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ABSTRACT 

 
The creation of thermostable enzymes has wide-ranging applications in industrial, 

scientific, and pharmaceutical settings. As various stabilization techniques exist, it is 

often unclear how to best proceed. To this end, we have redesigned Cel5A (HjCel5A) 

from Hypocrea jecorina (anamorph Trichoderma reesei) to comparatively evaluate 

several significantly divergent stabilization methods: 1) consensus design, 2) core 

repacking, 3) helix dipole stabilization, 4) FoldX ΔΔG approximations, 5) Triad ΔΔG 

approximations, and 6) entropy reduction through backbone stabilization. As several of 

these techniques require structural data, we initially solved the first crystal structure of 

HjCel5A to 2.05 Å. Results from the stabilization experiments demonstrate that 

consensus design works best at accurately predicting highly stabilizing and active 

mutations. FoldX and helix dipole stabilization, however, also performed well. Both 

methods rely on structural data and can reveal non-conserved, structure-dependent 

mutations with high fidelity. HjCel5A is a prime target for stabilization. Capable of 

cleaving cellulose strands from agricultural waste into fermentable sugars, this protein 

functions as the primary endoglucanase in an organism commonly used in the sustainable 

biofuels industry. Creating a long-lived, highly active thermostable HjCel5A would allow 

cellulose hydrolysis to proceed more efficiently, lowering production expenses. We 

employed information gleaned during the survey of stabilization techniques to generate 

HjCel5A variants demonstrating a 12-15 °C increase in T50 (T50 = 84-86 °C), an 11-14 °C 

increase in optimal temperature (Topt = 75-78 °C) and a 60% increase over the maximal 

amount of hydrolysis achievable using the WT enzyme. We anticipate that our 

comparative analysis of stabilization methods will prove useful in future 

thermostabilization experiments.  
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CHAPTER 1 
 
Introduction  
 
1.1 Motivation 
Life is delicate. In the history of the earth, at least five mass extinctions have occurred, 

rendering the vast majority of species that have ever lived extinct [1, 2]. The present era 

is characterized by a sixth mass extinction driven by the diversion of resources towards 

human demands [3, 4]. Surveys of many known groups of plants and animals reveal rates 

of extinction at least several hundred times that expected based on the geological record. 

In addition, history has documented the anthropogenic demise of 10% of the world’s bird 

species, largely due to habitat loss on islands during colonization [5]. Most extinctions 

arise from habitat loss in species-rich areas called hotspots [6]. Although these areas 

cover a mere 12% of available land, the majority of desirable locales fall within these 

boundaries. As of 1995, nearly 20% of the world’s population lived within these hotspots 

[7]. Further development in these areas appears inevitable as human populations continue 

to rise.  

 

Habitat loss from climate change is perhaps the most pressing threat to biodiversity. With 

the capacity to simultaneously alter conditions in nearly all environments, this 

phenomenon is projected to dramatically accelerate the current extinction trend [8-11]. 

Moreover, climate change cannot discriminate between humans and other species. 

Impacts of the current warming period will likely manifest as decreased crop yields, more 

prevalent vector-based disease, redistribution of freshwater, and an increase in natural 

disasters [11-14].  

 

Energy needs underlie the current warming period. Greenhouse gasses, such as carbon 

dioxide, absorb infrared radiation, trapping heat in the atmosphere [15]. Since 

industrialization, the burning of fossil fuels has increased carbon dioxide levels 31% from 

280 parts per million by volume (ppmv) to more than 370 ppmv as of 2003 [16]. Even if 

carbon dioxide levels are reduced to 2000 levels, the planet is projected to continue 
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warming in decades and centuries to come [17, 18]. Mitigation practices, however, may 

still limit the severity of the problems humanity will encounter.  

 

Reevaluating current transportation practices constitutes an effective means of reducing 

greenhouse gas emissions and abating climate change. As of 2011, 28% of U.S. 

greenhouse gas emissions originated from transportation needs with 90% of fuel derived 

from petroleum [19]. Recognizing that limiting the use of fossil fuels not only reduces 

levels of harmful pollutants, but also shrinks dependence on foreign sources, the Federal 

government has supported the development of biofuels as an alternative energy source. 

Projections estimate that substituting cellulosic ethanol for gasoline can reduce 

transportation-related greenhouse gas emissions by 85% [20], demonstrating the potential 

for this technology to counter climate change.  

 

Since the establishment of the first national renewable fuel standard in 2005, the United 

States has steadily increased biofuel production [21]. Ethanol in particular has risen as a 

popular alternative fuel. As the sugars in food sources predominantly exist as easily 

fermentable starches, most fuel-grade ethanol originates from corn feedstock. This 

practice, however, has created conflict between the food and fuel industries, increasing 

the price of corn [21, 22]. Furthermore, elevated grain prices have prompted habitat 

destruction through encouraging farmers to convert rainforests, peatlands, savannas, and 

grasslands into grain farms [23]. This increased agricultural intensification also leads to 

increased water, pesticide, and fertilizer use, causing additional ecological strain [22, 24, 

25]. Clearly, using grain feedstocks to meet liquid fuel demands is unsustainable.  

 

Deriving biofuels from inedible photosynthetic waste may reduce many of the 

environmental problems stemming from corn-based production [22]. Popular feedstocks 

include algae grown in waste water, corn stover, and other agricultural byproducts [26]. 

Unlike food sources, these materials primarily store sugars as cellulose wrapped in 

strands of lignin and hemicellulose [27]. The primary component of plant cell walls, 

cellulose is not only the most abundant biopolymer on the planet, but also a completely 

renewable resource [28]. The compound consists of glucosyl units linked by β-1,4 
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glycosidic bonds, facilitating the formation of intra and intermolecular hydrogen bonds 

between the hydroxyl groups and the pyranose oxygen [29]. Due to the crystalline nature 

of cellulose and heterogeneous character of lignin and hemicellulose, this 

“lignocelulosic” material is highly recalcitrant to degradation with a half-life of over four 

million years [30]. Hydrolysis often requires a harsh chemical [31] or temperature-based 

pretreatment to remove the lignin and hemicellulose, then digestion with cocktails of 

relatively expensive cellulose-digesting enzymes called cellulases. Once released, the 

free glucose can be fermented into liquid fuel.  

 

At $0.10-$1.47 gal-1 of ethanol, enzyme costs remain the primary barrier to creating 

profitable lignocellulosic fuels [32-36]. Current U.S. renewable fuel standards mandate 

the use of 36 billion gallons (140 x 106 m3) by 2022 with at least 16 billion gallons 

originating from cellulosic biofuels, and a cap of 15 billion gallons for corn-starch 

ethanol [21]. While this mandate, in conjunction with other federal regulations, allows 

current lignocellulosic biofuel production to thrive, enzyme production costs must drop to 

achieve true economic feasibility.  

 

One method of achieving this goal entails designing thermostable cellulase variants. The 

ability to retain function at high temperatures benefits enzymes in several ways. 

Thermostable proteins tend to exhibit stability during all stages of their production, 

storage, and use [37]. This quality extends product lifetime and subsequently reduces 

costs. For cellulases in particular, higher stability allows reactions to occur under harsh 

conditions remaining from feedstock pretreatment [38]. Typically, lignocellulosic 

material is heated to ~200 °C [39] to expose crystalline cellulose. Performing hydrolysis 

reactions at temperatures higher than the current industry standard (50 °C) [38, 40] would 

reduce the amount of energy necessary to cool the pretreated substrate. Higher reaction 

temperatures also reduce solution viscosity, lowering the energy of mixing. Finally, 

elevated temperatures reduce microbial contamination and increase reaction rates [41, 

42].  
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1.2 Hypocrea jecorina Cellulases 
 
Nature has equipped today’s bioengineer with a wide array of cellulolytic enzyme 

templates. With the sheer amount of cellulolytic systems in existence, choosing one in 

particular becomes a difficult task. Both bacterial and fungal organisms have been 

evaluated for enzyme cocktail production. Clostridium, Cellulomonas, Bacillus, 

Thermomonospora, Ruminococcus, Bacteriodes, Erwinia, Acetovibria, Microscora, and 

Streptomyces bacteria are known to produce cellulases. In particular, Cellulomonas fimi, 

Bacteroides cellulosolvens, and Thermomonospora fusca have shown promise for 

cellulase production [38]. These organisms produce cellulases with high specific activity, 

but with low enzyme titers. In addition, many bacteria exhibit slow growth rates and 

require anaerobic growth conditions. For these reasons, most commercial cellulase 

production research has focused on fungi [43]. Fungal organisms with cellulolytic 

capabilities include Sclerotium rolfsii, P. chrysosporium, and species of Trichoderma, 

Aspergillus, Schizophyllum, and Penicillium [43, 44]. The current industrial favorite is 

Hypocrea jecorina (anamorph Trichoderma reesei). Capable of secreting native proteins 

with yields of 100 g L-1 [45], this filamentous fungus has earned the title of “workhorse” 

for the lignocellulosic biofuels industry [46].   

 

H. jecorina digests cellulosic material using a cocktail of secreted cellulases. For 

efficient, synergistic cellulose degradation, three classes are required: 1) exoglucanases 

which processively remove two-unit glucosides called cellobiose from free chain-ends, 2) 

endoglucanases which target regions of low crystallinity in the middle of cellulose fibers, 

and 3) β-glucosidases which hydrolyze cellobiose into glucose monomers [47]. Known 

cellulases in H. jecorina include two exoglucanases (Cel6A (CBHII) and Cel7A (CBHI)), 

eight endoglucanases (Cel5A (EGII), Cel5B, Cel7B (EGI), Cel12A (EGIII), Cel45A 

(EGV), Cel61A (EGIV), Cel61B, and Cel74A (EGVI)), and seven β-glucosidases (Cel1A 

(BGLII), Cel1B, Cel3A (BGLI), Cel3B, Cel3C, Cel3D, and Cel3E) [48]. Several putative 

β-glucosidases have also been identified in the CAZy database. While this list of 

cellulases appears extensive, much of the cellulolytic activity can be attributed to four 

principle enzymes: 1) Cel7A, Cel6A, Cel5A, and Cel7B [49, 50]. In particular, deletion 
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of Cel7A, Cel6A, and Cel5A reduced activity on filter paper by 70, 33, and 12%, 

respectively [49]. Most of these cellulases consist of an O-glycosylated linker tethering 

two domains: 1) a catalytic domain and 2) a cellulose binding domain (CBD). The CBD 

among H. jecorina cellulases share ~70% sequence identity and exhibit high 

thermostability [51]. In addition, recently obtained genomic sequence data for H. jecorina 

strain QM6a indicates that this organism has the fewest cellulases out of all surveyed 

species capable of hydrolytically degrading plant cell walls [48]. Consequently, creating 

thermostable cocktails requires relatively little engineering. 

 

Efforts to improve H. jecorina cellulase thermostability have met with great success. In 

2012, Komor et al. reported the design of a chimeric Cel7A variant 9.2 °C more 

thermostable than the most thermostable parent [52]. The temperature at which this 

enzyme exhibited half maximal activity (T50) was 72.1 °C. This improved variant also 

demonstrated a 10 °C increase in the optimal reaction temperature to 65 °C and a 50% 

increase in total sugar release from crystalline cellulose. Earlier this year, Wu and Arnold 

reported the design of a chimeric Cel6A variant 15 °C more thermostable than the most 

stable parent, Humicola insolens (HiCel6A) (T50  = 80.1 °C) [53]. The optimal 

temperature of this enzyme is 75°C, 15 °C higher than that of the most thermostable 

parent. This improved thermostability allows for the release of 2.4 times more cellobiose 

equivalents at its optimum temperature compared with the maximum amount achievable 

with HiCel6A. To date, no reports of thermostable HjCel5A variants exist.  

 

1.3 Thermostabilization Techniques 
 
When it comes to protein stabilization, few concrete rules apply. Almost any method can 

generate thermostable variants with some efficiency [54]. In fact, analysis of highly 

thermostable proteins from hyperthermophilic organisms demonstrates that the only 

commonality between these structures is the presence of increased salt bridges, especially 

in networks [55]. The placement of these ion pairs, however, often heavily depends on 

subtleties in the protein structure. All other features including increased hydrogen 

bonding, improved secondary structure formation, presence of additional disulfide bonds, 

strengthened hydrophobic packing, decreased surface to volume ratio, more abundant 
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hydrophobic residues in the core, and improved rigidity appear in some, but not all, 

thermostable proteins. As it is difficult to maximize all of these qualities, certain 

techniques have arisen to address one or more at a time with varying efficacy.   

 

Computationally-driven methods have a lengthy history of producing thermostable 

protein variants. As early as 1997, the protein design software ORBIT was employed to 

generate thermostable streptococcal protein G variants with repacked cores [56]. This 

software optimizes sidechain rotamers using molecular mechanics forcefields tuned with 

empirical data. ORBIT has also assisted in the creation of thermostable variants of 

engrailed homeodomain through improving surface electrostatics [57]. Modifications of 

the Rosetta protein design software have found use in detecting stabilizing core residues 

in λ repressor [58]. In addition, computational methods can theoretically be adapted to 

identify mutations that increase backbone rigidity through redesigning loops, targeting 

areas with high B-factors, or mutating residues away from highly flexible glycine and 

toward inflexible proline [59]. As computational capabilities have increased, these 

methods have expanded to analyze proteins in entirety. Already, Rosetta calculations 

considering the majority of the protein have successfully contributed to the creation of 

thermostable antibody scaffolds [60]. These methods are not flawless, however. Rotamer-

based computational methods, require extensive training, significant computational 

resources, and the pre-existence of a high-resolution molecular model.  

 

Predictions based on ΔΔG values provide a more expedient way to probe mutations 

throughout the entire protein. The computational simplicity of software such as FoldX 

[61], Dmutant [62], and CUPSAT [63] allows one to calculate energies for all possible 

mutations and WT. The difference in energy between the mutation and WT residue can 

then be used to rank all possible mutations within a protein. As demonstrated in the 

design of Komor et al.’s thermostable Cel7A variants, the rapidity and ease of these 

calculations renders the technique suitable for combination with other stabilization 

strategies [52]. In addition, comparative studies have shown that FoldX and Dmutant can 

predict mutations with a relatively high accuracy of 60% [64]. As is the case with more 
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complex computational methods, this technique also requires a suitable high-resolution 

molecular model.  

 

Homology-based methods provide a means of creating thermostable protein variants 

using protein sequence data. These techniques employ multiple sequence alignments 

(MSAs) to identify mutable regions. In consensus design, residues sampled more 

frequently at a specific position relative to a background metric (often codon or wild type 

(WT) frequency) are classified as putatively stabilizing. This approach has proved 

exceedingly successful in generating thermostable variants of numerous proteins 

including immunoglobulin domains [65], tetratricopeptide repeats [66], and p53 [67]. A 

consensus approach also contributed to the creation of the aforementioned thermostable 

Cel7A variant [52]. In an alternative strategy, sequence information can guide the 

creation of thermostable chimeric proteins. Correlated mutations in MSAs allow one to 

calculate residue contact maps. In turn, this information can be used to choose crossover 

points that minimize the number of disrupted contacts. Through recombining sectors 

from different proteins, one can generate diversity in numerous characteristics including 

thermostability. Effective implementation of this technique has contributed to creating 

both the thermostable Cel7A [68] and Cel6A mutants [69]. These methods require 

homologous sequence data, a prerequisite that can be limiting for proteins with little 

homology to current sequences.    

 

Directed evolution can build thermostable mutants with no informational requirements 

beyond the sequence of the gene of interest [70]. The technique involves generating 

mutations through error-prone PCR, then performing extensive screening to uncover 

useful mutations. Many of the mutations in the thermostable Cel6A were detected using 

directed evolution [53]. This technique, however, is not only time-consuming, but also 

requires a suitable screen [71].  

 

Each stabilization technique offers advantages countered with shortcomings. In cases 

where available information meets the prerequisites of more than one strategy, it is often 

unclear how to proceed. At least one study comparing multiple protein stabilization 
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strategies applied to a single protein exists [60]. Using a combination of Rosetta design, 

disulfide engineering, consensus design, and domain grafting, the authors raised the Tm of 

an antibody above 90 °C. These experiments were carried out in series, successively 

adding mutations to the final construct alongside their discovery. However, this approach 

obfuscates any improvements generated through each individual method. A more 

comprehensive comparison of protein strategies evaluated within a single protein system 

might prove useful for future stabilization projects.  

 

1.4 Thesis Summary 
 
This work documents efforts to comparatively test themostabilization techniques applied 

to a single protein, the primary endoglucanase in H. jecorina. HjCel5A represents one of 

the last pieces in the thermostabilized cellulase cocktail puzzle. In addition to creating 

highly stabilized variants of this protein, we also provide foundational biochemical work 

crucial to structurally and functionally understanding HjCel5A. Furthermore, the work 

here provides recommendations for conducting future thermostabilization projects.  

 

In Chapter 2, I describe the first reported HjCel5A crystal structure. Thus far, this 

structure provides the only accurate source of high-resolution structural data for this 

cellulase. Coming 17, 21, 14, and 10 years after release of the Cel7A [72], Cel6A [73], 

Cel7B [74], and Cel12A [75] crystal structures, respectively, the Cel5A crystal structure 

completes the crystallographic survey of core H. jecorina cellulases. We use this 

structural information to computationally detect stabilizing mutations in Chapters 4 and 

5. 

 

Chapter 3 discusses consensus design applied to HjCel5A. In this section, we vary 

several parameters: 1) the number of sequences incorporated into the alignment, 2) the 

level of characterization of incorporated sequences, 3) the measures used to assess 

conservation, and 4) the application of additional covariance criteria, and 5) the 

numerical thresholds used to classify mutations as stabilizing. Several recommendations 

for optimal parameters emerge from this study. 
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Chapter 4 compares computational design targeted to the core or surface/boundary 

region. These experiments use the protein design software Triad. In one calculation, we 

attempt to identify stabilizing mutations that improve hydrophobic packing in the core of 

the protein. The second calculation seeks to identify residues that stabilize the protein 

through neutralizing the natural dipole in α-helices. In addition to revealing numerous 

stabilizing mutations, we also provide an analysis to discern whether stabilizing HjCel5A 

mutations generally reside in the core, boundary, or surface regions.   

 

In Chapter 5, we compare two methods of determining ΔΔG values: FoldX and Triad. 

We additionally employ Triad approach to explore how backbone rigidity affects stability 

and activity. Through mutating glycines to residues containing a Cβ and introducing 

prolines we uncover several additional stabilizing mutations and discuss the relationship 

between increased rigidity and activity. Finally, we attempt to introduce new disulfide 

bridges using a modified version of Triad and Disulfide by Design.  

 

Chapter 6 summarizes the findings of Chapters 3-5 and uses the mutations identified 

throughout these studies to create more thermostable, more active, and better expressing 

HjCel5A variants. We hope that the direct comparisons of the major methods employed 

in this work will prove useful for future enzymatic stabilization projects. To this end, 

Appendix A and the attached files contain values from the FoldX, Triad ΔΔG, and MSA 

calculations for all possible HjCel5A mutations. These sections also contain extensive 

information on all 262 single mutants cloned, experimentally characterized, and analyzed 

during this work.   

 

Finally, Appendix B describes the structural characterization of de novo designed Kemp 

eliminases designed in the laboratory of Dr. Stephen Mayo. The crystal structures 

demonstrate that while de novo enzyme design through computational methods is 

achievable, there exists much room for improvement. These efforts may one day allow 

industrially relevant reactions to occur under mild conditions, reducing the ecological 

footprint of the chemical industry.   
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1.5 Concluding Remarks 
 

Out of the surveyed stabilization strategies, consensus design was shown to identify 

highly stabilizing and active mutations with the greatest accuracy. As previously 

discussed, this technique relies on the preexistence of many homologous sequences. 

Although improved sequencing technologies have shrunk the cost of surveying whole 

genomes from millions to thousands of dollars [76], probing all organisms likely requires 

significant time and financial resources. Humanity has only discovered a fraction of the 

species on our planet [77] and the current extinction rate suggests that many of these 

organisms may remain unknown scientifically. Moreover, organisms are much more than 

their DNA. Full comprehension of even the smallest bacterium requires examining the 

organism from the tiniest biochemical nuances to its ecology. As humanity continues to 

divert resources away from potentially useful organisms, extinction shrinks the amount of 

biological capital available to bioengineers [78, 79]. Perhaps redefining the term progress 

is in good order.  

 

 
 
.  
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CHAPTER 2 
 
A Structural Study of Hypocrea jecorina Cel5A 
 
A version of this chapter has been published as [1]. 

 
2.1 Abstract 
 
Interest in generating lignocellulosic biofuels through enzymatic hydrolysis continues to 

rise as non-renewable fossil fuels are depleted. The high cost of producing cellulases, 

hydrolytic enzymes that cleave cellulose into fermentable sugars, currently hinders 

economically viable biofuel production. Here we report the crystal structure of a 

prevalent endoglucanase in the biofuels industry, Cel5A from the filamentous fungus 

Hypocrea jecorina. The structure reveals a general fold resembling that of the closest 

homolog with a high-resolution structure, Cel5A from Thermoascus aurantiacus. 

Consistent with previously described endoglucanase structures, the H. jecorina Cel5A 

active site contains a primarily hydrophobic substrate binding groove and a series of 

hydrogen bond networks surrounding two catalytic glutamates. The reported structure, 

however, demonstrates stark differences between side-chain identity, loop regions, and 

the number of disulfides. Such structural information may aid efforts to improve the 

stability of this protein for industrial use while maintaining enzymatic activity through 

revealing non-essential and immutable regions. 
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2.2 Introduction 
 
Lignocellulosic biofuels have enjoyed recent popularity as sustainable energy alternatives 

to fossil fuels. In current enzymatic conversion schemes, a pretreatment step with high 

temperatures or extreme pH conditions removes indigestible lignin from feedstock 

materials. Cellulase cocktails then break cellulose polymers into component sugars 

suitable for fermentative fuel production. To achieve efficient digestion, three types of 

cellulases must exist in the preparation: (1) exoglucanases to cleave cellobiose molecules 

from cellulose strand termini, (2) endoglucanases to cleave strands internally, and (3) 

β-glucosidases to cleave cellobiose into glucose monomers [2]. Few known organisms 

adequately produce cellulases from all three classes. Consequently, the filamentous 

fungus Hypocrea jecorina (Trichoderma reesei), a prodigious source of each cellulase 

class, enjoys wide-spread use in the biofuels industry [3]. Enzyme production costs, 

however, still constitute a limiting factor to wide-scale bioethanol synthesis. Although 

advances in all areas of enzyme production have decreased costs to 20 to 30 cents per 

gallon of ethanol, less-sustainable, corn-derived fuel remains the cheaper alternative at 3 

to 4 cents per gallon [4]. One strategy for further reducing enzymatic costs involves 

extending cellulase lifetimes through enhanced stability. As some protein engineering 

strategies utilize atomic-resolution models to guide the design process, obtaining crystal 

structures of each cellulase may significantly aid such endeavors. Thus far, efforts to 

crystallize H. jecorina cellulases have resulted in catalytic domain structures of 

exoglucanases Cel6A (CBHII) [5] and Cel7A (CBHI) [6] and endoglucanases Cel7B 

(EGI) [7] and Cel12A (EGIII) [8]. Cel5A (EGII), however, accounts for as much as 55% 

of H. jecorina endoglucanase activity [9], yet has resisted previous crystallographic 

solution. Here we provide the crystal structure of H. jecorina Cel5A (HjCel5A) resolved 

to 2.05 Å.  

 
 
  



 18 

2.3 Results 
 

With the exception of Cel12A, most H. jecorina cellulases consist of a heavily 

O-glycosylated linker tethering a small cellulose binding domain (CBD) to a larger 

catalytic domain. CBDs of this organism share ~70% sequence identity [10] and a 

solution structure of the Cel7A CBD has been solved [11]. To minimize sample 

inhomogeneity resulting from glycosylation, the isolated H. jecorina Cel5A catalytic core 

was expressed in Escherichia coli BL21 (DE3) cells. The protein was crystallized, data 

were collected to 2.05 Å, and the structure solved and refined with an Rwork/Rfree of 

16.3/20.5% (Table I and Supporting Information Fig. S1).  

 

HjCel5A adopts a (α/β)8 TIM-barrel fold common to other family 5 glycoside hydrolases 

(Figure 1A). The general topology bears a striking resemblance to Cel5A from 

Thermoascus aurantiacus (TaCel5A, RMSD of 1.4 Å [12]) (Figure 1B) with 29% 

sequence identity and 65% sequence similarity (Supporting Information Fig. S2). While 

both proteins demonstrate similar placement of most secondary structure elements, the H. 

jecorina homolog exhibits extensions in the β1-α1, β3-α3, and α5-β6 loops (see 

Supporting Information Fig. S3 for secondary structure numbering). The β1-α1 loop 

projects towards the active site, forming a relatively shallow substrate binding groove. In 

addition to eight canonical β-strands, the structure also contains a protruding β-hairpin 

consisting of residues 308 to 315. Sidechain densities along the tip of the loop could not 

be resolved, suggesting flexibility of the region. Tryptophan 314, however, appears to 

anchor the C-terminal region of the hairpin to the face of the protein as it rejoins the 

globular region to form a truncated α8 helix. Although similar β-hairpins appear in the 

structures of Thermotoga maritima Cel5A [13] (TmCel5A) (3MMW, residues 295-302) 

and Clostridium cellulovorans endoglucanase D (3NDY, residues 324-331), it remains 

unclear whether this hairpin assumes a functional role. A series of hydrophobic residues 

(F4, Y98, W142, F177, I214, L287) shields the active site from solvent rather than a short 

2-3 β-strand [14] and/or the small N-terminal α-helix plug observed in homologous 

structures [13]. 

 



 19 

Glycosylation 

Mass spectrometry studies demonstrate that HjCel5A contains a single GlcNAc 

N33-linked glycosylation when expressed in the organism of origin [15]. The structure 

contains no discernable density compatible with such a modification, as expected for a 

bacterially-expressed protein. N33 is, however, solvent exposed and does not preclude 

previous findings.    

 

Active site architecture 

Consistent with structural studies of other GH5 endoglucanases, the substrate binding 

pocket consists of a deep catalytic cleft within a shallow binding groove. The deeper cleft 

contains a hydrophobic patch (F14, V27, Y28, Y40, F34, W292, A294, F297, Y301) 

surrounded by the β1-α1 loop (residues 15-22), the sidechain of W185, residues 104-107, 

residues 146-150, and the β6-α6 loop (residues 225-229) (Figure 1C). A short α-helical 

ledge (residues 183-187) abruptly terminates this hydrophobic groove in a manner that 

superficially appears incompatible with endoglucanase function—internal cellulose 

cleavage might require that the substrate thread through the deep cleft to access the active 

site. The ledge itself, however, forms a shallower hydrophilic groove. This architecture 

suggests that an extended cellulose chain initially binds to the shallow groove in a non-

catalytic manner. Crystallographic studies of the Bacillus agaradhaerens Cel5A suggest 

that the Michaelis complex subsequently forms as the +1 site sugar adopts a 1S3 skew-

boat conformation [16]. W185 facilitates formation of this catalytic conformation through 

stacking with the −1 site sugar ring [Fig. 1(C)]. The resulting ~110°-115° kink allows the 

substrate to pass over the helical ledge into solvent allowing for the internal cleavage of 

long cellulose strands. Previous studies characterize HjCel5A as a promiscuous enzyme 

that generates a wide range of products including glucose, cellobiose, and cellotriose 

[17]. The non-catalytic binding groove appears more hydrophilic and shallower than that 

of TaCel5A. Further testing may reveal whether product inhomogeneity results from 

scant interaction between HjCel5A and the reducing end of the chain beyond the active 

site. 
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The obtained HjCel5A structure depicts an active enzyme as determined by comparison 

to homologous structures. Like other retaining cellulases, HjCel5A hydrolyzes internal β-

1,4-glycosidic cellulosic bonds through a double-displacement mechanism involving two 

carboxylates [16]. First, a general acid/base catalyst protonates the glycosidic bond to 

promote cleavage. A second carboxylate then forms a covalent glucosyl-enzyme 

intermediate through an oxocarbonium ion transition state, displacing a newly-generated 

non-reducing cellulose terminus. The apo enzyme finally forms through a second 

oxocarbonium ion transition state. In HjCel5A, the terminal oxygen atoms of the general 

base (E148) and nucleophile (E259) are separated by ~5 Å, typical of retaining β-

glycosidases [18]. These residues were identified through homology with TaCel5A and 

confirmed as necessary to catalysis through site-directed mutagenesis (Supporting 

Information Fig. S4). Residues T258, H218, and E148 form a type A catalytic triad 

involved in raising the pKa of the donor carboxylate to promote more efficient substrate 

protonation [19] (Figure 1D). A hydrogen-bonding network around E259 also exists. R60 

and Y220 position the nucleophilic glutamate for catalysis through contacting OE2 and 

OE1, respectively. N147 in turn tethers R60 in place. Although H104 and W292 are 

conserved across GH5 cellulases and reside near the active site, these residues appear to 

assist with substrate binding rather than influence the catalytic machinery [12]. 

 

Disulfide bonds 

HjCel5A contains eight cysteines, all of which are involved in the formation of disulfide 

bridges (Figures 2A and B). The covalent link between C16 and C22 tethers the C- and 

N-terminal regions of the β1-α1 loop that forms one wall of the substrate binding pocket. 

Near the C-terminal region, residues 273 and 323 anchor the final α-helical segment to 

the adjacent α7 helix. HjCel5A exhibits a relatively high apparent Tm of 72°C 

(Supporting Information Figure S5) that may be due in part to stability conferred by 

disulfide bonding. The hyperthermostable TaCel5A exhibits two higher melting 

transitions at 77°C and 81°C [20], yet contains a single disulfide bond at a location 

homologous to the linkage between C232 and C268. Observations from homologous 

structures, however, suggest that the thermostability of TaCel5A may largely arise due to 

the truncation of loops, a highly pronounced feature in the TaCel5A homolog [13]. Our 



 21 

attempts to mutate several disulfide-bonded cysteines to serines resulted in insoluble 

protein expression (data not shown).   
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2.4 Discussion 
 

HjCel5A constitutes only 1-10% of the total cellulase protein in H. jecorina, yet accounts 

for 55% of the total endoglucanase activity [9, 21]. The structural data presented here 

shows that the protein differs in sidechain identity and loop placement from its most 

similar crystallographically-probed homolog, TaCel5A. Additionally, the structure 

reveals four disulfide bonds, in direct contrast with a previous report suggesting the 

absence of such elements [22]. While an attempt to engineer HjCel5A for optimum 

catalytic efficiency at a particular pH has met with some success, this effort relied on a 

highly inaccurate homology model built from TaCel5A coordinates [23]. The information 

presented here may better inform future efforts to rationally engineer HjCel5A for 

various needs, as well as understand the wild-type activity of the protein.  
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2.5 Materials and Methods 
 
Protein expression and purification 

The catalytic domain of HjCel5A (Genbank JN172972) was expressed in BL21 (DE3) 

cells and purified as described in the Supporting Information. Cultures were grown at 

37°C to an optical density of ~0.5 in LB, induced, then allowed to express protein at 

16°C for 24 hours. Purification was achieved through His-tag affinity chromatography 

and proteins were buffer exchanged into storage buffer (10 mM acetate pH 4.8, 100 mM 

NaCl) at a final concentration of 5.3 mg/mL.   

 

Crystallization, data collection and structure determination  

Hexagonal plate crystals grew in 21 days by the sitting-drop vapor diffusion method in 

0.1 M sodium citrate, 1 M magnesium sulfate, and 1 mM cellobiose. Crystals were flash 

frozen in cryoprotectant and shipped to beamline 12-2 at the Stanford Synchrotron 

Radiation Lightsource (SSRL) where a 2.1 Å data set was obtained. Phases were obtained 

through molecular replacement using a 1H1N mixed model generated with SCWRL [24]. 

Following molecular replacement, model building and refinement were accomplished 

with the AutoBuild Wizard in PHENIX [25]/COOT [26] and PHENIX [27] respectively. 

NCS restraints were applied to all refinement steps. Final coordinates were deposited in 

the Protein Data Bank with the code 3QR3. Data collection and refinement statistics are 

listed in Table I.  
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2.6 Supplementary 
 

Protein expression and purification 

The catalytic domain of HjCel5A was expressed in Escherichia coli. Existing constructs 

were obtained from the laboratory of Frances Arnold in which only the sequence 

corresponding to the catalytic domain of the protein was cloned into the NcoI/XhoI sites 

of pET22b+. The protein sequence of the coding region is identical to that of an EGII 

sequence recently deposited to www.ncbi.nlm.nih.gov (accession number: JF340120.1) 

with the following two exceptions: the first 10 residues (TSSSTPPTSS) were substituted 

with methionine and a GGSGSG linker and a C-terminal His6 tag were added through 

QuikChange mutagenesis (Stratagene) for affinity purification. Clones were sequence 

verified and transformed into BL21(DE3) cells. 

 

Cultures were grown at 37°C to an optical density of ~0.5 in LB. Induction was achieved 

by adding isopropyl β-D-1-thiogalactopyranoside (IPTG) to a final concentration of 1 

mM and allowing cells to shake at 220 rpm for 24 hours at 16°C. Cells were collected 

through centrifugation at 5000 g, 4°C for 15 min. The resulting pellets were resuspended 

in lysis buffer (12.5 mM Tris pH 7.5, 12.5 mM MOPS, 0.1% Tween 20) spiked with a 

small amount of lysozyme and 10 µL benzonase per liter of culture. Full lysis was 

achieved through sonication followed by a 30 min incubation at 4°C with rocking. The 

lysate was cleared through centrifugation at 15,000 g, 4°C for 30 min. Supernatant was 

nutated with Ni-NTA agarose slurry (Qiagen) for 1 hour and loaded onto a gravity 

column for affinity chromatography. The column was washed once with lysis buffer, 

once with wash buffer (50 mM NaH2PO4 pH 8.0, 300 mM NaCl, 20 mM imidazole) and 

eluted in elution buffer (50 mM NaH2PO4 pH 8.0, 300 mM NaCl, 250 mM imidazole). 

Eluted protein was buffer exchanged into storage buffer (10 mM acetate pH 4.8, 100 mM 

NaCl) and run over a Superdex 75 size exclusion column. Fractions were assessed for 

purity by gel electrophoresis and solutions deemed pure were combined in PES-

membrane spin concentrators (Sartorium Stedim). Since the expressed protein 

precipitates at concentrations exceeding 7 mg/mL, samples were processed to a final 

concentration of 5.3 mg/mL and stored at 4°C for crystallization assays.   
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Crystallization and data collection 

Crystals were obtained through sitting-drop vapor diffusion in drops containing 60% 5.3 

mg/mL protein solution and 30% mother liquor (0.1 M sodium citrate, 1 M magnesium 

sulfate, 1 mM cellobiose). Although cellobiose was present in the mother liquor, no 

corresponding density appeared in the final map. Small hexagonal crystals appeared after 

a week and ceased growth after 21 days. The resulting thick hexagonal plates were 

harvested and flash frozen in liquid nitrogen using a 30% glycerol solution as a 

cryoprotectant. Frozen crystals were shipped to beamline 12-2 at the Stanford 

Synchrotron Radiation Lightsource (SSRL) and diffraction data were collected to 2.05 Å 

at a temperature of 100 K. The crystals were found to belong to space group P212121 with 

unit cell parameters a = 82.95 Å, b = 84.593 Å, c = 90.11 Å, and α = β = γ = 90° and to 

contain two HjCel5A monomers in each asymmetric unit.  

 
Structure determination 

The major endoglucanase from Thermoascus aurantiacus, TaCel5A (PDB ID 1H1N), 

shares only ~30% protein sequence identity with the H. jecorina homolog, yet 

demonstrates the greatest similarity to the target protein among homologues with solved 

structures as identified through the FFAS03 server [28]. Attempts to determine phases 

using the program PHASER [29] and coordinates for a monomeric 1H1N as a search 

model failed. A molecular replacement solution was, however, obtained in PHASER 

using a 1H1N mixed model generated using SCWRL [24], wherein all non-conserved 

residues are replaced with serines. Following molecular replacement, the resulting 

solution was entered as an initial model for automated model building the AutoBuild 

Wizard in Phenix [25]. A near complete model was obtained with two molecules in the 

asymmetric unit having an initial Rwork/Rfree of 21.5/24.7%. Additional refinement 

proceeded using PHENIX [27] in conjunction with the model building program COOT 

[26]. All refinement steps were performed using chain A to chain B NCS restraints. Ten 

rounds of refinement in PHENIX were necessary to achieve an Rwork/Rfree of 16.3/20.5%. 

The final model contains residues 0-328 in both chains A and B of the protein, 503 water 

molecules, nine sulfate molecules, and four magnesium ions (one magnesium has been 
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modeled with occupancy split among two sets of coordinates) (Supporting Information 

Figure S1). Although backbone density for residues 310-312 clearly exists, sidechains 

could not be resolved and accordingly do not appear in the model. The final model is 

calculated to have an overall RMS bond length deviation of 0.011 Å and a covalent angle 

deviation of 1.2° with 87.2% of residues falling in the most favored regions of 

Ramachandran space, 12.8% falling within additional allowed regions, 0% in generously 

allowed regions, and 0% outliers. 

 

Analysis of active site structure 

Homologous structures were superimposed using the program Align [30] implemented in 

PyMOL [31]. Approximate substrate positioning was modeled through aligning the 1.6 Å 

resolution structure of the Bacillus agaradhaerens Cel5A complexed with the slowly-

hydrolyzable cellulose analogue 2,4 dinitrophenyl-2-deoxy-2-fluoro-β-D-cellobioside 

(DNP2Fcell) (PDB ID code 4A3H) [16]. 
 

Active site point mutant generation 

Mutations E148A, H218A, T258A, and E259A were generated through QuikChange site-

directed mutagenesis (Stratagene) and verified through sequencing. Proteins were 

expressed and batch purified through affinity chromatography as described above. 

 

Enzymatic activity assay 

The enzyme assay was performed as described by Park and Johnson [32]. Enzyme-

substrate mixtures containing 0.2 µM protein, 0.15% carboxymethyl cellulose, and 10-20 

mM acetate buffer pH 5.6 were incubated at 42°C for 2 hours and stored at 4°C before 

developing the solution with a colorimetric reagent. To develop the solution, 300 uL of 

reagent A (potassium ferrocyanide, 0.5 g/L, dipotassium phosphate, 34.84 g/L, pH 6) was 

premixed with 150 uL of reagent B (sodium carbonate, 5.3 g/L, potassium cyanide, 

0.65g/L) then immediately added to the incubated protein solution. After boiling for 15 

min at 95°C, 300 uL of reagent C (ferric chloride, 2.5 g/L, polyvinylpyrrolidone, 10 g/L, 

sulfuric acid 2N) were added to the mixture to elicit a yellow to blue color change. 

