CHEMISTRY OF LOW-VALENT PLATINUM DIMERS

Thesis by

Miriam Heinrichs Zietlow

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

California Institute of Technology Pasadena, California

1989

(Submitted August 8, 1988)

Under certain circumstances there are few hours in life more agreeable than the hour dedicated to the ceremony known as afternoon tea. There are circumstances in which, whether you partake of the tea or not—some people of course never do,—the situation is in itself delightful.

Henry James

The Portrait of a Lady

ACKNOWLEDGMENTS

It's hard to believe that I've been at Caltech for five years! I won't say that "I've had the time of my life" here, but there are some people who have made this place pleasant and deserve some thanks.

First there's Harry, a man whom I have great respect for as a person and as a scientist. He is one of the most generous people I have ever met and I have greatly enjoyed interacting with him, learning from him, listening to his stories and laughing.

Then, of course there is the rest of the Gray group, past and present: Janet, Tom, Mike, Tad, David, Erica, Holden, Ramy, John, Mark, Wayne, and the bio-group; some of whom deserve special recognition. When I joined the group, it consisted of a bunch of men and one woman; I leave the group with the same ratio. Good luck Erica. Tad "Dude" and David "the May", who have been with me during my five years here and have been responsible, knowingly or unknowingly, for much of my amusement. Jenny, a great roommate and the perfect person to be writing a thesis with; she always knows when to take a break - "How 'bout a movie?" Ramy, a really sweet guy, the best washboard around, and now even a convertible - What more could a girl want? Holden, a very "bright" young man who has the incredible responsibility of leading "such a hard life"; best of all, though, he's a Tarheel born and Tarheel bred. And then there's John "Johnny Dollar", who never did get a little red wagon - well, I don't think you'll need one now.

I want to thank all those people who helped me along on my first and "will it ever end" linear chains project: Bill Schaefer, Les Butler, Basil Swanson, and especially Steve Conradson.

iii

Lunchtime — that midday break necessary to regain my sanity; I want to say THANKS to all my long-time regular lunch buddies; Paula, Marie, Scott, Debbie, and "H".

Every year, around July, I never got enough sleep during it, but I always felt better after it — the Southern California Inorganic Photochemistry (SCIP) conference. I'll miss those meetings and the people, especially Carl, Cris, and Dick.

Although I'm not a big fan of Southern California, there are two things here that I will truly miss: Claro's Italian Deli and the people there, and, most importantly, the Santa Anita Race Track. GO Winning Colors!!! GO Willy!!!

Words cannot begin to express how grateful I am for all the patience, encouragement, and love that my husband, Tom, and my parents have given me. Tom, you are my best friend, my "sweetie"; one of the best things that ever happened to me was having to work late on a Friday night. My mother and father, Mami and Papi, not a typical set of parents — maybe that's why I love them so much.

And lastly, I want to thank God for all that He has done for me in the past, at the present, and in the future.

iv

to my Mother, my Father, Ashes

and Tom

ABSTRACT

Physical and chemical properties of low-valent platinum dimers, namely $[Pt_2(P_2O_5H_2)_4]^{4-}$ and $Pt_2(\mu-dppm)_2Cl_2$, have been investigated using a variety of structural and spectroscopic techniques.

Platinum(II) d⁸-d⁸ dimers have been shown to exhibit much thermal and photochemical reactivity. Chapter 2 describes studies aimed at elucidating the excited state reduction potential of $[Pt_2(P_2O_5H_2)_4]^{4-}$, Pt2, in organic media. By conducting excited state electron transfer studies using derivatized pyridiniums and benzophenones, the Pt2 excited state reduction potential has been estimated to be -2 V. The Pt₂ complex undergoes partial oxidation to form Pt(II,III) linear Chapter 3 describes the structural and chains. spectroscopic techniques used to determine the translational symmetries of these $[Pt_2(P_2O_5H_2)_4X]^{4-}$ (X = Cl, Br), Pt_2X , chains. Pt_2Br has been found to be intermediate between $(AAB)_n$ and $(AABCCB)_n$, while, Pt_2Cl is of (AABCCB)_n translational symmetry. Investigations into the electronic transitions of Pt₂Cl and Pt₂Br were conducted using high pressure techniques and are presented in Chapter 4. The Pt₂X electronic spectrum exhibits bands attributable to the reduced Pt2 complex and the oxidized Pt_2X_2 complex ($[Pt_2(P_2O_5H_2)_4X_2]^{4-}$) along with an intervalence charge-tranfer band characteristic of a mixed-valence solid.

