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Abstract

Uncovering the demographics of extrasolar planets is crucial to understanding the processes of their formation

and evolution. In this thesis, we present four studies that contribute to this end, three of which relate to

NASA’s Kepler mission, which has revolutionized the field of exoplanets in the last few years.

In the pre-Kepler study, we investigate a sample of exoplanet spin-orbit measurements—measurements

of the inclination of a planet’s orbit relative to the spin axis of its host star—to determine whether a dominant

planet migration channel can be identified, and at what confidence. Applying methods of Bayesian model

comparison to distinguish between the predictions of several different migration models, we find that the data

strongly favor a two-mode migration scenario combining planet-planet scattering and disk migration over a

single-mode Kozai migration scenario. While we test only the predictions of particular Kozai and scattering

migration models in this work, these methods may be used to test the predictions of any other spin-orbit

misaligning mechanism.

We then present two studies addressing astrophysical false positives in Kepler data. The Kepler mission

has identified thousands of transiting planet candidates, and only relatively few have yet been dynamically

confirmed as bona fide planets, with only a handful more even conceivably amenable to future dynamical

confirmation. As a result, the ability to draw detailed conclusions about the diversity of exoplanet systems

from Kepler detections relies critically on understanding the probability that any individual candidate might

be a false positive. We show that a typical a priori false positive probability for a well-vetted Kepler candidate

is only about 5-10%, enabling confidence in demographic studies that treat candidates as true planets. We

also present a detailed procedure that can be used to securely and efficiently validate any individual transit

candidate using detailed information of the signal’s shape as well as follow-up observations, if available.

Finally, we calculate an empirical, non-parametric estimate of the shape of the radius distribution of small

planets with periods less than 90 days orbiting cool (Teff < 4000 K) dwarf stars in the Kepler catalog. This ef-

fort reveals several notable features of the distribution, in particular a maximum in the radius function around

1-1.25 Earth radii and a steep drop-off in the distribution larger than 2 Earth radii. Even more importantly,

the methods presented in this work can be applied to a broader subsample of Kepler targets to understand

how the radius function of planets changes across different types of host stars.
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dominated by chance-alignment blended binaries while the FPP for deeper signals is dominated

by hierarchical triple scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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5.9 The distribution of false positive probabilities (FPPs) among the 1235 Kepler planet candidates

announced in Borucki et al. (2011). FPP for each candidate is calculated individually, taking

into account the apparent Kepler magnitude, Galactic latitude, mass and radius of the host star,

the depth and period of the signal, the number of pixels contained the optimal aperture used for

Kepler photometry, and the detection threshold of each KOI time series. Nearly 90% (1098)

have FPPs less than 10%, and over half (713) have FPPs less than 5%. The mean FPP of

the sample is about 6%, indicating that we expect there to be fewer than ∼75 false positives

among the candidate sample. An important caveat here is that these calculations assume that all

candidates have passed the false positive-vetting tests that are possible using Kepler photometry. 60

6.1 The distribution of hierarchical triple systems allowed for Kepler-19b (KOI 84.01) by the KIC

g − r and 2MASS J − K colors. Note how there is a tail of higher-mass systems that can mimic

Solar-like colors. This is important for calculating FPP, because systems with higher-mass (and

thus higher-luminosity) primaries are more prone to cause false positives with shapes similar

to planet transits. If the spectroscopic properties of the primary are measured (e.g. with a high-

resolution spectrum), then this significantly constrains the false positive landscape (see Figure

6.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 The specific occurrence rate fp as a function of radius for three examples of generic radius

distributions, with all scaling as the inverse square of the planet radius. I define the specific

occurrence rate at a particular radius Rp to be the integral of the planet radius probability

density function between 0.7Rp and 1.3Rp (Equation 6.4). Even though the use of the specific

occurrence rate in the analysis presented in this paper makes it independent of assumptions

of the overall planet rate or the exact shape of the radius distribution, this illustrates what

reasonable values of fp might be. For example, it is clear that fp = 0.01 is quite conservative

for nearly any planet size, especially for small planets. . . . . . . . . . . . . . . . . . . . . . 76

6.3 The phase-folded Kepler photometry of Kepler-19b (KOI 84.01). The solid line illustrates the

best-fitting trapezoid model used for the likelihood calculations (§6.3.3). Note that the transit

is clearly box-shaped, not V-shaped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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6.4 The false positive landscape for Kepler-19b (KOI 84.01). Each of these plots illustrates a three-

dimensional probability distribution for the trapezoidal shape parameters (depth δ, duration T ,

and “slope” T/τ ) for a false positive scenario (see §6.2 for descriptions of the scenarios). Each

of these distributions is made by simulating a statistically representative population (§6.3.1)

for a scenario and fitting the shape parameters to each simulated instance of the scenario. Each

population begins with 20,000 simulated instances, and only instances that pass all available

observational constraints are included in these distributions—in this case the constraints are

that the blended star be at least 1 mag fainter than the primary target, the lack of an observed

secondary eclipse deeper than 200ppm, and that the KIC g − r and 2MASS J − K colors match

within 0.1 mag. The pie chart for each scenario illustrates what fraction of the initial simu-

lations pass these tests. On each plot the shape parameters of the transit signal are marked,

with the ‘X’ showing the median of an MCMC fit, and error bars illustrating 95% confidence.

The probability of each scenario is calculated by dividing the prior × likelihood for that par-

ticular scenario by the sum of prior × likelihood for all the scenarios (including the planet

scenario illustrated in Figure 6.5). Priors for each scenario are calculated according to §6.3.2,

and the likelihoods are calculated by integrating the illustrated distributions over the observed

measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5 The transiting planet scenario for Kepler-19b (KOI 84.01). The plots illustrate the three-

dimensional probability distribution for the trapezoidal shape parameters for simulations of

a representative population (§6.3.1) of transiting planets around KOI 84. The radius distribu-

tion of planets in this population is chosen to be a narrow range centered on the radius derived

for KOI 84.01, assuming it is a bona fide transiting planet. The spread and shape of this

distribution are caused by different-sized planets in the simulation, different stellar properties

(according to uncertainties in stellar radius and mass), and by variations in orbital inclination,

which changes duration and slope in a correlated manner (bottom-right panel). The assumed

occurrence rate of planets in this radius bin for this calculation is 1% (see §6.3.4 for more dis-

cussion about this “specific occurrence rate”). The probability of the Kepler-19b signal being

a transiting planet, given the false positive landscape illustrated in Figure 6.4 (constrained by

only the signal photometry and KIC colors) is about 97%, giving FPP = 0.03. The signal does

not fall quite exactly in the middle of the T/τ distribution because this population simulation

uses photometrically estimated physical properties (mass, radius) for the the host star, rather

than the more accurate spectroscopically derived properties. Note that uncertainties like this

will tend to decrease the planet likelihood, and thus will contribute to overestimating the FPP. 86
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6.6 The hierarchical triple eclipsing binary (HEB) scenario for Kepler-19b (KOI 84.01) under the

constraint of spectroscopic characterization of the host star. The plots illustrate the three-

dimensional probability distribution for the trapezoidal shape parameters for simulations of a

representative population (ï£¡3.1) of HEB false positive scenarios, but only including those

instances in which the spectroscopic properties (Teff, logg) of the primary star match those that

were measured for KOI 84. Compare this distribution to Figure 6.4(c): the systems whose

shape parameters overlapped with the properties of the measured signal are not allowed by

the spectroscopic characterization—these correspond to the higher-mass systems illustrated in

Figure 6.1. This constraint allows for the signal to be validated, as the HEB scenario was the

most likely FP scenario before including the follow-up spectral information. . . . . . . . . . . 87

6.7 The phase-folded Kepler photometry of KOI 552.01. The solid line illustrates the best-fitting

trapezoid model used for the likelihood calculations (§6.3.3). Bouchy et al. (2011) measured

large RV variations of the host star, suggesting that this signal is caused by an eclipsing M-

dwarf rather than a planet. Note that the signal is clearly more V-shaped than box-shaped. . . 87

6.8 The hierarchical triple eclipsing binary system scenario for KOI 552.01. This KOI was mea-

sured by Bouchy et al. (2011) to have ∼km/s radial velocity variation between two epochs,

suggesting a stellar eclipse rather than a transiting planet—an observed astrophysical false

positive. The analysis presented in this paper gives an FPP of >90% for this signal, and this

figure illustrates why: the shape of the signal is exactly consistent with what would be expected

from a hierarchical triple system including an eclipsing binary. . . . . . . . . . . . . . . . . . 88

6.9 The results of testing the effects of sample variance and changing various assumptions on the

false positive calculations described in this paper. Each colored vertical line represents the

full range of fp,V (the specific occurrence rate assumption required for validation) over three

iterations of the procedure for each planet from Table 6.1, ordered by increasing radius. The

five different vertical lines for each planet represent five different experiments, varying the size

of the Monte Carlo simulations and different input astrophysical assumptions. The horizontal

black lines represent the value of fp,V inferred from an assumption of an overall 40% planet

occurrence rate with dN/dR∝ R−2. Below the line means the signal is securely validated. All

of the planets that were claimed as validated by the original analysis (the final column of Table

6.1) remain validated for each iteration of each of these tests. . . . . . . . . . . . . . . . . . . 88
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7.1 Evidence supporting the hypothesis that small planets are incomplete in the Cool KOI sample.

The solid black line is the observed (smoothed) distribution of planets smaller than 1 R⊕; the

grey shaded area is the observed period distribution of all the Cool KOIs. Neither distribution

is corrected for transit probability. The vertical dashed red line indicates the period at which

a 1 R⊕ planet around a 0.5 R� star (typical of the Cool KOI sample) would have SNR of 7.1,

the nominal detection threshold for KOI identification. The lack of observed small planets at

periods longer than 10 days is thus very plausibly due to incompleteness. . . . . . . . . . . . 90

7.2 The period distribution of planets around Kepler’s M dwarfs. The grey shaded region is the

implied period distribution of all planets combined, correcting for the effects of transit proba-

bility. The bar charts show the observed numbers of planets of different sizes in each period

bin. Note the declining fraction of small planets as a function of period—this is most likely

an effect of declining detection efficiency for smaller planets on longer-period orbits, and this

must be properly accounted for when constructing the planet radius function. The radius func-

tion calculation in this paper assumes that all planets are distributed according to the shaded

distribution, regardless of planet radius. See §7.5 for a discussion of this assumption. . . . . . 96

7.3 Two examples of the SNR distributions resulting from simulating the transit of a given planet

around every target star, given randomly assigned periods and impact parameters. The proper-

ties of this distribution depend on the properties of the detected system, and the integral of the

pipeline detection efficiency function over this distribution gives the “discovery fraction” ηdisc.

KOI-961.01, a sub-Earth-sized planet in a very short orbit around a very small star (Muirhead

et al. 2012b), would have been detectable in only about 1/6 of potential configurations, whereas

KOI-952.03, a larger planet around a larger star (Swift et al. 2013), would be detectable in al-

most any configuration, even though its actual SNR is smaller than that of KOI-961.01. . . . . 97
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7.4 The empirical radius distribution of planets orbiting M dwarfs with periods <90 days (black

continuous curve), estimated with a weighted kernel density estimator (wKDE; see §7.3.3),

with the bootstrap resampling-derived 1σ uncertainty swath shaded grey—essentially a running

Poisson error bar. The detection efficiency as a function of signal-to-noise ratio has been

quantified by an SNR ramp from 0 at SNR = 6 to 1 at SNR = 12. The blue horizontal lines

represent the standard “occurrence rate per bin” calculations for this sample. The vertical red

lines represent the radii of individual planets in the sample, with their heights in proportion to

the weight factors wi. The green dotted curve is an R−2 power law, which bears a striking (and

uncontrived) resemblance to the shape of this non-parametric radius function between about

1.25 and 2 R⊕; below about 1.25 R⊕, the distribution appears to level off, and turn over below

1 R⊕. Between about 2 and 2.5 R⊕ there appears to be an excess over a smooth distribution;

this may be caused by a significant population of planets with H/He atmospheres. There is an

average of 1.5 planets per cool star in orbits <90 days over this radius range, and there is an

average of greater than 0.5 planets per cool star in this period range for radii between 1 and 1.5

R⊕. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.5 The planet radius distribution for P < 50 days, using the Batalha et al. (2012) catalog in order

to compare to previous studies, demonstrating the effect of the corrections accounted for in

this work. The continuous curves are the non-parametric empirical density estimates, and the

horizontal blue lines are the occurrence rates per bin, using the same bins as Dressing & Char-

bonneau (2013). The vertical red lines represent the radii of individual planets in the sample,

with their heights in proportion to the weight factors wi. The non-solid linestyles represent

different analysis methods. Whereas Method 1 (solid lines) uses the full analysis described in

this paper, with detection efficiency described by an SNR ramp (Fressin et al. 2013) and φSNR,i

constructed by assigning random periods (§7.3.2), Methods 2 (dashed) and 3 (dotted) both

keep period fixed when constructing φSNR,i, and Method 3 uses an SNR = 7.1 detection thresh-

old rather than the SNR ramp. Method 2 is similar to the occurrence calculation in Fressin

et al. (2013) and Method 3 uses the methods employed in Dressing & Charbonneau (2013).

The importance of both a well-characterized detection efficiency function and treating period-

based incompleteness correctly is clear: incorporating both these considerations significantly

changes both the qualitative shape (especially as visualized with histograms) and normalization

of the radius function below 2 R⊕. In particular, the Dressing & Charbonneau (2013) analysis

underestimates the occurrence rates of planets between 0.5 and 1.4 R⊕ by about a factor of two. 100
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Part I

Introduction
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Extrasolar planetary systems are very common—there are at least several times more planets than stars

in the Galaxy. Small planets are much more common than large ones. Many stars host multiple planets on

short orbits–as many as four or five within the orbit of Mercury. A large number of these planets are unlike

anything in our Solar System—between the size of Earth and Neptune. Planets may even commonly form

around binary stars. Stars less than half a Solar mass often host planets the size of Earth and even smaller,

and sometimes multiple such planets orbit within just a few hundredths of an Astronomical Unit (AU). All of

these demographic facts about exoplanets have been discovered in just the last three years, based on data from

NASA’s Kepler mission. The research that I present in this dissertation includes key results that helped make

these conclusions possible, as well as analysis that lays the groundwork for future discoveries of exoplanet

demographics.

This introductory part contains three chapters: Chapter 1 gives an overview of the landscape of exoplanet

demographics as it existed before Kepler. Chapter 2 gives a background about transiting planets and intro-

duces the Kepler mission. Chapter 3 gives a brief overview of Bayesian inference, a statistical methodology

which I draw upon over the course of the dissertation.
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Chapter 1

The History and Goals of Exoplanet
Demographics

The scientific goal motivating the work presented in this dissertation is to understand the demographics

of exoplanet systems. What this means, most precisely, is characterizing as fully as possible the multi-

dimensional probability distribution function for planets:

fp(Mp,Rp,P,e, i,M?, [Fe/H],N?,Np...). (1.1)

In other words, how are planets distributed as a function of their physical (Mp, Rp) and orbital (P, e, and

inclination i) properties, and of the properties of their host stars (e.g., M?, [Fe/H]), and of their environmental

properties (e.g., host star multiplicity N?, or number of other planets in the system Np)? The ultimate goal

of this effort is to use the ensemble of exoplanet observations to meaningfully inform theories of planetary

system formation and evolution in the hope of understanding the origin of the diversity of planetary systems.

Along the road to this goal also lie answers to deep questions about how “typical” our Solar System is, and

how common potentially habitable planets might be in the Galaxy.

The first giant exoplanets to be discovered taught the first important lesson about their distribution func-

tion: giant planets can exist in very short orbits around their stars (so-called “hot Jupiters”). The implication

of this discovery is that the orbits of at least some planets must evolve considerably from where they form, as

there is no known mechanism to form giant planets so close to their host stars. This invited several different

explanations for planet “migration,” and this remains an active area of research, recently reinvigorated by

the more recent discovery that a substantial fraction of these hot Jupiters appear to orbit their stars on highly

inclined trajectories (Hébrard et al. (2008); Winn et al. (2009a,b); Johnson et al. (2009); Narita et al. (2009);

Triaud et al. (2010), and see Chapter 4).

As many more giant planet detections followed the surprise of these first unexpected ones, the ability

and desire to learn more about their demographics increased. This endeavor may be thought of at different

levels of sophistication. The most shallow (though necessary) level might be considered simply bookkeep-
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Figure 1.1 Unfiltered distributions of measured exoplanet quantities from the Exoplanet Orbit Database at
exoplanets.org, demonstrating both the power and the danger of inspecting simple scatter plots in the
service of exoplanet demographics. The left-hand panel shows very clearly that many exoplanets likely have
more violent dynamical histories than the circular planets of our solar system. The right-hand panel shows
the minimum masses (M sin(i)) and periods of all known planets; however, proper interpretation of this plot
is more difficult because of the various different detection biases at work. Larger and shorter-period planets
are easier to detect, and especially transit surveys (which are represented here, in addition to radial velocity
surveys) are very heavily biased toward detecting large and close-in planets. However, the increase in the
density of detected giant planets beyond orbital periods of >200 days is a true feature of this distribution.

ing, as much of the history of astronomy has been about carefully observing and categorizing the Universe.

While initial qualitative distinctions may be made with little or no thought as to physical interpretation, often

theoretical understanding follows, sometimes at a very deep level. A good example of this is the Hertzsprung-

Russell (H-R) diagram, which was first a purely observational construction relating stars’ colors to their ab-

solute magnitudes, but is now known to trace at a deep level how stars work and how they evolve. In other

words, simply making lots of careful measurements of exoplanets and plotting various measured quantities

against each other has the potential to reveal important insights.

To illustrate this, Figure 1 shows two examples of exoplanet quantities being plotted against each other,

using the data and tools available at exoplanets.org (Wright et al. 2011). In each of these panels is plot-

ted all exoplanets with well-measured orbits, meaning in this case planets whose RV signal has been detected

(whether originally detected in RV or transit). The juxtaposition of these two scatter plots demonstrates that

sometimes physical interpretation is evident from an exercise like this, whereas sometimes it is not. The

left-hand panel plots orbital period against orbital eccentricity. If all one knew about planetary systems was

our solar system with its neatly ordered, nearly circular orbits, this would be a surprising plot indeed. What

it indicates very clearly is that many planets in other planetary systems very likely have had much different

dynamical histories than our Solar System. This has been been explored theoretically in detail, with many

different studies showing that chaotic gravitational interactions between multiple giant planets in the same

system can qualitatively reproduce the observed eccentricity distribution (Jurić & Tremaine 2008; Ford &

Rasio 2008; Chatterjee et al. 2008). This is an example of a simple scatter plot of measured quantities that

gives an important qualitative physical insight into the nature of planetary systems.
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Figure 1.2 Two different views of the planet-metallicity relation. The left panel (Santos et al. 2004) shows
the distribution of the metallicity of stars with known planets c. 2004 (red-hashed histogram) compared to
a volume-limited comparison sample of stars (open histogram), indicating that planet-hosting stars are pref-
erentially metal-rich. The right-hand panel (Fischer & Valenti 2005) quantifies this same relationship more
precisely, measuring the occurrence rate (number of detections divided by total number of stars surveyed) in
different metallicity bins.

Inspection of the right-hand panel indicates several things: there are many more massive planets than

small planets, smaller planets only exist at short periods, and giant planets have a strongly bimodal period

distribution. All three of these conclusions are incorrect, however, and understanding where the data come

from is thus crucial to proper interpretation. Dominating the structure of this plot, of course, are detection

biases of several sorts. First of all, large and short-period planets are much more easily detected than smaller

and long-period ones, meaning that the decrease in density of points to the bottom and right of this plot is

not reflective of reality. In addition, this plot includes planets detected by both RV and transit surveys, and

and the detection efficiency of transit searches is a much stronger function of planet size and period than RV

surveys, which is the dominant reason for the large clump in the upper left and the apparent period bimodality.

On the other hand, the paucity of giant planets with orbits between 10 and 100 days (compared to those with

∼200-1000 day orbits) is indeed significant, because shorter-period planets are more detectable. This likely

does point to something physical about the formation and orbital evolution of giant planets. This exercise

demonstrates that this first simple level of demographic analysis, though occasionally revealing, does not

work for long before a more sophisticated approach is necessary.

An example of such an approach is analysis of a single survey—including detections and non-detections—

to draw conclusions about exoplanet demographics, rather than attempt to do so based simply on a list of

detections from heterogeneous surveys. This is especially important when attempting to answer questions

like how the occurrence rate of planets might depend on stellar properties. A classic example of this is the

now well-known planet-metallicity correlation (Figure 1). While a simple histogram of the metallicity of

detected planets (LH panel) does hint that planets prefer metal-rich stars (as the distribution of stellar met-

alicities in the stellar neighborhood is considerably more metal-poor than the distribution of planet hosts),
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Figure 1.3 Results of the NASA-UC eta-Earth survey (Howard et al. 2010), which was a high-precision RV
survey of 166 FGK dwarf stars intended to measure the occurrence rate of planets down to much lower
masses than had previously been done, showing that “super-Earth” planets are much more common than
giant planets. The key to accomplishing this was to precisely quantify the fractional completeness of the
survey, enabling correction for “missed planets.”

this does not come close to revealing what is actually happening. The RH panel, on the other hand, based

on analysis of the detections and non-detections of a single survey, successfully distills the essence of the

issue: the probability for a star to host a giant planet is a demonstrably strong function of metallicity. This

is exactly as predicted by the “core accretion” theory of giant planet formation (Mizuno 1980; Pollack et al.

1996), which argues for bottom-up formation of Jupiter-like planets, rather than “top down” direct collapse

via gravitational instability (Boss 1997).

Another step forward is to consider not only detections and non-detections in a survey, but to carefully

quantify fractional completeness. A good example of this is the NASA-UC eta-Earth survey (Howard et al.

2010), the goal of which was to characterize the occurrence rate of planets down to much lower masses

than had previously been accomplished. The survey was carefully designed and executed, making precise

Doppler measurements (∼1 m/s precision) with Keck/HIRES of 166 G- and K-type stars, ensuring that each

target got at least 20 RV observations over five years, including at least one group of 6 to 12 measurements

within a 12-night span to maximize sensitivity to short-period planets. This uniformity enabled the authors

to determine completeness C at each point in the mass-period plane, such that a planet detected in a region

with C < 1 would count as 1/C planets in the final tally. Figure 1 illustrates the results of this survey, which

found a steeply rising planet mass function below 30 Earth masses—about 20% of Sun-like stars host planets
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Figure 1.4 The history of exoplanet discovery. Black crosses indicate planets detected in RV surveys, blue
dots indicate planets detected in transit surveys, and red dots indicate planets detected by the Kepler mission.
Despite the evident advances in RV instrumentation, the vast majority of planets with measured velocity
amplitudes remain giant planets (Jupiter’s perturbation on the Sun has a semiamplitude of about 10 m/s).

between 3 and 30 Earth masses with periods less than 50 days, compared to a∼5% occurrence rate for planets

larger than 30 Earth masses (about 0.1 Juipter masses).

This finding that small, “super-Earth”-type planets are significantly more common than giant planets is

not surprising, but it underscores the fact that, before the Kepler mission (which I will describe in detail

in Chapter 2), all efforts toward understanding exoplanet demographics had just explored only the very tip

of the iceberg. A striking way to quantify this is to note that in the exoplanets.org database there

are 500 planets with minimum mass >100 Earth masses (0.3 MJup), and only 36 with measured minimum

mass between 3 and 10 M⊕. On the other hand, the eta-Earth survey found that planets between 3 and 10

Earth masses are actually about 4× more common than planets >0.3 Jupiter masses. If “super-Earths” were

detected at the same level of completeness as the giant planets, there should be ∼2000 of them in order to

complement the 500 giants. In other words, the 3-10 M⊕ range has been sampled at only about 2% of the

completeness of the >0.3 MJup range.

This incompleteness at low masses can be seen in the distribution of points in Figure 1, and the reason

for it can be seen in the exoplanet discovery history shown in Figure 1. For the first decade after the first

confirmed announcement of an exoplanet around a main sequence star (Mayor & Queloz 1995), nearly all

the detected exoplanets had RV semiamplitudes considerably larger than 10 m/s (approximately the semi-
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amplitude with which Jupiter perturbs our Sun). While the lower envelope of detectability has continued to

drop (the semiamplitude of a 10 M⊕ planet in a 50-day orbit around a Sun-like star is only 1.7 m/s), the vast

majority of well-characterized exoplanets are still giants.

To conclude this chapter, I summarize the key demographic findings of the RV survey-dominated era of

exoplanets:

• Giant planets exist where they should not be able to form. These “hot Jupiters” occur around about 1%

of Sun-like (FGK) stars (Cumming et al. 2008; Wright et al. 2012).

• About 10% of FGK dwarfs host a giant planet M > 0.3MJup and P< 2000d. (Cumming et al. 2008).

• The probability that a star hosts a giant planet is a strong function of metallicity (Santos et al. 2004;

Fischer & Valenti 2005), and also an increasing function of stellar mass (Johnson et al. 2010a).

• Giant planets display a wide range of eccentricities, likely indicating that their orbits have been shaped

by multi-body interactions (Jurić & Tremaine 2008; Chatterjee et al. 2008; Ford & Rasio 2008).

• The orbits of many hot Jupiters are misaligned with their stellar spin axes (Triaud et al. 2010).

• The occurrence rate of planets increases toward smaller planet mass (Howard et al. 2010).

• Multi-planet systems occur, but are not a majority of giant planet systems: about 28% of stars with

RV-detected planets show significant evidence of a second companion (Wright 2010).

In the next chapter I will discuss how the Kepler mission has enabled a revolution in this landscape of

exoplanet demographics.
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Chapter 2

Transiting Planets and the Kepler
Revolution

When an exoplanet’s orbit is nearly perpendicular to the plane of the sky, it will eclipse its host star and

occult a small fraction of the star’s light. This is called a transit, and a planet in this configuration reveals

two otherwise inaccessible quantities: its radius (from the depth of the transit) and the orientation of its orbit.

These quantities are most powerful when combined with a radial velocity (RV) detection, which typically can

only measure a planet’s minimum mass (M sin i, where i is the planet’s orbital inclination), but for a transiting

planet reveals its true mass, since the inclination is known. The mass and radius together give a planet’s

density, which in turn constrains its composition. There is also a host of additional more detailed investiga-

tions that can be pursued when a planet is known to transit, such as studies of atmospheric composition and

circulation, or measuring the Rossiter-McLaughlin (R-M) effect, which can reveal the relative orientation of

the planet’s orbit and the host star’s spin axis (see Chapter 4 for more detail).

While the fortuitous orientation of a transiting planet makes it amenable to detailed study, the fact remains

that a transiting planet requires fortuitous orientation, and so only a small minority of exoplanets transit. The

probability for a planet’s orbit to be aligned such that its transit is equal (for a circular orbit) to the ratio of the

host star’s radius to the planet’s orbital distance: for a Jupiter-sized planet in a 3-day orbit around a Sun-like

star this probability is about 1 in 10; for an Earth-sized planet in a year-long orbit, 1 in 200. Consequently,

finding transiting planets requires monitoring a large number of stars to have the chance of detecting any.

The photometric signal of a transiting planet is also quite challenging to detect. A star dims by a fractional

amount approximately equal to the ratio of the area of the planet’s disk to the area of the stellar disk—for a

Sun-like star this fractional depth is about 1% for a Jupiter-sized planet, 0.1% for a Neptune-sized planet, and

0.01% for an Earth-sized planet. A transit survey therefore must not only monitor a large number of stars but

do so at a level of photometric precision sufficient to detect the desired planets.

The biggest challenge of a transit survey, however, is neither the number of stars it must monitor nor

the photometric precision it must attain, which are relatively easily overcome with wide-field cameras and

modern CCD technology and data reduction algorithms. Rather, the biggest challenge transit surveys face
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is that finding periodic stellar dimmings from wide-field precise photometry is only the first step in a long

process to securely identify a transiting planet. The main reason for the necessity of this long process is the

preponderance of astrophysical false positives.

2.1 False Positives in Transit Surveys

Strictly speaking, the signature of a transiting planet is a small periodic decrease in the flux of photons im-

pinging on the pixels of a CCD defined to be the photometric aperture of a given target star. An astrophysical

false positive is any of a number of eclipse scenarios that cause such a signal without being the hoped-for

planet. This may be a dwarf star eclipsing a giant, a grazing eclipsing binary, or a so-called blended eclipsing

binary, all of which can cause dimmings similar to that of a transiting planet. A blended binary scenario

occurs when a faint eclipsing binary system lies somewhere within a target star’s photometric aperture. For

example, there might be a eclipsing binary pair where the secondary is about one-third the radius of the pri-

mary, thus causing a fractional eclipse depth of about 10%. If this system happens to land on a pixel within

the aperture of a star 10× brighter, then the photometric time series of the brighter star will appear to dim

periodically by only 1%—similar to a Jupiter-sized planet transiting a Sun-like star. This phenomenon, where

the presence of unvarying “third light” changes the apparent fractional amplitude of a photometric signal, is

known as dilution.

The classic example of an astrophysical false positive is the case of OGLE-TR-33 (Torres et al. 2004).

Identified by the Optical Gravitational Lensing Experiment (OGLE) as a transiting planet candidate with a pe-

riodic photometric dip of 2%, subsequent follow-up observations seemed only to confirm its planetary nature:

periodic RV variations were discovered in phase with the transit signal, no nearby stars were observed to be

blended within the photometric aperture, and even the eclipse depth was measured to be color-independent.