Experiments were performed in triplicate and the absorbance at 600 nm was measured 
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using a TECAN Infinite M200 96-well plate reader. H218A and T258A failed to express 

solubly and enzymatic activity data subsequently could not be acquired. HjCel5A 

mutants E148A and E259A demonstrate no activity relative to the background reaction 

(Supporting Information Figure S4).  

 

Circular dichroism 

Circular dichroism scans were performed with protein in acetate buffer at a concentration 

of 5 µM using a 1 mm cuvette. Wavelength scans were performed at 25°C scanning 

through the 200-250 nm range (Supporting Information Figure S5). The experiment was 

performed in triplicate with an averaging time of 5 s and a wavelength step of 1.0 nm.  

 

Circular dichroism signal at 220 nm was also employed to monitor thermal denaturation. 

Protein at 5 µM was monitored from 1-99°C in steps of 1°C. The sample was subjected to 

an equilibration period of 2 min per each step before collecting measurements. HjCel5A 

was found to unfold irreversibly with an apparent Tm of 71.5°C (Supporting Information 

Fig. S6).   
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2.7 Tables and Figures  

 
Table I.  Data collection and refinement statistics  

 

Data were collected from one crystal.   
Values in parentheses are for highest-resolution shell.  

  

 HjCel5A 
Data collection  

Space group P212121 
Cell dimensions    
    a, b, c (Å) 82.95, 84.593, 90.11 
    a, b, g (°)  90.00, 90.00, 90.00 
Resolution (Å) 39-2.05(2.16-2.05) 
Rsym or Rmerge 0.081(0.268) 
I / sI 19.2(2.8) 
Completeness (%) 98.8(92.4) 
Redundancy 12.5(9.8) 

  
Refinement  

Resolution (Å) 40-2.05 
No. reflections 39858 
Rwork/Rfree 0.163/0.205 
No. atoms  
    Protein 4966 
    Ligand/ion 74 
    Water 503 
B-factors 22.9 
    Protein 21.9 
    Ligand/ion 39.5 
    Water 29.9 
R.m.s. deviations  
    Bond lengths (Å) 0.011 
    Bond angles (°) 
Ramachandran map analysis 

1.2 
 

    Most favored regions 
    Additional allowed regions 
    Generously allowed regions 
    Disallowed regions      

87.2 
12.8 

0 
0 
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Figure 1.  Structure of HjCel5A. (A) HjCel5A shown in cartoon representation with 
catalytic glutamates shown as sticks. (B) Superposition of HjCel5A (blue) and TaCel5A 
(yellow) generated in PyMOL using the align function. (C) HjCel5A in surface 
representation highlighting the hydrophobic substrate docking patch (yellow), sugar-
stacking base W185 at site +1 (orange), active site (red), substrate binding groove walls 
(light blue), and helical ridge composed of residues 183 to 187 (dark blue). The protein is 
modeled in complex with substrate mimic 2,4-dinitrophenyl-2-deoxy-2-fluoro-β-D-
cellobioside from the structure of the Bacillus agaradhaerens Cel5A (PDB 4A3H). Sugar 
superpositioning was achieved through aligning BaCel5A to HjCel5A in PyMOL. (D) 
The active site of HjCel5A depicting hydrogen bonding networks between the catalytic 
base (E148) and nucleophile (E259), as well as other conserved residues (gray).  
  



 30 

 

Figure 2.  Disulfide bonding patterns in HjCel5A. (A) Cartoon representation of the 
protein highlighting positions of the four intramolecular disulfide bonds detected in the 
electron density. (B) Fo-Fc cysteine sidechain omit maps contoured to 5 σ. Sidechain 
atoms from the Cβ to the end of the sidechain were deleted from the model prior to map 
generation.   
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2.8 Supplementary Figures 

 

 

Figure S1. HjCel5A electron density shown in wall-eyed stereo. The 2Fo-Fc electron 
density map contoured to 1.5 σ clearly shows well defined density for backbone and 
sidechain atoms for a loop spanning residues 12 to 23, a disulfide bond connecting C16 
and C22, and the surrounding protein and solvent structure. 
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Figure S2. Alignment of HjCel5A with the homologous sequence from TaCel5A. The 
alignment was generated in CLUSTAL W [33] from the sequences of the crystallized 
proteins lacking expression and purification tags. Stars and blue highlighted regions 
indicate conserved regions. Strongly conserved regions are indicated with two marks and 
weakly conserved regions are indicated with a single mark.   
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Figure S3. HjCel5A secondary structure numbering. A cartoon representation of the 
protein colored in chainbows by position along the main chain (N-terminus in blue, 
C-terminus in red). All α-helices and β-strands referred to in the main text are labeled 
with their corresponding abbreviations. 
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Figure S4. Enzymatic activities of HjCel5A and catalytic residue mutants. Activity data 
measured by OD600 are displayed for the wild-type protein and alanine mutations of the 
two catalytic glutamates, E148 and E259. 
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Figure S5. Circular dichroism wavelength scan of HjCel5A. 
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Figure S6. Thermal denaturation scan of HjCel5A. Thermal denaturation was monitored 
at 220 nm from 0 to 99 °C. Significant denaturation becomes detectable starting at 
approximately 65 °C. The apparent Tm is 71.5 °C. 
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CHAPTER 3 
 
Identifying Stabilizing Mutations in Hypocrea 
jecorina Cel5A through Examining Residue 
Conservation and Covariance 
 
This chapter is formatted for submission to the Journal of Molecular Biology.  

 
3.1 Abstract 
 
Consensus design is a canonical method of enhancing protein thermostability, but its 

efficacy may depend on the quality and quantity of available sequence data. We sought to 

uncover stabilizing consensus mutations in the primary endoglucanase Cel5A from 

Hypocrea jecorina (HjCel5A), a molecule with ~400 homologous sequences in the NCBI 

non-redundant protein database. Using this data, we constructed six multiple sequence 

alignments (MSAs) varying in the number, level of characterization, and percent identity 

to the query of the aligned sequences. The alignments were filtered with numerical 

thresholds to reveal highly conserved residues (high relative entropy) at positions able to 

mutate independently of other protein sites (low mutual information). Using this method, 

we identified five stabilizing point mutations, D13E (+3.0 °C), E53D (+2.7 °C), T57N 

(+1.1 °C), G189A (+0.4 °C), and G293A (+3.6 °C). Catalytic activity is either enhanced 

or maintained, suggesting that conserved stabilizing residues may be less deleterious to 

activity than stabilizing mutations identified through other means. Each alignment 

predicted a different subset of these stabilizing mutations. Thus, employing several 

alignments in the initial calculation may constitute a useful strategy for future 

engineering efforts. We also discuss alternative strategies for selecting residues based on 

conservation and covariance that may improve the methods showcased here.  
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3.2 Introduction 
 
Developing reliable protein thermostabilization techniques constitutes a longstanding 

goal of the scientific community. Benefits of heat tolerance include extended enzyme 

lifetime, improved reaction kinetics, and reduced protein loading [1]. Many proteins with 

scientific [2], industrial [3-5], or pharmaceutical [6, 7] potential, however, denature at 

temperatures below that required for their desired application. With the goal of rendering 

protein products more useful, much attention has focused not only on developing new 

stabilization strategies, but also improving upon existing methods. 

 

Consensus design is a commonly employed means of detecting stabilizing protein 

mutations. This semi-rational method entails assembling homologous sequences into a 

multiple sequence alignment (MSA) and mutating a protein of interest to the most 

prevalent amino acid at each position [8]. Thus far, a variety of proteins including 

immunoglobulin domains [9], tetratricopeptide repeats [10], an SH3 domain of a tyrosine 

kinase binding domain [11], GroEL minichaperones, a glucose dehydrogenase [5], p53 

[12], a WW domain [13], and many others have achieved enhanced stability using 

variations of this strategy. Moreover, consensus design has successfully contributed to 

stabilizing targets with real world applications; the technique has already aided the 

stabilization of two cellulases, enzymes employed in the biofuels industry [3, 14].  

 

Despite its widespread use, consensus design bears limitations. Generally, only about half 

of the mutations predicted from alignments are stabilizing [5, 8, 15], with many of the 

remaining half requiring compensatory modifications to maintain protein stability and/or 

function. In 2012, Sullivan et al. applied this concept to the consensus stabilization of 

triosphosphate isomerase [15]. Through pursuing conserved residues at positions able to 

mutate independently of other sites, the authors dramatically improved their predictive 

accuracy, successfully forecasting nine out of ten mutations as stabilizing. This task was 

accomplished using the information theoretic estimates relative entropy (RE) and mutual 

information (MI) to assess conservation and covariance, respectively, between positions 

in a protein sequence alignment. As this study was performed on a triose phosphate 
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isomerase (TIM), a highly-characterized model protein system, it remains unclear 

whether the method is effective on an enzyme with real-world applications and non-ideal 

parameters.  

 

We examined whether applying this strategy to HjCel5A, a key cellulase from the 

prodigious cellulase producer Hypocrea jecorina (anamorph Trichoderma reesei) [16], 

would yield stabilizing mutations with high accuracy. Along with related cellulases [1, 3, 

4, 17], HjCel5A is a biofuels industry target for thermostabilization. In order to 

synergistically degrade crystalline cellulose into sugars suitable for fermentation into 

liquid fuels, three classes of cellulases are necessary: 1) exoglucanases such as HjCel7A 

and HjCel6A that cleave two glucose unit sugars called cellobiose from the end of 

cellulose strands, 2) endoglucanases such as HjCel5A that cleave in the middle of 

cellulose strands at amorphous sites in the crystalline lattice, and 3) β-glucosidases such 

as Cel3A that cleave cellobiose into glucose monomers [18]. Recent efforts have yielded 

thermostable variants of HjCel7A and HjCel6A capable of functioning at 70 °C with 

activity that exceeds wild type (WT) [3, 4]. In addition, previous work has demonstrated 

that the Cel3A from Talaromyces emersonii can be expressed in H. jecorina and exhibits 

an optimal temperature of 71.5 °C. The WT HjCel5A holoenzyme, however, functions 

optimally at 60 °C and thermally denatures with half of the enzyme remaining folded 

(Tm) at 69.5 °C as measured through circular dichroism [19]. Thus, the need for highly-

active, thermostable HjCel5A variants is clear.  

 

Here we demonstrate that applying conservation (RE) and correlation (MI) filters to 

several alignments with a wide range of properties can successfully predict stabilizing 

mutations in Cel5A. We report five stabilizing mutations that either preserve or enhance 

activity in the target protein. In addition, we discuss variations on the method and identify 

parameters that may improve prediction accuracy for future experiments.  
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3.3 Results and Discussion 
 
Multiple Sequence Alignment Construction 

Assembling sequences into an alignment requires numerous subjective decisions. 

Variables include the number of sequences incorporated, the acceptable percent identity 

of chosen sequences to the query, and the treatment of truncated sequences that only 

align with a portion of the target sequence. As MSA content can dramatically alter 

predictions, these variable factors should be considered during alignment construction.  

 

Performing consensus design on HjCel5A faces three hurdles. First, the 444 homologous 

sequences with a percent identity between 30-90% to HjCel5A is small compared with 

more characterized proteins like TIM with homologous sequences numbering in the 

thousands. Examining background noise across MSAs of variable sizes suggests that a 

minimum of approximately 200 and 125 sequences is necessary to produce consistent RE 

and MI values, respectively [20, 21]. Several studies, however, have demonstrated that 

consensus design alone can identify stabilizing mutations from a handful of sequences [2, 

3, 8, 14]. As such, it is unclear whether the available HjCel5A sequence data is sufficient 

for consensus/covariance design. Second, larger HjCel5A alignments contain numerous 

gapped regions. The protein of interest contains two domains: 1) a thermostable cellulose 

binding module (CBM) that adheres to the substrate [22-24] and 2) a catalytic (α/β)8 

TIM-barrel [19]. Variable placement of these domains, as well as large non-conserved 

loop regions, can produce gapped regions that may either shift alignments out of register 

or reduce the amount of sequence data available at the gapped site. Both possibilities may 

potentially skew RE and MI calculations, reducing predictive accuracy. Finally, many of 

the retrieved sequences originate from uncharacterized proteins with little homology to 

HjCel5A. With a low average percent identity of ~40% to the query across the 444 

available sequences, alignments may be phylogenetically biased to predict mutations that 

are well-suited for distantly-related homologs, but incompatible with HjCel5A. 

Consensus design relies on the assumption that the frequency of a residue correlates with 

its contribution to protein stability. Alignments heavily biased by phylogenetic 

relationships disrupt this correlation leading to inaccurate predictions.  
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We constructed six HjCel5A alignments differing in the number and characterization 

level of incorporated sequences to capture the tradeoff between the number and the 

quality of aligned sequences. The largest MSA contains all 444 sequences retrieved 

through PSI-BLAST with 30-90% identity to the catalytic domain of HjCel5A. 

Sequences with less than 30% identity to the query are difficult to align with sufficient 

accuracy and were eliminated [25, 26]. This ensemble contains many sequences that 

poorly align with the query and was culled to remove putative cellulases/endoglucanases, 

precursors, and heavily gapped sequences yielding a 29-member alignment. Three 

additional MSAs containing 323, 233, and 195 varying in sequence identity and 

characterization of incorporated sequences were constructed to provide further MSA 

diversity. The smallest alignment contains 10 sequences either experimentally confirmed 

or reasonably expected to function as endoglucanases. Features of each MSA are 

summarized in Table I.  

 
Evaluating Conservation and Covariance 

Measures for conservation and covariance were applied to each position in the alignments 

as described in Sullivan et al. [15]. To probe for conservation, relative entropy (RE) was 

calculated using Eq. 1,    

 

RE = px ln
px
fx

!  (1) 

 

 where px is the frequency of residue x appearing at a particular position and fx is the 

frequency of residue x based on codon usage. In broad terms, the relative entropy is a 

value that measures how much the frequency of an observed occurrence diverges from 

the frequency expected if derived randomly from a neutral reference state [21]. To assess 

covariance, mutual information (MI), the relative entropy between the joint frequency of 

observing particular residues at two positions in a sequence and the expected frequency 

based on the separate probability of finding each residue at their respective sites, was 

calculated using Eq. 2 [27], 
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 (2) 

 
where px is the frequency of sidechain x appearing at position i, py is the frequency of 

sidechain y at position j, and pxpy is the frequency of sidechain x and y appearing at i and 

j simultaneously. Thresholds for acceptable mutations were based on those used by 

Sullivan et al. [15]. Highly conserved residues (RE > 1.42) at uncoupled sites (maximum 

MI ≤ 0.5) were chosen for further scrutiny. Mutations with an RE greater than 3 were 

also discarded. These relatively invariant sites may superficially exhibit low covariance, 

but may still require compensatory mutations to preserve protein folding and function.  

 

Experimental Screening and Validation of Thermostability Enhancing Mutations 

After applying the RE and MI constraints, a total of 21 unique mutations were predicted 

as stabilizing from the six alignments (Table II). Point mutants were constructed, proteins 

were secreted from Saccharomyces cerevisiae, and supernatants were screened for 

activity on Avicel, a microcrystalline cellulose powder, at a temperature two degrees 

higher (73 °C) than the WT Tm (Figure 1A). As a result of screening supernatant, high 

signal can indicate greater thermostability, activity, and/or expression, all desirable traits. 

Mutations D13E, E53D, T57N, I82L, V101L, G189A, and G293A demonstrated greater 

activity than WT and were selected for further characterization.  

 

The seven candidate HjCel5A point mutants were purified and pre-incubated at a gradient 

of temperatures for 10 min before adding Avicel to assess activity over 2 hours at 60 °C. 

Five mutations exhibited a T50, the temperature at which half of the total enzyme remains 

active, greater than WT (ΔT50, D13E = 3.0, ΔT50, E53D = 2.7, ΔT50, T57N = 1.1, ΔT50, G189A = 

0.4, and ΔT50, G239A = 3.6 °C) (Table III, Figure 1B, Figure S1). The two remaining 

mutations exhibited slightly lower stabilities than WT (ΔT50, I82L = -0.3, ΔT50, V101L = -0.4) 

and likely exhibit high activity on the screen due to increases in expression level (Table 

III).  

 

 

MI(i, j) = px,y ln
px,y
px pyj!i!
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Activity of Stabilizing Mutations 

To ensure that the stabilizing mutations do not adversely affect enzymatic activity, the 

five point mutants were tested for hydrolysis on Avicel after 2 hours at 60 °C (Figure 

1C). The T57N and G293A mutants show significantly elevated activity, while the 

activities of the remaining mutants are comparable to WT (Table III).  

 
Structural Analysis of Stabilizing Mutations\ 
 
The five stabilizing mutations are dispersed throughout the protein with two, one, and 

two in the core, surface, and boundary, respectively. Clues outlining the mechanisms 

through which the five consensus mutations stabilize HjCel5A emerge upon examining 

homologous structures (Table IV). In the following discussion, all residue numbering 

refers to that employed in the HjCel5A crystal structure (PDB ID 3QR3 [19]).  

 

D13E: The equivalent to D13E appears in the Thermoascus aurantiacus (TaCel5A) 

Cel5A (PDB ID 1GZJ [28]) and Rbcel1 (PDB ID 4EE9 [29]) structures (Figure 2A). In 

TaCel5A, the glutamate at position 13 maintains a preexisting hydrogen bond to the 

backbone nitrogen of G11, but additionally forms a hydrogen bond to the sidechain of a 

threonine at position 10. In HjCel5a and Rbcel1, alanine occupies position 10. The 

Rbcel1 structure, however, still contains E13, demonstrating that its stabilizing effect 

might arise simply through adding a carbon to the protein interior and improving core 

packing. Although efforts to mutate position 10 to serine resulted in highly reduced 

activity on the initial screen (Figure 1A), the site may be more accommodating to 

threonine. 

 

E53D: The region around position 53 differs dramatically in many HjCel5A homologs. In 

both the Bacillus agaradhaerens (BaCel5A) (PDB ID 7A3H [30]) and Bacillus subtilis 

(PDB ID 3PZT [31]) endoglucanase structures, an aspartate at this position forms a salt 

bridge with an arginine on a neighboring helix (Figure 2B). HjCel5A, however, does not 

contain a suitable electrostatic contact partner for an aspartate in this region. It is possible 

that introducing the E53D mutation may elicit a rearrangement, bringing the sidechain of 

K327 close enough to fill this role. Alternatively, the E53D mutation may function to 
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increase the distance between the carboxylate sidechain and neighboring residues D54 

and D316, reducing electrostatic repulsion. 

 
T57N: In TaCel5a (PDB ID 1GZJ [28]) and BaCel5A (PDB ID 7A3H [30]), the N57 

sidechain forms hydrogen bonds to the backbone oxygen of position 3 and the backbone 

nitrogen of position 5 on an adjacent β-strand (Figure 2C). The terminal oxygen of T57 in 

HjCel5A falls slightly short of making either of these contacts. Introducing the T57N 

mutation likely leads to greater stability in HjCel5A due to the addition of these two 

hydrogen bonds.   

 

G189A: In both HjCel5A and Rbcel1 (PDB ID 4EE9 [29]), the G189A mutation and its 

equivalent position appear at a short, solvent-exposed loop (Figure 2D). As such, the 

G189A mutation likely enhances stability through reducing backbone entropy. 

 

G293A: The G293A mutation lies behind W292, a residue involved in substrate binding 

[19] (Figure 2E). A293 appears in the TaCel5A structure, but the orientation of W292 

remains identical to that seen in the HjCel5A structure. The G293A mutation most likely 

allows activity to persist at high temperatures through forcing W292 to adopt a 

catalytically-relevant conformation.  

 
Prediction Accuracy 

When examined individually, each MSA successfully predicts at least one stabilizing 

mutation from eleven or fewer candidates (Table II). Out of seven mutations predicted 

from the 444-member MSA, two mutations were stabilizing (29% accuracy). The 323-, 

233-, and 195-member MSAs predicted eleven candidates each, with three stabilizing 

mutations predicted from the 323- and 233-sequence MSAs (27%) and two mutations 

predicted from the 195 member MSA (18%). Only one mutation out of four predicted 

from the 29-sequence MSA was ultimately stabilizing (25%). Finally, both candidates 

retrieved from the 10-member MSA provided benefits in stability (100% accuracy). In 

total, only five mutations out of 21 tested were found to be stabilizing (24%), a lower 

accuracy than that achieved by Sullivan et al. These results, however, still demonstrate a 

dramatic improvement over random mutagenesis, which typically yields one stabilizing 
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mutation out of every 103-104 constructs [8]. Moreover, the activity screen was 

performed on unpurified protein secreted into supernatant and fails to detect poorly 

expressing or inactive thermostable proteins. Direct assessment of thermostability may 

improve the accuracy of this method, a promising prospect for proteins lacking properties 

amenable to quick screening.  

 

Effects of Multiple Sequence Alignment Size 

MSA composition dramatically impacts the list of predicted mutations. As shown in 

Table I, the average percent identity to the query among incorporated sequences drops to 

34.5-39.5% among the larger alignments. The genetic diversity of these larger alignments 

reduces the amount of false consensus predictions that arise simply through shared 

evolutionary history (phylogenetic bias). We might surmise that the larger alignments 

would prove more effective at identifying stabilizing mutations. This presupposition is 

supported by evidence from the work of Jäckel et al. [32], which demonstrates that 

improvements to thermostability increase as phylogenetic bias in starting sequences 

decreases. However, unique stabilizing mutations appear as the number of incorporated 

sequences shrinks and the average percent identity of incorporated sequences to the query 

increases. Mutations E53D and G189A only appear when examining the 10-member 

endoglucanase alignment. One explanation for why certain stabilizing mutations might 

only appear in prediction lists generated from small MSAs with closely-related sequences 

is that these alignments may include useful data for hypervariable regions that would 

otherwise not appear in alignments of less related homologs. The two stabilizing 

mutations predicted from the 10-member alignment, however, appear at sites with 

relatively conserved secondary structure within the protein scaffold. It is possible that 

these mutations, while stabilizing, are not indicative of any trend and that the small 

number of sequences used in the alignment may lead to a high level of noise in 

conservation predictions.  

 

Although consensus design seeks to minimize phylogenetic information, Bloom and 

Glassman have demonstrated that examining evolutionary history can improve protein 

stabilization efforts [33]. Forming predictions using phylogenies instead of sequence 
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alignments includes a layer of information absent in consensus design. While consensus 

design relies on information of final evolved sequences, design by phylogeny also 

includes information concerning selective pressures embodied in substitution 

probabilities. Future studies may benefit from incorporating information from both 

sequence alignments and phylogenies to inform predictions.   

 

Predictive Efficacy of Relative Entropy  

To further investigate the efficiency of using RE to predict desirable stabilizing 

mutations, we constructed receiver operator characteristic (ROC) curves. ROC curves are 

routinely used in psychology, medicine, and increasingly data mining to illustrate the 

performance of a binary classifier system as its discrimination threshold varies. Curves 

are generated through plotting the fraction of true positives from the predicted positives 

versus the fraction of false positives from the true negatives over a range of binary 

threshold settings [34]. To determine whether applying a threshold for a particular value 

improves a prediction, a metric called the area under the curve (AUC) is calculated from 

the area between the curve and the diagonal (maximum AUC = 0.5). Any metric capable 

of discriminating between desired and unwanted members of a set with some level of 

accuracy will display an AUC greater than zero, allowing one to easily determine the 

efficacy of a particular forecasting method.  

 

Using a collection of 262 unique HjCel5A point mutations derived from various 

experiments (See Chapters 4-6), we calculated RE and MI for each mutation and pair of 

positions in the protein and used the information to construct ROC curves. The dataset 

flags mutations as true positives if they exhibit enhanced stability with adequate activity 

and expression as determined through the screening and testing methods described in this 

study. The ROC curves demonstrate that RE thresholds are capable of predicting stable, 

active mutations (Table V, Figure 3A). We do not expect MI to predict stabilizing 

mutations as it merely filters datasets to remove highly covering residues. This filtering 

ability may be evident for larger MSAs in that their ROC curves demonstrate a positive 

AUC only over less stringent thresholds (Table V, Figure 3B).  
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Further ROC curve analysis indicates that applying an MI threshold to a dataset improves 

prediction accuracy (Figure 3D and F, Table V). Over all MSA sizes, RE ROC curves 

computed from a dataset purged of mutations with an MI greater than 0.5 demonstrate an 

average increase in AUC of 0.18 units when compared to a similar curve lacking the MI 

constraint. Adding the MI constraint dramatically reduces the number of predicted 

mutations. While eliminating mutations using the RE threshold employed in this study 

yields six to eighteen mutations per alignment, removing mutations that did not meet both 

the RE and MI thresholds used in this study resulted in only two to eleven predicted 

mutations per MSA. While the smaller group contains a higher fraction of desirable 

mutations, only two or three stabilizing mutations appear per MSA. Slightly relaxing the 

covariance constraints to obtain a candidate pool size suitable for the available screening 

or testing method may increase the number of candidate mutations.  

 

Alternative Methods of Identifying Consensus Mutations 

Multiple means of assessing residue conservation exist. We have recapitulated the study 

performed by Sullivan et al. on HjCel5A using relative entropy as a metric for 

conservation. A recent HjCel7A engineering effort by Komor et al., evaluates 

conservation through assuming that the most probable distribution of amino acids can be 

modeled with Boltzmann’s law [3]. In this classic approach developed by Steipe et al.[8], 

the statistical free energy is derived from mutational frequencies:   

 

 (3) 

 

where px is the frequency of the mutation and fx is the frequency of the original amino 

acid at a particular position. We computed ΔΔG values for the 262 HjCel5A point 

mutation dataset and evaluated the predictive properties of this metric with ROC curves 

(Figure 3C). In generating these curves, we accepted residues with ΔΔG values lower 

than the selected threshold. ΔΔG is highly predictive, generating an average AUC of 0.23 

versus 0.18 achieved with RE (Table V). Moreover, computing the ROC curve using the 

culled dataset (MI ≤ 0.5) increases predictive accuracy (Figure 3E and F). Under these 

!!G = "RT ln px
fx



 51 

conditions, the ΔΔG values yield an average AUC of 0.37 versus 0.26 for RE. Thus, 

using either ΔΔG values or RE as a conservation constraint can be used as measure of 

conservation in the thermostabilization strategy pioneered by Sullivan et al. [15]  

 

We surmise that ΔΔG thresholds are slightly more predictive than RE in part because the 

protein of interest originates from a filamentous fungus rather than a model organism. RE 

uses codon frequency as a reference state. We employed the S. cerevisiae codon table due 

to the small number of observations used to create a H. jecorina table [35]. While our 

results might improve through using the H. jecorina data, efforts to stabilize proteins 

from organisms without adequate sequence data may suffer from similar problems.  

 

Optimal Consensus/Correlation Thresholds 

Using the 262-mutation dataset, we determined optimal RE, MI, and ΔΔG cutoffs for the 

conditions presented in this study (Table V). After excluding noisy data from the 10 and 

29-sequence MSAs, the average optimal cutoffs, values that maximize the number of 

predicted true positives while minimizing false positives, for RE and ΔΔG in isolation are 

0.01 and 0.8 kcal mol-1, respectively. For this dataset, the average RE is ~0.2 and the 

average ΔΔG is ~3.5 kcal mol-1. Optimal RE and ΔΔG thresholds shift to more stringent 

cutoffs when the curves are computed on datasets filtered by MI. Additionally, the 

optimal RE and ΔΔG thresholds appear to vary with MSA size upon MI prefiltering. For 

this system, the optimal MI cutoff yielding the largest AUC for RE and ΔΔG curves 

generated from any size MSA is 0.3-0.5 (Table V, Supplementary Table I), although a 

cutoff anywhere between 0.3 and 0.7 improves accuracy (Figure 4 A and B). As 

previously discussed, a tradeoff exists between accuracy and the number of mutations 

predicted. Although applying the MI constraint reduces the number of false positives in 

the predicted set to a considerable degree, the total quantity of stabilizing mutations 

present in this pool is low. After applying the MI ≤ 0.5 constraint to the 444-sequence 

MSA, only 4 stabilizing mutations remained in the pool of candidates. Thus, the ideal 

thresholds will vary depending on the desired number of stabilizing mutations. In 

addition, future experiments on systems beyond HjCel5A are necessary to determine if 

these values are universal or vary when applied to different proteins. 
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3.4 Summary and Conclusions 
 

We have provided further evidence that filtering alignments for consensus mutations at 

non-covarying sites can rapidly identify stabilizing mutations in a protein of industrial 

significance. Complete site-saturation mutagenesis of HjCel5A would require 

constructing and screening 6232 mutants, an intractable task without robotic assistance. 

Upon application of both RE and MI constraints, however, only 21 unique mutations 

were predicted across all six examined MSAs with five experimentally verified as 

improving stability while maintaining activity. Additionally, sequence data for HjCel5A, 

while abundant, demonstrates a low average identity to the protein of interest and 

contains large gapped regions that frustrate alignment attempts. These results reinforce 

the robustness of the technique beyond ideal conditions.  

 

In addition to revealing five stabilizing mutations, we have also determined optimal 

parameters for several variables inherent in the process. We demonstrate that: 

 

1) ΔΔG values can be substituted for RE to assess conservation in the method 

pioneered by Sullivan et al.  

 

2) The highest accuracy is achieved using an MI threshold of 0.4 in combination 

with filters for conservation. To increase the number of discovered mutations, this 

value can be relaxed to about 0.7 or 0.9 and without dramatically compromising 

effectiveness.   

 

This study seeks to answer some of the questions Sullivan et al. could not address due to 

a limited dataset, namely ideal limits for conservation and correlation and whether 

varying degrees of taxonomic bias in the MSA can change the list of predicted mutations. 

Although these results are valid for the protein and methods used in this study, additional 

tests are necessary to determine whether these trends hold beyond the HjCel5A system.   



 53 

3.5 Materials and Methods 
 

MSA Construction and Analysis 

Sequences homologous to the catalytic domain of HjCel5A (from GVR to CLARKG) 

were retrieved using the Position-Specific Iterated BLAST (PSI-BLAST) [36] database 

search applied to the non-redundant protein sequences National Center for Biotechnology 

Information (NCBI) database. Constraints on the percent identity of the sequences to the 

query were introduced using the formatting options feature within the BLAST tool. 

Relative entropy was calculated using the yeast codon probabilities from Sullivan et al. 

[15]. Other considerations necessary to determine RE, MI, and ΔΔG are described in the 

results section.  

 

To determine the background level of noise in MI calculations, residues in were 

scrambled within alignment columns to eliminate true covariance. MI values were then 

recalculated to determine the amount of covariance at each site attributable to random 

chance. The number of observations exceeding the noise threshold at each site appears in 

Table II and in the supplementary files associated with this thesis.  

 

Cel5A Plasmid Construction 

The Cel5A gene was synthesized by DNA 2.0 (Menlo Park, CA, USA) with codon 

frequency optimized for S. cerevisiae. The construct consists of an αMFpp8 secretory 

leader sequence (GenBank BK006949 193648-194145) followed by a region coding for 

the CBM from the H. jecorina CBM (GenBank ABA64553.1) preceded by an extra ‘AR’ 

introduced during cloning. This DNA sequence is: 

 

5’-

GGCTAGACAACAAACAGTATGGGGTCAATGTGGTGGTATTGGATGGTCTGGT

CCGACAAACTGTGCTCCAGGCTCGGCATGTTCGACACTAAATCCATATTACG

CTCAATGTATCCCTGGCGCTACCACTATAACAACTTCTACTAGACCACCTTCT

GGTCCGACGACAACTACAAGGGCTACCTCAACCTCTTCCTCTACACCCCCTAC

TTCCAGC – 3’ 
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The additional ‘AR’ sequence does not significantly affect any protein properties. The 

CBM region is then followed by an HjCel5A catalytic domain sequence identical to 

GenBank entry JN172972.1. This construct contains a short linker and an N-terminal His-

tag. The assembled gene was cloned into the yeast expression vector YEp352/PGK91-1-

αss between the BglII and MboI restriction sites using the Gibson assembly method [37]. 

Point mutations were introduced using the QuikChange Lightning Site-Directed 

Mutagenesis Kit from Agilent Technologies (Santa Clara, CA, USA) using primers 

designed with the online tool provided by Agilent: 

 

www.genomics.agilent.com/primerDesignProgram.jsp.  

 

Following sequence verification, clones were transformed into YDR483W BY4742 

ΔKre2 S. cerevisiae cells using the method outlined in [38].  

 

Thermostability/Activity Screen 

S. cerevisiae carrying the HjCel5A plasmid were inoculated into 1 mL SD-Ura media in 

24-well plates and allowed to grow overnight at 30 °C with shaking at 200 rpm. 4 mL of 

YPD were added and the cells were allowed to shake at 30 °C for an additional 48 hours 

before harvesting the supernatant through centrifugation. 5 µL of supernatant, 45 µL of 

YPD, and 60 µL of a 1.5% Avicel PH-101 (Sigma-Aldrich) slurry in 50 mL sodium 

acetate, pH 5.0 (cellulase buffer) were combined in a 96-well PCR plate and incubated 

for 1.5 hours to allow the CBM to bind to the substrate. The bound enzymes were washed 

three times with cellulase buffer and incubated at 73 °C for 2 hours. Following 

hydrolysis, 50 µL of the reaction supernatants were tested for reducing sugar 

concentrations via a modified Park-Johnson assay [39]. All screen samples were run in 

duplicate.  

 

Park-Johnson Assay 

To detect reducing end release, 50 µL of sample were combined with 100 µL of reagent 

A (0.5 g L-1 K3Fe3(CN)6, 34.84 g L-1 PO4K2H, pH 6.0) and 50 µL of reagent B (5.3 g L-1 
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Na2CO3, 0.65 g L-1 KCN). In experiments resulting in high amounts of reducing ends, 25 

µL of sample is combined with 175 µL of the 2A:1B mixture. After incubating the 

mixture at 95 °C for 15 minutes in a PCR block, the plate is cooled on ice for five 

minutes. In a flat well plate, 90 µL of reagent C (2.5 g L-1 FeCl3, 10 g L-1 polyvinyl 

pyrrolidone, 2 N H2SO4) is combined with 180 µL of the heat treated sample. The sample 

is then allowed to incubate for five minutes before measuring absorbance at 595 nm.  

Enzyme Purification 

Yeast colonies carrying the HjCel5A plasmid were inoculated into 6 mL of SD-Ura 

media and grown at 30 °C with shaking at 200 rpm. The preculture was then added to 

YPD and incubated for 48 hours. Following centrifugation, the supernatant was subjected 

to an 80% ammonium sulfate precipitation. The mixture was spun for 20 minutes at 8 kg 

and the pellet resuspended in 20 mL of lysis buffer (50 mM NaH2PO4 pH 7.4, 300 mM 

NaCl, 10 mM imidazole). Following a pH adjustment to 7.4, the protein was nutated at 

4°C with 1 mL of Ni-NTA resin (Qiagen) conditioned with lysis buffer for 1 hour. The 

mixture was loaded into a gravity column, washed with 20 mL of lysis buffer, 20 mL of 

wash buffer (50 mM NaH2PO4 pH 7.4, 300 mM NaCl, 20 mM imidazole), and eluted 

with 6 mL of elution buffer (50 mM NaH2PO4 pH 7.4, 300 mM NaCl, 250 mM 

imidazole). After concentrating the elution to 0.5 mL, the protein was further purified and 

buffer exchanged into cellulase buffer through size exclusion chromatography. Protein 

concentrations were determined through measuring absorbance at 280 nm (ε280 = 81950 

cm-1 M-1). 

 

T50 Assay 

To assess thermostability via enzymatic activity, 40 µL of protein at a concentration of 

0.25 µM was added to a PCR plate in triplicate for each of 12 temperatures. Enzyme was 

pretreated from 60-80 °C for ten minutes, then allowed to cool for an additional five 

minutes. 60 µL of a 1.5% Avicel slurry in cellulase buffer was added to each well and the 

plates were incubated at 60 °C for an hour. The plates were promptly cooled for 5 

minutes on ice then centrifuged for 5 minutes to pellet the Avicel. Activity assessment 

with the Park-Johnson assay immediately followed using a 50 µL sample volume. To 

compare T50 values, the data were scaled from 0 to 1 using the following equation:  
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Fraction Active= (AT ! Amin )
(Amax ! Amin )

 

 

In this equation, AT is the activity as measured by A595 at a particular temperature, Amin is 

the lowest observed activity, and Amax is the highest observed activity for a particular 

protein. T50 values were derived from generating curve fits using the Hill equation:  

 

Curve Fit= T n

T n +mn  

 

Here n is the Hill coefficient, m is the T50, and T is the temperature. Values for n and m 

were solved using the curve fit tool in MATLAB [40]. Because the T50 can fluctuate by 

approximately 1 °C depending on fluctuations in Avicel milling, subtle changes in 

cooling time, and PCR plate edge effects, all samples were run simultaneously with a WT 

standard. The ΔT50 values are calculated as T50, mut -  T50, WT. 

