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ABSTRACT 

The energ)" loss of protons and deuterons in n2o ice has been 

11easured over the energy range,~ = 18 - 541 kev • The double 

focusing magnetic spectrometer was wsed to measure the energy of the 

particles after they had traversed a known thickness of the ice 

target. One method of measurement is wsed to determine relative 

values of the stopping cross section as a .f\mction of energy; another 

method 11easures absolute values. The results are in very good agree-

mant with the values calculated from Bethe•s semi-empirical formula. 

Possible sources of error are considered and the accuracy of the 

measurements is estimated to be ! 4%. 

The D(dp)H3 cross section has been measured by two methods. 

For Eo =- 200 - SOO kev the spectrometer was used to obtain the 

momentum spectrum of the protons and tritons. From the yield and 

stopping cross section the reaction cross section at 90° has been 

obtained. 

For En = JS - SSO kev the proton yield !roll a thick target 

was differentiated to obtain the cross section. Both thin and thick 

target aethods were uaed to measure the yield at each of ten angles. 

The angular distribution is expressed in terms of a Legendre poly-

nomial expansion. The various sources of experimental error are 

considered in detail, and the probable error of the cross section 

measurements is estimated to be ! S%. 
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I. INTRODUCTION 

The study of nuclear reactions involving positively charged 

bombarding particles of low energy is hindered by the reduction in 

yield brought about by the coulomb potential barrier. Therefore in 

work involving tbe light nuclei, a large current of bombarding particle• 

is desirable for bombarding energies below half a million volta. While 

the electrostatic generator is an ideal source of JIOiloenergetic parti-

cles, it can be operated stably over a voltage range of a factor of 

only five or ten. Moreover the intlexibillty of the focusing proper­

ties of the generator usual.l7 results in a decrease in the available 

beam at the lower energies. 

The 600 kev electrostatic generator of the Kellogg Radiation 

Laboratoey was designed to operate in the low energy region, and 

emphasis was placed on obtaining a relatively' large beam. Since the 

generator has not been described previously, a section of Part II 

will be devoted to a brief discussion of it, and an account of the ion 

source development will be given. 

Because of the fundamental nature of the nuclei involved, the 

D-D reaction has long been of interest and bas been studied extenaive­

l;r since the discovery by Lawrence, Lens, and Livingston(l) 1n 1933 

that two deuterons can react rl th the emission of long range protons 

(2),(3) ••• (27). The results presented in work published before 1948 

are sUDIII&rised by A. P. French(28) • 

The primary object of the work to be described was the detendnation 

of the absolute cross section and angular distribution of the reaction 

(I-1) 

from 3$ to SSO kev. The companion reaction 



(I-2) 

also was studied, although there is large uncertainty in the quantitative 

results. 

In one experiment the charged reaction products from a heavy ice 

target were detected w1 th a heavy particle spectrometer set at a labora­

tory angle of 90.)0 with respect to the beam. Since the D-D reaction 

is very anisotropic, even at low energies, determination of the total 

cross section requires a knowledge of the angular distribution. This 

was measured in a separate experiment using a chamber in which the high 

energy protons were detected w1 th a proportional counter. lleasurement of 

total yields by this method provided another determination of the total 

cross section. 

Since the value of the stopping cross section of deuterons in 

heaTY ice is the largest source of uncertainty in a determination of the 

reaction cross section by the present method, an independent experU.nt 

to determine this factor was performed. The stopping cross section waa 

determined from the measured yield of protons scattered into the spectro­

meter from the oqgen in the ice target. 

The spectrometer and other apparatus used in the experiment are 

described in Part II. Since a cross section experiment requires the ac­

curate knowledge of a large number of parameters 1 the calibration proce­

dures are described in some detail. In Part III the experiaent to 

determine the stopping cross section of protons in heavy ice is described, 

and the results are discussed. The D-D cross section and angular distribu­

tion measurements are described in Part IV 1 and sources of error are 

considered. In Part V deviations of the ol6(pp)ol6 scattering cross 

section !rom the Rutherford fo~a are calculated, and an effort ia 
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made to reconcile the present experimental values for the D(dp)H3 cross 

section and angular distribution with a simple model of the interaction 

which has pre'rlously been applied to other experimental results (30)' (3l) • 
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II. APPARATUS 

1. Electrostatic Generator 

The 600 kev electrostatic generator (Fig. 1) is mounted vertically 

in a cylindrical steel tank of length 9' and diameter s•. The wall thick­

ness is 27/64'*, and the rated working pressure is 150 psi. A fianged 

fitting 20 inches from the bottom permits removal of the upper section 

by two winches. This makes the machine easily accessible for servicing. 

In operation the tank is filled with air dried over KOH. A pressure of 

85 psi suffices for operating voltages up to 600 kev. 

The high voltage dome and ion source equipment are supported on 

two identical columns. Each consists of 10 porcelain insulators 2-1/2 

inches high and 10 inches in outside diameter {Lapp Insulator Company, 

Inc., LeRoy, New York) separated by 1/8" stainless steel plates, which 

eupport the spun ateel electrodes making up the column lens system. The 

porcelain to metal seal is made by vinylseal. Accurate alignment during 

sealing was achieved by the use of a specially constructed mandrel, sur­

rounded by a .turnace, which was heated to 150°C during sealing. At this 

time the column was put under a large compressional force by means of a 

torque wrench. Compression was maintained during cooling. The columna 

are supported on 6" steel tubes welded to the bottom of the tank. These 

are set 26" apart on a diameter o.t the tank. 

To maintain a uniform potential gradient from the high voltage 

dome to gromd, a set of ten corona rings surrounds the columns. Between 

tbe colUIIIls is a corresponding set of belt guards. Both sets are made 

from 3/411 tubular brass. The corona rings are about 3911 in diameter. A 

resistor column to giTe equal electrical spacing between corona rings may 

be switched to give resistances per section of 150, 300, or 450 megohms. 

A cylindrical high voltage electrode is used with another set of corona 
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rings to maintain a uniform gradient in the upper section of the tank. 

Twenty-three rings made of 1/2" aluminum tubing are supported on four 2• 

lucite posts. The rings are separated by 800 megohm resistors. The cur­

rent drawn by this colWIIIl is led out through a spring contact in the top 

of the tank and used as a rough indication of the generator voltage. Thia 

construction proved economical and has the advantage that addition ot a 

belt above the dome should be possible it larger beam currents from the 

generator are required. 

Control ot the resistor column switChing and ot all the power 

supplies in the daae is achieved by means ot eight 1" lucite rods, which 

lead from the bottom ot the tank into the dome. The rods pass through 

holes in plates connected electrically to the respective corona rings. 

At the bottom of the tank the lucite rods connect to 3/16" steel rods 

which lead through pressure fittings in the tank into the control room 

below. 

The high voltage electrode is made of sheet aluminum, rolled and 

"welded" to form a cylinder. The ends are slightly rounded, and corona 

rings sim.Uar to those described above are fitted to reduce the gradient 

near the ends. The length of the dome is 38" and the diameter,42". It 

ia supported by lugs which fit tour sections of channel iron fastened to 

a half inch steel plate on top of the columna. Also on this plate are the 

roller aounting and the spray combs tor removing charge from the belt. A 

three inch brass tube leads from the beam tube to the other col\Dlle Thia 

peraita differential pumping of the gas fran the ion source. 

A second plate, located 1.5" above the first, is insulated fr<lll it by 

lucite supports. This plate supports ion source and beam focusing supplies, 

including a 1$00 watt permanent magnet 11.5 v. 60 cps, generator 1 dr1 van by a 

V-belt from the upper roller. The focusing 878t&m (Fig. 2) uses a probe, 
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operated at 0 - 15 kev to extract ions from the source, and a focus 

electrode variable up to 30 kev. Normally the probe and focus electrode 

each draw about 300 )JA• 

Ion source supplies include a S volt, 100 ampere filament 

transformer, a 400 volt, 200 ma D.C. anode supply, and a 3 ampere, 120 

volt D.C. magnet supply. Nomal operating pcnrers are: 

Filament 40 watts 

Anode 

Kagnet 

15 watt• 

2S watts 

In addition, the palladium leak heaters (one for deuterium and one for 

eydrogen) in the gas supply require about 30 watts. 

The beam is extracted from the arc through a .028" hole in the 

bottom plate. A 3/16" hole in the probe about 3 inches from the arc 

limits the angular divergence of the beam and permits differential pumping 

of the gas. Further batfiing in the focus electrode is accomplished bf 

1/4" holes. With this arrangement the spray current required to maintain 

the generator voltage at full beam was reduced by a factor of nearly two 

below that required when batfiing and differential pumping were not used. 

The trpray voltage, variable up to about 40 kev, is fed by a cable 

into the tank to a spray comb facing the belt slightly above the line of 

tangency to the lower roller. Normal spray current is about 400 p 1 but 

the generator has been operated with currents as high as 1 u. 

The cotton belt ie 31" wide. It is driTen by the lower steel roller 

and runs over the upper one, which is mounted on luci te so that it can be 

used in a doubler arrange~~ent eaploying two spray combs in the doll8 and a 

second one near the lower roller to remove negative charge from the down­

ward moving side of the belt. Although doubler currents as high as 200 pa 

have been obtained, the doubler is not used because generator stability ia 
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greater without ito 

Power is supplied to the lowr roller through a universal joint 

from a 5 H.P. 220,volt 3 phase,3500 rpm motor in a pressure housing bolted 

directly onto the side of the tank. The roller itself is mounted on a 

yoke which permits continuous adjustment of the tension in the belt. Spri.Dg 

loac1ed mock absorbers on both ends of the roller mount prevent excessive 

vibration. Belt tension is adjustable from outside the tank by studs con­

nected rigidly to the shock absorbers. The belt speed is about 76 feet 

per second. 

The aa1n pUilping system consists of two 8" diffusion P\IDPB which 

were built in the Institute shops following a design of the Westinghouse 

Electric Company. One of these pumps is connected to each colUIUl through 

a 6tt brass tube including a two w~ o-ring valve, llhere an ion gauge is 

mounted. The operating pressm-e read on these gauges is 3 • 10-6 Jl!lll of 

•rcury on the differential pumping aide and less than 1.5 • 10-6 l!lll on 

the beam tube side. With the hydrogen off, the pressure is about 10-6 mm 

on each side. The two diffusion pumps are backed by a single Cenco 

Hypenac forepuap. A pirani type pressure gauge turns off power to the 

diffusion pumps and closes a solenoid operated valTe between forepump and 

diffusion pumps in case of a large rise in pressure. A •bucket" nitch 

protects the diffusion pumps against water failure. 

The precise energy of the beam is measured by means of a 90° 

electrostatic analyzer preceded by a magnetic deflection of a few degrees 

to eliminate undesired mass components. The anal;yzer has a plate 

separation of 5/8" and a radius of curvature of about 30"• About 12 keY 

per plate ia required to defiect the 600 kev beam. '!be high voltage is 

led into the analyzer through spark plugs. Jleasurement is made with a 

Leeds and Northrup Type K potentiometer and a precision resistor stack , 
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ldrl.cb is kept in a thermostated box. The analyzer and generator are 

regulated in a manner similar to that aescribed by Fowler., Lauritsen., 

and Lauritsen(32). It has been found that the current drawn from the 

analyzer supply is from three to five times the beam current because of 

ionization by the beam. Consequently, the analyzer voltage supply must 

be well fU tered to prevent an energy spread in the beam. 'nle measured 

analyzer ripple is o.OOS% at no load and 0.033% with an anal.J'zer current 

of 200 )JJl• and an analyzer voltage of 8 kev per plate. 

