pµ = ε gµν q̇ν + αµ(q). (7.2.6)

The Euler-Lagrange equations

ε gµν q̈
ν =Mµν(q) q̇ν − ∂µH(q) (7.2.7)

are second order. The corresponding Hamiltonian equations (in implicit form; see Sec-

tion 2.3) are

pµ = ε gµν q̇ν + αµ(q),

ṗµ = ∂µαν(q) q̇ν − ∂µH(q). (7.2.8)

There is no reason to expect that the solutions of (7.2.7) or (7.2.8) unconditionally approx-

imate the solutions of (7.1.8) or (7.1.10), respectively. The equations (7.2.8) form a system

of first-order ordinary differential equations, and therefore it is possible to specify arbitrary

initial conditions q(0) = qinit and p(0) = pinit, whereas initial conditions for (7.1.10) have

to satisfy the algebraic constraint pinit = α(qinit). Under certain restrictive analytic as-

sumptions, for some singular perturbation problems it is possible to show that, in order to

satisfy the initial conditions, the solutions initially develop a steep boundary layer, but then

rapidly converge to the solution of the corresponding DAE system (see [26]). On the other

hand, for other singular perturbation problems, when the initial conditions do not satisfy

the algebraic constraint, it may happen that the solutions do not converge to the solution

of the DAE, but instead rapidly oscillate (see [37], [53]). We expect the latter behavior

for (7.2.8), as will be demonstrated by a simple example in Section 7.2.4. Since our main

goal here is to show how the notion of a discrete Legendre transform can be introduced

for the exact discrete Lagrangian (7.2.2), we will make two intuitive, although nontrivial,

assumptions. We refer the interested reader to [26] and [37] for techniques that can be used

to prove these statements rigorously.

Assumption 7.2.2. Let (q(t), p(t)) and (qε(t), pε(t)) be the unique smooth solutions of

(7.1.10) and (7.2.8) on the interval [0, T ] satisfying the initial conditions q(0) = qinit, qε(0) =
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qinit, and pε(0) = pinit, where pinit = α(qinit). Then qε(t) Ð→ q(t), pε(t) Ð→ p(t) and

q̇ε(t)Ð→ q̇(t), ṗε(t)Ð→ ṗ(t) uniformly on [0, T ] as εÐ→ 0+.

Assumption 7.2.3. Let q(t) be the unique smooth solution of (7.1.8) on the interval [0, T ]

satisfying the initial condition q(0) = qinit, and let qε(t) be the unique smooth solution of

(7.2.7) on the interval [0, T ] satisfying the boundary conditions qε(0) = qinit, qε(T ) = qfinal,

where qfinal = q(T ). Then qε(t)Ð→ q(t) and q̇ε(t)Ð→ q̇(t) uniformly on [0, T ] as εÐ→ 0+.

With these assumption one can easily see that

LEd (q, q̄) = lim
ε→0+

Lε,Ed (q, q̄), (7.2.9)

where Lε,Ed is the exact discrete Lagrangian for (7.2.3).

7.2.3 Exact discrete Legendre Transform

Since Lε is regular, Lε,Ed is properly defined on the whole space Q × Q (or at least in a

neighborhood of Γ(ϕh)) and the associated exact discrete Legendre transforms satisfy the

properties (see Section 2.4.3 and [41])

F+Lε,Ed (q, q̄) = FLε(qεE(h), q̇εE(h)) = (q̄, ε ˙̄qε + α(q̄)),

F−Lε,Ed (q, q̄) = FLε(qεE(0), q̇εE(0)) = (q, εq̇ε + α(q)), (7.2.10)

where qεE(t) is the solution to the regularized Euler-Lagrange equations (7.2.7) satisfying

the boundary conditions qεE(0) = q and qεE(h) = q̄, and we denoted q̇ε = q̇εE(0), ˙̄qε = q̇εE(h). In

the spirit of (7.2.9), we can assume the following definitions of the exact discrete Legendre

transforms F±LEd ∶ Γ(ϕh)Ð→ T ∗Q

F+LEd (q, q̄) = lim
ε→0+

F+Lε,Ed (q, q̄) = (q̄, α(q̄)),

F−LEd (q, q̄) = lim
ε→0+

F−Lε,Ed (q, q̄) = (q,α(q)), (7.2.11)

where εq̇ε Ð→ 0 and ε ˙̄qε Ð→ 0 by uniform convergence of q̇εE(t). Note that F±LEd = α ○ π±,

where π+ ∶ Γ(ϕh) ∋ (q, q̄) Ð→ q̄ ∈ Q and π− ∶ Γ(ϕh) ∋ (q, q̄) Ð→ q ∈ Q are projections (both



123

π± are diffeomorphisms). This is a close analogy to FL = α ○πTQ (see Section 7.1). We also

note the property

F+LEd (q, q̄) = FL(qE(h), q̇E(h)),

F−LEd (q, q̄) = FL(qE(0), q̇E(0)), (7.2.12)

where qE(t) is the solution of (7.1.8) satisfying the initial condition qE(0) = q. This further

indicates that our definition of the exact discrete Legendre transforms is sensible. Note that

F±LEd (Γ(ϕh)) = N . It is convenient to redefine F±LEd ∶ Γ(ϕh)Ð→ N , that is, F±LEd = η ○ π±,

so that both transforms are diffeomorphisms between Γ(ϕh) and N .

The discrete Euler-Lagrange equations for LEd can be obtained as the limit of the discrete

Euler-Lagrange equations for Lε,Ed , that is, one can substitute Lε,Ed in (2.4.5) and take the

limit εÐ→ 0+ on both sides to obtain

F+LEd (qk−1, qk) = F−LEd (qk, qk+1). (7.2.13)

This equation implicitly defines the exact discrete Lagrangian map FLE
d
∶ Γ(ϕh) ∋ (qk−1, qk)Ð→

(qk, qk+1) ∈ Γ(ϕh), which, given our definitions, necessarily takes the form FLE
d
(qk−1, qk) =

(qk, ϕh(qk)). Using the discrete Legendre transforms F±LEd , we can define the correspond-

ing exact discrete ‘Hamiltonian’ map F̃LE
d
∶ N Ð→ N as F̃LE

d
= F±LEd ○FLE

d
○ (F±LEd )

−1. The

simple calculation

F̃LE
d
= η ○ π± ○ FLE

d
○ (π±)−1 ○ η−1 = η ○ ϕh ○ η−1 = ϕ̃h (7.2.14)

shows that the discrete ‘Hamiltonian’ map associated with the exact discrete Lagrangian

LEd is equal to the ‘Hamiltonian’ flow ϕ̃h for (7.1.10), i.e., the evolution of the discrete

systems described by LEd coincides with the evolution of the continuous system described

by L at times tk = kh, k = 0,1,2, . . .