Photophysical investigations of a new luminescent chromophore, $Pt_2(\mu$ -dppm)₂Cl₂, a d⁹-d⁹ dimer, and its analogs are described in Chapter 5. The absorption band directly responsible for the observed emission is believed to be very weak and, as of yet, unobserved. Attempts to determine the spin multiplicity and approximate energy of this unobserved transition are described in Chapter 6. Excited-state energy transfer studies indicate that this absorption band is a triplet transition at ~13,000 cm⁻¹. Although, the $Pt_2(\mu$ -dppm)_2Cl₂ excited state is non-luminescent in fluid solution, it has been shown to undergo thermal electron transfer to tetracyanoethylene and photoinduced electron transfer to methylviologen. These experiments are presented in Chapter 7. Preliminary studies, described in Chapter 8, of non-bridged d⁹-d⁹ platinum(I) dimers have shown that $[Pt_2(CNCH_3)_6]^{2+}$ serves as a versatile precursor in the synthesis of new d⁸-d⁸ A-frame complexes. TABLE OF CONTENTS

Aknowledgment	S	iii
Dedication		v
Abstract		vi
List of Figures		ix
List of Tables		xiv
Chapter 1	Introduction	1
Chapter 2	Electron Transfer Studies of (TBA) ₄ [Pt ₂ (P ₂ O ₅ H ₂) ₄	20
Chapter 3	Translational Symmetries in the Linear-Chain Semiconductors $K_4[Pt_2(P_2O_5H_2)_4X] \cdot nH_2O$ (X = Cl, Br)	39
Chapter 4	Pressure Dependence of the Electronic Spectra of $K_4[Pt_2(P_2O_5H_2)_4X_n]$ (X = Cl, Br; n = 0, 1, 2)	74
Chapter 5	Photophysics of $[Pt_2(\mu-dppm)_2Y_2]^{n+}$ (Y = Cl, Br; n = 0 or Y = PPh ₃ , PPh ₂ Me, PPhMe ₂ ; n = 2)	118
Chapter 6	Energy Transfer Studies of $Pt_2(\mu-dppm)_2Cl_2$	174
Chapter 7	Electron Transfer Studies of $Pt_2(\mu$ -dppm) ₂ Cl ₂ and Its Analogs	200
Chapter 8	Preliminary Investigations of [Pt ₂ (CNCH ₃) ₆](BF ₄) ₂	226
Appendix	Anisotropic Thermal Parameters and Listings of Observed and Calculated Structure Factors for $K_4[Pt_2(P_2O_5H_2)_4Cl]$ at 22 and 300 K	251

LIST OF FIGURES

Chapter 1

Figure 1.1	Structure of $[Pt_2(P_2O_5H_2)_4]^4$.	3
Figure 1.2	Molecular orbital diagram for a d ⁸ -d ⁸ dimer.	5
Figure 1.3	Electronic absorption and emission spectra of $K_4[Pt_2(P_2O_5H_2)_4]$.	8
Figure 1.4	Structure of $Pt_2(\mu-dppm)_2Cl_2$.	12
Figure 1.5	Known thermal chemistry of $Pt_2(\mu-dppm)_2Cl_2$.	15

Chapter2

Figure 2.1	Modified Latimer diagram for $K_4[Pt_2(P_2O_5H_2)_4]$.	22
Figure 2.2	Stern-Volmer plot of electron transfer quenching between $(TBA)_4[Pt_2(P_2O_5H_2)_4]$ and a pyridinium.	29
Figure 2.3	Emission intensity quenching and a Stern-Volmer plot of electron transfer quenching between $(TBA)_{4}[Pt_{2}(P_{2}O_{5}H_{2})_{4}]$ and a benzophenone.	34