Tbe absolute voltage scale was obtained by calibration against 

known resonances: F19(pa.,y)ol6 at 340ell kev(33) and 117 (pY)Be8 at 440 

kev • Linearity of the energy scale was checked by observation of the 

scattered monatomic, diatomic, and triatomic beams at 172, 344, and 516 

kev., respectinly. In this measurement the heaT)" particle spectrometer 

field was held constant., and the analyser voltage was varied to obtain 

the middle of the thick target step in each case. A carbon target was 

used to reduce the danger of carbon surface contamination. The calibra-

tion procedure established the energy scale to within a few tenths of a 

percent. No deviation fran linearity was detected, although a 0.3% ef­

fect would have been observable. Tbe energy spread of the be81l is small. 

Evidence will be given in Part n-J to show that it is at most a few hun­

dred volts at sao kev. 

The generator operates stably over the voltage range from 60 to 

600 kev. The maxi.JnJm operating voltage could probably be increased 

somewhat by increasing the pressure in the tank and the voltage range of 

the an~zer supply • 

The effect of residual pressure in the vacuum system on the 

operating cl.DT8nts of both the ~zer and the spray supply has been 

demonstrated. In the accelerating colUilD the current seems to be about 



twice the beam current under the best operating conditions. Furthermore, 

the installation of a liquid air trap near, but not in, the analyzer 

resulted in a considerable reduction of the analyzer current for a given 

beam current. Presumably the installation of large cold traps would pet-

mit the use of a larger beam. 

Because of the relatively large current drawn by the ion source 

focusing electrodes (Fig. 2), the power supplies are well filtered to 

reduce the ripple to less than 100 volta. Difficulties encountered in 

the design of an efficient ion gun are discussed by R. N. Hall (34) • Aside 

from the ion source problem itself, problems arise in connection with 

apace charge and magnification by the electrostatic lens system. For ex-

ample, from Hall's graph on the behavior of an initial.ly parallel beam in 

a field free region, it can be shown that for the l/32" diameter beam 

entering the probe at 5 kev, Ieff 2 350 p it the beam is to pass through 

the 3/16" batfie 3 inches awq. In this case Ieff = I1 + {2 I 2 + v'3 I
3

, 

where I1, I 2, and 1
3 

are the mass 1, mass 2, and mass 3 components, re­

apecti vely, of the total current. Hence the useful current is less than 

350 )ll1 in thia cue. 

A general relation between the angle of divergence, Q
0

, of rays 

from a source, the angle of convergence, Qi' of rays to the image, the 

magnification, m, and the potentials, - 0 and ~i' of the object and image 

spaces, respectively, is 

(II-1) 

A large restriction on the useful beam may occur in the use of a 

precision analyzer. Let us assune that 1/8" slits restrict the beam at 

both ends of an electrostatic analyzer. Neglecting the small focusing in 

the analyzer, we find for a target 6 1 from the upper slit a ma:rlmllll angle 



of convergence of 0.00178 radi~. In order that the 1/32" source be 

focused to a 1/8" spot, we .uet have • 2 4. For ~0 2 5 kev and ~i = 100 

kev, Q = 0.03 radians. Therefore, less than one-fourth of the total beam 
0 

from the probe can be focused with these energies. In order that a large 

part of the be81l paes through the analyzer, the ugnitication must be kept 

nalle This requires that the focusing take place as far as possible frOID. 

the source, that is, at the lens formed by the column and the focus elec­

trode. For this single lens system the focus voltage is proportional to 

the generator voltage, and space charge limitations occur at low energies. 

lfuch more beam can be obtained above the analyzer, at low generator voltage, 

by an increase of the focus voltage to a high value. This weakens the 

second gap,of Which the focal length is proportional to the ratio of the 

focus voltage to the gradient in the column. Focusing can now be ac-

complished by a variation of the strength of the first focus gap. How-

ever, the large magnification in this case prevents much of the beam from 

passing through the analyzer. The optimlml probe and focus voltages are 

complicated functions of the generator voltage. '!'he fact that a linear 

relation between voltages for opti.aum operation does not seem to hold 

implies that the effects described above vary in t.portance as the genera­

tor voltage is varied. 

2. Ion Source 

An attempt was made to develop a hydrogen ion source of the P.I.G. 

(Phillips ion gauge) type, operating continuously, for uae in the electro-

static generator. In this source an arc is maintained between two cathode 

surfaces and a hollow cylindrical anode. An axial magnetic field of about 

1000 8llU confines the motion of low energy- ( ~ 400 ev) electrons accelerat-

ed from the cathodes, to tight spirals around the field lines, causing them 

to oscillate along the axis between the cathode surfaces many times before 
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they are caught by the anode. In this ny, the probability of an ionising 

collision with the gas in the arc chamber is greatly increased, and the 

source will operate at relatively low pressures. The electron supply in 

the arc is maintained both by ionizing collisions and b7 secondary emis­

sion from positive ion bombardment of the cathode surfaces. The beam is 

extracted by a probe through a 8ll&ll. hole in the center of one cathode. 

The initial design, using an arc chamber of length 1-1/4 inches 

with a stainless steel anode and al.UIIli.num cathodes, one of which contained 

a o.o28" exit hole, gave a total hydrogen ion yield of about 25 )1& (analys­

ed), containing 10 - 15% mass 11 for operating pressures between 15 and 100 

microns. )(ass 2 and u.aa 3 yields were very pressure dependent, mass 2 

predaninating at low preeeures and mass 3 at high preseures. The charac­

teristics were in good agreement with those obtained by Lorrain ( 35), except 

that in absolute Yal.ue his pressures were lower by a factor of 5 or 10, 

presumably because of the larger dillensions of his arc chamber. 

Operating conditions were as follows: 

Arc current 

Arc voltage 

Mag. field 

Pressure 

Total beam 

Hl fraction 

Lifetille 

20ma 

400 - 500 volts 

1000 gauss 

15- 100 Jl 

25 pa (analyzed to a 3/32" spot) 

10 - 15% 

indefinite 

The source coul.d be operated at a higher power level only with a 

limitation on the lifetime. For example, in operation at 100 ma arc cur­

rent the lifetime was 4 hours • This limitation was due to the removal of 

the oxide surface layer from the aluminum cathodee. A certain amount of 

regeneration of the cathodes could be accomplished by the injection of air 
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or OXJgen into the source, but this procedure was on the whole unsatisfactory 

because of the rapid rate of deterioration. 

Operating condi tiona wre as follows: 

Arc current 100 Ill& 

Arc voltage 400 - 500 volta 

llag field 1000 gauss 

Pressure 20 - 100 J1 

Total beam 150,. 

gl fraction 10 - 1$% 

Lifetime 4 hours 

Unless it is stated otherwise, beam JDeasuremente are made after a crude 

JD&gnetic separation. 

It was found that the injection of small aounts of air or oxygen 

increased the mass 1 ratio to as much as 40% nth somewhat reduced total 

beam output and very little mass CD (air). Further increases in the ratio 
the 

could be made only at the expenae of" intensity of all hydrogen components, 

including mass 1, and an increase in that of ll&SS co. 

The output of this source was roughly independent of the magnetic 

field strength from 300 to 3000 gauss. Below 300 gauss operation ceased 

abruptly, and just above this point operation 'HS sligh~ unsteady. 

To give a better idea of what goes on inside the source, a test 

chaaber was constructed as much as possible like the arc chamber in the 

ion source, except that no ions were extracted. A window was provided 

for observations on the core of the arc. Water cooling was provided for 

operation at higher power. An optical spectrometer was used to estimate 

the relative concentrations of al and aolecular b.y'drogen in the arc. As 

is well known from the color of r . f, sources, the hydrogen arc consisting 

largely of the mass 1 component has a deep red color due to the ~ Balaer 
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line. The molecular spectrum covers the visible range but appears mostly 

blue to the eye. 

When the arc current was varied from a few milliamperes to 2 

amperes, no important change in the color was observed. Magnetic fields 

up to 5000 gauss seemed to make no difference. Sometimes for a short time 

the arc would appear red. Since this did not appear to be related to the 

operating conditions, it was assumed to be due to the liberation of a 

small amount of air or water vapor somewhere in the STStem• Unfortunately, 

there was no direct way of observing the yield of mass 1 which might han 

been extracted under the above condi tiona. 

In an effort to improve lifetime and mass 1 ratio, different cathodes 

were tried. Beryllium gave about the same results as aluminlDil. The fact 

that JllADY metals did not work as cathodes for arc voltages below 600 volts 

supports the argument that it is the oxide layer which is effective in the 

production of low voltage arcs in the case of aluminum and beryllium 

cathodes. 

Especial.ly low voltage operation (V ~ 100 v) was obtained by using 

for the upper cathode a pad of platinum gauze saturated with an oxide 

emission compound (Callite Tungsten Corporation, Type #56,Lot 101745) or 

a piece of bariUil aluminate. The arc under these conditions has a negatiYe 

resistance characteristic over the usual operating range. For example, 

with a cathode consisting of a gause pad saturated with emission coating, 

at an anode current of 2 amps the voltage of the arc was only 40 volts. 

~ith such cathodes the arc could not be maintained at currents below 100 

ma without a large increase in arc voltage and a decrease in pressure. 

Variations on the emission coating cathodes were tried. The compound, 

Which had initially been dissolved in acetone, was fuzed on the gauge. In 

other attempts it was powdered and pressed into a button. In each case the 
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aolvent was driven out as much as possible first by gentle heating. The 

best of these attempts illproved the lifetime of the cathodes to only 

about 20 hours~ where operation ceased~ apparently due to the formation of 

carbon on the active surface. It was not determined whether this deposit 

formed because of insufficient removal of the solvent from the emission 

compound, or whether it came from nearby gaskets or from pump oil. Pre-

8UIIlabl.y .ore careful design of the ion source and installation of liquid 

air traps could improve the lifetimes. 

The use of such activated cathodes in the ion source of the 

electrostatic generator produced mass 1 ratios of about 20% and mass 1 

currents up to 30 )JA• But the output was usual.l3' unsteady~ probably due 

to the formation on the cathode of hot spots which wandered about. 

Operating conditions were as follows: 

Arc current 200 ma 

,Arc voltage 80 volts 

Kag field 1000 gauss 

Pressure 20 - 50 )1 

Beam 150 pa 

llass 1 ratio 20% 

Lifetime 20 hours 

The output was found to be nearly independent of arc current above 

150 ma~ presumably because of the effects of space charge. In the test 

chamber a corresponding effect was noticed in that the core of the arc~ 

about 3/32• in diameter for currents less than 200 ma, widened to about 

twice this diameter at 2 amps. In order to steady the operation of the 

arc~ a filament cathode is now used in the generator ion source (Fig. 2). 

The magnetic field near the filament is relatively small and has a radial 

component which should help to focus the electrons into the arc chamber. 



The operation of this source should more properly be compared with that 

of the capillary arc source, rather than that of the Finkelstein type 

filament source ( .36). As in the present source, the capillary arc source 

requires sufficient gas to establish an arc. The heated filament serves 

the function of making secondary emission easier and perhaps free from 

local hot spots. Since the presence of the magnetic field allows the 

present source to operate at pressures 5 to 10 times lower than those 

ueed in the capillary arc source, more efficient ion extraction is pos-

sible • The power put into the filament is relati vel.y law, much lower 

than would be required to extract an electron current (without gas) of 

the order of magnitude of the arc current. In this respect the source 

differs from the Finkelstein source, in which the filament furnishes 

almost the entire anode current by thermionic emission. 