7.2.4 Example

Let us illustrate these ideas with a very simple example for which analytic solutions are

known. Let Q = R2 and let (x, y) denote local coordinates on Q. The tangent bundle is
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TQ = R2 ×R2, and the induced local coordinates are (x, y, ẋ, ẏ). Consider the Lagrangian

L(x, y, ẋ, ẏ) = 1
2
yẋ − 1

2
xẏ. (7.2.15)

The corresponding Euler-Lagrange equations (7.1.8) are simply

ẋ = 0,

ẏ = 0, (7.2.16)

so the flow ϕt ∶ Q Ð→ Q is the identity, i.e., ϕt(x, y) = (x, y). Let (x, y, px, py) denote

canonical coordinates on the cotangent bundle T ∗Q ≅ R2 ×R2. The Legendre transform is

FL(x, y, ẋ, ẏ) = (x, y, 1
2
y,−1

2
x). (7.2.17)

Let h be a timestep. Note Γ(ϕh) = {(x, y, x, y) ∣ (x, y) ∈ Q}. The exact discrete Lagrangian

(7.2.2) is therefore

LEd (x, y, x, y) = 0. (7.2.18)

Let us now consider the ε-regularized Lagrangian

Lε(x, y, ẋ, ẏ) = ε
2
ẋ2 + ε

2
ẏ2 + 1

2
yẋ − 1

2
xẏ. (7.2.19)

The corresponding Euler-Lagrange equations (7.2.7) take the form

εẍ + ẏ = 0,

εÿ + ẋ = 0. (7.2.20)

One can easily verify analytically that



125

xε(t) = 1
2
[(xi + xf) − (yf − yi) cot T

2ε
] + 1

2
[(yf − yi) + (xf − xi) cot T

2ε
] sin t

ε

− 1
2
[(xf − xi) − (yf − yi) cot T

2ε
] cos t

ε
,

yε(t) = 1
2
[(yi + yf) + (xf − xi) cot T

2ε
] − 1

2
[(xf − xi) − (yf − yi) cot T

2ε
] sin t

ε

− 1
2
[(yf − yi) + (xf − xi) cot T

2ε
] cos t

ε
, (7.2.21)

is the solution to (7.2.20) satisfying the boundary conditions (xε(0), yε(0)) = (xi, yi) and

(xε(T ), yε(T )) = (xf , yf). Note that if xi /= xf or yi /= yf , then as ε Ð→ 0+ this solution

is rapidly oscillatory and not convergent. However, if (xf , yf) = ϕT (xi, yi) = (xi, yi) (cf.

Assumption 7.2.3) then we have

xε(t) = xi,

yε(t) = yi, (7.2.22)

and this solution converges uniformly (in this simple example it is in fact equal) to the

solution of (7.2.16) with the same initial condition. We can also find an analytic expression

for the exact discrete Lagrangian (7.2.1) associated with (7.2.19) as

Lε,Ed (x, y, x̄, ȳ) = x̄y − xȳ
2

+ (x̄ − x)2 + (ȳ − y)2

4
cot T

2ε
. (7.2.23)

Restricting the domain to Γ(ϕh) we get Lε,Ed (x, y, x, y) = 0, and comparing to (7.2.18) we

verify that (7.2.9) indeed holds. The discrete Legendre transforms (2.4.4) associated with

Lε,Ed take the form

F+Lε,Ed (x, y, x̄, ȳ) = (x̄, ȳ, y
2
+ x̄ − x

2
cot T

2ε
,−x

2
+ ȳ − y

2
cot T

2ε
),

F−Lε,Ed (x, y, x̄, ȳ) = (x, y, ȳ
2
+ x̄ − x

2
cot T

2ε
,− x̄

2
+ ȳ − y

2
cot T

2ε
). (7.2.24)

Restricting the domain to Γ(ϕh) and taking the limit εÐ→ 0+ as in (7.2.11), we can define
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the exact discrete Legendre transforms associated with (7.2.18)

F+LEd (x, y, x, y) = (x, y, y
2
,−x

2
),

F−LEd (x, y, x, y) = (x, y, y
2
,−x

2
). (7.2.25)

Comparing with (7.2.17), we see that the property (7.2.12) is satisfied, which replicates the

analogous property for regular Lagrangians.

7.2.5 Variational error analysis

For a given continuous system described by the Lagrangian L, a variational integrator is

constructed by choosing a discrete Lagrangian Ld which approximates the exact discrete

Lagrangian LEd . We can define the order of accuracy of the discrete Lagrangian in a way

similar to that for discrete Lagrangians resulting from regular continuous Lagrangians (see

Section 2.4.2 and [41]).

Definition 7.2.4. A discrete Lagrangian Ld ∶ Q ×Q Ð→ R is of order r if there exists an

open subset U ⊂ Q with compact closure and constants C > 0 and h̄ > 0 such that

∣Ld(q(0), q(h)) −LEd (q(0), q(h))∣ ≤ Chr+1 (7.2.26)

for all solutions q(t) of the Euler-Lagrange equations (7.1.8) with initial conditions q(0) ∈ U

and for all h ≤ h̄.

We will always assume that the discrete Lagrangian Ld is non-degenerate, so that the

discrete Euler-Lagrange equations (2.4.2) can be solved for qk+1. This defines the discrete

Lagrangian map FLd
∶ Q × Q Ð→ Q × Q and the associated discrete Hamiltonian map

F̃Ld
∶ T ∗Q Ð→ T ∗Q, as explained in Section 2.4.1. Of particular interest is the rate of

convergence of F̃Ld
to ϕ̃h. One usually considers a local error (error made after one step)

and a global error (error made after many steps). We will assume the following definitions,

which are appropriate for the differential-algebraic systems (see Section 2.2.1 and [23], [24],

[26], [41]).

Definition 7.2.5. A discrete Hamiltonian map F̃Ld
is of order r if there exists an open set

U ⊂ N and constants C > 0 and h̄ > 0 such that
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∥F̃Ld
(q, p) − ϕ̃h(q, p)∥ ≤ Chr+1 (7.2.27)

for all (q, p) ∈ U and h ≤ h̄.

Definition 7.2.6. A discrete Hamiltonian map F̃Ld
is convergent of order r if there exists

an open set U ⊂ N and constants C > 0, h̄ > 0, and T̄ > 0 such that

∥(F̃Ld
)K(q, p) − ϕ̃T (q, p)∥ ≤ Chr+1, (7.2.28)

where h = T /K, for all (q, p) ∈ U , h ≤ h̄, and T ≤ T̄ .

If the Lagrangian L is regular, then one can show that a discrete Lagrangian Ld is of order

r if and only if the corresponding Hamiltonian map F̃Ld
is of order r (see Section 2.4.2

and [41]). Also, the associated Hamiltonian equations are a set of ordinary differential

equations, and under some smoothness assumptions one can show that if F̃Ld
is of order r,

then it is also convergent of order r (see Section 2.2.1 and [24]). However, in the case of

the Lagrangian (7.1.1) it is not true in general—both the order of the discrete Lagrangian

and the local order of the discrete Hamiltonian map may be different than the actual global

order of convergence (see [26], [22]), as will be demonstrated in Section 7.3.

Example: Midpoint Rule. In a simple example we will demonstrate that the variational

order of accuracy of a discretization method is unaffected by a degeneracy of a Lagrangian L.

In order to calculate the order of a discrete Lagrangian Ld, we can expand Ld(q(0), q(h)) in

a Taylor series in h and compare it to the analogous expansion for LEd . If the two expansions

agree up to r terms, then Ld is of order r. Expanding q(t) in a Taylor series about t = 0

and substituting it in (7.2.2), we get the expression

LEd (q(0), q(h)) = hL+
h2

2
(∂L
∂q
q̇+∂L
∂q̇
q̈)+h

3

6
(∂L
∂q
q̈+∂L
∂q̇

...
q+q̇T ∂

2L

∂q2 q̇+2q̇T ∂
2L

∂q∂q̇
q̈+q̈T ∂

2L

∂q̇2 q̈)+o(h
3),

(7.2.29)

where we denoted q = q(0), q̇ = q̇(0), etc., and the Lagrangian L and its derivatives are

computed at (q, q̇). For the Lagrangian (7.1.1) the values of q̇, q̈, ...q are determined by

differentiating (7.1.8) sufficiently many times and substituting the initial condition q(0).

Note that in the case of regular Lagrangians the value of q̇ is determined by the boundary
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conditions q(0), q(h), and the higher-order derivatives by differentiating the corresponding

Euler-Lagrange equations, but apart from that the expression (7.2.29) remains qualitatively

unaffected.