However, further investigation revealed that various blended eclipsing binary scenarios could fit the light

curve just as well as a transiting planet model, and upon careful inspection of the spectral time-series data

it became clear that OGLE-TR-33 was indeed a hierarchical triple system containing an eclipsing binary,

and not a transiting planet at all—the apparent Doppler shift of the lines was actually an asymmetry in the

combined line profiles of two stars. This and other similar examples were strong early warnings to the com-

munity that false positive scenarios may lurk behind any transit candidate, and that extremely careful analysis

is required to rule out false positives in any individual case.

As a result, the traditional method of promoting a transit candidate signal to the status of a bona fide

planet involves an in-depth, multi-instrument follow-up campaign. A prototypical example of this procedure

is detailed in the discovery paper of TrES-1b (Alonso et al. 2004), which was the first transiting exoplanet

to be discovered by a survey specifically designed for the purpose. The follow-up observations required to

confirm this signal as a planet were the following:

• H- and K-band adaptive optics (AO) imaging to rule out contaminating stars of similar brightness
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outside of ∼0.′′3 separation from the target star.

• Medium-resolution Echelle spectroscopy (velocity resolution of 8.5 km s−1) at seven epochs, to rule

out scenarios involving massive binary companions and to characterize the host star as suitable for

further follow-up.

• Multi-color transit photometry with three different facilities in seven different filters (in addition to the

discovery data), to check that the eclipse depth is color-independent, consistent with the eclipse of a

cold, substellar object.

• High-precision (∼10 m s−1) RV measurements with the Keck High Resolution Echelle Spectrometer

(HIRES) at eight epochs, which detected the sinusoidal Doppler variation caused by the transiting

planet.

The “funnel” procedure established with this discovery, in which a large number of candidates1 are whittled

down by various follow-up observations to identify the few that are worthy of observations with a large tele-

scope such as Keck, was absolutely necessary in the early days of transit surveys, given the scarcity of precise

RV spectrometers and the desire to discover and characterize individual exoplanetary systems. Throughout

the last decade this has been widely adopted as the follow-up paradigm: find many candidates, identify a

subset appropriate for follow-up, and eventually confirm a small number of these with RV measurements.

By the beginning of 2009, just before the launch of NASA’s new Kepler mission, transit surveys, having

operated under this paradigm for about five years, had discovered 33 planets: a modest contribution compared

to the>200 planets that had by then been discovered by the radial velocity (RV) method. Still, these transiting

planets—all at least half as massive as Jupiter—were of high scientific value because they had both mass and

radius measured, fueling an industry of inquiry into understanding the radii of giant planets (Bodenheimer

et al. 2003; Burrows et al. 2007; Seager et al. 2007; Fortney et al. 2007; Batygin & Stevenson 2010, e.g.).

Demographic studies of exoplanets, however, were obliged to primarily use results from RV surveys, both

because of the small number of available transiting planets and because of the messiness and various biases

of the survey and confirmation processes.

2.2 The Kepler Mission

The Kepler spacecraft launched on March 7, 2009. The scientific goal of the mission was to conduct a survey

for transiting exoplanets in order to determine the frequency of Earth-like planets around sun-like stars. As

the signal of an Earth-like planet’s transit is a periodic dimming of about 100 parts per million, detecting

such a miniscule signal requires photometric precision on the order of 10 parts per million—about 100×

more precise than the very best ground-based photometry.

1Tres-1b was one of 16 transit-like signals among 12,000 stars monitored by the survey in its field and the only one to become
positively identified as a planet.
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To accomplish this ambitious task, the Kepler space telescope consists solely of a [1.2]m mirror and a

focal plane paved with 42 CCDs. With no shutter, no filters, and no moving parts, it was built for a single

purpose: to be the most precise photometer ever created. Its operational mode was also exceptionally simple:

staring continuously at the same ∼100 square-degree field, saving pixel postage stamps of 150,000 chosen

target stars every 30 minutes and an additional 500 stars with 1-minute cadence. Every three months the

spacecraft would beam down that quarter’s worth of data and roll to keep its solar panels aligned properly,

resulting in a 90-degree rotation of the field of view with respect to the camera. When the second of its four

reaction wheels failed in May of 2013, the primary data-taking portion of the mission was over, since pointing

could no longer be maintained to the level required for extreme photometric precision. During its four years

of data collection, Kepler made [xxx] brightness measurements of [NNN] stars.

Before discussing the Kepler results in more detail, I will first give a general overview of the process by

which a transiting planet candidate is identified by the Kepler team. The details and specific implementation

of this process has evolved over the course of the mission, but the generic outline has remained the same. After

reducing the pixel-level data to calibrated light curves for each target star, those light curves are searched for

periodic dimmings; if the detection pipeline finds something it considers significant, it marks it a Threshold

Crossing Event, or TCE. These are then investigated briefly by eye in a so-called “triage” process intended to

weed out obviously instrumental or clearly spurious signals from physical eclipses. TCEs that pass triage are

then assigned a “Kepler Object of Interest” number such as KOI 1234.01. If there are multiple KOI signals in

the light curve of the same target star, they are assigned sequential numbers like KOI 1234.02 and 1234.03.2

Next comes the more detailed review stage. Many KOIs can be identified as clearly being of stellar

eclipse origin rather than due to a transiting planet, upon more detailed inspection of the Kepler photometry.

For example, there may be a visible secondary eclipse inconsistent with a planetary interpretation. And in

many cases, detailed analysis of how the center of light shifts during the transit signal can indicate that the

source of the periodic dimming is actually a spatially offset blended eclipsing binary, that classic transit

false positive. Indeed, the techniques that have been developed for this analysis are now sometimes capable

of detecting eclipse sources that are as close as a few tenths of an arcsecond to the target star—especially

impressive considering that the Kepler pixels measure 4” on a side. Various special circumstances such as

saturation or nearby variable stars can cause systematic errors in these techniques, but they remain a powerful

tool to vet KOIs for false positives. Once a KOI passes this inspection stage without any clear indication of

being a false positive, it is promoted to “planet candidate” status.

The first public catalog of transiting planet candidates found in Kepler data was released in February 2011

(Borucki et al. 2011) and consisted of 1235 KOIs that were found in a search of the first∼120 days of Kepler

photometry (Q0-Q2). Since then there have been several other Kepler pipeline searches released: the first

based on a search of Q1-Q6 data Batalha et al. (2012), and subsequent unpublished and still incomplete but

2Designations of signals in multi-KOI systems are made in the order they are discovered, which is usually in order of decreasing
signal-to-noise ratio, and often not in order of increasing period.
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Figure 2.1 All exoplanets currently known with both masses and radii measured. Kepler discoveries (red
points) dominate the low-mass, small-radius end of this distribution.

publicly released catalogs based on Q1-Q8 and Q1-Q12 data. These data products, as well as a cumulative

table intended to host the latest information on each KOI, are currently being stored at the NASA Exoplanet

Archive (NEA). The cumulative table contains 5779 KOIs, including 140 confirmed planets, 3448 planet

candidates, and 2191 known false positives. The Q1-Q12 table, which contains the results of the most recent

uniform search that is still in the vetting process, currently lists 850 candidates, 1338 false positives, and 2949

“not dispositioned” among a total of 5137 KOIs. The NEA also hosts a database of 18,406 TCEs.

Among the discoveries that Kepler has made are many exoplanet “firsts” and otherwise dramatic findings.

The Kepler-9 planetary system was the first system discovered that had multiple transiting planets as well as

the first to have masses measured via transit timing variations, or TTVs (Holman et al. 2010) . Kepler-10b

was the first rocky exoplanet to have a well-measured mass (Batalha et al. 2011).3 The Kepler-11 planetary

system has six transiting planets, five of which within the orbit of Mercury (Lissauer et al. 2011). Kepler-16b

(dubbed “Tatooine” in the press) was the first confirmed circumbinary planet (Doyle et al. 2011). Kepler-22b

was the first discovered transiting “habitable-zone” planet, meaning its estimated equilibrium temperature

could plausibly allow for the presence of liquid water (Borucki et al. 2012). Kepler-20e and Kepler-20f

were the smallest detected exoplanets at the time of their announcement (Fressin et al. 2012), but were soon

supplanted by the planets of the Kepler-42 system, which are all three smaller than Earth, and all orbiting

3Corot-7b was the first rocky exoplanet detected, but its host star’s high level of activity made its confirmation challenging, with its
mass measurement remaining uncertain.
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Figure 2.2 The difficulty following up Kepler candidates with the same strategies that have been used to
follow up ground-based transit candidates. The vast majority of Kepler candidates are either too small to
detect via RV measurements or are around host stars that make precise measurements too time-consuming.

within 0.02 AU of a 0.13 M� star Muirhead et al. (2012b)—similar to a slightly scaled-up system of Galilean

satellites. Even this title was then surpassed by Kepler-37b, which is just barely larger than Earth’s moon

(Barclay et al. 2013). There has also been a handful of super-Earth-sized Kepler planets whose masses

have been measured via either RV measurements or TTVs—these planets have for the first time significantly

populated the planet mass-radius diagram below the giant planet region (see Figure 2.2).

Despite all these headline-grabbing individual planetary systems, the core mission and true power of

Kepler is statistical. While its stated primary goal is to determine the frequency of Earth-like planets, any

effort that is able to accomplish this ambitious task will also reveal the demographics of the population of

larger and shorter-period planets as well. However, standing between the Kepler discoveries and this goal

is the as-yet unconfirmed nature of the thousands of planet candidates, and that traditional confirmation (as

described for ground-based surveys in Section 2.1) is literally impossible for the vast majority of candidates

given current and immediately foreseeable follow-up resources. Not only is the sheer number of candidates

overwhelming (many more than have been followed up in the first decade of ground-based surveys), but the

host stars are generally several magnitudes fainter than ground-based transit hosts, and the planets are mostly

much smaller (Figure 2.2). While a number of Kepler candidates have indeed been confirmed with either RV

observations or TTV measurements, the number of additional systems in which such confirmation is possible

represents only a small minority of all Kepler candidates.
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This central Kepler challenge has given birth to a new field in exoplanet research: probabilistic validation

of transit candidates. The idea behind probabilistic validation is to demonstrate that the probability of a

candidate signal to be a planet is overwhelmingly higher than the probability for it to be an astrophysical

false positive. This concept was first pioneered by a technique known as BLENDER (Torres et al. 2011;

Fressin et al. 2011, e.g.), but as this method is very time-consuming and resource-intensive, it has only been

applied to a small number of candidates, and does not appear to be capable of efficiently analyzing the entire

sample of KOIs. The research that I present in Chapters 5 and 6 of this thesis are the first contributions to this

field equipped to handle the scale of the Kepler survey.
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Chapter 3

Overview of Bayesian Inference

The goal of all observational science is to convert data into knowledge about the Universe. Sometimes this

conversion is very straightforward; for instance, one may wish to know how many legs a centipede has, so

one counts the centipede’s legs and then knows that it has 42. Astronomy, however, is often more like trying

to determine how many legs a centipede has, in a dark room, in under five minutes, using only a match and a

low-resolution camera, when one is not even sure whether centipedes exist. And the room might or might not

be crawling with millipedes. Divining knowledge from such scant, incomplete, or messy data requires the

tools of statistics; using the mathematical language of probability to accomplish this is known as Bayesian

inference. As much of the work in this thesis employs Bayesian inference in some form, I here give it a

concise introduction.

All of Bayesian inference is built on what is known as Bayes’ equation, which is in turn derived directly

from the concept of conditional probability. Conditional probability is best described with an example. The

probability to obtain snake eyes (two “1” rolls) in a toss of two six-sided die is 1 in 36. However, if the

dice are rolled sequentially and the first displays a “1,” then the probability to obtain snake eyes becomes 1

in 6: the probability for both dice to show “1” given that one is already known to do so is the same as the

probability of the single remaining die to show “1.” Mathematically, conditional probability may be defined

relative to the joint probability of two events:

P(A and B) = P(A|B)P(B), (3.1)

where the vertical bar is read “given.” Since P(A and B) = P(B and A), that means

P(A|B)P(B) = P(B|A)P(A), (3.2)

which leads directly to Bayes’ equation:

P(A|B) =
P(B|A)P(A)

P(B)
(3.3)
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I consider Bayesian analysis to be any statistical inference that uses this equation as a starting point.

3.1 Parameter Estimation

The most common application of Bayesian inference is to quantify precisely how a data set provides knowl-

edge about the true values of the parameters of a specific model. A “model” in this case means an underlying

theory (either physically motivated or just descriptive) that predicts the value of data as a function of one or

more parameters. A simple example of this is time series data that is expected to follow a linear trend. The

quantity being measured—e.g., flux F from an astronomical source at time T —can thus be described as

F = aT + b. (3.4)

One can imagine therefore making flux measurements of this source with the goal of trying to determine the

value of the parameters a and b.

This may be accomplished by applying Bayes’ equation. Consider rewriting Equation 3.1 using proba-

bility density functions (PDFs) of random variables X and Y rather than probabilities of discrete events A and

B:

fXY (x,y) = fXY (x|Y = y) fY (y). (3.5)

Note that the conditional probability distribution in this continuous case is defined as the joint probability

distribution of both variables with the value of one of the variables fixed. Equation 3.3 then becomes

fXY (x|Y = y) =
fXY (y|X = x) fX (x)

fY (y)
. (3.6)

X and Y may now be replaced by “model” and “data,” and some notation changed for the more familiar form

of Bayes’ equation to emerge:

p(model|{Data}) =
L({Data}|model)π(model)

Ev(data)
. (3.7)

Here is where some typical terminology may be introduced. The probability distribution p on the LHS of

Equation 3.7 is known as the posterior probability distribution for the model parameters, L is known as the

likelihood, and π is known as the prior. The denominator on the RHS is the Bayesian evidence (sometimes

called marginalized likelihood). I will discuss this factor in detail in Section 3.2; for current purposes, it is

simply a normalization constant.

Returning to our example then, the goal is to calculate the posterior probability distribution of the model

parameters a and b given the observed data, which is a series of flux measurements Fi taken at times Ti

with measurement uncertainties σi. This means evaluating the RHS of Equation 3.7, which in turn requires
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expressions for the likelihood and prior functions. As long as the data points are independent of each other,

the likelihood function may first be factored into an individual likelihood function for each data point:

L(a,b|{F,σ}) =
∏

i

`i(a,b|Fi,σi). (3.8)

The form of each of these individual likelihoods `i depends on the same assumptions about the data that go

into determining the error bars—from what probability distribution do we expect the data to be drawn? For

astronomical data (such as photometry) this is often a Poisson distribution, usually with a large enough mean

that it is very well described by a normal distribution. For our example then, the likelihood of each data point

is

`i = exp

(
− (Fi − (aTi + b))2

2σ2
i

)
, (3.9)

a normal distribution with mean and width defined by the model prediction and the measurement uncertainty,

evaluated at the observed values, as illustrated in Figure 3.1.

The prior probability distribution on the parameters is intended to represent whatever is known about the

model parameters before any data was taken. Often it is preferable to use “ignorant” priors, which typically

means a uniform or log-uniform probability distribution within some plausible range. Occasionally, however,

there may exist an independent measurement of one of the parameters in question, and so the prior may

encapsulate the results of that measurement rather than claim ignorance. For our example, we will use a

uniform prior for both of our parameters, between -5 and 5 for the slope parameter a and between 0 and 20

for the y-intercept parameter b, leading to the following trivial joint prior PDF:

πab(a,b) =
1
10
· 1

20
=

1
200

(3.10)

.

With the likelihood and prior defined, we now have enough information to calculate the joint posterior

probability distribution for parameters a and b, conditioned on our observed data. Taking a grid of param-

eter values in our prior range, we evaluate the product of the likelihood and prior at each point in the grid,

with the results depicted in Figure 3.1. The contours represent the regions of parameter space encompassing

68%, 95%, and 99% of the total posterior mass, and the ‘+’ indicates where the posterior attains a maxi-

mum, indicating the “best fit” value of the parameters. On the top and side of this figure are illustrated the

“marginalized” posterior of each parameter, obtained by integrating out the other:

pa(a) =
∫ 2

0
0pab(a,b)db ; pb(b) =

∫ 5

−5
pab(a,b)da (3.11)

It is worth noting that what this section has described so far is at face value no different from parameter

estimation by traditional least-squares optimization, or “minimizing χ2,” as the logarithm of the likelihood in
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Figure 3.1 Demonstration of Bayesian parameter estimation. The left panel shows a linear model being tested
against observed data. The total likelihood of the dataL is the product of all the individual likelihoods `i, each
of which is determined by evaluating a likelihood function (inset, red-dotted) at the value of the observed data
point. In this example each individual likelihood function is a normalized Gaussian centered at the model
value predicted for that time, whose width is determined by the observational uncertainty for that point.
The right panel shows the posterior probability distribution of the model parameters a and b, along with the
marginalized distribution for each. The contours enclose 68%, 95%, and 99% of the total probability.

Equation 3.8 is exactly −
1
2χ

2, where

χ2 =
∑ (Fi − (aTi + b))2

σ2
i

(3.12)

Minimizing the χ2 function with respect to the parameters a and b gives the exact same best-fit parameter

solution as does maximizing the posterior, because the two are mathematically identical. There are, however,

many advantages that this probabilistic formulation of parameter estimation has over simple least-squares

optimization:

• Priors. Maximizing the posterior is only equivalent to minimizing χ2 when priors on the parameters

are strictly uniform. This means that a uniform prior is always an implicit assumption in least-squares

minimization. Often Bayesian analysis is criticized for its use of priors; it is thus important to realize

that there are always priors, and Bayesian inference just makes them explicit (and allows them to be

flexible).

• Non-Gaussian Likelihoods. Once again, the χ2 formulation carries the implicit assumption that the

likelihoods of the observed data are strictly Gaussian, which is not always the case. Occasionally likeli-

hoods of will follow a different distribution, such as Poisson or binomial counting statistics, depending

on the nature of the observation. A likelihood may even be based on a completely non-standard proba-

bility distribution constructed via a complex Monte Carlo simulation—Chapters 4, 5, and 6 all use this

technique. There is nothing analogous to this in standard least-squares analysis.

• Posterior Uncertainties. Perhaps the greatest advantage of Bayesian parameter estimation is its ability

to precisely quantify the full posterior probability distribution of model parameters. Formal uncertain-

ties that are provided by least-squares minimization or similar techniques rest on the assumption that
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not only are the likelihood functions Gaussian, but also that the posterior is a normal distribution (a

necessary consequence of assuming Gaussian likelihood functions and flat priors in a linear model).

Often, however, this is not correct, such as when there are complicated parameter correlations in a

non-linear model or when non-uniform priors play an important role.

One final note on parameter estimation: when a model has more than two or three parameters, evaluating

the likelihood function on a parameter grid quickly becomes computationally infeasible. However, there

are several sampling techniques—Markov Chain Monte Carlo (MCMC) being the most widely used—that

can reliably reconstruct the important features of the posterior without having to exhaustively explore the

entire prior range. This enables efficient and straightforward parameter estimation with reliable uncertainty

or correlation determination even for high-dimensional models.

3.2 Model Selection

One limitation of parameter estimation is that while one may precisely calculate a posterior distribution for

the parameters of a model, there is no way to judge whether the model itself is even a sensible model to

be using; that is, there is no “goodness-of-fit” metric. For example, one may use MCMC to fit a Keplerian

orbit to an RV time series and derive posteriors on the model parameters, but that in itself would in no way

determine whether it is justified to claim that a signal is even present. However, there is a Bayesian way to

address this.

Model selection is intended to answer the question “is model A or model B a more appropriate model

to use to describe this data set?” One of the subtleties in answering a question like this is the problem of

overfitting. Looking back at the mock data set from §3.1, one might imagine that a higher-order polynomial

might fit the data better; that is, the deviations of the data from the model could be smaller in the least-squares

sense with a quadratic or cubic. In fact, with a fourth-order polynomial, the fit would be exact, though

completely useless—there would be no information extracted from the data at all. The central question to

ask in this case is whether a more complex model is justified or not: does the better fit of a higher-order

polynomial make up for its added complexity? Or, returning to the example of the RV time series, is a

Keplerian model justified over a null model such as a simple linear fit?

The Bayesian way of answering this question goes back, as always, to Bayes’ equation. Now, rather than

considering the probability distribution of parameters in a model, consider the probability of the following

hypothesis: “model A is the correct model to describe reality.” Call this hypothesis HA, and Bayes’ equation

gives the following expression for the posterior probability of HA, given the observation of data D:

Pr(HA|D) =
Pr(D|HA)Pr(HA)

Pr(D)
. (3.13)

The posterior probability of HB, the hypothesis that model B is correct, is exactly analogous, and so the ratio
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of probabilities of the two hypotheses, or odds ratio, is the following:

Pr(HA|D)
Pr(HB|D)

=
Pr(D|HA)Pr(HA)
Pr(D|HB)Pr(HB)

. (3.14)

The Pr(D) factor cancels in the ratio. What are these factors on the RHS of this equation that must be

evaluated to determine this odds ratio? Pr(D|HA) and Pr(D|HB) are serving the function of the likelihood from

the nomenclature of Equation 3.7, whereas Pr(HA) and Pr(HB) function as priors. To try to avoid confusion, I

will call these for now hypothesis likelihoods and hypothesis priors.

It seems at first glance that little progress has been made; we have re-written Bayes’ equation and now

we just have new likelihoods and priors to worry about. However, consider now what the version of Bayes’

equation that would be used for parameter estimation under hypothesis A looks like, where θA is the parameter

vector used in model A:

Pr(θA|D) =
Pr(D|θA)Pr(θA)

Pr(D)
. (3.15)

Now note that it is implied in Equation 3.15 that it is also “given” that we are assuming model A is the correct

model (even though we currently make no judgment whether that is appropriate or not); otherwise, solving

for the parameters of model A would be nonsensical. We can therefore make this additional condition explicit,

without changing anything about what is being calculated, and write the following:

Pr(θA|D,HA) =
Pr(D|θA,HA)Pr(θA|HA)

Pr(D|HA)
. (3.16)

The denominator here is exactly what we described above as the “hypothesis likelihood” for model A from

Equation 3.14, and because we know that its function in this context must be as a normalization factor

(ensuring that both sides integrate to unity) we know how to calculate it:

Pr(D|HA) =
∫
ΘA

Pr(D|θA,HA)Pr(θA|HA)dθA, (3.17)

where the integral is over the whole parameter space ΘA. In other words, this “hypothesis likelihood” factor

is equivalent to the integral of the product of the “parameter likelihood” and “parameter prior” over the whole

parameter space of the model hypothesized. Returning to the notation of Equation 3.7, we can thus say that

Pr(HA|D)
Pr(HB|D)

=
πHA

πHB

·

∫
ΘA

LA(θA|D)πA(θA)dθA∫
ΘB

LB(θB|D)πB(θB)dθB

≡ πHA

πHB

· Ev(A)
Ev(B)

. (3.18)

This is Bayesian model selection. If there are two models competing to explain a given data set, the odds

ratio of the two hypothesis is the ratio of their “evidences,” as here defined, multiplied by the ratio of the

hypothesis priors, meaning the relative probability of the two models that would have been predicted before
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the gathering of any data. In other words, the probability that model A is the correct model is

Pr(HA) =
πHA Ev(A)

πHA Ev(A) +πHB Ev(B)
. (3.19)

This idea may be extended to considering more than one hypothesis, in which case

Pr(Hi) =
πHi Ev(i)∑
i

πHi Ev(i)
. (3.20)

The most important thing to understand about Bayesian model selection is that one can compare models

regardless of their relative complexity, without worry that a more complicated model will be favored due to

overfitting. The reason for this is that calculation of the evidence has the so-called “Occam’s razor” built in

that will naturally prefer simpler models: if there is a very large prior range or many parameters, the height

of the prior function will be significantly lower than if there is a smaller parameter space. Thus, in order for a

more complicated model to win, the likelihood must be correspondingly higher than in the simpler model—in

other words, it must be a much better fit.

Actually calculating these evidence factors is often much more challenging than simply writing down

their definitions; in fact, with models with more than just a few parameters, it becomes nearly impossible to

calculate the entire integral, for the same reason that it becomes intractable to calculate the likelihood on a

fine grid in a high-dimensional parameter space. However, there have been advanced computational methods

developed, such as nested sampling (Feroz et al. 2009), that can efficiently accomplish this difficult task, even

for large numbers of parameters.

3.3 Final Thoughts on Bayesian Inference

In this section I have separated discussion of parameter estimation and model selection, which is perfectly

appropriate because they are naturally separable concepts and are nearly always treated separately. However,

I argue that there is fundamentally no difference between the two endeavors, rooted as they both are directly

in Bayes’ equation. In fact, I would advocate for the obfuscatory term “evidence” to be replaced by the much

more descriptive “hypothesis likelihood,” a term which I have actually never seen used before in this context.

However, I believe that this new term would make clear the explicit connection that model selection has with

parameter estimation.

Consider that Equation 3.20 is structurely identical to Equation 3.7, the only difference being that Equa-

tion 3.20 uses discrete index notation whereas Equation 3.7 consists of continuous functions. Other than

that, they are identical. Conceptually, one might say that parameter estimation is just the continuous limit

of discrete model selection between many different models, where the difference between models is just the

value of the parameters. On the other hand, one might equally say that model selection is just parameter
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estimation where the parameter being estimated is a “model index” i, and where the likelihood and prior

functions change discontinuously as a function of i.

I share these thoughts in the introductory section of this dissertation because in the published papers

where I have applied these concepts (Chapters 4, 5, and 6), I have not always used standard terminology;

for example, in Chapters 5 and 6 I use L instead of “evidence,” even though the factor in question is exactly

what I call here the hypothesis likelihood. I also do not explicitly emphasize in those papers that I am doing

justifiably rigorous Bayesian model selection even though upon reflection I believe that I am.

In any case, Bayesian analysis is relatively new to astronomy, and this introduction is intended to give

a clear and concise overview of the subject, as well as to provide technical background for the research I

present in the following chapters.
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Part II

Original Research
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Chapter 4

Discerning Exoplanet Migration Models
Using Spin-Orbit Measurements

Before Kepler and its revolutionary results began dominating the exoplanet headlines, there was considerable

attention given to the surprising fact that many short-period giant planets were being discovered to have

retrograde or highly inclined orbits relative to the spins of their host stars. This work was my first foray into

exoplanet demographics and was published as “Discerning Exoplanet Migration Models Using Spin-Orbit

Measurements,” ApJ 729,138 (2011), by TDM and John Johnson. While the study of exoplanet migration and

spin-orbit alignment has progressed significantly since the publication of this work, it remains an illustrative

example of how to apply Bayesian model selection to use observed data to distinguish between different

theories.

4.1 Introduction

Exoplanets that transit their host stars provide opportunity to study distant planetary systems in great detail.

Most immediately, photometry during transit measures a planet’s radius and density, but follow-up studies can

provide much more. Secondary eclipse photometry, photometric phase curve measurements, and transmission

spectroscopy, for example, can reveal a planet’s temperature, albedo, atmospheric composition, and even

weather patterns. While these tools investigate the physical characteristics of the planets themselves, transits

also provide a valuable opportunity to measure details of planets’ orbital characteristics using the Rossiter-

McLaughlin (RM) effect.

The RM effect is an anomalous Doppler signal due to the shadow of a transiting planet crossing the face of

a rotating star, and is measured by obtaining radial velocity (RV) measurements of the host star during transit.

As the approaching limb of the stellar surface is occulted, the total integrated radial velocity is redshifted,

and as the receding limb is occulted, the integrated velocity is blue-shifted. Modeling the RM effect yields

a measure of the angle between the orbital axis of the planet and the projected rotation axis of the host star,

typically referred to as λ. While this angle is not itself physically meaningful, it constrains ψ, the true angle
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between the planet’s orbit and the star’s rotation. In addition to being a fundamental system parameter akin

to semimajor axis or eccentricity, ψ is a potential window into learning about planetary orbital migration, as

different migration scenarios predict different distributions of ψ.

The first several RM measurements that were made all indicated small values of λ (Winn et al. 2005,

2006; Wolf et al. 2007; Narita et al. 2007), and thus were consistent with small values of ψ, which was not

unexpected since the orbits of all the planets in the Solar System are aligned to within 7◦ of the solar spin axis.

The first misaligned system, XO-3, was discovered by Hébrard et al. (2008), and confirmed by Winn et al.

(2009a). Since then, many additional misaligned systems have been discovered (Winn et al. 2009b; Johnson

et al. 2009; Narita et al. 2009; Triaud et al. 2010). This diversity of measured λs suggests that planetary

migration is more complicated than simple disk migration, which predicts planet orbits well aligned with

stellar spins (unless the disk itself is misaligned), and even hints at multiple migration channels.

As the number of exoplanet systems with measured values of λ increases, so does the desire and ability to

draw conclusions based on the data. For example, Fabrycky & Winn (2009) (FW09) suggest that there might

be two distinct populations of close-in planets—intrinsically aligned and intrinsically misaligned—with a

95% probability of > 64% of planets belonging to the aligned population. This remarkable result was based

on the first 10 RM measurements, which included a single misaligned system.

There now exists a sample of 32 published spin-orbit angles1, which provides a valuable opportunity to

readdress and extend this previous study, particularly in light of the recent proposition by Triaud et al. (2010)

that current data suggest that all hot Jupiters migrated via the Kozai mechanism (Kozai 1962; Wu et al. 2007;

Fabrycky & Tremaine 2007). The central goal of this paper is to determine whether the current sample

of spin-orbit measurements is sufficient to begin to discern between the predictions of different exoplanet

migration theories such as the Kozai mechanism and planet-planet scattering (Nagasawa et al. 2008), and if

not, then how many more RM observations will be needed to draw more meaningful conclusions about the

intrinsic ψ distribution of transiting exoplanets.

We describe our models in §4.2 and our analysis in §4.3 and §4.4. In §4.5 we repeat our analysis restricted

to hot stars (following the suggestion of Winn et al. (2010)). In §4.6, we look to the future and ask how many

RM observations will be needed to draw more confident statistical conclusions. We conclude our discussion

in §5.5.