 

Single-Point Activity Assay 

To rigorously determine enzyme activity, 40 µL of enzyme at 0.5 µM was combined with 

60 µL of 1.5% Avicel in a PCR plate. The mixture was incubated at 60 °C for two hours to 

allow hydrolysis to proceed. After cooling the plate on ice for 5 minutes, 100 µL of 0, 50, 

100, 150, 200, 250, 300, and 350 µM cellobiose standards were added to the plate in 

triplicate. The plate was centrifuged to pellet the Avicel and 25 µL of the samples were 

extracted to perform a Park Johnson activity assay. All samples were tested in triplicate. 
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3.6 Tables and Figures 
 
Table I. Multiple sequence alignment characteristicsa 

a For alignment data in FASTA format, see attached files accompanying this thesis 
  

MSA 
Size 

Accepted  
Identity (%) 

Average 
Identity (%) 

Level of Characterization 
Required 

Gaps 
Removed 

444 30-90 39.8 All Accepted No 
323 30-60 34.6 All Accepted No 
233 30-60 35.8 Partial/Hypothetical Removed No 
195 30-90 34.5 Partial/Hypothetical Removed Yes 
29 30-90 35.5 Precursors/Putatives Removed Yes 
10 30-100 74.0 Marked as Endoglucanase Yes 
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Table II. RE and MI values for mutations predicted as stabilizing 
Predicted 
Mutation RE Max MI #MI>Noiseb ΔΔG (kcal mol-1)c 

444 Sequences 
T57Na 2.36 0.24 141 -2.7 
I82L 1.45 0.48 241 -3.5 

V101L 1.48 0.29 199 -1.0 
Y135F 2.46 0.49 206 -0.8 
W142I 1.61 0.48 241 -3.0 
Q186T 1.61 0.48 221 -3.1 
G293Aa 1.95 0.31 221 -2.0 

323 Sequences 
D13Ea 2.12 0.46 208 -1.5 
T57Na 2.41 0.23 115 -2.5 
N70P 2.34 0.45 224 -2.6 
I82L 1.52 0.48 221 -3.9 

V101L 1.46 0.33 180 -0.9 
Y135F 2.51 0.45 186 -1.1 
V164A 1.86 0.45 220 -1.7 
V165I 2.06 0.34 3 -0.9 
Q186T 1.66 0.34 201 -5.2 
A255G 2.16 0.46 213 -1.0 
G293Aa 2.04 0.24 154 -2.0 

233 Sequences 
A10S 1.77 0.38 194 -1.0 
D13Ea 2.19 0.50 189 -1.9 
T57Na 2.4 0.31 98 -2.4 
V101L 1.48 0.43 154 -0.8 
Y135F 2.49 0.48 178 -1.1 
V165I 2.15 0.38 147 -1.1 
Q186T 1.61 0.43 200 -4.9 
A255G 2.2 0.44 185 -1.1 
G293Aa 2.13 0.24 106 -2.2 
V302Y 2.59 0.49 192 -13.6 
T308P 2.59 0.39 162 -4.6 

195 Sequences 
A10S 1.86 0.39 178 -1.1 
N33P 2.43 0.48 158 -13.6 
T57Na 2.39 0.34 118 -2.5 
V101L 1.49 0.49 163 -0.6 
Y135F 2.52 0.46 184 -1.2 
V165I 2.17 0.42 147 -1.1 
Q186T 1.61 0.48 201 -4.7 
A255G 2.29 0.43 181 -1.3 
G293Aa 2.2 0.23 74 -2.3 
V302Y 2.82 0.35 164 -13.7 
T308P 2.86 0.20 46 -5.2 
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Table II Cont’d. RE and MI values for mutations predicted as stabilizing  

Mutation RE Max MI #MI>Noiseb ΔΔG (kcal mol-1)c 
29 Sequences 

K32P 2.94 0.38 5 -13.6 
T57Na 2.65 0.17 0 -3.3 
N205D 2.48 0.41 26 -1.8 
I276L 1.77 0.5 24 -13.7 

10 Sequences 
E53Da 2.53 0.06 93 -13.7 

G189Aa 2.54 0.06 88 -13.7 
a Indicates a thermostabilizing mutation. For values of all possible 
mutations, please consult the supplemental files attached to this thesis.  
b Indicates the number of MI values greater than the background noise 
calculated for each position (see materials and methods).  
a The value calculated as described by equation 3 (see page 50). 
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Table III. Stabilizing Mutations 

Mutations T50,WT
a 

(°C) 
T50,mut 

(°C) 
ΔT50 
(°C) 

Activity  
(µM Cellobiose 

Equivalents) 

ΔActivity  
(µM Cellobiose 

Equivalents) 

Expression 
Level Relative 

to WT 
Location 

WT - - - 193.7±12.23 0.0 - - 
D13E 68.6±0.3 71.5±0.4 3.0±0.5 184.4±1.15 -9.3 1.6 Core 
E53D 68.7±0.3 71.4±0.6 2.7±0.7 201.9±4.91 8.2 0.9 Boundary 
T57N 71.0±0.0 72.1±0.0 1.1±0.0 240.7±4.08 47.0 0.3 Surface 

G189A 70.8±0.3 71.2±0.3 0.4±0.4 190.3±3.37 -3.4 1.2 Boundary 
G293A 70.7±0.1 74.3±0.1 3.9±0.2 221.0±1.75 27.3 0.8 Core 

I82L 69.1±0.4 68.9±0.3 -0.2±0.5 N/A N/A 1.6 Core 
V101L 68.8±0.1 68.3±0.3 -0.5±0.3 N/A N/A 2.3 Core 

 

a The T50 of WT HjCel5A fluctuates by 1 °C due to variables described in the materials and methods section. All mutants were 
assayed simultaneously with a WT standard.  
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Table IV. HjCel5A homologous crystal structures  

Originating Organism Protein Name PDB ID 
Percent 
Identity 

(%) 
Hypocrea jecorina HjCel5A 3QR3 [19] 100 

Thermoascus aurantiacus TaCel5A 1H1N [41],1GZJ [28] 34 
Uncultured Bacterium RBcel1 4EE9 [29] 24 

Piromyces rhinzinflatus Eg1A 3AYR [42] 17 
Pyrococcus horikoshii Endocellulase 3QHO[43] 15 

Acidothermus cellulolyticus Endocellulase E1 1ECE [44] 17 

Thermotoga maritima TmCel5A 3MMU [45], 3AOF [46], 
3AZR[46] 20, 16 

Clostridium cellulovorans Endoglucanase D 3NDYa, 3NDZa 20, 19 
Fervidobacterium nodosum FnCel5A 3NCOa 17 

Prevotella bryantii Endoglucanase 3VDHa 25 
Clostridium cellulolyticum celCCA 1EDG [47] 21 

Paenisbacillus pabuli GH5 Xyloglucanase 2JEP [48] 17 
Bacillus sp. Alkaline Cellulase K 1G0C [49] 16 

Bacillus subtilis Endoglucanase 3PZT [31], similar to 1LF1 23 
Candidia Albicans Exoglucanase 3N9K [50] 15 
Thermobifida fusca TfCel5A 2CKSa, 2CKRa 24 

Clostridium thermocellum CelC 1CEC [51], 1CE0 [52] 18 
Bacillus agaradhaerens BaCel5A 7A3H [30] 21 
Thermomonospora fusca β-Mannase 1BQC [53] 14 

Erwinia chrysanthemi Cel5 1EGZ [54] 16 
a To be published 
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Table V. AUC values and optimal thresholds 
Number of 
Sequences 444 323 233 195 29 10 

Area Under the Curve (AUC) 
RE 0.16 0.22 0.15 0.14 0.19 0.20 
MI 0.03 0.02 0.04 0.02 -0.04 -0.13 
ΔΔGg 0.23 0.25 0.19 0.20 0.25 0.27 

RE (MI ≤ 0.5)a 0.42 0.39 0.39 0.36 0.44 0.16 
ΔΔG (MI ≤ 0.5)b,g 0.41 0.42 0.34 0.33 0.39 0.12 

Optimal Thresholds 
RE 0.02 -0.02 -0.02 0.03 -0.02 0.04 

MI (w/RE)c 0.4 0.3 0.3 0.5 0.5 0.4-0.6 
MI (w/ ΔΔG)d 0.4 0.3 0.3 0.3 0.2-0.3 ≥5 

ΔΔG 0.50 0.60-0.70 0.40 1.00 0.00-0.20 1.80-2.10 
RE (MI ≤ 0.5)e 0.03-0.04 0.06-0.07 0.24-0.47 0.18-0.52 2.33-2.67 0.10-2.47 
ΔΔG (MI ≤ 0.5)f,g -0.40 -0.40 -0.10- -0.40 -0.10- -0.30 -3.30- -1.90 2.1-0.00 

a The AUC from an RE ROC curve computed on a dataset filtered with MI. 
b The AUC from a ΔΔG ROC computed on a dataset filtered with MI. 
c The MI threshold giving the largest AUC from an RE ROC curve. 
d The MI threshold giving the largest AUC from a ΔΔG ROC curve. 
e The RE threshold giving the largest fraction of true positives/false positives while fixing 
the MI threshold. 
f The ΔΔG threshold giving the largest fraction of true positives/false positives while 
fixing the MI threshold. 
g The ΔΔG units are kcal mol-1. 
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Figure 1. Identifying stabilizing consensus mutations. (A) Thermostability/activity screen performed on HjCel5A point mutants. WT 
is shown in green in all panels. Variants with activity exceeding that of WT, indicated by the dashed line, were purified and tested for 
thermostability. (B) Activity of HjCel5A point mutants after treatment over a range of temperatures. Data are shown for WT (green 
circles), D13E (pink circles), E53D (dark blue diamonds), T57N (light blue triangles), G189A (yellow triangles), and G293A (orange 
squares). The dashed line indicates the point at which 50% of the initial activity persists (T50). Although each mutant was tested 
alongside WT to accurately assess (ΔT50), only one WT trial is displayed for clarity. See Supplementary Figure 1 for additional data. 
(C) Activity of HjCel5A point mutants versus ΔT50. Data are shown for WT (green circle), D13E (pink circle), E53D (dark blue 
diamond), T57N (light blue triangle), G189A (yellow triangle), and G293A (orange square). Values for both the change in activity and 
ΔT50 are reported with respect to WT. 
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Figure 2. Structural analysis of stabilizing mutations. WT is shown in green in all panels. Numbering is retained from the original PDB 
files. (A) Equivalent residues at the D13E mutation site in TaCel5A (magenta, 1GZJ [28]) and RBcel1 (pink, 4EE9 [29]). The TaCel5A 
structure contains a threonine at position 10 that serves as a hydrogen bonding partner for E13. (B) Equivalent residues at the E53D 
mutation site in a B. subtilis endoglucanase (dark blue, 3PZT [31]). Although D85 and R326 form a salt bridge in the B. subtilis structure, 
HjCel5A lacks an adjacent arginine. (C) The T57N mutation site compared with TaCel5A (light blue, 1GZJ [28]). N46 forms two 
backbone hydrogen bonds in the TaCel5A structure. (D) A residue equivalent to G189A in Rbcel1 (yellow, 4EE9 [29]). (D) The 
equivalent residues at the G293A mutation site in TaCel5A (orange, 1GZJ [28]). W292/W273 serves as a substrate binding residue while 
E148 and E259 comprise the catalytic machinery of the enzyme. (F) Locations of the five stabilizing mutations, D13E (pink), E53D 
(dark blue), T57N (light blue), G189A (yellow), and G293A (orange).  
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Figure 3. Receiver Operator Characteristic curves. (A-E) Receiver operator curves are shown with data for each alignment size: 444 
sequences (blue), 323 sequences (orange), 233 sequences (purple), 195 sequences (black), 29 sequences (gray), and 10 sequences 
(dashed gray). The ROC plots were generated through comparing the number of true positives with the number of false positives while 
varying thresholds for (A) relative entropy, (B) mutual information, and (C) ΔΔG. ROC curves are also shown for (D) relative entropy 
and (E) ΔΔG on datasets only containing mutations at non-correlated sites (MI ≤ 0.5). (F) Area under the curve (AUC) versus the number 
of sequences in the alignment plotted for relative entropy (blue triangles), relative entropy (MI ≤ 0.5) (purple triangles), ΔΔG (green 
squares), ΔΔG (MI ≤ 0.5) (black squares), and mutual information (orange diamonds). 
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Figure 4. Determining an optimal MI threshold. Area under the (A) RE or (B) ΔΔG ROC curve (AUC) versus the MI threshold. Data are 
shown for each alignment size: 444 sequences (blue), 323 sequences (orange), 233 sequences (purple), 195 sequences (black), 29 
sequences (gray), and 10 sequences (dashed gray). 
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3.7 Supplementary Tables and Figures 
 
Supplementary Table I. RE and ΔΔG AUC values for various MI thresholds  

Number of 
Sequences 444 323 233 195 29 10 

Area Under the Curve (AUC) 
Mutual Information 0.03 0.02 0.04 0.02 -0.04 -0.13 

Relative Entropy 0.16 0.22 0.15 0.14 0.19 0.20 
RE (MI ≤ 0.1) - - - - - - 
RE (MI ≤ 0.2) - - - - 0.50 - 
RE (MI ≤ 0.3) 0.44 0.50 0.50 0.43 0.50 - 
RE (MI ≤ 0.4) 0.48 0.46 0.44 0.38 0.41 0.12 
RE (MI ≤ 0.5) 0.42 0.40 0.39 0.36 0.44 0.16 
RE (MI ≤ 0.6) 0.40 0.27 0.34 0.35 0.35 0.20 
RE (MI ≤ 0.7) 0.30 0.27 0.35 0.35 0.34 0.24 
RE (MI ≤ 0.8) 0.28 0.23 0.30 0.28 0.35 0.23 
RE (MI ≤ 0.9) 0.27 0.23 0.28 0.28 0.15 0.26 
RE (MI ≤ 1.0) 0.23 0.24 0.29 0.26 0.17 0.20 
RE (MI ≤ 1.5) 0.18 0.22 0.25 0.24 0.19 0.17 
RE (MI ≤ 5.0) 0.18 0.22 0.26 0.24 0.19 0.20 

RE (MI ≤ 10.0) 0.18 0.22 0.26 0.24 0.19 0.20 
ΔΔG 0.23 0.25 0.19 0.20 0.25 0.27 

ΔΔG (MI ≤ 0.1) - - - - - -0.01 
ΔΔG (MI ≤ 0.2) - - - - 0.5 -0.01 
ΔΔG (MI ≤ 0.3) 0.44 0.50 0.50 0.43 0.5 -0.01 
ΔΔG (MI ≤ 0.4) 0.48 0.43 0.44 0.38 0.41 0.05 
ΔΔG (MI ≤ 0.5) 0.41 0.42 0.34 0.33 0.39 0.12 
ΔΔG (MI ≤ 0.6) 0.41 0.34 0.25 0.28 0.41 0.16 
ΔΔG (MI ≤ 0.7) 0.30 0.32 0.25 0.27 0.39 0.26 
ΔΔG (MI ≤ 0.8) 0.32 0.25 0.27 0.27 0.35 0.24 
ΔΔG (MI ≤ 0.9) 0.33 0.25 0.27 0.27 0.21 0.25 
ΔΔG (MI ≤ 1.0) 0.30 0.24 0.29 0.29 0.23 0.25 
ΔΔG (MI ≤ 1.5) 0.26 0.21 0.25 0.26 0.25 0.26 
ΔΔG (MI ≤ 5.0) 0.26 0.21 0.25 0.26 0.25 0.27 
ΔΔG (MI ≤ 10.0) 0.26 0.21 0.25 0.26 0.25 0.27 
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Figure S1. T50 plots of all tested point mutants. The fraction active after a 10 minute heat treatment from 60-80 °C is shown 
for mutants (A) D13E, (B) E53D, (C) T57N, (D) G189A, (E) G293A, (F) 182L, and (G) V101L. WT and the point mutant are 
shown in green and blue, respectively.  
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CHAPTER 4 
 
Identifying Stabilizing Mutations in Hypocrea 
jecorina Cel5A Through Computational Methods: 
Core Repacking and Helix Dipole Surface 
Stabilization 
 
This chapter is formatted for submission to the Journal of Molecular Biology. 
 
4.1 Abstract 
 
Canonical methods of computational protein thermostabilization often seek to stabilize 

specific structural regions. These methods include, but are not limited to, core 

stabilization through hydrophobic repacking or engineering more stable protein surfaces 

through methods such as helix dipole stabilization. While several studies have attempted 

to incrementally improve these methods, little attention has focused on directly 

comparing their effectiveness. Here we identify stabilizing mutations in the primary 

endoglucanase from Hypocrea jecorina (HjCel5A) using two computational methods: 1) 

core repacking and 2) helix dipole stabilization. We identify two and nine stabilizing 

mutations from the core repacking and helix dipole stabilization strategies, respectively, 

that may be useful for industrial or future research purposes. While the helix dipole 

stabilization strategy revealed more stabilizing mutations than the core repacking method, 

many of these mutations only marginally improved protein thermostability. We 

demonstrate that these mutations can further improve thermostability and protein 

expression when incorporated into a combination construct. Finally, analysis of a 262-

member HjCel5A point mutation database suggests that the helix termini, and the 

surface/boundary region in general, appear more amenable to mutation than the core of 

the protein. Highly stabilizing mutations, however, appear to evenly fall between the core 

and boundary.   
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4.2 Introduction 

 

The thermostabilization of useful proteins is a longstanding goal in the field of 

biochemistry. Improving resistance to thermal degradation not only preserves enzymatic 

activity at elevated temperatures, but may also confer increased resistance to proteolysis 

[1] and increase half-life across a thermal range [2]. When used in industrial applications, 

higher operating temperatures may also reduce bacterial contamination and diminish 

solution viscosity, resulting in lower operating costs [3]. Despite these numerous benefits, 

a universal strategy for rapidly generating thermostable protein variants remains elusive. 

Studying protein thermostability may provide key insights towards improving current 

stabilization methods, ultimately rendering protein products more suitable for real-world 

applications.  

 

In the past two decades, computational protein design has become a canonical means of 

generating thermostable protein variants. This design strategy attempts to stabilize the 

folded structure while discouraging the unfolded state. It has long been accepted that the 

hydrophobic effect is the principle driver of protein folding [4], i.e., proteins primarily 

fold to bury hydrophobic groups in a solvent-shielded “core,” thereby minimizing the 

unfavorable disruption of aqueous polar contacts. As such, many rotamer optimization 

algorithms focus on mutating the protein core to increase hydrophobic sidechain content 

or improve packing. This strategy has led to the successful stabilization of RNase HI [5], 

λ repressor [6], and streptococcal protein G β1 [7]. Complete protein redesign projects 

have demonstrated that thermostable variants display an enrichment of nonpolar residues 

in RNA-binding U1A and procarboxypeptidase (activity was not assessed) [8], lending 

further credence to this concept. Moreover, core repacking studies on Bacillus subtilis 

lipase A [9] demonstrates that the technique can simultaneously improve stability and 

function.  

 

Despite these findings, several studies suggest that better packing does not necessarily 

lead to higher thermostability. Comparisons of certain highly stable proteins (the 

glyceraldehyde-3-phosphate dehydrogenase from Sulfolobus solfataricus [10], 
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isopropylmalate dehydrogenase [11], and Sulfolobus acidocaldarius superoxide 

dismutase [12]) with their mesostable counterparts demonstrate no change in packing 

volume [13]. Furthermore, creation of a 32 Å3 cavity in Thermus thermophilus 

isopropylmalate dehydrogenase had no effect on thermostability [11].  

 

Recent studies increasingly indicate that many stabilizing mutations reside beyond the 

core [14]. Malakauskas et al. were able to design a variant streptococcal protein G β1 

with a Tm in excess of 100 °C through targeting the boundary region, the area between 

the core and surface of the protein [15]. Marshall et al. improved the thermostability of 

the Drosophila engrailed homeodomain through considering N-capping and helix dipole 

effects, strategies that target the protein surface [16]. In addition, Joo et al. generated 

thermostable variants of a Bacillus circulans xylanase with activity similar to wild type 

(WT) by applying a cavity-filling method to surface pockets [17]. While these studies 

demonstrate that thermostable mutations exist beyond the core, they do not comparatively 

examine whether probing specific protein regions over others will yield more fruitful 

results.  

 

Here, we utilize computational rotamer optimization to compare two methods of protein 

stabilization that target the core (core repacking) and the surface/boundary (N-capping 

and helix dipole stabilization) within the same protein system. Experiments were 

conducted on the primary endoglucanase (HjCel5A) from Hypocrea jecorina (anamorph 

Trichoderma reesei) [18]. This cellulase, an enzyme capable of hydrolyzing cellulose 

into smaller components, is a thermostabilization target for cellulosic biofuel production 

[19]. In addition to revealing two core and nine helix-dipole-stabilizing mutations in 

HjCel5A, we also investigate whether these mutations diminish catalytic activity and 

expression. Furthermore, we use the results generated in this study and stability 

information in a database of 262 HjCel5A point mutations to discern patterns in the 

spatial distribution of stabilizing mutations.  
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4.3 Results and Discussion 
 

Residue Classification 

In preparation for computational design, we first classified residues in the 2.1 Å HjCel5A 

crystal structure (PDB ID 3QR3 [19]) according to their proximity to the solvent-exposed 

surface. In total, 131, 118, and 80 residues were identified as part of the core, boundary, 

and surface, respectively. As expected, most of the core residues reside in the interior of 

the α/β barrel while the boundary and surface residues primarily decorate the solvent-

exposed helical faces (Figure 1).   

 

Core Repacking Calculation  

Our strategy for identifying stabilizing core mutations relies on computationally mutating 

core positions to improve hydrophobic packing. Before performing a repacking 

calculation, one must chose positions within the protein for examination. Core residues 

forming contacts with the protein backbone (8, 46, 81, 85, 105, 128, 157, 160, 169, 196, 

219, 222, 241, 253, 285, 286, 289, 296, 304, 305, 306, 317, 326) were discarded. 

Residues important for catalysis and their nearby neighbors (102, 259, 288, 293), 

positions near disulfide-bonded cysteines (64), prolines (41, 149,181, 307), and glycines 

with glycine-specific Φ and Ψ angles were also removed (11).  In total, 57 design 

positions  (5, 6, 7, 9, 10, 12, 20, 31, 47, 56, 58, 59, 61, 63, 65, 69, 82, 88, 89, 100, 101, 

103, 107, 124, 127, 132, 141, 143, 144, 145, 158, 161, 165, 178, 180, 182, 188, 191, 213, 

214, 215, 217, 221, 255, 256, 257, 261, 262, 272, 275, 276, 290, 291, 319, 320, 324, 325) 

were chosen from the initial pool of 131 core residues.  

 
Our computational design algorithm functions through iteratively generating series of 

alternative sidechain conformations and identities at design positions and preserving 

those that provide an energy benefit. These sidechain conformations can be generated 

using ideal bond angles (rotamers) or modeled from sidechains observed from structures 

in the Protein Data Bank (conformers). We performed the core repacking calculation 

using two rotamer libraries based on those developed by Dunbrack and Karplus [20] and 

a conformer library described by Lassila et al. [21]. The rotamer libraries include a 
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backbone-independent set containing the most probable χ angles optimized for polar 

residues (bbind02.May.e0) and a backbone-independent set containing rotamers with 

mean χ values and mean χ ± 1 standard deviation for χ1 and χ2 (bbind02.May.e2). This 

rotamer library is suggested for use on aromatic residues. A midsized backbone-

independent conformer library was also used for calculations (bda-bbind_1.0.cpdslib). 

The use of larger or backbone dependent libraries proved too computationally costly and 

was not further pursued.  

 

We performed two sets of calculations, allowing design positions to sample any amino 

acid identity in one case and restricting the allowed residues to hydrophobics (Ala, Val, 

Leu, Ile, Phe, Tyr, Trp) in the other (Table I). While the identity of predicted mutations 

differed among the six sets of calculations (Table II), no discernable trend was observed 

from these distinctions. Collectively, these calculations predicted 32 mutations as 

stabilizing.  

 

Detection of Stabilizing Core Mutations  

Previous studies have redesigned protein cores in batch, introducing several mutations 

into a single construct simultaneously. Our earlier efforts to stabilize HjCel5A 

demonstrate that the inclusion of even one highly deleterious mutation may result in an 

unfolded, or inactive protein. This observation is consistent with literature reporting that 

most mutations are destabilizing and that introducing a highly destabilizing point 

mutation can “completely collapse” the structure [22-24]. Creating and screening point 

mutations as opposed to composite constructs containing multiple mutations is relatively 

fast and inexpensive. Screens performed on individual mutations also provide clear 

evidence concerning whether the mutation should pass to the next round of 

characterization or be discarded. Moreover, a recent study utilizing a core repacking 

algorithm optimized to select point mutations achieved a 17.6 °C thermostability increase 

from three highly stabilizing core mutations [6]. Thus, even if the majority of core point 

mutants require a compensatory mutation to avoid adverse effects, detecting a handful of 

highly stabilizing point mutations might provide sufficient stability for the intended 

purpose.  
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To determine whether our set of predicted stabilizing core mutations could be made as 

point mutants, average values for maximal mutual information (MI) were tabulated for 

each position. This value employs protein sequence data to measure covariance between 

a pair of sites and increases as correlation levels rise (see Chapter 2). The average 

maximum MI for all positions in HjCel5A (0.70) was higher than the average for the core 

mutation set (0.62), demonstrating that mutations at the selected positions did not exhibit 

a particularly high need for compensatory mutations.  

 

The 32 predicted HjCel5A mutations were individually cloned as point mutations and 

screened for stability and adequate activity using the methods outlined in Chapter 3 

(Figure 2A). Supernatants harboring secreted protein were screened for activity after 

incubation for 1 hour at 73 °C, 3.5 degrees higher than the WT Tm (69.5 °C). Only two 

mutations with activities exceeding WT were detected from the screening step, I82M and 

V101I. Two variants, each carrying one of these stabilizing mutations were expressed and 

purified to assess thermostability more directly. Both mutants slight increases in 

thermostability with I82M conferring a 0.3 and V101I a 0.5 °C increase in T50, the 

temperature at which half of the maximal activity persists (Table V, Supplementary 

Figure 1A and B).  

 

Helix Dipole Stabilization Calculation 

In the absence of external contacts, all α helices contain a natural dipole arising from 

three unsatisfied hydrogen bonds at each terminus [25-27]. Several studies have 

demonstrated that stabilizing this dipole can confer stability to the protein in entirety. 

This has been achieved through either introducing N-capping interactions, hydrogen 

bonds between the side-chain of the residue immediately preceding the helix or through 

mutating residues at the ends of the helix to counter the partial electrostatic charges.  

 

To identify helix dipole stabilizing mutations in HjCel5A, we have adopted the strategy 

developed by Marshall et al. for the Drosophila engrailed homeodomain [16]. In this 

design scheme, N-capping positions sample amino acid identities with the highest N-
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capping propensity (Ser, Thr, Asn, and Asp) [28]. The three most N-terminal residues are 

prohibited from mutating to positively charged amino acids (His, Lys, and Arg), while 

the three most C-terminal residues are barred from sampling negatively charged 

sidechains (Asp and Glu).  

 

Using the general Marshall strategy, we performed parallel calculations allowing two sets 

of residues at either terminus. In the first scheme, the N- and C-terminal residues may 

adopt any identity except for those that violate the aforementioned rules. Thus, the three 

most N-terminal positions of a helix may remain as the WT residue or mutate to any 

other sidechain except His, Lys, or Arg. Likewise, the three most C-terminal positions of 

a helix may sample WT or any other identity other than Asp or Glu. The second “strict” 

scheme allows residues at the N- and C-terminal residues to mutate only if the charge of 

the introduced sidechain will counter the dipole. The three most N-terminal positions of a 

helix, for example, may only mutate to an Asp or Glu when favorable. WT was included 

as an option for all design positions in both calculation schemes. The architecture of 

HjCel5A is a TIM barrel fold containing eight major helices [19], many of which have 

ambiguous termini. During the selection of design positions (Table III), some exceptions 

to the provided rules were allowed to accommodate these eccentricities. To reduce the 

computational load, each helix was redesigned separately using the bda-

bbind_1.0.cpdslib conformer library employed in the core repacking calculation. 

Collectively, these computations predicted 44 mutations with 55% and 34% appearing in 

the boundary and surface, respectively (Table IV).  

 
Detection of Stabilizing Helix Dipole Mutations  

For the reasons outlined above, the 44 predicted helix mutations were constructed as 

point mutants and screened for activity with the same procedure used to probe core 

mutations (Figure 2B). In the activity screen, 14 constructs demonstrated greater activity 

than WT. Following purification and activity screening at a gradient of temperatures, nine 

constructs demonstrated a positive ΔT50 (T80E, S133R, N155E, N155Q, T165E, G239E, 

Y278F, S318E, and S318Q), four showed a decrease in thermostability (S79E, T80Q, 

A122E, and G239Q), and one behaved similarly to WT (S79Q) (Table V, Supplementary 
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Figure 1C-P). As is the case with the core mutations, the helix dipole stabilizing 

mutations provide modest stability benefits (ΔT50  ≤ 1 °C). Only five of the nine 

stabilizing mutations exhibit a ΔT50 ≥ 0.5 °C.  

 

Given the relatively low enhancements in thermostability observed for the helix dipole 

stabilizing mutations, it remained unclear whether these mutations would provide any 

tangible benefit. We created a combination construct containing the T80E, S133R, 

N155E, G239E, Y278F, and S318Q mutations and determined its ΔT50 (2.4 °C) and 

optimal reaction temperature (Topt ,helix combo= 66 °C,  Topt ,WT = 63.5 °C) (Figure 5A and 

B). Both values show modest increases of ~2.5 °C. While the six stabilizing mutations 

did not additively increase T50 and Topt, the combination mutant still demonstrates 

improved thermostability compared to the most beneficial helix point mutant. In addition, 

the combination mutant shows a 4.5 fold improvement in expression over WT (Table V).  

 
Structural Analysis of Stabilizing Mutations 

Structural analysis suggests that the stabilizing core mutations primarily fulfill their roles 

through expected mechanisms. I82M and V101I both fill voids within the protein core 

(Figures 4A and B). Analysis of homologous structures shows that the equivalent to 

I82M appears in the structures of endoglucanase D from Clostridium cellulovorans 

(3NDY) and celCCA from Clostridium cellulolyticus (1EDG). The equivalent to V101I 

appears in almost every homologous structure examined with most of the remaining 

structures alternatively containing a leucine (V101L greatly reduces activity in HjCel5A, 

see Chapter 3). In all of these structures, these bulkier sidechains occupy more space 

within the protein core and contribute to better hydrophobic packing.  

 

Eight of the nine stabilizing helix mutations appear to reduce the inherent dipole. T80E, 

N155E, and N155Q may possibly form bonds to the unsatisfied hydrogen bond donors at 

the N-terminus of the helix (Figure 4C, E, and F). Homologous structures lack 

equivalents to T80E and N155Q. N155E, however, appears in the structures of 

Thermotoga maritima Cel5A (TmCel5A) (PDB ID 3MMW [29]), C. cellulovorans 

endoglucanase D, an endoglucanase from Prevotella byrantii (PDB ID 3VDH, to be 
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published), and a Bacillus sp. alkaline cellulase K (PDB ID 1G0C [30]). Hydrogen 

bonding to an N-terminal amine is only observed in alkaline cellulase K. The residue 

adopts a solvent-exposed conformation in the remaining structures. S133R, T156E, 

G239E, S318E, and S318Q likely adopt solvent-exposed conformations (Figure 4D, G, 

H, J, and K). A residue shifted by one position in TmCel5A (PDB ID 3MMW [29]) 

resembles the S318E mutation. While T156E and G239E lack homologous counterparts, 

equivalents to the remaining residues do not form contacts with the protein. These 

negatively charged sidechains likely confer stability by improving the global charge 

balance along the helix rather than forming specific contacts. Finally, Y278F eliminates 

the unsatisfied OH at the tip of the sidechain (Figure 4I). This mutation arose as an 

artifact of the calculation and does not appear to alter the electrostatics of the helix. 

Interestingly, only one stabilizing mutation was recovered from the C-terminal end of the 

helix, supporting observations from previous studies demonstrating that the N-terminus is 

a more fruitful target for stabilization efforts [31]. 

 
Activity of Stabilized Mutants 

Useful enzyme mutations not only confer stability, but also elevate or preserve activity. 

We tested the activity of each stabilizing point mutation at 60 °C for two hours on Avicel, 

a crystalline cellulose powder (Table V). While the two stabilizing core mutants have 

activities comparable to WT (Figure 3B), the helix mutations show an even distribution 

between lower and higher activities (Figure 3C). Previous studies suggest that extremely 

rigid core structure near active site residues can dramatically reduce enzymatic activity 

[32, 33]. The low number of mutations identified in this study, however, precludes 

attempts to concretely discern any such patterns.  

 
Expression 

In addition to preserving activity, desirable mutations will also maintain or enhance 

protein expression levels. Five of the helix dipole stabilizing hits on the activity screen 

were either neutral or destabilizing. Four of these mutations confer greater protein 

expression than WT in S. cerevisiae, the probable cause for their high activity on the 

screen. In general, the point mutants and helix combination mutant demonstrated large 

increases in expression level (Table V). We expressed the catalytic domain of HjCel5A 
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V101I in Escherichia coli and found a three-fold increase in protein yield. This result 

suggests that, in at least one case, expression may increase due to a structural changes 

rather than DNA level improvements (i.e. codon optimization). In the case of the helix 

dipole stabilizing mutations, we surmise that the mutations assist helix folding, reducing 

the time required for protein synthesis and resulting in higher protein yield. This 

hypothesis, however, remains untested.  

 

Comparing Strategies 

As implemented in this study, helix dipole stabilization appears to outperform the core 

repacking strategy. In stabilizing the helices, nine positive mutations were retrieved from 

44 predictions yielding an accuracy of 20%. Thirty-two predictions generated from the 

core repacking calculation, however, revealed only two stabilizing mutations for an 

accuracy of 6%. Although some mutations recovered from the helix dipole method 

decrease enzymatic activity, the remaining mutations are more numerous and stabilizing 

than the core mutations. Moreover, many of the helix constructs labeled as negatives on 

the initial activity screen retained some degree of activity over a BSA standard. This 

observation stands in stark contrast with the core mutations, most of which dramatically 

reduce activity on the screen. Thus, it appears that successful stabilization strategies 

should preferentially target helices, not the core of the protein.  

 
Location of Stabilizing Mutations  

We hypothesized that helix dipole stabilizing positions are more amenable to mutation 

due to their location in boundary and surface positions. Analysis of a 262-member 

HjCel5A point mutation database described in Chapter 6 reveals that most of the 

stabilizing mutations appear in the boundary and surface regions (Figures 6A and B). 

Core positions occupy 47% of the positions in HjCel5A, yet only 19% of the stabilizing 

mutations from the database appear in this region. Meanwhile, surface and boundary 

regions contain 53% of the positions in the protein, yet house 81% of the stabilizing 

mutations. The average ΔT50 of mutations in the core, boundary, and surface regions is 

2.0, 1.3, and 0.9 °C, respectively. While it appears that core mutations are more 

stabilizing on average, both the core and boundary in HjCel5A contain four highly 
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stabilizing mutations (ΔT50 > 2 °C). The surface contains one highly stabilizing mutation, 

S318P, yet this mutation provided the second largest thermostability benefit (ΔT50 = 3.4 

°C) within the 262-member dataset. We surmise that the set of stabilizing core mutations 

is small and overrepresented with highly stabilizing mutations because most core 

mutations are destabilizing. The surface and boundary regions, however, contain a higher 

number of moderately stabilizing mutations. These results indicate that more prudent 

thermostabilization strategies should attempt to uncover mutations from all protein 

regions.    
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4.4 Summary and Conclusions 
In the course of this study, we sought to detect stabilizing HjCel5A mutations using two 

computational methods: 1) core repacking and 2) helix dipole stabilization. These efforts 

revealed a total of eleven weakly stabilizing mutations. Neither strategy proved 

exceptionally effective in producing a highly thermostable variant of our target cellulase. 

For example, combining six of these mutations into a single molecule produced only a 

minimal increase in ΔT50 of 2.4 °C. This improvement, however, is similar to the modest 

elevations reported in some cellulase stabilization projects [34, 35].  

 

Our experiments and analysis of the 262-point mutant database additionally show that 

most stabilizing mutations occur within the surface or boundary regions of the protein. 

Although the core repacking and helix dipole stabilization calculations target specific 

areas within HjCel5a, the other calculations used to predict database mutations evaluate 

all protein regions. Additionally, the computational methods here poorly model solvation 

and generally perform better at modeling hydrophobic interactions. As such, we do not 

believe the 262-point mutant database is biased towards predicting surface mutations.   

 

It is possible that stabilizing core mutations, although rare, confer a considerable level of 

stabilization to the protein. The results of our screen demonstrate that most core 

mutations affect activity in a detrimental manner. However, several highly stabilizing 

mutations in the 262-member point mutant database reside within the core region. Many 

of these mutations did not appear in our predictions as their corresponding design 

positions were excluded from the calculation. In most of these cases, these residues sat 

too close to critical catalytic residues or formed sidechain contacts with the protein 

backbone. Assuming sufficient computational resources, future calculations should strive 

to include all core positions in the design process.  

 

Despite the modest increases in thermostability observed for the combination mutant, the 

strategies explored here may benefit future protein engineering efforts. Recent protein 

stabilization efforts have noted a marked decrease in expression and solubility among 

designed enzymes [8]. Conversely, many of the mutations identified within this study 
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improve protein yield. Twelve of the tested mutations increased expression levels over 

WT. Moreover, the combination mutant exhibits a 4.5 fold improvement in yield. While 

the mechanisms underlying these elevated expression levels remain unexplored, the 

design strategies provided here may prove useful for rescuing yield following more 

successful stabilization efforts. The design methods showcased in this study may also 

supplement stabilization efforts using homologous sequence data. As the computational 

methods solely rely on structural information to detect stabilizing mutations, the set of 

predicted mutations may dramatically differ from those identified through consensus 

design. Indeed, four of the stabilizing mutations recovered in this study have no 

homologous counterparts among currently solved crystal structures and all of the 

mutations (with the exception of Y278F) show extremely low conservation scores (see 

Chapter 6). In addition, none of the stabilizing mutations identified in this study were 

predicted from examining homologous sequences (see Chapter 3).  

 

The results presented in this study demonstrate that most of the currently known 

stabilizing mutations in HjCel5A reside beyond the relatively immutable core with many 

of the highly stabilizing mutations evenly dispersed between the boundary and the core. 

In addition, the helix dipole stabilization method identified seven more stabilizing 

mutations than the core repacking strategy. With a relatively high WT Tm of 69.5 °C and 

a highly packed interior housing a hydrogen-bond rich active site, HjCel5A may have 

already evolved near-optimal core stability. Future experiments using less thermostable 

and more loosely packed proteins cores may reveal whether this trend is universally 

applicable.  
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4.5 Materials and Methods 
Classification of Residues 

Residue classification as core, boundary, or surface was performed through first drawing 

a solvent-accessible surface around the protein structure, then calculating residue-surface 

distances. In this commonly used method, a Connolly dot surface [36, 37] is drawn by 

rolling a spherical probe with an 8 Å radius along the van der Waals spheres of the 

accessible Cα atoms. A vector following the trajectory along the Cα-Cβ bond is then 

extended toward the surface of the protein. The Cα-surface and Cβ-surface distances 

determine the residue classification: 

 

Core: Cα-surface ≥ 5 Å and Cβ-surface ≥ 2 Å 

Surface: Cα-surface + Cβ-surface ≤ 2.7 Å 

Boundary: all other residues 

 

The classification calculation was performed using chain A the 2.1 Å HjCel5A structure 

(PDB ID 3QR3 [19]) optimized with 50 steps of gradient-based energy minimization 

using the Rosetta forcefield. Although the experiments detailed in this chapter employ an 

energy function similar to the DREIDING forcefield, a larger subset of mutations in the 

262-member database of HjCel5A point mutations were predicted using the Rosetta 

forcefield. 

 

Structure preparation 

Designs were performed on chain A of the HjCel5A crystal structure (PDB ID 3QR3 

[19]). After removing water molecules and ions, hydrogens were added to the structure 

using the protein process application within the design software TRIAD [38]. This 

application was additionally employed to optimize the structure through 50 steps of 

gradient-based energy minimization using the energy function described in the 

computational design section.  
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Computational Design 

Computational design parameters outlined in this section were kept consistent between 

the core repacking and helix dipole stabilization calculations. All calculations were 

executed using an energy function based on the DREIDING forcefield [39] that includes 

terms for van der Waals [7], hydrogen bonding [40], electrostatics [40], implicit 

solvation, and phi-psi propensities. In calculating the implicit solvation term, an 

occlusion-based solvation potential was applied with scale factors of 0.05 for nonpolar 

burial, 2.5 for nonpolar exposure, and 1.0 for polar burial [41]. Sequence optimization 

was performed with FASTER [42, 43] and a Monte Carlo-based algorithm was used to 

sample sequences near the minimum energy sequence [44, 45].  