The midpoint rule is an integrator obtained by defining the discrete Lagrangian

Ld(q, q̄) = hL(
q + q̄

2
,
q̄ − q
h

). (7.2.30)

Calculating the expansion in h gives

Ld(q(0), q(h)) = hL +
h2

2
(∂L
∂q
q̇ + ∂L

∂q̇
q̈)

+ h3(1
4
∂L

∂q
q̈ + 1

6
∂L

∂q̇

...
q + 1

8
q̇T
∂2L

∂q2 q̇ +
1
4
q̇T

∂2L

∂q∂q̇
q̈ + 1

8
q̈T
∂2L

∂q̇2 q̈) + o(h
3).

(7.2.31)

Comparing this to (7.2.29) shows that the discrete Lagrangian defined by the midpoint rule

is second order regardless of the degeneracy of L. However, as mentioned before, if L is

degenerate we cannot conclude about the global order of convergence of the corresponding

discrete Hamiltonian map. The midpoint rule can be formulated as a Runge-Kutta method,

namely the 1-stage Gauss method (see Section 2.2.2). We discuss Gauss and other Runge-

Kutta methods and their convergence properties in more detail in Section 7.3. Note that

low-order variational integrators for Lagrangians (7.1.1) based on the midpoint rule have

been studied in [56] and [65] in the context of the dynamics of point vortices.

7.3 Variational partitioned Runge-Kutta methods

7.3.1 VPRK methods as PRK methods for the ‘Hamiltonian’ DAE

To construct higher-order variational integrators one may consider a class of partitioned

Runge-Kutta (PRK) methods. Variational partitioned Runge-Kutta (VPRK) methods for

regular Lagrangians are described in [23] and [41] (see also Section 2.4.3). In this section

we show how VPRK methods can be applied to systems described by Lagrangians such

as (7.1.1). As in the case of regular Lagrangians, we will construct an s-stage variational

partitioned Runge-Kutta integrator for the Lagrangian (7.1.1) by considering the discrete



129

Lagrangian

Ld(q, q̄) = h
s

∑
i=1
biL(Qi, Q̇i), (7.3.1)

where the internal stages Qi, Q̇i, i = 1, . . . , s, satisfy the relation

Qi = q + h
s

∑
j=1

aijQ̇j , (7.3.2)

and are chosen so that the right-hand side of (7.3.1) is extremized under the constraint

q̄ = q + h
s

∑
i=1
biQ̇i. (7.3.3)

A variational integrator is then obtained by forming the corresponding discrete Euler-

Lagrange equations (2.4.2).

Theorem 7.3.1. The s-stage variational partitioned Runge-Kutta method based on the

discrete Lagrangian (7.3.1) with the coefficients aij and bi is equivalent to the following

partitioned Runge-Kutta method applied to the ‘Hamiltonian’ DAE (7.1.10):

P i = α(Qi), i = 1, . . . , s, (7.3.4a)

Ṗ i = [Dα(Qi)]T Q̇i −DH(Qi), i = 1, . . . , s, (7.3.4b)

Qi = q + h
s

∑
j=1

aijQ̇j , i = 1, . . . , s, (7.3.4c)

P i = p + h
s

∑
j=1

āijṖ
j , i = 1, . . . , s, (7.3.4d)

q̄ = q + h
s

∑
j=1

bjQ̇j , (7.3.4e)

p̄ = p + h
s

∑
j=1

bjṖ
j , (7.3.4f)

where the coefficients satisfy the condition

biāij + bjaji = bibj , ∀i, j = 1, . . . , s, (7.3.5)

and (q, p) denote the current values of position and momentum, (q̄, p̄) denote the respective
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values at the next time step, Dα = (∂αµ/∂qν)µ,ν=1,...,n, DH = (∂H/∂qµ)µ=1,...,n, and Qi, Q̇i,

P i, Ṗ i are the internal stages, with Qi = (Qµi )µ=1,...,n, and similarly for the others.

Proof. See Theorem VI.6.4 in [23] or Theorem 2.6.1 in [41]. The proof is essentially iden-

tical. The only qualitative difference is the fact that in our case the Lagrangian (7.1.1)

is degenerate, so the corresponding Hamiltonian system is in fact the index 1 differential-

algebraic system (7.1.10) rather than a typical system of ordinary differential equations.

See also Section 2.4.3.

Existence and uniqueness of the numerical solution. Given q and p, one can use

Equations (7.3.4) to compute the new position q̄ and momentum p̄. First, one needs to solve

(7.3.4a)-(7.3.4d) for the internal stages Qi, Q̇i, P i, and Ṗ i. This is a system of 4sn equations

for 4sn variables, but one has to make sure these equations are independent, so that a unique

solution exists. One may be tempted to calculate the Jacobian of this system for h = 0, and

then use the Implicit Function Theorem. This approach, however, has a certain difficulty.

Even if we start with consistent initial values (q0, p0), the numerical solution (qk, pk) for

k > 0 will only approximately satisfy the algebraic constraint, so Qi = q and P i = p cannot

be assumed to be the solution of (7.3.4a)-(7.3.4d) for h = 0, and consequently, the Implicit

Function Theorem will not yield a useful result. Let us therefore regard q and p as h-

dependent, as they result from the previous iterations of the method with the timestep h.

If the method is convergent, it is reasonable to expect that p −α(q) is small and converges

to zero as h is refined. The following approach was inspired by Theorem 4.1 in [22].

Theorem 7.3.2. Let H and α be smooth in an h-independent neighborhood U of q and let

the matrix

W (ξ1, . . . , ξs) = (Ā⊗ In){DαT } − (A⊗ In){Dα} (7.3.6)

be invertible with the inverse bounded in U s, i.e., there exists C > 0 such that

∥W −1(ξ1, . . . , ξs)∥ ≤ C, ∀(ξ1, . . . , ξs) ∈ U s, (7.3.7)
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where A = (aij)i,j=1,...,s, Ā = (āij)i,j=1,...,s, In is the n×n identity matrix, and {Dα} denotes

the block diagonal matrix

{Dα}(ξ1, . . . , ξs) =
s

⊕
i=1
Dα(ξi) = blockdiag (Dα(ξ1), . . . ,Dα(ξs)). (7.3.8)

Suppose also that (q, p) satisfy

p − α(q) = O(h). (7.3.9)

Then there exists h̄ > 0 such that the nonlinear system (7.3.4a)-(7.3.4d) has a solution for

h ≤ h̄. The solution is locally unique and satisfies

Qi − q = O(h), P i − p = O(h), Q̇i = O(1), Ṗ i = O(1). (7.3.10)

Proof. Substitute (7.3.4c) and (7.3.4d) in (7.3.4a) and (7.3.4b) to obtain

0 = α(Qi) − p − h
s

∑
j=1

āijṖ
j ,

Ṗ i =DαT (Qi)Q̇i −DH(Qi), (7.3.11)

for i = 1, . . . , s, where for notational convenience we left the Qi’s as arguments of α, DαT

and DH, but we keep in mind they are defined by (7.3.4c), so that (7.3.11) is a nonlinear

system for Q̇i and Ṗ i. Let us consider the homotopy

0 = α(Qi) − p − h
s

∑
j=1

āijṖ
j − (τ − 1)(p − α(q)),

Ṗ i =DαT (Qi)Q̇i −DH(Qi) − (τ − 1)DH(q), (7.3.12)

for i = 1, . . . , s. It is easy to see that for τ = 0 the system (7.3.12) has the solution Q̇i = 0

and Ṗ i = 0, and for τ = 1 it is equivalent to (7.3.11). Let us treat Q̇i and Ṗ i as functions of