4.2 The Models

We test two hypotheses against each other in this paper. The first is that close-in exoplanets migrated to their

present-day orbital locations through a combination of the effects of Kozai cycles and tidal friction, as de-

scribed by Fabrycky & Tremaine (2007) (FT07). Kozai cycles are oscillations in eccentricity and inclination

of a close binary system caused by the presence of distant third companion in an inclined orbit. If a giant

1As of publication of this article, in ApJ 729,138 (2011).
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planet (assumed to have formed beyond the ice line in its protoplanetary disk) undergoes Kozai cycles that

cause it to pass within a few stellar radii of its host star, then tidal friction can quickly circularize its orbit,

freezing in a potentially large orbital inclination (ψ) to the newly-migrated hot Jupiter. FT07 uses 1000 sim-

ulations of such systems, using Jupiter-mass planets with initial orbital separations of 5 AU and outer 1 M�

companions on 500 AU orbits highly inclined with respect to the planet’s initial orbit. The final inclination of

the resulting close-in planets in these simulations is their prediction of the hot Jupiter ψ distribution resulting

from this migration mechanism (FT07, Figure 10). In the rest of the paper, we refer to this model as “KCTF.”

The second hypothesis is that planet-planet scattering is the dominant mechanism for forming close-in

planets, as modeled by Nagasawa et al. (2008) (N08). In their simulations, they study the evolution of systems

of three Jupiter-mass planets with initial orbital separations of 5.00, 7.25, and 9.50 AU and initial inclinations

of 0.5◦, 1.0◦, and 1.5◦. In addition to planet-planet scattering, they also include the effects of the Kozai

mechanism and tidal friction, and produce a final population of close-in planets with a large range of orbital

inclinations (N08, Figure 11(c)). We refer to this model as “PSTF.”

There have been many different simulations similar in nature to these that we test (e.g. Wu et al. (2007);

Chatterjee et al. (2008); Ford & Rasio (2008); Jurić & Tremaine (2008)), but these are the two that produce

the broadest distribution of ψ values, and thus seem most likely to be able to explain the observed retrograde

systems. In addition, Triaud et al. (2010) also compared the observed data with these two models, concluding

that the KCTF model of FT07 describes the current data better than PSTF of N08.

We emphasize that while the true spin-orbit angle ψ is the physically meaningful angle, only the projected

version of this angle λ is measurable through the RM effect, because the inclination of the stellar rotation

axis is unknown. If the star is rotating completely edge-on (I? = 90◦), then λ = ψ, but in general the star’s

rotation axis may be tilted along the line of sight, resulting in λ 6= ψ (see Fig. 3 of FW09). In other words,

observation of a large value of λ is firmly indicative of a large ψ, but observation of a small λ does not

rule out the possibility of large ψ. In rare cases, this unknown stellar inclination can be constrained by

combining photometric determination of a rotation period with an estimate of the stellar radius and rotational

line broadening (Winn et al. 2007). Additionally, the likelihood for any particular transiting planet to be

misaligned may be estimated before even any RM measurement occurs, by comparing the observed line

broadening to theoretical rotation predictions (Schlaufman 2010). In general however, since the inclinations

of individual stellar rotations are unknown, statistical methods must be employed to draw conclusions about

ψ from an observed population of λ.

One strategy to do this, employed by Triaud et al. (2010), is to statistically deproject each λ measurement

to form a posterior probability density function (PDF) for ψ for each system, assuming an isotropic distribu-

tion for the inclination of stellar spins, and sum them to form an overall ψ PDF. However, this method has

the disadvantage that isotropy of stellar spins is actually a strong assumption, since the observed distribution

of spin inclinations will depend on the true ψ distribution, which we are trying to determine. This is anal-

ogous to how the orbit inclinations of RV-detected planets may not always be assumed to be isotropically
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Figure 4.1 Probability distributions for the true (ψ; top panel) and projected (λ; bottom panel) spin-orbit an-
gles that our two misalignment mechanisms produce. The KCTF ψ distribution is taken from the simulations
of final inclinations of planets migrating through Kozai cycles + tidal damping from Fabrycky & Tremaine
(2007), and the planet-planet scattering (PSTF) prediction is taken from the simulations of Nagasawa et al.
(2008). We use Monte Carlo simulations to project each ψ distribution to create the λ distributions. Note that
non-zero but small λ values are preferred by the KCTF model, while large values (λ > 60◦) are preferred by
the PSTF model. The bottom panel shows the distribution of the 32 measured λ values.

distributed, as discussed in Ho & Turner (2010a).

Our analysis relies instead on comparing the observed λ data directly to theoretical predictions of the

models, in λ-space. This requires that we determine a probability density function (PDF) for λ corresponding

to each of the ψ distributions we wish to test. Since both of our ψ predictions are the results of complicated

simulations, we use a Monte Carlo procedure to perform this transformation.

We fix an observer-oriented spherical coordinate system and simulate a large number of systems as fol-

lows. First, we populate 106 stars with transiting planets with orbital inclination vectors ~O assigned according

to the distribution of known transiting planet inclinations. Then the stellar spins ~S are assigned relative to the

planet population, according to the predicted ψ distributions of KCTF and PSTF. This is accomplished by

selecting a ψ from the distribution implied by the simulations of FT07 or N08, treating this ψ as a polar angle

relative to ~O, and assigning ~S to have an azimuthal angle around ~O, chosen uniformly on (0,2π). Then ~S is
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transformed back into the observer-oriented coordinate system, in which λ is simply the azimuthal angle of

~S about the line of sight. The probability distribution for λ is then determined from the distribution of these

resulting λ values. Figure 4.1 illustrates the original ψ and derived λ distributions for both misalignment

models, as well as the current λ data.

In addition to comparing these two misalignment models, we also consider the possibility that there might

be multiple migration mechanisms, inspired by the conclusions of FW09, who found the data available at the

time (10 systems) favored a model with planets drawn from two distinct distributions: one perfectly aligned

(ψ = 0) and one isotropically misaligned. After introducing our methods in §4.3, we explore in §4.4 what we

can learn if we assume only a fraction f of systems are misaligned according to one of the above mechanisms,

with the remaining 1 − f fraction being perfectly aligned.

4.3 Data Analysis

The goal of our analysis is to select the model that describes the data best, and to determine the confidence

with which we can make that selection. We do this first assuming that all planets are misaligned, and then

again allowing for an aligned population. The following sub-sections outline the details of these steps. The

data we use are the 28 RM measurements compiled in Table 1 of Winn et al. (2010) (with 5 of these systems

updated; Winn, in prep), plus HAT-P-14 (185◦±4.5), (Winn, in prep), HAT-P-4 (-15◦±16) (Winn, in prep),

and XO-4 (Narita et al. 2010). A summary of the results of all our analysis is in Table 1.

4.3.1 Which misalignment mechanism is preferred?

We use the Bayes factor for our model selection statistic, which in the simple case of comparing two models

with no free parameters reduces to a likelihood ratio, as follows:

R = log10

(
LKoz({λ})
Lscat({λ})

)
, (4.1)

whereLKoz({λ}) andLscat({λ}) are likelihoods of the observed data {λ} under the two different misalignment

models. R> 0 favors the KCTF model, andR< 0 favors the PSTF model. The likelihoods are calculated as

follows:

LM({λ}) =
N∏

i=1

PM(λi), (4.2)

where

PM(λi) =
∫ 180

0
pi(λ)pM,λ(λ)dλ, (4.3)

with pi(λ) being the probability distribution of the ith λ measurement (which we take to be a Gaussian

centered at the published value with width as the published error bar), and pM,λ(λ) being the λ PDF for the

model in question (M = {Koz,scat}).
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Using the current set of 32 λ measurements, we calculate R = 1.34, which favors KCTF over the PSTF.

The following section explains how we quantify the strength of this model selection.

4.3.2 Confidence Assessment

Within the dichotomous paradigm of comparing two misalignment models we can determine the confidence

in our model selection by answering the following question: “Given a measured value of R = 1.34, which

favors the KCTF model, what is the probability that the KCTF model is actually correct?” Or, more generally,

given any measured value ofR, how can we quantify the confidence in the implied model selection?

To address this question, we perform the analysis described above on many simulated data sets. Starting

with 105 randomly-generated spin-orbit systems for each misalignment model, constructed according to the

procedure described in §4.2, we randomly select 32 λ values from each underlying model. Each simulated

λ measurement is the exact value of λ drawn from the simulations, perturbed by a measurement error σλ,

assigned using Eq. 16 from Gaudi & Winn (2007):

σλ =
σ

vsin I?
√

N
1 −γ2

γ2

[
(1 − b2)cos2λ+ 3b2 cos2λ

b2(1 − b2)

]1/2

, (4.4)

where σ is the single-point RV measurement uncertainty, vsin I? is the projected rotational velocity of the star,

N is the number of RV points in transit, γ is the planet-star radius ratio, and b is the transit impact parameter.

For these simulated data sets, we randomly assign vsin I?, γ, and b by drawing randomly with replacement

from the current set of all transiting planet systems2. We take σ = 5 m/s and N = 20 for each simulated

measurement.

We repeat this data simulation procedure 5000 times and calculateR (Eqn. 4.1) for each data set, giving us

an understanding of the expected distribution ofR if either of these models do describe the actual underlying

ψ. Using these simulations to construct PDFs for R under each model (pR,Koz(R) and pR,scat(R)) we can

then ask what the probability is of either model being true, given a measurement of R. Applying Bayes’

theorem with a uniform prior on which model should be correct, we may write:

Pr(M|R) =
Pr(R|M)∑
M

Pr(R|M)
=

pR,M(R)∑
M

pR,M(R)
, (4.5)

where againM = {Koz,scat}. For our specific case, this becomes:

Pr(Koz|R = 1.34) =
pR,Koz(1.34)

pR,Koz(1.34) + pR,scat(1.34)
= 0.94, (4.6)

giving 94% confidence in the KCTF model. Figure 4.2 illustrates this confidence-assessment procedure.

This result appears to support the conclusion of Triaud et al. (2010), who claim that the current RM

2as listed at www.exoplanets.org
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Figure 4.2 The relationship between our model selection statistic R, or the logarithm of the likelihood ratio,
and a model selection confidence. We randomly draw 5000 sets of 32 λ values from each model and measure
R for each of these data sets. The top panel shows the distribution of R values attained from these data
simulations. The confidence in the model selection at any particular R (bottom panel) is determined by the
relative heights of the two distributions at thatR. The current data strongly favor the KCTF model.

data points to the FT07 KCTF model as explaining the formation of hot Jupiters better than the N08 model.

However, as there are reasons to be skeptical that the Kozai mechanism could plausibly be responsible for

the formation of all hot Jupiters, both theoretical (Wu et al. 2007) and empirical (Schlaufman 2010), we take

our analysis one step further and consider what we may conclude if we allow for two distinct populations of

systems: aligned and misaligned.

4.4 Multiple migration channels?

Of the 32 λ measurements to date, 14 have |λ| ≤ 10 and 19 are within 2σ of λ = 0. Given that KCTF predicts

many more systems with small λ than does the PSTF model, it is thus not surprising that it is preferred over

PSTF in the above analysis. But what if only a fraction of planets migrate via a misaligning mechanism while

the rest migrate through a process such as disk migration (Lin et al. 1996) that preserves spin-orbit alignment?

Analyzing the first 10 λ measurements (that included only a single significantly misaligned system), FW09
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found such a two-population model to be their best selection. Especially given the difficulties of explaining

all hot Jupiter migration using the Kozai mechanism alone (Wu et al. 2007), and given that Schlaufman

(2010) found that fewer systems seem to be misaligned than the KCTF model predicts, it seems prudent to

investigate how allowing for an aligned population affects conclusions about the intrinsic ψ distribution.

Accordingly, we add a parameter to each of our models: f , the fraction of systems that migrate according

to either KCTF or PSTF, leaving the remaining 1 − f fraction with ψ = 0 (and thus λ = 0). This requires us to

modify our model selection procedure (§4.4.2), but it also enables us to ask an additional question: what do

the models imply about f (§4.4.1)?

4.4.1 What fraction of systems are misaligned?

We may use Bayes’ theorem to calculate the probability distribution for the misaligned fraction f for each

of our two models, conditioned on the 32 observed λ values. For this particular case, we may write Bayes’

theorem as follows:

p f ,M( f |{λ}) =
LM({λ}| f )p( f )∫ 1

0
LM({λ}| f )p( f )d f

(4.7)

where as before {λ} is the set of observed λ values and M represents a particular model (either ‘Koz’

or ‘scat’), p f ,M( f |{λ}) is the posterior probability distribution for f under model M, LM({λ}| f ) is the

likelihood of the data given a particular f underM, and p( f ) is the prior probability distribution for f , which

we take to be flat between 0 and 1. The denominator is the normalization factor, also known as the marginal

likelihood. The posterior probability distribution for f allows us to infer conclusions about f for a particular

model given the current data. The likelihood function is calculated the same way as Eq. 4.2, except that now

the probability distribution for λ is dependent on f :

pλ,M(λ| f ) = f × pM(λ) + (1 − f )δ(λ), (4.8)

where pM(λ) are the λ distributions we calculated in §4.2 (bottom panel of Figure 4.1), and δ(λ) is the Dirac

delta function.

Fig. 4.3 illustrates LM({λ}| f ) as a function of f for each model. We measure the most likely values and

their symmetric 95% confidence ranges for f by normalizing the likelihoods and computing the cumulative

distrubution functions. If the KCTF + aligned model is correct, f lies between 0.40 and 0.87 with 95%

confidence, with the most likely value being 0.64. Similarly, if the PSTF + aligned model is correct, f lies

between 0.34 and 0.76 with 95% confidence, with the most likely value being 0.55. Both models indicate

a significant fraction of aligned systems, with the PSTF model indicating that nearly half of systems might

be intrinsically aligned. So the next question to ask is in this two-channel picture of planet migration, which

model do the data favor?
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Figure 4.3 The posterior distribution of f for each of our two-migration-channel models, conditioned on 32
observed λ values. We show that if the true misaligned population were misaligned according to the KCTF
distribution, then we expect that about 64% of close-in planets are misaligned. Similarly, if the misaligning
mechanism were PSTF, then the most likely value of f is close to 55%. Strictly speaking, this figure shows
the likelihood of the current data as a function of f for each model; if these curves were normalized they
would be proper probability distributions, given our flat prior for f . However, plotting them in un-normalized
form is illustrative, since we use the ratio of the areas under these curves (the marginal likelihood) as our
two-mode model selection criterion.

4.4.2 Two-mode model selection and confidence assessment

Since the models we are now comparing each have an unknown parameter f , we redefine our model compar-

ison statistic to be the ratio of the marginal likelihoods (the denominator of Eqn. 4.7, or the area under the

curves in Figure 4.3) of the two models:

R = log10


∫ 1

0
LKoz({λ}| f )p( f )d f∫ 1

0
Lscat({λ}| f )p( f )d f

 , (4.9)

where again R > 0 favors KCTF + aligned and R < 0 favors PSTF + aligned. This time, we calculate

R = −1.16, which favors PSTF over KCTF.
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Figure 4.4 The relationship between our model selection statistic and model selection confidence for com-
paring our two-mode migration models, where only a fraction f of planets are misaligned and the rest are in
perfectly-aligned systems. R in this case is the logarithm of the ratio of the marginal likelihoods of the two
models, and the R distributions are generated by measuring the R values for data simulations at different f .
The PSTF + aligned model is preferred over the KCTF + aligned model. See §4.4.2 for details.

Confidence assessment requires data simulations as before, except now we simulate data sets for each

model on a grid of f values, to determine the behavior ofR as a function both of misalignment model and f .

So for each of 20 equally-spaced values of f between 0 and 1, we randomly draw 1000 sets of 30 systems, as

described in §4.3.2, simulating the aligned fraction of planets by giving each simulated λ a probability (1− f )

to be re-assigned to λ = 0 before being perturbed by the measurement error.

These simulated R values give us an R PDF for each f for each model—essentially empirical two-

dimensional likelihood functions: LR,Koz(R, f ) and LR,scat(R, f ), where R is continuous but f is only sam-

pled at 20 points between 0 and 1. Since we already calculated the posterior probability distribution of f

given the current data for each of our models above, we may marginalize these likelihood functions over f to
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Figure 4.5 The relationship between our model selection statistic and model selection confidence, comparing
the preferred single-mode migration scenario (KCTF) to the preferred two-mode model (PSTF + aligned).
PSTF + aligned is strongly preferred over single-mode KCTF.

calculate a properly weighted one-dimensional PDF forR:

pR,M(R) =
20∑
i=1

LR,M(R, fi)Pr( fi|{λ},M). (4.10)

The term Pr( fi|{λ},M) is the probability obtained by integrating p fi,M( f |{λ}) (Eqn. 4.7; Figure 4.3)

between fi − ∆ f/2 and fi + ∆ f/2, where ∆ f is the spacing between successive f values in our simulations.

Using these likelihood functions, we may calculate the probability of either of our models being true, analo-

gously to Eqns 4.5 and 4.6. We find that our measurement of R = −1.16 gives a confidence of 94% for the

PSTF model, as illustrated in Figure 4.4.

Thus, while the current sample of λ measurements appears at first to be evidence for Kozai migration as

predicted by FT07, the model preference changes in favor of the N08 scattering model if allowance is made

for the existence of some systems forming hot Jupiters via some mechanism that preserves alignment. And

since what current RM measurements can tell us about planet migration mechanisms changes significantly

depending on whether we assume one or two migration channels, we next explore whether current data allows
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us to distinguish between those scenarios.

4.4.3 One channel or two channels?

We approach this question the same way we have hitherto approached the other model selection questions:

define a model selection statisticR, calculateR for the current data, and determine confidence based on data

simulations. Our model selection statistic in this case becomes:

R = log10

(
Lone

Ltwo

)
, (4.11)

where Lone is one-mode likelihood as used in Eq. 4.1, and Ltwo is a marginalized likelihood as used in Eq. 4.9.

Since KCTF is preferred for one-mode migration and PSTF is the preferred two-mode model, we take Lone

to be the likelihood of the data under the KCTF model and Ltwo to be the marginal likelihood of the data

under the PSTF+aligned model. The advantage of the Bayesian approach here is that it allows us to properly

compare models with different numbers of parameters (in this case, zero and one). We calculate R = −3.00,

which strongly favors the PSTF + aligned model over the one-mode KCTF model, with a confidence of 99%

(Figure 4.5).

4.5 Hot Stars

We have shown that the KCTF prediction for the distribution of ψ for migrated planets does not adequately

explain the observed distribution of λ, and that current data favor a combination of well aligned systems

and systems misaligned via planet-planet scattering. However, it may be that the current population we

observe is not representative of the initial misalignment distribution. For example, Matsumura et al. (2010)

conclude that tidal effects may be important in damping out initial misalignment in some systems. Winn

et al. (2010) note that most of the misaligned planets that have been observed to date are around stars hotter

than 6250 K. Based on this empirical finding, they suggest that perhaps all hot Jupiters (HJs) migrate through

some misaligning mechanism, and that cooler stars with deep convective zones have their envelopes tidally

torqued into alignment by the planet on a relatively quick timescale, thereby erasing the evidence of the

initial misalignment. If this were indeed the case, then an important key to understanding HJ migration

would be spin-orbit measurements of planets transiting hot stars, since these systems would presumably have

maintained their primordial misalignment.

Following this line of inquiry, we repeat the analyses of §3 and §4 restricted to only the current sample of

12 hot stars (Teff > 6250 K). Of our two one-mode migration models, PSTF is favored over KCTF, with 82%

confidence (R = −0.73; Figure 4.6). We also explore the two-mode migration hypothesis, allowing for hot

stars to also have an intrinsically aligned population. The posterior distributions for f under the two models

conditioned on the hot star data are illustrated in Figure 4.7, showing that both models favor almost complete
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Figure 4.6 The relationship between our model selection statistic and model selection confidence, but using
only the 12 hot stars (Teff > 6250) as our data. One-channel migration favors the PSTF mechanism for this
subset of the data, but not conclusively. The R thresholds required to reach 95% confidence in either model
for this sample size are marked.

misalignment. In fact, one-mode vs. two-mode model selection for this subset of the data gives R = −0.33,

favoring the single-mode hypothesis. For this reason we do not pursue any further the idea that there exists

an intrinsically aligned population among hot stars, as the current data do not merit the additional model

complication.

Thus, if the distribution of hot star λ values represents the primordial alignment distribution for all stars,

the current 12 λ observations hint that the PSTF prediction of N08 describes planet migration better than the

KCTF model of FT07. However, there are not yet enough data for this model selection to be conclusive. In

the next section, we discuss how many more RM measurements will likely be needed in order to make hot

star model selections confident.

4.6 How many hot star RM observations are needed?

With the full sample of 32 RM observations to date, we are able to confidently state that a combination

of well aligned systems and systems misaligned via planet-planet scattering (the PSTF model) explains the
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Figure 4.7 The posterior distribution of f for each of our two-migration-channel models, conditioned on the
12 observed hot star (Teff > 6250) λ values. As Winn et al. (2010) point out, hot stars appear to be misaligned
more often than the overall stellar population. Because f = 1 has a high probability under both models, we
do not further pursue two-mode migration model comparison for this subsample.

current data better than migration via the Kozai mechanism and tidal friction alone (KCTF). Only considering

the sample of 12 hot stars, our present conclusions are weaker. Inspired by the work of Swift & Beaumont

(2010), who calculated the sample size of protostellar cores necessary to reliably distinguish a power law

from a lognormal distribution, we wish to quantify how many additional hot star λ measurements will likely

be needed in order to measure R values indicative of confident (> 95%) model selection between the KCTF

and PSTF models.

This requires determining two things: first, what values of R correspond to 95% confident model selec-

tions for a given sample size N, and second, how likely we are to actually measure such a confident value

once we have N observations in hand, given the current set of 12 as our starting point.

Both questions can be addressed by data simulations. The R thresholds that represent 95% confidence

for a given N can be determined by simulating many data sets of sample size N and using Eq. 4.5 to calculate

model selection confidence as a function of R. This has already been illustrated for N = 32 in Figures 4.2,

4.4, and 4.5 and for N = 12 in Figure 4.6. We repeat this procedure for different sample sizes, defining R

thresholds for our model selection for a series of N values up to N = 100.
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Figure 4.8 The probability with which a given-sized future sample of hot-star (Teff > 6250 K) λ values (in
addition to the 12 that currently exist) will result in a confident selection (> 95%) of one of our misalignment
models over another. We use data simulations of various sample sizes (described in §4.6) to define the
confidence thresholds and to determine how likely those thresholds are to be reached for each particular
sample size. For example, with 28 more measurements (40 total), we have a 75% chance of selecting the
PSTF model at > 95% confidence.

We also use data simulations to determine the probability of a future experiment resulting in a confident

R measurement. To do this we again simulate many data sets of the same sizes as above and measure the

R distributions of the experiments, but this time the first 12 measurements in each data set are fixed to be

the current hot star measurements. Then we use theR distributions to predict how often threshold values are

reached for each model. This probability is plotted against sample size in Figure 4.8.

We learn from this that in order to have > 90% chance of obtaining a hot star data set that confidently

selects either of our single-mode migration models, we will likely need a total data set of about 80-100 hot

star RM observations (Figure 4.8). More optimistically, there is > 50% chance of confident model selection

with only a factor of∼3 more observations (∼35 total) if the PSTF model is correct. Given the pace at which

this field is growing, this may be reasonably expected to happen within the next few years. On the other

hand, if the KCTF model (or some other model) is a better description of reality, then it will likely take more

observations to determine this, given the preference of the current data for the PSTF model.
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Table 4.1. Results summary

Data Model 1 Model 2 f a(model 1) f a(model 2) Rb Confidencec

All 32 systems KCTFd PSTFe — — 1.34 96%
All 32 systems KCTF + aligned PSTF + aligned 0.64±0.24 0.55±0.21 -1.16 93%
All 32 systems KCTF PSTF + aligned — 0.55±0.21 -3.00 99%

12 hot systemsf KCTF PSTF — — -0.73 81%

. Bold text

indicates favored model.

amaximum-likelihood value, with symmetric 95% confidence range; only applicable to two-mode models

bR > 0 favors model 1;R < 0 favors model 2
cDegree of belief that the model selection is correct; based on Monte Carlo simulations (§3.2)

dKozai cycles + tidal friction (Fabrycky & Tremaine 2007)
ePlanet-planet scattering + Kozai cycles and tidal friction (Nagasawa et al. 2008)

fhost star Teff > 6250 K

4.7 Discussion and Conclusions

The study of exoplanet spin-orbit angles is advancing rapidly, with 32 measured projected spin-orbit angles

and more to come as ground- and space-based surveys continue to detect transiting planets. We have analyzed

the current sample and quantify what may be inferred about the distribution of true spin-orbit angles ψ. In

particular, we ask whether the current data are sufficient to test the predicted distribution of ψ from specific

migration mechanisms, using the Kozai cycles + tidal friction (KCTF) model of Fabrycky & Tremaine (2007)

and the planet-planet scattering model of Nagasawa et al. (2008) (that also includes the Kozai effect and tidal

friction; PSTF) as test models.

We find that conclusions about which migration mechanism is responsible for misalignment depend cru-

cially on the assumption of whether there exists a population of intrinsically aligned systems (ψ = 0). Without

allowing for an intrinsically aligned population we find that the KCTF model is favored over the PSTF mecha-

nism (§4.3), but allowing for this population we find that PSTF is favored (§4.4), with the most likely fraction

of misaligned systems being 0.55, and between 0.34 and 0.76 with 95% confidence. We also find that this

two-mode migration model (PSTF + aligned) is significantly favored over single-mode KCTF migration. This

agrees with Schlaufman (2010), who also concluded that there is likely to be an aligned population, based on

detecting fewer likely-misaligned systems than expected according to the predictions of the KCTF model.

These results may be an indication of two migration channels for close-in planets, one that acts gently,

preserving the alignment of planet orbits with the stellar spin, and one that acts impulsively, causing mis-

alignment. The gentle mechanism might well be disk migration (Lin et al. 1996), and our analysis suggests

that the misaligning mechanism is not solely the Kozai effect but rather some mechanism that distributes ψ

more broadly, such as planet-planet scattering in combination with the Kozai effect. This accords with the
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conclusion of Matsumura et al. (2010) that some of the close-in planets with non-zero orbital eccentricities

are likely to have been formed by planet-planet scattering and subsequent tidal circularization.

Focusing on the subsample of 12 hot star (Teff > 6250 K) λ measurements, which Winn et al. (2010)

predict might be the only systems to maintain their primordial misalignments, we find that the data prefer

the single-mode PSTF model over KCTF, with a confidence of 85%. We also find that a single migration

mechanism is sufficient to describe the current hot star λ distribution, without including an intrinsically well

aligned fraction.

Looking to the future, we also calculate the number of additional hot star λ measurements necessary to

achieve > 95% confidence in the hot star model selection (§4.6). We find that if either of our single-mode

mechanisms describes the ψ distribution around hot stars, then a total data set of about 80-100 λ measure-

ments should definitely be sufficient to solidify which is the preferred model, with a > 50% probability of

confident model selection with a total data set of only about 40, if scattering is indeed the best explanation

for the ψ distribution of close-in planets.

Thus, we suggest that if RM studies wish to be able to identify migration mechanisms through measuring

λ distributions, they should concentrate on measuring λ for planets around hot stars. Of course it is conceiv-

able that migration mechanisms themselves might be different around different types of stars, in which case

hot star λ measurements might not tell us anything about cool star migration, but that is the kind of question

that will only be able to be explored when much more data is available.

Finally, we emphasize that the results in this paper are illustratory more than definitive, as we have

only tested two very specific misalignment models. Consequently, we encourage continued theoretical work

predicting ψ distributions, as the analysis we present may be applied to any prediction. We can use the

results of this paper as a guide for what to expect from such future analyses. For example, models that favor

larger values of λ more strongly than the present KCTF prediction (as does the PSTF model) are likely to be

preferred. We also suggest that an interesting question to pursue would be self-consistent planet formation

and dynamical evolution calculations, in order to explore planet-planet scattering in the context of realistic

formation scenarios (in contrast to the fixed initial conditions of the Nagasawa et al. (2008) simulations).

A particularly intriguing angle to explore in such work would be whether a plausible explanation for the

observed trend in λ with stellar temperature/mass might be explainable by more massive stars tending to

form more massive planets in closer proximity, so as to make planet-planet scattering (and thus spin-orbit

misalignment) more common among earlier-type stars. Migration models might also be combined with

models that predict that large values of ψ might originate from the host star itself being tilted relative to the

disk (Lai et al. 2010), rather than solely from the effects of planet migration, though current observations

suggest that protoplanetary disks tend to be aligned with stellar spins (Watson et al. 2010).

Planet migration has been a mystery ever since the first hot Jupiters were discovered, with very little

observational evidence to substantiate theories. As fossil remnants of planet migration, spin-orbit angles are

key to understanding the origins of these close-in planets, and the first few years’ worth of λ measurements
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are beginning to give substantial clues. Many more transiting planets will be discovered in the near future

thanks to the productivity of transit surveys, and as long as RM measurements of these systems continue, our

understanding of planet migration will continue to improve.
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Chapter 5

On the Low False Positive Probabilities
of Kepler Planet Candidates

This chapter is adapted from “On the Low False Positive Probabilities of Kepler Planet Candidates,” ApJ

738, 170 (2011), by TDM and John Johnson. This paper was first posted nearly simultaneous with the

release of the first public Kepler planet candidate list (Borucki et al. 2011). The inspiration for this work

was some quick back-of-the-envelope calculations that convinced me that the false positive rate of well-

vetted Kepler candidates should be significantly lower than that of ground-based transit surveys. As the

Kepler team did not present anything more than very rough qualitative comments regarding the false positive

rate of the candidate sample, the conclusions presented here continue to be the basis for many statistical

studies that make conclusions about exoplanets based on the Kepler candidate lists.