 

Cel5A Plasmid Construction 

See equivalent section in Chapter 3.  

 

Thermostability/Activity Screen 

See equivalent section in Chapter 3.  

 

Topt Assay 

To assess the optimal operating temperature of HjCel5A constructs, 40 µL of protein at a 

concentration of 0.25 µM was combined with 60 µL of a 1.5% Avicel slurry in cellulase 

buffer in a PCR plate in triplicate for each of 12 temperatures. The plates were incubated 

at 60 °C for two hours and promptly cooled for 5 minutes on ice.  After centrifugation for 

5 minutes to pellet the insoluble substrate, activity was assessed with the Park-Johnson 

assay using a 25 µL sample volume. Bovine serum albumin (BSA) at a final 

concentration identical to the protein of interest served as a negative control.  

 

Park-Johnson Assay 

See equivalent section in Chapter 3.  

 

Enzyme Purification 

See equivalent section in Chapter 3.  
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T50 Assay 

See equivalent section in Chapter 3.  

 

Single-Point Activity Assay 

See equivalent section in Chapter 3.  
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4.6 Tables and Figures 
  

Table I. Calculation energies 
 

 

Calculation  WT Design 

Core, bda-bbind 1.0, All residues -2800.42 -2940.74 
Core, bda-bbind 1.0, Hydrophobic -2863.85 -2930.73 

Core, bbind02.May.e0, All residues -2816.35 -2951.88 
Core, bbind02.May.e0, Hydrophobic -2875.19 -2924.27 
Core, bbind02.May.e2, All residues -2793.61 -3003.28 

Core, bbind02.May.e2, Hydvrophobic -2946.75 -2849.25 
Helix 1, All residues -2630.10 -2817.06 

Helix 1, Strict scheme -2630.10 -2819.48 
Helix 2, All residues -2630.10 -2815.90 

Helix 2, Strict scheme -2630.10 -2781.00 
Helix 3, All residues -2630.10 -2813.01 

Helix 3, Strict scheme -2630.10 -2803.47 
Helix 4, All residues -2630.10 -2830.32 

Helix 4, Strict scheme -2630.10 -2811.18 
Helix 5, All residues -2630.10 -2773.96 

Helix 5, Strict scheme -2630.10 -2754.44 
Helix 6, All residues -2630.10 -2782.16 

Helix 6, Strict scheme -2630.10 -2800.89 
Helix 7, All residues -2630.10 -2844.91 

Helix 7, Strict scheme -2630.10 -2835.69 
Helix 8, All residues -2630.10 -2789.91 

Helix 8, Strict scheme -2630.10 -2784.59 
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Table II. Predicted core repacking mutation energy differences from WT 
  All Residue Types Hydrophobic Only 

Mutation Max MI bda-bbind 1.0 bbind02.May.e0 bbind02.May.e2 bda-bbind 1.0 bbind02.May.e0 bbind02.May.e2 
V7Ta 0.37 - - N/Aa - - - 
I9L 1.01 -13.87 - - -15.09 - -14.88 

A10S 0.51 -8.45 -8.68 -8.40 - - - 
L31I -b -5.44 -5.92 -5.95 -5.88 -5.92 -6.30 

L61Ca 0.56 N/Aa - - - - - 
V69L 0.86 - - - -6.14 - - 
V69M 0.86 - - -10.06 - - - 
V69N 0.86 - -12.56 - - - - 
I82M 0.48 -6.14 -6.68 - - - - 
I82Qa 0.48 - - N/Aa - - - 

V89Ma 0.36 - - - - - - 
V89L 0.36 - - - - - -0.30 
V101I 0.29 -2.99 -4.04 - -3.31 -3.28 -1.58 
A107N 0.69 -13.79 -13.61 -13.62 - - - 
F143M 0.13 -16.20 -11.43 -14.12 - - - 
I145Va 0.74 - - - - - - 
V161La 1.11 N/Aa - - - - - 
V161I 1.11 - - - -0.13 - - 
V165I 0.54 - - - -0.91 - - 

A188Ca 0.45 N/Aa - - - - - 
F191Wa 0.62 - - N/Aa - - - 
V217I 0.94 - - - - -3.74 -3.54 
V217L 0.94 - - - -7.37 - - 
L221N 0.32 -8.43 -9.56 -9.63 - - - 
A255C 0.53 -13.89 - - - - - 
A255T 0.53 - -14.72 -14.12 - - - 
I256Ma 0.61 - - N/Aa - - - 
L257I 0.41 - -4.22 -3.33 - -4.42 -4.45 
I276M 0.66 -7.30 -7.37 - - - - 
L319M -b -0.83 - - - - - 
L324M -b - - -3.20 - - - 
L324F -b - - - -2.35 - - 
a Mutations were not predicted from a second pass calculation meant to calculate energies for individual mutations. 
b Insufficient homologous sequence data. 
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Table III. Helix dipole stabilization design positions 
Helix 

Number WT N-Cap Potential 
N-Cap 

Disallow 
Positive 

Disallow 
Negative Float 

1 42 - 43, 44, 45 51, 52, 53 30, 31, 32, 40, 41, 46, 47, 48, 49, 50, 54, 55, 56, 59, 
87, 88, 95, 97, 314, 316, 326, 327 

      

2 78 - 79, 80, 81 92, 93, 94 47, 59, 61, 67, 68, 69, 70, 76, 77, 82, 83, 84, 85, 86, 
88, 89, 90, 91, 95, 96, 97, 98, 99, 138, 140, 141 

      

3 120 - 121, 122, 123 132, 133, 134 
65, 73, 74, 82, 86, 114, 115, 118, 119, 124, 125, 126, 

127, 128, 129, 130, 131, 135, 136, 138, 143, 160, 
163, 167, 168, 171, 173 

      

4 153 - 154, 155, 156 168, 169, 170 

115, 116, 128, 132, 143, 145, 151, 152, 157, 158, 
159, 160, 164, 165, 166, 167, 171, 172, 173, 174, 
175, 176, 178,183, 194, 195, 196, 199, 205, 206, 

211, 212, 213 
      

5 194 - 196, 197, 198 190, 199, 200, 
201 

154, 157, 158, 161, 180, 182, 183, 184, 190, 191, 
192, 193, 195, 196, 197, 202, 203, 210, 215, 253 

      

6 - 234, 236 237, 238, 239, 
241, 242, 243 

248, 249, 250, 
251 

188, 192, 215, 217, 219, 235, 237, 238, 239, 240, 
244, 245, 246, 247, 257, 275, 278, 279, 252, 253, 

254, 255, 282, 284, 285, 286 
      

7 - 265 266, 267 278, 279, 280, 
281 

0, 1, 2, 230, 231, 232, 237, 241, 242, 245, 257, 262, 
263, 264, 269, 270, 271, 272, 273, 274, 275, 276, 
277, 282, 283, 286, 288, 289, 318, 319, 323, 326 

      

8 317 - 318, 319, 320  320, 321, 322 
50, 54, 56, 261, 262, 263, 264, 265, 268, 269, 272, 
304, 305, 306, 307, 315, 316, 322, 323, 324, 325, 

319, 269, 316, 317, 318, 327- 
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Table IV. Predicted helix mutation energy differences from WT 
Mutations Max MI All Residues Strict Scheme Location 

V51Ra 0.93 - -12.02 Core 
N52R 1.11 -15.84 -15.56 Surface 
E53R 0.75 -20.89 -16.64 Boundary 
S79E 0.61 - -10.86 Surface 
S79Q 0.61 -13.51 - Surface 
T80Ec 0.73 - -3.46 Surface 
T80Q 0.73 -9.85 - Surface 
S94R 0.72 -11.82 -11.69 Surface 
T120S -b -3.11 -3.10 Surface 
N121E 1.00 - -9.82 Boundary 
A122E 0.51 - -2.84 Surface 
A122Q 0.51 -9.08 - Surface 
S133Rc 0.88 -9.95 -13.79 Surface 
K134R 0.90 -10.00 -10.02 Boundary 
I154M -b - - Boundary 
N155Ec 0.69 - -3.01 Surface 
N155Qc 0.69 -9.76 - Surface 
T156Ec 0.98 - -3.74 Boundary 
I168H 0.23 - -0.61 Boundary 
N170R 0.64 -13.75 -13.79 Surface 
A197M 1.00 - - Core 
A197F 1.00 -7.14 - Core 
A199V 1.08 - - Boundary 
S201Q -b -9.28 - Boundary 
S201K -b  - Boundary 
D238E 0.92 - -3.85 Surface 
D238Q 0.92 -9.78 - Surface 
G239Ec 0.96 - -8.79 Boundary 
G239Q 0.96 -13.89 - Boundary 
S242D 0.65  -9.81 Boundary 
S242Q 0.65  - Boundary 
P243E 0.90  - Boundary 
P243Q 0.90 -11.04 - Boundary 
Q250R 0.86 -8.11 -11.81 Surface 
S267Q 0.98 -6.64 - Boundary 
Y278Fc 0.64 -14.62 - Boundary 
Y278L 0.64  - Boundary 
N280R 0.98 -5.95 -9.28 Boundary 
Q281R 0.82 -14.19 -12.12 Surface 
S318Ec -b  -7.30 Boundary 
S318Qc -b -8.65 - Boundary 
S321K 1.02  -13.17 Boundary 
S321R 1.02 -9.70 - Boundary 
S322R 0.96 -13.41 -15.68 Boundary 
a Mutations were not predicted from a second pass calculation meant to calculate energies 
for individual mutations. 
b Insufficient homologous sequence data. 
c Stabilizing mutation 
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Table V. Characterization of stabilizing mutations 

Construct T50,WT 
(°C) 

T50,mut 
(°C) 

ΔT50 
(°C) 

Activity 
(µM Cellobiose 

Equivalents) 

ΔActivity 
(µM Cellobiose 

Equivalents) 

ΔΔGb 
(kcal mol-1) 

Site 
MIb 

Expression 
Level Relative 

to WT 
WT - - - 193.7±12.2 0 - - - 

Core Mutations 
I82M 69.5±0.2 69.8±0.5 0.3±0.5 188.5±2.4 -5.2 -0.9 0.48 1.3 
V101I 69.6±0.3 70.1±0.2 0.5±0.4 210.1±1.8 16.4 -0.4 0.29 1.7 

Helix Mutations 
T80E 69.3±0.2 69.8±0.1 0.5±0.2 203.6±9.2 9.8 2.7 0.73 2.3 

S133R 68.9±0.1 69.4±0.1 0.4±0.2 197.1±2.6 3.4 1.8 0.88 1.8 
N155E 69.5±0.3 70.0±0.1 0.5±0.3 199.4±1.1 5.6 0.5 0.69 4.9 
N155Q 68.4±0.1 68.5±0.1 0.1±0.1 172.8±4.0 -20.9 0.1 0.69 1.1 
T156E 69.5±0.2 69.7±0.3 0.2±0.3 217.6±7.9 23.9 1.2 0.98 4.9 
G239E 69.7±0.1 70.0±0.3 0.2±0.3 216.9±6.5 23.2 -0.2 0.96 1.0 
Y278F 69.2±0.2 70.2±0.4 1.0±0.5 174.7±2.7 -19.1 1.3 0.64 0.4 
S318E 69.7±0.2 70.5±0.1 0.9±0.2 244.1±4.3 50.4 -0.5 N/Aa 0.6 
S318Q 68.9±0.1 69.4±0.2 0.5±0.2 196.0±2.4 2.3 -0.3 N/Aa 0.9 
S79Q 69.4±0.2 69.5±0.2 0.0±0.3 174.4±5.1 -19.3 0.4 0.61 1.4 
S79E 69.9±0.2 69.7±0.0 -0.1±0.2 N/A N/A -0.3 0.61 5.5 
T80Q 69.2±0.2 69.1±0.1 -0.1±0.2 N/A N/A 3.2 0.73 2.0 
A122E 69.0±0.5 68.8±0.2 -0.2±0.5 N/A N/A 1.0 0.51 3.2 
G239Q 69.1±0.1 68.5±0.1 -0.9±0.2 N/A N/A -1.6 0.96 0.9 

Helix Combo 69.5±0.5 71.9±0.3 2.4±0.5 N/A N/A N/A N/A 4.5 
a Insufficient homologous sequence data.   
b Values calculated from the 444-sequence multiple sequence alignment described in Chapter 3.    
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Figure 1. Residue classification in HjCel5A. Areas within the crystal structure of 
HjCel5A are color coded to highlight the core (yellow), boundary (green), and surface 
(blue). The active site (left) and a 180° rotation to display the non-catalytic face (right) 
are both displayed. The two catalytic carboxylates E148 and E259 appear as sticks.  
 

180° 
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Figure 2. Activity screens. Screens performed on HjCel5A point mutants identified from 
the (A) core repacking and (B) helix dipole stabilization calculations. WT is highlighted 
in green. Variants with activity exceeding that of WT, indicated by the dashed line, were 
purified and tested for thermostability. 
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Figure 3. Thermostability and activity of point mutations. (A) Activity of HjCel5A point mutants after treatment over a range of 
temperatures. Data are plotted for WT (green circles) and mutations conferring a ΔT50  > 0.5 °C (blue diamonds). All plotted mutations 
were identified from the helix dipole stabilization calculation. The dashed line indicates the point at which 50% of the initial activity 
persists (T50). Although each mutant was tested alongside WT to accurately assess (ΔT50), only one WT trial is displayed for clarity. 
The recovery of activity at higher temperatures is due to refolding caused by PCR plate edge effects. See Supplementary Figure 1 for 
additional data. (B,C) Activity versus ΔT50 for the core (yellow diamonds) and the helix (blue triangles) mutations.  
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Figure 4. Structural analysis of stabilizing point mutations. Panels A-K show each of the stabilizing mutations along with the WT 
residue (green) Core mutations and helix mutations are shown as white and blue sticks, respectively. Residues around space filling 
mutations are depicted as yellow spheres. (L) The location of core (yellow) and helix mutations (light blue) predicted as stabilizing. 
Mutations confirmed as stabilizing are shown in orange (core) and dark blue (helix). 
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Figure 5. Topt and T50 of the helix combination mutant. (A) The activity of the helix combination mutant from a 2 hour incubation 
across a temperature gradient from 62.5 to 82.5 °C. WT is shown as green circles, the combination mutant as blue triangles and a BSA 
standard as gray circles. (B) The activity from a 1 hour incubation at 60 °C following a 10 minute preincubation at a gradient of 
temperatures from 60 to 80 °C. Curves for WT (green circles) and the helix combination mutant (blue triangles) are displayed. The 
dotted line marks the point at which half maximal activity persists (T50). 
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Figure 6. Location of stabilizing point mutations. (A) The distribution of stabilizing 
mutations from a 262 HjCel5A point mutation database. (B) Placement of stabilizing core 
(yellow), boundary (green), and surface (blue) mutations in the HjCel5A structure. 
Several stabilizing mutations occur at the same position.  
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4.7 Supplementary Figure 

 
Figure S1. T50 plots of all tested point mutations. Panels show the activity of HjCel5A 
point mutants after treatment over a range of temperatures. WT is represented as green 
circles in all panels. (A-B) Data for core mutations are depicted as yellow diamonds. (C-
L) Data for stabilizing helix dipole mutants are shown in blue. Panel C shows data for a 
mutation with stability similar to WT. (M-P) Data for destabilizing helix dipole mutants.   
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CHAPTER 5 
 
Identifying Stabilizing Mutations in Hypocrea 
jecorina Cel5A Through ΔΔG Approximations 
(FoldX, Triad) and Backbone Stabilization 
 
This chapter is formatted for submission to the Journal of Molecular Biology. 
 
5.1 Abstract 
 
Computational methods of detecting stabilizing mutations fall into three main categories: 

1) physical, 2) knowledge-based, and 3) empirical. Physical methods rely on molecular 

and/or quantum mechanical calculations, requiring considerable computational resources. 

Likewise, knowledge-based methods utilize large amounts of pre-existing information in 

databases. In recent years, empirical methods have gained popularity due to their ease of 

use, rapid calculations, and broad applicability. Typically, the procedure only requires a 

molecular model of sufficient resolution to forecast accurate predictions. Here, we use 

two empirical software packages, FoldX and Triad, to identify eleven stabilizing 

mutations in the primary endoglucanase from Hypocrea jecorina (HjCel5A), an industrial 

target for thermostabilization. These results and analysis of a 262-point mutation database 

demonstrate that while FoldX outperforms the Rosetta-based method, each method yields 

unique stabilizing mutations. The computational protein design program Triad with the 

rosetta forcefield was additionally used to explore the possibility of stabilizing HjCel5A 

through reducing its entropy of unfolding, i.e., stabilizing the protein backbone. 

Restricting calculations to detect Gly à XAA and XAA  à Pro mutations, uncovered eight 

additional stabilizing mutations. Many of the Triad ΔΔG, glycine, and proline mutations 

decreased activity due to altering residues near a substrate binding groove or possibly 

restricting flexibility necessary for function. These results lead to the recommendation 

that future stabilization efforts primarily use FoldX supplemented with Triad if additional 

mutations are necessary.  
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5.2 Introduction 
 
Thermostable protein variants provide a multitude of benefits over less stable 

alternatives. In addition to demonstrating improved resistance to various forms of 

degradation [1, 2], thermostable proteins allow experiments or industrial processes to 

operate at otherwise intractable conditions. For example, reactions proceeding at elevated 

temperatures exhibit lower levels of microbial contamination and reduced solution 

viscosity [2]. Provided they remain folded, some thermostable enzymes also often 

demonstrate an increase in activity with rising temperatures [3-5] as modeled by the 

Arrhenius equation. As such, much interest exists in developing reliable methods of 

engineering thermostable versions of desired proteins.  

 

Generally, three classes of computational methods for predicting thermostable protein 

mutations exist: 1) physical, knowledge-based, and empirical [6]. In the physical scheme, 

predictions are calculated based on molecular and/or quantum mechanical 

approximations of the free energy of unfolding. These methods require considerable 

computational resources and a high level of user expertise, but generally yield highly 

accurate results. Knowledge based methods generate predictions using information from 

databases filtered by selection criteria. This material may include DNA sequences [7], 

protein sequences (see Chapter 3) [8, 9], and protein thermostability data (ProTherm) [10, 

11]. Such methods are rapid and require little user training, yet rely on the preexistence of 

large amounts of data. The empirical approach combines information gleaned from 

databases to tune molecular mechanics potentials. In this strategy, calculations proceed 

relatively quickly and the empirical data need not originate from the system of interest, 

broadening the applicability of the technique.  

 

The wide appeal of empirical methods has resulted in the emergence of multiple 

competing techniques. Popular empirical prediction software packages include Dmutant 

[12], CUPSAT [13], PopMuSic-2.0 [14], I-Mutant2.0 [15], and FoldX [16]. Among these 

tools, FoldX (and Dmutant) was shown to perform the most reliably with an accuracy of 

~60% [17]. FoldX employs an energy function with terms for van der Waals effects, 

hydrogen bonding, electrostatics, and solvation, calibrated to closely approximate 
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experimentally derived ΔΔG values [16, 18]. This software module has played a role in 

constructing thermostable variants of tumor necrosis factor-related apoptosis-inducing 

ligand [19], the YtvA LOV domain [20], and Cel7A from Hypocrea jecorina [5]. 

Recently, some groups have also employed the Rosetta protein design software to predict 

ΔΔG values of point mutations [21, 22]. The forcefield from Rosetta (rosetta) includes 

terms for van der Waals interactions and solvation effects, with hydrogen bonding terms 

weighted by evidence from high-resolution protein structures [23]. 

 

While empirical methods can identify stabilizing mutations throughout a protein 

structure, they may also target specific regions. One popular strategy involves designing 

molecules with more rigid backbones to reduce the entropy of unfolding, often through 

mutating glycines to residues containing a Cβ [24], introducing prolines [24], adding 

disulfides [25, 26], or targeting residues with high B-factors [27]. These structural 

alterations restrict the area of Ramachandran space available to each residue, reducing the 

entropy of unfolding. The observation that thermostable proteins are often enriched with 

prolines [4, 28, 29] lends further credence to this stabilization strategy. Moreover, 

application of this method has already uncovered thermostable mutations in a methyl 

parathion hydrolase [30] and bacteriophage T4 lysozyme [24].  

 

In this chapter, we use FoldX and the computational protein design software Triad (using 

the Rosetta forcefield) to predict stabilizing mutations in an industrial target, the primary 

endoglucanase (HjCel5A) from Hypocrea jecorina (anamorph Trichoderma reesei) [31]. 

This enzyme is used in the alternative biofuels industry to hydrolyze cellulosic material 

into fermentable sugars [32]. In addition to identifying ten unique stabilizing mutations, 

our efforts also compare the efficacy of the FoldX and Triad ΔΔG stabilization methods. 

Finally, we employ the Rosetta forcefield (referred to here as rosetta) to predict mutations 

that stabilize the protein backbone through Gly à XAA and XAA à Pro mutations, 

revealing eight additional stabilizing mutations.  
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5.3 Results and Discussion 
 
FoldX Designs 

We performed in silico site saturated mutagenesis on chain A from the HjCel5A crystal 

structure (PDB ID 3QR3). From 6232 possible point mutations, FoldX predicted 1008 as 

stabilizing (ΔΔG < 0 kcal mol-1). As this sizeable pool of candidate mutations was too 

large to screen using available resources, we chose to examine mutations with a ΔΔG ≤ -

1.75 kcal mol-1. In addition, a study seeking to stabilize an exoglucanase from H. jecorina 

using FoldX-guided mutagenesis determined that tightening the energy cutoff from -0.75 

to -1.75 kcal mol-1 improved reliability by 45% [5]. Applying this stringent criterion 

reduced the candidate pool to a manageable 43 mutations.  

 

Triad ΔΔG Designs 

In parallel to the FoldX designs, we performed site-saturated mutagenesis using Triad 

with the Rosetta forcefield and the HjCel5A crystal structure. Out of 6232 possible point 

mutations, 789 were predicted as stabilizing (ΔΔG < 0). To reduce the number of 

candidate mutations to a manageable quantity, an arbitrary -1.75 kcal mol-1 cutoff was 

applied leaving 47 mutations.  

 

Detecting Stabilizing Mutations 

Point mutants for each of the 43 FoldX and 44 Triad mutations were constructed for 

secretion from Saccharomyces cerevisiae. Proteins were expressed and the supernatant 

was screened for activity at 73 °C, 3.5 degrees higher than the melting temperature (Tm) 

of the native protein. Six FoldX and five Triad mutants demonstrated higher activity than 

wild type (WT) and were selected for more rigorous characterization.   

 

As the screen was performed on unpurified protein in supernatant, hits may indicate a 

variant with improved thermostability, yield, activity, or a combination thereof. To 

determine the source of their improvement, the mutants and WT were simultaneously 

assayed for activity at 60 °C following a 10 minute incubation at a gradient of 

temperatures ranging from 60 – 80 °C. The T50, the temperature at which half of the 

maximum activity persists, of the mutation was computed and compared to the WT 
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value. All of the mutations proved more thermostable than WT (ΔT50 > 0 °C) (Table I). 

FoldX predicted three highly stabilizing mutations, D271F (ΔT50 = 3.1 °C), D271Y (ΔT50 

= 2.7 °C), and S318P (ΔT50 = 3.2 °C). Similarly, three mutations among the Triad 

predictions, K219A (ΔT50 = 2.0 °C), K219Q (ΔT50 = 2.8 °C), and S309F (ΔT50 = 2.7 °C), 

conferred significant increases in stability. The mutant expression levels were similar or 

lower than WT.  

 

Structural Analysis of Stabilizing FoldX and Triad Mutations 

The eleven stabilizing mutations detected using FoldX or Triad appear to enhance 

structural integrity through several means. The two mutations to proline, S79P (Figure 

2A) and S318P (Figure 2F), appear at the N-terminus of helices after the N-capping 

position (Ncap + 1). Prolines in this position lead to more stable structures for three 

reasons [33]: 1) proline’s rigid pyrrolidine sidechain locks the N-terminus in a helical 

conformation through restricting backbone flexibility, 2) Ncap + 1 prolines reduce the 

number of unpaired hydrogen bond acceptors at the N-terminus, and 3) the reduced 

requirement for hydrogen bonding partners to the N-terminus facilitates favorable 

interactions between the two residues preceding proline. Two mutations appear to 

improve electrostatic contacts within the protein. The N153D mutation strengthens the 

pre-existing Asn N-cap by increasing the negative charge around the partially positive N-

terminal helix region (Figure 2B). The shorter side chain introduced through the K219Q 

mutation likely reduces conformational entropy while maintaining hydrogen bonds to 

both N255 and N236 (Figure 2H). Interestingly enough, the K219A mutation confers a 

large thermostability benefit, but lacks these two hydrogen bonds (Figure 2G). This 

observation suggests that the K219 sidechain may be unsuited for its environment and 

that the reduction in entropy achieved through mutating the site to an alanine is 

sufficiently beneficial to overcome the loss of these two contacts. The remaining 

mutations provide stability through filling surface pockets. D217F and Y fill a cavity 

created by a surface-exposed loop (Figures 2C and D), while S309L, F, and W improve 

packing between a disordered loop [34] at the end of a β-hairpin and an α-helix (Figures 

2E, I, and J).  
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Six out of the eleven stabilizing mutations contain no equivalents within homologous 

structures currently deposited in the Protein Data Bank (PDB). Residues equivalent to 

S79P, N153D, and K219Q appear in Thermoascus aurantiacus structures (PDB ID 1GZJ 

[35] and 1H1N [36]). The RBcel1 [37] and Bacillus agaradhaerens Cel5A (PDB ID 

7A3H [38]) structures contain a proline in a similar position to S318P in HjCel5A. In 

addition, an alanine at the position equivalent to 219 in HjCel5A appears in the 

Piromyces rhinzinflatus Eg1A structure (PDB ID 3AYR [39]). The remaining mutations 

(D271F/Y, S309L/F/W) appear at regions with significant structural differences in 

available homologous structures. The β-hairpin harboring position 309 and the loop near 

position 271 appear to be unique to HjCel5A.  

 

Activity of Stabilizing FoldX and Triad Mutants 

Thermostable enzymes provide little benefit if activity decreases. To determine whether 

the stabilizing FoldX and Triad mutations impact activity, purified protein was assayed 

for activity after 2 hours at 60 °C (Table III, Figures 1C and 1F). While the Rosetta 

mutations show decreased activity compared to WT, the FoldX mutations exhibit more 

diversity in activity. Notably, the FoldX mutations S318P and D271Y elevate the WT 

activity by 12.8 and 16.8%.  

 

Predictive Efficacy of FoldX and Triad  

Based on the thermostability data presented in this section, FoldX appears slightly more 

efficient at recovering stabilizing and sufficiently active mutations than the Triad-based 

strategy. Six stabilizing FoldX mutations were recovered from 43 candidates for a 

predictive accuracy of 14.0%. In comparison, five stabilizing Triad mutations emerged 

from 47 candidates (10.6% accuracy). Moreover, the FoldX mutations not only show 

larger thermostability benefits, but also seem more adept at preserving activity than the 

Triad mutations. These results, however, originate from small datasets and may not apply 

to more general cases.  

  

To more thoroughly compare the performance of FoldX and Triad, receiver operator 

characteristic (ROC) curves calculated from a 262 HjCel5A point mutation dataset (See 
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Chapter 6) were generated (Figure 3). ROC curves plot the fraction of true positives from 

the predicted positives against the fraction of false positives from the true negatives 

across a range of acceptance thresholds [40]. Each point on the curve corresponds to a 

single cutoff value ranging from loose (all mutations are predicted, corresponding to the 

upper right corner of the graph) to extremely stringent (no mutations are predicted, 

corresponding to the lower left corner). If a metric can discriminate between desired and 

unwanted members of a set with some level of accuracy, the area under the curve (AUC) 

will exceed zero. For the purposes of this study, we define the AUC as the area between 

the curve and the diagonal, setting the maximum AUC possible to 0.5. The FoldX and 

Rosetta curves yield AUCs of 0.16 and 0.09, respectively, demonstrating that while both 

measures can identify thermostable mutations with some accuracy, FoldX provides a 

slight advantage. The thresholds generating the greatest ratio of true positives to false 

positives are 0.3 kcal mol-1 for FoldX and 0.5 kcal mol-1 for Triad.  

 

Although FoldX performs with the greatest accuracy, Triad provides additional highly 

stabilizing mutations. Only one mutual prediction, S309L, appeared both calculations, 

indicative of low redundancy between the two methods. Additionally, many of the Triad 

candidates have high FoldX ΔΔG scores. FoldX predicts K219Q to be highly 

destabilizing (ΔΔG of 1.28 kcal mol-1), yet this mutation proved most stabilizing out of 

all of the Triad predictions. Given this evidence, future thermostabilization projects might 

consider utilizing both methods to maximize the number and diversity of positive hits.  

 

Backbone Stabilization: Removing Glycines and Adding Prolines  

Adapting empirical methods to improve backbone stability may provide additional 

stabilizing mutations. To test this hypothesis, all Gly à XAA and XAA  à Pro mutations 

were fetched and ranked by ΔΔG value. All of the mutations with ΔΔG values ≤ 0 kcal 

mol-1 were designated as potentially stabilizing. This relaxed cutoff allowed for the 

prediction of mutations that did not pass the -1.75 kcal mol-1 threshold enforced in the 

general Triad ΔΔG calculation. Only five mutual members appear in both the general 

Triad and glycine mutation lists. In addition, all predicted proline mutations were 

previously uncharacterized.  
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In total, 51 glycine and 46 proline mutations were predicted as stabilizing with four 

(G64P, G144P, G239P, and D316P) appearing in both lists (Tables IV and V). Due to 

screening constraints, only the top 44 glycine (Figure 4A) and 46 proline (Figure 4D) 

mutants were constructed and screened using the setup described for the FoldX and 

Rosetta constructs. Nine glycine and three proline mutants demonstrated higher activity 

than WT on the screen. After purifying these enzymes and determining their ΔT50s, five 

glycine (G189A ΔT50 = 0.4 °C, G189S ΔT50 = 1.2 °C, G239D ΔT50 = 0.4 °C, G239N 

ΔT50 = 0.7 °C, and G293A ΔT50 = 3.5 °C) and three proline mutations (T18P ΔT50 = 2.0 

°C, N76P ΔT50 = 2.0 °C, and S139P ΔT50 = 2.0 °C) demonstrated thermostability benefits 

(Table VI, Figures 4B and E).  

 

Structural analysis supports the notion that these stabilizing mutations improve 

thermostability through restricting backbone movement. With the exception of G293A, 

all of the stabilizing glycine and proline mutations sit on loop regions (Figures 5A-D and 

5F-I), areas that tend to exhibit higher conformational flexibility compared with well-

ordered secondary structure elements. G293A appears to improve activity at high 

temperatures by fixing W292, a residue necessary for substrate binding [34], in a 

catalytically competent configuration (Figure 5E). T18P and S139P both appear in 

slightly distorted type I β-turns at position i+1, the most commonly observed location for 

prolines [41].  

 

As was observed for the FoldX and Triad mutations, several of the glycine and proline 

mutations have no equivalents in homologous structures. The T. aurantiacus Cel5A 

structures contain residues corresponding to the G189A and S139P mutations. Residues 

equivalent to G239N appear in the BaCel5A and Thermobifida fusca Cel5A (PDB ID 

2CKS, unpublished data) structures. The remaining mutations show no homology to 

currently available crystal structures, supporting the assertion that this empirical 

computational method may provide additional stabilizing mutations to supplement 

homology studies.  
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Although eight stabilizing mutations were identified, most caused decreases in enzymatic 

activity (Table VI, Figures 4C and F). Only G189S (+14.5 µM) and G293A (+27.3 µM) 

showed an improvement in hydrolysis. While the majority of mutations marginally 

impacted catalytic performance, S139P reduced the amount of cellobiose released by 

41.6 µM, a decrease of 21% from the WT output. It is possible that increasing protein 

rigidity may improve thermostability with a tradeoff in enzymatic activity. Recent studies 

have documented functional impairments in stabilized or more inflexible variants of 3-

isopropylmalate dehydrogenase [42], HIV-1 protease [43], snake venom metalloproteases 

[44], rendering this explanation a possibility. Finally, results from this section and the 

more general survey reveal that mutations at positions 189, 219, and 239 generally 

decrease activity. These positions reside near the substrate-binding pocket and may 

adversely affect catalytic function (Figure 6). 

 

Backbone Stabilization: Disulfide Engineering  

While removing glycines and introducing prolines provides modest stability benefits, 

incorporating stabilizing disulfide linkages constitutes one of the most effective means of 

reducing the entropy of protein unfolding. Engineered disulfide bonds improved the 

thermostability of several proteins by several degrees including Drosophila melanogaster 

acetylcholinesterase [45], a thermolysin-like protease [46], T4 lysozyme [47], and 

Clostridium thermocellum cellulase C [48]. We attempted to engineer disulfides into 

HjCel5A using two prediction methods: 1) Triad using the Rosetta forcefield and 2) the 

program Disulfide by Design [49]. The Triad relies on rotamer optimization to design 

new disulfides. Lenient disulfide bond geometries are employed that allow the program 

to recapture preexisting disulfides. Disulfide by Design identifies potential disulfide 

linkages through a simple geometry-based algorithm and is freely available through a 

web server. Three and fifteen mutations were predicted from Triad and Disulfide by 

Design calculations, respectively (Table VII). Only one construct (I44C-G91C) 

performed better than WT on the activity screen (Figure 7A). However, more rigorous 

analysis revealed that this construct demonstrated a ΔT50 of -0.5 °C (Table VI, Figure 

7B).  
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Ample evidence exists that the addition of disulfide bonds between flexible regions can 

radically improve protein thermostability [45, 47, 50]. Yet, even studies reporting 

successful stabilization through disulfide engineering demonstrate that most attempts 

negatively impact folding and stability. This destabilization may occur even when 

disulfides form correctly, suggesting that future attempts should require a broad 

assessment of local structure that cannot be captured using the methods examined in this 

study. Though our efforts did not reveal any stabilizing disulfide bonds beyond the four 

present in the WT structure, more rigorous methods might provide better results.   
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5.4 Summary and Conclusion 
 
This study explores the efficiency of employing computational ΔΔG approximations to 

recover active, stabilizing mutations in an industrially-relevant endoglucanase. When 

applied to HjCel5A, FoldX performs slightly better than Triad at predicting stabilizing 

mutations. These findings are reminiscent of Khan et al.’s comprehensive survey of 

ΔΔG-based methods wherein FoldX was deemed one of the most reliable predictors of 

stabilizing mutations [17]. In addition, the mutations recovered with FoldX show better 

retention of function than those predicted with Triad. Two of the Triad mutations fall in a 

cleft important to substrate binding and subsequently reduce activity. Our calculations 

employed purely structural data with no special considerations for catalytically-important 

residues. As such, the difference in activity may stem from error caused by small datasets 

and may not represent a general trend.  

 

The majority of mutations were predicted using a single strategy. In general, Triad 

appears to recover more mutations from the protein core while FoldX performs well on 

surfaces. This observation may stem from differences in the employed forcefields. The 

FoldX energy function contains a term to explicitly model the extra stabilizing free 

energy provided by a water molecule making more than one hydrogen bond to the protein 

(ΔGwb) [16]. The rosetta forcefield used in Triad, however, represents solvent implicitly 

as a continuous medium using the method of Lazaridis and Karplus [51]. This difference 

may explain why mutations from each method skew towards different sectors of the 

protine and why little overlap between mutation pools predicted from FoldX and Triad 

exists. In future experiments, these strategies may be used in a complementary fashion to 

increase the number of stabilizing mutations recovered.  

 

The accuracies achieved here (FoldX 14.0%, Rosetta 10.6%) do not approach the 60% 

value reported in the Khan study. Although the screen used in our study cannot identify 

stabilizing mutations that significantly lower expression or activity, it is unclear how 

useful such mutations might prove in a real-world application. Consequently, only 

stabilizing mutations that do not dramatically reduce expression or activity were 
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classified as true positives. The low accuracies reported in this study may originate from 

the omission of these undesirable stabilizing mutations.  

 

In addition to comparing the efficiency of FoldX and Triad, this study reports numerous 

unique stabilizing mutations in HjCel5A. The calculations recovered primarily non-

overlapping sets of mutations, allowing for the discovery of six and five stabilizing 

mutations from FoldX and Triad, respectively. Seven of the mutations improve 

thermostability by ≥ 1 °C. Such increases are large when compared to previous studies 

(see Chapter 4). In addition, efforts to improve backbone stability revealed five Gly à 

XAA and three XAA à Pro stabilizing mutations. Many of these mutations slightly 

decrease enzymatic activity. With a handful of notable outliers such as G293A, most of 

the mutations also provide only modest stability improvements. Mirroring these results, 

an attempt to rationally introduce prolines into the i+1 position of type I β-turns within 

HjCel6A recovered one marginally stabilizing mutation out of ten candidates [4]. 

Previous reports have also noted that proline mutations improve stability in a manner that 

is highly dependent on local structure [52]. The methods employed in this study may fail 

to capture some structural feature common to stabilizing proline mutations. Taken 

together, these studies suggest that strictly focusing on backbone stabilization through 

decreasing the entropy of unfolding is not the most effective stabilization protocol. 

Nevertheless, the information provided in this report may be of use in an industrial 

setting.  

 

Attempts to engineer new disulfide bonds in HjCel5A met with little success. As the 

native molecule already contains four well-formed bridges, it is possible that suitable 

positions for adding additional linkages do not exist. Adding more cysteines may also 

increase the likelihood of protein aggregation as free thiols may form unfavorable inter 

and intramolecular bonds. More likely, better search algorithms are needed to engineer 

stabilizing disulfides. Although all predicted constructs were experimentally 

characterized for completeness, many of the constructs predicted by Disulfide by Design 

and Triad could have been discarded based on chemical intuition.  
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Finally, several cautionary lessons relevant to applying ΔΔG-based stabilization methods 

to enzymes emerge from this study. While rendering the backbone more rigid may 

enhance stability, activity may consequently suffer. In addition, procedures that rely 

solely on structural information may alter areas necessary for function. Mutations at 

positions 189, 219, and 239 elevated stability, but appear near a binding pocket and 

detrimentally affect catalysis. Rational analysis of the HjCel5A crystal structure may 

have suggested against testing mutations in this region. In this study, however, all 

computationally predicted mutations were tested to remove experimenter bias. Future 

experiments need not take such precautions, possibly leading to improvements in 

engineering efficiency.  
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5.5 Materials and Methods 
  
FoldX Calculation 

All FoldX calculations were performed with version 3.0 [16]. After removing waters and 

ligands, Chain A from the HjCel5A crystal structure (PDB ID: 3QR3) was prepared using 

the optimize and repairPDB functions within the software. A position scan was 

performed to compute energy values for WT and mutations to all other 19 amino acids. 