τ , and differentiate (7.3.12) with respect to this parameter. The resulting ODE system can

be written as
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{Dα}(A⊗ In)
dQ̇

dτ
− Ā⊗ In

dṖ

dτ
= 1
h
1s ⊗ (p − α(q)), (7.3.13a)

dṖ

dτ
= ({DαT } + h{B}(A⊗ In))

dQ̇

dτ
− 1s ⊗DH(q), (7.3.13b)

where for compactness we introduced the following notations: Q̇ = (Q̇1, . . . , Q̇s)T , similarly

for Ṗ ; 1s = (1, . . . ,1)T is the s-dimensional vector of ones; {Dα} = {Dα}(Q1, . . . ,Qs), and

similarly, {B} denotes the block diagonal matrix

{B} = blockdiag (B(Q1, Q̇1), . . . ,B(Qs, Q̇s)) (7.3.14)

with B(Qi, Q̇i) = D2αβ(Qi)Q̇βi −D
2H(Qi), where D2 denotes the Hessian matrix of the

respective function, and summation over β is implied. The system (7.3.13) is further sim-

plified if we substitute (7.3.13b) in (7.3.13a). This way we obtain an ODE system for the

variables Q̇ of the form

[(Ā⊗ In){DαT } − {Dα}(A⊗ In) + h(Ā⊗ In){B}(A⊗ In)]
dQ̇

dτ
=

(Ā1s)⊗DH(q) − 1
h
1s ⊗ (p − α(q)). (7.3.15)

Since α is smooth, we have

[{Dα}(A⊗ In)]
ij
= aijDα(Qi) = aijDα(Qj) +O(δ) = [(A⊗ In){Dα}]

ij
+O(δ), (7.3.16)

where ∥Qi−Qj∥ ≤ δ and δ is assumed small, but independent of h. Moreover, since α and H

are smooth, the term {B}, as a function of Q̇, is bounded in a neighborhood of 0. Therefore,

we can write (7.3.15) as

[W (Q1, . . . ,Qs) +O(δ) +O(h)]dQ̇
dτ

= (Ā1s)⊗DH(q) − 1
h
1s ⊗ (p − α(q)). (7.3.17)

By (7.3.7), for sufficiently small h and δ, the matrix W (Q1, . . . ,Qs) + O(δ) + O(h) has a
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bounded inverse, provided that Q1, . . . ,Qs remain in U . Therefore, the ODE (7.3.17) with

the initial condition Q̇(0) = 0 has a unique solution Q̇(τ) on a non-empty interval [0, τ̄),

which can be extended until any of the corresponding Qi(τ) leaves U . Let us argue that

for a sufficiently small h we have τ̄ > 1. Given (7.3.7) and (7.3.9), the ODE (7.3.17) implies

that

dQ̇

dτ
= O(1). (7.3.18)

Therefore, we have

Q̇(τ) = ∫
τ

0

dQ̇

dζ
dζ = O(τ) (7.3.19)

and further

Qi(τ) = q +O(τh) (7.3.20)

for τ < τ̄ . This implies that all Qi(τ) remain in U for τ ≤ 1 if h is sufficiently small.

Consequently, the ODE (7.3.15) has a solution on the interval [0,1]. Then Q̇i(1) and

Qi(1) satisfy the estimates (7.3.10), and are a solution to the nonlinear system (7.3.4a)-

(7.3.4d). The corresponding Ṗ i and P i can be computed using (7.3.4b) and (7.3.4d), and

the remaining estimates (7.3.10) can be proved using the fact that α and H are smooth.

This completes the proof of the existence of a numerical solution to (7.3.4a)-(7.3.4d).

In order to prove local uniqueness, let us substitute the second equation of (7.3.11) in

the first one to obtain a nonlinear system for Q̇i, namely

0 = α(Qi) − p − h
s

∑
j=1

āij(DαT (Qj)Q̇j −DH(Qj)), (7.3.21)

for i = 1, . . . , s, where we again left the Qi’s for notational convenience. Suppose there exists

another solution ˙̄Qi that satisfies the estimates (7.3.10), and denote ∆Q̇i = ˙̄Qi − Q̇i. Based

on the assumptions, we have ∆Q̇i = O(1), i.e., it is at least bounded as h Ð→ 0. We will

show that for sufficiently small h we in fact have ∆Q̇i = 0. Since ˙̄Qi satisfy (7.3.21), we have
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0 = α(Q̄i) − p − h
s

∑
j=1

āij(DαT (Q̄j) ˙̄Qj −DH(Q̄j)) (7.3.22)

for i = 1, . . . , s. Subtract (7.3.21) from (7.3.22), and linearize around Q̇i. Based on the fact

that ∆Q̇i = O(1), and using the notation introduced before, we get

0 = h[{Dα}(A⊗ In) − (Ā⊗ In){DαT }]∆Q̇ +O(h2∥∆Q̇∥). (7.3.23)

By a similar argument as before, for sufficiently small h the matrix [{Dα}(A⊗ In) − (Ā⊗

In){DαT }] has a bounded inverse, therefore (7.3.23) implies ∆Q̇ = O(h∥∆Q̇∥), that is,

∥∆Q̇∥ ≤ C̃h∥∆Q̇∥ ⇐⇒ (1 − C̃h)∥∆Q̇∥ ≤ 0 (7.3.24)

for some constant C̃ > 0. Note that for h < 1/C̃ we have (1 − C̃h) > 0, and therefore

∥∆Q̇∥ = 0, which completes the proof of the local uniqueness of a numerical solution to

(7.3.4a)-(7.3.4d).

.

Remarks. The condition (7.3.7) may be tedious to verify, especially when the used Runge-

Kutta method has many stages. However, this condition is significantly simplified in the

following special cases.

1. For a non-partitioned Runge-Kutta method we have A = Ā, and the condition (7.3.7)

is satisfied if A is invertible, and the mass matrix M(q) =DαT (q)−Dα(q), as defined

in Section 7.1.1, is invertible in U and the inverse is bounded.

2. If Dα is antisymmetric, then the condition (7.3.7) is satisfied if (A + Ā) is invertible,

and the matrix Dα(q) is invertible in U and the inverse is bounded.

7.3.2 Linear αµ(q)

An interesting special case is obtained if in some local chart on Q we have αµ(q) = −1
2Λµνqν

for some constant matrix Λ. Without loss of generality assume that Λ is invertible and
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antisymmetric. The Lagrangian (7.1.2) then takes the form

L(q, q̇) = −1
2

Λµν q̇µqν −H(q), (7.3.25)

the Euler-Lagrange equations (7.1.8) become

Λq̇ =DH(q), (7.3.26)

and the ‘Hamiltonian’ DAE system (7.1.10) is

p = −1
2

Λq,

ṗ = 1
2

Λq̇ −DH(q). (7.3.27)

Let us consider a special case of the method (7.3.4) with aij = āij , i.e., a non-partitioned

Runge-Kutta method. Applying it to (7.3.27) we get

P i = −1
2

ΛQi, i = 1, . . . , s, (7.3.28a)

Ṗ i = 1
2

ΛQ̇i −DH(Qi), i = 1, . . . , s, (7.3.28b)

Qi = q + h
s

∑
j=1

aijQ̇j , i = 1, . . . , s, (7.3.28c)

P i = p + h
s

∑
j=1

aijṖ
j , i = 1, . . . , s, (7.3.28d)

q̄ = q + h
s

∑
j=1

bjQ̇j , (7.3.28e)

p̄ = p + h
s

∑
j=1

bjṖ
j . (7.3.28f)

Since Λ is antisymmetric and invertible, then by Theorem 7.3.2 the scheme (7.3.28) yields

a unique numerical solution to (7.3.27) if the Runge-Kutta matrix A = (aij) is invertible.

Theorem 7.3.3. Suppose A = (aij) is invertible and p = −1
2Λq. Then the method (7.3.28)

is equivalent to the same Runge-Kutta method applied to (7.3.26).