Figure 3.1	Translational symmetries for $K_4[Pt_2(P_2O_5H_2)_4X]$.	42
Figure 3.2	ORTEP drawings of $K_4[Pt_2(P_2O_5H_2)_4X]$ structures.	49
Figure 3.3	Raman spectra of $K_4[Pt_2(P_2O_5H_2)_4X]$.	60

Figure 4.1	Energy level diagram for $[Pt_2(P_2O_5H_2)_4Cl_2]^4$.	82
Figure 4.2	Electronic absorption spectra of $[Pt_2(P_2O_5H_2)_4Cl_2]^{4-}$ at various pressures.	84
Figure 4.3	Pressure shifts of transitions observed for $[Pt_2(P_2O_5H_2)_4Cl_2]^{4-}$.	86
Figure 4.4	Energy level diagram for $[Pt_2(P_2O_5H_2)_4]^4$.	89
Figure 4.5	Electronic absorption spectra of $[Pt_2(P_2O_5H_2)_4]^{4-}$ at various pressures.	91
Figure 4.6	Pressure shifts of transitions observed for $[Pt_2(P_2O_5H_2)_4]^{4-}$.	93
Figure 4.7	Energy level diagram for $[Pt_2(P_2O_5H_2)_4Br]^4$.	97
Figure 4.8	Electronic absorption spectra of $[Pt_2(P_2O_5H_2)_4Br]^{4-}$ at various pressures.	99
Figure 4.9	Pressure shifts of transitions observed for $[Pt_2(P_2O_5H_2)_4Br]^{4-}$.	101
Figure 4.10	Electronic absorption spectra of $[Pt_2(P_2O_5H_2)_4C1]^{4-}$ at various pressures.	104
Figure 4.11	Pressure shifts of transitions observed for $[Pt_2(P_2O_5H_2)_4C1]^{4-}$.	106
Figure 4.12	Relative energy shifts of the IVCT bands of $[Pt_2(P_2O_5H_2)_4X]^{4-}$ (X = Cl, Br).	110

Figure 4.13 Relative energy shifts of the
$$d\sigma^* \rightarrow p\sigma$$
 transition 113
in $[Pt_2(P_2O_5H_2)_4X_n]^{4-}$ (X = Cl, Br; n = 0, 1, 2).

Figure 5.1	Molecular orbital diagrams for MP ₂ , $(MP_2)_2$, and $(MP_2)_2X_2$.	127
Figure 5.2	Electronic absorption spectrum of $Pt_2(\mu-dppm)_2Cl_2$.	132
Figure 5.3	Electronic absorption spectrum of $Pd_2(\mu-dppm)_2Cl_2$.	134
Figure 5.4	Solid emission and excitation spectra of $Pt_2(\mu-dppm)_2Cl_2 \cdot 0.5CH_2Cl_2$, 21 K.	137
Figure 5.5	Solid emission and excitation spectra of $Pt_2(\mu-dppm)_2Br_2 \cdot 0.5CH_2Cl_2$, 16 K.	140
Figure 5.6	Low temperature electronic absorption spectrum of $Pt_2(\mu-dppm)_2Cl_2$.	143
Figure 5.7	Solid emission and excitation spectra of $Pt_2(\mu-dppm)_2Cl_2 \cdot C_6H_6$, 20 K.	147
Figure 5.8	Glass emission and excitation spectra of Pt ₂ (µ-dppm) ₂ Br ₂ , 77 K.	153
Figure 5.9	Arrhenius plot for $Pt_2(\mu$ -dppm) ₂ Cl ₂ • C ₆ H ₆ .	158
Figure 5.10	Electronic absorption and emission spectra of $[Pt_2(\mu-dppm)_2(PPh_3)_2](PF_6)_2$.	160
Figure 5.11	Electronic absorption and emission spectra of $[Pt_2(\mu-dppm)_2(PPh_2Me)_2](PF_6)_2$.	163