The present source produces a relatively large beam, but a very 

low proton traction. It will operate with the filament turned off, but 

the output is unsteady and the lifetime is than lilli.ted. An important 

function of the heated cathode seems to be that it keeps itself clean. 

At present the source lifetime is limited by erosion of the exit hole. 

This is not regarded as a serious limitation, since repair is a relatively 

simple operation. 

Operating conditions are as follaws: 

Arc current 

Arc voltage 

Kag field 

Pressure 

Beam 

Mass 1 ratio 

Lifetime 

200 II& 

80 Tolts 

1000 gauss 

10 - 50 p. 

150 )lA 

8% 

1$0 hours 
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Further pursuit of a mass l ion source was suspended at this point 

because the mass 2 and mass 3 components at high intensities were required 

to investigate low energy reactions. The output from the source is pre­

dominantly mass 2 at low pressures and mass 3 at high pressures. Very 

large mass 2 yields (over 100 p) have been obtained• but the max1mum 

analyzed beams that have been obtained are 101 70, and 60 )lA for the masa 

l, 2, and 3 components,respectively. This ion source seems to be fairly 

efficient, requiring about 80 watts in operation. The metal ion source 

inherently gives lower mass l ratios than glass or quarts sources because 

ot the high recombination rate ot neutral hydrogen atoms on metal surfaces. 

For operation at high energies the low monatomic ratio is a serious dis-

advantage. 

A very illlpressive and even more efficient source was Hall's radio 

frequency (450 mcps ) source(34), which produced a large beam with a good 

monatomic ratio. This source was limited in lifetime by contamination 

of the glass surface, and its lack of ruggedness bas made it unsuited to 

operation in the electrostatic generator. 

The low frequency ( 20 a cps ) source of the Tboneman type (37) gives 

a very large ( ~ 95%) monatomic ratio, and the large surface area seems 

to eliminate the problem of wall contamination. The ion production ef-

.ficiency is less than that of the high frequency source. 

3. Spectrometer 

The features of the double focusing magnetic spectrometer have 

been described by Snyder, Rubin, Fowler, and Lauritsen(JS). Judd has 

worked out the focusing properties(39), and c. w. Li bas given detailed 

calculations for the 16" spectrometer used in connection with the present 

experiment ( 40). 
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The large solid angle and nonastigmatic focus make the double 

focusing spectrometer well suited to yield measurements. For relating 

yield to cross section, however, an accurate knowledge of the spectro­

meter constant Rc/..fl. 1 where Rc is the resolution due to the width of 

the collecting slit at the detector, and ..n.. is the solid angle of the in­

atrument, is necessary. A known solid angle was determined by a reamed 

aperture of known diameter, at a known distance from the target. The 

yields of particles scattered fl'OIIl a copper target obtained with two such 

apertures of 0.125" and 0.375" diameter respectivelf, placed 12.7• from 

the target, nre in excellent agreement. The nUDeter was removed for 

this e~riment, and the solid angles in these cases were small enough so 

that no difficulties from obstructions in the vacuum chamber or from dis-

tortions near the edge of the field were expected. With the circular 

aperture removed, the fiUDleter was inserted, and the entrance aperture 

was tn.led to arrr desired size. The value of the solid angle relative to 

tho known value was then determined in each caae from the relative counting 

rate of scattered particles. 

Judd(3S) has derived an expression for the resolution of the 

spectrometer. This depends essentiall1 on geometrical considerations, but 

in practice is complicated by the fringing field of the magnet. Li (40) 

has calculated the resolution of the 16" spectrometer and obtains a value, 

P/ 1::. P = 231 for a 1/4" collecting slit, where tl P is the manentum width 

of the slit for particles with 1l01118ntum near P. A. direct measurement of 

the resolution was made in the course of the present work. The collector 

slit was replaced with two slits of width,.0223" and .0216•, respectively, 

separated by a center to center distance of 0.1994"• With the spectrometer 

field held constant, the generator voltage was varied to scatter protona 

from a thin gold l&Jer on the target surface into first one slit and then 
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the other. The yield as a function of generator voltage is shown in 

Fig. 3. The momentum resolution corresponding to a 0.1994" slit is then 

E/2 ~ E1 where E is the bombarding energy, and tJ. E is the obsened separation 

of the front edges of the two peaks. The separation is about 4 kev at 500 

kev bombarding energy. Measurement of this difference to a few percent 

requires the elimination of effects which would result from spectrometer 

drift and the buildup of a contamination layer on the gold. For this 

reason,the generator voltage was changed back and forth to take only 

enough points on each peak to locate the midpoint of the leading edge. 

In this way, a complete set of readings could be taken several times a 

Jlinute. This was repeated without interruption five or ten times. The 

value for the resolution of the 0.246" slit was fo'Wld by thia method to 

be 235. This is in good agreement with the value obtained by Lie The 

measured value was used throughout in all calculations. 

This same experiment can be used to set an upper li.Jd.t on the 

energy spread of the beam. The half-width of the front edge of one of 

the peaks is found to be about 420 volts. The .022 inch collector slit 

has a resolution of 2630,corresponding to a total energy spread of about 

390 volts. The target spot used was of the order of 1/32" in diameter, 

and the magni.f'ication of the instrument is about o.B. Therefore, the 

total energy spread due to the target spot size is about 440 volts. The 

half-width of the observed spectrum could be obtained fran a fold of the 

rectangular spectrometer window, the circular target width, and perhaps a 

gaussian spread in energy for the beam. The accuracy of the energies 

given above does not warrant a calculation of this effect, but it is easily 

seen that the spread in beam energy cannot be more than a few hundred volts. 

Spectrometer resolutions for different slits can be compared by 

observation of the relative yield of scattered particles. In all 



quantitative measurements to be discussed the resolution used was either 

235 or 1650. 

The scintillation counter used with the spectrometer consisted of 

a 581.9 photomultiplier with a thin ZnS(Ag) phosphor. While this gave a 

very low background on account of the negligible sensitive volume, it was 

found to be less than 100% efficient. The efficiency was found to be 0.9~ 

by comparison of the measured yield of scattered protons with that obtained 

with a thin KI(T 1 ) phosphor, which was as81DIIed to be 100% efficient. Can­

parison w1 th results using a proportional counter to observe the 3 Mev 

D-D protons indicates that the efficiency of the ZnS phosphor may be nearer 

90 - 92% in this case. However a counting efficiency of 94% has been as­

sumed in all results based on measurements with the ZnS phosphor. 

4. Current Integrator (Fig. 4) 

The total number of bombarding particles is obtained by integration 

of the target current. A condenser in the grid circuit of a cathode 

follower is charged to a predetermined voltage at which a Schmitt trigger 

circuit fires a tbyratron,which discharges a condenser through a relay 

collo When the relq is closed, the integrating condenser is discharged, 

and a pulse is sent to two stepping relays connected in aeries. These in 

turn operate relays to stop the counters and energize a solenoid controlled 

beam chopper after n • 22m integrator cycles, where m = 0 or 1 and n = 
1, 2, ••• , 9. Special features of the integrator include an isolating 

cathode fol1011er, which keeps the target potential from changing more 

than 17.5 volts when the integrating condenser is charged to 100 volts. 

A fast relay permits cycling rates up to one per second without dead-

time correction. In calibration, point A is grounded, ~ is set so that 

precision meter (1/2%), K, reads Vmax volts, and the trigger circuit is 

adjusted to fire at this point. This adjustment has been checked frequently 
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and hae been found to vary negligibly with time. To obtain the integrator 

R 
a 

.l .A 
v 

F 
"'../'A .. , 

A 

B++-
{ 

_[ l 
---------+ to 

trigger 
circuit 

E--

I 
Type K c 

constant, battery E, precision resistors, Ra and Rt,, and a Type K 

potentiometer were connected as shown. With point F grounded, the 

battery voltage ie measured. With condenser C shorted, )( is found 

to read Vmin. It, to a good approximation1 the cathode followers are 

linear amplifiers, it can be shown that 

(II-2) 

where Q is the charge flowing into C in an integrator cycle which lasts 

a time, T. We let x = Vmm/E and expand in powers of x to obtain 

Q/T = E(l + !_ ~ + ••• )/(Ra +a) 
2 12 -0 

(II-3) 

In the present case Vmax = 100 volts, Vmin = 17.5 volts, and E r,:3 300 

volts, so that the term in ~ is negligible. 

This calibration of the integrator was checked by an even more 

direct method, using a calibrated galvanometer with the beam itself as a 

source of current. Agreement was within 1%. A check after a two year 

interval also gave agreement within 1%. Values obtained by the first 

method are considered the most accurate and have been used in all calcu­

lations. In all quantitative work, charges per e,ycle of either 10.8 

or 0.338 )l coul were used. 
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S. Target Chambers and Detectors 

In both target chambers a cylindrical negative guard ring defiected 

&W81' electrons accanpanying the beam. The target i tselt was operated at 

a positive potential to prevent secondary electrons from leaving it. 

In the target chamber used with the spectrometer the target was 

almost completely surrounded with a brass cylinder, 2.5'• in diameter and 

1.5" high. This was maintained at lictuid nitrogen temperature in order 

to keep the target from being contudnated by residual vapors in the 

vacuum system. The vacuum measured outside this cold cylinder varied 

between 4 and 7 • 10-6 IIDil of Hg. A proportional counter was mounted at 

~b • 150° to measure the total thick target yield of the D(dp)H3 reaction. 

Each of two counters used for this purpose had a 1/8• window covered with 

a o.oo2n mica foU. The distances from the target were 3-15/32" and 

6 -11/32", respectively. The calculated solid angles should be accurate to 

within 2%. '!'be yields measured with the two counters were in excellent 

agreement. For the angular distribution measurements a 7" diameter 

target chamber wu constructed with windows 1/8• in diameter every 10° 

fran ~b ::: 10° to 170° (Fig. S). The target holder was located at the 

center of this chamber. A proportional counter, fixed in position opposite 

0 the window at 70 • was used as a monitor. Another counter, mounted on an 

arm which rotated around the center of the target chamber, could be moved 

in front of any window from ~b ::: 80° to ~b ::: 170° • The counter windowe 

are of mica, whUe those on the target chamber were of 0.001• aluminum 

sealed with sealstix (Central Scientific COmpany, Chicago, illinois). A 

4" diffusion pump and a liquid nitrogen trap between the pump and the 

target chamber produced an operating pressure of about 1o-6 mm of Hg in the 

target chamber. The windows in the angular distribution chamber were 1/8• 

in diameter and 3-17/32" from the target. The relative window size at 
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each of the ten angles, 80° to 170°, was checked with a ThC' source at 

the target position. The average solid angle is known to 1% and the 

relative solid angles with somewhat better accuracy. Since the windows in 

the proportional counters used were 3/16" in diameter, the windows in the 

chamber itself determined the solid angle. The expected loss of particles 

due to scattering in the windows of the target chamber is shown to be 

negligible ~ consideration of the worst case of single scattering. The 

probability, P, of scattering with an illpact par8JIIIeter leas than p is 

given~ 

(II-4) 

where nt is the number or particles per square centilleter in the thin 

scattering foil. Froa the Rutherford formula, 

<rr-5) 

where z1 e and z
2
e are the charges or the incident and scattering nucleus, 

respectivel7, E is the energy-, and Q is the scattering angle in center 

of mass coordinates. In the worst case, Q is 9.1°1 corresponding to a 

particle which grazes the aperture in the target chamber and is scattered 

awtJ¥ from the center. For 3 Jlev protons passing through the o.CX>l" foil, 

this gives P ~ 10-J. It is obvious that the effect ie negligible, even 

for the 1 Mev protons trom the ol6( dp )ol7 reaction. 