Proof. Substitute (7.3.28c) and (7.3.28d) in (7.3.28a), and use the fact p = −1
2Λq to obtain
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s

∑
j=1

aij(Ṗ j +
1
2

ΛQ̇j) = 0, i = 1, . . . , s. (7.3.29)

Since A is invertible, this implies

Ṗ i = −1
2

ΛQ̇i, i = 1, . . . , s. (7.3.30)

Substituting this in (7.3.28b) yields

ΛQ̇i =DH(Qi), i = 1, . . . , s. (7.3.31)

Together with (7.3.28c) and (7.3.28e), this gives a Runge-Kutta method for (7.3.26). More-

over, substituting (7.3.30) and p = −1
2Λq in (7.3.28f), and using (7.3.28e), we show

p̄ = −1
2

Λq + h
s

∑
j=1

bj( −
1
2

ΛQ̇j) = −
1
2

Λq̄, (7.3.32)

that is, (q̄, p̄) satisfy the algebraic constraint.

Corollary 7.3.4. The numerical flow on T ∗Q defined by (7.3.28) leaves the primary con-

straint N invariant, i.e., if (q, p) ∈ N , then (q̄, p̄) ∈ N .

If the coefficients of the method (7.3.28) satisfy the condition (7.3.5), then (7.3.28) is a

variational integrator and the associated discrete Hamiltonian map F̃Ld
is symplectic on

T ∗Q, as explained in Section 2.4.1. Given Corollary 7.3.4, we further have:

Corollary 7.3.5. If the coefficients aij and bi in (7.3.28) satisfy the condition (7.3.5),

then the discrete Hamiltonian map F̃Ld
associated with (7.3.1) is symplectic on the primary

constraint N , that is, (F̃Ld
∣
N
)∗Ω̃N = Ω̃N .

Convergence. Various Runge-Kutta methods and their classical orders of convergence,

that is, orders of convergence when applied to (non-stiff) ordinary differential equations, are

discussed in many textbooks on numerical analysis, for instance [24] and [26]. When applied

to differential-algebraic equations, the order of convergence of a Runge-Kutta method may

be reduced (see [6], [26], [53]). However, in the case of (7.3.27) Theorem 7.3.3 implies
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that the classical order of convergence of non-partitioned Runge-Kutta methods (7.3.28) is

retained.

Theorem 7.3.6. A Runge-Kutta method with the coefficients aij and bi applied to the DAE

system (7.3.27) retains its classical order of convergence.

Proof. Let r be the classical order of the considered Runge-Kutta method, (q, p) ∈ N an ini-

tial condition, (qE(t), pE(t)) the exact solution to (7.3.27) such that (qE(0), pE(0)) = (q, p),

and (qk, pk) the numerical solution obtained by applying the method (7.3.28) iteratively k

times with (q0, p0) = (q, p). Theorem 7.3.3 states that the method (7.3.28) is equivalent

to applying the same Runge-Kutta method to the ODE system (7.3.26). Hence, we obtain

convergence of order r in the q variable, that is, for a fixed time T > 0 and an integer K

such that h = T /K, we have the estimate

∥qK − q(T )∥ ≤ Chr+1 (7.3.33)

for some constant C > 0 (cf. Definition 7.2.6). By Corollary 7.3.4 we know that pK = −1
2ΛqK ,

so we have the estimate

∥pK − p(T )∥ ≤ 1
2
∥Λ∥∥qK − q(T )∥ ≤ 1

2
∥Λ∥Chr+1, (7.3.34)

which completes the proof, since ∥Λ∥ < +∞.

Of particular interest to us are Runge-Kutta methods that satisfy the condition (7.3.5), for

instance symplectic diagonally-implicit Runge-Kutta methods (DIRK) or Gauss collocation

methods (see Section 2.2.2 and [23]). The s-stage Gauss method is of classical order 2s (cf.

Theorem 2.2.5), therefore we have:

Corollary 7.3.7. The s-stage Gauss collocation method applied to the DAE system (7.3.27)

is convergent of order 2s.

As mentioned in Section 7.2.5, the midpoint rule is a 1-stage Gauss method, therefore it

retains its classical second order of convergence.

Backward error analysis. The system (7.3.26) can be rewritten as the Poisson system
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q̇ = Λ−1DH(q) (7.3.35)

with the structure matrix Λ−1 (see [38], [23]). The flow ϕt for this equation is a Poisson

map, that is, it satisfies the property

Dϕt(q)Λ−1 [Dϕt(q)]T = Λ−1, (7.3.36)

which is in fact equivalent to the symplecticity property (7.1.23) or (7.1.27) written in local

coordinates on Q or N , respectively. Let Fh ∶ QÐ→ Q represent the numerical flow defined

by some numerical algorithm applied to (7.3.35). We say this flow is a Poisson integrator if

DFh(q)Λ−1 [DFh(q)]T = Λ−1. (7.3.37)

The left-hand side of (7.3.36) can be regarded as a quadratic invariant of (7.3.35). By

Theorem 7.3.3 the method (7.3.28) is equivalent to applying the same Runge-Kutta method

to (7.3.35). If in addition its coefficients satisfy the condition (7.3.5), then it can be shown

that the method preserves quadratic invariants (see Theorem IV.2.2 in [23]). Therefore, we

have:

Corollary 7.3.8. If A = (aij) is invertible, the coefficients aij and bi satisfy the condition

(7.3.5), and p = −1
2Λq, then the method (7.3.28) is a Poisson integrator for (7.3.35).

As discussed in Section 2.2.3, symplectic numerical schemes nearly conserve the Hamiltonian

over exponentially long time intervals, because their modified differential equations are also

Hamiltonian. A similar result holds for Poisson integrators for Poisson systems: a Poisson

integrator defines the exact flow for a nearby Poisson system, whose structure matrix is the

same and whose Hamiltonian has the asymptotic expansion (2.2.12) (see Theorem IX.3.6

in [23]). Therefore, we expect the non-partitioned Runge-Kutta schemes (7.3.28) satisfying

the condition (7.3.5) to demonstrate good preservation of the original Hamiltonian H. See

Section 7.4 for numerical examples.

Partitioned Runge-Kutta methods do not seem to have special properties when applied

to systems with linear αµ(q), therefore we describe them in the general case in Section 7.3.3.
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7.3.3 Nonlinear αµ(q)

When the coordinates αµ(q) are nonlinear functions of q, then the Runge-Kutta methods

discussed in Section 7.3.2 lose some of their properties. A theorem similar to Theorem 7.3.3

cannot be proved, most of the Runge-Kutta methods (whether non-partitioned or parti-

tioned) do not preserve the algebraic constraint p = α(q), i.e., the numerical solution does

not stay on the primary constraint N , and therefore their order of convergence is reduced,

unless they are stiffly accurate.

7.3.3.1 Runge-Kutta methods

Let us again consider non-partitioned methods with aij = āij . Convergence results for some

classical Runge-Kutta schemes of interest can be obtained by transforming (7.1.10) into a

semi-explicit index 2 DAE system. Let us briefly review this approach. More details can

be found in [22] and [26].