Figure 5.12	Electronic absorption and emission spectra of	166
	$[Pt_2(\mu-dppm)_2(PPhMe_2)_2](PF_6)_2.$	

Chatper 6

Figure 6.1	Stern-Volmer plot of the energy transfer between $(TBA)_2[W_6Br_8I_6]$ and $Pt_2(\mu$ -dppm)_2Cl_2.	179
Figure 6.2	Plot of energy transfer data between various donors and $Pt_2(\mu$ -dppm) ₂ Cl ₂ .	187
Figure 6.3	Donor and acceptor energy level schematics for energy transfer.	190
Figure 6.4	Plot of energy transfer data between various donors and anthracene.	196
Chapter 7		
Figure 7.1	Electronic absorption spectrum of thermal electron transfer reaction between $Pt_2(\mu$ -dppm) ₂ Cl ₂ and TCNE.	210
Figure 7.2	EPR spectra of TCNE [*] and the $Pt_2(\mu$ -dppm) ₂ Cl ₂ /TCNE adduct.	213
Figure 7.3	Flash photolysis trace and plot of $1/\Delta A vs.$ t of the back electron transfer reaction between $Pt_2(\mu-dppm)_2Cl_2$ and MV^{2+} .	221

Figure 8.1	Structures of	$[M_2(CNCH_2)_6]$	$(BF_A)_2$	(M = Pt,	Pd).	229
			(4))	1	/.	

Figure 8.2	Electronic absorption and emission spectra of $[Pt_2(CNCH_3)_6](BF_4)_2$.	234
Figure 8.3	Electronic absorption and emission spectra of $[Pt_2(\mu-dppm)_2(\mu-CNCH_3)(CNCH_3)_2](BF_4)_2$.	237
Figure 8.4	¹ H NMR spectrum of the dppm methylene protons of $[Pt_2(\mu-dppm)_2(\mu-CNCH_3)(CNCH_3)_2](BF_4)_2$.	240
Figure 8.5	Electronic absorption and emission spectra of $[Pt_2(\mu-CN(CH_2)_3NC)_2(\mu-CNCH_3)(CNCH_3)_2](BF_4)_2$.	243

LIST OF TABLES

Chapter 1

Table 1.1	Selected bond lengths and bond angles of	14
	$Pt_2(\mu-dppm)_2Cl_2$.	

Chapter 2

Table 2.1	Electron transfer data using pyridiniums.	28
Table 2.2	Electron transfer data using benzophenones.	33

Table 3.1	Summary of crystal and intensity data for $K_4[Pt_2(P_2O_5H_2)_4Cl]$.	46
Table 3.2	Parameters for $K_4[Pt_2(P_2O_5H_2)_4C1]$ at 22 K.	52
Table 3.3	Parameters for $K_4[Pt_2(P_2O_5H_2)_4C1]$ at 300 K.	53
Table 3.4	Selected bond distances for $K_4[Pt_2(P_2O_5H_2)_4X_n]$ (X = Cl, Br; n = 0, 1, 2).	56
Table 3.5	Selected bond angles for $K_4[Pt_2(P_2O_5H_2)_4X_n]$ (X = Cl, Br; n = 0, 1, 2).	57
Table 3.6	Raman bands for $K_4[Pt_2(P_2O_5H_2)_4C1]$.	62
Table 3.7	Raman bands for $K_4[Pt_2(P_2O_5H_2)_4Br]$.	63

Chapter 4

Table 4.1	Ambient-pressure energies of electronic transitions	81
	for $K_4[Pt_2(P_2O_5H_2)_4X_n]$ (X = Cl, Br; n = 0, 1, 2).	