5.1 Introduction

In the wake of the first full release of planet candidates from the Kepler mission (Koch et al. 1998; Borucki

et al. 2008, 2011), the study of the properties of exoplanetary systems has entered a new era. For the first

time there exists a large uniform sample of transiting planets largely unaffected by the detection challenges

and selection effects inherent in ground-based searches (Gaudi 2005; Gaudi et al. 2005, e.g.), enabling the

first clear glimpse of the population of exoplanets down to the size of Earth as well as the first opportunity

to study planet radii at large orbital separations. However, follow-up observations to unambiguously confirm

individual signals are time-consuming and difficult (or impossible), especially for fainter stars and smaller

planets. Consequently, in order to understand what the population of Kepler transit-like signals can tell us

about the population of exoplanets in general, the problem of astrophysical false positives must be understood.

From the early days of planet transit searches, eclipsing binary systems masquerading as transit signals

have plagued detection efforts (Konacki et al. 2003; O’Donovan et al. 2006; Poleski et al. 2010; Almenara

et al. 2009). Generally speaking, there are three types of astrophysical false positive: a grazing eclipsing

binary, a dwarf star eclipsing a giant star, and a blended eclipsing binary system, which may be either a
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hierarchical triple system or an unassociated binary blended within the aperture of a target star (Torres et al.

2004).1

The remarkable photometric precision that Kepler is delivering (Jenkins et al. 2010b, ∼30 ppm) allows

for an immediate simplification of the false positive landscape. Batalha et al. (2010b) explain the multitude

of ways that certain common false positive scenarios can be identified from Kepler photometry alone. For

example, grazing eclipsing binaries can be identified by their V-shaped transits, and the giant-eclipsed-by-a-

dwarf scenario can be avoided both by the comprehensive work that went into assembling the Kepler Input

Catalog (Latham et al. 2005; Batalha et al. 2010a) and by the ability to photometrically identify giants by

their elevated levels of stellar variability compared with dwarf stars (Basri et al. 2010). Even many blended

binaries can be identified from the Kepler photometry and astrometry alone, by looking for a shift in the center

of light, e.g the “rain diagrams” of Jenkins et al. (2010a). However, some blended binary scenarios remain

undetectable by this technique, especially those in hierarchical triple systems, and so a detailed understanding

of the false positive problem for Kepler requires a detailed understanding of the probability of encountering

such blend scenarios.

The Kepler team has proven that extremely careful and detailed analyses of individual systems can “val-

idate” planets probabilistically by combining various follow-up observations with modeling the light curves

of all possible false positive scenarios with the so-called BLENDER software (Torres et al. 2011). However,

this method is computationally expensive and labor-intensive, rendering it a time-consuming process. As a

result, only three BLENDER-validated planets having been revealed to date: Kepler-9d (Torres et al. 2011),

Kepler-11g (Lissauer et al. 2011), and Kepler-10c (Fressin et al. 2011). With dedicated supercomputer re-

sources coming online for the Kepler team’s use, this number will certainly rise, but the fact remains that it

will be a long time before the BLENDER method can be applied to any large number of the Kepler candidates

(Kepler team, 2011, private comm.); in the meantime statistical interpretations of the candidate sample will

rely on statistical assumptions of the false positive rate.

There has been significant previous effort in the literature dedicated to predicting the expected rate of

false positive transit signals. Brown (2003) pioneered this work by predicting the rates of different types

of false positives and Jovian planet detections for a variety of different surveys, including the then-future

Kepler mission. Evans & Sackett (2010) greatly extend this work by deriving detection and false positive

rates from full-scale bottom-up simulations of synthetic ground-based transit surveys, taking into account all

false positive possibilities and many details not included by Brown (2003). We continue in the tradition of

these authors with an analysis directly applicable to the Kepler mission, approaching from a slightly different

angle. Instead of focusing on predicting an overall number or expected rate of planet detections or false

positives, we instead seek a simple answer to the following question: “What is a conservative estimate of the

probability that an observed apparent transit signal is in fact a true transiting planet?” By framing the issue in

1In this paper we consider “false positives” to be purely stellar configurations mimicking transiting planet signals. For discussion of
scenarios involving “blended planets,” see Appendix.
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this manner we are able to sidestep the complex issue of detectability, as our analysis assumes a transit-like

signal has been detected.

Our philosophy in this work is not to take into account all conceivable details of transit signals, but rather

to consider only those which are most salient: the brightness of the Kepler target star, its location in the

field, and transit signal depth. The details we choose not to address in this work (notably transit period and

duration) are those we judge would add uncertainty to our calculations while tending to only decrease our

estimates of the false positive probability. Thus we are able to keep our analysis straightforward, yet remain

confident we are calculating conservative upper limits to the probability that any given Kepler transit signal

might be a false positive. As we show in §5.2 and again in §5.3, even these conservative upper limits are

enough to indicate that Kepler planet candidates will only rarely turn out to be false positives.

5.2 Basic Bayesian Framework

The probability that a given transit signal is of planetary origin may be expressed as the following, according

to Bayes’ theorem:

Pr(planet | signal) =
Pr(signal | planet)Pr(planet)

Pr(signal)
. (5.1)

In this framework Pr(signal | planet) is the probability of obtaining the observed signal given that there is

a transiting planet on an orbit of a particular period. This factor is known as the likelihood of the signal

under the planet hypothesis, and we will abbreviate it as Lpl. Pr(planet) is the probability of a star hosting a

transiting planet (the occurrence rate of planets times the transit probability), which must enter the calculation

as an a priori assumption. Thus we call this factor, according to Bayesian convention, the prior on planets,

and designate it πpl.

Since there are only two possible origins of a transit-like signal (planet or false positive), the denominator

of Equation 5.1 can be rewritten as marginalizing over the possible models:

Pr(signal) = Lplπpl +LFPπFP. (5.2)

Using our convention, LFP and πFP are the likelihoods and priors for a false positive signal. The false positive

term can be further broken down accounting for the two specific false positive scenarios we are exploring:

the blended eclipsing binary (BB) and the hierarchical eclipsing triple (HT), allowing Equation 5.1 to be

rewritten as the following:

Pr(planet | signal) =
Lplπpl

Lplπpl +LBBπBB +LHTπHT
. (5.3)

In general, the likelihoods depend on the particularities of the transit signal and enable discrimination

between models depending on the transit depth, shape, or period. For now we ignore these details, assuming
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for the moment that we have no knowledge of the differences between the kind of transit signals to expect

from planets and from false positives. This enables us to write a simplified version of Eq. 6.2:

Pr(planet | signal)≈
πpl

πpl +πBB +πHT
. (5.4)

We then define the “false positive probability” (FPP) as the complement of this probability:

FPP = 1 − Pr(planet | signal) (5.5)

Thus, before considering any detailed information of a particular light curve, the probability that an observed

transit signal is actually a false positive depends only on the relative occurrence rates of planets and the false

positive scenarios. As mentioned above, πpl is simply an assumed occurrence rate of planets times the transit

probability; we explain how we determine πBB and πHT in the following subsections. We describe first this

priors-only framework in order to elucidate what dominates our final results, but in §5.3 we will include the

likelihoods we removed in Equation 5.4, taking into account dependence on the depth of the transit signal.

5.2.1 Blended Binaries

The probability of a transit-mimicking binary system to be blended within the aperture of a Kepler target star

(πBB) can be broken down in the following way:

πBB = Pr(blend) ·Pr(appropriate eclipsing binary). (5.6)

The first factor is the probability for a potentially blending star to be projected within a given radius of a Ke-

pler star, and the second is the probability for that star to be an eclipsing binary system that can appropriately

mimic a planetary transit.

To calculate these probabilities, we use the stellar population synthesis and Galactic structure code TRI-

LEGAL (TRIdimensional modeL of thE GALaxy; Girardi et al. (2005)), which is publicly available on

the web2. TRILEGAL simulates the physical and photometric properties of the stars along a given line of

sight, using various stellar evolution grids (Girardi et al. 2002; Chabrier et al. 2000) and a Galactic model

that includes a halo, thin and thick disks, and a bulge. All of our simulations use a Chabrier lognormal IMF

(Chabrier 2001) and default TRILEGAL values for the Galactic structure parameters, including a squared hy-

perbolic secant structure for the thin disk, an exponential structure for the thick disk, and an oblate spheroid

for the halo.
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Figure 5.1 The probability for a possibly blending star to be projected within 2′′ of a Kepler target star, as a
function of Galactic latitude, as determined by TRILEGAL simulations. The plotted points are simulations;
the lines are the exponential fits as described in Equation 5.8.

5.2.1.1 Probability of a blend

The blend probability can be calculated by determining the average sky density (e.g. stars per square arcsec)

of stars faint enough so as not to be obviously present in Kepler data yet bright enough to possibly mimic a

transit. The first condition is somewhat subjective, and we conservatively say that a star must be more than 1

magnitude fainter than the Kepler primary in order to be able to hide undetected within the Kepler aperture.

In practice the true value is probably significantly fainter, but this approximation will lead to only a small

overestimate of the blended star probability, as there are many more faint than bright stars.

The faint condition can be determined by noting that in order for a blended eclipsing binary system to

mimic a transit of fractional depth δ, the blended system must comprise more than a fraction δ of the total

flux within the Kepler aperture. This condition may be expressed as the following:

mK,bin − mK,target = ∆mK ≤ −2.5log10(δ), (5.7)

where mK,bin is the total apparent Kepler magnitude of the blended binary system and mK,target is the magnitude

of the Kepler target star. A transit depth of δ = 0.01 corresponds to ∆mK = 5; for δ = 10−3, ∆mK = 7.25; and

for δ = 10−4 (approximately an Earth-sized transit of a Solar-radius star), ∆mK = 10. This means that no

binary system fainter than mK = 24 can possibly mimic a δ = 10−4 transit around a mK = 14 star, which is a

typical magnitude for a Kepler target.

Using TRILEGAL, we determine the sky density of stars in this magnitude range within in the Ke-

pler field, and thus the probability of one by chance being projected close to a Kepler target star, by simu-

2http://stev.oapd.inaf.it/cgi-bin/trilegal
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Figure 5.2 The probability for a possibly blending star to be projected within 2′′ of a Kepler target star, as a
function of both Galactic latitude and target star magnitude, as determined by TRILEGAL simulations.

lating a 10 deg2 field centered on the center of the Kepler field. We then simply count the stars within the

desired range of Kepler magnitude (which TRILEGAL provides). As a fiducial example, the average density

of stars between mK = 15 and mK = 24 (the range corresponding to a δ = 10−4 transit of a mK = 14 star) is

0.0086 stars·arcsec−2. The probability of any given small circle on the sky containing one of these stars is

then simply the area of the circle multiplied by this density. Continuing this example, (mK = 14, δ = 10−4) the

probability of such a star being within 2′′ of a Kepler target star is 0.11.

However, because the Kepler field is quite extended and centered only a few degrees off the Galactic

plane, there is a considerable gradient in background stellar density across the field that must be accounted

for. To accomplish this, we simulate 21 different 5 deg2 fields, each centered on one of the Kepler double-

CCD squares. The resulting probabilities are plotted in Figure 5.1 as a function of Galactic latitude, for

the magnitude ranges corresponding to mK = 11,12,13,14, and 15. Recognizing that this blend probability

appears to be exponentially related to Galactic latitude b, and that the nature of the exponential depends on

mK , we fit an analytic expression of the following form:

pblend(b,mK) = C(mK) + A(mK)e−b/B(mK ), (5.8)

where A, B, and C are all polynomial functions of Kepler magnitude, with the coefficients listed in Table

5.1. These fits are valid between mK values of 11 and 15, and b values between 7◦ and 20◦ (the approximate

extent of the Kepler field). Figure 5.2 graphically illustrates the behavior of Equation 5.8.
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5.2.1.2 Probability of an appropriate eclipsing binary

The probability that a blended star is an appropriately configured eclipsing binary system depends first on

the binary fraction of blending stars, and secondly on both the distribution of binary properities and the

magnitude of the Kepler target star. Of central importance is that in order for a blended binary to successfully

mimic a Kepler planet transit candidate, it must have both a diluted primary eclipse shallow enough to look

like a planet and a diluted secondary eclipse either shallow enough so as not to be detected or geometrically

aligned so as not to occur.

The apparent fractional “transit” depth of a blended binary system depends on the intrinsic binary system

eclipse depth δb, and the relative apparent magnitudes of the Kepler target star and the blended system:

δ = δb ·10−0.4(mK,bin−mK,target). (5.9)

The primary and secondary eclipse depths of the binary system are the following:

δb,pri =

(
R2
R1

)2
F1

F1 + F2
, (5.10)

and

δb,sec =
F2

F1 + F2
, (5.11)

where R1 and F1 are the stellar radius and flux in the Kepler band of the larger of the two stars, and R2 and F2

are of the smaller star.

If the binary system has an eccentric orbit, then there is a chance that the orbit may be aligned such that

only one eclipse occurs. The probability that both eclipses occur, given that at least one occurs, can be shown

to be the following (using Equations 9 and 10 from Winn et al. (2010) and guided by Figure 3 in that work):

Pr(both eclipses) =
1 − e2

2π

[∫ π

0

1 − esinω
1 − e2 dω+∫ 2π

π

1 − esinω
1 − e2 dω · 1

π

∫ π

0

1 − esinω
1 + esinω

dω

]
, (5.12)

where e is eccentricity and ω is the argument of periastron (defined such that the transit occurs when the

true anomaly f = π/2 −ω). The first term represents the probability that the one given eclipse occurs on the

“apastron half” of the orbit (thus guaranteeing the other eclipse will occur); the second term is the probability

that the given eclipse occurs on the periastron half, times the fraction of orbital orientations that give the

second eclipse as well as the first. One can see that when e = 0 this probability becomes 1. When e→ 1, the

probability→ 4/π2, or ∼0.405.

The conditions we define for a binary to be “appropriate” are for the diluted primary eclipse depth to

be between 0.02 and 10−4 (shallow enough to look like a planet, but still detectable), and for the diluted
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secondary to either be shallower than 10−4 (undetectable) or not to occur. We recognize that “detectability”

of a transit is a function of more than just the transit depth, but for our purposes we use a depth of 10−4

as the detection threshold. A more detailed population study based on Kepler candidates should use rather

the signal-to-noise ratio of a transit as the criteron for detectability (Beatty & Gaudi 2008a). However, as

our framework deals with how to interpret signals once they are detected, careful detectability analysis in

unnecessary.

To calculate the probability of all these conditions being met (a star being binary and being “appropriate”),

we use the TRILEGAL simulations and assume binary properties according to the work of Raghavan et al.

(2010). That is, we assume a flat mass ratio distribution between 0.1 and 1 (Raghavan et al. (2010) actually

observes the distribution to be flat between about 0.2 and 1, but we extend it to 0.1 to be more conservative).

We randomly assign eccentricities following the distribution in the Multiple Star Catalog (Tokovinin 1999).

For each star in a particular TRILEGAL line-of-sight simulation that lies in the appropriate magnitude

range (§5.2.1.1), we first randomly assign it to be a binary or not and then calculate what the primary and

secondary diluted depths would be if the system were eclipsing and blended with a Kepler target star of a

particular magnitude.

R1 and F1 are provided by TRILEGAL3, and we determine R2 and F2 based on a randomly assigned mass

ratio and the Padova models at the age of the primary. Given these system parameters, we can then randomly

determine if each system undergoes a non-grazing eclipse, according to the probability that each system will

be in such an orientation:

Pr(eclipse) =
R1 − R2

a
· 1

1 − e2 , (5.13)

where a is the orbital semi-major axis, determined from Kepler’s law, and e is the orbital eccentricity. We

then determine whether one or both eclipses occur (according to Equation 5.12) and if only one occurs, then

we randomly assign whether the lone eclipse is the “primary” or “secondary.”

From this procedure, using a Kepler target star of mK = 14, an orbital period of 10 days, and a line-of-sight

simulation at the center of the Kepler field, we find that 1.4% of binaries have non-grazing eclipses and about

27% of those eclipsing binaries are “appropriate.” For the binary fraction, we assume that ∼40% of stars

have binary companions4, and then consider as potential false positives only the fraction of those binaries

that are “short-period”; for our purposes, P < 300 days, which comes out to about 1/8 of binary systems

(again, according to the observed distribution of binary periods from Raghavan et al. (2010)). This gives an

effective binary fraction of about 5%. This results in a probability of 2.5×10−4 for a star to be an appropriate

eclipsing binary, giving a value of πBB = 0.11×2.5×10−4 = 2.6×10−5 for the center of the Kepler field.

As in §5.2.1.1, we empirically investigate how this probability changes as a function of galactic latitude

and target star magnitude. We find the behavior for any particular magnitude is well described by a shallow

3This properly accounts for the possibility that the blend might be an evolved system; e.g. a dwarf star eclipsing a giant.
4To be precise, we actually use a binary fraction function that increases with stellar mass: 40% for M < M�, 50% for M� < M <

1.5M�, and 75% for M > 1.5M�, roughly adapted from Figure 12 in Raghavan et al. (2010). This is a conservative estimate of the
binary fraction, as the Raghavan Figure includes multiple systems as well as binaries.
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Table 5.1. Polynomial coefficients1for Equation 5.15

c0 c1 c2 c3 c4

A -60.931 19.980 -2.4273 0.12912 -2.5038e-3
B 82.605 -25.320 3.0365 -0.15902 3.0668e-3
C -0.27166 9.6434e-2 -1.2836e-2 7.5396e-4 -1.5465e-5
D 2.3345e-3 -7.1853e-4 8.1050e-5 -3.9902e-6 7.2607e-8
E -4.7598e-2 1.5099e-2 -1.7333e-3 8.6394e-5 -1.5853e-6

1This table lists the polynomial coefficients for the empirical fits to how
the blended binary false positive probability as a function of Galactic lati-
tude changes with Kepler magnitude mK . A,B,C,D, and E are functions of
mK , valid between mK = 11 and mK = 16. The polynomials are of the form
c0 + c1mK + c2m2

K + c3m3
K + c4m4

K .

linear relation in b:

Pr(appropriate ecl. binary) = bD(mK) + E(mK), (5.14)

where again the variation of the values of the coefficients D and E is modeled well with a polynomial in mK

(Table 5.1).

Multiplying Equation 5.14 with Equation 5.8 then gives a full analytic expression for the probability of

a star of given Kepler magnitude at a given Galactic latitude to be blended with an eclipsing binary system

able to mimic a planetary transit:

πBB(mK ,b) =
[
C(mK) + A(mK)e−b/B(mK )

]
×

[bD(mK) + E(mK)] , (5.15)

where A,B,C,D, and E are polynomial functions of mK with coefficients given in Table 5.1.

5.2.2 Hierarchical Triples

The probability that a Kepler target star is in fact a hierarchical triple system configured such that it might be

able to mimic a planetary transit (πHT) can be broken down as follows:

πHT = Pr(triple) ·Pr(eclipsing and appropriate). (5.16)

The first factor is simply the frequency of triple systems. Raghavan et al. (2010) determine the frequency

of multiple systems to be 12% for sun-like stars, and the Multiple Star Catalog (Tokovinin 1999) suggests

about half of multiple systems have P < 300 days, and so we adopt 6% as our triple fraction. The fraction

of triple systems that are of appropriate configuration can be determined by using the same conditions as we

used above in §5.2.1.2. That is, we require the diluted eclipse depths (Eqs. 5.9-5.11) to be between 0.02 and

10−4 (again accounting for the possibility that an eccentric orbit might provide only a single eclipse), except
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Figure 5.3 The false positive probability of a Kepler candidate, according to our basic framework (i.e. inde-
pendent of δ), as a function of target star magnitude mK and galactic latitude. A planet occurrence rate of
20% is assumed. This plot assumes that Kepler is able to internally restrict the radius inside which a possible
blended binary might reside to 2′′. There is a small gradient across the field, but the false positive probability
is uniformly low.

this time one of the three triple components provides the diluting flux.

We assume two different hierarchical possibilities for triple systems. Referring to the three components

in order of descending mass as A, B, and C, the triple system may either be set up as A + BC, where B & C

are the closer potentially eclipsing pair and A is the diluting star, or as AC + B, with A & C as the closer pair

and B diluting. We ignore the case AB + C because the faintest component being the diluting star would be

unable to mimic a planet transit.

We calculate the probability that a triple system will be eclipsing and “appropriate” (again assuming a

10-day orbit) as follows:

pa =
∫ ∫

A(MA,q1,q2)Φqdq1Φqdq2. (5.17)

A(MA,q1,q2) equals 1 if the system is eclipsing and can mimic a transit and 0 if not, and the mass ratios

q1 ≡ MB/MA and q2 (either MC/MA or MC/MB, with 50/50 odds) determine the architecture of the triple

system. Φq is the mass ratio distribution that we used in §5.2.1.2 (flat between 0.1 and 1). We assign the

radius and flux of each component according to the Padova model grids in order to calculate both the non-

grazing eclipse probability and the diluted eclipse depths, taking into account the effect of eccentric orbits.

Evaluating this integral numerically we obtain pa = 0.12, which results in πHT = 9.8×10−5.

Unlike the blended eclipsing binary scenario, the probability of a target being a hierarchical eclipsing

triple does not depend either on galactic latitude or apparent magnitude. There is a very weak dependence on

stellar mass of the primary, but for our calculations we just assume that all target stars have masses close to 1

M�, which is reasonable as Kepler is specifically targeting solar-type stars.
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5.2.3 Basic Framework: Summary and Discussion

Now that we have determined the priors for both false positive scenarios, we are able to evaluate the FPP

(Equations 5.4 and 6.1) by assuming a frequency of close-in planets. We adopt a 20% frequency according

to the results of the NASA-UC Eta-Earth Survey of Howard et al. (2010). This conservative estimate of 20%,

combined with a 5% transit probability for a planet on a 10-day orbit (the period we have been assuming up

to now) gives πpl = 0.01, and thus an FPP of ∼0.01. From a planet detection standpoint, this result is quite

promising, as it gives a 99% probability that an observed planet-like transit signal around a mK = 14 star in

the middle of the Kepler field is authentic. Because of the variation of the background stellar density across

the field, this value varies with Galactic latitude and mK , as shown in Figure 5.3. This is a remarkable result,

as it indicates that almost every signal that passes the Kepler astrometric and photometric false positive tests

is likely a planet transit, before any RV confirmation attempts.

One might rightly pause at this juncture and wonder how the false positive probability for Kepler can

be so low. After all, transit searches up until now, both ground-based (e.g. HAT, WASP) and space-based

(e.g. CoRoT), have been plagued by false positives (Konacki et al. 2003; O’Donovan et al. 2006; Poleski

et al. 2010; Almenara et al. 2009). To address this, we consider what Equation 5.4 would say about the

probability of a transit signal being true for those experiments.

Taking the Hungarian-made Automated Telescope Network (HATNet) as an example of a ground-based

survey, we note that its 11cm telescopes produce a point-spread function of about 14′′ in radius (Hartman

et al. 2004), and thus a photometric aperture of ∼25′′ in radius. Using this radius and a depth of 0.5% as

a detection threshold, we repeat the analysis of §5.2.1, using the line-of-sight simulation at the center of

the Kepler field for the sake of comparison. For the probability of a possibly blending star to be within the

aperture, assuming a target star of 12th magnitude, we obtain 1.10, which must obviously now be interpreted

as an average number of blending stars per aperture instead of a probability. For the probability of a blending

star to be an appropriate eclipsing binary5 we obtain 9.7× 10−4, giving πBB = 1.10× 9.7× 10−4 = 0.0011.

Following §5.2.2 we calculate πHT = 2.1×10−4. Finally, taking into account that the probability of a sun-like

star hosting a planet easily detectable by this survey is only about 1%6, then πpl = 0.01×0.05 = 5×10−4 for

this survey. This results in an FPP of 0.71 for a hot Jupiter-like transit signal for a HAT-like ground-based

search, according well with Latham et al. (2009), who describe the results of follow-up efforts of a sample of

transit candidates, eight of which turned out to be blended binaries and one to be a planet.

The space-based mission CoRoT (Baglin 2003) has also had difficulties with false positives. Though

it obtains much better photometric precision than a ground-based search and benefits from uninterrupted

observing, its large, 320 arcsec2 aperture (Almenara et al. 2009) results in an expected number of 2.98 blended

stars for a mK = 14 target star (according to a simulation of one of the CoRoT lines of sight). In addition, its

photometric precision is about one part in 103, resulting in πBB = 0.0031, and πHT = 2.9× 10−4. Assuming
5For both HAT and CoRoT, we relax the assumption that V-shaped transit signals are pre-vetted, so we allow for grazing blended

binary orbits.
6for P < 11.5d and M > 0.5MJ ; Cumming et al. (2008).
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Figure 5.4 False positive probability as a function of assumed planet occurrence rate, for a mK = 14 target
star in the center of the Kepler field. The occurrence rate of planets detectable by Kepler is not known
for sure, but RV surveys, especially the NASA-UC Eta-Earth Survey of Howard et al. (2010), have made
inroads in measuring the fraction of stars hosting low-mass planets. The hashed area below 9% represents
the occurrence rate of planets with P < 50 days that is ruled out with 95% confidence by ηearth, counting
only the firm detections, and not correcting for completeness. The central hashed area represents the 95%
confidence region calculated, including candidate planets and completeness correction, for minimum masses
greater than 3 M⊕. Extrapolating their observed mass distribution down to 0.5 M⊕ brings their total estimated
planet occurrence rate to 43%. Overall, this plot shows that our derived FPP cannot reasonably be any higher
than 3% if our planet occurrence estimate is incorrect, and will likely be lower.

then a 20% occurrence rate of planets detectable by CoRoT, this gives an FPP of 0.25. At first this appears to

somewhat contradict Almenara et al. (2009), who reported 6 planets and 25 diluted binaries among CoRoT’s

“solved candidates” (ignoring the “undiluted binary” category, as we are not considering that possibility for

Kepler ). However, if one considers how much easier (and faster) it is to identify a false positive than to

positively confirm a planet, this prediction can certainly be consistent with these results, as only 49 of their

122 candidates had been solved at the time. In fact, a prediction of our methods is that many of the unsolved

CoRoT candidates are indeed planets.

Another reasonable question to ask is how uncertainties in our models and assumptions propagate through

to uncertainties in FPP. This is challenging to address exactly, as our analysis rests on the results from TRI-

LEGAL simulations, stellar model grids, and various assumptions about multiple star systems. Rather than

attempt a detailed start-to-finish treatment of all the uncertainties, we instead investigate what happens if

we artificially inject fractional uncertainties into our prior calculations and simulate the results according to

our analytic fits. We find that 20% fractional uncertainties in background stellar density, appropriate eclipse

probability, and hierarchical eclipsing triple probability lead to 17% fractional uncertainty in FPP. This is a

fiducial example, and the uncertainty in FPP scales linearly with these component uncertainties.

One might also wonder how sensitive our derived FPP for Kepler is to the assumption that 20% of stars
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host planets, as well as how justifiable such an assumption may be. We address these questions in Figure 5.4.

A 20% occurrence rate lies in the middle of the measured occurrence rate of planets with minimum masses

> 3M⊕ and periods < 50 days from the NASA-UC Eta-Earth Survey of Howard et al. (2010). In addition,

even the most pessimistic interpretation of the results from ηearth allows for a minimum of a 9% occurrence

rate, which would still imply an FPP of only 3%. More likely, the true occurrence rate is somewhat higher

than our assumption, if not as high as the ∼40% implied by a naïve extrapolation of the observed power

law-like distribution down to 0.5 M⊕. We note that the NASA-UC Eta-Earth Survey, as with all RV surveys,

is only able to measure minimum masses and thus that the interpretation of the true mass of any individual

detection is dependent on an assumption of the overall form of the planet mass function (Ho & Turner 2010b).

However, when an ensemble of minimum mass measurements is available and its distribution resembles a

power law with index α < −1, the most likely explanation is that the true mass function follows a similar

power-law shape.

In summary we may say that several factors contribute to Kepler being able to minimize the false positive

problem compared to previous transit surveys. First, its ability to astrometrically rule out wide blend scenarios

helps mitigate the issue of blended binaries. Secondly, its photometric precision enables it to identify many

false positives based on their secondary eclipses. And lastly, Kepler is sensitive to lower-mass planets, which

are significantly more common than the larger planets to which ground-based surveys are sensitive.

5.3 Detailed Framework: Considering Transit Depth

We note that we have not yet discussed any details of the transit signal besides its existence, though some

of these details may be important. For example, one might expect false positive blended binaries to be more

common at shallower depths (since faint stars are more common than bright stars, and thus more likely to

be blended), which might make the BB scenario more of a problem for earth-sized transit signals. We have

also assumed that planets and eclipsing binaries have the same eclipse probability (allowing us to cancel the

likelihood factors in Equation 6.2), though this is not exactly true either, as both the orbital separations of

the systems and the radii of the objects are different for a given fixed period. The eccentricity distribution

of binaries is a function of period—longer period systems have larger eccentricities and thus false positive

scenarios might be more likely to show only a single eclipse. And finally, for fainter stars and shallower

eclipses, it may be more difficult for internal Kepler procedures to astrometrically identify blends.