The system (7.1.10) can be written as the quasi-linear DAE

C(y)ẏ = f(y), (7.3.38)

where y = (q, p) and

C(y) =
⎛
⎜
⎝

[Dα(q)]T −In

0 0

⎞
⎟
⎠
, f(y) =

⎛
⎜
⎝

DH(q)

p − α(q)

⎞
⎟
⎠
, (7.3.39)

where In denotes the n×n identity matrix. Let us introduce a slack variable z and rewrite

(7.3.38) as the index 2 DAE system

ẏ = z, (7.3.40a)

0 = C(y)z − f(y). (7.3.40b)

This is an index 2 system, because we have 4n dependent variables, but only 2n differential

equations (7.3.40a), and some components of the algebraic equations (7.3.40b) have to be

differentiated twice with respect to time in order to derive the missing differential equations

for z. Note that C(y) is a singular matrix of constant rank n, therefore it can be decomposed
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(using Gauss elimination or the singular value decomposition) as

C(y) = S(y)
⎛
⎜
⎝

In 0

0 0

⎞
⎟
⎠
T (y) (7.3.41)

for some non-singular matrices S(y) and T (y). Since α(q) is assumed to be smooth, one

can choose S and T so that they are also smooth (at least in a neighborhood of y). Pre-

multiplying both sides of (7.3.40b) by S−1(y) turns the DAE (7.3.40) into

ẏ1 = z1, (7.3.42a)

ẏ2 = z2, (7.3.42b)

0 = T11(y) z1 + T12(y) z2 − f̃1(y), (7.3.42c)

0 = f̃2(y), (7.3.42d)

where we introduced the block structure y = (y1, y2), z = (z1, z2), and

T (y) =
⎛
⎜
⎝

T11 T12

T21 T22

⎞
⎟
⎠
, S−1(y) f(y) =

⎛
⎜
⎝

f̃1(y)

f̃2(y)

⎞
⎟
⎠
. (7.3.43)

Since T (y) is invertible, without loss of generality, so is the block T11(y) (one can always

permute the columns of T (y)). Let us compute z1 from (7.3.42c) and substitute it in

(7.3.42a). The resulting system,

ẏ1 = (T11(y))
−1(f̃1(y) − T12(y)z2), (7.3.44a)

ẏ2 = z2, (7.3.44b)

0 = f̃2(y), (7.3.44c)

has the form of a semi-explicit index 2 DAE
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ẏ = F (y, z2),

0 = G(y), (7.3.45)

provided that

DyGDz2F = −Dy1 f̃2 T
−1
11 T12 +Dy2 f̃2 (7.3.46)

has a bounded inverse.

It is an elementary exercise to show that the partitioned Runge-Kutta method (7.3.4)

is invariant under the presented transformation, that is, it defines a numerically equivalent

partitioned Runge-Kutta method for (7.3.44). Runge-Kutta methods for semi-explicit in-

dex 2 DAEs have been studied and some convergence results are available. Convergence

estimates for the y component of (7.3.44) can be readily applied to the solution of (7.3.38).

As in Section 7.3.2, of particular interest to us are variational Runge-Kutta methods,

i.e., methods satisfying the condition (7.3.5), for example Gauss collocation methods (see

Section 2.2.2 and [23], [24]). However, in the case when α(q) is a nonlinear function, the

solution generated by the Gauss methods does not stay on the primary constraint N and

this affects their rate of convergence, as will be shown below. For comparison, we will

also consider the Radau IIA methods (see Section 2.2.5 and [26]), which, although not

variational/symplectic, are stiffly accurate, that is, their coefficients satisfy asj = bj for

j = 1, . . . , s, so the numerical value of the solution at the new time step is equal to the value

of the last internal stage, and therefore the numerical solution stays on the submanifold N .

We cite the following convergence rates for the y component of (7.3.45) after [26] and [22]:

• s-stage Gauss method—convergent of order
⎧⎪⎪⎪⎨⎪⎪⎪⎩

s + 1 for s odd

s for s even
,

• s-stage Radau IIA method—convergent of order 2s − 1.

With the exception of the midpoint rule (s = 1), we see that the order of convergence of

the Gauss methods is reduced. On the other hand, the Radau IIA methods retain their

classical order 2s − 1.
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Symplecticity. Since the Gauss methods satisfy the condition (7.3.5), they generate a

flow which preserves the canonical symplectic form Ω̃ on T ∗Q, as explained in Section 2.4.1.

However, since the primary constraint N is not invariant under this flow, a result analogous

to Corollary 7.3.5 does not hold, i.e., the flow is not symplectic on N .

7.3.3.2 Partitioned Runge-Kutta methods

In Section 7.4 we present numerical results for the Lobatto IIIA-IIIB methods (see Sec-

tion 2.2.2 and [23]). Their numerical performance appears rather unattractive, therefore

our theoretical results regarding partitioned Runge-Kutta methods are less complete. Be-

low we summarize the experimental orders of convergence of the Lobatto IIIA-IIIB schemes

that we observed in our numerical computations (see Figure 7.4.2, Figure 7.4.6 and Fig-

ure 7.4.10):

• 2-stage Lobatto IIIA-IIIB—inconsistent,

• 3-stage Lobatto IIIA-IIIB—convergent of order 2,

• 4-stage Lobatto IIIA-IIIB—convergent of order 2.

Comments regarding the symplecticity of these schemes are the same as for the Gauss

methods in Section 7.3.3.1.

7.4 Numerical experiments

In this section we present the results of the numerical experiments we performed to test the

methods discussed in Section 7.3. We consider Kepler’s problem, the dynamics of planar

point vortices, and the Lotka-Volterra model, and we show how each of these models can

be formulated as a Lagrangian system linear in velocities.

7.4.1 Kepler’s problem

A particle or a planet moving in a central potential in two dimensions can be described by

the Hamiltonian

H(x, y, px, py) =
1
2
p2
x +

1
2
p2
x −

1√
x2 + y2

−H0, (7.4.1)
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where (x, y) denotes the position of the planet and (px, py) its momentum; H0 is an arbitrary

constant. The corresponding Lagrangian can be obtained in the usual way as

L = pxẋ + pyẏ −H(x, y, px, py). (7.4.2)

If one performs the standard Legendre transform ẋ = ∂H/∂px, ẏ = ∂H/∂py, then L =

L(x, y, ẋ, ẏ) will take the usual nondegenerate form, quadratic in velocities. However, one

can also introduce the variable q = (x, y, px, py) and view L = L(q, q̇) as (7.1.2), that is, a

Lagrangian linear in velocities (see [15]). Comparing (7.4.2) and (7.3.25), we see that the

corresponding Λ is singular. Without loss of generality we replace Λ with its antisymmetric

part (Λ −ΛT )/2, which is invertible, and consider the Lagrangian

L = 1
2
q3q̇1 + 1

2
q4q̇2 − 1

2
q1q̇3 − 1

2
q2q̇4 −H(q). (7.4.3)

As a test problem we considered an elliptic orbit with eccentricity e = 0.5 and semi-major

axis a = 1. We took the initial condition at the pericenter, i.e., q1
init = (1−e)a = 0.5, q2

init = 0,

q3
init = 0, q4

init = a
√

(1 + e)/(1 − e) ≈ 1.73. This is a periodic orbit with period Tperiod = 2π. A

reference solution was computed by integrating (7.3.26) until the time T = 7 using Verner’s

method (a 6-th order explicit Runge-Kutta method; see Section 2.2.2 and [24]) with the

small time step h = 2 × 10−7. The reference solution is depicted in Figure 7.4.1.

We solved the same problem using several of the methods discussed in Section 7.3 for

a number of time steps ranging from h = 3.5 × 10−3 to h = 3.5 × 10−1. The value of the

solutions at T = 7 was then compared against the reference solution. The max norm errors

are depicted in Figure 7.4.2. We see that the rates of convergence of the Gauss and the

3-stage Radau IIA methods are consistent with Theorem 7.3.6 and Corollary 7.3.7. For the

Lobatto IIIA-IIIB methods we observe a reduction of order. The 2-stage Lobatto IIIA-IIIB

method turns out to be inconsistent and is not depicted in Figure 7.4.2. Both the 3- and

4-stage methods converge only quadratically, while their classical orders of convergence are

4 and 6, respectively.