Chapter 5

Table 5.1	Orbitally allowed transitions assuming D _{2h} symmetry.	146
Table 5.2	Emission maxima and lifetimes of $Pt_2(\mu-dppm)_2Cl_2$ solvate.	151
Table 5.3	$Pt_2(\mu-dppm)_2Cl_2 \cdot C_6H_6$ variable temperature data.	157
Table 5.4	Absorption band maxima of some Pt(I) and Pd(I) dimers.	176
Chapter 6		
Table 6.1	Energy transfer data using $Pt_2(\mu$ -dppm) ₂ Cl ₂ .	186
Table 6.2	Energy transfer data using anthracene.	195

Table 7.1	Oxidation potentials of $[Pt_2(\mu-dppm)_2Y_2]^{n+}$	208
	$(Y = Cl, n = 0; Y = PPh_3, PPh_2Me, PPhMe_2, n = 2).$	

CHAPTER 1

Introduction

×

INTRODUCTION

A photo-excited molecule is best envisioned as a new species possessing physical and chemical properties distinct from its corresponding ground state molecule. Photophysical studies of various molecular chromophores (namely monomers,^{1,2} dimers,^{3,4} and clusters^{5,6}) have resulted in elaborate and detailed descriptions of the physical properties of their excited states. During these studies, certain chromophores have been recognized as possessing great photochemical potential in the areas of solar energy conversion and small molecule activation.^{1,7} One such molecular chromophore is the d⁸-d⁸ dimer.

First synthesized by Roundhill and coworkers,⁸ $[Pt_2(P_2O_5H_2)_4]^{4-}$, Pt₂, is a particularly interesting member of this class of molecules. Its structure can be described as two face-to-face square planar monomeric fragments, which are hooked together by four bridging ligands (see Figure 1.1)⁹; hence, the "idealized" point group is D_{4h} . The molecular orbital diagrams for all d⁸-d⁸ species have the same basic features, which are illustrated in Figure 1.2. Since all the electrons are spin paired, the ground state is a singlet. The lowest energy excited state is obtained when an electron is promoted from the $d\sigma^*$ orbital to the po orbital; for Pt₂ this transition is $A_{1g} \rightarrow A_{2u}$ ^{10,11} From group theory, the $(d\sigma^*)^2 \rightarrow (d\sigma^*)(p\sigma)$ transition is fully allowed along the z direction,^{10,11} thus the extinction coefficient for the ${}^{1}A_{1g} \rightarrow {}^{1}A_{2u}$ transition is expected to be $10^{3} - 10^{4} \text{ M}^{-1} \text{ cm}^{-1}$; the actual value being $3.45 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$.^{10,11} The ${}^{1}\text{A}_{1g} \rightarrow {}^{3}\text{A}_{2u}$ transition is formally spin forbidden; however due to spin-orbit coupling it is observed in the absorption spectrum with an $\varepsilon = 110 \text{ M}^{-1} \text{ cm}^{-1}$.^{10,11}

While these features are common to all d⁸-d⁸ dimers, the exact

Figure 1.1

Structure of $[Pt_2(P_2O_5H_2)_4]^{4-}$.

Figure 1.2

Molecular orbital diagram for a d^8-d^8 dimer built from a d^8 monomer.

energies of the singlet-singlet and singlet-triplet transitions are a function of the metal and type of ligands, as well as constraints on the metal-metal distance due to the size of the bridging ligand. These factors cause the singlet-singlet and singlet-triplet transitions in Pt_2 to lie at relatively high energies; 27100 cm⁻¹ (369 nm) and 22200 cm⁻¹ (451 nm) respectively (see Figure 1.3). The molecular orbital diagram predicts that $Pt_2(pop)_4$ contains no formal metal-metal bonds; however, configurational mixing of orbitals results in a ground state metal-metal interaction. The excited state is predicted to have a formal metal-metal single bond; evidence for this is observed in low temperature absorption spectroscopy, where the vibrational transitions are well resolved, ¹⁰ and in time-resolved resonance Raman spectroscopy. ^{12,13} The formation of a metal-metal single bond in the excited state.