To compute ΔΔG values, each mutation was compared to WT using the following 

equation: 

 

!!GMut = !GMut "!GWT  

 

where ΔGmut is the energy computed for the mutation and ΔGWT is the energy computed 

for the WT residue at the same position. All calculations were performed using default 

parameters unless otherwise specified.  

 

Triad ΔΔG Calculation 

All Rosetta calculations were performed using a modified version of the rosetta energy 

function described by Rohl et al. [23] and implemented within the protein design 

software Triad [53]. The version of rosetta implemented in Triad employs a softer 

Lennard-Jones potential, a different set of amino-acid reference energies, and modified 

hydrogen bond and amino acid propensity weights. The energy function also lacks terms 

unnecessary for point mutation calculations including those for disulfide bonding, 

Ramachandran, proline closure, and omega tethering. Designs were performed on chain 

A of the HjCel5A crystal structure (PDB ID 3QR3 [34]). After removing water molecules 

and ions, hydrogens were added to the structure using the protein process application 

within the design software Triad [53]. Triad was additionally employed to optimize the 

structure through 50 steps of gradient-based energy minimization using the rosetta 

forcefield.  
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Glycine Scan  

The glycine scan was performed in Triad using the modified version of the rosetta 

forcefield described in the Triad ΔΔG Calculation section (above). The scan mutates 

glycine in the native structure to each of the other 19 amino acids. All other conditions 

addressed in the rosetta calculation section apply to the glycine scan. The information 

calculated here is simply a subset of the data retrieved from the more comprehensive 

Triad-rosetta ΔΔG scan and is reformatted to facilitate data analysis. 

 

Proline Scan  

The proline scans were performed with a restricted version of the algorithm used for the 

original Triad ΔΔG scan calculation. This scheme calculates ΔΔG values for mutating 

every position in the protein to proline and provides a ranked list of mutations. As in the 

glycine calculation, the generated information is a reformatted subset of the data retrieved 

from the Triad ΔΔG scan. 

 

Disulfide Bond Engineering Calculations 

Disulfide bond engineering calculations were performed using the ssdesign application in 

the protein design software Triad [53]. In this application, if two cysteine (CSS) rotamers 

come in close contact, the program adopts smaller values for force constants and barriers 

for DREIDING bonds, angles, and torsions. This leniency has been optimized to detect 

native disulfides as many disulfide geometries show slight deviations from canonical 

values. To design disulfides, the rotamer optimization algorithm simultaneously switches 

a pair of residues to CSS rotamers. Pair moves are biased towards those with good 

pairwise energies, i.e., those likely to form disulfides. Calculations were performed with 

7 trajectories, a rotamer pair factor of 10, an iterations multiplier of 5, a disulfide force 

constant of 15, a disulfide max benefit of 35, and a CSS penalty of 15. All calculations 

employed a version of the rosetta forcefield, as described in the Triad ΔΔG Calculation 

section (above), modified to employ the DREIDING disulfide bonding energy terms. The 

term used for bonds within disulfides is:  
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Ebond =12700.0B1,2 (r1,2 ! R1,2 )
2  

 

where B is the bond order (1, 1.5, 2, or 3), r is the Cartesian distance between atoms 1 

and 2, and R is the equilibrium bond distance between atoms 1 and 2. The term for 

disulfide angles is as follows: 

 

Eangle =12100.0(!1,2,3 "!1,2,3)
2  

 

where ∠1,2,3 is the observed angle between atoms 1, 2, and 3 and θ1,2,3 is the equilibrium 

angle. Disulfide torsion angles are defined as:  

 

Etorsion =12K1,2,3,4N(1! d1,2,3,4 cos(n1,2,3,4!1,2,3,4 )  

 

where K1,2,3,4 is the energy barrier, N is the number of torsion terms where atoms 2 and 3 

are placed in the center, d1,2,3,4 is the phase factor (1 for cis, -1 for trans), n1,2,3,4 is the 

periodicity, and χ1,2,3,4 is the torsion angle.  

 

Additional disulfide bond engineering calculations were performed using the online 

server for Disulfide by Design version 2.11 [49]. Calculations were executed on both 

chains in the HjCel5A crystal structure (PDB ID 3QR3). Disulfide bonds principally 

contain four atoms linked in a linear fashion: Cβ-Sγ-Sγ-Cβ. In this calculation, a disulfide 

model is generated with fixed Cβ-Sγ (1.81 Å) and Sγ-Sγ (2.04 Å) bond lengths and Cβ-Sγ-

Sγ (104.15°) bond angles. To initiate the calculation, a pair of residues is chosen. The χ3 

torsion angle, formed through rotating the Cβ about the Sγ-Sγ bond, is allowed to vary 

until the Cβ-Cβ distance matches that observed in the crystal structure. Energies (Eij) are 

then calculated using the following equations:  

 

Eij = E !1,i( )+E !1, j( )+E !i( )+E ! j( )  (1) 

 

E !1( ) =1.4[1+ cos(3!1)]  (2) 
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E !3( ) = 4.0[1! cos(2!3 +160)]  (3) 

 

E !( ) = 55.0[! !!0 ]2 (4) 

 

Where i and j are residue positions, θ is the Cα-Cβ-Sγ angle, and θ0 = 114.6°. Energies are 

computed in kcal mol-1 with higher values corresponding to more favorable mutations. 

All calculations were performed with default settings.  

 

Cel5A Plasmid Construction 

Double mutants for disulfide engineering were constructed using a modified version of 

the Quikchange method in which two primer pairs are added to a single reaction. See 

equivalent section in Chapter 3 for additional details.  

 

Thermostability/Activity Screen 

See equivalent section in Chapter 3.  

 

Park-Johnson Assay 

See equivalent section in Chapter 3.  

 

Enzyme Purification 

See equivalent section in Chapter 3.  

 

T50 Assay 

See equivalent section in Chapter 3.  

 

Single-Point Activity Assay 

See equivalent section in Chapter 3 
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5.6 Tables and Figures 
Table I. Predicted FoldX mutations 

Mutation ΔΔG (kcal mol-1) 
R3P -2.64 

K32P -2.50 
D54A -2.76 
D54L -5.29 
D54R -3.03 
D54C -3.14 
D54M -3.85 
D54K -2.54 
D54N -3.89 
S79P -1.84 

T120D -2.16 
N153D -2.91 
Q186G -2.95 
A230P -1.80 
V265D -1.87 
S267P -2.75 
D271Y -1.83 
D271F -2.23 
S283P -1.77 
E305G -2.24 
E305A -2.46 
E305V -2.18 
E305I -2.62 
E305S -1.77 
E305C -2.86 
E305M -4.09 
E305K -4.04 
E305Q -2.13 
E305N -1.88 
E305F -3.77 
E305H -2.91 
S309L -1.78 
D316A -1.91 
D316P -2.36 
D316S -2.20 
D316C -2.44 
D316Q -1.81 
D316A -1.91 
S318P -2.32 
S318M -2.09 
S318W -1.81 
S318F -1.94 
S322L -1.87 
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Table II. Predicted Triad ΔΔG mutations 
Mutation ΔΔG (kcal mol-1) 

N8A -2.53 
N8V -2.64 

M56F -2.3 
R60V -1.75 
G112F -2.04 
G112L -2.13 
G112R -2.03 
G112W -1.76 
G112Y -2.05 
Q116D -2.33 
Q116N -2.92 
Q116W -1.93 
W142E -2.06 
W142F -3.76 
W142H -3.38 
W142I -4.9 
W142L -2.62 
W142M -3.65 
W142T -2.6 
W142V -4.29 
W142Y -2.91 
T156G -1.77 
Q186D -3.13 
Q186E -2.99 
Q186N -2.05 
K219A -3.2 
K219E -1.82 
K219S -3.65 
K219Q -1.92 
N236G -1.89 
I237F -1.99 
I237W -2.17 
I237Y -2.06 
R253Q -2.11 
I276H -1.75 
N282R -1.93 
N282Q -1.97 
E305F -2.24 
E305H -3.07 
E305L -1.95 
E305T -2.14 
E305Y -2.13 
S309F -1.94 
S309L -2.26 
S309W -2.24 
L324F -2.35 
L324H -1.86 
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Table III. Characterization of FoldX and Triad ΔΔG mutations 

Construct T50,WT 
(°C) 

T50,mut 
(°C) 

ΔT50 
(°C) 

Activity 
(µM Cellobiose 

Equivalents) 

ΔActivity 
(µM Cellobiose 

Equivalents) 

FoldX ΔΔG 
(kcal mol-1) 

Triad ΔΔG 
(kcal mol-1) 

Expression 
Level  

(Mut/ WT) 
Location 

WT - - - 193.7±12.2 0.0 - - -  
FoldX 

S79P 69.9±0.3 70.2±0.5 0.3±0.5 205.1±6.7 11.4 -1.84 0.97 1.0 Surface 
N153D 70.3±0.7 70.7±0.6 0.5±0.9 196.2±1.5 2.5 -2.91 -0.25 0.2 Surface 
D271F 70.5±0.9 73.6±0.6 3.1±1.1 167.2±6.3 -26.5 -2.23 -1.08 0.1 Boundary 
D271Y 71.3±0.3 73.9±0.1 2.7±0.4 209.5±3.9 32.5 -1.83 -1.07 0.4 Boundary 
S309L 71.3±0.3 72.7±0.3 1.5±0.3 196.1±1.9 2.4 -1.78 -2.26 0.8 Boundary 
S318P 69.9±0.6 73.1±0.6 3.2±0.9 218.5±3.4 24.8 -2.32 3.27 0.3 Surface 

Triad 
K219A 68.1±0.7 70.1±0.1 2.0±0.7 167.0±6.2 -26.7 2.07 -3.20 1.4 Core 
K219Q 68.5±0.0 71.3±0.1 2.8±0.1 162.0±1.4 -31.7 1.28 -1.92 1.2 Core 
S309F 68.3±0.1 71.0±0.1 2.7±0.1 164.1±8.6 -29.7 -0.57 -1.94 0.8 Boundary 
S309L 71.3±0.3 72.7±0.3 1.5±0.3 196.1±1.9 2.4 -1.78 -2.26 0.8 Boundary 
S309W 68.2±0.0 68.6±0.1 0.4±0.1 202.8±6.8 9.1 0.19 -2.24 0.5 Boundary 
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Table IV. Predicted glycine mutations 
Mutation ΔΔG (kcal mol-1) 

G64P -2.33 
G64A -0.78 

G112K -1.14 
G112Q -1.14 
G112V -1.05 
G112T -1.04 
G112C -1.04 
G112N -1.03 
G112A -0.84 
G112I -0.75 

G112M -0.60 
G112E -0.51 
G112H -0.21 
G112S -0.16 
G112D -0.09 
G144A -0.80 
G144P -0.31 
G144D -0.16 
G144N -0.09 
G189A -0.18 
G189E -0.99 
G189H -0.28 
G189K -0.52 
G189N -0.26 
G189Q -0.52 
G189R -0.34 
G189S -0.04 
G239A -0.80 
G239C -0.34 
G239D -0.46 
G239I -0.45 
G239K -0.56 
G239L -0.87 
G239M -0.40 
G239N -0.97 
G239P -0.18 
G239R -0.02 
G239S -1.05 
G239T -1.22 
G239V -0.36 
G293A -0.50 
G311D -0.55 
G311N -1.41 
G328T -0.31 
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Table V. Predicted proline mutations 
Mutation ΔΔG (kcal mol-1) 

V2P -0.44 
N8P -2.80 

A10P -0.52 
F14P -2.02 
T18P -0.58 
V27P -2.29 
Y40P -1.75 
G64P -2.33 
N76P -1.26 
D78P -1.97 
D86P -3.26 
S94P -0.48 
A97P -0.97 

D102P -1.27 
H104P -1.36 
I114P -1.91 
T125P -0.14 
S126P -0.51 
S129P -0.32 
A136P -0.81 
S139P -0.44 
G144P -0.31 
N147P -1.03 
E163P -0.93 
R169P -0.1 
N170P -1.31 
Q176P -1.25 
S179P -1.63 
S187P -1.18 
S193P -0.04 
S201P -1.37 
N205P -2.32 
D222P -0.72 
S223P -0.14 
E231P -0.56 
G239P -0.24 
Q250P -0.6 
N264P -1.18 
I269P -0.05 
N280P -0.73 
Q281P -0.83 
T304P -2.01 
E305P -0.05 
D316P -0.97 
T317P -0.88 
A325P -0.99 
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Table VI. Backbone stabilizing mutations 

Construct T50,WT 
(°C) 

T50,mut 
(°C) 

ΔT50 
(°C) 

Activity 
(µM 

Cellobiose 
Equivalents) 

ΔActivity 
(µM Cellobiose 

Equivalents) 

FoldX ΔΔG 
(kcal mol-1) 

Triad ΔΔG 
(kcal mol-1) 

Expression 
Level 

(Mut/WT) 
Location 

WT - - - 193.7±12.2 0 - - -  
GLY à XAA 

G189A 70.8±0.3 71.2±0.3 0.4±0.4 170.1±3.4 -23.7 -0.93 -0.76 1.2 Boundary 
G189S 70.1±0.3 71.3±0.2 1.2±0.4 208.2±6.0 14.5 -0.45 -0.97 1.2 Boundary 
G239D 70.8±0.1 71.2±0.1 0.4±0.2 185.6±3.1 -8.1 -0.80 -1.46 1.3 Boundary 
G239N 70.4±0.1 71.1±0.0 0.7±0.1 174.9±4.3 -18.8 -0.13 -1.43 1.1 Boundary 
G293A 70.3±0.1 73.7±0.1 3.5±0.2 221.0±1.2 27.3 6.66 -0.08 0.8 Core 
G189E 70.6±0.1 70.6±0.2 0.0±0.2 N/A N/A -0.58 -1.01 2.0 Boundary 
G64A 70.3±0.1 69.6±0.1 -0.7±0.1 190.5±5.0 -3.2 2.97 -0.30 2.3 Core 
G189K 70.6±0.1 70.5±0.1 -0.1±0.2 N/A N/A -0.89 -0.55 1.2 Boundary 
G239S 70.8±0.2 69.7±0.3 -1.0±0.3 N/A N/A -0.20 -1.04 0.9 Boundary 

XAA à PRO 
T18P 70.2±0.1 70.4±0.0 0.2±0.1 187.5±3.8 -6.2 -1.67 0.46 1.1 Surface 
N76P 69.7±0.2 70.5±0.4 0.8±0.5 177.3±6.8 -16.4 0.00 0.95 1.7 Surface 
S139P 69.6±0.2 71.5±0.6 1.8±0.6 152.1±8.0 -41.6 -1.33 2.14 1.8 Surface 

Disulfide Mutations 

I44C/G91C 69.8±0.4 69.3±0.5 -0.5±0.7 N/A N/A N/A N/A 0.8 Surface/
Boundary 
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Table VII. Predicted disulfide mutations 
Mutation ΔΔG (kcal mol-1) 

Disulfide by Design 
G1C, N280C 1.70 
G6C, I58C 0.37 

F12C, V63C 0.15 
D13C, H104C 1.34 
D13C, P62C 1.93 
I44C, G91C 2.80 

G74C, Q123C 1.69 
D78C, S81C 1.96 

A132C, A173C 1.61 
A136C, G172C 2.73 
S139C, S175C 1.54 
D184C, A190C 1.58 
Q186C, H218C 0.65 
N235C, Q274C 2.17 
W292C, G293C 2.34 

Triad 
P29C, L31C -16.51 
P29C, F34C -21.47 
L31C, F34C -19.19 
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Figure 1. Screening and characterization of FoldX and Triad mutants. (A, D) Activity screen on FoldX (A) and Triad (D) mutants. 
WT is shown in green. The dotted line marks the WT activity level for comparison. (B, E) Activity of HjCel5A point mutants after 
treatment over a range of temperatures. The dotted line marks the point at which half of the original activity remains (T50). (B) Data 
for the FoldX mutants N153D (pink triangles), D271F (orange squares), D271Y (yellow triangles), S309L (blue diamonds), and 
S319P (green squares) are plotted. (E) Data for the Triad mutants K219Q (orange squares), K219Q (yellow triangles), S309F (blue 
diamonds), and S309L (pink triangles) are shown. (C, F) Activity versus ΔT50 for the FoldX (C) and the Triad (F) mutants. 
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Figure 2. Structural analysis of stabilizing FoldX and Triad mutations. FoldX mutations are depicted in panels A-F. Triad mutations 
appear in panels E and G-J. The WT and mutation sidechains are shown as green and blue sticks, respectively. (K) The location of 
stabilizing FoldX (orange) and Triad (blue) mutations within the HjCel5A structure (gray cartoon). 
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Figure 3. FoldX and Triad Receiver Operator Characteristic curves. ROC curves for 
predicting adequately active and well-expressed thermostable mutations are shown for 
FoldX (orange) and Triad (blue) predictions. Curves closer to the diagonal (dotted line) 
represent metrics that provide no predictive benefit over random choice.  
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Figure 4. Screening and characterization of glycine and proline mutations. (A, D) Activity screen on Glycine (A) and Proline (D) 
mutants. WT is shown in green. The WT activity level is marked with a dotted line for reference. (B, E) Activity of HjCel5A point 
mutants after treatment over a range of temperatures. The dotted line marks the point at which half of the original activity remains 
(T50). (B) Data for the glycine mutants G189S (orange squares), G239N (yellow triangles), and G293A (blue diamonds) are plotted. 
(E) Data for the proline mutants T18P (orange squares), N76P (yellow triangles), and S139P (blue diamonds) are shown. (C, F) 
Activity versus ΔT50 for the glycine (C) and the proline (F) mutations. 
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Figure 5. Structural analysis of stabilizing glycine and proline mutations. (A-E) Location 
of stabilizing glycine mutations. (F-H) Location of stabilizing proline mutations. In 
panels A-H, the WT and mutated sidechains are shown as green and blue sticks, 
respectively. (I) The location of stabilizing glycine (green) and proline (yellow) 
mutations within the HjCel5A structure (gray cartoon).  
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Figure 6. Location of positions 189, 219 and 239. Three stabilizing residues sitting near 
the substrate binding pocket, G189, K219, and G239, are drawn as spheres. To highlight 
the active site, the substrate analog 2,4-dinitrophenyl-2-deoxy-2-fluoro-β-D-cellobioside 
is modeled as green sticks. This molecule appears in the Bacillus agaradhaerens Cel5A 
crystal structure (PDB ID 4A3H [38]) and was superimposed onto the HjCel5A structure 
using the align command in PyMOL [54].  
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Figure 7. Screening and characterization of disulfide mutants. (A) The activity screen for 
all disulfide constructs. Bars marked in blue correspond to constructs predicted with 
Triad. WT is shown in green and its activity is marked with a dotted line to facilitate 
comparison. (B) Activity at 60 °C following a 10 minute incubation across a gradient of 
temperatures. WT is represented with gray circles. Data for the disulfide bond mutant 
I44C, G91C is displayed as orange squares. The temperature at which half of the 
maximal activity lingers (ΔT50) occurs at the point where the curves intersect the dotted 
line.   
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CHAPTER 6 
 
A Comparison of Stabilization Techniques 
Applied to Hypocrea jecorina Cel5A 
 
This chapter is partially formatted for submission to the Proceedings of the National 
Academy of Sciences. 
 
6.1 Abstract 
 
Producing liquid fuel and polymer products from cellulosic material may mitigate the 

detrimental environmental and social effects of grain-based production [1-3]. Sustainable 

hydrolysis of cellulosic feedstocks into fermentable sugars, however, prohibitively 

requires relatively expensive enzymes [4]. One proposed strategy for alleviating this 

problem involves engineering thermostable variants of industrial cellulases, enzymes that 

cleave cellulose chains into smaller sugars. Such molecules would ideally function above 

current operating temperatures (~50 °C), providing more efficient glucose release and 

lowering production costs.  

 

Using the primary endoglucanase from the industrial workhorse Hypocrea jecorina 

(HjCel5A) as a molecular guinea pig, we compare a plethora of disparate methods 

designed to improve protein stability. These methods include consensus design, core 

repacking, helix dipole stabilization, ΔΔG-based methods (FoldX, Triad), and backbone 

stabilization. For the examined system, consensus design not only provides the largest 

improvements in stability, but also preserves or even elevates activity. FoldX ΔΔG 

approximations also revealed several highly stabilizing and active mutations.    

 

An initial combination mutant containing highly stabilizing mutations with enzymatic 

activity as a secondary consideration showed high thermostability, but poor performance 

in long-term hydrolysis assays. Mutations reducing activity were substituted for those 

conferring smaller stability improvements with less adverse effects on enzymatic 

function. The resulting combination mutants demonstrate a 12-15 °C increase in T50 (T50 

= 84-86 °C), an 11-14 °C increase in optimal temperature (Topt = 75-78 °C) and a 60% 



 

 

140 

increase over the maximal amount of hydrolysis achievable using the WT enzyme. These 

studies highlight the importance of maintaining enzymatic function when searching for 

highly stable variants.  
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6.2 Significance Statement 
 
Thermostable protein variants have broad applications in industrial and scientific realms. 

In this study, several highly divergent stabilization strategies are applied to a single 

enzyme, Hypocrea jecorina (anamorph Trichoderma reesei) Cel5A (HjCel5A). This 

enzyme serves as the primary endoglucanase in the workhorse of the biofuels industry 

and is a target for thermostabilization. In providing a comprehensive, experimental 

survey of currently popular stabilization techniques, we demonstrate that consensus 

design provides the most stabilizing and active mutations from the employed methods. 

Using the mutations revealed in this survey, we additionally constructed a combination 

mutant that showed a 14 °C improvement in thermostability as measured by the 

temperature at which half of the maximal activity persists (T50). After removing or further 

altering stabilizing mutations that decreased activity, subsequent combination mutants 

demonstrated a 12-15 °C increase in T50 (T50 = 84-86 °C), an 11-14 °C increase in 

optimal temperature (Topt = 75-78 °C) and a 60% elevation in hydrolysis over the 

maximum amount achievable with WT.  
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6.3 Introduction 
 
A need for alternative liquid fuels exists. As a non-renewable resource, oil will eventually 

grow increasingly scarce and difficult to extract [5, 6]. Its use not only emits pollution [7, 

8], but also fosters economic dependence on fossil fuel exporters [9]. Recognizing this 

looming hurdle, the Federal government has invested considerable resources in 

promoting the use of biofuels, mainly those originating from corn. However, diverting 

food for fuel creates competition between the energy and agricultural sectors, leading to 

agricultural intensification and elevated food prices [1-3]. Creating fuel from inedible 

cellulosic feedstocks from waste streams can alleviate this problem.  

 

One method of generating liquid fuel precursors from cellulosic material involves 

enzymatically digesting feedstock into fermentable sugars. Generally, three major classes 

of cellulases are necessary to synergistically hydrolyze crystalline cellulose into glucose 

monomers: 1) exoglucanases which release two sugar-unit molecules called cellobiose 

from either the reducing or non-reducing ends of cellulose chains, 2) endoglucanases 

which cleave strands internally at amorphous kinks in the crystalline lattice, and 3) β-

glucosidases which cleave smaller fragments into glucose monomers [10]. As the cost of 

producing these enzymes remains prohibitively high in the range of $0.10 - $1.47/gal [4, 

11-13], considerable effort has been invested in streamlining this process [14-18]. 

 

Engineering thermostable variants constitutes one means of dramatically reducing 

enzyme production costs. Reactions typically proceed at 50 °C, the temperature at which 

the major cellulases remain optimally active [19]. Increasing the reaction temperature 

minimizes microbial contamination and saves energy through reducing the amount of 

cooling necessary after pretreatment at temperatures around 200 °C [20]. Improving 

protein stability also protects against degradation during storage, production, and 

hydrolysis [21]. Furthermore, provided the enzymes remain folded, reaction rates 

typically increase as temperatures rise [22, 23].  
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Previous attempts to engineer thermostable protein variants have collectively determined 

that no “general rational rule” exists that will provide maximal stability benefits by 

optimizing certain protein characteristics [24-28]. Typically, methods targeting a single 

characteristic fail to recognize many beneficial mutations easily captured through 

examining other features. Although acknowledgement of this trend dates to over a decade 

ago, only a handful of studies have attempted to detect stabilizing mutations using 

multifarious criteria within the same protein system [17]. Many studies focus on 

comparing improved versions of a technique to their predecessors. Such methods include 

design by ΔΔG values [29], repacking the hydrophobic core [30], and consensus design 

[31]. A more comprehensive comparison evaluating the performance of disparate 

methods, however, may provide further insights.  

 

Here, we describe the construction of stable Cel5A (EGII, HjCel5A) variants. HjCel5A is 

the primary endoglucanase from Hypocrea jecorina (anamorph Trichoderma reesei) 

(HjCel5A) [32]. Capable of producing 100 g L-1 of native enzymes, H. jecorina serves as 

the source for many of the enzymes used for cellulosic biofuel production [33]. To gain a 

comprehensive understanding of how to best thermostabilize a protein, we employed 

several highly diverse stabilization strategies and analyzed each for effectiveness. This 

comprehensive approach includes consensus design, core repacking, helix dipole 

stabilization, ΔΔG-based methods (FoldX, Triad), and backbone stabilization. Mutations 

recovered from these studies were combined to create highly thermostable HjCel5A 

variants with elevated activity and expression level in Saccharomyces cerevisiae. These 

results may find use in an industrial setting.   
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6.4 Results 
 
Identification and Characterization of Stabilizing Mutations  

The first step in constructing a thermostable enzyme variant involves identifying the 

changes necessary to foster stabilization. To facilitate cloning and testing, seven methods 

were chosen or modified to produce point mutations. These methods are: 1) consensus 

design, 2) core repacking, 3) helix dipole stabilization, design with 4) FoldX and 5) Triad 

ΔΔG approximations, and backbone stabilization through 6) mutating glycines to 

residues with a Cβ and 7) introducing prolines.  

 

Consensus design employs multiple sequence alignments to determine the most prevalent 

residue at a given position. This approach selects residues as potentially stabilizing when 

they appear more frequently in a multiple sequence alignment of homologs to the protein 

of interest than is expected based on a reference state (e.g. codon frequency or the 

frequency of the wild type (WT) residue) as potentially stabilizing [31, 34].  

 

The core repacking strategy seeks to stabilize the folded state over the unfolded state 

through improving hydrophobicity in the interior of the protein. Protein folding is largely 

driven by the hydrophobic effect, i.e. polypeptide chains fold to bury hydrophobic 

residues and minimize disruption of hydrogen bonds among solvent molecules [35]. To 

heighten this effect, we employed computational design software to fill voids and 

increasing the prevalence of hydrophobic sidechains in the protein core.  

 

The helix dipole stabilization method rests on the principle that changing the electrostatic 

properties of residues at the ends of helices may confer stability [36]. Every α-helix 

contains an inherent dipole originating from three potentially unsatisfied backbone 

hydrogen bonds at the N- and C-terminal residues of the protein. Adding an N-capping 

residue to contact an unpaired amine or mutating the N- and C-terminal residues to 

counter this dipole may enhance protein, stability. Using the same software employed in 

the core repacking strategy, we attempted to design thermostable HjCel5A variants 

through stabilizing the helix dipole.  



 

 

145 

 

We additionally used FoldX [37] and Triad [38] to calculate ΔΔG values for every 

possible mutation in HjCel5A. These methods employ molecular mechanics forcefields 

tuned with empirically-influenced weights to predict differences in energy between the 

WT and mutated sequences. One can adapt this strategy to search for mutations that 

decrease the entropy of unfolding through restricting the trajectory of the protein 

backbone. Gly à XAA and XAA à Pro mutations reduce the allowable Ramachandran 

space, potentially stabilizing the folded state over the unfolded [39].  

 

A more thorough review the seven design strategies and their implementation appears in 

chapters 3 (consensus design), 4 (core repacking and helix dipole stabilization), and 5 

(FoldX, Triad, glycine and proline backbone stabilization) of this thesis. To reduce bias 

and form accurate comparisons between methods, rational input from the experimenter 

was purposefully excluded. Thus, the set of characterized mutations contains those 

clearly providing no benefit (e.g., tryptophan mutations on the surface or mutations 

disrupting active site networks).  

 

In total, 262 unique point mutations were predicted as stabilizing and subsequently 

characterized (see Appendix A, Table I). Constructs were secreted from Saccharomyces 

cerevisiae and the expression supernatants were screened for ability to release sugar from 

Avicel, a crystalline cellulose powder, after two hours at 73 °C. This temperature exceeds 

that at which half of the WT HjCel5A remains folded (Tm) by 3.5 °C (Tm,WT = 69.5 °C). 

Under these conditions, only constructs with improved expression, stability, activity, or a 

mix thereof will demonstrate enough activity to outperform WT. From the 262 constructs 

tested, 43 mutations showed greater activity than WT in the screen. These mutations were 

expressed, purified, and assessed for activity at 60 °C for one hour following a 10 minute 

heat treatment across a gradient ranging from 60 – 80 °C. Thirty two mutations showed 

an improvement in T50, the temperature at which half of the maximal activity persists 

(Tables I and II).  
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Database Construction 

Appendix A, Table II in this chapter, and the supplementary accessory files submitted 

with this work summarize the information collected during the prediction and 

experimental phases. These tables contain all of the measures generated through methods 

capable of calculating a value for the WT residue and every possible mutation in the 

protein.  

 

First Generation Combination Mutants 

Using the information gleaned from the various stabilization strategies, we assembled a 

series of combination constructs containing highly stabilizing mutations. Mutations 

demonstrating a ΔT50 ≥ 0.5 °C were selected for incorporation. If several stabilizing 

mutations appeared in the same region within the HjCel5A structure, the mutations with 

the highest ΔT50 values were generally retained. In ambiguous situations where 

interaction between two sites could not clearly be ascertained, several alternative 

constructs were tested. The final chosen set contains 13 possible mutations: T57N, N76P, 

T80E, S139P, N155E, G189S, K219Q, G239N, D271F, Y278F, G293A, S309F, and 

S318P.  

 

These mutations were incrementally added to the WT sequence with the least and most 

mutated constructs containing 1 and 13 mutations, respectively (Table III). Following 

cloning, mutants were tested for activity with the same screen employed to detect point 

mutations (Figure 1A). All of the constructs showed improvements in activity over WT.  

 

Two constructs predicted to have either high activity or thermostability were chosen for 

further characterization. With nine mutations (T57N, N76P, T80E, S139P, N155E, 

G189S, D271F, Y278F, and G293A), construct 16 demonstrated the greatest performance 

on the activity screen. Construct 20 contains all 13 possible mutations and was projected 

to demonstrate the greatest thermostability. These two combination mutants were 

expressed, purified and tested to assess their hydrolytic capabilities on Avicel over a 

gradient of temperatures (Figure 1B), obtain their T50 values (Figure 1C), and determine 

their activity at 60 °C after 2 hours (Figure 1D). Table IV provides a summary of these 
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results. The 9-point mutant (construct 16) shows a 10 °C increase in both the optimal 

operating temperature (Topt) and in T50 relative to WT. As expected, the 13-point mutant 

demonstrates even greater improvement in thermostability with a 16 °C increase in Topt 

and a 14°C increase in T50 relative to WT. These increases, however, were accompanied 

by decreases in activity of 4% for the 9-point mutant and 17% for the 13-point mutant. 

Analysis revealed that the 13-point mutant contains more mutations that are known from 

previous experiments to decrease activity than the 9-point mutant. As such, the drop in 

activity likely originates from the collective effects of point mutations rather than 

incompatibilities between the mutations.    

 

To ascertain whether additional mutagenesis could counter these activity decreases, we 

assembled a 20-point mutant containing mutations with ΔT50 ≥ 0 °C. This combination 

mutant contains all 13 of the previously incorporated mutations plus T18P, G64A, S79P, 

V101I, S133R, D13E, and E53D. Individually, many of the less stabilizing mutations 

show improvements in activity; summing the changes in activity measured for these point 

mutations gives a net activity increase of 20.7 µM cellobiose equivalents. As such, we 

tested the possibility that including these less stabilizing mutations might boost 

thermostability while rescuing activity. While the 20-point mutant shows a ΔT50 of 16.8 

°C (Figure 1C), its activity at 60 °C decreases even further to 47.1 µM cellobiose 

equivalents below WT (22% of WT activity) (Figure 1D). This result suggests that 

activity losses from individual mutations permanently accumulate and cannot be rescued 

by adding mutations that improve activity in isolation.  

  

Although these initial combination mutants exhibit diminished activity, we hypothesized 

that their enhanced thermostability might improve performance in longer assays. Due to 

its relatively modest decrease in activity, the 9-point mutant (construct 16) was chosen 

for 60-hour activity tests on Avicel at 60 and 70 °C (Figures 1E and F). This construct 

demonstrates a nine-fold activity improvement over WT at the elevated temperature. 

When compared to WT hydrolysis at 60 °C, the total product yield improves by about 

134 µM of cellobiose equivalents (24% increase, 1.2 fold improvement).  
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Second Generation Combination Mutants 

 
Given that several alternate stabilizing, highly-active mutations appear in the pool of 

tested constructs, we surmised that further improvements were possible. Using the 9-

point mutant as a template, we created second-generation combination mutants by 

excluding all mutations detrimentally affecting activity. The process involved reverting 

mutations N76P, S139P, K219Q, G239N, D271F, Y278F, and S309F back to the WT 

residue or, if available, a less stable, more active alternate. Several changes occurred in 

an area of the protein adjacent to the active site (Figures 4A-C). As this region putatively 

serves as a substrate-binding channel, several mutations appear in this region that highly 

modulate activity. Mutations appearing in the four final second generation 13-point 

combination mutants (s13pt 1-4) are summarized in Table III.   

 

The second-generation combination mutants perform as well or better than WT on all 

tested metrics. All four constructs show enhancements in thermostability with s13pt2 

demonstrating the highest increase (ΔT50 = 15.4 °C) (Table IV, Figures 2A and B). 

Activity at 60 °C improved over WT for all constructs except s13pt1 (Figure 2C). In this 

case, activity declined by a mere 1.0 µM of cellobiose, and insignificant value. The 

combination mutants exhibit dramatic improvements in Topt. s13pt1/2 and s13pt3/4 

optimally function at 78 (ΔTopt = 14 °C) and 75 degrees (ΔTopt = 11 °C), respectively. 

Finally, all of the mutants show ~4-6 fold increases in expression level over WT.  

 

To explore whether these improvements would translate to conditions approximating 

industrial reactions, we conducted 60-hour hydrolysis experiments on the constructs with 

the highest activity (s13pt4) and thermostability (s13pt2). At 60 °C, both combination 

mutants performed similarly to WT (Figure 3A). This improvement dramatically 

increased at 70 °C (Figure 3B). Compared to the WT performance at the same 

temperature, s13pt4 and s13pt2 exhibit ~9.5-10 fold increases in activity. Moreover, the 

combination mutants improve yield by 358-414 µM cellobiose equivalents (~60% 

increase) over the maximal amount possible using the WT enzyme.   
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As the second-generation combination mutants optimally perform at 75-78 °C in the 2-

hour hydrolysis experiments, we tested whether long-term hydrolysis improves at higher 

temperatures. After 60-hours of hydrolysis, less activity was observed at 75 or 78 °C than 

at 70 °C (Figures 3C and D). This decrease in activity likely occurs due to gradual 

thermal degradation triggered by elevated temperatures. For example, trials wherein WT 

enzyme was pre-incubated at 50 °C for several hours before performing activity tests 

show that even long exposure to temperatures below the Tm of the protein reduces 

activity (data not shown). Thus, the optimal temperature for long-term hydrolysis 

represents a compromise between increased activity due to the Arrhenius effect and 

decreased activity due to slow thermal degradation.  

 

Comparison of Stabilization Strategies 

 
Although information from each design strategy contributed to constructing the final 

mutants, some methods proved more effective than others. Constructs s13pt2 and s13pt4 

contain five mutations predicted from the helix dipole stabilization strategy, four from 

FoldX, three from consensus design, two from mutating glycines, one from redesigning 

the core, and one from Rosetta ΔΔG predictions (Figure 4D). While this distribution of 

mutations seems to suggest helix dipole stabilization as the most effective measure, more 

rigorous analysis reveals that each method provides a different combination of benefits.  

 

Number of stabilizing mutations detected: Targeting the helix dipole successfully 

predicted the highest number of stabilizing mutations from all probed methods (Figure 

5A). On average, these mutations, however, provided minimal thermostabilizing effects. 

With the exception of core repacking and backbone stabilization through adding prolines, 

the remaining methods predicted a fair number of mutations considering the size of each 

candidate pool.  

 

Accuracy: Consensus design provided the highest prediction accuracy with helix dipole 

stabilization placing second (Figure 5B). Compared with third ranked method, FoldX, 

consensus design is 1.7 times more accurate, demonstrating the effectiveness of this 
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approach. Moreover, it is highly possible that the accuracy of consensus design could 

increase dramatically using design parameters outlined in Chapter 3.  

 

Expression: In general, most methods preserved HjCel5A expression in the heterologous 

host S. cerevisiae (Figure 5C). Only FoldX and the Rosetta ΔΔG method reduced the 

average expression below WT levels. Notably, the average expression level of the FoldX 

mutants was approximately half that of the WT protein. Conversely, many of the helix 

stabilizing mutations dramatically elevated expression levels, raising the average 

expression level to twice that of WT. It is unclear whether this improvement would 

persist during endogenous production from H. jecorina. Also, as manipulations on the 

DNA level (e.g., codon optimization, promoter engineering) might rescue low expression 

levels, this finding may prove inconsequential.  

 

Thermostability: The greatest observed stability benefits originate from consensus, Triad 

ΔΔG, and FoldX mutations (Figure 5D). Mutations from core repacking and helix dipole 

stabilization calculations stabilize HjCel5A to a marginal degree. These differences may 

originate from the properties of targeted sectors within the protein. Techniques that 

produce more mutations in the boundary and core regions tend to yield highly stabilizing 

mutations, provided that these rare mutations are even detected. Interestingly, the core 

mutations appear to provide little benefit. As the core repacking calculation only 

identified two stabilizing mutations, the sample size may be insufficiently large to form 

any concrete conclusions.  

 

Activity: Design through FoldX, consensus, and helix dipole stabilization appears most 

effective at identifying highly active mutations (Figure 5E). Consensus design appears to 

perform particularly well, producing an average increase in activity over WT 1.6 times 

higher than that achieved using the second most effective method.  