We also investigated the long-time behavior of our integrators and conservation of the

Hamiltonian. For convenience, we set H0 = −0.5 in (7.4.1), so that H = 0 on the considered

orbit. We applied the Gauss methods with the relatively large time step h = 0.1 and com-

puted the numerical solution until the time T = 5 × 105. Figure 7.4.3 shows that the Gauss
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Figure 7.4.1: The reference solution for Kepler’s problem computed by integrating (7.3.26)
until the time T = 7 using Verner’s method with the time step h = 2 × 10−7.
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Figure 7.4.2: Convergence of several Runge-Kutta methods for Kepler’s problem.
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Figure 7.4.3: Hamiltonian conservation for the 1-stage (top row), 2-stage (middle row), and
3-stage (bottom row) Gauss methods applied to Kepler’s problem with the time step h = 0.1
over the time interval [0,5 × 105] (right column), with a close-up on the initial interval
[0,150] shown in the left column.

integrators preserve the Hamiltonian very well, which is consistent with Corollary 7.3.8. We

performed similar computations for the Lobatto IIIA-IIIB and Radau IIA methods, also

with h = 0.1. The results are depicted in Figure 7.4.4. The 3- and 4-stage Lobatto IIIA-IIIB

schemes result in instabilities, the planet’s trajectory spirals down on the center of gravity,

and the computations cannot be continued too far in time. The Hamiltonian shows major

variations whose amplitude grows in time. The non-variational Radau IIA scheme yields

an accurate solution, but it demonstrates a gradual energy dissipation.

7.4.2 Point vortices

Point vortices in the plane are another interesting example of a system with linear αµ(q)

(see [45], [56], [65]). A system of K interacting point vortices in two dimensions can be

described by the Lagrangian
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Figure 7.4.4: Hamiltonian for the numerical solution of Kepler’s problem obtained with
the 3- and 4-stage Lobatto IIIA-IIIB schemes (top and middle, respectively), and the non-
variational Radau IIA method (bottom).
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L(x1, y1, . . . , xK , yK , ẋ1, ẏ1, . . . , ẋK , ẏK) = 1
2

K

∑
i=1

Γi(xiẏi−yiẋi)−H(x1, y1, . . . , xK , yK) (7.4.4)

with the Hamiltonian

H(x1, y1, . . . , xK , yK) = 1
4π

K

∑
i<j

ΓiΓj log ((xi − xj)2 + (yi − yj)2) −H0, (7.4.5)

where (xi, yi) denotes the location of the i-th vortex and Γi its circulation, and H0 is an

arbitrary constant.

As a test problem we considered the system ofK = 2 vortices with circulations Γ1 = 4 and

Γ2 = 2, respectively, and distance D = 1 between them. The vortices rotate on concentric

circles about their center of vorticity at xC = 0 and yC = 0. We took the initial condition

at x(0)1 = Γ2D/(Γ1 + Γ2) ≈ 0.33, y(0)1 = 0, x(0)2 = −Γ1D/(Γ1 + Γ2) ≈ −0.67 and y(0)2 = 0. The

analytic solution can be found (see [45]) as

x1(t) =
Γ2

Γ1 + Γ2
D cosωt, x2(t) = −

Γ1
Γ1 + Γ2

D cosωt,

y1(t) =
Γ2

Γ1 + Γ2
D sinωt, y2(t) = −

Γ1
Γ1 + Γ2

D sinωt, (7.4.6)

where ω = (Γ1 + Γ2)/(2πD2). This is a periodic solution with period Tperiod ≈ 6.58. See

Figure 7.4.5.

We performed similar convergence tests as in Section 7.4.1. The value of the numerical

solutions at time T=7 were compared against the exact solution (7.4.6). The max norm

errors are depicted in Figure 7.4.6. The results are qualitatively the same as for Kepler’s

problem.

We set H0 = 0 in (7.4.5), so that H = 0 for the considered solution. Figure 7.4.7 and

Figure 7.4.8 show the behavior of the numerical Hamiltonian over a long integration inter-

val. The 3- and 4-stage Lobatto IIIA-IIIB integrators performed better than for Kepler’s

problem. In the case of the Gauss methods the Hamiltonian stayed virtually constant—the

visible minor erratic oscillations are the result of round-off errors. The Radau IIA scheme

demonstrated a slow but systematic drift.
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Figure 7.4.5: The circular trajectories of the two point vortices rotating about their vorticity
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7.4.3 Lotka-Volterra model

The dynamics of the growth of two interacting species can be modeled by the Lotka-Volterra

equations

u̇ = u(v − 2),

v̇ = v(1 − u), (7.4.7)

where u(t) denotes the number of predators and v(t) the number of prey, and the constants

1 and 2 were chosen arbitrarily. These equations can be rewritten as the Poisson system

⎛
⎜
⎝

u̇

v̇

⎞
⎟
⎠
=
⎛
⎜
⎝

0 uv

−uv 0

⎞
⎟
⎠
DH(u, v), (7.4.8)

where the Hamiltonian is given by

H(u, v) = u − logu + v − 2 log v −H0 (7.4.9)
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Figure 7.4.7: Hamiltonian for the 1-stage (top), 2-stage (second), and 3-stage (third) Gauss,
and the 3-stage Radau IIA (bottom) methods applied to the system of two point vortices
with the time step h = 0.1 over the time interval [0,5 × 105].



151

0 10 20 30 40 50

0

5

10

15

20

x 10
−4

H

0 1 2 3 4 5

x 10
5

0

5

10

15

20

x 10
−4

0 10 20 30 40 50

0

1

2

3

4

5

6
x 10

−4

H

t
0 1 2 3 4 5

x 10
5

0

1

2

3

4

5

6
x 10

−4

t

Figure 7.4.8: Hamiltonian conservation for the 3-stage (top) and 4-stage (bottom) Lobatto
IIIA-IIIB methods applied to the system of two point vortices with the time step h = 0.1
over the time interval [0,5×105] (right column), with a close-up on the initial interval [0,50]
shown in the left column.
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Figure 7.4.9: The reference solution for the Lotka-Volterra equations computed by integrat-
ing (7.3.26) until the time T = 5 using Verner’s method with the time step h = 10−7.

with an arbitraty constant H0 (see [23]). Using an approach similar to the one presented

in Section 7.4.1, one can easily verify that the Lagrangian

L(q, q̇) = ( log q2

q1 + q2)q̇1 + q1q̇2 −H(q) (7.4.10)

reproduces the same equations of motion, where q = (u, v). The coordinates αµ(q) (cf.

Equation (7.1.2)) were chosen, so that the assumptions of Theorem 7.3.2 are satisfied for

the considered Runge-Kutta methods.

As a test problem we considered the solution with the initial condition q1
init = 1 and

q2
init = 1 (note that q = (1,2) is an equilibrium point). This is a periodic solution with

period Tperiod ≈ 4.66. A reference solution was computed by integrating (7.3.26) until the

time T = 5, using Verner’s method with the small time step h = 10−7. The reference solution

is depicted in Figure 7.4.9.

Convergence plots are shown in Figure 7.4.10. The convergence rates for the Gauss and

Radau IIA methods are consistent with the theoretical results presented in Section 7.3.3.1—

we see that the orders of the 2- and 3-stage Gauss schemes are reduced. The 2-stage Lobatto

IIIA-IIIB scheme again proves to be inconsistent, and the 3- and 4-stage schemes converge
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Figure 7.4.10: Convergence of several Runge-Kutta methods for the Lotka-Volterra model.

quadratically, just as in Section 7.4.1 and Section 7.4.2.