The most appealing feature of all $d^8 - d^8$ dimers is their observed luminescence. Although all $d^8 - d^8$ dimers studied thus far luminesce to some extent, emission observed for Pt₂ is truly remarkable, with a quantum yield of emission greater than 0.50 (see Figure 1.3).¹⁴ The majority of the emission results from radiative decay from the triplet excited state (phosphorescence) with a luminescence lifetime of 10 µs at room temperature. Emission from the singlet excited state (fluorescence) is also observed; its luminescence lifetime is estimated to be 40 ps.^{10,11} Due to the shortness of the fluorescent lifetime, it is unlikely that any bimolecular photochemistry will occur directly from the singlet excited state.

These properties of Pt₂ can be used to investigate the correlation

7

Figure 1.3 Electronic absorption (----) and corrected emission (----) spectra (taken from reference 10b) of an aqueous solution (300 K) of $K_4[Pt_2(P_2O_5H_2)_4]$; (left scale, $\epsilon \times 10^{-4}$ M⁻¹ cm⁻¹ values).

of one electron potentials with photoreactivity involving one or more electrons. Chapter 2 describes quenching experiments designed to investigate the photoreactivity of the triplet excited state in organic media.

The Pt_2 dimer crystallizes in the tetragonal space group P4/mbm as infinite chains along the c axis when K⁺ is present as the counterion.⁹ Oxidation of the Pt_2 structure by the introduction of different groups, which act as bridges between the dimers, creates d^7-d^8 systems which exhibit interesting conduction properties.^{15,16} The results of X-ray diffraction studies and Raman experiments, which offer a clearer structural view of these linear chain systems, are discussed in Chapter 3.

In addition to bond length changes in the $Pt_2(P_2O_5H_2)_4$ core resulting from oxidation by halogen, the molecular orbital description of the $[Pt_2(P_2O_5H_2)_4X]^{4-}$ chains changes. Chapter 4 investigates the effects of pressure on the electronic absorption spectra for $[Pt_2(P_2O_5H_2)X_n]^{4-}$ (n = 0,1,2); these results have increased our insight into the structural and electronic factors which dominate in the molecular orbital description of these systems.¹⁷

In addition to being desirable candidates for photophysical study, $d^{8}-d^{8}$ dimers participate in many interesting photochemical reactions. Two types of reaction classes, established thus far, which result in net photochemistry are (i) bimolecular oxidative-additon reactions initiated by electron transfer^{18,19} and (ii) hydrogen atom abstraction reactions.²⁰⁻²⁴ In both of these reactions, steric restrictions imposed by the bridging ligands of the $d^{8}-d^{8}$ starting material force substrate addition to occur in the axial position, resulting in the formation of $d^{7}-d^{7}$ dimers as products. Because of this steric restriction, it is difficult to envision photochemical, concerted addition of small molecules such as CO_2 , CS_2 , and SO_2 . If the metalmetal core were made more assessible to substrates such that adjacent coordination sites were available, concerted small molecule addition may be possible.

It is with this thought in mind that the photophysical and photochemical study of the nearly planar d^9-d^9 platinum dimer $Pt_2(\mu$ $dppm)_2Cl_2$ (dppm = bis(diphenylphosphino)methane) and its analogs was undertaken (see Figure 1.4 and Table 1.1).^{25,26} Both platinum and palladium $d^9 - d^9$ complexes, $M_2(\mu - dppm)_2Cl_2$ (M = Pt, Pd), have been shown to thermally add small molecules across the metal-metal bond to form the corresponding d⁸-d⁸ A-frame complexes (see Figure 1.5).²⁷⁻³³ The palladium dimers failed to exhibit any detectable luminescence; therefore the photochemical study of these complexes centered about the platinum dimers. Investigation into their photophysical properties is described in Chapter 5. More detailed information about the d^9-d^9 excited state reactivity is presented in Chapters 6 and 7 where energy transfer and electron transfer studies on these complexes are described. And in closing, Chapter 8 briefly discusses preliminary investigations on non-bridging d^9-d^9 dimers. Unlike the nearly planar dppm bridged complexes, these molecules have a staggered geometry.³⁴ Their thermal and photochemical reactivity is dominated by homolytic metal-metal bond cleavage reactions similar to those observed for the $d^{7}-d^{7} M_{2}(CO)_{10}$ (M = Mn, Re) complexes.³⁵⁻³⁷

Figure 1.4

Structure and ORTEP drawing (taken from reference 26) of $Pt_2(\mu$ -dppm)₂Cl₂•0.5CH₂Cl₂.