 

This analysis demonstrates that while no clearly superior stabilization method exists, 

consensus design appears best at predicting stabilizing mutations with the qualities 

desired for the purposes of this study. Here, consensus mutations not only improve 
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thermostability by a high average of 2.2 °C, but also enhance activity by an average of 

14.0 µmol cellobiose equivalents (Table I, Figure 6A). FoldX mutations also appear to 

simultaneously enhance thermostability and activity, but with lower prediction accuracy 

(Table I, Figure 6D).   
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6.5 Discussion 
 
In this study, we sought to create HjCel5A variants capable of providing enhanced 

hydrolysis at temperatures higher than the current industrial standard. Constructs s13pt2 

and s13pt4 exhibit dramatically improved thermostability (ΔT50,s13pt2 = 15.4 °C, ΔT50,s13pt4 

= 12.2 °C), activity (ΔActivitys13pt2 = 27.4 µmol cellobiose equivalents, ΔActivitys13pt4 = 

68.8 µmol cellobiose equivalents), and yield (4.1 and 3.7 fold increase over WT). These 

mutants improve long-term hydrolysis of crystalline cellulose by approximately 60%. In 

addition, the detailed information concerning each point and combination mutant may 

prove useful for future stabilization efforts.  

 

The results presented in this work suggest that consensus design is the most effective 

method for identifying HjCel5A mutations that enhance thermostability while 

maintaining or improving expression and activity. Consensus design also demonstrates 

the greatest predictive accuracy, correctly identifying five highly-stabilizing, highly-

active mutations out of a mere 21 candidates. Given that natural selection typically 

eliminates detrimental mutations, the pool of homologous mutations has already been 

“prescreened” for members that do not adversely affect folding and/or function. 

Conversely, methods that rely strictly on structural information may provide highly 

stabilizing mutations that perturb activity or dramatically reduce expression levels.  

 
Although design by consensus performed best out of the surveyed techniques, all of the 

examined methods proved useful in stabilizing HjCel5A. Homology-based design cannot 

detect mutations appearing in the vicinity of unique structural features. For example, 

ΔΔG approximations with FoldX or Triad revealed several highly stabilizing mutations 

around solvent-exposed loops absent in homologous structures. Supplemental methods 

may also enhance features unaltered through consensus design. Incorporation of subtly 

stabilizing helix dipole mutations radically improved the expression levels of our 

constructs. Additionally, many of the stabilizing mutations were predicted using a single 

strategy. Consequently, simply testing mutations mutually predicted by two methods 

would discard most of the highly stabilizing mutations recovered in this study. We 
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suggest using consensus design supplemented with FoldX, helix dipole stabilization, or 

Triad ΔΔG for future stabilization efforts.  

 

Regardless of the employed design strategy, rankings did not correlate with the degree of 

stabilization. Plotting ΔT50 or activity versus the various metrics used in this study 

reveals no significant trends. As addressed by Potapov et al. [40], FoldX and similar 

computational methods can generate lists of mutations enriched in stabilizing members, 

but lack the resolution in accuracy to reliably rank individual mutations. Improving 

prediction accuracy will require improvements to existing algorithms or alternative 

design strategies.  

 

In this study, several stabilization techniques were performed on a single protein using 

identical characterization methods to directly compare methods. Future studies are 

necessary, however, to test whether these results apply to proteins beyond HjCel5a. Thus 

far, stabilization experiments performed on an SH3 domain demonstrate that designs 

based on multiple sequence alignment data provided greater fidelity in prediction 

accuracy than a structure-based approach [41]. Previous studies also note that 

comprehensive methods targeting multiple protein features tend to improve prediction 

accuracy and performance of the final molecule [24, 25]. In the design of a thermostable 

HjCel7A, Komor et al. employed both FoldX and a consensus approach [17]. These 

results demonstrate that both methods proved moderately effective in selecting a pool of 

mutations to test, but cannot predict whether individual mutations will be stabilizing. In 

2012, a combinatorial approach using computational (Rosetta) design, disulfide 

engineering, consensus design, and rational design by homology was employed to 

produce an antibody with a Tm over 90 °C [42]. While, the study showed that all methods 

contributed to the final design, experiments were performed in sequence, rendering 

comparisons of each method difficult.  

 

Taken together, the results of this study emphasize the importance of considering 

function in designing thermostable enzyme variants. Many studies relegate this parameter 

to a secondary position, choosing to evaluate activity after achieving considerable gains 
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in stability. Analysis of the most thermostable mutant created in this study (20-point 

mutant) shows that blindly incorporating stabilizing mutations into a combination variant 

may decrease activity enough to obviate any gains achieved through the enhanced 

stability. As the fundamental goal in many stabilization studies is the creation of enzyme 

variants that perform similar to or better than the WT catalyst at higher temperatures, 

activity should remain a paramount consideration in all design steps. The screens used in 

this study only identify mutations that exhibit improved thermostability, activity, or 

expression. This practice reduces the reported accuracy of the technique as highly 

stabilizing mutations that dramatically decrease activity or expression will escape 

detection. As a result, the 14% accuracy we report for FoldX is significantly lower than 

the previously reported 60% value [29]. The utility of detecting stabilizing mutations that 

cripple other essential aspects of protein function, however, remains unclear. We propose 

a realignment of priorities towards improving function at a particular condition rather 

than focusing primarily on thermostability.   
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6.6 Materials and Methods 
 
Cel5A Plasmid Construction 

See equivalent section in Chapter 3.  

 

Thermostability/Activity Screen 

See equivalent section in Chapter 3.  

 

Park-Johnson Assay 

See equivalent section in Chapter 3.  

 

Enzyme Purification 

See equivalent section in Chapter 3.  

 

T50 Assay 

See equivalent section in Chapter 3.  

 

Topt Assay 

Determination of the temperature yielding the maximum activity proceeded through 

incubating enzyme with Avicel for two hours at a gradient of temperatures, then 

determining sugar release with the Park-Johnson assay. In a 96-well PCR plate, 40 µL of 

purified enzyme were combined with 60 µL of 1.5% Avicel suspended in cellulase buffer 

(100 mL 50 mM sodium acetate, pH 5.0). Samples were incubated for 2 hours across a 20 

°C gradient centered around a temperature projected to capture the peak of activity based 

on T50 values. Activity was assessed from 25 µL of supernantant using the Park-Johnson 

assay.  

 

Single-Point Activity Assay 

See equivalent section in Chapter 3. 
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60-Hour Activity Assay 

To assess activity over a constant temperature for 60 hours, enzyme and substrate 

mixtures were combined in individual PCR tubes and frozen to arrest hydrolysis. In each 

tube, 40 µL of purified enzyme at a concentration of 0.5 µM was combined with 60 µL of 

1.67% Avicel suspended in cellulase buffer (100 mL 50 mM sodium acetate, pH 5.0). 

Incubation occurred in a PCR block preheated before adding samples to prevent 

background activity. Time points were collected at 0, 4, 8, 16, 24, 36, 48, and 60 hours. 

Following hydrolysis, the reactions were thawed and moved to a 96-well plate to 

facilitate centrifugation. Supernantants were robotically collected. Cellobiose standards 

containing 0.0, 166.6, 333.3, 500.0, 833,3, 1000.0, 1500.0, and 2000.0 µM of cellobiose 

and 50 µL of the reaction supernantants were assessed for reducing sugar concentrations 

via the Nelson-Somogyi assay [43, 44]. All experiments were performed in triplicate.  
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6.7 Tables and Figures 
 
Table I. Summary of design strategies 

Strategy # Tested 
Mutations 

# Mutations 
(ΔT50 > 0°C) % Accuracy Average ΔT50 

(°C) 

Average ΔActivity 
(µmol cellobiose 

equivalents) 

Average Expression 
(Mut/WT) 

Consensus Design 21 5 23.8 2.2±0.6 14.0±10.4 1.0±0.2 
Core Repacking 32 2 6.3 0.3±0.1 5.6±10.8 1.5±0.2 

Helix Dipole 44 9 20.5 0.6±0.1 8.7±7.4 2.0±0.6 
FoldX ΔΔG 43 6 14.0 1.9±0.5 7.9±8.5 0.5±0.1 
Triad ΔΔG 47 5 10.6 1.9±0.5 -15.3±8.7 0.9±0.2 

Glycine 51 5 9.8 1.2±0.6 -1.8±9.8 1.1±0.1 
Proline 46 3 6.5 0.9±0.5 -21.4±10.5 1.3±0.2 
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Table II. Evaluated mutations by design strategy 
E

xp
er

im
en

t 

 

Mutation ΔT50 (°C) 
ΔActivity 

(µM Cellobiose 
Equivalents) 

Expression Location 
C

on
se

ns
us

 

G293A 3.9±0.2 27.3 0.8 Core 
D13E 3.0±0.5 -9.3 1.6 Core 
E53D 2.7±0.7 8.2 0.9 Boundary 
T57N 1.1±0.0 47.0 0.3 Surface 

G189A 0.4±0.4 -3.4 1.2 Boundary 
I82L -0.2±0.5 N/A 1.6 Core 

V101L -0.5±0.3 N/A 2.3 Core 

C
or

e I82M 0.3±0.5 -5.2 1.3 Core 
V101I 0.5±0.4 16.4 1.7 Core 

H
el

ix
 D

ip
ol

e 
St

ab
ili

za
tio

n 

S318Q 0.5±0.2 2.3 0.9 Surface 
Y278F 1.0±0.5 -19.1 0.4 Boundary 
S318E 0.9±0.2 50.4 0.6 Surface 
N155E 0.5±0.3 5.6 4.9 Surface 
T80E 0.5±0.2 9.8 2.3 Surface 

S133R 0.4±0.2 3.4 1.8 Surface 
G239E 0.2±0.3 23.2 1.0 Boundary 
T156E 0.2±0.3 23.9 4.9 Boundary 
N155Q 0.1±0.1 -20.9 1.1 Surface 
S79Q 0.0±0.3 -19.3 1.4 Surface 
T80Q -0.1±0.2 N/A 2.0 Surface 
S79E -0.1±0.2 N/A 5.5 Surface 

A122E -0.2±0.5 N/A 3.2 Surface 
G239Q -0.9±0.2 N/A 0.9 Boundary 

Fo
ld

X
 

S318P 3.2±0.9 24.8 0.3 Surface 
D271F 3.1±1.1 -26.5 0.1 Boundary 
D271Y 2.7±0.4 32.5 0.4 Boundary 
S309L 1.5±0.3 2.4 0.8 Boundary 
N153D 0.5±0.9 2.5 0.2 Surface 
S79P 0.3±0.5 11.4 1.0 Surface 

T
ri

ad
 Δ
ΔG

 K219Q 2.8±0.1 -31.7 1.2 Core 
S309F 2.7±0.1 -29.7 0.8 Boundary 
K219A 2.0±0.7 -26.7 1.4 Core 
S309L 1.5±0.3 2.4 0.8 Boundary 
S309W 0.4±0.1 9.1 0.5 Boundary 

B
ac

kb
on

e 
E

nt
ro

py
 R

ed
uc

tio
n 

G293A 3.5±0.2 27.3 0.8 Core 
G189S 1.2±0.4 14.5 1.2 Boundary 
G239N 0.7±0.1 -18.8 1.1 Boundary 
G189A 0.4±0.4 -23.7 1.2 Boundary 
G239D 0.4±0.2 -8.1 1.3 Boundary 
G189E 0.0±0.2 N/A 2.0 Boundary 
G189K -0.1±0.2 N/A 1.2 Boundary 
G64A -0.1±0.2 -3.2 2.3 Core 
G239S -0.7±0.1 N/A 0.9 Boundary 
S139P 1.8±0.6 -41.6 1.8 Surface 
N76P 0.8±0.5 -16.4 1.7 Surface 
T18P 0.2±0.1 -6.2 1.1 Surface 

I44C, G91C -0.5±0.7 N/A 0.8 - 
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Table III. Composition of combination constructs  
Construct  # of 

Mutations T57N N76P T80E S139P N155E G189S K219Q G239N D271F Y278F G293A S309F S318P 

1 1  x            
2 1    x          
3 1     x         
4 2  x  x          
5 4 x x  x x         
6 5 x x  x x x        
7 5 x x  x x  x       
8 5 x x  x x   x      
9 5 x x  x x    x     

10 6 x x  x x    x x    
11 6 x x  x x x x       
12 6 x x  x x x  x      
13 6 x x  x x x x x      
14 7 x x  x x x   x x    
15 8 x x  x x x   x x x   
16 9 x x x x x x   x x x   
17 10 x x  x x x x x x x x   
18 11 x x x x x x x x x x x   
19 12 x x x x x x x x x x x  x 
20 13 x x x x x x x x x x x x x 

Construct  # of 
Mutations T57N T80E N155E G189S G239E D271Y G293A S309L/W S318E/P S79P V101I S133R E53D 

s13pt1 13 x x x x x x x x(L) x(P) x x x x 
s13pt2 13 x x x x x x x x(W) x(P) x x x x 
s13pt3 13 x x x x x x x x(L) x(E) x x x x 
s13pt4 13 x x x x x x x x(W) x(E) x x x x 
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Table IV. Characterization of combination mutants 

Construct  # of 
Mutations 

T50,mut 
(°C) 

ΔT50 
(°C) 

Topt 
(°C) 

Activity 
(µM Cellobiose 

Equivalents) 

ΔActivity 
(µM Cellobiose 

Equivalents) 

Expression 
Level Relative 

to WT 
WT 0 69.6±1.0 - 64 216.7±10.6 - - 
9 pt 9 81.5±0.4 10.0±0.8 74 184.2±5.7 -9.6 3.5 

13 pt 13 86.8±0.6 13.8±0.9 80 157.4±1.4 -36.3 4.1 
20 pt 20 90.0±0.1 16.8±0.7 82 146.6±9.8 -47.1 2.7 

s13pt1 13 85.3±0.2 14.9±0.7 78 192.7±6.9 -1.0 4.1 
s13pt2 13 85.6±0.4 15.4±0.7 78 221.1±5.9 27.4 4.1 
s13pt3 13 83.0±0.4 12.0±0.8 75 231.2±5.6 37.5 5.9 
s13pt4 13 83.9±0.2 12.2±0.7 75 262.6±11.5 68.8 3.7 
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Figure 1. Characterization of initial combination mutants. (A) An activity screen performed on first generation combination mutants. 
WT is highlighted in green. The dashed line marking the WT activity is provided for reference. (B) The activity of the 9- and 13-point 
mutants across a gradient of temperatures. Activity curves for WT and BSA (gray circles) are provided for reference. (C) T50 curves 
for WT and the initial combination mutants. (D) Single point activity at 60 °C for the initial combination mutants. (E-F) Sixty-hour 
hydrolysis on Avicel at 60 or 70 °C. In all figures, WT is presented as green circles, the 9-point mutant as blue squares, the 13-point 
mutant as yellow triangles, and the 20-point mutant as purple diamonds.  
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Figure 2. Characterization of second-generation combination mutants. (A-B) T50 curves 
for WT and the second-generation combination mutants. (C) Single point activity at 60 
°C for the second-generation combination mutants. (D) The activity of WT, the 9-point 
mutant, s13pt2, and s13pt4 across a gradient of temperatures. In all figures, WT is 
presented as green circles, the 9-point mutant as blue squares, s13pt1 as red triangles, 
s13pt2 as yellow circles, s13pt3 as turquoise diamonds, and s13pt4 as purple squares.  
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Figure 3. Second-generation combination mutant 60-hour hydrolysis on Avicel. Long-
term hydrolysis experiments were performed on Avicel at (A) 60 and (B) 70 °C and 
compared to WT and the 9-point mutant. Panels C and D compare hydrolysis of WT, 
s13pt2, and s13pt4 at various temperatures. In all panels, WT is presented in green, 
s13pt2 in orange, and s13pt4 in purple. 
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Figure 4. Structural analysis of combination mutants. Figures outlining the position of 
mutations in (A) the 9-point mutant, (B) the 13-point mutant, and (C) s13pt2/4 are 
shown. Mutations appearing in a cleft potentially involved in substrate binding are shown 
as yellow sticks. (D) Mutations in s13pt2/4 are shown as spheres color coded by the 
experiment in which they were predicted: consensus design (orange), core repacking 
(yellow), helix dipole stabilization (dark blue), FoldX (dark green), glycine design 
(G189S), FoldX/Triad ΔΔG (light green), consensus/glycine design (hot pink), and 
FoldX/helix dipole stabilization (teal).  
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Figure 5. Analysis of stabilization techniques. The seven methods explored in this work 
are graphically ranked by (A) number of stabilizing mutations detected, (B) accuracy, (C) 
average expression level, (D) average ΔT50, and (E) average change in activity. (F) Radar 
chart summarizing the performance of all design methods  
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Figure 6. Activity versus ΔT50. Plots are generated for consensus design (orange triangles), core repacking (yellow circles), helix 
dipole stabilization (blue squares), FoldX (dark green triangles), Triad ΔΔG (light green triangles), Gly à XAA mutations (red 
diamonds), and XAA à Pro mutations (purple circles). WT is shown in black at the 0,0 mark.  
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APPENDIX A 
 
262 HjCel5A Point Mutation Database 
 
This appendix contains a series of tables that compile information from Chapters 2-5. The 
data presented here only address the 262 mutations that were constructed and 
experimentally tested for activity. Relative entropy, mutual information, and ΔΔG data for 
all possible mutations are available in the associated electronic files submitted with this 
work. For further information on this database, please consult Chapter 6.  
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Table	
  I.	
  All	
  predicted	
  mutations	
  
Mutation MSA Core Helix FoldX Rosetta ΔΔG Glycine Proline 

V2P             x 
R3P       x       
V7T   x           
N8V         x     
N8A         x     
N8P             x 
I9L   x           

A10P             x 
A10S x x           
D13E x             
F14P             x 
T18P             x 
V27P             x 
L31I   x           
K32P x     x       
N33P x             
Y40P             x 
V51R     x         
N52R     x         
E53D x             
E53R     x         
D54A       x       
D54C       x       
D54K       x       
D54L       x       
D54M       x       
D54N       x       
D54R       x       
M56F         x     
T57N x             
R60V         x     
L61C   x           
G64P           x x 
G64A           x   
V69L               
V69M   x           
V69N   x           
N70P x             
N76P             x 
S79E     x         
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Table	
  I	
  Cont’d.	
  All	
  predicted	
  mutations	
  
Mutation MSA Core Helix FoldX Rosetta ΔΔG Glycine Proline 

S79P       x       
S79Q     x         
T80E     x          
T80Q     x         
I82L x             
I82M   x           
I82Q   x           
D86P             x 
V89L   x           
V89M   x           
S94P             x 
S94R     x         
A97P             x 
V101I   x           
V101L x             
D102P             x 
H104P             x 
V107N   x           
G112A           x   
G112E           x   
G112C           x   
G112D           x   
G112H           x   
G112I           x   
G112K           x   
G112L         x x   
G112F         x x   
G112M           x   
G112N           x   
G112Q           x   
G112R         x x   
G112S           x   
G112T           x   
G112V           x   
G112W         x x   
G112Y         x x   
I114P             x 

Q116N         x     
Q116D         x     
Q116W         x     
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Table	
  I	
  Cont’d.	
  All	
  predicted	
  mutations	
  
Mutation MSA Core Helix FoldX Rosetta ΔΔG Glycine Proline 

T120D       x       
T120S     x         
N121E     x         
A122E     x         
A122Q     x         
T125P             x 
S126P             x 
S129P             x 
S133R     x         
S134K     x         
Y135F x             
A136P             x 
S139P             x 
W142I         x     
W142V         x     
W142F         x     
W142M         x     
W142H         x     
W142Y         x     
W142L         x     
W142T         x     
W142E         x     
F143M   x           
G144A           x   
G144P           x x 
G144D           x   
G144N           x   
I145V   x           
N147P             x 
N153D       x       
I154M     x         
N155E     x          
N155Q     x         
T156E     x          
T156G         x     
V161I   x           
V161L   x           
E163P             x 
V164A x             
V165I x x           
I168H     x         
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Table	
  I	
  Cont’d.	
  All	
  predicted	
  mutations	
  
Mutation MSA Core Helix FoldX Rosetta ΔΔG Glycine Proline 

R169P             x 
N170P             x 
N170R     x         
Q176P             x 
Q186D         x     
Q186G       x       
Q186E         x     
Q186N         x     
Q186T x             
S187P             x 
A188C   x           
G189A x         x   
G189E           x   
G189H           x   
G189K           x   
G189N           x   
G189Q           x   
G189R           x   
G189S           x   
F191W   x           
S193P             x 
A197F     x         
A197M     x         
A199V     x         
S201K     x         
S201P             x 
S201Q     x         
N205D x             
N205P             x 
V217I   x           
V217L   x           
K219S         x     
K219A         x     
K219Q         x     
K219E         x     
L221N   x           
D222P             x 
S223P             x 
A230P       x       
E231P             x 
N236G         x     
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Table	
  I	
  Cont’d.	
  All	
  predicted	
  mutations	
  
Mutation MSA Core Helix FoldX Rosetta ΔΔG Glycine Proline 

I237W         x     
I237Y         x     
I237F         x     
D238E     x         
D238Q     x         
G239A           x   
G239C           x   
G239D           x   
G239E     x     x   
G239I           x   
G239K           x   
G239L           x   
G239M           x   
G239N           x   
G239P           x x 
G239Q     x     x   
G239R           x   
G239S           x   
G239T           x   
G239V           x   
S242D     x         
S242Q     x         
P243E     x         
P243Q     x         
Q250P             x 
Q250R     x         
R253Q         x     
A255G x             
A255C   x           
A255T   x           
I256M   x           
L257I   x           
N264P             x 
V265D       x       
S267P       x       
S267Q     x         
I269P             x 
D271F       x        
D271Y       x        
I276H         x     
I276L x             
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Table	
  I	
  Cont’d.	
  All	
  predicted	
  mutations	
  
Mutation MSA Core Helix FoldX Rosetta ΔΔG Glycine Proline 

I276M   x           
Y278F     x          
Y278L     x         
N280P             x 
N280R     x         
Q281P             x 
Q281R     x         
N282Q         x     
N282R         x     
S283P       x       
G293A x         x   
V302Y x             
T304P             x 
E305A       x       
E305C       x       
E305F       x x     
E305G       x       
E305H       x x     
E305I       x       
E305K       x       
E305L         x     
E305M       x       
E305N       x       
E305P             x 
E305Q       x       
E305S       x       
E305T         x     
E305V       x       
E305Y         x     
T308P x             
S309F         x     
S309L       x x     
S309W         x     
G311N           x   
G311D           x   
D316A       x       
D316C       x       
D316G       x       
D316P       x     x 
D316Q       x       
D316S       x       
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Table	
  I	
  Cont’d.	
  All	
  predicted	
  mutations	
  
Mutation MSA Core Helix FoldX Rosetta ΔΔG Glycine Proline 

T317P             x 
S318E     x         
S318F       x       
S318L       x       
S318M       x       
S318P       x       
S318Q     x         
S318W       x       
L319M   x           
S321K     x         
S321R     x         
S322R     x         
S322L       x       
L324F   x     x     
L324H         x     
L324M   x           
A325P             x 
G328T           x   
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Table	
  II.	
  Multiple	
  sequence	
  alignment	
  ΔΔG	
  values	
  for	
  predicted	
  mutations	
  

Mutation 
444 

Sequence 
ΔΔG 

323 
Sequence 
ΔΔG 

233 
Sequence 
ΔΔG 

195 
Sequence 
ΔΔG 

29 
Sequence 
ΔΔG 

10 
Sequence 
ΔΔG 

V2P 1.0 1.1 -0.5 -1.1 10.4 13.1 
R3P 2.0 1.8 1.0 0.6 12.8 13.3 
V7T 3.0 2.5 2.5 2.4 1.7 13.8 
N8V 13.3 4.7 13.3 13.4 13.7 13.8 
N8A 2.9 2.8 3.0 13.4 13.7 13.8 
N8P 13.3 13.4 13.3 13.4 13.7 13.8 
I9L -1.0 -1.7 -1.8 -1.8 -0.6 13.7 

A10P 4.0 3.0 2.4 2.4 2.0 13.8 
A10S -0.1 -0.8 -1.0 -1.1 0.2 13.8 
D13E -1.2 -1.5 -1.9 -1.9 -1.3 13.8 
F14P 5.8 13.6 13.5 13.6 13.7 13.8 
T18P 12.2 3.7 9.8 9.6 12.2 13.6 
V27P 1.6 1.5 10.4 10.5 10.4 12.9 
L31I 9.8 0.0 -1.5 -0.2 1.0 12.2 
K32P 9.8 0.0 -9.1 -9.2 -13.6 12.6 
N33P 10.1 8.0 -4.0 -13.6 0.0 12.2 
Y40P 2.1 - - - - 12.9 
V51R 2.4 11.5 10.6 8.5 12.1 13.7 
N52R -0.2 -1.6 1.1 9.2 1.4 13.5 
E53D -1.0 -1.2 -2.8 -11.0 -2.1 -13.7 
E53R 3.6 2.8 8.4 0.0 10.4 0.0 
D54A 1.0 0.4 0.3 0.1 0.9 13.8 
D54C 12.0 11.6 11.7 11.7 12.1 13.8 
D54K -0.4 -1.1 -1.2 -1.3 -0.5 13.8 
D54L 2.7 2.0 2.2 2.4 1.6 13.8 
D54M 2.7 2.2 2.2 2.4 12.1 13.8 
D54N 2.0 1.2 1.3 3.1 12.1 13.8 
D54R 2.5 2.0 2.2 2.0 1.6 13.8 
M56F 4.3 1.8 11.7 2.0 1.4 -0.9 
T57N -2.7 -2.5 -2.4 -2.5 -3.3 -1.4 
R60V 13.7 13.8 13.8 13.8 13.8 13.8 
L61C 4.7 12.9 13.0 13.0 13.2 13.8 
G64P 3.3 2.7 2.4 2.4 11.8 13.7 
G64A 0.2 -1.1 -0.9 -0.8 0.3 13.7 
V69L 2.0 2.5 2.7 2.6 12.5 13.5 
V69M 12.1 12.2 12.2 12.2 12.5 13.5 
V69N 12.1 12.2 3.8 12.2 12.5 13.5 

All	
  values	
  are	
  reported	
  in	
  kcal	
  mol-­‐1	
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Table	
  II	
  Cont’d.	
  Multiple	
  sequence	
  alignment	
  ΔΔG	
  values	
  for	
  predicted	
  mutations	
  

Mutation 
444 

Sequence 
ΔΔG 

323 
Sequence 
ΔΔG 

233 
Sequence 
ΔΔG 

195 
Sequence 
ΔΔG 

29 
Sequence 
ΔΔG 

10 
Sequence 
ΔΔG 

N70P -1.4 -2.6 -1.6 8.5 -1.4 13.6 
N76P -2.3 -2.7 -2.7 -2.9 -12.5 -11.5 
S79E -0.3 -0.6 -0.7 -0.5 0.8 1.1 
S79P -0.2 -0.4 -0.6 -0.6 0.8 1.8 
S79Q 0.4 0.1 -0.1 -0.2 0.8 13.3 
T80E 2.7 2.5 2.5 2.2 0.9 13.1 
T80Q 3.2 2.8 2.5 2.4 1.6 13.1 
I82L 0.0 -3.9 -3.9 -4.2 -13.5 0.7 
I82M -0.9 -1.6 -1.6 -1.8 -10.4 12.2 
I82Q 2.1 1.4 9.5 9.2 0.0 12.2 
D86P 3.9 4.0 12.1 12.1 11.8 13.7 
V89L 2.7 2.4 2.3 2.1 3.1 13.7 
V89M 3.5 3.1 3.1 2.9 13.5 13.7 
S94P 3.6 3.4 3.7 3.5 12.2 13.1 
S94R 2.9 3.0 3.0 3.5 1.8 13.1 
A97P 3.2 -0.3 10.9 9.6 13.0 13.6 
V101I -0.4 -0.5 -0.4 -0.3 -0.5 0.0 
V101L -1.0 -0.9 -0.8 -0.6 -1.1 13.1 
D102P 13.7 13.7 13.7 13.7 13.7 13.8 
H104P 13.7 13.8 13.8 13.8 13.8 13.8 
V107N 13.2 13.0 13.0 13.0 13.2 13.8 
G112A 0.1 0.0 0.1 0.2 0.4 0.7 
G112E 0.1 0.0 -0.1 0.1 -0.3 0.7 
G112C 11.3 11.2 11.3 11.4 11.5 12.9 
G112D 1.8 1.4 1.6 1.4 11.5 12.9 
G112H 1.2 0.8 0.6 0.5 1.1 12.9 
G112I 1.9 1.6 1.6 1.4 11.5 12.9 
G112K -0.3 -0.5 -0.4 -0.4 0.4 1.4 
G112L 11.3 11.2 11.3 11.4 11.5 12.9 
G112F 11.3 11.2 11.3 11.4 11.5 12.9 
G112M 11.3 11.2 11.3 11.4 11.5 12.9 
G112N -1.1 -0.8 -0.6 -0.6 -0.8 12.9 
G112Q -0.3 -0.5 -0.4 -0.3 -0.5 12.9 
G112R 1.9 1.6 2.9 2.8 1.1 12.9 
G112S 0.3 0.0 -0.5 -0.2 1.1 12.9 
G112T 1.0 0.7 0.6 0.5 1.1 12.9 
G112V 1.5 1.1 1.0 1.7 11.5 12.9 

All	
  values	
  are	
  reported	
  in	
  kcal	
  mol-­‐1	
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Table	
  II	
  Cont’d.	
  Multiple	
  sequence	
  alignment	
  ΔΔG	
  values	
  for	
  predicted	
  mutations	
  

Mutation 
444 

Sequence 
ΔΔG 

323 
Sequence 
ΔΔG 

233 
Sequence 
ΔΔG 

195 
Sequence 
ΔΔG 

29 
Sequence 
ΔΔG 

10 
Sequence 
ΔΔG 

G112W 2.9 11.2 11.3 11.4 11.5 12.9 
G112Y 0.6 0.2 0.1 0.3 1.1 12.9 
I114P 13.5 13.6 13.6 13.6 13.6 13.7 

Q116N 3.1 12.2 1.8 3.1 12.2 13.8 
Q116D 0.8 3.1 0.6 0.6 0.4 13.8 
Q116W 12.4 12.2 12.3 12.3 12.2 13.8 
T120D 4.6 0.5 12.4 12.2 0.7 13.6 
T120S 1.3 -0.2 1.1 1.0 0.3 1.4 
N121E 4.1 3.7 3.3 3.0 -0.7 13.3 
A122E 1.0 1.1 1.1 1.3 2.6 0.7 
A122Q 3.0 3.0 3.7 3.5 13.0 12.9 
T125P 12.5 11.3 11.5 11.5 11.8 12.6 
S126P 11.8 11.6 11.6 11.7 12.1 13.5 
S129P 11.6 11.4 11.1 11.1 11.5 12.9 
S133R 2.5 2.7 2.4 2.5 0.0 12.2 
S134K 0.0 0.0 0.0 0.0 0.0 0.0 
Y135F -0.8 -1.1 -1.1 -1.2 -1.3 13.8 
A136P 4.2 3.9 3.6 3.5 1.9 13.1 
S139P 0.1 0.0 0.1 0.2 1.6 13.6 
W142I -3.0 -4.3 -4.4 -4.2 -2.9 -0.3 
W142V -0.9 -2.3 -2.4 -2.2 -1.4 1.1 
W142F 1.9 1.1 0.7 0.7 10.4 12.6 
W142M -0.5 -1.9 -1.9 -1.7 -0.7 1.1 
W142H 10.4 9.1 9.1 9.2 10.4 12.6 
W142Y 10.4 9.1 9.1 9.2 10.4 12.6 
W142L -0.8 -2.3 -2.5 -2.4 0.0 12.6 
W142T 1.0 -0.5 -0.7 -0.7 10.4 12.6 
W142E 10.4 9.1 9.1 9.2 10.4 12.6 
F143M 13.7 13.8 13.8 13.8 13.8 13.8 
G144A 4.5 4.5 13.3 13.2 13.3 0.0 
G144P 13.3 13.2 13.3 13.2 13.3 13.8 
G144D 0.7 0.3 0.5 0.4 0.6 13.8 
G144N 3.8 3.8 3.8 3.6 13.3 13.8 
I145V 0.0 0.7 0.9 0.7 0.9 0.0 
N147P 13.8 13.8 13.8 13.8 13.8 13.8 
N153D -1.9 -2.6 -2.7 -2.9 -2.3 -0.3 
I154M 4.3 3.4 2.9 2.6 12.4 13.8 

All	
  values	
  are	
  reported	
  in	
  kcal	
  mol-­‐1	
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Table	
  II	
  Cont’d.	
  Multiple	
  sequence	
  alignment	
  ΔΔG	
  values	
  for	
  predicted	
  mutations	
  

Mutation 
444 

Sequence 
ΔΔG 

323 
Sequence 
ΔΔG 

233 
Sequence 
ΔΔG 

195 
Sequence 
ΔΔG 

29 
Sequence 
ΔΔG 

10 
Sequence 
ΔΔG 

N155E 0.5 -0.4 -0.8 -0.7 -0.3 13.3 
N155Q 0.1 -0.5 -1.0 -1.2 0.0 13.3 
T156E 1.2 0.6 0.4 0.4 1.6 13.3 
T156G 2.5 1.9 2.0 2.6 12.1 13.3 
V161I 3.1 2.7 2.7 3.3 12.4 13.8 
V161L 1.6 1.2 1.3 2.2 12.4 13.8 
E163P 0.4 9.1 9.1 9.2 0.0 12.2 
V164A -1.4 -1.7 -1.8 -1.7 -2.1 0.2 
V165I -0.5 -0.9 -1.1 -1.1 -0.5 13.8 
I168H 13.6 13.7 13.7 13.7 13.7 13.8 
R169P 13.7 13.8 13.8 13.8 13.8 13.8 
N170P 10.8 9.1 9.5 8.5 11.8 13.6 
N170R 0.3 -1.7 -1.5 -2.4 1.4 13.6 
Q176P 13.1 9.4 8.4 0.0 13.0 13.8 
Q186D -0.3 -2.5 -2.2 -2.1 -11.1 12.6 
Q186G 10.0 8.0 8.4 8.5 0.0 12.6 
Q186E 2.3 0.0 0.0 0.0 0.0 12.6 
Q186N 0.7 -1.4 -1.4 -1.4 -10.4 12.6 
Q186T -3.1 -5.2 -4.9 -4.7 -13.2 -0.8 
S187P 12.3 12.0 12.1 12.1 12.2 13.8 
A188C 13.5 5.6 13.7 13.8 13.7 13.8 
G189A -0.2 0.1 0.2 0.0 -11.8 -13.7 
G189E -0.1 0.1 0.0 0.1 0.0 -11.5 
G189H -1.5 -1.9 -2.0 -1.9 -12.8 0.0 
G189K 1.1 0.7 2.5 2.3 0.0 0.0 
G189N 2.1 1.7 1.8 2.3 0.0 0.0 
G189Q -0.1 -0.4 -0.3 -0.3 -11.5 0.0 
G189R 10.9 10.8 10.9 10.8 -10.4 0.0 
G189S 1.8 2.8 2.5 2.3 0.0 0.0 
F191W -1.1 -1.5 -1.8 -1.8 -1.0 13.7 
S193P 3.0 3.6 11.7 11.7 1.7 13.3 
A197F -0.1 12.6 11.5 11.4 12.8 13.3 
A197M -0.8 3.9 11.5 11.4 12.8 13.3 
A199V 3.4 1.1 11.4 11.4 1.8 13.8 
S201K -0.8 -1.2 -1.4 -1.9 -1.1 1.4 
S201P 3.1 11.0 0.3 0.3 11.1 12.9 
S201Q 1.0 0.2 0.3 0.0 11.1 12.9 

All	
  values	
  are	
  reported	
  in	
  kcal	
  mol-­‐1	
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Table	
  II	
  Cont’d.	
  Multiple	
  sequence	
  alignment	
  ΔΔG	
  values	
  for	
  predicted	
  mutations	
  

Mutation 
444 

Sequence 
ΔΔG 

323 
Sequence 
ΔΔG 

233 
Sequence 
ΔΔG 

195 
Sequence 
ΔΔG 

29 
Sequence 
ΔΔG 

10 
Sequence 
ΔΔG 

N205D 0.6 -0.9 0.3 0.2 -1.8 13.8 
N205P 11.9 2.6 2.7 2.5 11.8 13.8 
V217I 1.6 1.3 1.5 2.1 2.8 13.7 
V217L 2.8 2.9 2.6 2.8 13.3 2.2 
K219S 12.2 11.8 11.8 11.9 12.2 13.8 
K219A 3.7 3.0 3.4 3.3 12.2 13.8 
K219Q -1.1 -1.7 -1.8 -1.7 -1.2 13.8 
K219E 1.3 0.6 0.7 1.9 1.1 13.8 
L221N 4.7 5.0 5.3 5.2 13.6 13.8 
D222P 5.9 13.8 13.8 13.8 13.7 13.8 
S223P 3.9 3.6 3.5 3.7 2.7 13.7 
A230P 0.4 0.2 0.0 -0.2 0.4 13.1 
E231P 2.8 2.3 2.1 2.0 12.2 13.7 
N236G 1.9 -1.4 -2.0 -2.1 12.5 13.8 
I237W 5.3 - - - 13.1 13.3 
I237Y 4.6 - - - 13.1 13.3 
I237F 5.3 - - - 13.1 13.3 
D238E 1.4 -1.9 -1.6 -1.4 11.5 13.6 
D238Q 1.8 -3.8 -2.9 -2.8 1.1 13.6 
G239A -2.4 0.0 -9.1 -8.5 -11.1 12.2 
G239C 9.9 8.7 0.0 0.0 0.0 12.2 
G239D -0.7 0.0 0.0 0.0 -11.1 -0.4 
G239E -0.2 8.7 0.0 0.0 -13.2 0.7 
G239I 0.6 8.7 0.0 0.0 0.0 12.2 
G239K -0.8 8.7 0.0 0.0 0.0 12.2 
G239L 0.0 8.7 0.0 0.0 0.0 12.2 
G239M 9.9 8.7 0.0 0.0 0.0 12.2 
G239N 0.3 8.7 0.0 0.0 -10.4 0.7 
G239P -0.3 8.7 0.0 0.0 -10.4 12.2 
G239Q -1.6 8.7 0.0 0.0 -11.1 12.2 
G239R 1.1 8.7 0.0 0.0 0.0 12.2 
G239S -1.4 0.7 0.0 0.0 -10.4 12.2 
G239T -0.6 0.7 0.0 0.0 0.0 12.2 
G239V -1.9 8.7 0.0 0.0 0.0 12.2 
S242D 1.4 0.9 9.1 8.5 10.4 11.5 
S242Q -1.5 -1.7 9.1 8.5 -1.4 11.5 
P243E 1.2 -0.2 -0.2 0.3 10.4 13.5 