With these concerns in mind, we may pursue a more detailed analysis of any particular transit. There are

many features of transit light curves that might all be used in this exercise, but for now we only take into

account the depth of the signal, as that is the most easily measured and easily understood quantity. In this

case, Equation 6.2 becomes:

Pr(pl|δ) =
Lpl(δ)πpl

Lpl(δ)πpl +LBB(δ)πBB +LHT(δ)πHT
. (5.18)
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Figure 5.5 Distributions of apparent “transit” depths δ for different scenarios. The blended binary and hi-
erarchical triple distributions are based on TRILEGAL simulations with the binary distribution assumptions
discussed in §5.2. Examples of δ distributions are given for different target star properties, showing how the
blended binary scenario depends on target star apparent magnitude and how the hierarchical triple distribu-
tion depends on intrinsic target star mass. The planet distribution comes from an assumption of a continuous
power law in planet radius dN/dRp ∝ R−2

p , including random statistical dilution by binary companions. Note
how blended binaries become less significant for deep signals and how eclipsing triples become insignifi-
cant for the shallowest signals. The deep end of the false positive δ distributions are mostly due to eccentric
binaries that are oriented such that only a single eclipse occurs.

Here the likelihood functions provide a means to quantify the extent to which the conclusions of our simple

framework may change as a function of transit depth δ.

Figure 5.5 shows the likelihoods that we estimate for the three different scenarios as a function of depth.

The distribution of depths for the blended binary and hierarchical triple scenarios are determined from the

same calculations that we used to compute the priors, except rather than just counting all the systems that

give depths that are both planetary and detectable, we keep track of the depth of each simulated false positive

and build up δ distributions.

We calculate the δ distribution for planets assuming a simple continuous power law distribution of planet

radii (dN/dRp ∝ R−2
p ) between 0.5 and 20 R⊕, and setting δ = (Rp/R?)2. While a more sophisticated treatment

might involve adopting a planet mass distribution according to RV surveys and theoretical mass-radius rela-

tions (e.g. Fortney et al. (2007); Seager et al. (2007)), the number of assumptions required for these models

and the fact that they do not generally include significant atmospheres for super-Earth-type planets suggests

that such efforts are not warranted; for example, Rogers et al. (2011) show that Neptune-sized planets can

have a wide range of possible masses. In addition, the current uncertainties in stellar radius of the Kepler can-

didate host stars further blur the mapping from δ to Rp. Thus the main role of the δ distribution we adopt

for planets is to encapsulate the assumption that smaller planets are more common than large ones, which is
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Figure 5.6 As stars get fainter and transit signals get shallower, the ability for Kepler to observe a centroid
shift indicative of a displaced blended eclipsing binary decreases. We parametrize this effect according to
Equation 5.19. The plateau towards shallow depths is a result of the maximum blending area for this example
being set to an aperture of 8 Kepler pixels; the location of this plateau for any particular target will depend
on its aperture size. This plot is made according to a Galactic latitude in the middle of the Kepler field;
other latitudes will scale appropriately according to the varying stellar density. The planet radii are marked
assuming a Solar-radius star.

consistent with radial velocity surveys (Howard et al. 2010).

Another consideration that should vary with δ is the ability of Kepler to astrometrically identify displaced

blends. In §5.2 we assumed a radius of 2′′ inside which a blend might reside. However, this radius should

increase as transits get shallower and stars get fainter, which should cause the signal-to-noise of the centroid

shift signal to decrease. This is a question that the Kepler team should be able to address using simulations

of its offset-detecting procedures, but for our purposes we use the radius that the Kepler team obtained for

Kepler 10-b (1.′′17) (Batalha et al. 2011) and assume scaling with δ and mK as follows:

r = 1.′′17
√

10−0.4(11−mK )

(
δ

1.5×10−4

)−1

, (5.19)

with 11 being the mK value for Kepler 10. To be conservative we set the minimum r to be 2′′ if this expression

gives a smaller value. On the high end, we cap the radius at 6.′′4, corresponding an area equivalent to

8 Kepler pixels, a typical aperture size (though for any particular target this will vary). The square root

factor accounts for a diminishing number of photons received as the target star gets fainter, and the inverse

relationship with delta is because the centroid shift scales as δ: ∆C ∼ δ · r. Figure 5.6 illustrates this effect;

bright stars and deeper transits give Pr(blend) as determined in §5.2.1.1, but as the target star gets fainter and

the signal shallower, the expected number of possibly blending stars begins to increase substantially, up to

the point at which our calculated blend radius exceeds the maximum assumed 8-pixel aperture area.
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Figure 5.7 The probability that a 10-day signal of a given depth will be a false positive, shown for both an
mK = 11 and an mK = 15 star with Solar properties, Galactic latitude in the center of the Kepler field, and an 8
pixel Kepler aperture. A overall planet occurrence rate of 20% and a planet radius function dN/dR∝ R−2 are
assumed. The false positive probability increases towards deeper signals mostly because of the decreasing
planet radius function combined with the significant tails of the false positive δ distributions. For the fainter
star the false positive probability begins to pick up again at the shallowest depths as it becomes more difficult
for Kepler to rule out displaced blended binaries via astrometry. The plateau corresponds to the point at which
the blending radius becomes equal to the aperture size. The dotted line represents the effect of restricting the
blending radius to 2′′ with a single high-resolution image; this can decrease the false positive probability for
Earth-sized signals from ∼4% to <1%.

5.4 Results

5.4.1 General

The adoption of these more detailed considerations enables us to estimate the FPP as a function of δ for a star

of given apparent Kepler magnitude, Galactic latitude, stellar radius, stellar mass, and aperture size. This is

illustrated in Figure 5.7 for fiducial examples of a signal with a 10-day period around mK = 15 and mK = 11

Sun-like stars in the middle of the Kepler field, both assumed to have 8-pixel apertures. We first note that

over the whole range of δ for these examples, the FPP remains <0.10, indicating that these additional con-

siderations do not significantly change the qualitative conclusions we reached within the simple framework.

The majority of transit signals in the Kepler data release will be actual planets.

We note that FPP generally tends to increase with increasing signal depth. This may be understood by

considering that the planet radius function decreases toward larger signals while the hierarchical triple false

positive δ distribution remains relatively flat (see Figure 5.5). Towards shallow signals FPP begins to increase

again; this is due to the growing influence of the blended binary scenario as the radius inside which Kepler is

able to rule out displaced blends decreases. The plateau at the shallowest depths is a result of the “blending

radius” becoming equal to the size of the aperture, the maximum value it can attain. If this blending radius is
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(a) (b)

(c)

Figure 5.8 These plots illustrate the behavior of Kepler false positive probability (FPP) as a function of target
star magnitude (mK) and Galactic latitude for three particular choices of transit depth δ, all plotted with the
same color scale. A planet occurrence rate of 20% is assumed, and the target star is fixed to have Solar mass,
Solar radius, and a photometric aperture of 8 pixels. These plots are similar to Figure 5.3, except for that they
take into account both the changing blend radius as a function of mK and δ (Equation 5.19) and the relative
likelihoods of false positives and planets at the chosen values of δ. All three δ values show increasing FPP
towards fainter target stars and lower galactic latitudes, though the strength of the gradient decreases for the
deeper signals, as the relative importance of the hierarchical triple scenario increases. Dotted lines show the
FPP contours if the blend radius were restricted to 2′′, illustrating the power of a single deep high-resolution
observation. Note that only in the Earth-sized transit case does the high-resolution observation result in FPP
<0.01, as the FPP for shallower signals is dominated by chance-alignment blended binaries while the FPP
for deeper signals is dominated by hierarchical triple scenarios.

able to be decreased to 2′′ by a deep high-resolution image, that reduces the FPP at shallow depths to below

1%.

We note that the plots in Figures 5.5, 5.6, and 5.7 are only for particular chosen values of magnitude and a

single Galactic latitude in the middle of the Kepler field, as well as for particular choices of stellar properties.

We present a more comprehensive illustration of the FPP manifold in Figure 8, choosing three specific values

of δ to illustrate how the FPPs for different types of signals vary with target star magnitude and Galactic

latitude. We fix the target star to have Solar properties in these examples.

Earth-sized transits show a steep gradient across the field and towards fainter stars; this is a result of

increasing contribution to the FPP from blended binaries (see Figure 5.2), combined with the increased blend

radius for a shallow transit (Figure 5.6). This gradient is shallower for a Neptune-sized signal and almost

disappears for a Jupiter-sized signal, because of the growing contribution of the hierarchical triple scenario
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Figure 5.9 The distribution of false positive probabilities (FPPs) among the 1235 Kepler planet candidates
announced in Borucki et al. (2011). FPP for each candidate is calculated individually, taking into account
the apparent Kepler magnitude, Galactic latitude, mass and radius of the host star, the depth and period of
the signal, the number of pixels contained the optimal aperture used for Kepler photometry, and the detection
threshold of each KOI time series. Nearly 90% (1098) have FPPs less than 10%, and over half (713) have
FPPs less than 5%. The mean FPP of the sample is about 6%, indicating that we expect there to be fewer than
∼75 false positives among the candidate sample. An important caveat here is that these calculations assume
that all candidates have passed the false positive-vetting tests that are possible using Kepler photometry.

and decreasing influence of chance-alignment blended binaries. These plots also illustrate the potential power

of deep high-resolution imaging follow-up observations. If such an image is taken and no companion is found

outside a radius of a few arcseconds, then that dramatically reduces the FPP for shallow signals, as illustrated

with the dotted contours.

5.4.2 Application to Kepler Candidates

We apply the framework discussed above to calculate the FPP for every Kepler Object of Interest (KOI)

published in Borucki et al. (2011). For each KOI we generate individualized δ distributions for the different

false positive scenarios using the relevant Kepler magnitude, Galactic latitude, and stellar parameters from the

Kepler Input Catalog. We also match the eccentricity distribution of false positive scenarios to the period of

the signal (according to the multiple star period-eccentricity distribution as illustrated in Tokovinin (1999))

and use the actual detectability threshold for each KOI (based on calculating what depth corresponds to

S/N = 3 according to the data in Borucki et al. (2011)) to count “appropriate” eclipsing stellar systems, instead

of the generic 10−4 value. We then calculate the FPP using the actual area of the photometric aperture, as

determined from the publicly available pixel data for each KOI and the transit depth as given in Borucki et al.

(2011). The distribution of these calculated FPPs is illustrated in Figure 5.9.
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5.5 Discussion: Relationship to “BLENDER”

The FPP analysis we present in this paper is not the first false positive analysis that has been done regarding

Kepler candidates. In fact, the Kepler team has statistically “validated” three planets: Kepler-9d (Torres et al.

2011), Kepler-11g (Lissauer et al. 2011), and Kepler-10c (Fressin et al. 2011), by demonstrating that the

chance of any of those signals being due to a false positive is low enough to consider the candidate a bona

fide planet. This has been done using the procedure the Kepler team has named BLENDER (Torres et al.

2004, 2011).

BLENDER attempts to directly model the candidate light curve using every conceivable false positive

scenario, informed by high-resolution imaging follow-up observations. The goodness-of-fit of the false pos-

itive models is then compared to the best-fit planetary model. The false positive scenarios that cannot fit the

light curve as well as as a transiting planet model are rejected. The a priori likelihood of the remaining sce-

narios (those false positive scenarios that provide comparable-quality fits to the light curve) is then assessed

relative to the likelihood of a bona fide transiting planet, and if the planetary explanation is much more likely,

then the planet is considered validated.

As can be inferred from the fact that the Kepler team has published only three validated planets to date out

of over 1200 planet candidates that have been made public, BLENDER is a very time-consuming procedure,

being both computationally expensive and labor-intensive. Relying on extensive modeling of individual light

curves and requiring a suite of follow-up observations to be most effective, it can only be applied to single

KOIs on an individual basis.

If BLENDER may be characterized as a “deep and narrow” false positive analysis tool, the FPP analysis

we present in this paper might be described as “shallow and wide.” It takes only 15 seconds7 per candidate

for us to generate the δ-distributions required to calculate the individualized FPP numbers listed in Table ??,

which makes our analysis easily and immediately applicable to all the KOIs, whereas BLENDER takes weeks

of computation and analysis per candidate. On the other hand, BLENDER takes into account all possible

information about each KOI (detailed light curve shape, AO imaging, multiwavelength transit information,

etc.), whereas we only consider the depth and period of the transit signal and the properties of the target star.

Another way to think of the relationship between our FPP analysis and BLENDER is that if BLENDER is

a N-step procedure, our analysis is step N. We ignore most of the detail of the light curve and make no use of

any follow-up observations, but go straight to the a priori likelihood calculation and do that step as carefully

as possible. What is remarkably encouraging for the Kepler mission is that even this “shallow” single-step

analysis is enough to determine that the false positive probability for almost every KOI is less than 10%, and

for over half the KOIs is less than 5%.

If our analysis is step N of the BLENDER process, how would the first N − 1 steps be incorporated into

the present analysis to improve upon the FPPs published here? First, consider that if x = Lpl and y = LBB +LHT,

7non-parallelized computation on an iMac with a 2.66 GHz quad-core i5 processor
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then the probability ppl that a signal is a planet is the following:

ppl =
x

x + y
. (5.20)

This may be rewritten as

ppl =
1

1 + y/x
. (5.21)

If y� x (as we have shown it typically is) then

ppl ≈ 1 −
y
x
, (5.22)

or

FPP≈ y
x
. (5.23)

The typical role of BLENDER in this context can then be thought of as multiplying y by a factor we call

fBLENDER (0 < fBLENDER < 1) that represents the fraction of the potential false positive scenarios (weighted

by their intrinsic likelihoods) that produce acceptable fits to the light curve. Thus if BLENDER were to rule

out 90% of the false positive scenarios considered in our analysis ( fBLENDER = 0.1) for a particular system,

then that would decrease the FPP for that system by a factor of 10—such analysis would be enough to make

FPP< 0.01 for almost every KOI.

In a similar spirit, for those KOIs whose FPP is dominated by the blended binary scenarios (mostly the

shallowest signals), y can also be significantly decreased simply if deep high-resolution imaging shows no

potentially blending companions. This effect is illustrated in Figure 8, where dotted FPP contours are drawn

illustrating the effect of restricting the “blend radius” to 2′′. Decreasing this even further to 1′′ or smaller

would give another factor of 4 or more reduction in FPP.

In some cases of course, follow-up imaging observations will identify the presence of nearby stars within

the “blend radius” inside of which astrometric offset methods were previously unable to identify displaced

blends. In these cases, the analysis presented in this paper must be superceded by a more specifically tailored

analysis such as BLENDER. In general, a detected nearby blend will cause the prelimininary FPP to substan-

tially increase, as the Pr(Blend) factor that we found to be of order ∼0.10 (§5.2.1.1) is then divided out from

the LBB term, making it more comparable to the Lpl term. In these cases a full suite of follow-up observations

and the more detailed wholistic approach that BLENDER uses will become necessary to validate candidates.

5.6 Caveats and Conclusions

We present both a framework to analyze the a priori false positive probability (FPP) of Kepler planet can-

didates and preliminary FPPs for the entire sample of 1235 released candidates, finding that FPP < 10% for

almost all the KOIs and <5% for over half the KOIs. The philosophy we adopt in this work is to calculate



63

conservative upper limits to these FPPs; further analysis may well demonstrate them to be lower, but we do

not expect them to be higher. Our analysis indicates that fewer than ∼75 are likely to turn out to be false

positives.

However, the details of these conclusions are based on several assumptions (apart from those regarding

the accuracy of the TRILEGAL simulations and the properties of binary and triple systems described in §5.2)

that come with some caveats:

• We assume that all candidates have passed all preliminary false-positive-vetting procedures that are

possible using Kepler photometry and astrometry alone. In particular we assume that the transits are

not obviously V-shaped, that there is no detectable secondary eclipse, and that careful centroid analysis

has not revealed the presence of a displaced blended binary. If photometry or astrometry for a candidate

actually does turn out to indicate a possible false positive, then the FPPs calculated in this paper for

that KOI are not accurate for that system.

• We assume host star stellar parameters according to the Kepler Input Catalog (KIC). If stellar radii or

stellar types are found to be significantly different from the KIC estimates, then that could change the

interpretation of transit signals (e.g. turning a Jupiter-sized planet into an M-dwarf).

• We assume a planet radius function that increases towards smaller planets. There are many reasons,

both theoretical and observational, to assume this is correct, but if it is not, then the false positive

numbers for the smallest candidates would be a factor of two or so higher.

We emphasize that in this analysis the only information about the transit that we have considered in detail

is the depth. Certainly more information could be used, if one is willing to make more assumptions. For

example, one might include a more detailed period dependence in the likelihood function by comparing the

period distribution of known binary and triple systems to an assumed period distribution of planets, the way

we have done with δ. However, we do not believe that the true period distribution of exoplanets is known

well enough yet for such an analysis to be useful.

We also emphasize that the intention of this paper is not to encourage other analyses to completely ignore

the possibility that some Kepler candidates might be false positives. Rather, we suggest that in statistical

analyses using the ensemble of KOIs to investigate the distribution of planet properties, the FPPs in this

paper (or based on the calculations in this paper; e.g. with different assumptions of the planet occurrence rate

or radius function) be used to count “fractional planets”; i.e. for a KOI with FPP = 0.05 to count as 95% of a

planet.

Finally, we provide several suggestions to guide and optimize Kepler follow-up efforts, based on the

results of our analysis:

• For the shallowest candidates, or those for which a blended binary is the most likely false positive

scenario, we recommend deep high-resolution imaging (with a target contrast ratio corresponding to
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the depth of the signal: ∆mK = −2.5logδ), as excluding the presence of potentially blending stars at

close separation will be the quickest path toward validation of such systems. Contrast ratios up to 10

magnitudes as close as 1′′ have long proven to be technically feasible with existing AO instruments

(Luhman & Jayawardhana 2002; Biller et al. 2007, e.g.).

• For deeper candidate signals for which a hierarchical eclipsing triple is the most likely false positive

scenario we recommend follow-up efforts targeted toward the identification of physically bound com-

panions to the KOI. High-resolution imaging is one useful tool here (though not necessarily as deep

as those observations targeting projected binaries) to target wide-separation physically-bound compan-

ions, but high S/N spectroscopy (both optical and infrared) may be even more important, in order to

spectroscopically identify or constrain the presence of low-mass stellar companions.

• For all the candidates we recommend spectroscopic follow-up to improve our knowledge of the phys-

ical parameters of the candidate host stars, in order to rule out the possibility of an eclipsing binary

being misclassified as a transiting planet due to an incorrect assumed radius.

In summary, the exquisite photometric and astrometric precision of the Kepler instrument enables many

of the false positives that have traditionally plagued transit surveys to be identified prior to follow-up obser-

vations. The result is that the majority of the candidates announced by Borucki et al. (2011) are likely to be

bona fide planets. Thus, having surveyed the landscape of false positives in the Kepler field, we conclude that

the outlook is bright for statistical analyses of exoplanet occurrence and properties based on the data made

public by the Kepler team.

5.7 Appendix: Blended Planets

In the present work we consider as false positives only astrophysical configurations that do not involve any

planets but still mimic the signal of a transiting planet. However, there are various other scenarios involv-

ing “blended planets” that, while not strictly false positives (i.e. a transiting planet is still involved), may

contribute significantly to uncertainty in the planet parameters derived from the transit signal. A “blended

planet” for our purposes is a transit signal that appears to be a planet of a particular size transiting the target

star but is actually a larger planet transiting a fainter blended star. As before, these scenarios can be divided

into chance-alignment systems or physically associated hierarchical systems.

We have calculated that chance-alignment blended planets are significantly less likely to occur than their

blended stellar binary cousins; this can be heuristically understood from the following considerations:

• Because the deepest intrinsic planetary transits have depths of only ∼0.02 and the diluted signal has to

be detectable (we have adopted δ & 10−4 as a threshold), then the maximum contrast between the target

star and the blending star is ∆mK = 5.75, which is significantly less than the ∆mK = 10 we adopted



65

for blended binaries in §5.2.1.1. The sky density of stars available for the chance-alignment blended

planet scenario is thus about 5.5 times lower than that for the blended binary scenario, according to the

TRILEGAL simulations.

• Our assumed planet frequency (∼20%) is lower than our assumed binary fraction (∼40%).

• The largest planets, while the most amenable to causing the blended planet scenario because of their

larger intrinsic transit depth, are the least common—only ∼1% of solar-type stars host close-in giant

planets, and this occurrence rate is even lower for lower-mass stars (Endl et al. 2003; Johnson et al.

2010a), which are the most common blending stars.

Physically associated hierarchical planets, on the other hand, might well be relatively common compared

to the stellar false positive scenarios or chance-alignment blended planets. Another way of saying this is that

binary stellar systems are relatively common, and so it seems likely that a substantial fraction of Kepler tar-

gets (and therefore candidates) are in fact binaries of unknown architecture. The net effect of this on the

interpretation of the sample of planet candidates will be additional uncertainty in the derived planet prop-

erties due to both diluting light from a binary companion and from possible stellar misclassification by the

Kepler Input Catalog, which assumes each star is single. We note that the Kepler team does include blended

planets in the BLENDER procedure, and in fact that such scenarios are often the most difficult to rule out

(Kepler team, 2011, private comm.).

In summary, while the analysis presented in this paper may provide confidence that “classic false posi-

tive” stellar systems are not often masquerading as Kepler transiting planet candidates, we do caution that

uncertainties regarding candidate host systems (including whether or not they are binary) must be considered

in any statistical analysis of the whole candidate sample.
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Chapter 6

An Efficient Automated Validation
Procedure for Exoplanet Transit
Candidates

This chapter is adapted from “An Efficient Automated Validation Procedure for Exoplanet Transit Candi-

dates,” ApJ 761,6, by TDM, and may be understood as a continuation and expansion of the ideas and methods

presented in the previous chapter.

6.1 Introduction

The first exoplanets found to transit the face of their host stars were all initially discovered by Doppler surveys,

which detected minute radial velocity (RV) variations of stars indicative of the gravitational tug of orbiting

planets (Charbonneau et al. 2000; Henry et al. 2000; Butler et al. 2004; Bouchy et al. 2005; Sato et al. 2005).

Surveys designed to detect exoplanets via their transits soon followed (Alonso et al. 2004; McCullough et al.

2006; Bakos et al. 2007; Collier Cameron et al. 2007), motivated by the wealth of physical information that

the light curve of a transiting planet can provide (Seager & Mallén-Ornelas 2003). While initial forecasts

suggested that such programs would churn out planet detections at tremendous rates (Horne 2003), the actual

yield of ground-based surveys has been much more modest, with only about a dozen discoveries published

in the first five years of transit survey operations.

One of the major reasons for this slower-than-hoped-for discovery rate (in addition to the various con-

tributing subtleties discussed in Beatty & Gaudi (2008b)) is the preponderance of various eclipsing stel-

lar binary scenarios mimicking planet transit signals, or so-called “astrophysical false positives” (see §2.1),

combined with the quantity and expense of the observational resources required to confirm a signal as truly

planetary. The scale and scope of the Kepler mission multiplies this challenge to an unprecented degree, as

many of the stars and candidates are not easily amenable to traditional follow-up procedures.

Given these difficulties, it has become necessary to adopt a new paradigm of transiting planet confirma-
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tion: probabilistic validation. The philosophy behind this strategy is to demonstrate that a particular transit

candidate is much more likely to be a transiting planet than it is to be a false positive—which may be the

only option available if positive confirmation via RVs or TTVs is impossible or impractical. This has been

exemplified by the Kepler team’s BLENDER procedure, which is descended from the methods which helped

identify OGLE-TR-33 as a false positive, and also used to help confirm other OGLE candidates (Torres et al.

2005, e.g.). Using a suite of follow-up spectroscopic and imaging observations combined with extensive light

curve fitting, BLENDER rules out regions of parameter space where false positive models are unable to fit

the photometric data as well as a planet model. First demonstrated with the validation of Kepler-9d (Torres

et al. 2011), this procedure has been used to validate many of the planets which have so far received official

Kepler number designations.

However, despite the successes of BLENDER, Kepler still has a problem of scale: BLENDER is ex-

pensive, both in CPU- and person-hours, and has not yet been applied to large numbers of candidates in a

wholesale manner. As the overall mission of the Kepler project is not individual planet detections (as has been

the case with ground-based surveys) but population statistics, there was a need to estimate the a priori false

positive probabilities (FPPs) for Kepler candidates, before any follow-up observation or detailed BLENDER-

style analysis. This was the inspiration for the work of Morton & Johnson (2011a), which demonstrated that

for transit candidates that have passed the vetting tests that are possible with Kepler photometry alone, the

FPP is typically around 5% or less.1 For broad-brush studies to date, this result has been used to essentially

ignore false positive contamination when analyzing the statistical properties of the candidate sample.

Despite the reassurance these a priori calculations provide that the broad characteristics of the overall

Kepler candidate sample reflect those of the true exoplanet population, there remains significant motivation

to push a priori FPP analysis beyond MJ11. First of all, MJ11 did not fully quantify all false positive

scenarios; in particular, grazing eclipse signals, non-blended eclipsing binaries, and background blended

transiting planets were not considered. A more thorough analysis will further increase the fidelity of the

entire Kepler sample and thus enable more nuanced statistical analyses.

Secondly, the framework presented in MJ11 uses only minimal information about the photometric signals;

that is, their depth and period. Much more information is available, particularly regarding the shape of

the transit. In addition, MJ11 did not provide a transparent way to incorporate the results of follow-up

observations to update the a priori calculations. And finally, as the process of probabilistically validating a

planet is the same as demonstrating that its FPP is sufficiently low, a more stringent FPP calculation in the

style of MJ11 may be used to validate large numbers of transit candidates for which traditional confirmation

is difficult or impossible. In addition to enabling ground-based surveys to streamline follow-up efforts, such

1The dominant reason why this is much lower than has been the case for ground-based surveys is because the quality of the Kepler
photometry allows for much more constraining pre-followup vetting than has been possible with ground-based surveys; in particular,
Kepler is able to identify many blended binary scenarios by measuring the target’s center-of-light to shift during eclipse. This makes the
effective “blend aperture” for Kepler much smaller than for ground-based wide-field surveys. Additionally, the precise photometry can
put strict limits on the presence of any secondary eclipse, which further constrains false positive scenarios. And finally, the signals are
typically shallower than detected in ground-based surveys, which also contributes to intrinsically lower FP rates.
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a tool could ensure that the legacy of the Kepler mission is indeed thousands of transiting planets, not just

planet candidates.

This paper presents a comprehensive transit candidate validation procedure that is based on the a priori

framework of MJ11, yet also uses information about the shape of the transit signal and naturally incorporates

(yet does not require) follow-up spectroscopic and imaging observations. An early version of this analy-

sis, representing a halfway point between MJ11 and this work, was used to validate the KOI-961 planets

(Muirhead et al. 2012b). Crucially, this method is capable of analyzing large numbers of candidates quickly;

the entire end-to-end computation for a single transit candidate signal takes only about 10 minutes on a

typical personal computer. It is thus capable of being applied to the entire Kepler candidate sample in the

immediately foreseeable future. Looking beyond Kepler, the larger goal of this procedure is to revolutionize

the follow-up strategy of large-scale transit surveys by reducing the time and and cost necessary to identify

false positives or confirm transiting planets, and to enable statistical analyses of transit candidate populations

without having to wait for every candidate to be individually solved.

In §6.2 I review the probabilistic framework introduced in MJ11 and summarize the false positive scenar-

ios considered in this work. I describe the entire procedure in detail in §6.3, present the results of applying

this procedure to a number of previously studied Kepler signals in §6.4, discuss the relationship of this work

to MJ11 in §6.5, and provide concluding remarks in §6.6.

6.2 Framework

Validating a transiting planet means demonstrating that the false positive probability (FPP) of the signal is

small enough to be considered negligible. Regardless of exactly where this threshold lies, the process of

validation is the same as carefully calculating the FPP. Following MJ11, I define the FPP for a given transit

signal:

FPP = 1 − Pr(planet | signal) (6.1)

where the vertical line means ‘given’ (i.e. “the probability of there being a planet given the observed signal”),

and

Pr(planet | signal) =
LTPπTP

LTPπTP +LFPπFP
. (6.2)

In the above equation, L represents the Bayesian likelihood factors (the “probability of the data given

the model”), and π represents the priors (the a priori probabilities that each given scenario exists). The TP

subscript represents the true transiting planet scenario, or “true positive,” and FP represents all of the false

positive scenarios.

The false positive scenarios I consider in this analysis are the following:

• A non-associated foreground or background eclipsing binary system is blended within the photometric
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aperture of the target star (BEB).

• The target is a hierarchical triple system in which two of the components eclipse (HEB).

• The target star is an eclipsing binary (EB).

• A non-associated blended foreground or background star happens to have a transiting planet (Bpl).

This list is more comprehensive than MJ11, which only considered BEBs and HEBs quantitatively, and

comprises every conceivable astrophysical false positive scenario.

6.3 Procedure

The validation procedure I present in this paper has the following four steps:

1. Simulate a representative population for each scenario, fixing the period to be that of the transit

candidate signal.

2. Use this population to calculate the prior for each scenario, optionally taking into account any follow-up

observations that may exist.

3. Use the same simulated population to calculate the likelihood of the observed transit signal under each

scenario.

4. Combine these numbers to calculate the FPP (Eq. 6.1) of the signal under an assumption of the specific

planet occurrence rate; if this number is significantly <1% for a conservative estimate of planet

occurrence, then consider the planet validated.

In the following subsections I explain each of these steps in detail, including the important terms in boldface

above.

6.3.1 Population Simulations

Central to the validation procedure I present in this paper is the idea of simulating “representative popula-

tions.” This means using physically and observationally informed assumptions to generate a population of

different instances of a particular transit or eclipse scenario at a given fixed period, such that the simulated

population accurately reflects the true population. In other words, a representative population must be created

such that each instance in the population is equally likely to exist; this makes averaging over the population

trivial, as each instance has equal weight in defining the distribution of any desired quantity. For clarifica-

tion, in this paper the following boldfaced words conform to this usage: a representative population for a

particular scenario (e.g. BEB) is made up of many simulated instances of that scenario. For all the results

presented in this paper, I create each representative population to have 20,000 instances.