'!'he pulse height integral bias curve obtained with each proportional 

counter indicated an efficienc7 of 100%, within statistical uncertainties 

of the order of 1%. 

The angular alignment of the target chamber with the beam is 

important. The method or measuring the spectrometer angle, ~· has been 

described(41) • For the present work ~ =: 90.3 ! 0.2 degrees. The 
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angular distribution chamber was accurately machined in a dividing head, 

and holes were drilled every 10 degrees from 0° to 180° • The chamber is 

aligned with the beam by means of a 1/8" defining hole for the beam at 

~ = 180° and a quartz window over the hole at~ • 0°. 

The target holder used with both chambers is sho1m in Fig. 5. A 

copper target is soldered to the bottom of a liquid nitrogen trap. 

Enough insulation is provided by the re-entrant construction to permit 

operation for about 15 minutes without a refill of the trap. 

The heavy water storage and transfer apparatus was made entirely 

of metals. A valve, with a differential screw for fine control of the 

vapor flow, could be opened to allow vapor to pass through a copper tube 

to a nozzle about an inch from the target surface. Instead of a packing 

gland, a aylphon was used to make the vacu\lll seal around the valve stem. 

The valve was closed by the contact of two solder surfaces. 
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ill. STOPPING CROSS SECTION OF PROTONS IN D2o (ICE) 

l. Fundamental Equations and Use of the Spectrometer 

The relation of measured yield to cross section must eventually 

come through the fundamental equation defining cross section, 

(Ill•l) 

where N(El,Qc) is the number of particles produced at energy, ~ , center 

of mass angle, Qc" in solid angle, ~.n_c, for Ni particles incident upon 

a target of thiclmess,~ x ,with n d.isintegrable nuclei per cubic centimeter. 

da-/d .Il. is then the differential cross section per unit solid angle at 

angle, Qc' and energy, ~ • 

U a thick target is used, the measured yield is an integral over 

thin targets, and E for charged particles decreases as the beam penetrates 

the target. The yield mq then be expressed as 

(ITI-2) 

where E0 is the mini:aua energr reached by the bombarding particles in the 

target. Differentiating (III-2), we obtain 

(m-3) 

where the value of the integrand at the lower limit has been neglected, 

since we will deal with charged bombarding particles. We now define 

• E.l ::: stopping cross section (III-4) 

where t.1 depends on the target material and the energy and nature of the 



bombarding particle. 

The uae of the spectrometer introduces additional complications, 

because the energy of the reaction product detected is determined by the 

magnetic field of the spectrometer. The 

Maaured 7ield ia from a 

layer of the target in which the 

bombarding particle, slowed to 

energy ~o• produces a particle 

at energy &
20

, which is slowed to 

energy E
2 

before leaving the target. 

The observed yield ia given by 

where ~ 1 
1 

is determined by the conditions on ll E
2

; that ia, 

(ni- S) may now be written 

d ef""' 1 dE2 
N(!l•~•Qc) • d 1"l.c ~.n.c E2 Ni/2Rc i d£ 

1 

- - = E. eff 
1

1 dE2 

n d £1 

From the figure above we DliJ1 determine E...8 rr• 

cos~ 

11 cos 02 
E2 = E20 + dE2 dy 

0 dy 

(III-5) 

(lli-6) 

(III•7) 

(III-8) 

(III-9) 



co~ 
y- 2 

- l co~ 

(III-10) 

(ni-ll) 

€err ~ \ ~ ::
1

1 = < £/£20) [€10 <cmw<~EJ.o> + "20 (co""J_/co~>J 
(Ill-12) 

For observations on the surface of the target, E.
2 

:a E:
20

, and (III-7) 

reduces to the form given by Snyder, et alo (3S). 

(Ill-13) 

where q is in llicrocoulombs if each bombarding particle carries a single 

charge, dff'"'/ d~ is in millibarns per steradian, E2 is in electron volts, 

and E.eff is in units of lo-lS ev cm2. 

2. Absolute Yield Yethod. 

To determine E.~0 over the proton energy range, 200 - 540 kev 1 

protons are scattered from the ol6 in the ice target. The stopping cross 

section is related to the scattering cross section by (ITI-13). Theoreti­

cal evidence will be presented in Part V to show that deviations of 

dtr/dSL from the value given by the Rutherford formula are negligible. As 

an experimental check on this, protons were scattered !rom a quartz target 

tor several bombarding energies. The target arrangement is shown in Fig. 6. 

The obsened spectra are shown in Fig. 7. At each energy~ the spectrum of 
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protons scattered from the oxygen is superimposed on the spectrum of 

protons scattered from the silicon. The fluxmeter current (or voltage) 

is inversely proportional to the moment1Dil of the particles being analylsed. 

In this case the stopping cross section is the same for protons scattered 

from both Si28 and o16, aside from a small correction for the fact that 

E2 is slightly less for o16 because of the larger recoil energy of the 

nucleus. 

The Rutherford cross section is 

(III-14) 

where r 
0 

= 2.82 • 10-lJ em, ;_ and z2 are the charge numbers of incident 

and target nucleus, respectively, •o is the mass of the electron, c = 

3 • 1ol0 =/sec. , Ec is the energy, dOC /dn...c is the scattering cross 

section per unit solid angle, and Q is the angle of scattering, all in c 
center of mass coordinates. With correction for center of mass motion , 

(III-14) may be written in laboratory coordinates as follows: 

dGj{d"-L ~ r 0 
2 '1_ 'lz/ (~~~oc2 ~) 2~ + e2

(1 + :3 coaQ )(l• coaQ) J I 
16 sin4 (Q/2) (ID-15) 

to order a.2, where a. is the ratio of the mass of the incident particle 

to that of the target particle. From (III-13) and (III-15) 118 predict, 

after making a few minor corrections, that 2Nsi/N0 = (l1/8)2 = 3.06, 

where Nsi and N
0 

are the number of counts obtained due to silicon and 

ox;ygen scattering,respectively. Observed ratios are shown in Table III-1. 



TABLE III-1 

Scattering of Protons from Si02 (quartz) 

361 kev 

413 
46S 
Sl6 
S42 

3.12 

2.90 

3.04 

3.07 

3.29 

Average 3.08 

Theoretical3.06 

The deviations of the experimental ratios from the predicted ratio 

are within experimental uncertainties. Henoe,any large deviation of o16 

scattering from the Rutherford law would imply that Si28 deviates in the 

same wa::f• 

A typical apectruaa of protons scattered from the oqgen in n2o, 

obtained with a solid angle of 0.00490! o.oooos steradians, is shown in 

Fig. 8. flvax is obtained by extrapolating the slight rise on the top of 

the step to the energy, E
2

, at the midpoint of the step. Also sh011'Jl in 

Fig. 8 by the open points are results obtained w1 th an ice surface which 

had become contaminated with a layer of carbon. Thus, the condition of 

the ice layer, which was too thin to be seen, could be monitored continuous-

ly. With n.L, Rc' and q obtained by the methods explained in Part II-3 

and II-4, Eeff is determined from (III-13). 

Since E.eff depends on both ~ and E2, the assWI8d energy 

dependence of f. will affect the calculated value of E. from E.eff• Since 

E2 = o.88 ~ in this case, a linear Tariation of E., such that E. (E) = A+BE, 

where A and B are constants, is a good approximation. In this case it 

follows easily that for cos~ = co~ 
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(III-16) 

where 

(III-17) 

Thus at bombarding energies of 578, 516, 413, 310, and 258 kev, E.. (E) has 

been determined for E = 542, 484, 387, 291, and 242 kev, respectively. 

These values are plotted in Fig. 9 aa solid circles. 

3. Relative Stopping Cross Section 

The method of measuring £ described above was not satisfactory 

for protons of energy less than 200 kev • Some of the low energy protons 

capture an electron in the target and emerge as neutral H atoma which 

caD not be defiected in the magnetic field. The amount of this charge 

neutralisation is difficult to measure accurately. A further difficulty 

at very low energies is the reduced efficiency of the scintillation 

counter. 

The following method for •asuring relative values of E. depends 

only on the measurement of energy ratios and is independent of counter 

efficiency and neutralisation of incident or scattered particles. The 

energy, E20')of protons scattered from the surface of a clean Cu target is 

detel'llined accurately from the midpoint of the step in the spectrua. 

When a thin layer of ice is then formed on the Cu surface, this step ia 

displaced to a lower energy, and to return the step to ita original 

position the bombarding energy aust be increased by an amount,~ Ea • It 

now /;:. Ea is measured for two proton energies, using the same ice layer, 

then ~ E!/ ~ E8 = £ ~f~ E. eft' and the relative values of E.eff are 

thereby determined. Deuterons can be used as the incident particle, and 

intercompariaon between deuterons and protons can be made. 
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Calculation of the effective energies at which the ratio of the 

stopping cross section has been detel'lllined is somnhat complicated. In 

the accompanying figure, particles of bombarding energyf Ea,pass through 

the ice layer of thickness, 

t, reaching tbe surface of 

the copper with energy, E:t. 
They are scattered with 

energr, E
2

, and emerge with 

energy, E20o Wl th no ice l&Jer 

Ea = ~ = E80• If e !: I~ [ , and 

A Ea is the change in generator 

voltage necessary to compensate for 

the energy loss in the ice, then to a good approximation 

t. Ea = Ea- Eao = t~(i1J/co~ + e(i2)/coaG2(~diJ.)J:: 'i e(i) 

(lli-18) 

where 

and t and E are some effective thickness and energr, respectively. It 

the stopping cross section is assumed to vary linearly with energy over 

the range of interest, such that 

e(E) = e(i) + m(E - E) (III-19) 

where m is a constant, then (ni-18) becomes 

cos~ dEl + 1 : t e (E), provided 
[

cosQ2 dE2 J -1 J - (III-20) 



t= 
and 

but 
E1= Ea-t e~)/2 cos9 ~Ea-t A E

8
/2i co~ 

therefore ( ) 

cos~ _Ea --~--c,_o_s_~~-c_o_s...:OJ:=--dE-=1-~ 
1 + cosQ2 cosQ2 dE2 J 

E 1+- • -.,.- 1+ a cos~ ~ cos~ oE2 
1+ -

cos~ oE1 

1 
cos~ dE2 

+ -
cos~~ 

(III-21) 

0 0 
For protons scattered from copper at Q = 90 • .3 ., and ~ = 45 , this gi'Yes 

i = .964 E - .469 ~ E, while for deuterons a a (III-22) 

E = • 969 E - .477 ll E a a 

Because t/i depends on the mass of the scattered particle 

through the factor ~/dEp comparison of E: 's by the use of both 

deuterons and protons requires introduction of a factor tpltd' so that 

(III-23) 

Rapid comparison over a very wide range of proton energy was made 

possible by accelerating a mixture of D and H ions in the Yan de Graafr 

+ generator. Using the H beam component, measurements were made of 6 E1 

at the energy, E1, of the generator. Then, simply by changing the 

electrostatic analyzer to pass the no+ and HHD+ ions, measurements were 

made of l:;). ~ for the deuterons of energy, E1/2, which have the same 

momentum as protons of energy,~ • The measured ~ E1 is the same as that 

for protons of energy, El/4, since it has been shown theoretically and 

confirmed experimentally that the stopping cross sections for protons and 

deuterons or the same velocity are equal(42). Time consuming changes of 



-32-

the generator voltage were thereby avoided. 