We performed another series of numerical experiments with the time step h = 0.1 to

investigate the long time behavior of the considered integrators. The results are shown

in Figure 7.4.11 and Figure 7.4.12. We set H0 = 2 in (7.4.9), so that H = 0 for the

considered solution. The 1- and 3-stage Gauss methods again show excellent Hamiltonian

conservation over a long time interval. The 2-stage Gauss method, however, does not

perform equally well—the Hamiltonian oscillates with an increasing amplitude over time,

until the computations finally break down. The Lobatto IIIA-IIIB methods show similar

problems as in Section 7.4.1. The non-variational Radau IIA method yields an accurate

solution, but demonstrates a steady drift in the Hamiltonian.



154

0 20 40 60 80 100
−2

0

2

4

6

8

10
x 10

−3

H

0 1 2 3 4 5

x 10
5

−2

0

2

4

6

8

10
x 10

−3

0 20 40 60 80 100
−20

−15

−10

−5

0

5
x 10

−6

H

t
0 1 2 3 4 5

x 10
5

−20

−15

−10

−5

0

5
x 10

−6

t

Figure 7.4.11: Hamiltonian conservation for the 1-stage (top row) and 3-stage (bottom row)
Gauss methods applied to the Lotka-Volterra model with the time step h = 0.1 over the
time interval [0,5×105] (right column), with a close-up on the initial interval [0,100] shown
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Chapter 8

Summary and future work

We have proposed two general ideas on how r-adaptive meshes can be applied in geometric

numerical integration of Lagrangian partial differential equations. We have constructed

several variational and multisymplectic integrators and discussed their properties. We have

used the Sine-Gordon model and its solitonic solutions to test our integrators numerically.

We have also analyzed a class of degenerate systems described by Lagrangians that are

linear in velocities, and presented a way to construct higher-order variational integrators

for such systems. We have pointed out how the theory underlying variational integration

is different from the non-degenerate case and we have made a connection with numeri-

cal integration of differential-algebraic equations. Finally, we have performed numerical

experiments for several example models.

Our work can be extended in many directions. Interestingly, it also opens many questions

in geometric mechanics and multisymplectic field theory. Addressing those questions will

have a broader impact on the field of geometric numerical integration.

Non-hyperbolic equations

The special form of the Lagrangian density (4.2.6) we considered leads to a hyperbolic

PDE, which poses a challenge to r-adaptive methods, as at each time step the mesh is

adapted globally in response to local changes in the solution. Causality and the structure of

the characteristic lines of hyperbolic systems make r-adaptation prone to instabilities and

integration in time has to be performed carefully. The literature on r-adaptation almost

entirely focuses on parabolic problems (see [7], [28] and references therein). Therefore,

it would be interesting to apply our methods to PDEs that are first-order in time, for

instance, the Korteweg-de Vries, Nonlinear Schrödinger, or Camassa-Holm equations. All
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three equations are first-order in time and are not hyperbolic in nature. Moreover, all can

be derived as Lagrangian field theories (see [8], [9], [10], [11], [16], [19], [34]). The Nonlinear

Schrödinger equation has applications to optics and water waves, whereas the Korteweg-de

Vries and Camassa-Holm equations were introduced as models for waves in shallow water.

All equations possess interesting solitonic solutions. The purpose of r-adaptation would be

to improve resolution, for instance, to track the motion of solitons by placing more mesh

points near their centers and making the mesh less dense in the asymptotically flat areas.

Hamiltonian Field Theories

Variational multisymplectic integrators for field theories have been developed in the La-

grangian setting ([34], [39]). However, many interesting field theories are formulated in

the Hamiltonian setting. They may not even possess a Lagrangian formulation. It would

be interesting to construct Hamiltonian variational integrators for multisymplectic PDEs

by generalizing the variational characterization of discrete Hamiltonian mechanics. This

would allow one to handle Hamiltonian PDEs without the need for converting them to the

Lagrangian framework. Recently Leok & Zhang [35] and Vankerschaver & Liao & Leok [66]

have laid foundations for such integrators. It would also be interesting to see if the tech-

niques we used in our work could be applied in order to construct r-adaptive Hamiltonian

integrators.

Time adaptation based on local error estimates

One of the challenges of r-adaptation is that it requires solving differential-algebraic or stiff

ordinary differential equations. This is because there are two different time scales present:

one defined by the physics of the problem and one following from the strategy we use to adapt

the mesh. Stiff ODEs and DAEs are known to require time integration with an adaptive

step size control based on local error estimates (see [6], [26]). In our work we used constant

time-stepping, as adaptive step size control is difficult to combine with geometric numerical

integration. Classical step size control is based on past information only, time symmetry

is destroyed and with it the qualitative properties of the method. Hairer & Söderlind [25]

developed explicit, reversible, symmetry-preserving, adaptive step size selection algorithms

for geometric integrators, but their method is not based on local error estimation, thus

it is not useful for r-adaptation. Symmetric error estimators are considered in [32] and
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some promising results are discussed. Hopefully, the ideas presented in those papers could

be combined and generalized. The idea of Asynchronous Variational Integrators (see [36])

could also be useful here, as this would allow one to use a different time step for each cell of

the mesh. The structure-preserving multiscale techniques proposed in [61] and [62] might

also be of certain interest.

Constrained multisymplectic field theories

The multisymplectic form formula (2.6.9) was first introduced in [39]. The authors, however,

consider only unconstrained field theories. In our work we start with the unconstrained field

theory (4.0.1), but upon choosing an adaptation strategy represented by the constraintG = 0

we obtain a constrained theory, as described in Section 4.2 and Section 5.2. Moreover,

this constraint is essentially nonholonomic, as it contains derivatives of the fields, and the

equations of motion are obtained using the vakonomic approach (also called variational

nonholonomic) rather than the Lagrange-d’Alembert principle. All that gives rise to many

very interesting and general questions. Is there a multisymplectic form formula for such

theories? Is it derived in a similar fashion? Do variational integrators obtained this way

satisfy some discrete multisymplectic form formula? These issues have been touched upon

in [40], but are by no means resolved.

Mesh smoothing and variational nonholonomic integrators

The major challenge of r-adaptive methods is mesh crossing, which occurs when two mesh

points collapse or cross each other. In order to avoid mesh crossing and retain good mesh

quality, mesh smoothing techniques were developed (see Section 3.2.2 and [7], [28]). They

essentially attempt to regularize the exact equidistribution constraint G = 0 by replacing

it with the condition ε ∂X/∂t = G, where ε is a small parameter. This can be interpreted

as adding some attraction and repulsion pseudoforces between mesh points. If one applies

the Lagrange multiplier approach to r-adaptation as described in Section 4.2, then upon

finite element discretization one obtains a finite dimensional Lagrangian system with a

nonholonomic constraint. This constraint is enforced using the vakonomic (nonholonomic

variational) formulation. Variational integrators for systems with nonholonomic constraints

have been developed mostly in the Lagrange-d’Alembert setting. Surprisingly, there seems

to be virtually no literature regarding discrete vakonomic mechanics. In a recent paper, Gar-
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cia & Fernandez & Rodrigo [17] address variational integrators for vakonomic systems. The

ideas presented in that paper could be used to design structure-preserving mesh smoothing

techniques.

Variational integrators for Lagrangians linear in velocities

In Section 7.4.3 we presented our numerical results for the Lotka-Volterra model, which is

an example of a system for which the coordinate functions αµ(q) are nonlinear. The 1- and

3-stage Gauss methods performed exceptionally well and preserved the Hamiltonian over a

very long integration time. It would be interesting to perform a backward error (or similar)

analysis to check if this behavior is generic. If confirmed, our variational approach could

provide a new way to construct geometric integrators for a broader class of Poisson systems.

It would also be interesting to further consider constrained systems with Lagrangians

that are linear in velocities and construct associated higher-order variational integrators.

This would allow one to generalize the space-adaptive methods presented in Chapter 4

and Chapter 5 to degenerate field theories, such as the nonlinear Schrödinger, KdV or

Camassa-Holm equations.
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