These simulations necessarily require several assumptions:
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• The population of stars in a cone around the line of sight. This requires assumptions about both

Galactic structure and stellar evolution. TRILEGAL (TRIdimensional modeL of thE GALaxy; Girardi

et al. 2005, and used in MJ11) is a tool perfectly suited to this purpose. TRILEGAL takes as input

a given direction and area on the sky, a value for extinction at infinity, and parameterizations of the

Galactic structure (e.g. scale height of the disk), and returns an appropriately simulated stellar popula-

tion, with apparent magnitudes in any chosen photometric system as well as the physical properties of

all the stars.

• The properties of multiple star systems. This encompasses both multiplicity fractions and the distri-

butions of physical and orbital properties for multiple systems, such as the mass ratio and eccentricity

distributions. All these properties may be adopted based on the statistics of observational multiplicity

surveys, such as Raghavan et al. (2010). To simulate the physical distributions of multiple systems,

I first start with a total mass of a star system, split it into two components with 50% probability, and

then split one of those into two more with 25% probability. Each time I make a split I choose a mass

ratio uniformly between 0.1 and 1. There is no specific physical motivation for this procedure, but it

reproduces well the observations of Raghavan et al. (2010), who observed roughly 35-40% of stars to

be in binary systems and about 12% to be in triple or higher-order multiple systems, and a flat mass

ratio distribution for binary pairs. Besides the binary fraction, I also must assume a “close binary

fraction,” which is the fraction of stars that have companions with periods small enough to mimic the

observed planet transit candidate population. For this cutoff I choose P < 300 days; according to the

period distribution observed by Raghavan et al. (2010) this encompasses about 12% of binary stars.

Therefore I assume a “close binary fraction” of 0.05 ≈ 0.4× 0.12. Unlike the binary fraction, we do

not use a pared-down “close hierarchical fraction,” under the assumption that most systems in triple

and higher-order systems will undergo significant orbital evolution over their lifetimes, ending up with

at least one close pair, and according to studies that have observed this (Tokovinin et al. 2006).

• Stellar models. Accurately simulating eclipsing star systems requires assigning appropriate physical

and observational properties to simulated binary companions. Given a primary star of a particular

mass, age, and metallicity, a simulated binary companion is assigned a mass according to the assumed

mass ratio distribution, and then a radius and magnitudes in different passbands according to stellar

model predictions for that particular mass, age, and metallicity. Models are also required to accurately

simulate a target star as a hierarchical system, which requires estimating absolute magnitudes for the

target star in addition to its companions, in order to calculate both blended eclipse depths and the total

colors of the system. In this work I use the Padova stellar models (Girardi et al. 2002) for all masses

>0.15 M� (the lower limit returned by the online interface that provides the models) and the Dartmouth

models (Dotter et al. 2008) below 0.15 M�. Preference is given to the Padova models for the sake of

consistency, because they are used to populate the TRILEGAL simulations. Below 0.11 M� (the lower
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limit for the Dartmouth models), I use the models of Baraffe et al. (2002).

• Planet occurrence rate. Somewhat paradoxically, in order to complete the FPP calculation for any

given transit signal, prior assumptions about the planet occurrence rate and radius distribution must

be made. See section 3.4 for how I treat this delicate issue by introducing the concept of the specific

occurrence rate. For the background transiting planet scenario, I use a generic assumption of a 40%

planet occurrence rate, with a power law distribution of planet radii dN/dR∝ R−2.

Due to all these assumptions, the procedure I present in this paper is model-dependent. However, this

is a feature of all Bayesian analysis, which always depends on assumptions (priors) and models, whether

physical or empirical. The advantage of the Bayesian approach is that it provides a natural way to incorporate

the existing body of knowledge into a new analysis, and to make assumptions explicit. That is, there has

been significant work in astronomy dedicated to investigating Galactic structure, stellar models, and stellar

multiplicity, and the strategy of this analysis is to attack this probabilistic validation problem armed with as

much of this prior knowledge as possible.

6.3.2 Priors

I define the prior (πi) for each scenario to be the product of three distinct factors: the probability that the

astrophysical scenario in question exists within the photometric aperture, the geometric probability that the

orbit is aligned such that an eclipse is visible, and the probability that the eclipse is “appropriate”—that is,

able to mimic (or be detected as) a transiting planet. I calculate the first of these factors based on the Galactic

population and stellar multiplicity rate assumptions discussed in §6.3.1, combined with knowledge of the sky

area inside which a FP might reside.

The probability of an eclipse occurring, given random orbital orientations with respect to the plane of the

sky, is

Precl =
(

R1 + R2

a

)(
1± esinω

1 − e2

)
, (6.3)

where R1 and R2 are the radii of the two bodies in question; a,e, and ω are their orbital semimajor axis,

eccentricity, and argument of periastron; and the ± symbol is a + for primary eclipse and − for secondary.2

Calculating this probability for a particular scenario requires averaging over the distribution of the various

physical and orbital quantities of that particular scenario (i.e. larger stars are disproportionately likely to

host a binary star that eclipses, for a given period); in practice this is accomplished simply by simulating

a representative population (§6.3.1) for a particular scenario, assigning isotropic orbital inclinations, and

counting what fraction result in an eclipse (either primary, secondary, or both).

2Note that using the sum of the radii in this equation for transit probability accounts for the possibility of grazing eclipses; this is
different from MJ11, who used the difference of the radii, explicitly rejecting grazing eclipses as potential false positives, on the grounds
that any explicitly V-shaped transit could be vetted as a probable false positive based on photometry alone. In this work, I include the
possibility of grazing transits in all the scenarios.
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In order for an eclipse of a certain scenario to be “appropriate,” it must pass all vetting constraints avail-

able, and the probability that a certain scenario will result in an appropriate eclipse may be calculated by just

counting what fraction of a representative population pass the constraints. For the analysis in MJ11, the only

constraint we used was depth: the diluted primary eclipse depth must be deep enough to be detected, while

the secondary eclipse depth must be shallow enough not to be detected, given a detection threshold (or one of

the eclipses must be missing due to an eccentric orbit). In the present work, I have generalized the framework

in order to naturally include different types of supplementary observations—either preparatory or follow-up,

as the case may be.

For example, as part of the simulations, I assign each false positive instance apparent magnitudes in many

passbands. This allows observed colors of the target star to be used to constrain the population simulations.

For example, in the case of Kepler targets, each star has Kepler Input Catalog (KIC) griz + 2MASS JHK

magnitudes, and we constrain our representative populations of HEB and EB scenarios to conform to the

observed total g − r and J − K colors, to within 0.1 mag (I choose these two colors in particular, and not

g − K, for example, to avoid being too sensitive to metallicity effects (Johnson & Apps 2009)). This results

in asymmetric distributions of target star properties, as shown in Figure 6.1. If a high-resolution spectrum

is obtained for the target star, allowing for spectroscopic measurements of Teff and logg of the star that

dominates the system luminosity, then these populations may be constrained to require the primary star to

have the measured properties.

Figure 6.1 The distribution of hierarchical triple systems allowed for Kepler-19b (KOI 84.01) by the KIC
g − r and 2MASS J − K colors. Note how there is a tail of higher-mass systems that can mimic Solar-like
colors. This is important for calculating FPP, because systems with higher-mass (and thus higher-luminosity)
primaries are more prone to cause false positives with shapes similar to planet transits. If the spectroscopic
properties of the primary are measured (e.g. with a high-resolution spectrum), then this significantly con-
strains the false positive landscape (see Figure 6.6).

In addition, for each blended false positive instance I assign an angular separation from the target star

on the sky, assigned differently for different scenarios. An important quantity for this step is the so-called
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“confusion radius,” or the separation from the target star inside which a blend might reside. This may be

constrained either by centroid analysis or simply by the size of the aperture, to be most conservative. Chance-

aligned blends are assigned positions perfectly uniformly within the confusion radius surrounding the target

star, whereas the positions of hierarchical scenarios are assigned according to the assumed orbital distributions

and random mean anomalies.

Using these separations in combination with the multi-band photometry information, I may use a contrast

curve (magnitude contrast as a function of radius from the target star) that results from analyzing a high-

resolution follow-up image in any passband to rule out all instances of a particular scenario that could have

been detected by the observation. The same principle may be naturally used to rule out instances based on

other types of follow-up, such as multi-color transit observations testing for color-dependent transit depth.

After including all available supplementary observational information—or none, as the case may be, in which

case the only constraints are the primary/secondary depth conditions and the confusion radius—the “appro-

priate probability” is then the fraction of instances of a particular scenario that pass all the vetting tests.

6.3.3 Likelihoods

Once the representative population for a given scenario is simulated and vetted according to whatever infor-

mation is available, then the likelihood L for a given transit signal under that scenario may be calculated. It

is at this stage in the procedure that the method introduced in this paper advances most significantly beyond

the preliminary work of MJ11, so I will first give a brief review of how we treated likelihoods in that work.

In a Bayesian calculation, the likelihood factor may be colloquially described as “the probability of the

data given the model.” In the simplest case, if the data consists of a single measurement, and the property

being measured follows a known probability distribution, then the likelihood of the data is simply the known

probability density function (PDF) of the property evaluated at the location of the measurement. This is

exactly how we treated the likelihood factor in MJ11: the “datum” was the depth of the transit signal, and the

PDF was determined using the distribution of depths from the representative population simulations.

The crucial step forward I take in this work is to take full advantage of fact that there is much more

information in the shape of a transit signal than just its depth. In short, transiting planet and diluted eclipsing

binary signals, at a fixed period, generally do not look the same. This is the starting point and backbone of the

Kepler team’s BLENDER analysis, in which the goodnesses-of-fit of exhaustive simulations of putative false

positive light curve models are compared to the goodness-of-fit of a transiting planet model; false positive

models that do not produce acceptable fits are ruled out.

In contrast to BLENDER, I do not fit physical models to light curves to rule out false positive scenar-

ios. Instead, I use the transit signal shape by extending the likelihood analysis of MJ11 into two additional

dimensions: duration and slope of the signal, in addition to depth. I accomplish this by using our represen-

tative population simulations to define the three-dimensional probability distribution of these transit shape

parameters, and then evaluating this PDF for the shape of the observed signal—the exact three-dimensional
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analogue of the likelihood calculation of MJ11. To enable this, I turn to the simplest of transit shape models:

the trapezoid.

For each instance in the representative population of each scenario, I follow a two-step procedure. First,

I model the exact shape of the eclipse (accounting for every detail of the eclipsing system including the

eccentricity and orbital orientation provided by the simulation) using a limb-darkened eclipse model (Mandel

& Agol 2002) with appropriate quadratic coefficients (Claret 2000), taking into account the 30 minute Kepler

long-cadence integration time. Secondly, I fit that physically modeled light curve with a simple trapezoid

function. I parameterize the trapezoidal shape with three parameters: depth, total duration (from first to

last contact), and the ratio of total duration to ingress time, or “slope,” which parametrizes the shape of the

signal: i.e. whether it is “box-shaped,” “V-shaped,” or somewhere in between. From each population I thus

obtain a three-dimensional “scatter plot” of shape parameters, which I turn into a three-dimensional PDF

using Gaussian kernel density estimation (using the gauss_kde routine from the scipy.stats Python

library3).

Once this PDF has been created for each scenario, the each likelihood may be calculated as well. To this

end, I fit the trapezoidal shape to the observed phase-folded transit light curve, using a Markov Chain Monte

Carlo routine (Foreman-Mackey et al. 2012) in order to obtain reliable error bars (important for signals with

lower signal-to-noise ratios). From the MCMC chains I construct a three-dimensional posterior PDF, and

then calculate the likelihood by multiplying the two PDFs (“model” and “data”) together and integrating over

all three dimensions. This is just like the simple likelihood calculation discussed above, except that instead of

evaluating the model PDF at a single point, I integrate over the uncertainty in the data values. The procedure

is illustrated in the figures in §6.4, which also give a sense of what the 3D shape distributions look like for

different scenarios.

Note that nowhere in this process do I attempt to derive any physical properties (e.g. impact parameter,

a/R? etc.) from the trapezoidal fit, nor do I at any point fit a physical transit model to the observed data—the

trapezoid function is purely descriptive, and precise physical properties of the transiting planet are unnec-

essary in order to calculate its FPP. I also do not use the candidate’s period in the likelihood analysis, apart

from the fact that all the simulated scenarios are simulated to have the same period as the candidate. In other

words, I do not attempt to compare the period distributions of the various false positive scenarios with an

assumption regarding the planet period distribution. The only question I aim to answer with this likelihood

calculation is “How much does this signal look like each scenario?” and ultimately “Does this signal look

much more like a transiting planet than a false positive?”

3http://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.gaussian_kde.html
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6.3.4 Final Calculation

Besides the priors and likelihoods for all the false positive scenarios, calculating the FPP for a transit signal

requires assumptions about the true distribution of transiting planets. Here my strategy departs from MJ11. In

MJ11, we calculated FPPs under the assumption of an overall 20% planet occurrence rate, and a distribution

of planet radii dN/dR∼ R−2. In order to avoid such blanket assumptions of planet occurrence rates and radius

distributions in this work, I proceed as follows.

Rather than use a generic distribution of planet radii in order to simulate the representative population

of transiting planets that I need (in order to determine the TP prior and likelihood necessary to complete the

FPP calculation), I instead simulate a distinct “radius bin” population, customized to the signal in question.

In other words, I draw planet radii from a uniform distribution between 2/3 and 4/3 the best-fitting planet

radius and simulate the representative population of transit signals using these radii. Of course, this nearly

always makes the depth of the signal lie very near the middle of the depth distribution; this is by design. If

the duration and slope parameters also lie near the middle of the TP distribution while being on the outskirts

of all the FP distributions, this may by itself be evidence enough to validate the planet, as I demonstrate in

§6.4.

While simulating the planet population to have just the right size to match the observed signal may seem

to give an improper advantage to the planet model, this is perfectly reasonable as long as the prior is treated

appropriately. No longer may a generic planet occurrence rate (e.g. “40% of stars have planets”) be used;

instead, the relevant occurrence rate is the assumed fraction of stars that have planets in the radius bin in

question. I call this the specific occurrence rate fp and definte it as an integral over the planet radius

distribution function ΦR:

fp(Rp) =
∫ 1.3Rp

0.7Rp

ΦR(R)dR (6.4)

What sort of assumption is reasonable for this fp? For example, if ΦR(R)∝ R−2 from 0.5 and 20 Earth radii,

34% of the probability lies between 0.7 and 1.3 R⊕, whereas only 3.4% of the probability lies between 7

and 13 R⊕. Thus if an overall 40% occurrence rate were assumed with this radius distribution, the specific

occurrence rate of a∼1 R⊕ planet should be∼14% and the specific occurrence rate of a 10 R⊕ planet should

be 1.4% (see Figure 6.2 for more illustration).

However, the motivation for this “radius bin” strategy is to avoid relying on an assumption of an overall

planet occurrence rate and radius distribution, and integrating a generic power law to obtain a specific oc-

currence rate does not accomplish this. Instead, consider the following rearrangement and simplification of

Equation 6.2:

FPP =
LFP

LFP + fpLT P
, (6.5)

where

LFP =
∑

i

πiLi, (6.6)
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Figure 6.2 The specific occurrence rate fp as a function of radius for three examples of generic radius dis-
tributions, with all scaling as the inverse square of the planet radius. I define the specific occurrence rate at
a particular radius Rp to be the integral of the planet radius probability density function between 0.7Rp and
1.3Rp (Equation 6.4). Even though the use of the specific occurrence rate in the analysis presented in this
paper makes it independent of assumptions of the overall planet rate or the exact shape of the radius distri-
bution, this illustrates what reasonable values of fp might be. For example, it is clear that fp = 0.01 is quite
conservative for nearly any planet size, especially for small planets.

with i representing all of the false positive scenarios, fp being the true specific occurrence rate, and LT P

equalling πT PLT P if the specific occurrence were unity (i.e. assuming every star has a planet in this radius

bin). Equation 6.5 may be further simplified as

FPP =
1

1 + fpP
, (6.7)

where P = LT P/LFP. This allows me to parametrize the FPP in terms of the unknown specific occurrence rate

fp and the factor P, which is independent of assumptions about either planet occurrence or the true planet

radius distribution.

The final result of this validation method may thus be presented as simply this factor P, which contains all

the information necessary to calculate the FPP based on an assumed specific occurrence rate (Equation 6.7).

This lends ease to interpretation, as for large values of P, the FPP is very nearly 1/( fpP). Thus if P = 1000,

then under an assumption of fp = 0.5, the FPP is 1 in 500. For fp = 0.2, FPP would be 1 in 200, and so on.

Another useful presentation answers the following question: at what value of the assumed specific occur-

rence rate would the FPP be low enough to consider the planet validated? This is simply a matter of choosing

a target FPP (e.g. FPPV for “validation FPP”) and solving for fp in Equation 6.7:

fp,V =
1 − FPPV

P ·FPPV
(6.8)

which may be approximated by fp,V = (P ·FPPV )−1. For example, for a target FPP of 0.5%, P = 1000 requires
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Figure 6.3 The phase-folded Kepler photometry of Kepler-19b (KOI 84.01). The solid line illustrates the
best-fitting trapezoid model used for the likelihood calculations (§6.3.3). Note that the transit is clearly box-
shaped, not V-shaped.

fp,V = 0.2 to validate, while P = 2× 104 requires only fp,V = 0.01. Recent results from both RV surveys

(Howard et al. 2010) and Kepler (Howard et al. 2012) suggest that over 40% of stars have planets of some sort

within ∼50 day orbits, and that the frequency of planets rises with decreasing radius. Other work indicates

both that the average number of planets per star may even be>1 (Youdin 2011) and that fraction of stars with

planets may also be close to unity (Cassan et al. 2012). Thus, if fp,V for a particular transit signal is measured

to be significantly below the curves plotted in Figure 6.2 (e.g. if it is 2-3% for a signal of a 2R⊕ transit), the

planet may be considered securely validated.

6.4 Tests

In this section I present the results of applying this procedure to a sample of Kepler Objects of Interest

(KOIs), all of which have been investigated already by other means. I show in the following subsections that

this analysis can both easily validate known planets (using no or very minimal follow-up observations) and

identify probable false positives. §6.4.1 illustrates the procedure in detail using the example of Kepler-19b,

§6.4.2 describes the results of analyzing 17 additional known Kepler planets, and §6.4.3 discusses application

to 13 known or suspected false positives.

6.4.1 Kepler-19b

Kepler-19b, or KOI 84.01, orbits a Sun-like star with a 3.5-day period and has a radius of 2.2 R⊕. The

discovery paper (Ballard et al. 2011) details the sequential battery of tests used to rule out false positive

explanations for its photometric signal: first the preliminary tests possible with just the photometry (search for
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a secondary eclipse and measurement of the in-transit photocenter shift), and then the follow-up observations.

The observation follow-up effort included reconnaissance spectroscopy at three epochs using the McDonald

Observatory 2.7m telescope, high-precision radial-velocity Keck/HIRES spectroscopy at 20 epochs (though

only 8 were used in analysis), adaptive optics (AO) imaging at the Palomar 200-in, speckle imaging at the

WIYN telescope in two filters, and 16 hours of Warm Spitzer observation to measure the color dependence

of the transit. None of these follow-up measurements revealed any sign of a false positive, and BLENDER

analysis combined all these constraints with light curve modeling and estimates of the planet and false positive

priors (based on Kepler data itself) to calculate a final false positive probability of about 1 in 7000, validating

the signal.

For my analysis of Kepler-19b, I begin from the assumption that no secondary eclipse is detected in the

photometry (at a level of 200ppm), and that photocenter analysis constrains any potential blend to be within

2′′at most. I then proceed through the steps detailed in §6.3: use the target star’s position and KIC photometry

to simulate the representative populations for each scenario considered, calculate the priors based on these

simulations and various assumptions about stellar populations, measure the trapezoidal shape parameters of

the Kepler-19b signal itself, and calculate the likelihoods for each scenario based on these measured shape

parameters and the distributions of shape parameters of the scenario. Figures 6.4 and 6.5 illustrate how the

shape of the signal matches the typical shape of a transiting planet much better than any of the false positive

scenarios. Assuming a 1% specific occurrence rate for planets like Kepler-19b, these calculations result in a

FPP of 2.8%. Alternatively, a specific occurrence rate of about 6% would be required for FPP=0.5%— close

to being securely validated. The most likely false positive is the HEB scenario (Figure 6.4(c)).

When generating the representative population for the true transiting planet scenario for this signal, I use

the stellar parameters for KOI 84 provided in Batalha et al. (2012) (0.86 R�, 0.91 M�), with 20% uncertain-

ties. These notably do not agree exactly with parameters published in the discovery paper, determined from

spectroscopic analysis (1.1 R�, 0.97 M�). The effect of this discrepancy is visible in Figure 6.5, where the

measured slope parameter (T/τ ) of the signal appears to fall slightly above the main distribution of the sim-

ulated population: a smaller star will result in a smaller T/τ for a fixed value of Rp/R?. The result is that the

likelihood of the planet signal is calculated to be lower than what it would be if the stellar parameters of the

simulated population were correct, leading to an overestimate of the FPP. Since accurate stellar parameters

will not necessarily always be available, this circumstance makes for a realistic test case.

The next step in my re-analysis of the Kepler-19b FPP is to pretend that a single follow-up observation is

available: a high-resolution spectrum from which Teff and logg of the host star can be accurately measured,

to a precision of 80 K and 0.1 dex, respectively. The effect of this constraint is to rule out those binary and

hierarchical scenarios from the population simulations that were initially allowed (since the overall colors

matched the KIC colors), but whose temperatures or surface gravities are >3σ discrepant from this measure-

ment. Figure 6.6 shows how the distribution of shape parameters for the HEB scenario changes under this

constraint such that the measured Kepler-19b parameters are even more on the outskirts—the HEB instances
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Table 6.1. Test sample: Non-TTV Confirmed Kepler planets1

Name Method fp,V f spec
p,V f AO

p,V f spec,AO
p,V

Kepler-4b RV 0.006 0.013 0.003 0.010
Kepler-6b RV 0.161 0.163 0.162 0.163
Kepler-7b RV 0.068 0.140 0.052 0.112
Kepler-8b RV 1.227 1.087 0.808 0.781

Kepler-10b RV/BLENDER 0.014 0.014 0.000 0.000
Kepler-10c BLENDER 0.014 0.012 0.002 0.000
Kepler-11g BLENDER 0.289 0.200 0.140 0.061
Kepler-12b RV 0.086 0.018 0.086 0.018
Kepler-14b RV 0.010 0.000 0.000 0.000
Kepler-15b RV 0.293 0.116 0.193 0.104
Kepler-17b RV 0.109 0.131 0.094 0.118
Kepler-18b BLENDER 0.460 0.241 0.189 0.002
Kepler-19b BLENDER 0.058 0.018 0.030 0.001
Kepler-20e BLENDER 0.071 0.056 0.014 0.001
Kepler-20f BLENDER 0.178 0.176 0.009 0.007
Kepler-21b BLENDER 0.010 0.010 0.001 0.001
Kepler-22b BLENDER 0.048 0.051 0.004 0.001

TOTALS 17 (all) 4 6 9 10

1The results of applying this validation procedure to a sample of known
Kepler planets, 9 of which were confirmed with RV measurements and 9
by BLENDER analysis (one by both). fp,V is the specific planet occur-
rence rate required to result in an FPP of 0.5% (Equation 6.8). When fp,V
is significantly below a reasonable occurrence rate estimate, (Figure 6.2),
I consider the planet validated (marked in bold). The ‘spec’ and ‘AO’ su-
perscripts indicate the effect of incorporating spectroscopic and imaging
follow-up observations. Most of the planets are validated with both types
of follow-up; the ones that are not are nearly all giant planets.

that could mimic a transit shape were exactly the ones ruled out by the stellar characterization. Using the

likelihoods and priors updated for this constraint, the specific occurrence rate assumption necessary to result

in an FPP of 0.5% ( fp,V ) for Kepler-19b is only 1.8%—small enough to result in a secure validation.

To investigate whether a single AO observation would have a similar effect, I remove the spectroscopic

constraint and submit the simulated populations to the constraint of a generic deep AO image (∆K = 8 at

0.′′7), ruling out all instances of the false positive scenarios that would be identified by this observation. This

AO constraint alone also decreases the FPP enough to claim validation, though not quite as strongly as the

spectoscopic constraint: fp,V = 0.03. The combination of the two constraints results in fp,V = 0.1%.

The conclusion of this investigation is striking: secure validation of the Kepler-19b signal with these

methods would have been possible using either of two single-epoch follow-up observations: a high-resolution

spectrum to measure the spectroscopic parameters or an AO image to constrain blends. With both of these

observations, validation would be secure beyond doubt.
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6.4.2 Kepler planet test sample

While Kepler-19b is an eye-opening individual example of the potential of this analysis to fully validate

transiting planet candidates with very modest follow-up investment, it is just a single example. I thus identify

a broader sample to test in a similar manner: 17 other known Kepler planets, selected to be all of the officially

designated Kepler planets that do not show significant transit timing variations. 9 of these were confirmed

with RV measurements, and the additional 8 were BLENDER-validated.

For each of these transit signals I follow the exact same analysis sequence as described above for Kepler-

19b, using the same generic assumptions of a 200ppm secondary eclipse limit and a blend radius of 2′′. I

find that 4 of the 17 would have been validated with no follow-up observations at all, 6 require only stellar

characterization to validate, 9 require only AO imaging, and all except 7 (all giant planets but 1) can be

validated with the combination of both constraints. These results are summarized in Table 6.1, which presents

the values of fp,V for each signal under the various constraints. A signal is considered validated when fp,V is

significantly below the expected planet occurrence rate for a planet of that size—the values low enough for

validation are bolded in the table. These results are quite encouraging, suggesting that perhaps many future

Kepler planet validations will require only minimal follow-up observations.

6.4.3 Known false positives

Despite the encouragement of the above results, it is fair to ask whether this analysis is skewed such that it

always returns a low false positive probability, and thus automatically tuned for easy planet validation. To

address this concern, I investigate a sample of Kepler candidates known to be false positives.

KOI 552.01 (Figure 6.7) is a Jupiter-sized candidate whose host star has a KIC-estimated Teff = 6018 K.

This was selected as one of the candidates for follow-up with the SOPHIE spectrograph, and Bouchy et al.

(2011) measured it to have ∼km/s RV variation between two epochs. This suggests that the signal is likely

caused by an eclipsing M-dwarf star rather than a giant planet. In addition, analysis of the spectra suggests

that the temperature of the star is 6500 K, significantly hotter than the KIC estimate.

For KOI 552.01 I calculate FPP=0.90 (assuming a specific occurrence of 1%, appropriate for Jupiter-sized

planets (Wright et al. 2012))—in other words, this procedure clearly identifies this signal as a very likely false

positive using only the photometry, and no follow-up information at all. Figure 6.8 illustrates how well the

shape of the signal is described by a hierarchical system with an eclipsing binary. Conveniently, an HEB

explanation for KOI 552.01 explains not only the eclipse signal but also the discrepancy between the KIC

and spectroscopic Teff estimates: if this system is indeed a triple system with a primary with Teff = 6500 K

and two cooler stars, then trying to interpret the broadband photometry of the whole system as a single star

would naturally result in a cooler temperature estimate.

Similar analysis of 12 other KOIs that have been identified as false positives gives similar results, with

all but one having FPP > 20%, and six having FPP > 80% (Table 6.2). Of these, 11 were identified as
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Table 6.2. Test sample: False positives1

KOI FP identification method δ(%)2 T/τ 3 FPP 4

552.01 RV variationa 0.8 2.6 0.95
1187.01 color-dependent transitb 0.2 2.4 0.82
190.01 Blended CCF; RVsc 1.1 3.4 0.22
340.01 RVsc 2.1 5.5 0.30
418.01 Blended CCF; RVsc 1.2 3.4 0.85
419.01 RVs; sec. eclipse onlyc 0.8 2.4 0.96
425.01 Blended CCF; RVsc 1.2 2.8 0.61
607.01 RVsc 0.7 3.7 0.32
609.01 double-lined binaryc 0.4 2.5 0.96
667.01 blend (DSS photometry)c 0.9 3.8 0.07
698.01 RVs; sec. eclipse onlyc 0.7 2.5 0.96
1786.01 RVsc 0.8 5.8 0.48

1The results of applying this analysis on a sample of KOIs that
have been identified as false positives with various follow-up ob-
servations. Nearly all are identified as likely false positives.

2Transit depth

3The ratio of the total transit duration to the ingress/egress du-
ration. A value close to 2 is a V-shaped signal; a larger value
indicates a more box-shaped transit.

4False positive probability, assuming a specific occurrence rate
of 1%.

aBouchy et al. (2011)

bColón et al. (2012)
cSanterne et al. (2012)

false positives by Santerne et al. (2012) and one (1187.01) was identified by Colón et al. (2012) to have a

color-dependent transit depth. I assume a specific occurrence rate of 1% for all these candidates. All but

1187.01 have transit depth ≥ 0.4%; this is due to the way that the SOPHIE follow-up sample was chosen.

Notably, many of these signals have T/τ parameter very close to 2, indicative of a V-shaped transit shape.

This demonstrates that incorporating transit shape into this analysis allows this procedure not only to validate

planets, but also to reliably identify likely false positives.

6.4.4 Testing assumptions and simulation variance

As mentioned in §6.3.1, the false positive calculations that this procedure delivers are dependent on a set

of astrophysical assumptions. In addition, apart from a priori assumptions, the calculations are subject to

intrinsic variance due to the fact that FP distributions used to calculated the likelihoods are the result of

Monte Carlo simulations. To test the degree to which qualitative results depend on these effects, we repeat

the calculations for the known planet sample many times, using different sets of assumptions. I repeat each

test three times, with the full range of results for the final fp,V numbers illustrated for each test in Figure 6.9.