This method requires that the thickness of the ice layer 1 usually 

about 3 kev 1 remain constant while the displacement of the step is locat­

ed for two different energies. The measurements must be made as rapidly 

as possible, since the cold target surface will collect residual water 

and oil vapors present in the vacuum system. ~ E was measured first 
a 

at one energy and then at the other, and the two measurements were 

repeated alternately four or five times in succession to establish their 

ratio. AnJ condensation of foreign material on the target could be 

detected by a change in the value of~ Ea• 

The relative measurements of E.eff were corrected to give the 

value of E at a particular energy in the manner described above. This 

function, E. (E) 1 was then normalized to fit the absolute values above 

200 kev. The experillental points are shown in Fig. 9 by the open circles. 

4. Discussion of Errors and Uncertainties 

The 4% probable error of the measure•nts arises from the 

uncertainty in the experimental quanti ties listed in Table III-2 • 

At pressures between 10-6 and lo-7 - Hg the neutral component of 

the incoming beam is negligible for protons above 200 kev. A correction 

for the nall. neutral canponent in the scattered beam has been made using 

Hall•a(43) measurements of the electron capture to loss ratio in several 

metals. This correction to 6 is only 3% at 240 kev, the lowest energy 

at which absolute measurements were made. 
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TABLE nr-2 

Sources of the Experimental Error, and Percentage Error 
Introduced in Final Value ot E.n 0 2 

Beam integrator 

Neutralization of incident and 
scattered protons 

Spectrometer resolution 

Spectrometer solid angle 

Scattering cross section 

Counter efficiency 

Probable error in E. , 

2% 
<1% 

The most likely source of error in the measurements of the relative 

values of 6 is non-uniformity of the target thickness, such tbat the 

cbange from one beam component or energy to another caused a different 

thickness of target to be bombarded. '!'he beam on the target was restricted 

to a spot approximately 1/16• in diuaeter, and variation in the thickness 

over so small an area does not seem likely. Some uncertainty is introduced 

in the relative measurements at very 1011' energies by energy straggling in 

the target. The step in the scattered proton spectrum for the clean Cu 

target has a very mall width, 8 E, determined by the resolution of the 

spectrometer, E/S I~ 800, and the position of the step, taken to be the 

energy corresponding to half the max:1awn yield, Naav is sharply defined. 

When the step is displaced by a layer of ice, straggling in the ice rounds 

off the step and gives it a width amounting to 25% of the displacement in 

the worst cases. If the straggling is truly gaussian, the energy at half 

maximum will still determine the displaced position of the step, but it ia 

not so sharply defined as before. Measurements using the Nmax/3 energy 

for the position of the step gave the same relative values for E. • Both 

the uncertainty due to straggling and possible target non-uniformities 
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would be expected to introduce random derlatione rather than a systematic 

error and may account for some of the spread in the experimental points 

at low energies. 

The assumption that the target material was actually D20, instead of 

eome other CCDpound of 0 and D, wu not checked, but the reproducibility 

ot the experimental results at high energy indicates that the composition 

was constant. The assUIIption that dE/d.% is the same for protons and 

deuterons of the same Teloci ty has not been tested experimentally to better 

than 5%(42), but close equality seems reasonable on theoretical grounds. 

Values ot the stopping cross section, taken from the smooth curve 

drawn through the experimental points in Fig. 91 are listed in Table ID-3• 

Previous measurements of E. a20 are shown by the dashed curve in Fig. 9, 

taken from ret. (~). The agreement is aatis1'ac:tor;y below 100 kev, but 

for higher proton energy the present values lie far above the dashed curve, 

based in this region on Crenshaw's measurements of dE/dx in water vapor. 

The dot-dashed curYe in Fig. 9 shows the theoretical TBlue for 

2 c a + ~O computed by Hirschfelder and JLagee(4S) trom Bethe's semi­

empirical theory of stopping power; the empirical constants were evaluated 

from the range data for natural alpha particles. The theoretical expres­

sion 1rl.ll not apply near the peak of the stopping cross section curve, and 

the theoretical curve has not been extended below 300 kev. In the region 

300 - 550 kev, the agreement between the theoretical and experimental 

values is within experimental error. Below 300 kev there is no satis­

factory theory. The more detailed treatment of Bathe's theory by Walske(46) 

will probably hold at somewhat lower energies, but unfortunately it does 

not apply simply to light atoms such as oxygen. 

One is tempted to conclude from the good agreement between the 

experimental values of E.D20 (ice) and the theoretical values of 2 c a + co 



'!'ABLE III-3 

The Molecular Stopping Crose Section, I j ~I 1 for Protons in 

D20 Ice 

~(keT) E.(lo-15 sv-t:1!12) 

18 15.6 
20 17.4 
30 20.4 
40 22.6 
so 23.5 
60 24.0 
70 24.1 
80 24.0 

100 23.7 
125 23.0 
150 22.2 
200 20.1 
300 16.0 
400 13oJ 
500 n.6 
540 ll.2 

that Bragg's Law for the addition of stopping cross sections holds very 

well tor water. However, there have been no accurate expertmental checks 

on these theoretical values of E..~ and €
02 

• In addition, there is some 

experimental evidence<42),(47),(48) that € + E.. /2, € (vapor), 
H2 o2 H2o 

and E..H 0 (liquid) differ among themselves by more than 10%. There have 
2 

been no previous measurements of E. H
2
0 (ice) • 
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IV. D-D CROSS SECTION AND ANGULAR DISTRIBUTION 

1. Spectrometer Observations 

Fig. 10 ahou a typical spectrum of the protons and tritons from 

the D(dp)H3 reaction observed at 90.3°. Momentum separation of the protons 

and tritons occurs because of the motion of the center of mass relative 

to the laboratory coordinates. Because of the large variation with 

laboratory angle of the energy of particles from the D-D reaction, the 

spectrometer aperture waa closed to reduce the solid angle to about 0.00127 

steradiana. This corresponds to a spread in laboratory angle of about l 0 
• 

Frcl!l (ID-13) the cross section is obtained from the value of N)(ax 

obtained by extrapolation of the trailing ed~ of the spectrum to the mid-

point of the high energy edge and the values ot E.n
20

, determined by the 

methods described in Part III. 

Cross section measurements w1 th the spectrometer were not extended 

to energies below 200 kev, because the energy dependence of the cross 

section makes extrapolation of the trailing edge of the spectrum subject 

to large uncertainties. 

2. 150° Thick Target Yield 

The total thick target proton yield at ~ = 150° was obtained with 
with 

both target chambers. Two proportional counters use~ the first ( spectro-

meter) target chamber gave results in excellent agreement. Still another 

counter was used with the angular distribution chamber. The 150° yield 

as a tunction of energy is plotted in Fig. ll. 

3. Angular Distribution 

The angular distribution as a function of energy was obtained by 

both thin and thick target techniques. In the former method, feasible 

for bombarding energies above 200 kev, a thin layer of ice was deposited 
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on the target, set at about 45° to the incident beam. The ratio of the 

counting rate at an angle ,~, measured by the movable counter, to the 

rate at 70°, measured by the monitor counter, was obtained for "', = 80° 

to ~ = 170° in 10° intervals. From the observed ratios and the kinetics 

of the reaction the angular distribution in the center of mass 8,1Stem was 

obtained. A smooth curve was drawn through the experimental points from 

0 
Q

0 
= 90° to Qc = 180 • This is sufficient to obtain the total distribution 

because of the necessary eymmetry of the reaction in center of mass co-

ordinates • The angular distribution was then expanded in Legendre polJ­

nomials. The effective energy at llhich the thin target yields were 

obtained was calculated in each case from the absolute thin target yield 

0 0 
at 1$0 and the slope of the total thick target yield at 150 • i.e., 

n{E, 1$0°) is the thin target yield, 

E1, is the bombarding energy, 

! is the energy at which the angular distribution has been 

measured. 

{IV-1) 

The thickness of the targets used varied from 20 - SO kev over 

the range, l93 - S39 kev. It was found that a given target varied less 

than 10% in thickness whUe measurements were being taken a.t all angles. 

The thin target angular yield as a function of energy and angle, 

normalized to an arbitrary fixed target thickness, is plotted in Fig. 12. 

Because of the large energy dependence of the reaction cross section 

at low energies, it was not feasible to U88 thin ice targets at energiea 

below about 200 kev. Therefore,the total thick target yield also was 

obtained for each angle over the energy range,34.3 - 516 kev. The 

observed yields are presented in Table IV-1. Angular distributions were 
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obtai.ned from this data by di.tferentiating, rl th respect to energy, the 

total yield curve at each angle to obtain the equivalent thin target 

yield. Experimental angular distributions are plotted in Fig. 13. The 

thin target points are the solid circles, while values represented by the 

open circles were obtained from thick target data. 

4. Total Cross Section 

Knowing the cross section at some angle and the angular 

distribution, we may obtain the total cross section. Fig. 14 shows the 

results obtained in several ways. One method uses spectrometer data at 

90.3° and the angular distribution obtained by thin target methods. A 

second method uses the excitation function at ~ = 1$0° and the thin 

target angular distribution, while a third plot is obtained from the 

integral over all anglee of the differential cross section obtained by 

differentiating the thicktarget yield at each angle. 



~ 
516 
465 
413 
.362 
310 
258 
206.5 
181 
155 
129 
120.6 
103.2 
86.0 
77.5 
68.8 
51.5 
34.3 
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TABLE IV-1 

Total Thick Target Yield D(dp)~ + o16(dp)ol7 
Counts per microcoulomb per steradian. 

800 900 100° 110° 120° 

6.63 6.56 6.64 7.10 7.62 • lcP 

s.s6 5.28 5.40 5.60 6.05 • loS 
4.11 4.01 4.01 4.26 4.53 • loS 
3.28 3.17 3.14 3.33 3.56 • loS 

2.37 2.29 2.33 2.46 2.61 • loS 

1.708 1.580 1.615 1.688 1.828. lcP 

1.148 1.103 loll) 1.166 1.207. loS 

.690 .sn .868 .897 .937 •loS 
6.20 6.04 6.10 6.23 6.52 • lrP 

4.31 4.21 4.21 4.32 4.47 • lrP 

3.94 3.83 3.79 3.89 4.07 • 104 

2.72 2.52 2.54 2.55 2.69 • 104 
1.695 1.618 1.630 lo635 lo700 • 104 
1o263 1.247 1.263 1.258 1.332. lo4 

.9$4 .913 .910 .937 .945. 104 

4.01 3o73 3.71 3.85 3.84 • lo3 

.955 .949 .915 .944 .891• lo3 
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TABLE IV-1 (Cont.) 
Total Thick Target Yield D(dp)H3 + Q16(dp)ol7 

Counts per microcoulomb per steradian 

~~b 
E(kev~ 

1)00 140° 150° 160° 170° 

516 8.45 9.12 10.15 u.15 11.39 • loS 

465 6.76 7.48 8.15 8.92 9.08 • loS 

413 5.01 5.55 6.04 6.52 6.67 • loS 

362 3.88 4.16 4.47 4.92 4.98 • loS 

310 2.84 3.10 3.31 3.60 3.n • loS 

258 1.99 2.11 2.27 2.43 2.54 • loS 
206.5 1.30$ 1.367 1.462 1.561 1.591 • lcP 
181 .997 1.073 1.137 1.190 1.220 • 1rP 

155 7.00 7.38 7.77 8.25 8.36 • 1o4 

129 4.82 4.98 5.21 5.59 5.68 • 1o4 

120.6 4.35 4.37 4.72 4.96 4.91 • 1~ 
103.2 2.90 2.95 3.10 3.31 3.33 • 1o4 

86.0 1.818 1.845 1.908 2.01 2.02 • 1o4 

71.5 1.)80 1.415 1.472 1.572 1.560 • 1o4 

68.8 1.013 1.056 1.069 1ell9 1.103 • 1o4 

51.5 4.00 4.05 4.16 4.38 4.5o • lo3 

34.3 .945 .941 1.005 1.065 1.083 • lo3 
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o16(dp)ol7 Cross Section 

A difference at high energy between spectrometer results and 

the total yield results was attributed to the ol6(dp)ol7 reaction. 