All	
  values	
  are	
  reported	
  in	
  kcal	
  mol-­‐1	
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Table	
  II	
  Cont’d.	
  Multiple	
  sequence	
  alignment	
  ΔΔG	
  values	
  for	
  predicted	
  mutations	
  

Mutation 
444 

Sequence 
ΔΔG 

323 
Sequence 
ΔΔG 

233 
Sequence 
ΔΔG 

195 
Sequence 
ΔΔG 

29 
Sequence 
ΔΔG 

10 
Sequence 
ΔΔG 

P243Q 11.7 10.4 10.0 9.9 10.4 13.5 
Q250P 3.8 10.0 11.8 11.9 11.1 12.9 
Q250R 1.3 0.6 1.5 1.8 11.1 12.9 
R253Q 1.5 0.0 0.8 0.6 1.1 13.8 
A255G -0.6 -1.0 -1.1 -1.3 -1.0 13.8 
A255C 4.8 4.4 12.4 12.3 12.4 13.8 
A255T 4.8 12.4 12.4 12.3 12.4 13.8 
I256M 1.5 12.4 1.6 2.8 1.1 1.6 
L257I 1.3 1.2 1.2 1.5 1.5 13.3 
N264P 2.4 13.3 2.4 2.4 1.9 13.8 
V265D -0.9 -2.3 -2.8 -2.5 0.4 13.5 
S267P 4.6 8.7 3.8 8.5 1.8 13.8 
S267Q 0.4 8.7 0.0 8.5 -0.2 13.8 
I269P 2.4 -9.1 8.4 0.0 10.4 12.2 
D271F 0.1 -11.0 -11.0 -11.1 -10.4 0.0 
D271Y -1.3 0.0 -8.4 0.0 -11.8 -2.1 
I276H 3.1 10.1 10.0 9.6 0.0 11.5 
I276L -2.5 -3.4 -3.6 -4.0 -13.7 11.5 
I276M 1.5 0.5 0.2 1.1 0.0 11.5 
Y278F 1.3 1.5 1.7 1.9 2.1 1.1 
Y278L 3.9 4.0 4.9 4.7 2.1 13.3 
N280P 3.2 2.4 2.9 2.8 12.1 13.6 
N280R 2.1 1.4 1.3 1.2 0.9 13.6 
Q281P 12.1 11.9 11.8 11.9 11.5 12.9 
Q281R 2.3 1.8 1.7 2.2 1.1 12.9 
N282Q 1.6 4.4 4.5 4.4 13.6 13.7 
N282R 13.4 13.5 13.6 13.6 13.6 13.7 
S283P 3.8 3.8 3.6 4.6 12.6 13.5 
G293A -2.0 -2.0 -2.2 -2.3 -2.0 0.0 
V302Y 3.0 2.3 -13.6 -13.7 1.6 13.1 
T304P 11.6 10.9 9.5 9.6 12.4 12.9 
E305A 3.3 2.2 0.7 1.1 13.3 13.7 
E305C 12.1 2.2 -1.0 1.1 13.3 13.7 
E305F 2.6 10.2 9.8 9.6 13.3 13.7 
E305G 4.4 10.2 0.0 0.0 13.3 13.7 
E305H 12.1 10.2 9.8 9.6 1.7 13.7 
E305I 2.0 0.6 9.8 9.6 13.3 13.7 

All	
  values	
  are	
  reported	
  in	
  kcal	
  mol-­‐1	
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Table	
  II	
  Cont’d.	
  Multiple	
  sequence	
  alignment	
  ΔΔG	
  values	
  for	
  predicted	
  mutations	
  

Mutation 
444 

Sequence 
ΔΔG 

323 
Sequence 
ΔΔG 

233 
Sequence 
ΔΔG 

195 
Sequence 
ΔΔG 

29 
Sequence 
ΔΔG 

10 
Sequence 
ΔΔG 

E305K 12.1 10.2 9.8 9.6 13.3 13.7 
E305L 0.0 -1.1 1.4 1.1 13.3 13.7 
E305M 0.3 1.1 9.8 9.6 13.3 13.7 
E305N 3.7 10.2 -2.7 -2.9 2.1 13.7 
E305P 12.1 10.2 9.8 9.6 13.3 13.7 
E305Q 3.0 10.2 9.8 9.6 1.2 2.2 
E305S 4.4 10.2 -3.3 -3.5 13.3 13.7 
E305T 4.4 10.2 -2.0 -2.2 13.3 13.7 
E305V -0.2 -0.7 0.7 0.4 2.1 13.7 
E305Y 12.1 10.2 0.7 9.6 13.3 13.7 
T308P 0.6 2.6 -4.6 -5.2 12.4 13.5 
S309F 3.9 0.3 0.3 -0.4 10.4 0.0 
S309L 2.5 1.5 0.0 -0.7 10.4 0.0 
S309W 11.6 -3.3 1.4 0.7 10.4 0.0 
G311N 1.3 2.6 2.9 2.1 11.5 1.6 
G311D -0.8 3.6 1.5 0.7 -1.2 13.1 
D316A 0.7 12.0 0.3 -0.7 12.2 13.7 
D316C 12.2 12.0 10.4 9.6 12.2 13.7 
D316G 2.8 12.0 1.0 0.0 12.2 13.7 
D316P 4.4 12.0 2.1 1.1 12.2 13.7 
D316Q 1.6 12.0 10.4 9.6 12.2 13.7 
D316S 0.6 12.0 0.3 -0.7 1.8 13.7 
T317P 1.0 9.1 1.6 0.9 0.2 13.6 
S318E -0.5 0.0 11.0 11.1 0.0 1.1 
S318F 10.4 9.1 11.0 11.1 10.4 12.6 
S318L 1.3 0.0 1.9 2.6 -2.1 1.1 
S318M 2.6 9.1 2.6 2.6 10.4 12.6 
S318P 0.1 -1.8 1.0 1.0 10.4 1.1 
S318Q -0.3 -0.5 11.0 11.1 10.4 12.6 
S318W 2.6 9.1 11.0 11.1 10.4 12.6 
L319M 11.9 3.9 9.5 9.2 13.5 12.6 
S321K -1.3 -0.9 1.2 1.4 -0.5 0.9 
S321R 0.2 9.6 1.1 1.0 1.1 1.6 
S322R -0.2 0.3 9.1 0.0 -0.7 13.3 
S322L 2.0 1.4 9.1 0.0 10.4 13.3 
L324F 0.8 8.0 0.0 0.0 -1.1 0.7 
L324H 3.3 8.0 -8.4 -8.5 10.4 13.3 

All	
  values	
  are	
  reported	
  in	
  kcal	
  mol-­‐1	
  
	
   	
  



 185 

Table	
  II	
  Cont’d.	
  Multiple	
  sequence	
  alignment	
  ΔΔG	
  values	
  for	
  predicted	
  mutations	
  

Mutation 
444 

Sequence 
ΔΔG 

323 
Sequence 
ΔΔG 

233 
Sequence 
ΔΔG 

195 
Sequence 
ΔΔG 

29 
Sequence 
ΔΔG 

10 
Sequence 
ΔΔG 

L324M 2.4 0.0 0.0 0.0 10.4 13.3 
A325P -0.9 1.1 1.9 10.9 0.0 13.3 
G328T 0.0 -9.1 -1.7 -2.2 10.4 0.0 

All	
  values	
  are	
  reported	
  in	
  kcal	
  mol-­‐1	
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Table	
  III.	
  Relative	
  entropy	
  values	
  for	
  predicted	
  mutations	
  

Mutation 
444 

Sequence 
RE 

323 
Sequence 

RE 

233 
Sequence 

RE 

195 
Sequence 

RE 

29 
Sequence 

RE 

10 
Sequence 

RE 
V2P 0.0000 0.0194 0.0340 0.0505 0.0000 0.0000 
R3P -0.0049 -0.0132 -0.0117 -0.0131 0.0000 0.0000 
V7T -0.0183 -0.0077 -0.0028 -0.0024 0.0584 0.0000 
N8V 0.0000 -0.0149 0.0000 0.0000 0.0000 0.0000 
N8A -0.0135 -0.0083 -0.0110 0.0000 0.0000 0.0000 
N8P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
I9L 0.5600 0.4619 0.7163 0.7648 0.5243 0.0000 

A10P -0.0138 -0.0160 -0.0142 -0.0151 0.0310 0.0000 
A10S 0.8519 1.0903 1.4179 1.5246 0.6359 0.0000 
D13E 1.7627 1.9733 2.1475 2.1600 1.7463 0.0000 
F14P -0.0072 0.0000 0.0000 0.0000 0.0000 0.0000 
T18P 0.0000 -0.0087 0.0000 0.0000 0.0000 0.0000 
V27P -0.0162 -0.0151 0.0000 0.0000 0.0000 0.0000 
L31I 0.0000 0.0000 0.1875 0.2244 0.1566 0.0000 
K32P 0.0000 0.0000 -0.0148 -0.0153 2.9526 0.0000 
N33P 0.0000 0.0000 2.2320 2.4889 0.0000 0.0000 
Y40P -0.0150 0.0000 0.0000 0.0000 0.0000 0.0000 
V51R -0.0163 0.0000 0.0000 0.0000 0.0000 0.0000 
N52R 0.0460 0.0966 0.0341 0.0000 -0.0077 0.0000 
E53D 0.3212 0.1966 1.2326 1.9206 0.4305 2.4688 
E53R -0.0071 -0.0085 0.0000 0.0000 0.0000 0.0000 
D54A 0.0406 0.0260 0.0394 0.0623 0.0140 0.0000 
D54C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
D54K 0.5391 0.5823 0.6836 0.7431 0.3673 0.0000 
D54L -0.0284 -0.0288 -0.0261 -0.0229 -0.0350 0.0000 
D54M -0.0045 -0.0062 -0.0062 -0.0074 0.0000 0.0000 
D54N -0.0205 -0.0188 -0.0191 -0.0127 0.0000 0.0000 
D54R -0.0161 -0.0163 -0.0160 -0.0163 -0.0086 0.0000 
M56F 0.1251 0.0709 0.0521 0.0584 0.1557 1.2084 
T57N 2.4459 2.4495 2.4246 2.4184 2.6724 2.0639 
R60V 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
L61C -0.0048 0.0000 0.0000 0.0000 0.0000 0.0000 
G64P -0.0116 -0.0085 -0.0101 -0.0111 0.0000 0.0000 
G64A 0.1022 0.1348 0.0948 0.0973 0.0689 0.0000 
V69L -0.0339 -0.0287 -0.0259 -0.0280 0.0000 0.0000 
V69M 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
V69N 0.0000 0.0000 -0.0115 0.0000 0.0000 0.0000 
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Table	
  III	
  Cont’d.	
  Relative	
  entropy	
  values	
  for	
  predicted	
  mutations	
  

Mutation 
444 

Sequence 
RE 

323 
Sequence 

RE 

233 
Sequence 

RE 

195 
Sequence 

RE 

29 
Sequence 

RE 

10 
Sequence 

RE 
N70P 1.9534 2.4510 1.6585 0.0000 2.0282 0.0000 
N76P 0.1797 0.2738 0.2812 0.2900 0.5064 0.0821 
S79E 0.2066 0.2718 0.2843 0.2055 0.0482 0.2250 
S79P 0.2061 0.2753 0.3272 0.3450 0.0884 0.0821 
S79Q 0.0734 0.1142 0.1476 0.1753 0.0996 0.0000 
T80E -0.0235 -0.0238 -0.0238 -0.0230 0.0041 0.0000 
T80Q -0.0143 -0.0138 -0.0108 -0.0111 -0.0047 0.0000 
I82L 1.2095 1.2689 1.3189 1.4042 1.5745 0.0049 
I82M 0.0366 0.0659 0.0737 0.0660 0.0170 0.0000 
I82Q -0.0068 -0.0081 0.0000 0.0000 0.0000 0.0000 
D86P -0.0107 -0.0085 0.0000 0.0000 0.0000 0.0000 
V89L -0.0310 -0.0231 -0.0156 -0.0029 -0.0350 0.0000 
V89M 0.0033 0.0138 0.0172 0.0274 0.0000 0.0000 
S94P -0.0107 -0.0125 -0.0101 -0.0110 0.0000 0.0000 
S94R -0.0147 -0.0148 -0.0142 -0.0111 -0.0086 0.0000 
A97P -0.0161 0.3337 0.0000 0.0000 0.0000 0.0000 
V101I 0.4448 0.4937 0.4692 0.5174 0.3982 1.0190 
V101L 0.8293 0.7653 0.7493 0.6502 0.8754 0.0000 
D102P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
H104P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
V107N 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
G112A 0.0282 0.0204 0.0205 0.0174 0.0140 0.2535 
G112E 0.0168 0.0136 0.0259 0.0192 0.1039 0.2250 
G112C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
G112D -0.0201 -0.0212 -0.0209 -0.0213 0.0000 0.0000 
G112H 0.0058 0.0179 0.0310 0.0447 0.0164 0.0000 
G112I -0.0204 -0.0225 -0.0230 -0.0237 0.0000 0.0000 
G112K 0.0442 0.0687 0.0633 0.0724 -0.0038 0.0317 
G112L 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
G112F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
G112M 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
G112N 0.3838 0.1905 0.1248 0.1634 0.3335 0.0000 
G112Q 0.1160 0.1388 0.1290 0.1399 0.2541 0.0000 
G112R -0.0157 -0.0163 -0.0101 -0.0111 -0.0086 0.0000 
G112S -0.0217 -0.0079 0.0506 0.0205 -0.0327 0.0000 
G112T -0.0197 -0.0162 -0.0130 -0.0070 -0.0184 0.0000 
G112V -0.0207 -0.0202 -0.0188 -0.0200 0.0000 0.0000 
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Table	
  III	
  Cont’d.	
  Relative	
  entropy	
  values	
  for	
  predicted	
  mutations	
  

Mutation 
444 

Sequence 
RE 

323 
Sequence 

RE 

233 
Sequence 

RE 

195 
Sequence 

RE 

29 
Sequence 

RE 

10 
Sequence 

RE 
G112W -0.0037 0.0000 0.0000 0.0000 0.0000 0.0000 
G112Y 0.0178 0.0420 0.0666 0.0455 0.0008 0.0000 
I114P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Q116N -0.0195 0.0000 -0.0193 -0.0182 0.0000 0.0000 
Q116D 0.0804 -0.0205 0.0904 0.0927 0.2717 0.0000 
Q116W 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
T120D -0.0096 0.1272 0.0000 0.0000 0.1197 0.0000 
T120S 0.0101 0.3503 0.0380 0.0468 0.1745 0.1619 
N121E -0.0125 -0.0097 -0.0153 -0.0173 0.1039 0.0000 
A122E 0.0488 0.0521 0.0619 0.0257 -0.0218 0.2250 
A122Q -0.0145 -0.0144 -0.0131 -0.0138 0.0000 0.0000 
T125P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
S126P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
S129P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
S133R -0.0147 -0.0147 -0.0159 -0.0150 0.0305 0.0000 
S134K 0.1456 0.0485 -0.0033 -0.0107 -0.0038 1.5838 
Y135F 1.8479 2.0614 2.0753 2.1415 2.2827 0.0000 
A136P -0.0107 -0.0124 -0.0141 -0.0150 -0.0084 0.0000 
S139P 0.1842 0.1593 0.1239 0.0888 0.0310 0.0000 
W142I 1.6046 1.5853 1.5984 1.5847 1.5124 0.7260 
W142V 0.0261 0.0432 0.0426 0.0453 0.1231 0.0571 
W142F -0.0105 -0.0083 -0.0101 -0.0111 0.0000 0.0000 
W142M 0.0539 0.0751 0.0636 0.0556 0.0818 0.1558 
W142H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
W142Y 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
W142L -0.0186 -0.0042 0.0086 0.0191 -0.0350 0.0000 
W142T -0.0188 -0.0207 -0.0212 -0.0216 0.0000 0.0000 
W142E 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
F143M 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
G144A -0.0145 -0.0138 0.0000 0.0000 0.0000 0.0000 
G144P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
G144D 0.5391 0.7400 0.6151 0.7281 0.6151 0.0000 
G144N -0.0205 -0.0198 -0.0200 -0.0211 0.0000 0.0000 
I145V 0.1352 0.0247 0.0050 0.0133 0.0137 1.0900 
N147P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
N153D 0.8655 0.9601 0.9145 0.9970 0.8221 0.7729 
I154M -0.0065 -0.0060 -0.0069 -0.0072 0.0000 0.0000 
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Table	
  III	
  Cont’d.	
  Relative	
  entropy	
  values	
  for	
  predicted	
  mutations	
  

Mutation 
444 

Sequence 
RE 

323 
Sequence 

RE 

233 
Sequence 

RE 

195 
Sequence 

RE 

29 
Sequence 

RE 

10 
Sequence 

RE 
N155E -0.0154 -0.0051 -0.0042 -0.0121 0.1039 0.0000 
N155Q 0.0360 0.0336 0.0458 0.0600 0.0996 0.0000 
T156E -0.0073 0.0041 0.0254 0.0331 -0.0218 0.0000 
T156G -0.0184 -0.0187 -0.0186 -0.0164 0.0000 0.0000 
V161I -0.0191 -0.0181 -0.0174 -0.0130 0.0000 0.0000 
V161L -0.0339 -0.0340 -0.0350 -0.0280 0.0000 0.0000 
E163P -0.0150 0.0000 0.0000 0.0000 0.0000 0.0000 
V164A 1.6565 1.8003 1.8036 1.7731 1.3733 0.7842 
V165I 1.3439 1.6234 1.8030 1.8106 1.2880 0.0000 
I168H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
R169P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
N170P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
N170R -0.0001 0.0059 0.0187 0.0136 -0.0086 0.0000 
Q176P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Q186D -0.0181 -0.0162 -0.0156 -0.0142 0.0120 0.0000 
Q186G 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Q186E -0.0084 -0.0095 -0.0117 -0.0130 0.0000 0.0000 
Q186N -0.0201 -0.0198 -0.0217 -0.0222 -0.0195 0.0000 
Q186T 1.4144 1.3478 1.3053 1.2419 1.2351 1.7336 
S187P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
A188C 0.0000 -0.0044 0.0000 0.0000 0.0000 0.0000 
G189A 0.0272 -0.0109 -0.0115 -0.0048 0.1235 2.4942 
G189E 0.0068 -0.0172 -0.0118 -0.0158 0.0000 0.0432 
G189H 0.7588 0.9341 1.0730 0.9337 1.0896 0.0000 
G189K -0.0262 -0.0267 -0.0122 -0.0136 0.0000 0.0000 
G189N -0.0161 -0.0175 -0.0168 -0.0127 0.0000 0.0000 
G189Q 0.0423 0.0485 0.0385 0.0429 0.0996 0.0000 
G189R 0.0000 0.0000 0.0000 0.0000 -0.0086 0.0000 
G189S -0.0225 -0.0105 -0.0131 -0.0146 0.0000 0.0000 
F191W 2.8631 3.2197 3.4351 3.4166 3.0713 0.0000 
S193P -0.0160 -0.0100 0.0000 0.0000 0.0310 0.0000 
A197F 0.0822 0.0000 0.0000 0.0000 0.0000 0.0000 
A197M 0.5257 -0.0077 0.0000 0.0000 0.0000 0.0000 
A199V -0.0177 0.0921 0.0000 0.0000 0.0137 0.0000 
S201K 0.1487 0.1893 0.0633 0.0999 0.2159 0.0317 
S201P -0.0089 0.0000 -0.0153 -0.0162 0.0000 0.0000 
S201Q -0.0095 0.0128 -0.0129 -0.0134 0.0000 0.0000 
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Table	
  III	
  Cont’d.	
  Relative	
  entropy	
  values	
  for	
  predicted	
  mutations	
  

Mutation 
444 

Sequence 
RE 

323 
Sequence 

RE 

233 
Sequence 

RE 

195 
Sequence 

RE 

29 
Sequence 

RE 

10 
Sequence 

RE 
N205D 0.4365 1.6287 0.1278 0.1402 2.3277 0.0000 
N205P 0.0000 -0.0158 -0.0158 -0.0162 0.0000 0.0000 
V217I 0.0142 0.0265 0.0187 -0.0190 -0.0219 0.0000 
V217L -0.0329 -0.0305 -0.0337 -0.0315 0.0000 0.0049 
K219S 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
K219A -0.0124 -0.0138 -0.0111 -0.0123 0.0000 0.0000 
K219Q 1.8246 2.1894 2.2762 2.4069 1.9725 0.0000 
K219E -0.0024 0.0044 -0.0003 -0.0236 0.0041 0.0000 
L221N -0.0160 -0.0142 -0.0114 -0.0127 0.0000 0.0000 
D222P -0.0074 0.0000 0.0000 0.0000 0.0000 0.0000 
S223P -0.0150 -0.0158 -0.0159 -0.0149 -0.0084 0.0000 
A230P 0.2568 0.3139 0.3815 0.4662 0.3203 0.0000 
E231P -0.0159 -0.0162 -0.0153 -0.0157 0.0000 0.0000 
N236G -0.0105 1.5782 1.5945 1.6808 0.0000 0.0000 
I237W -0.0037 0.0000 0.0000 0.0000 0.0000 0.0000 
I237Y -0.0103 0.0000 0.0000 0.0000 0.0000 0.0000 
I237F -0.0080 0.0000 0.0000 0.0000 0.0000 0.0000 
D238E -0.0228 -0.0238 -0.0176 -0.0187 0.0000 0.0000 
D238Q -0.0132 0.1942 0.2139 0.2484 -0.0047 0.0000 
G239A 0.4490 0.3726 2.8767 2.8767 0.0326 0.0000 
G239C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
G239D -0.0061 0.3656 0.0000 0.0000 0.0303 0.8577 
G239E -0.0228 0.0000 0.0000 0.0000 1.4152 0.1126 
G239I -0.0217 0.0000 0.0000 0.0000 0.0000 0.0000 
G239K -0.0139 0.0000 0.0000 0.0000 0.0000 0.0000 
G239L -0.0337 0.0000 0.0000 0.0000 0.0000 0.0000 
G239M 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
G239N -0.0222 0.0000 0.0000 0.0000 -0.0156 0.1224 
G239P -0.0086 0.0000 0.0000 0.0000 -0.0023 0.0000 
G239Q 0.1580 0.0000 0.0000 0.0000 0.0622 0.0000 
G239R -0.0141 0.0000 0.0000 0.0000 0.0000 0.0000 
G239S 0.0117 0.0425 0.0000 0.0000 -0.0316 0.0000 
G239T -0.0093 0.0942 0.0000 0.0000 0.0000 0.0000 
G239V 0.1902 0.0000 0.0000 0.0000 0.0000 0.0000 
S242D -0.0180 -0.0193 0.0000 0.0000 0.0000 0.0000 
S242Q 0.2917 0.2740 0.0000 0.0000 0.1837 0.0000 
P243E -0.0198 -0.0171 -0.0238 -0.0222 0.0000 0.0000 
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Table	
  III	
  Cont’d.	
  Relative	
  entropy	
  values	
  for	
  predicted	
  mutations	
  

Mutation 
444 

Sequence 
RE 

323 
Sequence 

RE 

233 
Sequence 

RE 

195 
Sequence 

RE 

29 
Sequence 

RE 

10 
Sequence 

RE 
P243Q 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Q250P -0.0074 0.0000 0.0000 0.0000 0.0000 0.0000 
Q250R -0.0107 0.0814 -0.0116 -0.0140 0.0000 0.0000 
R253Q 0.0299 0.0489 0.0758 0.1080 0.0385 0.0000 
A255G 1.5339 1.8306 1.9096 2.0537 1.6764 0.0000 
A255C -0.0042 -0.0044 0.0000 0.0000 0.0000 0.0000 
A255T -0.0082 0.0000 0.0000 0.0000 0.0000 0.0000 
I256M 0.0592 0.0560 0.0309 -0.0048 0.0818 0.1558 
L257I 0.2044 0.2542 0.2391 0.1717 0.1678 0.0000 
N264P -0.0063 0.0000 -0.0084 -0.0110 0.0310 0.0000 
V265D 0.0554 0.1560 0.1197 0.1018 0.0120 0.0000 
S267P -0.0075 0.0000 -0.0100 0.0000 -0.0084 0.0000 
S267Q 0.2607 0.0000 0.2886 0.0000 0.4370 0.0000 
I269P -0.0159 -0.0145 -0.0100 0.0000 0.0000 0.0000 
D271F -0.0071 0.0175 0.0186 0.0268 -0.0089 0.0807 
D271Y 0.2166 0.0000 -0.0089 0.0000 0.1945 2.5344 
I276H -0.0055 0.0000 0.0000 0.0000 0.0000 0.0000 
I276L 1.4146 1.6012 1.6410 1.7350 1.8994 0.3443 
I276M -0.0062 -0.0046 -0.0034 -0.0072 0.0000 0.0000 
Y278F 0.1639 0.1170 0.0951 0.0584 0.0301 0.3001 
Y278L -0.0231 -0.0218 -0.0133 -0.0150 -0.0222 0.0000 
N280P -0.0112 -0.0122 -0.0100 -0.0110 0.0000 0.0000 
N280R -0.0163 -0.0163 -0.0155 -0.0140 0.0305 0.0000 
Q281P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Q281R -0.0157 -0.0142 -0.0139 -0.0163 -0.0054 0.0000 
N282Q -0.0145 -0.0135 -0.0131 -0.0138 0.0000 0.0000 
N282R 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
S283P -0.0155 -0.0148 -0.0159 -0.0113 0.0000 0.0000 
G293A 1.9012 1.9987 2.1132 2.1568 2.0977 0.5018 
V302Y -0.0106 0.0111 2.6834 2.8923 0.0008 0.0000 
T304P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
E305A -0.0162 -0.0199 -0.0164 -0.0124 0.0000 0.0000 
E305C 0.0000 0.0024 0.0645 -0.0047 0.0000 0.0000 
E305F -0.0164 0.0000 0.0000 0.0000 0.0000 0.0000 
E305G -0.0083 0.0000 -0.0186 -0.0184 0.0000 0.0000 
E305H 0.0000 0.0000 0.0000 0.0000 0.1628 0.0000 
E305I -0.0228 0.0114 0.0000 0.0000 0.0000 0.0000 
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E305K 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
E305L 0.2039 0.5964 -0.0136 -0.0151 0.0000 0.0000 
E305M 0.3552 0.0350 0.0000 0.0000 0.0000 0.0000 
E305N -0.0136 0.0000 0.3811 0.4054 0.0089 0.0000 
E305P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
E305Q -0.0142 0.0000 0.0000 0.0000 0.2541 0.0929 
E305S -0.0099 0.0000 0.8509 0.9491 0.0000 0.0000 
E305T -0.0087 0.0000 0.1001 0.1226 0.0000 0.0000 
E305V 0.4394 0.4292 -0.0164 -0.0176 0.0137 0.0000 
E305Y 0.0000 0.0000 -0.0118 0.0000 0.0000 0.0000 
T308P 0.1426 -0.0162 2.7432 2.9526 0.0000 0.0000 
S309F -0.0094 -0.0153 -0.0146 -0.0111 0.0000 0.0000 
S309L -0.0279 -0.0175 -0.0350 -0.0344 0.0000 0.0000 
S309W 0.0000 3.2718 -0.0020 0.0000 0.0000 0.0000 
G311N -0.0087 -0.0197 -0.0222 -0.0189 0.0000 0.1224 
G311D 0.8417 -0.0197 0.0509 0.1289 0.7281 0.0000 
D316A 0.0896 0.0000 0.1546 0.3255 0.0000 0.0000 
D316C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
D316G -0.0181 0.0000 0.0321 0.0949 0.0000 0.0000 
D316P -0.0078 0.0000 -0.0138 -0.0052 0.0000 0.0000 
D316Q 0.0097 0.0000 0.0000 0.0000 0.0000 0.0000 
D316S 0.0502 0.0000 0.0842 0.2199 -0.0221 0.0000 
T317P 0.0182 0.0000 0.0202 0.0149 0.1576 0.0000 
S318E 0.0557 -0.0153 0.0000 0.0000 -0.0214 0.0432 
S318F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
S318L -0.0305 -0.0332 -0.0347 -0.0342 0.3140 0.0049 
S318M -0.0071 0.0000 -0.0010 0.0077 0.0000 0.0000 
S318P 0.0204 0.5668 0.0821 0.1597 0.0000 0.0821 
S318Q 0.0735 0.0533 0.0000 0.0000 0.0000 0.0000 
S318W -0.0037 0.0000 0.0000 0.0000 0.0000 0.0000 
L319M 0.0000 -0.0047 0.0000 0.0000 0.0000 0.0000 
S321K 0.2819 0.1716 0.0084 -0.0014 0.1601 0.2020 
S321R 0.0107 0.0000 0.0735 0.0946 -0.0077 0.0814 
S322R 0.0570 0.0019 0.0000 0.0000 0.0341 0.0000 
S322L -0.0220 -0.0280 0.0000 0.0000 0.0000 0.0000 
L324F 0.1606 0.0000 0.0000 0.0000 0.1996 0.5718 
L324H -0.0073 0.0000 -0.0056 -0.0010 0.0000 0.0000 
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L324M 0.0053 0.0189 0.0000 0.0000 0.0000 0.0000 
A325P 0.7880 0.0592 -0.0100 0.0000 0.0277 0.0000 
G328T 0.0000 0.2174 0.2084 0.2351 0.0000 0.0000 
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V2P 0.9432 - 1.1062 1.0761 - 1.0670 
R3P 0.9864 - 1.1263 1.0696 1.0254 0.8979 
V7T 0.3710 0.4587 - 0.6530 0.8191 0.0000 
N8V 0.4752 0.4265 - 0.4269 0.2848 0.0000 
N8A 0.4752 0.4265 - 0.4269 0.2848 0.0000 
N8P 0.4752 0.4265 - 0.4269 0.2848 0.0000 
I9L 1.0085 0.9571 - 1.0066 1.2085 0.3251 

A10P 0.5122 0.6317 0.3803 0.3875 0.7244 0.0000 
A10S 0.5122 0.6317 0.3803 0.3875 0.7244 0.0000 
D13E 0.6420 0.4641 0.4980 0.5209 0.6509 0.0000 
F14P 0.3851 0.4075 0.4929 0.5061 0.4635 0.0000 
T18P 1.0041 1.0267 - - 1.1885 0.6390 
V27P 0.9303 0.8067 - - - 1.4658 
L31I - - 1.1868 1.1728 1.1835 - 
K32P - - 1.1171 1.0718 0.3756 - 
N33P - - 0.5718 0.4774 0.5525 - 
Y40P - - - - - 1.2376 
V51R 0.9287 0.8547 - - 1.2485 0.3495 
N52R 1.1055 0.9423 - - 1.5338 0.6109 
E53D 0.7504 0.6218 - - 1.1486 0.3495 
E53R 0.7504 0.6218 - - 1.1486 0.3495 
D54A 1.1039 0.8223 1.0118 1.0728 1.2536 0.0000 
D54C 1.1039 0.8223 1.0118 1.0728 1.2536 0.0000 
D54K 1.1039 0.8223 1.0118 1.0728 1.2536 0.0000 
D54L 1.1039 0.8223 1.0118 1.0728 1.2536 0.0000 
D54M 1.1039 0.8223 1.0118 1.0728 1.2536 0.0000 
D54N 1.1039 0.8223 1.0118 1.0728 1.2536 0.0000 
D54R 1.1039 0.8223 1.0118 1.0728 1.2536 0.0000 
M56F 0.6783 0.7096 0.7283 0.8038 0.9080 1.2206 
T57N 0.2428 0.2291 0.3056 0.3367 0.1739 0.6192 
R60V 0.0782 0.0085 0.0062 0.0052 0.0351 0.0000 
L61C 0.5632 0.4809 0.6282 0.6247 0.9686 0.0000 
G64P 1.0061 0.8340 0.9421 1.0587 1.1398 0.3495 
G64A 1.0061 0.8340 0.9421 1.0587 1.1398 0.3495 
V69L 0.8565 0.8893 0.9300 0.9165 1.2155 0.7198 
V69M 0.8565 0.8893 0.9300 0.9165 1.2155 0.7198 
V69N 0.8565 0.8893 0.9300 0.9165 1.2155 0.7198 
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N70P 0.8432 0.4485 - - 0.8603 0.8173 
N76P 0.8101 0.8115 0.8554 0.9314 1.1700 1.2459 
S79E 0.6087 0.6485 0.7860 0.8790 1.1577 0.8640 
S79P 0.6087 0.6485 0.7860 0.8790 1.1577 0.8640 
S79Q 0.6087 0.6485 0.7860 0.8790 1.1577 0.8640 
T80E 0.7331 0.7029 0.8166 0.9384 1.1547 1.1004 
T80Q 0.7331 0.7029 0.8166 0.9384 1.1547 1.1004 
I82L 0.4754 0.4843 0.5638 0.5503 0.5969 1.1386 
I82M 0.4754 0.4843 0.5638 0.5503 0.5969 1.1386 
I82Q 0.4754 0.4843 0.5638 0.5503 0.5969 1.1386 
D86P 0.9013 0.8952 1.0127 1.0972 1.5265 0.3495 
V89L 0.3552 0.3632 0.4699 0.4972 0.5683 0.3495 
V89M 0.3552 0.3632 0.4699 0.4972 0.5683 0.3495 
S94P 0.7186 0.7601 0.8499 0.8698 1.2650 1.2206 
S94R 0.7186 0.7601 0.8499 0.8698 1.2650 1.2206 
A97P 0.8484 - - - 1.0780 0.6192 
V101I 0.2887 0.3251 0.4283 0.4945 0.6814 0.5545 
V101L 0.2887 0.3251 0.4283 0.4945 0.6814 0.5545 
D102P 0.1990 0.2101 0.2030 0.1962 0.5002 0.0000 
H104P 0.0375 0.0420 0.0323 0.0052 0.0351 0.0000 
V107N 0.6919 0.6276 0.7105 0.7190 0.6837 0.0000 
G112A 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
G112E 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
G112C 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
G112D 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
G112H 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
G112I 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
G112K 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
G112L 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
G112F 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
G112M 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
G112N 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
G112Q 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
G112R 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
G112S 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
G112T 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
G112V 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
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G112W 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
G112Y 0.9863 0.9914 1.2758 1.3827 1.4023 1.3366 
I114P 0.3480 0.3268 0.2037 0.2223 0.6416 0.4192 