Table 1.1

Selected Bond Lengths and Bond Angles of $Pt_2(\mu-dppm)_2Cl_2^{\dagger}$

Bond Lengths (A)

Pt(1) - Pt(2)	2.651(1)
Pt(1) - Cl(1)	2.408(5)
Pt(2) - Cl(2)	2.401(5)
Pt(1) - P(1)	2.294(7)
Pt(1) - P(2)	2.264(7)
Pt(2) - P(3)	2.259(7)
Pt(2) - P(4)	2.250(7)

Cl(1) - Pt(1) - Pt(2)	178.5(2)
P(1) - Pt(1) - P(2)	175.6(2)
Cl(1) - Pt(1) - P(1)	90.2(2)
Cl(1) - Pt(1) - P(2)	89.6(2)
Pt(2) - Pt(1) - P(1)	89.3(2)
Pt(2) - Pt(1) - P(2)	91.0(2)
Cl(2) - Pt(2) - Pt(1)	175.7(2)
P(3) - Pt(2) - P(4)	172.9(2)
Cl(2) - Pt(2) - P(3)	94.3(2)
Cl(2) - Pt(2) - P(4)	92.2(2)
Pt(1) - Pt(2) - P(3)	88.7(2)
Pt(1) - Pt(2) - P(4)	85.0(2)

[†]Data taken from reference 26.

Figure 1.5

Known thermal chemistry of $Pt_2(\mu-dppm)_2Cl_2$.

REFERENCES

- 1. Kalyanasundaram, K. Coord, Chem. Rev. 1982, 159, 244.
- 2. Winkler, J. R.; Gray, H. B. Inorg. Chem. 1985, 24, 346.
- Trogler, W. C.; Solomon, E. I.; Trajberg, I.; Ballhausen, C. J.; Gray, H. B. Inorg. Chem. 1977, 16, 828.
- 4. Rice, S. F.; Gray, H. B. J. Am. Chem. Soc. 1981, 103, 1593.
- Maverick, A. W.; Najdzionek, J. S.; Mackenzie, D.; Nocera, D. G.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 1878.
- Zietlow, T. C.; Hopkins, M. D.; Gray, H. B. J. Solid State Chem. 1985, 57, 112.
- 7. Gray, H. B.; Maverick, A. W. Science 1981, 214, 1201.
- Sperline, R. R.; Dickson, M. K.; Roundhill, D. M. J. Chem. Soc. Chem. Commun. 1977, 62.
- Filomena Dos Remedios Pinto, M. A.; Sadler, P. J.; Neidle, S.; Sanderson, M. R.; Subbiah A.; Kuroda, R. J. Chem. Soc. Chem. Commun. 1980, 13.
- 10. (a) Rice, S. F.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 4571.
 (b) Che. C.-M.; Butler, L. G.; Gray, H. B. J. Am. Chem. Soc. 1981, 103, 7796.
- Fordyce, W. A.; Brummer, J. G.; Crosby, G. A. J. Am. Chem. Soc.
 1981, 103, 7061.
- Stein, R. B.; Dickson, M. K.; Roundhill, D. M. J. Am. Chem. Soc.
 1983, 105, 3489.
- Che, C.-M.; Butler, L. G.; Gray, H. B.; Crooks, R. M.; Woodruff, W. H. J. Am. Chem. Soc. 1983, 105, 5492.
- Heuer, W. B.; Trotten, M. D.; Rodman, G. S.; Herbert, E. J.; Tracy,
 H. J.; Nagle, J. K. J. Am. Chem. Soc. 1984, 106, 1163.