Correction for this was made by the use of the spectrometer to measure 

the oJ.6(dp)ol7 cross section at 90° • Two proton groups result from re­

actions with Q-values of lo95 and 1.08 Mev, respectively(49). With a 

proportional counter aa a detector, to eliminate the He3's from the D-D 

reaction, the spectra shown in Fig. 15 were obtained for the two groups. 

Under the assuoption that there ia no nearby resonance the cross section 

for each group is expected to follow very closely the asymptotic form 

predicted !or a strong coulomb barrier, i.e., 

(IV-2) 

where ~ is the total cross section at energy, E, Z1e and z
2

e are the 

respective charges of the colliding nuclei, h = 1.055 • lo-27 erg eec., 

and vr is the initial relative velocity of the colliding nuclei. In this 

case_, the effect of the barrier on the reaction products is probably not 

negligible, but the energy dependence would not be as large as that of 

the initial process. 

Because of the steepness of the trailing edge of the observed 

spectra, it was felt that better values for the cross sections might be 

obtained from a !it to a Gam<rtr plot, than from the extrapolation method 

used for the D(dp)H3 reaction. This was done for spectra obtained at a 

bombarding energy of 516 kev (Fig. 16). The yield of the reaction is 

negligible below 400 kev • The cross sections obtained from the plots 

shown in Fig. 16 are: 

Long Range Group 

olo -1 -1/2 
4rr(d<T"/drl.)9QO = o.S • l Ekev exp (- 355 Eqv) 

millibarns (IV-J) 



Short Range Group 

Correction of the D(dp); cross section (Fig. 14) was made on the 

assumption that,for the ol6(dp)o17 reaction• 

(IV-4) 

~otal = 41\(1~) (IV-$} 
900 

The yields listed in Table IV-1 are not corrected for the ol6(dp)ol7 

yield. 

6. Errors and Uncertainties in the D(dp)H3 Cross Section 

lleaaurement 

(a) Apparatus Calibration 

The determination of the energy scale6 integrator and spectrometer 

constants, counter efficiencies, and solid angles are discussed in Part II. 

An additional check on the spectrometer constant R/ n.. can be 

obtained from a comparison of the integrated proton spectrum obtained 

with the spectrometer, with the thick target yield obtained at 90° with 

the angular distribution chamber. In this case 

N(E, 900) = Rc f(I)di 
Clpn.. p <ls !2. s I 

0 

(IV-6) 

when N(E, 90°) is the total yield obtained by the thick target method 

and N(I) is the observed spectrometer spectrum as a function of nux-

meter current, taken with a proportional counter detector. The . 

subscripts, p and a, refer to the thick target yield and to the spectro­

meter method, respectively. The factor, 1/I, in the integrand occurs 

because the spectrometer window is proportional to the momentum. The 
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total yield obtained wi tn the angular distribution chamber must be 

corrected for the oJ.6(ctp)ol7 yield. The results are shown in Table IV-2. 

TABLE IV-2 
Proton Yield at ~ = 90° 

ED(kev) Thick Target 
H/ca n 

Jo.ectrometer 
(R qD-) (n(I)/I)di 

D-D +o-n o-n D-D 

206 1.09 • loS - 1.09 • lo5 1.06 • lfP 

310 2.33 - 2.33 2.29 

413 4.01 .02 • lcP 3.99 3.97 

516 6.53 .12 6.41 6.38 

The agreement in each case is well within experimental uncertainties. 

(b) Spectrum An!lzsis 

The procedure of extrapolating the trailing edge of the observed 

spectrometer spectrua to obtain Hmx has been justified in the following 

way. From the experimental Talues for the r.action and stopping cross 

sections and the angular distribution, the expected spectrum for the 

tritons and protons was calculated (Fig. 17). The trailing edge in each 

cue is seen to be quite straight in the vicinity of ~· The experi­

•ntal agreement in the case of the proton spectrum indicates that the 

efficiency of the scintillation co\Dlter may be less than 94%, as was 

suggested in Part II. The experimental triton spectrum has a long taU 

not shown in Fig. 17. This is presumably the result of straggling and 

multiple scattering, more serious effects in the case of the slower and 

less energetic tritons which have lost a large amount of energy in 

escaping from the target. 
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(c) Target Contamination 

The heavy water used contained 99.8% deuterium. Reaction yields 

were reproducible over a period of three months, after the reservoir was 

refilled. Contamination of the target occurred with poor vacuum in the 

target chamber. This was attributed to the condensation of ordinary 

water on the target. Under good operating conditions such contamination 

was negligible. 

Target contamination by the beam would tend ~o increase the relative 

concentration of deuterium. If we assume that the incident charge is 

deposited over a volume equal in cross section to the sise of the beam 

spot, and in depth to the range of the bombarding particles, we find that 

for 50 kev deuterons a contamination of the order of 1% would exist after 

1000 microcoulombs of bombardment. However, if the contamination tends 

to collect on the surface of the target, a serious error in measured 

yield might be expected. By a frequent renewal of the target surface 

this effect can be avoided. No time depend.ent change of yield which 

could be attributed to this cause was ever observed. 

(d) Beam Contamination 

A comparison of the reaction yields from the monatomic, diatomic, 

and triatomic ions indicated that the beam contamination was low. The 

DD+ and the DOD+ yields were regularly somewhat higher than the n+ 

yield, but this effect never exceeded 3% and seemed to be independent of 

energy. Contamination of the n• beam by the HH+ ions would not be 

expected to produce even this much effect i! it resulted from the 1/2% 

impurity in the supply to the ion source. Presumably the somewhat 

larger contamination comes from ths production of H2 gas from oil 

vapor and gaskets. In another check on beam contamination the magnitude 



-45-

cf the H+ beam was found to be of the order of 1% of the D+ beam under 

the same generator operating conditions. 

(e) Second&ry Emission 

The negative guard ring in front of the target and the positive 

target potential reduced the danger of an electron current to or from the 

target. Moreover, failure to take these precautions produced at most a 

S% change in yield for a bombarding energy of 34.3 kev. Similarly, a 

magnet brought near the incident beam to remove electrons had no 

observable effect on the total yield. 

(f) Beam Neutralisation 

The beam neutralization at 51.5 kev was measured b.Y the use of a 

deflecting magnet . in the 60 em length between the analyzer and the 

target chamber. The magnet was located about 5 em from the target 

chamber. With the beam coming through the analyzer, the ratio of the 

D(dp)H3 yield with the beam off and on the target gives directly the 

percentage of neutralization. With the normal operating pressure of 

1.0 • 10-6 mm of Hg in the target chamber and 4 • 10-6 11111 of Hg between 

the anal;yzer and target chamber, the neutralisation measured was~ o. 7%. 

When air was admitted to the analyzer, raising the ion gauge pressures 

to S • 10-6 Dill of Hg and 2.5 • 1o-S Dl!l of Hg, respectivel;y, the measured 

neutralization was about 3%. Measurement of the neutralization at lower 

energies was not feasible because of the relatively low yield. However, 

both Bartels(SO) and Keene(5l) have found that the electron capture cross 

section of protons in hydrogen increases b;y less than a factor of two 

when the bombarding energy decreases from 25 to 17.5 kev. These energies 

correspond to SO and 35 kev, respectively, for bombarding deuterons. 
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Kanner<52) finds that the capture cross section in air is of the same 

order of magnitude as in hydrogen. On the basis of these results, no 

correction for beam neutralization has been made. 

(g) Beam Intensity 

A large beam power would tend to evaporate the ice by heating 

the target. The maximum allowable power may be estimated from the 

thermal properties of the target. We assume that the beam power, P, 

is released at the surface of a semi-infinite material of conductivity, 

k, with temperature, T 00 , a long way from the surface. Then if T is 

the temperature inside the conductor we have 

(IV-7) 

except at the source of power, 

and 

(IV-8) 

llhere S is an,y surface enclosing the power source. For a point source 

at the origin, a solution of (IV-7) and (IV-8) which gives T = T 00 at 

r = oo, where r is the radial coordinate, and ( ~ T) = 0 along the n 

surface of the conductor, is: 

T = T 00 + P/2 TI>kr (IV-9) 

If P is spread out uniformly over a diak of radius, R, the temperature 

at the origin, the hottest spot, may be obtained by a simple integration 

and ia 

T0 = T 00 + P/"WkR (IV-10) 

In the present case R = 1/16". For copper, k = 1 cal/ em sec.­

degree, and the temperature rise, T0 - T 00 ~ (1/2) degree/watt. For ice, 
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using the value for k at room temperature, we find that T0 - T a>~ 100 

degrees/watt. The actual case is somewhere in between, depending some-

what on the thickness of the ice layer, but it can be seen that the 

maximum beam power is restricted. The highest power used in the present 

work was about 2 watts. As a check against neutralization or ionization 

in the immediate vicinity of the target, the beam current on a 1/8• 

diameter target spot was varied from 0.3 to 1.8 microamperes, for a 

bombarding energy of 51.5 kev. There was no observable difference in 

yield. 

(h) Statistical Errore 

For the thin target angular distribution data, the statistical 

uncertainty of the yield at each angle is less than 4% at every energy. 

Total thick target yields at each angle vary fran about 3% to less than 

1% in statistical uncertainty from low to high energies. 

(i) Differentiation Errore 

At low energies the cross section is expected to have the form, 

1 -1/2 
a-'( E) ac r" exp{- 44.4 ~ev ) 

and the stopping cross section 

I! ~I QC El/2 (53) 
ndx 

Hence the total yield N(E
0

) is given by 

II(Eo) crJ:' z-312 exp(- W..~ z-112) oc exp(- W..4 E:l/
2

) 
0 

(IV-ll) 

(IV-12) 

(IV-13) 

For each angle N(E,~) exp( 44.4 E-1/2) !: F(E,~) was plotted as a function 

of energy • For E ~ 200 kev F(E,Q) was found to be an almost linear 

function of energy,and differentiation was possible with some accuracy. 
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dN(E,Q)/dE: exp(-44.4 E-l/2)[dF(E,9)/dE + 22.2 F(E,Q)E-3/2] (IV-14) 

lloreover, for low energies, the term in F is much larger than the term 

in dF/dE. Therefore, it is felt that differentiation does not produce 

any large error at low energies. 