Q116N 0.9036 - 0.9343 0.9778 - 0.0000 
Q116D 0.9036 - 0.9343 0.9778 - 0.0000 
Q116W 0.9036 - 0.9343 0.9778 - 0.0000 
T120D - 0.7999 - - 1.1555 0.5004 
T120S - 0.7999 - - 1.1555 0.5004 
N121E 0.9967 0.8702 - - 1.4469 0.6846 
A122E 0.5053 0.4719 0.6345 0.7112 0.9308 0.8415 
A122Q 0.5053 0.4719 0.6345 0.7112 0.9308 0.8415 
T125P 0.6930 0.7337 0.9200 1.0229 1.2906 1.2040 
S126P 0.9499 1.0025 0.9599 0.9005 1.0909 0.9404 
S129P 0.8529 0.8456 0.9488 0.9321 1.2417 1.1935 
S133R 0.8766 0.8966 1.2206 1.2778 1.4123 0.9503 
S134K 0.9013 0.8952 0.9225 1.0857 1.3495 0.8513 
Y135F 0.4885 0.4529 0.4784 0.4629 0.5548 0.0000 
A136P 0.5164 0.5509 0.7410 0.8253 1.2293 0.6931 
S139P 0.6982 0.7023 0.9600 1.0230 1.3744 0.6390 
W142I 0.4837 0.5182 0.5925 0.6178 0.8881 1.2799 
W142V 0.4837 0.5182 0.5925 0.6178 0.8881 1.2799 
W142F 0.4837 0.5182 0.5925 0.6178 0.8881 1.2799 
W142M 0.4837 0.5182 0.5925 0.6178 0.8881 1.2799 
W142H 0.4837 0.5182 0.5925 0.6178 0.8881 1.2799 
W142Y 0.4837 0.5182 0.5925 0.6178 0.8881 1.2799 
W142L 0.4837 0.5182 0.5925 0.6178 0.8881 1.2799 
W142T 0.4837 0.5182 0.5925 0.6178 0.8881 1.2799 
W142E 0.4837 0.5182 0.5925 0.6178 0.8881 1.2799 
F143M 0.1318 0.1195 0.1230 0.1413 0.1892 0.0000 
G144A 0.7373 0.7174 0.7452 0.7631 0.8142 0.0000 
G144P 0.7373 0.7174 0.7452 0.7631 0.8142 0.0000 
G144D 0.7373 0.7174 0.7452 0.7631 0.8142 0.0000 
G144N 0.7373 0.7174 0.7452 0.7631 0.8142 0.0000 
I145V 0.7356 0.6748 0.6814 0.7630 1.1486 0.6931 
N147P 0.0598 0.0095 0.0060 0.0052 0.0351 0.0000 
N153D 0.7128 0.6918 0.8783 0.9210 1.2438 1.1412 
I154M - 0.9805 1.2037 1.2526 1.5201 0.0000 
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N155E 0.6907 0.6288 0.9175 0.9638 1.2675 0.9503 
N155Q 0.6907 0.6288 0.9175 0.9638 1.2675 0.9503 
T156E 0.9803 0.9340 1.0606 1.1664 1.5455 1.0889 
T156G 0.9803 0.9340 1.0606 1.1664 1.5455 1.0889 
V161I 1.1055 0.9985 1.0228 1.0875 1.1935 0.0000 
V161L 1.1055 0.9985 1.0228 1.0875 1.1935 0.0000 
E163P 0.5793 0.5134 0.6164 0.6860 1.0531 1.2799 
V164A 0.5027 0.4550 0.5458 0.6331 0.9309 0.8171 
V165I 0.5374 0.3428 0.3775 0.4158 0.6995 0.0000 
I168H 0.2329 0.1664 0.1533 0.1431 0.3406 0.0000 
R169P 0.1486 0.0212 0.0044 0.0052 0.0351 0.0000 
N170P 0.6410 0.5573 0.6485 0.7015 1.1374 0.5004 
N170R 0.6410 0.5573 0.6485 0.7015 1.1374 0.5004 
Q176P 0.5892 - - - 0.9178 0.0000 
Q186D 0.4775 0.3354 0.4310 0.4794 0.7640 0.7198 
Q186G 0.4775 0.3354 0.4310 0.4794 0.7640 0.7198 
Q186E 0.4775 0.3354 0.4310 0.4794 0.7640 0.7198 
Q186N 0.4775 0.3354 0.4310 0.4794 0.7640 0.7198 
Q186T 0.4775 0.3354 0.4310 0.4794 0.7640 0.7198 
S187P 0.6879 0.5978 0.5571 0.6216 0.6651 0.0000 
A188C 0.4478 0.3998 0.3175 0.1526 0.5446 0.0000 
G189A 1.0804 1.0200 1.0302 1.1271 1.2849 0.4192 
G189E 1.0804 1.0200 1.0302 1.1271 1.2849 0.4192 
G189H 1.0804 1.0200 1.0302 1.1271 1.2849 0.4192 
G189K 1.0804 1.0200 1.0302 1.1271 1.2849 0.4192 
G189N 1.0804 1.0200 1.0302 1.1271 1.2849 0.4192 
G189Q 1.0804 1.0200 1.0302 1.1271 1.2849 0.4192 
G189R 1.0804 1.0200 1.0302 1.1271 1.2849 0.4192 
G189S 1.0804 1.0200 1.0302 1.1271 1.2849 0.4192 
F191W 0.6151 0.5497 0.5463 0.5848 0.5890 0.3495 
S193P - 1.1856 0.8660 0.8789 1.3229 1.0639 
A197F 0.9969 0.9233 1.6886 1.8145 - 0.6846 
A197M 0.9969 0.9233 1.6886 1.8145 - 0.6846 
A199V 1.0818 0.9025 0.9983 - 1.2545 0.0000 
S201K - 0.8285 1.1982 1.2958 1.1476 1.4114 
S201P - 0.8285 1.1982 1.2958 1.1476 1.4114 
S201Q - 0.8285 1.1982 1.2958 1.1476 1.4114 
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N205D - - 1.4381 1.4223 0.4416 0.0000 
N205P - - 1.4381 1.4223 0.4416 0.0000 
V217I 0.9378 0.8482 0.8543 0.8961 0.9109 0.3251 
V217L 0.9378 0.8482 0.8543 0.8961 0.9109 0.3251 
K219S 0.6963 0.5775 0.6251 0.5793 0.8350 0.0000 
K219A 0.6963 0.5775 0.6251 0.5793 0.8350 0.0000 
K219Q 0.6963 0.5775 0.6251 0.5793 0.8350 0.0000 
K219E 0.6963 0.5775 0.6251 0.5793 0.8350 0.0000 
L221N 0.3243 0.2421 0.2390 0.2167 0.5985 0.0000 
D222P 0.2578 0.0424 0.0555 0.0385 0.2643 0.0000 
S223P 0.8114 0.8122 1.1191 1.1864 1.2064 0.3495 
A230P 0.7936 0.8483 0.9581 0.9795 1.4012 1.3719 
E231P 0.7215 0.7260 0.9146 1.0206 1.0051 0.4192 
N236G 0.8610 0.8619 0.9315 0.9384 1.0379 0.0000 
I237W 0.7122 - - - 1.1041 0.9503 
I237Y 0.7122 - - - 1.1041 0.9503 
I237F 0.7122 - - - 1.1041 0.9503 
D238E 0.9238 0.7019 0.8208 0.8425 1.1466 0.6852 
D238Q 0.9238 0.7019 0.8208 0.8425 1.1466 0.6852 
G239A 0.9604 - - - 1.0965 1.6096 
G239C 0.9604 - - - 1.0965 1.6096 
G239D 0.9604 - - - 1.0965 1.6096 
G239E 0.9604 - - - 1.0965 1.6096 
G239I 0.9604 - - - 1.0965 1.6096 
G239K 0.9604 - - - 1.0965 1.6096 
G239L 0.9604 - - - 1.0965 1.6096 
G239M 0.9604 - - - 1.0965 1.6096 
G239N 0.9604 - - - 1.0965 1.6096 
G239P 0.9604 - - - 1.0965 1.6096 
G239Q 0.9604 - - - 1.0965 1.6096 
G239R 0.9604 - - - 1.0965 1.6096 
G239S 0.9604 - - - 1.0965 1.6096 
G239T 0.9604 - - - 1.0965 1.6096 
G239V 0.9604 - - - 1.0965 1.6096 
S242D 0.6473 0.7033 - - 1.4154 1.3124 
S242Q 0.6473 0.7033 - - 1.4154 1.3124 
P243E 0.8971 0.8315 1.0284 1.1729 1.1523 0.8018 
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P243Q 0.8971 0.8315 1.0284 1.1729 1.1523 0.8018 
Q250P 0.8561 - 0.9478 1.0889 1.1228 1.4708 
Q250R 0.8561 - 0.9478 1.0889 1.1228 1.4708 
R253Q 0.9792 0.8779 0.9839 1.0704 1.2313 0.0000 
A255G 0.5350 0.4583 0.4377 0.4305 0.8512 0.0000 
A255C 0.5350 0.4583 0.4377 0.4305 0.8512 0.0000 
A255T 0.5350 0.4583 0.4377 0.4305 0.8512 0.0000 
I256M 0.6102 0.6139 0.6397 0.6787 1.0480 1.2206 
L257I 0.4072 0.3248 0.3463 0.4110 0.5168 0.7425 
N264P 0.8018 0.6162 0.9334 1.0101 1.1070 0.0000 
V265D 0.7214 0.6624 0.7241 0.7959 1.0951 0.6109 
S267P 0.9756 0.0686 1.1042 0.1066 1.5201 0.0000 
S267Q 0.9756 0.0686 1.1042 0.1066 1.5201 0.0000 
I269P 1.1679 0.7694 0.8384 0.9623 1.3144 1.4768 
D271F 0.8647 0.5501 0.7026 0.7835 1.1545 0.6192 
D271Y 0.8647 0.5501 0.7026 0.7835 1.1545 0.6192 
I276H 0.6591 0.5718 0.5811 0.5480 0.4110 0.9648 
I276L 0.6591 0.5718 0.5811 0.5480 0.4110 0.9648 
I276M 0.6591 0.5718 0.5811 0.5480 0.4110 0.9648 
Y278F 0.6392 0.6284 0.7155 0.7507 0.9017 0.8387 
Y278L 0.6392 0.6284 0.7155 0.7507 0.9017 0.8387 
N280P 0.9812 0.9213 0.9669 1.0615 1.3480 0.6192 
N280R 0.9812 0.9213 0.9669 1.0615 1.3480 0.6192 
Q281P 0.8161 0.6948 1.0196 1.1976 1.3329 0.8047 
Q281R 0.8161 0.6948 1.0196 1.1976 1.3329 0.8047 
N282Q 0.4504 0.4644 0.4356 0.4977 0.6509 0.4192 
N282R 0.4504 0.4644 0.4356 0.4977 0.6509 0.4192 
S283P 0.6073 0.7380 0.9520 0.9993 1.2797 0.6109 
G293A 0.3148 0.2401 0.2403 0.2348 0.5752 1.1629 
V302Y - - 0.4893 0.3524 1.1357 0.8570 
T304P - - 0.9830 0.9876 0.8245 1.3366 
E305A - - 0.6291 0.5959 0.9807 0.4192 
E305C - - 0.6291 0.5959 0.9807 0.4192 
E305F - - 0.6291 0.5959 0.9807 0.4192 
E305G - - 0.6291 0.5959 0.9807 0.4192 
E305H - - 0.6291 0.5959 0.9807 0.4192 
E305I - - 0.6291 0.5959 0.9807 0.4192 
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Table	
  IV	
  Cont’d.	
  Mutual	
  information	
  values	
  for	
  predicted	
  mutations	
  

Mutation 
444 

Sequence 
MI 

323 
Sequence 

MI 

233 
Sequence 

MI 

195 
Sequence 

MI 

29 
Sequence 

MI 

10 
Sequence 

MI 
E305K - - 0.6291 0.5959 0.9807 0.4192 
E305L - - 0.6291 0.5959 0.9807 0.4192 
E305M - - 0.6291 0.5959 0.9807 0.4192 
E305N - - 0.6291 0.5959 0.9807 0.4192 
E305P - - 0.6291 0.5959 0.9807 0.4192 
E305Q - - 0.6291 0.5959 0.9807 0.4192 
E305S - - 0.6291 0.5959 0.9807 0.4192 
E305T - - 0.6291 0.5959 0.9807 0.4192 
E305V - - 0.6291 0.5959 0.9807 0.4192 
E305Y - - 0.6291 0.5959 0.9807 0.4192 
T308P - - 0.3887 0.1950 1.1317 0.8018 
S309F - 0.7413 - - 0.8871 1.4272 
S309L - 0.7413 - - 0.8871 1.4272 
S309W - 0.7413 - - 0.8871 1.4272 
G311N - 0.7861 - - 1.1843 1.2984 
G311D - 0.7861 - - 1.1843 1.2984 
D316A - - - - - 0.4192 
D316C - - - - - 0.4192 
D316G - - - - - 0.4192 
D316P - - - - - 0.4192 
D316Q - - - - - 0.4192 
D316S - - - - - 0.4192 
T317P - - - - 1.2732 0.5004 
S318E - - - - 1.3111 1.3662 
S318F - - - - 1.3111 1.3662 
S318L - - - - 1.3111 1.3662 
S318M - - - - 1.3111 1.3662 
S318P - - - - 1.3111 1.3662 
S318Q - - - - 1.3111 1.3662 
S318W - - - - 1.3111 1.3662 
L319M - - - - 0.4853 0.6390 
S321K - - - - 1.2908 1.0820 
S321R - - - - 1.2908 1.0820 
S322R - - - - 1.0711 0.9410 
S322L - - - - 1.0711 0.9410 
L324F - - - - - 0.9410 
L324H - - - - - 0.9410 
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Table	
  IV	
  Cont’d.	
  Mutual	
  information	
  values	
  for	
  predicted	
  mutations	
  

Mutation 
444 

Sequence 
MI 

323 
Sequence 

MI 

233 
Sequence 

MI 

195 
Sequence 

MI 

29 
Sequence 

MI 

10 
Sequence 

MI 
L324M - - - - - 0.9410 
A325P - - - - - 1.0639 
G328T - - - - - - 
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Table V. ΔΔG and T50 values for predicted mutations 
Mutation FoldX (kcal mol-1) Rosetta (kcal mol-1)  ΔT50 (°C) 

V2P 2.65 1.54 - 
R3P -2.64 2.44 - 
V7T 2.00 -0.15 - 
N8V 1.39 -2.64 - 
N8A 3.30 -2.53 - 
N8P 7.75 3.43 - 
I9L 0.39 1.39 - 

A10P 3.44 3.39 - 
A10S -0.16 0.12 - 
D13E 0.30 2.85 3.0±0.5 
F14P 7.72 6.23 - 
T18P -1.67 0.46 0.2±0.1 
V27P 2.72 2.29 - 
L31I 0.02 -0.60 - 
K32P -2.50 3.74 - 
N33P -0.71 19.43 - 
Y40P 3.42 6.63 - 
V51R -0.73 0.40 - 
N52R -0.27 -0.04 - 
E53D 0.06 -0.77 2.7±0.7 
E53R -0.70 -0.41 - 
D54A -2.76 0.51 - 
D54C -3.14 1.31 - 
D54K -2.54 3.37 - 
D54L -5.29 0.92 - 
D54M -3.84 1.89 - 
D54N -3.89 -0.78 - 
D54R -3.03 4.25 - 
M56F -0.67 -2.30 - 
T57N -0.30 0.43 1.1±0.0 
R60V 3.41 -1.75 - 
L61C 2.11 2.75 - 
G64P 4.06 1.03 - 
G64A 2.97 -0.30 -0.1±0.2 
V69L -0.48 -0.16 - 
V69M 0.34 0.93 - 
V69N 1.34 1.26 - 
N70P 6.86 212.76 - 

	
  
	
   	
  



 203 

Table V Cont’d. ΔΔG and T50 values for predicted mutations 
Mutation FoldX (kcal mol-1) Rosetta (kcal mol-1)  ΔT50 (°C) 

N76P 0.00 0.95 0.8±0.5 
S79E -1.07 -0.19 -0.1±0.2 
S79P -1.84 0.97 0.3±0.5 
S79Q -0.66 -0.31 0.0±0.3 
T80E -0.44 -0.06 0.5±0.2 
T80Q -0.30 0.12 -0.1±0.2 
I82L 1.42 -0.12 -0.2±0.5 
I82M -1.01 0.44 0.3±0.5 
I82Q 1.97 -0.58 - 
D86P 7.94 5.72 - 
V89L -0.71 1.67 - 
V89M 0.24 1.57 - 
S94P 5.50 7.04 - 
S94R 0.84 0.25 - 
A97P 0.94 3.19 - 
V101I -0.83 0.11 0.5±0.4 
V101L -0.62 1.62 -0.5±0.3 
D102P 6.90 32.81 - 
H104P 6.50 6.66 - 
V107N 2.10 4.53 - 
G112A -0.06 -0.95 - 
G112E 0.17 -1.17 - 
G112C 0.28 0.57 - 
G112D 0.42 -0.96 - 
G112H 0.58 -1.69 - 
G112I 0.56 2.20 - 
G112K -0.33 -1.50 - 
G112L -0.45 -2.13 - 
G112F -0.23 -2.04 - 
G112M -0.41 -1.73 - 
G112N 0.08 -1.28 - 
G112Q -0.07 -1.63 - 
G112R 0.22 -2.03 - 
G112S 0.56 -0.57 - 
G112T 0.56 0.19 - 
G112V 0.92 1.28 - 
G112W -0.11 -1.76 - 
G112Y -0.20 -2.05 - 
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Table V Cont’d. ΔΔG and T50 values for predicted mutations 
Mutation FoldX (kcal mol-1) Rosetta (kcal mol-1)  ΔT50 (°C) 

I114P 7.75 1.78 - 
Q116N 1.42 -2.92 - 
Q116D 1.54 -2.33 - 
Q116W 1.11 -1.93 - 
T120D -2.16 0.36 - 
T120S -0.81 -0.10 - 
N121E -0.19 0.82 - 
A122E -0.70 0.00 -0.2±0.5 
A122Q 0.08 -0.10 - 
T125P 4.23 5.31 - 
S126P 4.39 6.31 - 
S129P 4.56 6.77 - 
S133R -0.95 -0.65 0.4±0.2 
S134K 0.00 0.83 - 
Y135F 0.77 0.25 - 
A136P 2.04 6.38 - 
S139P -1.33 2.14 1.8±0.6 
W142I 3.55 -4.90 - 
W142V 4.72 -4.29 - 
W142F 4.64 -3.76 - 
W142M 3.64 -3.65 - 
W142H 5.31 -3.38 - 
W142Y 5.17 -2.91 - 
W142L 3.66 -2.62 - 
W142T 6.86 -2.60 - 
W142E 6.80 -2.06 - 
F143M 1.48 3.10 - 
G144A 1.43 -0.53 - 
G144P 8.48 9.19 - 
G144D 5.68 -1.44 - 
G144N 0.21 0.40 - 
I145V 0.89 0.02 - 
N147P 9.31 10.37 - 
N153D -2.91 -0.25 0.5±0.9 
I154M -0.57 0.80 - 
N155E -1.45 0.06 0.5±0.3 
N155Q -0.42 -0.02 0.1±0.1 
T156E -0.62 -0.18 0.2±0.3 
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Table V Cont’d. ΔΔG and T50 values for predicted mutations 
Mutation FoldX (kcal mol-1) Rosetta (kcal mol-1)  ΔT50 (°C) 

T156G 0.61 -1.77 - 
V161I 0.57 0.53 - 
V161L -0.33 1.61 - 
E163P 4.31 5.79 - 
V164A 2.26 0.59 - 
V165I 0.94 2.03 - 
I168H 13.83 3.94 - 
R169P 7.92 6.32 - 
N170P 2.36 4.67 - 
N170R -0.32 0.13 - 
Q176P -0.53 2.06 - 
Q186D 0.81 -3.13 - 
Q186G -2.95 -1.40 - 
Q186E 1.97 -2.99 - 
Q186N -0.33 -2.05 - 
Q186T 2.38 1.23 - 
S187P 6.16 5.17 - 
A188C 0.33 4.31 - 
G189A -0.93 -0.76 0.4±0.4 
G189E -0.58 -1.01 0.0±0.2 
G189H -0.08 -0.26 - 
G189K -0.89 -0.55 -0.1±0.2 
G189N -0.33 -0.20 - 
G189Q -0.65 -0.58 - 
G189R -0.58 -0.37 - 
G189S -0.45 -0.97 1.2±0.4 
F191W 2.84 0.47 - 
S193P -1.26 0.32 - 
A197F 3.66 1.86 - 
A197M 1.22 4.09 - 
A199V 0.27 1.28 - 
S201K -0.22 -0.42 - 
S201P 3.46 5.42 - 
S201Q 0.08 0.12 - 
N205D 1.94 -1.51 - 
N205P 3.19 3.48 - 
V217I -0.22 2.27 - 
V217L -0.47 2.80 - 
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Table V Cont’d. ΔΔG and T50 values for predicted mutations 
Mutation FoldX (kcal mol-1) Rosetta (kcal mol-1)  ΔT50 (°C) 

K219S 1.98 -3.65 - 
K219A 2.07 -3.20 2.0±0.7 
K219Q 1.28 -1.92 2.8±0.1 
K219E 1.77 -1.82 - 
L221N 1.86 -1.41 - 
D222P -1.11 7.87 - 
S223P -1.26 1.04 - 
A230P -1.80 2.84 - 
E231P 0.33 0.82 - 
N236G 0.77 -1.89 - 
I237W 2.73 -2.17 - 
I237Y 2.10 -2.06 - 
I237F 1.67 -1.99 - 
D238E -0.12 0.24 - 
D238Q -0.06 0.12 - 
G239A -0.14 -0.56 - 
G239C -0.53 1.35 - 
G239D -0.08 -1.46 0.4±0.2 
G239E -0.55 -1.20 0.2±0.3 
G239I -0.78 0.57 - 
G239K -0.78 -0.89 - 
G239L -1.23 -0.79 - 
G239M -0.94 -0.39 - 
G239N -0.13 -1.43 0.7±0.1 
G239P -0.56 0.62 - 
G239Q -0.44 -0.94 -0.9±0.2 
G239R -0.73 -0.55 - 
G239S -0.20 -1.04 -0.7±0.1 
G239T -0.09 -0.84 - 
G239V -0.31 0.10 - 
S242D -1.00 -0.09 - 
S242Q -0.86 -0.03 - 
P243E 1.86 0.45 - 
P243Q 1.62 0.22 - 
Q250P 2.36 4.98 - 
Q250R -0.41 0.06 - 
R253Q 0.36 -2.11 - 
A255G 2.00 1.92 - 
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Table V Cont’d. ΔΔG and T50 values for predicted mutations 
Mutation FoldX (kcal mol-1) Rosetta (kcal mol-1)  ΔT50 (°C) 

A255C 0.62 2.99 - 
A255T 1.71 1.40 - 
I256M 0.48 0.36 - 
L257I -0.25 0.32 - 
N264P 1.32 3.92 - 
V265D -1.87 2.41 - 
S267P -2.75 1.46 - 
S267Q -0.67 -0.13 - 
I269P 2.95 7.40 - 
D271F -2.23 -1.08 3.1±1.1 
D271Y -1.83 -1.07 2.7±0.4 
I276H 5.24 -1.75 - 
I276L 0.63 0.55 - 
I276M -0.31 0.29 - 
Y278F 0.19 -0.41 1.0±0.5 
Y278L 1.60 2.77 - 
N280P 3.56 6.67 - 
N280R -0.46 -0.93 - 
Q281P 2.84 8.74 - 
Q281R 0.28 0.09 - 
N282Q 1.00 -1.97 - 
N282R 0.75 -1.93 - 
S283P -1.77 1.32 - 
G293A 6.66 -0.08 3.5±0.2 
V302Y 0.81 1.03 - 
T304P 0.61 2.88 - 
E305A -2.46 -0.78 - 
E305C -2.86 0.14 - 
E305F -3.77 -2.24 - 
E305G -2.23 0.42 - 
E305H -2.91 -3.07 - 
E305I -2.62 -0.89 - 
E305K -4.04 0.47 - 
E305L -4.82 -1.95 - 
E305M -4.09 -1.03 - 
E305N -1.88 -0.97 - 
E305P 1.45 54.88 - 
E305Q -2.12 0.66 - 
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Table V Cont’d. ΔΔG and T50 values for predicted mutations 
Mutation FoldX (kcal mol-1) Rosetta (kcal mol-1)  ΔT50 (°C) 

E305S -1.77 -0.79 - 
E305T -1.61 -2.14 - 
E305V -2.18 -0.47 - 
E305Y -1.60 -2.13 - 
T308P 1.45 29.64 - 
S309F -0.57 -1.94 2.7±0.1 
S309L -1.78 -2.26 1.5±0.3 
S309W 0.19 -2.24 0.4±0.1 
G311N 0.82 -1.23 - 
G311D 0.78 -0.58 - 
D316A -1.91 -0.45 - 
D316C -2.44 1.43 - 
D316G -0.98 0.09 - 
D316P -2.36 1.07 - 
D316Q -1.81 -0.37 - 
D316S -2.20 -0.39 - 
T317P -1.41 0.50 - 
S318E -1.20 -0.21 0.9±0.2 
S318F -1.94 0.94 - 
S318L -1.54 -0.41 - 
S318M -2.09 -0.01 - 
S318P -2.31 3.27 3.2±0.9 
S318Q -0.75 -0.38 0.5±0.2 
S318W -1.81 1.07 - 
L319M 0.55 1.01 - 
S321K 0.36 -0.97 - 
S321R 0.50 -0.56 - 
S322R -0.98 -0.26 - 
S322L -1.87 1.15 - 
L324F -1.58 -2.35 - 
L324H 0.77 -1.86 - 
L324M -0.19 0.26 - 
A325P 3.97 4.67 - 
G328T N/A 0.03 - 
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APPENDIX B 
 
Crystallographic Analysis of Designed Kemp 
Eliminases 
 
This appendix contains relevant excerpts from [1]. The author contributed three crystal 
structures (HG-2 holo, 1A53-2 apo, and 1A53-2 holo), Figure 2B-F, Figure 6, and data 
for the HG-2 holo, 1A53-2 apo, 1A43-2 holo structures in Figure S3. Please refer to the 
original publication for further information.  

 
B.1 Abstract 
 
A general approach for the computational design of enzymes to catalyze arbitrary 

reactions is a goal at the forefront of the field of protein design. Recently, 

computationally designed enzymes have been produced for three chemical reactions 

through the synthesis and screening of a large number of variants. Here, we present an 

iterative approach that has led to the development of the most catalytically efficient 

computationally designed enzyme for the Kemp elimination to date. Previously 

established computational techniques were used to generate an initial design, HG-1, 

which was catalytically inactive. Analysis of HG-1 with molecular dynamics simulations 

(MD) and X-ray crystallography indicated that the inactivity might be due to bound 

waters and high flexibility of residues within the active site. This analysis guided changes 

to our design procedure, moved the design deeper into the interior of the protein, and 

resulted in an active Kemp eliminase, HG-2. The cocrystal structure of this enzyme with 

a transition state analog (TSA) revealed that the TSA was bound in the active site, 

interacted with the intended catalytic base in a catalytically relevant manner, but was 

flipped relative to the design model. MD analysis of HG-2 led to an additional point 

mutation, HG-3, that produced a further threefold improvement in activity. This iterative 

approach to computational enzyme design, including detailed MD and structural analysis 

of both active and inactive designs, promises a more complete understanding of the 

underlying principles of enzymatic catalysis and furthers progress toward reliably 

producing active enzymes. 
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B.2 Introduction 
 
The high efficiency, chemoselectivity, regio- and stereospecificity, and biodegradability 

of enzymes make them extremely attractive catalysts. However, the finite repertoire of 

naturally occurring enzymes limits their applicability to broad problems in 

biotechnology. A general method for the computational design of enzymes that can 

efficiently catalyze arbitrary chemical reactions would allow the benefits of enzymatic 

catalysis to be applied to chemical transformations of interest that are currently 

inaccessible via natural enzymes. Bolon and Mayo provided important early evidence 

that such an approach is feasible [2], which motivated significant progress toward this 

goal in recent years. Using quantum mechanics-based active site design and the Rosetta 

software suite, Baker, Houk, and coworkers designed enzymes for three chemically 

unrelated nonnatural reactions in a variety of catalytically inert scaffolds [3-5]. In early 

incarnations of computational protein design, a strategy for methods development was 

put forth in terms of the so-called “protein design cycle” in which experimental 

evaluation of an initial design is used to inform adjustments to the design process for 

subsequent rounds of design [6, 7]. Ideally, these steps would be continued iteratively 

until the protein sequences predicted by the algorithm exhibit the desired characteristics. 

However, there is little evidence that this strategy has been used for purposes other than 

force-field parameterization [6, 8-10]. Proteins from failed computational design efforts 

are typically discarded without comment or investigation into the cause of failure. This 

situation is unfortunate, because valuable information is lost when only successful 

designs are reported. Without detailed computational and/or experimental analysis of 

failed designs, flaws in the design procedure cannot be identified and remedied to 

produce proteins with the desired characteristics [11, 12]. In addition, a focus on 

reporting only successful designs can lead to the impression that current computational 

protein design methods are errorless. 

 
The recent successes in designing enzymes show that the field is well on the way to its 

goal of developing a general method for designing protein catalysts [3-5]. However, the 

catalytic rate enhancements of computationally designed enzymes are still well below 

those of natural enzymes, and the methods are dominated by false positives. In the case 
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of the Kemp eliminase enzymes designed by Röthlisberger et al., 59 of the many 

individual sequences predicted to be active by their protein design methods were selected 

for experimental screening, and only eight of these turned out to be active. Although 

active enzymes were in fact produced, the need for a “shotgun” approach suggests an 

incomplete understanding of the details of the enzymatic system and/or inaccurate 

modeling by the protein design algorithm [13]. 

 

In this work, we focus on the development of a single designed enzyme to test our 

understanding of enzymatic catalysis and the applicability of the protein design cycle to 

computational enzyme design problems. We targeted our efforts on the Kemp elimination 

(KE) (Fig. 1), a well-studied model system for the deprotonation of carbon [14]. The KE 

was selected as a model reaction for this study because catalysts for it have been reported 

in multiple protein scaffolds [3, 15-17]. In addition, from a computational design 

perspective, the use of the KE allows a direct comparison to the eight enzymes that were 

computationally designed for this reaction by Röthlisberger et al. [3]. 

 

Our approach to KE enzyme design consisted of three steps, which are described in detail 

by Lassila et al. [18]. First, we designed an idealized active site for the KE that included 

an ab initio calculated transition state (TS) and contacting catalytic residues oriented to 

facilitate binding and catalysis (Fig. 2A). Next, targeted ligand placement was used to 

simultaneously sample TS poses and catalytic amino acid positions and orientations 

within a poly-alanine–substituted binding pocket of a protein scaffold that does not 

naturally catalyze the KE. Active site configurations	
   that fulfill all of the required 

catalytic contacts were identified. Finally, one of these active site configurations was 

selected, and the remaining binding pocket residues were designed to support the TS pose 

and the geometry of the catalytic residues. Our initial design, HG-1, showed no 

measurable KE activity. To identify deficiencies in the design procedure, we investigated 

possible causes of inactivity by using X-ray crystallography and molecular dynamics 

(MD) simulations. Two problems were identified: The active site was overly exposed to 

solvent, and critical active site residues showed a high degree of flexibility and 

orientations inconsistent with the design objectives. Iterating on the protein design 
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process, we corrected these problems in subsequent rounds of computational design using 

the same protein scaffold. The design with the highest activity, HG-3, was found to have 

a kcat⁄Km of 430 M−1 s−1. 
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B.3 Results 
 
The following section only contains text relevant to data obtained by the author of this 
thesis. For a full description of results, please consult [1]. 
 
Second-Generation Design 

A key observation from the crystal structure and the MD simulations is that a significant 

number of water molecules are present in the active site of the first-generation HG-1 

design. This finding suggests a substantial desolvation barrier for substrate binding and a 

bulk, solvent-like pKa of the base (E237). The high flexibility of the active site side 

chains and low degree of preorganization may further add to the observed inactivity. On 

the basis of early work by Kemp and coworkers, who showed that a nonpolar 

environment is best suited for the base-catalyzed KE [19, 20], increasing the hydrophobic 

character of the HG-1 active site is expected to facilitate the binding of the hydrophobic 

5-nitrobenzisoxazole substrate and also elevate the pKa of the base. We therefore sought 

a more embedded active site pocket in order to maximize these effects. Manual 

inspection identified native D127 as a promising candidate for the catalytic base. This 

aspartate forms a salt bridge with R81 and defines the bottom of a well-packed, narrow 

solvent-accessible pocket in the core of the (α⁄β)8 barrel, well removed from the native 

TAX binding pocket. Using a computational approach, we sought to increase the size of 

this pocket to accommodate the substrate and the additional catalytic residues. This area 

also contains polar and charged residues, which do not provide the ideal environment for 

the KE. Substantial modifications of R81, N130, N172, T236, and E237 would be 

necessary to allow the substrate access to the base and to form a hydrophobic binding 

pocket to facilitate proton abstraction. 
	
  

By focusing the design on the native D127 as the general base, an active site search was 

carried out in a manner similar to that for HG-1 using identical geometric constraints. 

Compared to the HG-1 calculation, the active site search for this design was shifted 7 Å 

further into the barrel of the scaffold (Figure 4A, see [1]). 

 

The final catalytic configuration consisted of D127 as the general base, T44W as the π-

stacking residue, and T265S as the hydrogen bond donor (Figure 2C). The isoxazole ring 
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of the TS points into the back of the active site pocket and is well shielded from solvent. 

Active site repacking produced the second-generation design HG-2, whose sequence 

differs by 12 mutations from wild-type TAX (SI Appendix, Table S2, see [1]) and 19 

mutations from HG-1. As expected, the design model shows major changes in the size 

and hydrophobicity of the active site residues relative to wildtype TAX. Fig. 4 

demonstrates the variation of the active sites basis on this scaffold. Of note, R81, which 

forms a buried salt bridge with D127 in TAX, was mutated to a glycine in the design, 

making room for the substrate to access the base. Nearby H83 and N130 were also 

mutated to glycine to further open up space in the active site for the substrate and the 

catalytic residues. Q42, T84, N172, T236, and E237 were mutated to large hydrophobic 

residues, which increases the overall hydrophobicity of the active site and promotes 

packing around the TS and catalytic residues. 

 

Characterization of Second-Generation Design  

A 1.2-Å resolution X-ray crystal structure of HG-2 with the transition state analog (TSA) 

5-nitrobenzotriazole (5-NBT) bound in the active site provides direct evidence of 

catalytically competent substrate interaction with the putative base (Figures 2D–F). The 

protein crystallized with two molecules in the asymmetric unit, which allows for 

observation of two active sites. Ligand density in chain A was modeled in two 

orientations (Figures 2D and E). The dual orientations may reflect the conformational 

flexibility of the engineered active site, some of which was observed in the MD 

simulations. Unambiguous density for a single TSA orientation appears in chain B 

(Figure 2F). This orientation (O2) differs from that of the design (O1) in that the TSA is 

flipped from the designed position, which places the nitro group in contact with S265 

rather than K50. In both O1 and O2, the TSA contacts the putative base (D127) in a 

catalytically relevant manner. 

 

Recapitulation of Previous KE Designs 

We also tested the ability of our computational design methods to recapitulate the active 

sites of three functional enzymes from Röthlisberger et al. [3]. KE59 was based on the 

Sulfolobus solfataricus indole-3-glycerolphosphate synthase scaffold [21]; KE07 and 
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KE10 were based on the Thermotoga maritima imidazoleglycerolphosphate synthase 

scaffold [22]. 

 

Starting with the base positions and scaffolds from the active KE07, KE10, and KE59 

enzymes, TS poses and catalytic residue positions that satisfied the catalytic contacts 

specified in the HG-1 and HG-2 designs were retained and stabilized through packing of 

the surrounding amino acid side chains. We generated five designs: 1THF-1, 1THF-2, 

1A53-1, 1A53-2, and 1A53-3 (SI Appendix, Table S2, see [1]). Despite using the same 

base position as in the Röthlisberger designs, our 1THF- and 1A53-based designs differ 

by eight to ten mutations and give rise to active site geometries that are distinct from the 

Röthlisberger designs (SI Appendix, Figures S8 and S9, see [1]). These differences can 

be attributed to variations in the geometries used to define the active site as well as 

differences in the ligand pose sampling methods and force field used by Rosetta and our 

method. Three of the five designs showed significant activity over background (SI 

Appendix, Figure S10, see [1]), which indicates that multiple, geometrically unique 

active sites for KE catalysis can be generated from the same scaffold. 

 

Crystallographic Analysis of 1A53-2 

X-ray crystal structures of 1A53-2 were determined in the apo and 5-NBT-bound forms 

to 1.6- and 1.5-Å resolution, respectively. The full protein rmsd for the ligand-bound 

crystal structure with the design model is 0.51 Å, which indicates that the overall fold is 

maintained. Active site side-chain conformations in the cocrystal structure are in general 

agreement with the design (Figure 6A). As in the case of the HG-2 cocrystal structure, 

the position of the TSA is flipped from the designed orientation. Importantly, however, 

the ligand maintains a catalytically competent contact with the putative base (E178). The 

apo structure shows that the W210 side chain rotates from the catalytically relevant 

stacking position seen in the cocrystal structure to fill the substrate binding pocket 

(Figure 6B). The data collection and refinement statistics for these structures are 

summarized in SI Appendix, Table S3. 
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B.4 Conclusions 
 
The iterative approach to computational enzyme design described here has led to the 

most active computationally designed enzyme catalyst for the KE to date. Inactive 

designs were probed by X-ray crystallography and MD simulations to learn the likely 

causes of inactivity. These data informed the next round of design and led to active 

enzymes. In this way, computational methods and crystallography were used, rather than 

combinatorial experimental approaches, to create effective enzyme catalysts. We believe 

that this iterative approach constitutes a significant advance in enzyme design 

methodology that, in addition to leading to improved designs, should contribute to a more 

complete understanding of the mechanisms of enzymatic activity. The relocation of the 

active site into the core of the HG-2 scaffold is a departure from previous enzyme design 

procedures, which focus designs solely in natural binding pockets of the scaffold [3-5]. 

Although the site of the catalytic base in the HG-2 active site was manually selected, a 

subsequent broader computational search for possible active sites also identified D127 

among a large list of potential base positions outside of the natural binding pocket. The 

possibility of expanded active site searches suggests an opportunity for the improvement 

of computational design methodology to more efficiently carry out these large searches 

and to rank identified active site possibilities by their likelihood of supporting catalysis. 

 

As with previous computationally designed enzymes, the activity levels reported here are 

low compared to many natural enzymes. Directed evolution has been shown to be an 

effective strategy to increase the activity of designed enzymes [3, 23, 24] and may offer 

insight into the deficiencies in the design. All-atom explicit solvent MD simulations have 

previously been shown to be effective at recapitulating the activity of computationally 

designed KE enzymes [12]. Here, MD was carried out prior to experimentation for all 

cases except HG-1, and the integration of MD into the iterative design process proved to 

be useful for identifying underlying problems in the structure and dynamics of HG-1 and 

in guiding the improvement of HG-2. The recent design of enzymes that stereoselectively 

promote a Diels-Alder reaction demonstrates the applicability of MD to more 

complicated chemistries [5]. 
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The discrepancy between the ligand orientation in the modeled structures and in the 

crystal structures of HG-2 and 1A53-2 may be due to the inaccurate modeling of the TS 

ligand and/or inadequate sampling of possible ligand positions within the active site. 

Improvements to the force field may be necessary for accurate modeling of the ligand’s 

nitro group in a hydrophobic environment. In addition, the utility of combining 

computational protein design with MD simulations suggests that future inclusion of full 

backbone flexibility, loop modeling, and MD move sets directly into computational 

design procedures may lead to more accurate predictions of ligand positions and 

improved de novo designed enzymes. 
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B.5 Materials and Methods 
 
Crystals of HG‐2/NBT, 1A53‐2/NBT, and apo 1A53‐2 were obtained through sitting-

drop vapor diffusion carried out at room temperature with a protein concentration of 9.5 

mg/mL. Co‐crystallization for HG‐2/NBT and 1A53‐2/NBT was achieved through pre‐

incubation of the protein with 5 mM 5‐nitrobenzotriazole (5‐NBT, Ryan Scientific) prior 

to crystallization trials. A 100 mM stock solution of 5‐NBT was prepared in DMSO 

before combining with the protein. Reservoir solutions for HG‐2/NBT (0.1 M sodium 

acetate pH 4.6, 2 M ammonium sulfate), 1A53‐2/NBT (0.1 M sodium citrate/citric acid 

pH 5.6, 0.2 M potassium sodium tartrate, 2 M ammonium sulfate), and apo 1A53‐2 (0.1 

M Bis‐Tris pH 5.5, 0.2 M ammonium acetate, and 25% PEG 3350) were combined with 

protein in a 1:1 ratio. A single HG‐2/NBT, multiple cube‐like 1A53‐2/NBT, and several 

plate‐like apo 1A53‐2 crystals developed with a minimum growth time of one month. The 

crystals were cryo‐protected with paraffin oil and shipped to the Stanford Synchrotron 

Radiation Lightsource, beamline 12‐2 for remote data collection. Diffraction data were 

processed with the program MOSFLM using the interface iMOSFLM [25]. 

 

Data were scaled using the program SCALA [26]. Molecular replacement was carried out 

with PHASER [26, 27]. The coordinates for Thermoascus aurantiacus xylanase I (PDB 

code 1GOR) [28] and Sulfolobus solfataricus (PDB code 1A53) [21] were modified to 

contain alanine at all point mutations in the designs and were subsequently used as the 

molecular replacement starting models for HG‐2 and 1A53‐2, respectively. Model 

building was carried out using COOT [29]. The structure was refined using REFMAC 

[30] and PHENIX [31]. Backbone density for the HG‐2 structure appeared in two distinct 

backbone conformations in chain B, similar to the dual backbone conformation found in 

the structure of red fluorescent protein variant FP611 (PDB code 3E5T) [32]. The apo 

structure of 1A53‐2 was processed with a twinning fraction of 0.13 towards the end of 

refinement. Crystallographic data statistics are summarized in Table S2. 
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B.6 Tables and Figures  

 
Figure 2. KE enzyme design models and crystal structures. (A) KE idealized active site. 
(B) Overlay of HG-1 crystal structure active site residues (yellow) with design model 
(green). (C) The HG-2 design model. (D) and (E) Crystal structure of HG-2 active site, 
chain A. The two conformations of the TSA 5-NBT are shown separately for clarity. (F) 
Crystal structure of HG-2 active site, chain B with the single observed conformation of 
the TSA. 
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Figure 6. Crystal structures of 1A53-2. (A) Overlay of 1A53-2 holostructure (yellow) 
and the design model (green). (B) Overlay of 1A53-2 apo crystal structure (lavender) and 
holostructure (yellow). 
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B.8 Supplementary Table 
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