The tests are the following:
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• The original simulations under the original assumptions (repeated three times).

• The original simulations under the original assumptions, but using N = 100,000 for the simulations

(rather than N = 20,000)

• N = 100,000, changing the mass ratio distribution to be flat between 0.2 and 1 (rather than between 0.1

and 1)

• N = 100,000, using the Dartmouth stellar models (Dotter et al. 2008) in place of the Padova models.

• N = 100,000, increasing the “color tolerance” of the EB and HEB scenarios to 0.2; i.e. allowing all FP

scenarios that match within 0.2 mag of the g − r and J − K colors, rather than 0.1 mag.

As seen in the figure, in only two cases do the range of results cross the nominal fp,V “validation thresh-

old”: Kepler-11g occasionally drops into validation territory, as does Kepler-7b, for one instance of the

N = 20,000 simulation. None of the planets validated with both follow-up observations from Table 6.1 cross

over into the non-validation regime. We conclude that larger simulations are always better if possible, to

reduce variance, but that N = 20,000 is usually sufficient. While the exact value of FPP may change by a

factor of a few from repetition to repetition, secure validations remain secure validations.

There are other input assumptions not tested by this exercise, but these are mostly trivial assumptions

that can be tested on a case-by-case basis simply by adjusting the multiplicative factors that go into the prior

calculation for a given scenario. These include stellar binary and triple fractions, the fraction of binaries that

are in “short” orbits, the occurrence rate of planets around background stars, and the density of background

stars returned by TRILEGAL. Adjusting any of these numbers changes the prior factor for that scenario, and

correspondingly changes the false positive probability. If the FPP is small and one false positive scenario

dominates, the overall FPP is directly proportional to the prior factor for that scenario (see the discussion in

§5 of MJ11); e.g., if the HEB scenario is the most likely false positive for a particular candidate, doubling the

assumed stellar triple fraction will approximately double the FPP (or, equivalently, double the fp,V required

for validation).

6.5 Relation to Morton & Johnson (2011)

While I have demonstrated that the results from this newly updated FPP analysis are reliable both with known

planets and known false positives, I now briefly discuss why these results may differ from the individual FPPs

published in Morton & Johnson (2011a). First of all, it is important to understand that the goal of the previous

work was to demonstrate that, in general, Kepler candidates that pass all possible initial photometric vetting

are very likely to be planets. That is, the MJ11 analysis is only strictly valid for signals that are not obviously

V-shaped and whose light curves have been declared free from secondary eclipses.
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As it turns out, many of the candidates from Borucki et al. (2011) were not in fact fully vetted. This was

made clear in that paper, but this fact was not reflected in the Morton & Johnson (2011a) KOI FPP table. In

other words, there are some signals that are clearly V-shaped (a number of these are now in the known false

positive sample discussed in §6.4.3), and likely also signals that show faintly detectable secondary eclipses.

For such KOIs, it is probable that the final FPP will turn out to be significantly higher, as is the case for the

sample of false positives detected by Santerne et al. (2012).

The analysis of Morton & Johnson (2011a) was neither a planet validation procedure nor a false positive

detection procedure, nor was its purpose to claim that the Kepler results are completely immune from the

problem of false positives. Instead, its goal was to demonstrate that the a priori FPP for fully vetted Ke-

pler candidates is typically low, thus suggesting that the overall sample of candidates generally reflects the

properties of the true sample of planets (barring the existence of a pathologically large number of V-shaped

signals among the candidate list). On the other hand, this work, having advanced the techniques of Morton

& Johnson (2011a), is intended to validate candidates, using all available information on an individual basis.

6.6 Conclusions

Transiting exoplanet surveys continue to grow much faster than the capabilities of traditional follow-up infras-

tructure. While the observations required to positively confirm candidates have always been the bottleneck

for transit surveys, the Kepler mission has made this issue much more acute. Future ground- and space-

based surveys will doubtless continue to produce orders of magnitude more candidates than can be securely

confirmed either with radial velocity or transit timing variation measurements. As a result, the onus of confir-

mation for the majority of transiting planet candidates has shifted irrevocably from dynamical confirmation

to probabilistic validation.

With probabilistic validation playing such a central role, the procedure I describe in this paper enables

a revolution in how transit surveys could operate: validating more planets, using fewer follow-up resources.

Recall what I have demonstrated about this procedure:

• It is efficient: an end-to-end FPP calculation for a transit signal takes only about 10 minutes as currently

implemented—and there is room for further computational optimization.

• It often requires only one or two single-epoch follow-up observations (either spectral characterization,

AO imaging, or both—and sometimes neither) to validate a true transiting planet.

• It can reliably identify false positives.

The benefits of applying this analysis to a large sample of candidates from a transit survey such as Kepler are

evident. Spectroscopic follow-up can be prioritized in order of increasing FPP, likely leading directly to many

validations. Preference for AO imaging can then be given to those candidates not validated with a spectrum.

RV observations of likely false positives can be avoided, and more time devoted to RV measurements of likely
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planets or characterization spectroscopy. And the most resource-intensive follow-up tools, such as multi-band

photometry, validation-inspired RV measurements, and the full BLENDER analysis, can be reserved for the

most stubborn candidates—those that are not likely false positives, but resist validation even after spectral

characterization and AO imaging. A good example of a candidate ideal for this last-stage analysis would be

one with a residual FPP of 5-10% or so, for which AO imaging reveals a faint blended companion.

With regard to Kepler, I intend to apply this procedure to all of the remaining unvalidated KOIs, using

whatever follow-up observations are available. There are several ongoing projects to spectroscopically char-

acterize and obtain AO images of large numbers of KOIs; doubtless these efforts have already provided the

measurements necessary to validate hundreds of planets.

The ultimate goal of this project is to make self-contained, stand-alone transiting planet validation soft-

ware available to the community. This will allow present and future transit surveys to apply this analysis at

an early stage, hopefully enabling follow-up resources to be optimized and planet validations to be expedited.

The hope is that with fewer observational resources dedicated to the task of planet validation, more can be de-

voted to detailed characterization of individual systems of particular interest. In addition, with large numbers

of securely validated transiting planets, statistical population studies will become possible without worrying

about any residual effects from false positive contamination.
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(a) (b)

(c) (d)

Figure 6.4 The false positive landscape for Kepler-19b (KOI 84.01). Each of these plots illustrates a three-
dimensional probability distribution for the trapezoidal shape parameters (depth δ, duration T , and “slope”
T/τ ) for a false positive scenario (see §6.2 for descriptions of the scenarios). Each of these distributions is
made by simulating a statistically representative population (§6.3.1) for a scenario and fitting the shape pa-
rameters to each simulated instance of the scenario. Each population begins with 20,000 simulated instances,
and only instances that pass all available observational constraints are included in these distributions—in this
case the constraints are that the blended star be at least 1 mag fainter than the primary target, the lack of an
observed secondary eclipse deeper than 200ppm, and that the KIC g−r and 2MASS J −K colors match within
0.1 mag. The pie chart for each scenario illustrates what fraction of the initial simulations pass these tests. On
each plot the shape parameters of the transit signal are marked, with the ‘X’ showing the median of an MCMC
fit, and error bars illustrating 95% confidence. The probability of each scenario is calculated by dividing the
prior× likelihood for that particular scenario by the sum of prior× likelihood for all the scenarios (including
the planet scenario illustrated in Figure 6.5). Priors for each scenario are calculated according to §6.3.2, and
the likelihoods are calculated by integrating the illustrated distributions over the observed measurement.
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Figure 6.5 The transiting planet scenario for Kepler-19b (KOI 84.01). The plots illustrate the three-
dimensional probability distribution for the trapezoidal shape parameters for simulations of a representative
population (§6.3.1) of transiting planets around KOI 84. The radius distribution of planets in this population
is chosen to be a narrow range centered on the radius derived for KOI 84.01, assuming it is a bona fide tran-
siting planet. The spread and shape of this distribution are caused by different-sized planets in the simulation,
different stellar properties (according to uncertainties in stellar radius and mass), and by variations in orbital
inclination, which changes duration and slope in a correlated manner (bottom-right panel). The assumed
occurrence rate of planets in this radius bin for this calculation is 1% (see §6.3.4 for more discussion about
this “specific occurrence rate”). The probability of the Kepler-19b signal being a transiting planet, given the
false positive landscape illustrated in Figure 6.4 (constrained by only the signal photometry and KIC colors)
is about 97%, giving FPP = 0.03. The signal does not fall quite exactly in the middle of the T/τ distribution
because this population simulation uses photometrically estimated physical properties (mass, radius) for the
the host star, rather than the more accurate spectroscopically derived properties. Note that uncertainties like
this will tend to decrease the planet likelihood, and thus will contribute to overestimating the FPP.
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Figure 6.6 The hierarchical triple eclipsing binary (HEB) scenario for Kepler-19b (KOI 84.01) under the con-
straint of spectroscopic characterization of the host star. The plots illustrate the three-dimensional probability
distribution for the trapezoidal shape parameters for simulations of a representative population (ï£¡3.1) of
HEB false positive scenarios, but only including those instances in which the spectroscopic properties (Teff,
logg) of the primary star match those that were measured for KOI 84. Compare this distribution to Figure
6.4(c): the systems whose shape parameters overlapped with the properties of the measured signal are not
allowed by the spectroscopic characterization—these correspond to the higher-mass systems illustrated in
Figure 6.1. This constraint allows for the signal to be validated, as the HEB scenario was the most likely FP
scenario before including the follow-up spectral information.

Figure 6.7 The phase-folded Kepler photometry of KOI 552.01. The solid line illustrates the best-fitting
trapezoid model used for the likelihood calculations (§6.3.3). Bouchy et al. (2011) measured large RV varia-
tions of the host star, suggesting that this signal is caused by an eclipsing M-dwarf rather than a planet. Note
that the signal is clearly more V-shaped than box-shaped.
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Figure 6.8 The hierarchical triple eclipsing binary system scenario for KOI 552.01. This KOI was measured
by Bouchy et al. (2011) to have ∼km/s radial velocity variation between two epochs, suggesting a stellar
eclipse rather than a transiting planet—an observed astrophysical false positive. The analysis presented in
this paper gives an FPP of >90% for this signal, and this figure illustrates why: the shape of the signal
is exactly consistent with what would be expected from a hierarchical triple system including an eclipsing
binary.

Figure 6.9 The results of testing the effects of sample variance and changing various assumptions on the false
positive calculations described in this paper. Each colored vertical line represents the full range of fp,V (the
specific occurrence rate assumption required for validation) over three iterations of the procedure for each
planet from Table 6.1, ordered by increasing radius. The five different vertical lines for each planet represent
five different experiments, varying the size of the Monte Carlo simulations and different input astrophysical
assumptions. The horizontal black lines represent the value of fp,V inferred from an assumption of an overall
40% planet occurrence rate with dN/dR ∝ R−2. Below the line means the signal is securely validated. All
of the planets that were claimed as validated by the original analysis (the final column of Table 6.1) remain
validated for each iteration of each of these tests.
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Chapter 7

The Radius Distribution of Planets
Around Cool Stars

This chapter is the manuscript of a paper that has been submitted to ApJ by TDM and Jonathan Swift and is

currently under review.

7.1 Introduction

The discovery of the first exoplanets (Wolszczan & Frail 1992; Mayor & Queloz 1995; Marcy & Butler

1996) has sparked tremendous growth in research and interest in the formation and evolution of planetary

systems beyond the Solar System. Not unlike many areas of astronomy, however, the first discoveries are

not representative samples; rather, “hot Jupiters” are relatively rare (Wright et al. 2012; Howard et al. 2010)

in comparison to the new populations of exoplanets now being revealed by the Kepler Mission (Borucki

et al. 2011; Batalha et al. 2012; Burke 2013). The most common kinds of planets within Kepler’s discovery

space of Rp & 0.5R⊕, and P . 100 d appear to be somewhat larger than Earth but smaller than Neptune,

1< Rp < 4R⊕ (Howard et al. 2012; Fressin et al. 2013; Dressing & Charbonneau 2013).

Much of our understanding of planet formation is anchored in decades of research into our own solar

system. But now the burgeoning exoplanet population provides us with a new context, revealing important

insights into planet formation throughout the Galaxy. For example, the large amount of planetary mass

seen close to host stars is evidence that protoplanetary disks may have much higher surface densities than

previously thought (Hansen & Murray 2012; Chiang & Laughlin 2012) or that the observed planets migrated

from regions further from their host star where more mass was readily available for assembly (Swift et al.

2013).

The multi-transit systems of the Kepler sample also offer a wealth of information regarding their for-

mation and evolution (Lissauer et al. 2011; Fabrycky et al. 2012b). The period ratios of planets within a

given system show a propensity to lie just outside of first order mean motion resonances (Fabrycky et al.

2012a; Steffen et al. 2013), which may be an imprint of dissipative (Lithwick & Wu 2012; Batygin & Mor-
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Figure 7.1 Evidence supporting the hypothesis that small planets are incomplete in the Cool KOI sample. The
solid black line is the observed (smoothed) distribution of planets smaller than 1 R⊕; the grey shaded area is
the observed period distribution of all the Cool KOIs. Neither distribution is corrected for transit probability.
The vertical dashed red line indicates the period at which a 1 R⊕ planet around a 0.5 R� star (typical of the
Cool KOI sample) would have SNR of 7.1, the nominal detection threshold for KOI identification. The lack
of observed small planets at periods longer than 10 days is thus very plausibly due to incompleteness.

bidelli 2013) or stochastic mechanisms (Rein 2012) in the formation or evolution of planetary systems. The

low inferred mutual inclination of multi-transit systems (∼ 1◦–3◦; Fabrycky et al. 2012b; Fang & Margot

2012) together with the relative number of single versus multi-transit systems provides constraints on the

number of planets in a given system within Kepler’s discovery window, else it may be the first indication

of a separate, high-inclination population of single transit systems (Hansen & Murray 2013; Fang & Margot

2012). Lastly, the mutual gravitational interactions within some multi-planet systems offer an estimation of

the planet masses (Lithwick et al. 2012) that then inform planetary compositions and atmospheric evolution

scenarios (Rogers et al. 2011; Wu & Lithwick 2012; Lopez et al. 2012).

In this article we focus on yet another important clue regarding the formation of the compact systems

revealed by Kepler: the distribution of planetary radii. The initial estimates of the planet radius distribution

by Howard et al. (2012) showed a dramatic increase in the number of planets at ever smaller size. Citing

incompleteness, however, they did not follow this trend in their analysis to planet radii smaller than 2 R⊕.

In an independent study by Youdin (2011), a parametric estimation of the planetary distribution function

revealed a deficit of large planets in short period orbits that would support a core accretion then migration

formation scenario.

More recent estimates of the planet radius distribution show a preferential size scale in the Kepler sample

indicated by a flattening and possible turnover in the log-binned histogram of detected planet candidates

somewhere around 2 R⊕ (Fressin et al. 2013; Dressing & Charbonneau 2013; Petigura & Marcy 2013).

If true, this would be an important clue toward understanding the key mechanisms that shape the observed

population of compact planetary systems that pervade the Galaxy. However, these analyses are constrained by

the limitations of coarse histograms; no analysis to date has yet characterized the shape of the exoplanet radius
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distribution in enough detail to allow meaningful comparison to planet formation and evolution theories.

With this in our sights, we focus on the smallest stars in the Kepler Object of Interest (KOI) sample

for two reasons: (1) between the spectroscopic studies of the M dwarf sample by Muirhead et al. (2012b)

and the photometric re-calibration of the Kepler Input Catalog (KIC) for the coolest stars by Dressing &

Charbonneau (2013), the “Cool KOIs” constitute a well characterized sample, and (2) since a transit signal is

proportional to the square of the planet to star radius ratio, the Cool KOIs are optimal for probing the planet

radius distribution for the smallest planet sizes.

The particular goal of this work is to derive the shape of the planet radius function properly marginalized

over orbital period. Figure 7.1 illustrates why this is an issue: the smallest planets are not complete out to

the same orbital periods as larger planets; thus careful correction is required in order to achieve this goal.

These concepts of incompleteness and period bias were studied in detail early in the history of transit surveys

(Pepper et al. 2003; Gould et al. 2003; Gaudi 2005), but have yet to be applied in detail to Kepler data.

In §7.2 we walk through the steps required to properly extract a non-parametric empirical estimate of

the true planet radius function given a population detected in a well-characterized transit survey. In §7.3 we

apply these methods to the Cool KOIs to derive the radius distribution for small planets around small stars.

We explore the various assumptions that go into this calculation in §7.5, and conclude in §7.6.

7.2 Formalism

We define the planet radius distribution function φPmax
r (r) such that

∫ rmax

rmin
φPmax

r (r)dr = NPPS, P< Pmax; (7.1)

that is, a density function with an overall normalization giving the average number of planets per star (NPPS)

for planets with period less than Pmax days, for planet radii r between rmin and rmax. The problem of calculating

planet occurrence rates from Kepler has been quite an industry over the last few years (Youdin 2011; Howard

et al. 2012; Dong & Zhu 2012; Swift et al. 2013; Fressin et al. 2013; Petigura & Marcy 2013; Dressing &

Charbonneau 2013). However, there has been little quantitative discussion of deriving the detailed shape

of the radius function beyond drawing histograms. In the following subsections, we review and refine the

general principles of an occurrence calculation and then describe how to follow these principles to construct

a non-parametric empirical radius function that obeys the above desired properties.

7.2.1 Occurrence Calculations

In a perfectly idealized survey that is both 100% reliable and 100% complete, the occurrence rate of planets

is simply

NPPS =
Np

N?
, (7.2)
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where Np is the number of detected planets and N? is the number of stars surveyed. In practice, however, this

must be corrected for both incompleteness and unreliability as follows:

NPPS =
1

N?

Np∑
i=1

wi. (7.3)

Here the sum is over all detections and wi is a weighting factor applied individually to account for the various

necessary corrections. Generally, these weights can be thought of as

wi =
(1 − FPPi)

ηi
, (7.4)

where FPPi is the probability that signal i is a false positive and ηi is an individualized efficiency factor for

the detection of planet i. In this work, we do not incorporate the calculations of FPPi in detail, as the a priori

false positive rate among candidates is low (Morton & Johnson 2011b), and ongoing analysis (Morton et al.,

in prep) according to the false positive-calculating procedure of Morton (2012) indicates the false positive

rate in this particular sample is negligibly low.

We thus focus on the detection efficiency ηi, which is defined by the following thought experiment: If a

very large number of planets identical to planet i were distributed randomly around all the stars in the survey,

only a fraction ηi could have been detected. This can be further factored (following Youdin 2011):

ηi = ηtr,i ·ηdisc,i, (7.5)

where ηtr is the geometric transit probability, and ηdisc is the “discovery efficiency”: the fraction of planets

in this thought experiment with transiting orbital geometries that could have been detected by the survey. In

previous Kepler occurrence rate calculations (Howard et al. 2012; Swift et al. 2013; Dressing & Charbonneau

2013), this factor has been defined as

ηdisc,i =
N?,i

N?
(7.6)

where N?,i is the number of target stars around which planet i could have been detected. As we show, however,

this is not sufficient to properly characterize ηdisc,i; more care must be taken.

Central to correctly calculating ηdisc is the fact that whatever transit detection pipeline is used, it is in-

complete, especially near the detection threshold. This pipeline incompleteness must be carefully considered

in any occurrence rate calculation. The analysis of Petigura & Marcy (2013) is a model of one way this can

be done: simulating planets throughout the radius and period parameter space considered in order to directly

measure ηdisc as a function of planet radius and period.

A more general conceptual way to attack this problem—and the only one available if one is relying on

the results of someone else’s detection pipeline—is to assume that the detection efficiency of any pipeline is a

function only of the signal-to-noise ratio (SNR) of the transit signal. This was the approach taken by Fressin
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et al. (2013), who determined that for the Batalha et al. (2012) Q1-Q6 catalog, the detection efficiency of the

Kepler pipeline could be modeled by a continuous “SNR ramp” function of the following form:

ηSNR(SNR) = 0; SNR≤ S0

= linear; S0 < SNR< S1

= 1; SNR≥ S1, (7.7)

where in Batalha et al. (2012) S0 = 6 and S1 = 16. This is notably different from a sharp detection threshold

at SNR = 7.1, which was used by both Swift et al. (2013) and Dressing & Charbonneau (2013) in their

occurrence calculations. The newly released and more uniformly vetted Q1-Q8 KOI catalog, currently hosted

at the NASA Exoplanet Archive, is better characterized by a steeper SNR ramp (F. Fressin, priv. comm.), as

it is more complete than Batalha et al. (2012); thus, we adopt an SNR ramp where S0 = 6 and S1 = 12.

With this function defined, ηdisc,i can then be calculated by the following procedure: simulate planet i

around every star in the survey, each of which has both a different radius and different photometric noise

properties, to obtain a (normalized) distribution of SNRs φSNR,i for that planet, and then marginalize the

detection efficiency over that distribution:

ηdisc,i =
∫ ∞

0
ηSNR(s) ·φSNR,i(s)ds. (7.8)

An extremely important consideration in this procedure of constructing φSNR,i is properly treating orbital

period. Remember, the ultimate goal of this analysis is to calculate the distribution of planet radii with period

less than Pmax: φPmax
r . Thus, in simulating the population of planet i clones around other stars, it is important

to assign each of these clones an orbital period P< Pmax according to a reasonable estimate of the true planet

period distribution φP.

Distributing the hypothetical planets according to a period distribution is crucial because both SNR and

planet occurrence are functions of orbital period. For example, imagine that a survey of 1000 stars detects

one 0.5 R⊕ planet in a 1-day orbit with low SNR (e.g. SNR = 10). An occurrence analysis in the style of

Equation 7.6 might conclude that this planet had a 20% transit probability and would have been detectable

around only half the stars in the survey, thus giving it a weight factor of wi = 10 and leading to the conclusion

that 0.5 R⊕ planets are rare, only existing around 1% of stars. A slightly more sophisticated analysis might

note that ηSNR(10) = 0.4, and give another factor of 2.5 boost, concluding that planets of this size exist around

only 2.5% of stars.

However, this conclusion would still be incorrect, since it does not account for the fact that planets of

this size may only be detectable at very short periods. What if only a very small fraction of all planets

happen to have periods as short as 1 day? In this case, the supposed rarity of 0.5 R⊕ planets would be just
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a misinterpretation of the fact that planets with 1-day orbits are rare. The small planets that doubtless still

do exist at larger orbital periods have not been detected, and no correction has been made to account for this.

When constructing φSNR,i, distributing the hypothetical planets according to a reasonable period distribution

will avoid this misdiagnosis. This was not done in either Swift et al. (2013) or Dressing & Charbonneau

(2013), leading both analyses to underestimate the occurrence rate of small planets around small stars. In

§7.3 we show this also makes a qualitative difference in the interpretation of the planet radius function.

7.2.2 Estimating the Radius Distribution Function

In all the Kepler planet occurrence calculations to date, the shape of the radius function has been explored

only very coarsely, by calculating the occurrence rate in several different radius bins and either fitting a power

law or qualitatively commenting on the shape. Howard et al. (2012) found a good fit to an R−2 power law

down to 2 R⊕, and declined to comment for smaller planets. On the other hand, Fressin et al. (2013) and

Petigura & Marcy (2013) note that the occurrence rate of planets increases towards smaller radius but then

appears to flatten out below about 2.8 R⊕. Dressing & Charbonneau (2013) claim that the occurrence rate

begins to decrease for planets smaller than 1-1.4 R⊕.

Investigating the shape of the radius distribution in more detail requires a non-parametric approach, and

also should avoid binning. Here we introduce the concept of using a weighted kernel density estimator

(wKDE; e.g. Wang & Wang 2007) in order to accomplish this.

A standard kernel density estimator (KDE) attempts to estimate the true underlying probability distribu-

tion of a sample of data points using a function of the following form:

φ̂(x) =
1
N

N∑
i=1

k(x − xi;σi), (7.9)

where N is the number of data points and k(x) is a zero-mean, normalized kernel function of arbitrary shape

(commonly a Gaussian), with some width σi, that most generally can be different for each data point. This

creates a smooth distribution out of a discrete data set, with the degree of smoothness controlled by the width

parameter. The choice of width has tradeoffs in both directions: if the kernels are too narrow the estimator

will be bumpy, but if they are too wide they can wash out real structure in the distribution. Often the width

is selected to be the same for all points based on the number of data points, or sometimes a variable-width

kernel is used, e.g. the distance to the nth nearest neighbor. The 1/N normalization factor assures that the

integral of this density estimator over the whole parameter space is unity.

In order to use the KDE concept to properly reconstruct the radius function of planets detected in a transit

survey, each data point has to be weighted appropriately, leading to a wKDE:

φ̂Pmax
r (r) =

1
N?

Np∑
i=1

wi · k(x − xi;σi), (7.10)
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where wi = 1/ηi are the appropriately calculated individual weight factors that renormalize the kernels to

correct for missing planets, as discussed in §7.2.1. The weights ensure that the shape of the radius function

responds appropriately to the individual corrections, and the N? overall normalization ensures that the integral

over all radii will return the NPPS, as desired in Equation 7.1. A very natural choice for the σi in this case,

which avoids having to choose an arbitrary smoothing factor, is the uncertainty in each planet’s radius, most

of which comes from uncertainty in the radius of the host star. If this does not make for a sufficiently smooth

distribution, then the σi can be multiplied by an additional factor to increase the smoothing.

7.3 Calculating the Cool KOI Radius Function

One of the biggest concerns to date about interpreting Kepler data is uncertainty about stellar parameters.

This applies both because the properties of the transit host stars are unknown (derived planet radius depends

directly on the radius of the host star) and because the properties of the stars in the survey parent sample are

unknown (i.e. is Kepler actually surveying dwarf stars or is the parent sample significantly contaminated by

giants or subgiants? (Mann et al. 2012)).

Focusing on Kepler candidates around relatively low-mass stars alleviates these concerns. Many of these

stars have spectroscopically measured stellar properties (Muirhead et al. 2012a; Mann et al. 2012), and in

addition, the properties of the parent sample of target stars have been carefully characterized photometrically

by Dressing & Charbonneau (2013). Such an investigation thus is narrower than attempting to use the whole

Kepler sample, but the assurance of a good understanding of the stellar parameters of both the host stars and

the general survey sample more than compensates for this loss of generality. In addition, focusing on these

“Cool KOIs” enables detailed study of the radius distribution of Earth-sized and smaller planets.

To construct the planet radius function, we thus select the 113 planet candidates with periods <90d

identified in the cumulative KOI catalog posted at the NASA Exoplanet Archive that are hosted by stars

with Teff < 4000K as characterized by Dressing & Charbonneau (2013). To this sample we add the three

KOI-961/Kepler-42 planets, which were left out of the Dressing & Charbonneau (2013) sample because its

broad-band colors are consistent with classification as either a giant or a dwarf, even though it has been spec-

troscopically confirmed to be a ∼0.15 M� dwarf (Muirhead et al. 2012b). For stellar parameters we use the

results presented in Dressing & Charbonneau (2013), except for those KOI host stars that have been spectro-

scopically characterized according to the observations and procedures described in Muirhead et al. (2012b),

for which we use the spectroscopic parameters. As this spectroscopic method is known to be unreliable for

Teff > 3800 K, we defer to the Dressing & Charbonneau (2013) parameters for stars in this temperature range.

In the following subsections, we describe the steps necessary to calculate φ̂90
r , the estimate of the radius

function for planets on orbits <90d, from this KOI sample. As described in §7.2, the crucial step toward

properly estimating the radius function is calculating the weight factor wi = 1/ηi for each detection, which

includes a transit probability factor and a completeness factor ηdisc,i (Equation 7.8). Key to calculating ηdisc,i
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Figure 7.2 The period distribution of planets around Kepler’s M dwarfs. The grey shaded region is the
implied period distribution of all planets combined, correcting for the effects of transit probability. The bar
charts show the observed numbers of planets of different sizes in each period bin. Note the declining fraction
of small planets as a function of period—this is most likely an effect of declining detection efficiency for
smaller planets on longer-period orbits, and this must be properly accounted for when constructing the planet
radius function. The radius function calculation in this paper assumes that all planets are distributed according
to the shaded distribution, regardless of planet radius. See §7.5 for a discussion of this assumption.

is determining the SNR distribution of a hypothetical population of clones of planet i around all the target

stars, or φSNR,i, which in turn requires an assumption of the intrinsic period distribution of planets φP.

7.3.1 Period distribution

In order to estimate the shape of the true period distribution of planets of all sizes, we make the simplifying

assumption that the period distribution of planets is independent of their radii (see §7.5 for a discussion

regarding this assumption). We thus construct the distribution of logP from all the planet candidates in the

sample, using a wKDE as described in §7.2.2. For the weights we use only the inverse transit probabilities,

and enforce that the whole distribution is normalized to unity, creating the probability density function for

logP. For the widths we use σ = 0.15 (in logP), to create a smooth distribution. This is the period distribution

function φP that we use in the following subsection, shown as the grey shaded region in Figure 7.2.