In the energy range, 100 - $00 kev, it was found that the total 

yield varied approximately as E2• A plot of N(E,Q) vs E2 for each Q 

yielded more consistent results for dN/dE than semllog plots of N(E1Q) 

vs E and of N(E,9) va E-l/
2

• At energies above 150 kev, differentiation 

introduces some uncertainty into the measured cross section and thick 

target angular distribution results. An estimate of the uncertainties 

may be obtained from a · comparison of the angular distribution and cross 

section obtained by the use of both thin and thick target techniques. 

Values of 01 and the angular distribution coefficients are listed in 

Table IV-J for some energies. The Talues in each case are taken from a 

smooth curve drawn through the eJq)Srimental points. Deviation from 

sero of the experimental values for the P6 (cosQ) term in the angular 

distribution is considered to be an indication of the experimental 

lmcertainties of the method. Furthermore, the amount of P4 ( cosQ) 

present at low energies is subject to large uncertainties. Efforts to 

place limits on this indicate that c4 (Fig. 13) is of order .02 for 

energies below 100 kev, but this value is uncertain by almost 100%. 

(j) Stopping Cross Section 

Since the experiment measures the ratio of the reaction cross 

section to the stopping cross section, E , the uncertainties in the 

measurements of 6 , described in Part ni, appear in "T (DD) as well. 

!t is significant that certain possible systematic errors cancel out 
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TABLE IV-3 

D(dp}H3 Total Cross Section and Angular Distribution 

do--'/dfi= (or/4'rr} [1 + 0~2(cosQ) + 04P4(cosQ) + 06P6(co~) + •••] 

Ex:ev "Tmb 02 04 

JS 1.94 .1SS .o2 

so 4.81 .19S .02 

70 9.49 .247 .02 
100 1S.8 o310 .023 
lSO 23.8 .400 o031 

200 30.6 .470 .04S 

2.$0 37.0 .S23 .062 

300 43.1 .S66 .o8o 

3SO 48.1 .601 .103 

400 S2.3 .632 .126 

4SO ss.a .660 olSO 

soo S9.o .684 .17S 

sso 62.0 o704 .203 

when both experiments are considered together. For example, an error 

in the integrator constant would produce & corresponding error in the 

calculated value of E. , but not in the D(dp)H3 cross section. An 

error in the spectrometer constant, Rcf.l2. • would directly affect € , 

but not the reaction cross section obtained with the spectrometer. 

In fact , the spectrometer has effectively measured the ratio of the 

D(dp)H3 cross section to the al6(pp)ol6 scattering cross section. Here 

we have assumed that ~o/ 6air is the s~ for protons of SOO kev 

and 3 Xev. Values for tair were obtained from the literatureCS4). 

But,since E.eff depends about halt as much on £ 2 for the emitted 

protons as on E1 for the incident deuterons, the uncertainties in Ea1r 



-50-

should have only a small effect on the results. The stopping cross 

section for the tritons is obtained directly from the results of Part III . 

(k) Agreement with Previous Results 

The yield at low energies is about 25% lower than that obtained 

by Bretscher, et ale (23), using tbe same technique. No explanation 

for thb can be offered. Agreement with Sanders, et al. ( 27} in the 

low energy region is very good, and the agreement nth McNeill and 

Keyser<26} in the middle energy range is good. The techniques used by 

these workers are very different from those of the present work, and the 

agreement is encouraging. Regarding the angular distribution, the 

agreement with the results of Bretscher, et al., and of Sanders, et 

al01 is good, althou~ the finite amount of P4 (cosQ) which is found 

in the present work l:l&kes exact comparison difficult. 

(1) Probable Error 

Assignment of a probable error to the experimental values is 

difficult because of the large number of uncertain factors which enter 

the experiaent. Kost of these are involved in the value of €D2o and 

wre discussed in Part III, where a probable error of 4% was &Bsigned 

to ED20. If the D(dp)H3 cross section were based on the thick target 

yield alone, additional errors due to solid angle, counter efficiency, 

target and beam contamination, energy calibration, neutralization and 

statistics would raise the probable error to slightly over 5%. However, 

as was suggested before, the tendency of systematic errors to cancel 

from the spectrometer lleuurements would tend to reduce the error, 

except for the difficulties involved in accurate extrapolation of the 

spectrum. The good agreement of the spectrometer results, using both 
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protons and tritons, with the results from the excitation function is 

significant. 

In consideration of the above uncertainties, a probable error ot 

5% has been assigned to the values of the total cross section given in 

Table IV-3. These are taken from the solid curve of Fig. 14. It is 

felt that cross section values obtained from the total excitation function 

are more accurate than those obtained with the spectrometer, especially 

at energies below 300 kev • 

1. D(dn)He3 Reaction 

Efforts were made to measure the D(dn)He3 cross section by 

observations on the HeJ+ and He3++ particles, using the spectrometer. 

For the following reasons there is much doubt concerning the results 

obtained: 

(a) The stopping cross section of a.-particles in n2o (ice) 

is not known, and there is no way of measuring it in 

the present experiment. 

(b) The angular distribution is not known accurately. 

(c) The large stopping cross section, e2, for the He3•s 

results in a very low yield. 

(d) The He3' s have less energy than the tritons and are masked 

completely by the tail of the triton spectrum it a thick 

target is used. 

(e) Scattered deuterons mask the He3++ yield at bombarding 

energies above 350 kev. 

(f) o16(dp)ol7 protons interfere with measurement of the He)+ 

yield at energies above 400 kev. 

(g) The neutral Hel•s cannot be measured. 
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To obtain values for the D(dn)HeJ cross section from observed 

yields the following assumptions were made: 

(a) HeJ and He4 particles of the same velocity have the same 

stopping cross sections. 
section 

(b) The stopping cross f curve for a.' a in n2o has the same 

shape as the stopping cross section curve for a.'s in air. 

The latter is obtained from ret. 54. 

(c) The angular distribution is the same for the D(dn)HeJ 

as for the D(dp)HJ reaction. 

(d) The number of neutral He3ta can be neglected. 

In obtaining the yield of He3t s at each energy, a relatively 

thin layer of ice was used, and observations were taken above and below 

ttle step in the momentum spectnun to check the background due to low 

energy tritons. The background 1n all cases was less than 10% of Nmax• 

E- 2 was obtained by normalizing the air curve to the Di' curve at 

500 kev w1 th the value of €~0 obtained from Part III and of € air 

for protons from ref. 54. 

The values obtained for the croes section (Table IV-4) differ 

greatly from those obtained for the D(dp)H3 cross section. 

En kev 

<J(D(dp)H3) 7'nb 

cr---(D( dn)He3) -rn h 

150 

23.8 

22.6 

TABLE IV-4 

200 250 

30.6 37.0 

39.6 37.5 

300 

4.3.1 

76.7 

350 

48.0 

96.5 

Although the difference is well outside statistical uncertainties, 

the yield ratio He3++/He3+ was observed to decrease from about 3.5 to 2.5 

as E2 increased from 0.728 to 0.779 Kev. The opposite effect is expected 

and has been observed to occur for a.-particles in mica(55),(56),(57). 
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In addition, failure of/yields to repeat within statistical limits 

indicates that background from deuteron scattering or the o16(dp}ol7 

reaction may not have been negligible. This would account for the smaller 

difference at low energies. Results presented in ref. 26 for the energy 

range, 120 - 250 kev, indicate that the branching ratio is almost exactly 

1 to 1. 

An error in E
2 

in the present work would introduce a nearly 

constant factor into the calculated cross section. For example, it we 

normali~e E.2 by assuming that at each energy Eair(p)/ E air(ct} :: €n
2
dP1 

E:n20(ct}, then the values for a-[D(dn)HeJ] given in Table IV-4 would 

be lowered by about 30%. It is apparent that no strong conclusions 

about the D(dn)HeJ cross section can be drawn on the basis of the present 

work. 
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V. THEORETICAL CONSIDERATIONS 

1. Ql6(pp)ol6 Cross Section 

Deviations of the scattering cross section o16(pp)o16 from the 

Rutherford formula are to be expected for two reasons: 

(a) Atomic Electron Cloud 

Since the range of the potential due to the atomic electron cloud 

is long compared with the wave-length of the scattered proton, we can 

expect that a calculation of the perturbation of the classical trajectory 

will lead to a good estimate of the deviation of the cross section from 

the Rutherford law, brought about by the presence of the atomic electron 

cloud. 

The angle bei~en asymptotes of the classical motion of the 

scattered particle is given by 

¢/2 ~ du{ 2111'"2 [E- V(u)J - u2} -l/
2 

(V-1) 

where u = the reciprocal of the radial coordinate, ll = the reduced mass 

of the system, E = the energy in the center of mass system, P = the 

angular momentum, V( u) = the potential energy of the system. u = "max 

is obtained by setting the radical 1n the integrand equal to zero. For 

the potential,V(u), one mignt use the Fermi-Thomas model, but calculations 

would be difficult. Since the shape of the perturbing potential is 

probably not important, the following simple form will be used: 

V(u) = Z1Z2 e2u- 6 for u > 1/a 

V(u) = 0 for u ~ 1/a 

where A = the absolute value of the potential at the nucleus due to the 

electron cloud, a = z1 z2e2/ ~ , z1 and z2 are the atomic numbers of 
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incident and target particle, respectively, and e is the electronic 

charge. Foldy{SB) gives~= 34(z2)7/5 ev, from values based on the 

Hartree model of the atom. For scattered protons this gives a= 0.794 a
0

/ 

(z2)2/5, where a0 = 0.529 • 1o-8 em. This is fairly consistent with the 

value for an effective radius of the Fermi~homas atom, a = 0.885 aof 

(z2)1/3. Equation {V-1) may now be integrated directly. Introducing 

the impact parameter, p = P [ 2ME J -l/2, the classical distance of 

closest approach, b = z1z2e2/E, and expanding in powers of p/a and ~ /E, 

we obtain 
(V-2) 

where ~0 is the value of ~ in Equation (V-1) given by setting ~ = o. 

We note that the correction term is independent of first order terms 

in p/a. This tends to confirm the assumption that the shape of the 

potential due to the electronic cloud is not important. Hence 

where Q = fr- ~ is the scattering angle. To find the correction to the 

scattering cross section, we use the usual relation, (d ~{Q)/d!l)d!L 

= 2rrp dp1 where dn is the differential solid angle, and d cr-(9) is 

the differential scattering cross section at the angle., 9. Since 

2trp dp = 27r ain 90 cl Q0 (d 6ji(9)/df2 )g
0

, where d OR is the Rutherford 

cross · section, n obtain 

(V-4) 



Substituting Equation (V-3) in Equation (V-4) gives: 

{
dai9)/dfl. - d6ft (9)/da..l = - ~ 

dOj (Q)/d!l. B 

0 

(v-S) 

For ol6(pp)ol6 scattering at 200 kev this correction is only - 0.3% and 

has been neglected. 

(b) Nuclear Interference 

The scattering cross section for a spin 1/2 particle incident 

upon a spin 0 nucleus is given by(S9) 

dcr(Q) 1 { \ 11. 2 Q o 2 Q 
d .!2. z=k2 - 2 esc 2 axp (i tt An esc '2 ) 

2 

+ f: Pi (cos 9) exp (ia.J ) ~ 1 + 1) sin~J exp (ioj ) + .l ain b£ exp (ibj >] 
1.:0 [ 

+ oin2
Q ,[ 1 lj' (coo Q) exp (1<>1) [ •in b~ exp (18i ) - oin o-; exp (i bi )] 1} 

where 

exp (ia.1 ) = ( 2 + i n. )/( l - i rt ) ••• (1 + i n )/(1 - i rt. ); J. ::.- o (V-6) 

exp (ia.0 ) = 1 

Pi (cos Q) = d P1 (cos e)/d(cos Q) 

where v = velocity of relative motion, )l = reduced mass of the system, 

8
1 

± are the phase shifts between incident and reflected wave for the 

X 'th partial wave 1 where the total angular momentum of the system is 

J = ( i + ! ) • Because the Coulomb barrier factor will tend to favor 
- 2 

the lowest partial wave, and because no resonances involving higher 

partial waves have been discovered in the energy range to be considered, 

we shall restrict our attention to interference from S-wave nuclear 
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scattering. The effect of a "hard sphere" P-wave phase shift has been 

estimated by R. G. Thomaa( 60) to be negligible. 

For S-1rave interference only, (V-7) becomes 

d~~) = ~ \- ; csc
2 ~ exp (i nln csc

2 
;) + sin 00 exp (i80 ) j

2 

and 
* -1 (V-7) 

H o ~o + (f .. 'Fof ~o) 
cot S = - ---------

o c2 x ~2 
0 0 

* where H 
0 
~0, ~0, <p

0
/ ~0 are Coulomb functions tabulated by Bloch, et 

al. (61), 

and 2 2'ir n. 
x = ka, C = -..-~--

o e2tr~ -1 

ka du 
f = 7 d(kr) 

a = nuclear radius 

u = u( r) = r lP R ( r )., where IP R ( r) is the radial part of the wave function. 

By fitting experimental data on the location of s1; 2 resonances in F17 

and its mirror nucleus, ol7, and the value of the oJ.6(nn)ol6 scattering 

cross section at thermal energies, R. G. Thomas<60) has evaluated f over 

the energy range of interest, using a nuclear radius a= 5.27 x 1o-lJ em. 

From this information~S0 and dcr-/dn. have been determined for bombarding 

protons of energy, 400 - 600 keT.dcr/d.fl. is plotted for several angles 

in Fig. 18. At a scattering angle of 90° the correction to the Rutherford 

formula is + 1.5% at 600 kev (f = 2.52). Since the effect depends 

stronglsr on the barrier factor in this energy region, it is quite small 

at lower energies and has been neglected throughout. 
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2. D-D Cross Section and Angular Distribution 

Attempts to fit the experimental results on the D-D reaction with 

a relatively simple model of the nuclear interaction have been successful 

in accounting for the general behavior of the cross section and angular 

distribution with energy. Although the experimental uncertainties in 

the work considered by Konopinski and TellerOO) are quite large, while 

Beiduk, et al. (32) were able to use the experimental results on both 

cross section and angular distribution in the o.6 - 3.5 Kev region, the 

conclusions reached were the same in both cases in at least one respect. 

It was impossible to fit the eJq>erimental results without the introduction 

of considerable spin-orbit coupling in the nuclear interaction. It was 

observed, for example, that without spin-orbit coupling, the introduction 

of enough D-wave interaction to account for the rise in the total cross 

section, even below 500 kev, would produce a large coe4g term in the 

angular distribution. However, in the present work considerable cos4g 

is found, even in the low energy region. Moreover, the fit by Beiduk, et 

al., at low energies was to the results of Bretscher, et . al. ( 23) which 

disagree with the present results. An attempt to fit the results of dif-

ferent observers in different energy regions has the disadvantage that 

systematic errors tend to be serious. In the present work,a large energy 

range was covered, and the experimental uncertainties are considered to 

be low. 

For these reasons, it seemed that an attempt to fit the present 

results in the bombarding energy range, 35 - 5SO kev, should be made using 

the simpler theory considered 1r. ref. 30. It would have been desirable 

that this include the results of Hunter and Richards(2S), md of Blair, 

et al. (24}, for En= o.6 - 3.5 Mev, but this was not done because of the 
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larger amount of work involved, the fact that the W.K.B. approximation 

used is not good for energies near the top of the Coulomb barrier, and 

the fact that the nuclear matrix elements introduced in the simplified 

theory may not be constant over a wide energy range. 

The absence of resonances is implied by the smooth variation with 

energy of the angular distribution and total cross section. The increase 

of the asymmetry with energy implies that the higher partial waves need 

be considered in accordance with their ability to penetrate the Coulomb 

barrier. 

Two deuterons can collide in singlet, triplet, and quintet spin 

states. Since the deuteron is a Bose particle, the total wave function 

must be symmetric with respect to an interchange of the particles, and 

the singlet and quintet can occur only with even orbital states, while 

the triplet occurs only with odd orbital states. 

The final state, involving two spin 1/2 particles which are not 

identical, may be triplet or singlet with all orbitals. Following the 

usual procedure(30),(3l~ we neglect all initial quintet states and the 

final triplet states with zero orbital angular momentum for the reason 

that the exclusion principle tends to prevent the close approach of 

identical nucleons with parallel spins. 

The Ooulomb barrier will tend to suppress initial states of high 

R. • The energy release of the reaction is high enough ( ~ 4 llev) to 

permit orbitals up to F-wave in the final state, without essential 

modification by the barrier. li we consider only initial states with 1:~ 2, 

we must consider the transi tiona shown in the accompacying diagram. 

Spectroscopic notation is used. 



1s 
0 3p 1 

j 
2, 1, 0 D2 
' ' ... I , ', 
' .... ' ... 

t-- -- -----f~1 ~ · -~----I----_-.=,~---~ - -------- ----1 
1 1p 3 t 1 ) 1 L 

So 1 P2, 1, 0 °2 3D3,2,1 F 3 l'4, ), 2 

Without spin-orbit coupling, only the transitions indicated by 

the solid lines can occur. Spin-orbit coupling may produce, in addition, 

the transitions indicated by the dashed lines. In this case total 

angular momentum is still conserved, but spin and orbit quantum numbers 

may change in the transition. Conservation of parity requires that even 

and odd orbital states not mix. 

For the present work spin-orbit coupling will be neglected. In 

the notation of references 30 and 31, the cross section ~ then be 

written, 

d a--/ d!l. = t !: (1 gl;/2 ~/2 l i 12 
1 J .t 1 0 

(V-8) 

where Yto is the normalized Legendre polynomial of order 1 1 g R is a 

weight factor, 1 for the singlet and 3 for the triplet states, Ia ~~a 
the "intrinsic reaction probablli ty" characteristic of the J. 'tb partial 

wave, and 

(V-9) 

where "A is the wave-length in center of mass coordinates of the (reduced) 

incident particle, and Pi is the penetrability of the 1 'th partial wave 

to the radius of interaction. The factor, 1/9, comes from the 9 initial 

spin states corresponding to a quintet, triplet, and singlet. The "4" 



comes from symmetrization of the wave function to include the fact that 

the interacting particles are identical. For PR the Gamow penetration 

factor was used. In this case, 

P,f = exp( -2 c1 ), where 

C) = g~x-112/2) [ ('n"/2) + sin-1 (1 - 2x)(1 + hJ<;y) -1/~ - (y + 1 - x)l/
2 

+ yl/2 in I! + -q!/2(yl/2 + (y + 1 -x)l/2~ [ 1 + 4Jc;y J -1/1 
and 

-r = [ < t + 1/2 >I g] 
2 

g = (0.0694 ZZ1RM)1/ 2 

x = 0.694 EcR/ZZ1 

(V-10) 

where R is the radius of the interaction in units of 10•13 em, Ec is 

the energy in center of mass , coordinates, z,z• are the atomic numbers 

of the interacting nuclei, and }l is the reduced mass in units of the 

proton mass. 

a0 , a1, a 2, and R are to be adjusted to fit the experimental 

results. Since the present results give the total erose section, it is 

convenient to integrate (V-8) over the sphere. This gives 

~.;ao = laol2 + 91all2 Pl/Po + 5la212 P2/Po 

(V-8) mq be expanded to obtain 

4'11'dcrid.O.. = (1 + A cos2Q + B cos~)(l + A/3 + B/5)-l 

and (V-11) may be written 

where now 

ar/tJO = D(l + A/3 + B/5) 

DA = 271a~ 2 P1/Po + 151aolla2jcos X(P2/P0 )
1/ 2 

-75~~2 P2/2P0 

(V-11) 

(V-12) 

(V-13) 

(V-14) 
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DB a 225la21
2 P2/4P0 (v-lS) 

D = \ao\2 - 5\ao lla2\ cos "X (P2/Po)l/2 + 25ja212 P2/4P o (V-16) 

Experimental values of csr' A, and B determine D through (V-13). 

j a.2 \ 2 is then determined through (V-15) by the experimental value of B. 

(V-ll) may be rewritten 

(V-17) 

Plotting the left side of (V-17) against 9P1/P 0 should give a 

straight line with intercept, 1 a0 \
2, and slope, \ a1 \2• Having determined 

1 a.0 j2, \a1 j2, and l a2 j
2

, we may choose X. , the phase angle in the 5-D 

interference term, to fit A. It should be noticed that necessarily 

I a. 1 j2 ~ 1, and in this case since there are two reactions of approximate­

~ equal probability, I a 1 1 2 ~ 0.5. 

With R = 1, the value uaed in refs. 30 and 31, and with cos X = 
- 1.0, ja0 1

2 = 0. 01751 ~~~ 2 = 0.0211 and la21
2 = Ool4, a good fit to 

? A, and B (or the Legendre polynanial coefficients c2 and c4) ia 

obtained for energies above 150 kev (Figs. 3 and 19). At low energies 

the fit in the angular coefficients is not bad and is within experblental 

uncertainties. But the 20% difference in total cross section obtained 

is outside experimental uncertainties. The total cross section fit is 

not affected much by the size of \ a 2 j2 • The effect of the D-wave on the 

angular distribution comes largely from the S-D interference term for 

which the barrier factor (P oP2)l/2 behaves approximately like PJ. • 

Interference between terms of different parity is forbidden by the 

necessary symmetry of a reaction involving identical particles. 

A fit of' the low energy data (El ~ 150 kev) can be obtained only 



with much less P-wave and somewhat more 5-wave, but in this case the 

total cross ~ection does not rise rapidly enough above 150 kev. This 

is the situation that led Beiduk, et al.(Jl) to introduce spin-orbit 

coupling. The use of a larger radius (R = 12) permits the total cross 

section above 150 kev to be fitted with the introduction of practical­

ly no 5-wave interaction, but the data below 150 kev is not fitted any 

better. 

One is tempted to say that the conclusion of Beiduk, et al. that 

spin-orbit forces are needed to explain the interaction are still valid. 

However, conclusions based on results achieved with so simplUied a model 

of the interaction must be conservative. Given nuclear boundary 

conditions are not fitted accurately by the W.K.B. method in the energy 

region near the top of the barrier. A better representation could 

probably be obtained by the calculation of the reaction width from the 

Coulomb wave function tables of Breit, et al., following the procedure 

of Christy and Latter(62). 

A more fundamental objection arises from the use of a fixed 

radius for the interaction. Since the deuteron has a large radius, it is 

to be expected that the interaction will involve a relatively large 

region of space. Although complications introduced by the Coulomb field 

would add considerably to the numerical problems, it is to be hoped 

that the problem can be attacked with the e.xplicit introduction of 

information concerning the internal structure of the deuteron. 
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