7.3.2 SNR distribution

The SNR of a transit signal is usually defined as follows:

SNR =
δ

σ

√
Ntr ·Npts, (7.11)

where δ is the transit depth, σ is the one-point photometric uncertainty, Ntr is the number of transits observed,

and Npts is the number of photometric points per transit. It can be shown that, for a fixed planet radius, SNR

should scale with host star radius R?, orbital period P, time observed Tobs, transit duration Tdur, and σ as
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Figure 7.3 Two examples of the SNR distributions resulting from simulating the transit of a given planet
around every target star, given randomly assigned periods and impact parameters. The properties of this
distribution depend on the properties of the detected system, and the integral of the pipeline detection ef-
ficiency function over this distribution gives the “discovery fraction” ηdisc. KOI-961.01, a sub-Earth-sized
planet in a very short orbit around a very small star (Muirhead et al. 2012b), would have been detectable in
only about 1/6 of potential configurations, whereas KOI-952.03, a larger planet around a larger star (Swift
et al. 2013), would be detectable in almost any configuration, even though its actual SNR is smaller than that
of KOI-961.01.

follows:

SNR∝ R−2
? P−

1
2 T

1
2

obsT
1
2

durσ
−1, (7.12)

where Tdur itself is a function of P, scaled semimajor axis a/R?, and impact parameter b. The putative SNR

of a planet transplanted from its current configuration to a different period, impact parameter, and host star

may thus be calculated by scaling the original SNR appropriately.

For each Kepler target star, data on the photometric uncertainty σ is available on a quarter-by-quarter

basis, quantified by the “combined differential photometric precision” (CDPP) values on 3-hr, 6-hr, and 12-

hr time intervals, which in principle should allow for calculation of the SNR for each transit signal. However,

the KOI catalogs also provide SNR for each identified planet candidate, and we find that using CDPP values

and Equation 7.11 to calculate SNR does not reliably reproduce the catalog values (it typically underestimates

by about 30%, with significant scatter). And since the SNR ramp efficiency characterization (ramp from 0 at

SNR = 6 to 1 at SNR = 12) was developed using the catalog SNR values, those are the SNRs we use. We do

assume, however, that SNR still scales according to Equation 7.12.

And so, for each of the planet candidates i in the Cool KOI sample, we take its SNR as provided by

the Exoplanet Archive and construct φSNR,i by simulating the entire population of hypothetical alternative

configurations: 10,000 iterations of randomly chosen periods (according to the distribution φP described in

§7.3.1) and impact parameters (according to a uniform distribution from 0 to 1) around each star in the target

population, calculating the appropriate SNR for each instance according to the scalings in Equation 7.12. As

the total number of simulated SNRs is sufficiently large (∼107), the smooth final shape of φSNR,i is defined
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by interpolating a histogram with bin width ∆SNR = 1. Figure 7.3 illustrates examples of this distribution

for two KOIs.
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Figure 7.4 The empirical radius distribution of planets orbiting M dwarfs with periods <90 days (black
continuous curve), estimated with a weighted kernel density estimator (wKDE; see §7.3.3), with the bootstrap
resampling-derived 1σ uncertainty swath shaded grey—essentially a running Poisson error bar. The detection
efficiency as a function of signal-to-noise ratio has been quantified by an SNR ramp from 0 at SNR = 6 to
1 at SNR = 12. The blue horizontal lines represent the standard “occurrence rate per bin” calculations for
this sample. The vertical red lines represent the radii of individual planets in the sample, with their heights
in proportion to the weight factors wi. The green dotted curve is an R−2 power law, which bears a striking
(and uncontrived) resemblance to the shape of this non-parametric radius function between about 1.25 and
2 R⊕; below about 1.25 R⊕, the distribution appears to level off, and turn over below 1 R⊕. Between about
2 and 2.5 R⊕ there appears to be an excess over a smooth distribution; this may be caused by a significant
population of planets with H/He atmospheres. There is an average of 1.5 planets per cool star in orbits <90
days over this radius range, and there is an average of greater than 0.5 planets per cool star in this period
range for radii between 1 and 1.5 R⊕.

7.3.3 Radius Distribution

Once φSNR,i is constructed for every planet, we then calculate ηdisc,i for each planet according to Equation

7.8, which combined with the transit probability gives the wKDE weight wi for each planet, thus building φ̂90
r

(Equation 7.10). This function is plotted as the solid black line in Figure 7.4. To estimate the variance of this

density estimator, we perform 1000 different bootstrap resamplings of the true planet dataset and recreate the

wKDE for each resampling. The 1σ uncertainty region determined by this procedure is illustrated as the grey

shaded region in Figure 7.4, and is conceptually equivalent to a running Poisson error bar. The widths σi

used to smooth the wKDE are taken to be twice the individual planet radius uncertainties, as this smooths out

high-frequency wiggles while retaining broad features. Table 7.1 presents the data that goes into constructing
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this distribution.

7.4 Results

The overall normalization of the radius function shown in Figure 7.4 indicates that there are approximately

1.5 planets per cool star with periods <90d. In addition, there are several notable features of this distribution.

The first is the peak between 1 and 1.5 R⊕ and the turnover below, both of which are robust features of the

empirical distribution as characterized by the bootstrap uncertainty analysis. If this feature continues to hold

as more and more candidates are identified around cool stars, it would point to a dramatic feature of planet

formation and evolution: ∼1 R⊕ is the most common planet size to survive long-term in short orbits around

cool stars. This might be understood by an explanation similar to that provided to explain the origins of the

inner Solar System (Goldreich et al. 2004; Chambers 2001): a large number of isolation-mass protoplanets

form quickly, and once the gas and planetesimals disk dissipates, a period of dynamical instability follows, at

the end of which typically only a few larger planets remain, the rest having been either destroyed (or merged)

via collisions or been swallowed by the host star. It is certainly plausible that ∼1 R⊕ planets might be the

most likely outcome of this process, as this is precisely what has happened with the inner Solar System, with

an outcome of two planets about the size of Earth.

The second notable feature of the distribution is the plateau between about 2 and 2.5 R⊕ and the steep

decline above. This could plausibly be the effect of atmospheres, with planets massive enough to retain

primordial H/He envelopes showing up as an excess population of planets this size compared to what would

be expected from extrapolating toward larger radii from ∼1-1.5 R⊕. One prediction of this hypothesis would

be that most of the planets smaller than 2 R⊕ are on average more dense than planets between 2 and 3 R⊕,

pointing to a smoother underlying mass distribution.

Finally, this distribution indicates that planets larger than∼3 R⊕ are very rare around cool stars, consistent

with the findings of RV surveys (Endl et al. 2003; Johnson et al. 2010b,a; Bonfils et al. 2013). There has been

one hot Jupiter identified around a star in this sample (KOI-254b/Kepler-45b Johnson et al. 2012) and another

recent discovery of note (Triaud et al. 2013), but such planets are clearly exceptional—the vast majority of

close-in planets around cool stars are smaller than ∼3 R⊕. Even Gliese 1214b (Charbonneau et al. 2009), by

far the best-studied planet around an M dwarf to date, appears to be an exception to the typical system, as its

radius of 2.7 R⊕ falls far down the tail of this distribution. In fact, there are ∼30× more planets smaller than

Gl 1214b than there are larger than Gl 1214b—this bodes very well for the future of ground-based surveys,

both transit and RV, as they can become more sensitive to smaller planets.

To explore the degree to which the SNR ramp and the period redistribution affect the shape of the derived

radius function, we repeat this analysis using only the Q1-Q6 KOI catalog (Batalha et al. 2012) and out to

a period of 50 days, to match with the analysis of Dressing & Charbonneau (2013). We then compare our

full analysis to using a strict SNR = 7.1 detection threshold (i.e. ηSNR = 1 above SNR = 7.1 and ηSNR = 0
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Figure 7.5 The planet radius distribution for P < 50 days, using the Batalha et al. (2012) catalog in order
to compare to previous studies, demonstrating the effect of the corrections accounted for in this work. The
continuous curves are the non-parametric empirical density estimates, and the horizontal blue lines are the
occurrence rates per bin, using the same bins as Dressing & Charbonneau (2013). The vertical red lines
represent the radii of individual planets in the sample, with their heights in proportion to the weight factors
wi. The non-solid linestyles represent different analysis methods. Whereas Method 1 (solid lines) uses the
full analysis described in this paper, with detection efficiency described by an SNR ramp (Fressin et al. 2013)
and φSNR,i constructed by assigning random periods (§7.3.2), Methods 2 (dashed) and 3 (dotted) both keep
period fixed when constructing φSNR,i, and Method 3 uses an SNR = 7.1 detection threshold rather than the
SNR ramp. Method 2 is similar to the occurrence calculation in Fressin et al. (2013) and Method 3 uses the
methods employed in Dressing & Charbonneau (2013). The importance of both a well-characterized detec-
tion efficiency function and treating period-based incompleteness correctly is clear: incorporating both these
considerations significantly changes both the qualitative shape (especially as visualized with histograms) and
normalization of the radius function below 2 R⊕. In particular, the Dressing & Charbonneau (2013) analysis
underestimates the occurrence rates of planets between 0.5 and 1.4 R⊕ by about a factor of two.

below), and also to using an alternative construction of φSNR,i where the period of planet i is kept fixed.

Figure 7.5 illustrates these alternative estimates of the radius function. Method (2), illustrated by the dashed

line, mirrors the analysis of Fressin et al. (2013), who corrected detections for the SNR ramp effect, but not

for the period distribution. Method (3), illustrated by the dotted line, mirrors the analysis of Dressing &

Charbonneau (2013), who used an SNR = 7.1 threshold and did not correct for orbital period. We show that

these corrections make for a nearly 50% increase in the total inferred number of planets/star for P< 50d, and

notably about a factor of two increase in the number of planets smaller than 1.4 R⊕. From this comparison,

we estimate that the the true mean number of Earth-sized (0.5-1.4 R⊕) planets in the habitable zones (HZs)

of these cool stars is at least twice as high as the lower limit estimated by Dressing & Charbonneau (2013);

that is, probably closer to ∼0.30, rather than 0.15. Using revised calculations of the HZ, Kopparapu (2013)

calculates a rate of ∼0.50 habitable Earth-sized planets around cool stars; the completeness considerations in

this paper should increase that estimate to ∼1 planet/star.

Figures 7.4 and 7.5 also display the results of these calculations in the more traditional format of a his-

togram of planet occurrence in different radius bins. In order to calculate these histograms, we simply add up

all the weights in each of the radius bins. Figure 7.4 uses linearly spaced bins; Figure 7.5 uses the same log-
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Table 7.1. Data Used in Radius wKDE

KOI Rp [R⊕] σR ptr ηdisc wi

KOI961.03a 0.57 0.18 0.051 0.14 140.1
KOI2453.01a 0.63 0.11 0.077 0.12 108.2
KOI2542.01a 0.63 0.08 0.132 0.09 84.2
KOI1422.03a 0.67 0.11 0.051 0.23 85.3
KOI961.02a 0.73 0.20 0.132 0.19 39.9
KOI251.02b 0.78 0.09 0.045 0.55 40.4
KOI961.01a 0.78 0.22 0.068 0.21 70.0
KOI952.05a 0.82 0.08 0.180 0.44 12.6

KOI1843.02a 0.83 0.12 0.044 0.33 68.9
KOI2006.01a 0.84 0.07 0.067 0.33 45.2
KOI2238.01a 0.84 0.13 0.093 0.21 51.2
KOI1146.01a 0.88 0.18 0.034 0.33 89.1
KOI1702.01a 0.88 0.13 0.076 0.27 48.7
KOI250.03b 0.88 0.19 0.059 0.69 24.6

KOI2662.01a 0.92 0.22 0.085 0.33 35.7
KOI2036.02a 0.96 0.16 0.047 0.56 38.0
KOI2306.01a 0.97 0.08 0.241 0.51 8.1
KOI1649.01b 0.98 0.12 0.057 0.52 33.7

: : : : : :
KOI255.01a 2.57 0.09 0.016 0.92 67.9

KOI2926.01b 2.57 0.29 0.029 0.90 38.3
KOI248.01b 2.69 0.31 0.041 0.91 26.8
KOI531.01b 2.78 0.40 0.062 0.96 16.8

KOI2156.01a 2.81 0.20 0.068 0.89 16.5
KOI781.01a 2.82 0.10 0.028 0.91 39.2

aPlanet radius based on spectroscopic stellar parameters from
the analysis of Muirhead et al. (2012a)

bSpectroscopic stellar characterization not available, or Teff >
3800, so planet radius based on stellar parameters from Dressing
& Charbonneau (2013)

arithmic bins used by Dressing & Charbonneau (2013) for comparison. There are several qualitative points

to note regarding these histograms. The first is that they can be visually deceptive: for example, the dotted

histogram in Figure 7.5 is approximately flat between 1 and 2 R⊕ before decreasing in the 0.7-1 R⊕ bin,

even though the smoothed distributions continue rising steadily all the way to ∼1.25 R⊕—a result of log-

arithmically spaced bins. Secondly, they only provide a very coarse description of the shape of the radius

distribution; that is, there is much more detectable structure than can be captured in a few bins—for example,

the plateau in Figure 7.4 between 2 and 2.5 R⊕ is not captured in the histogram illustration, nor is the steep

fall-off above 2.5 R⊕, nor the identification of ∼1.25 R⊕ as the location of the low-end turnover.

7.5 Exploring Assumptions

There are two assumptions that we have made to construct this radius distribution:

• The period distribution of planets is both independent of planet radius and well-characterized by the

current planet detections.
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• The detection efficiency of planets in the Batalha et al. (2012) catalog follows an SNR ramp similar to

that described in Fressin et al. (2013).

Are these assumptions justified? What are the implications if they are incorrect?

7.5.1 Period Distribution Assumption

Figure 7.1 illustrates very clearly why the detected population of small planets in the Cool KOI sample is

indeed very likely incomplete, showing that where the detected period distribution of the smallest of the Cool

KOIs drops off is right around the periods where the known short-period small KOIs would have become

undetectable. This is the motivation behind the period redistribution procedure we use to calculate ηdisc,i

in §7.3—correcting for the undetectable longer-period small planets. Such a correction is surely needed;

however, the nature of this correction as applied in this work—using the implied all-planet period distribution

for each planet—merits some discussion.

There are certainly both physical reasons and observational suggestions to believe that the planet period

distribution is not completely independent of radius. In particular, Howard et al. (2012) finds (shown in their

Figure 6) that the fraction of short-period planets that are large (4-8 R⊕) is smaller than the fraction of longer-

period planets that are large; in other words, the period distribution of larger planets decreases (heading

towards shorter periods) sooner than does the distribution of smaller planets (2-4 R⊕). Dong & Zhu (2012)

present a similar finding. While there is not yet compelling evidence that this same effect has been detected

for planets smaller than 2 R⊕, simple physical considerations such as increasing stellar insolation (Weiss &

Marcy 2013) might reasonably contribute to a dearth of larger planets on short-period orbits. However, as

there is no corresponding clear physical explanation for the absence of smaller planets in longer orbits, it is

reasonable to assume that they do in fact exist, and that their period distribution might resemble the period

distribution of the larger planets that are detected in such orbits.

In addition, if small planets are in general more common than larger planets (as it appears), and small

planets are not being detected on longer periods, then approximating the distribution of all planets with just

the total observed distribution will naturally underestimate the total numbers of longer-period planets. In fact,

looking at the all-planet distribution in Figure 7.2, it is quite reasonable to expect that perhaps the apparent

decrease of the distribution function longer than ∼20 days is actually due to the fact that only planets larger

than 1.5 R⊕ or so (which may very well be a minority of all planets) are being readily detected at these

periods. And so, this will cause an overestimate of the true fraction of large planets that are at shorter periods,

and an underestimate of the true numbers of small planets that are at longer periods.

The total effect of this assumption will thus be to systematically shift the simulated “planet clone” distri-

butions towards shorter periods, and thus the SNR distributions φSNR,i toward larger SNRs. This will cause

ηdisc,i values to be slightly overestimated, which will lead to underestimating the weights wi and subsequently

the normalization of the radius function, especially towards smaller planets, which depend most heavily on
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this correction. However, this effect is a very small one—we repeated the analysis using a distribution in

logP that has an exponential cutoff below 10 days and is flat above (that is, without the dip beyond ∼15 days

that appears in Figure 7.2), and there is negligible difference in the ensuing radius distribution, with the only

change being a few percent increase in the planet occurrence in the 1-1.5 R⊕ bin in Figure 7.4—and notably

no change to the 0.5-1 R⊕ bin.

7.5.2 SNR Ramp Assumption

Figure 7.5 shows that quantifying the detection efficiency of the Kepler pipeline as an SNR ramp (Equation

7.7) rather than a strict threshold cut makes a significant difference in the inferred occurrence rate of planets

smaller than 2 R⊕. In particular, the value of SNR by which the pipeline is assumed to be 100% complete

changes the overall normalization of the low end of the radius distribution. While the 6-16 SNR ramp char-

acterization of the efficiency for the Batalha et al. (2012) catalog was introduced and defended by Fressin

et al. (2013), and was adjusted in this work (Figure 7.4) to be relevant to the Q1-Q8 catalog (F. Fressin,

priv. comm.), it should be treated as a temporary solution until the detection efficiency of the Kepler pipeline

can be directly quantified as a function of SNR through injection/recovery simulations. However, the notable

features in Figures 7.4 and 7.5—the rise down to about 1 R⊕ and the small plateau around 2.5 R⊕—are robust

to the precise details of the ramp.

7.6 Conclusions

We apply a simple non-parametric method of analyzing the empirical shape of the planet radius distribution

from a transit survey—the weighted kernel density estimator, or wKDE. This estimator is similar to a standard

kernel density estimator, except that its overall normalization is constructed to be equal to the total number

of planets per star, and that each data point is weighted according to its inverse detection efficiency. We also

show that properly computing this efficiency requires two considerations that have not always been applied

in previous occurrence rate studies: correcting for the planet period distribution when calculating how many

target stars around which a particular planet could have been observed, and considering that the detection

efficiency is a rising function of signal-to-noise ratio, and not just a strict cutoff.

Applying this analysis to the 113 planet candidates currently in the cumulative KOI catalog with periods

less than 90 days discovered around the cool Kepler targets photometrically characterized by Dressing &

Charbonneau (2013), we identify several key features of the radius distribution of small planets around small

stars which invite theoretical explanation. First, even correcting carefully for incompleteness, the data indi-

cate a flattening or turnover of the distribution around about 1-1.25 R⊕, suggesting that planets about this size

are the most common to survive in short orbits around cool stars. Notably, this feature of the distribution is

robust to incompleteness below 1 R⊕: it appears that planets smaller than Earth are indeed more rare around

cool stars than planets around the size of Earth. Secondly, there appears to be a plateau from about 2 to 2.5
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R⊕, where there is an overabundance of planets as compared to what would be predicted from a smooth dis-

tribution extrapolating from small to larger planet radii, perhaps an indication of a population of planets with

significant H/He atmospheres. And finally, the occurrence pattern of planets around cool stars indicates that

there are many planets just beyond the detection threshold of ground-based surveys, as planets larger than Gl

1214b (2.7 R⊕) are ∼30× rarer than planets with Rp < 2.7R⊕.

Comparing this non-parametric radius function estimate with the more traditional presentation of planet

occurrence rate in different radius bins demonstrates that the bin presentation can be visually misleading, in

addition to missing details of the distribution that are accessible in the data. And comparing our results to

the occurrence calculations of Dressing & Charbonneau (2013), we find that there are about a factor of two

more planets from 0.5 to 1.4 R⊕ than that analysis determined; this would imply that there are an average of

∼0.30 habitable-zone Earth-like planets per cool star, rather than the ∼0.15 estimated by that work. And if

this same correction is made to the calculations of Kopparapu (2013), which use updated HZ calculations but

the same occurrence formalism as Dressing & Charbonneau (2013), than this number would become closer

to ∼1 planet per star. Habitable-zone, Earth-sized planets abound throughout the Galaxy in numbers even

larger than previously estimated.

In addition to demonstrating how to extract empirical distributions from Kepler data without relying on

arbitrary binning, we call attention to the importance of understanding in detail the detection efficiency of

transit search algorithms. Future studies can most directly support analyses such as these—which lie at the

very core of the Kepler mission—by directly computing the detection efficiency of these algorithms as a

function of signal-to-noise ratio, enabling reliable correction for incompleteness near the detection threshold,

where many of the most scientifically interesting discoveries will be made. And finally, we emphasize that

this calculation is based on a target sample of only about 3900 cool stars and a KOI search only through Q8

data. Continued expansion of the cool star Kepler sample by re-appropriation of target pixels could potentially

increase this sample size by a factor of two or more, allowing for greatly strengthened conclusions from the

small-planet radius distribution and giving a greater handle on the formation processes of planetary systems

around the most numerous stars in the Galaxy. In addition, careful application of these same principles to

the entire Kepler dataset, as permitted by accurate knowledge of stellar parameters, will continue to uncover

important clues to the formation and evolution of all types of planetary systems.
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Chapter 8

Conclusion

In Chapter 1, I reviewed what was known about population statistics of exoplanets before the launch of the

Kepler mission. In Chapters 4, 5, 6, and 7, I detailed the contributions that I have made to further under-

standing exoplanet demographics and enabling confidence in large demographic studies that treat Kepler

candidates as if they were true planets. In this brief conclusion, I summarize the most important of these

studies and look forward to what I see as the future of exoplanet demographics.

The two most readily available physical properties of a planet candidate are its period and radius; con-

sequently, the most natural investigation into the Kepler candidates is to try to reconstruct the joint period-

radius distribution of exoplanets. Soon after the release of the first candidate catalog (Borucki et al. 2011),

two independent analyses were released. Howard et al. (2012, H12) focused on the sample of bright (Kepler

magnitude < 15) “Solar-type” stars (Teff = 4100−6100 K) and planet candidates with P< 50 days, in order to

be able to compare to the RV results of the NASA-UC Eta-Earth survey. The analysis also was restricted to

planet radii >2 R⊕ and SNR > 10—this constraint and the Kepler magnitude cut were intended to simplify

analysis by choosing candidates whose detection efficiencies should be close to 100% (i.e. avoiding having

to deal with the kinds of corrections that I presented in Chapter 7). Using this subset, they analyzed planet

Figure 8.1 The radius and period distributions of planets around solar-type stars (4100-6100 K), derived from
the distribution of Kepler planet candidates by Howard et al. (2012). These results depended on assuming
that all the candidates were planets; i.e. that the false positive rate was negligible.
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Figure 8.2 Summary of the derivation of the underlying shape of the exoplanet joint period-radius distribution,
assuming a join power-law distribution ∝ RαPβ (Youdin 2011). The population of planet candidates from
Borucki et al. (2011) is split into four quadrants, short/long-period (split at 7 days) and small/large (split at
3 R⊕). The most striking feature found here is the qualitatively different shape of the radius function for
short and long period planets. In addition (not indicated in these plots), extrapolation of these power-law fits
indicates that there could be an average of ≈3 Earth-sized planets per star out to 365-day orbits.

occurrence in bins of radius and period, correcting for transit geometry and detection completeness. Figure

8 displays two different views into this distribution: the overall radius distribution and the period distribution

for candidates of different sizes. One of the most notable discoveries in this work, is the finding that the

period distributions of planets, as parametrized by a power law + exponential fit, have different cutoff periods

depending on planet size (right hand panel of Figure 8).

Youdin (2011) took a slightly different strategy than H12, laying out an analytic formalism to fit an

underlying radius-period distribution ∝ RαPβ to the observed data, accounting for detection efficiency and

transit geometry. Rather than conservatively stopping at Rp = 2 R⊕ as did H12, this analysis extrapolated

the survey detection efficiency down to planet candidates of 0.5 R⊕. Figure 8 summarizes the results of

fitting this joint radius-period distribution to four “quadrants” of candidates from Borucki et al. (2011), split

at a period of 7 days and radius of 3 R⊕. The finding, similar to H12 is that there appears to be a break

in the period distribution at short periods, and also that the size distributions of shorter and longer-period

planets are qualitatively different (RH panel of Figure 8). In addition to these power-law fits, Youdin (2011)

also calculates a non-parameteric occurrence rate of an average of about 0.7-1.4 planets per star >0.5 R⊕ and

P< 50 days (the range depending on systematic uncertainties in the Kepler discovery efficiency). And finally,

a speculative extrapolation of the power-law fits out to periods of 1 year implies an astonishing average of

≈3 planets per star larger than Earth with periods less than 365 days.

Complementary to these investigations of the occurrence of planets in the mass-radius plane has been

what Kepler has taught us about multi-planet systems. The Batalha et al. (2012) catalog contained 885 planet

candidates in 361 multi-planet systems. This large number of multi-transiting systems has enabled studies of
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planetary system mutual inclination, all of which indicate that multiple transiting planets tend to have orbits

coplanar to within a few degrees (Fabrycky et al. 2012b; Fang & Margot 2012). In addition, the population of

detections seems to indicate that 75%-80% of planetary systems have one or two planets with orbital periods

less than 200 days (Fang & Margot 2012).

While all these studies have shown for the first time the broad characteristics of exoplanet populations at

relatively short periods down to approximately the size of Earth, further analysis of Kepler data will continue

to reveal still more. In particular, I do not believe that further studying planet “occurrence rates” or statistics

like the average number of planets per star or the fraction of stars with planets is the most fruitful direction

for future study of exoplanet demographics, nor any other studies that make any assumptions that planetary

systems are able to be characterized as a single population. In fact, I believe what the Kepler results are

hinting at is that, indeed, the fraction of stars with planets is 1—in other words, all stars probably host

planetary systems.

I think the direction that the most illuminating future exoplanet demographic studies will take is answering

questions more like “What are the different kinds of planetary systems, and what are their relative frequency?”

“What are the different factors that cause different planetary systems to end up in different end states?”

or “What role does stellar binarity or other environmental factors play in planetary system formation and

evolution?” Answering these questions will doubtless require careful joint analysis of several data sets:

Kepler candidate catalogs, Kepler follow-up data (especially spectroscopy and imaging to characterize the

physical properties and binarity statistics of Kepler host stars), and the ensemble of radial velocity survey

data (which has been somewhat tabled in recent years due to the frenzy regarding Kepler results). Eventual

success in this endeavor, however, will finally enable us to address the fundamental questions that motivate

much of exoplanet research: how typical is our Solar System, and how common are planetary systems that

might be able to support life?



108

Bibliography

Almenara, J. M., Deeg, H. J., Aigrain, S., et al. 2009, A&A, 506, 337

Alonso, R., Brown, T. M., Torres, G., et al. 2004, ApJ, 613, L153

Baglin, A. 2003, Advances in Space Research, 31, 345

Bakos, G. Á., Noyes, R. W., Kovács, G., et al. 2007, ApJ, 656, 552

Ballard, S., Fabrycky, D., Fressin, F., et al. 2011, ApJ, 743, 200

Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 2002, A&A, 382, 563

Barclay, T., Rowe, J. F., Lissauer, J. J., et al. 2013, Nature, 494, 452

Basri, G., Walkowicz, L. M., Batalha, N., et al. 2010, ApJ, 713, L155

Batalha, N. M., Borucki, W. J., Bryson, S. T., et al. 2011, ApJ, 729, 27

Batalha, N. M., Borucki, W. J., Koch, D. G., et al. 2010a, ApJ, 713, L109

Batalha, N. M., Rowe, J. F., Bryson, S. T., et al. 2012, ArXiv e-prints

Batalha, N. M., Rowe, J. F., Gilliland, R. L., et al. 2010b, ApJ, 713, L103

Batygin, K. & Morbidelli, A. 2013, AJ, 145, 1

Batygin, K. & Stevenson, D. J. 2010, ApJ, 714, L238

Beatty, T. G. & Gaudi, B. S. 2008a, ApJ, 686, 1302

Beatty, T. G. & Gaudi, B. S. 2008b, ApJS, 686, 1302

Biller, B. A., Close, L. M., Masciadri, E., et al. 2007, ApJS, 173, 143

Bodenheimer, P., Laughlin, G., & Lin, D. N. C. 2003, ApJ, 592, 555

Bonfils, X., Delfosse, X., Udry, S., et al. 2013, A&A, 549, A109

Borucki, W., Koch, D., Basri, G., et al. 2008, in IAU Symposium, Vol. 249, IAU Symposium, ed. Y.-S. Sun,

S. Ferraz-Mello, & J.-L. Zhou, 17–24



109

Borucki, W. J., Koch, D. G., Basri, G., et al. 2011, ArXiv e-prints

Borucki, W. J., Koch, D. G., Batalha, N., et al. 2012, ApJS, 745, 120

Boss, A. P. 1997, Science, 276, 1836

Bouchy, F., Bonomo, A. S., Santerne, A., et al. 2011, A&A, 533, A83

Bouchy, F., Udry, S., Mayor, M., et al. 2005, A&A, 444, L15

Brown, T. M. 2003, ApJ, 593, L125

Burke, C. 2013, in prep

Burrows, A., Hubeny, I., Budaj, J., & Hubbard, W. B. 2007, ApJ, 661, 502

Butler, R. P., Vogt, S. S., Marcy, G. W., et al. 2004, ApJ, 617, 580

Cassan, A., Kubas, D., Beaulieu, J.-P., et al. 2012, Nature, 481, 167

Chabrier, G. 2001, ApJ, 554, 1274

Chabrier, G., Baraffe, I., Allard, F., & Hauschildt, P. 2000, ApJ, 542, 464

Chambers, J. E. 2001, , 152, 205

Charbonneau, D., Berta, Z. K., Irwin, J., et al. 2009, Nature, 462, 891

Charbonneau, D., Brown, T. M., Latham, D. W., & Mayor, M. 2000, ApJ, 529, L45

Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. 2008, ApJ, 686, 580

Chiang, E. & Laughlin, G. 2012, ArXiv e-prints

Claret, A. 2000, A&A, 363, 1081

Collier Cameron, A., Bouchy, F., Hébrard, G., et al. 2007, MNRAS, 375, 951

Colón, K. D., Ford, E. B., & Morehead, R. C. 2012, MNRAS, 426, 342

Cumming, A., Butler, R. P., Marcy, G. W., et al. 2008, PASP, 120, 531

Dong, S. & Zhu, Z. 2012, ArXiv e-prints

Dotter, A., Chaboyer, B., Jevremović, D., et al. 2008, ApJS, 178, 89
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