- Che, C.-M.; Herbstein, F. H.; Schaefer, W. P.; Marsh, R. E.; Gray,
 H. B. J. Am. Chem. Soc. 1983, 105, 4604.
- Butler, L. G.; Zietlow, M. H.; Che, C.-M.; Schaefer, W. P.; Sridhar, S.; Grunthaner, P. J.; Swanson, B. I.; Clark, R. J. H.; Gray, H. B. J. Am. Chem. Soc. 1988, 110, 1155.
- Stroud, M. A.; Drickamer, H. G.; Zietlow, M. H.; Gray, H. B.;
 Swanson, B. I. J. Am. Chem. Soc. 1988, in press.
- Marshall, J. L.; Stiegman, A. E.; Gray, H. B. A. C. S. Symp. Ser. 1986, 307, 166.
- 19. Caspar, J. V.; Gray, H. B. J. Am. Chem. Soc. 1984, 106, 3029.
- 20. Roundhill, D. M.; Atherton, S. J. Inorg. Chem. 1986, 25, 4071.
- Harvey, E. L.; Stiegman, A. E.; Vlcek, A.; Gray, H. B. J. Am. Chem. Soc. 1987, 109, 5233.
- 22. Vlcek, A.; Gray, H. B. J. Am. Chem. Soc. 1987, 109, 286.
- Roundhill, D. M.; Atherton, S. J.; Shen, Z. P. J. Am. Chem. Soc. 1987, 109, 6076.
- 24. Vlcek, A.; Gray, H. B. Inorg. Chem. 1987, 26, 1997.
- Brown, M. P.; Puddephatt, R. J.; Rashidi, M.; Manojlović-Muir, Lj.; Muir, K. W.; Solomun, T.; Seddon, K. R. Inorg. Chim. Acta, 1977, 23, L33.
- Manojlović-Muir, Lj.; Muir, K. W.; Solomun, T. Acta Cryst. 1979, B35, 1237.
- Brown, M. P.; Puddephatt, R. J.; Rashidi, M.; Seddon, K. R. J. Chem. Soc. Dalton Trans. 1978, 516.
- Brown, M. P.; Puddephatt, R. J.; Rashidi, M.; Seddon, K. R. J. Chem. Soc. Dalton Trans. 1978, 1540.
- 29. Brown, M. P.; Fisher, J. R.; Puddephatt, R. J.; Seddon, K. R.;

Inorg. Chem. 1979, 18, 2808.

- Cameron, T. S.; Gardner, P. A.; Grundy, K. R. J. Organomet. Chem. 1981, 212, 135.
- 31. Benner, L. S.; Balch, A. L. J. Am. Chem. Soc. 1978, 100, 6099.
- Olmstead, M. M.; Hope, H.; Benner, L. S.; Balch, A. L. J. Am. Chem. Soc. 1977, 99, 5502.
- Balch, A. L.; Benner, L. S.; Olmstead, M. M. Inorg. Chem. 1979, 18, 2996.
- 34. Goldberg, S. Z.; Eisenberg, R., Inorg. Chem. 1976, 15, 535.
- Boehm, J. R.; Doonan, D. J.; Balch, A. L. J. Am. Chem. Soc. 1976, 98, 4845.
- Miller, T. D.; St. Clair, M. A.; Reinking, M. K.; Kubiak, C. P. Organometallics 1983, 2, 767.
- Reinking, M. K.; Kullberg, M. L.; Cutler, A. R.; Kubiak, C. P. J. Am. Chem. Soc. 1985, 107, 3517.

CHAPTER 2

Electron Transfer Studies of (TBA)₄[Pt₂(P₂O₅H₂)₄]

INTRODUCTION

Several experiments were performed which attempted to establish the ground and excited state redox properties of $[Pt_2(P_2O_5H_2)_4]^{4-}$, Pt_2 , in water.¹⁻⁴ Cyclic voltammograms were measured; however, the redox couples of Pt_2 were irreversible, suggesting that the oxidized and reduced species of Pt_2 are very short lived. Hence only estimates of the oxidation and reduction potentials were obtained. Fairly good approximations for the excited state redox values were obtained through oxidative and reductive quenching studies.^{1,3-5} From these investigations it was determined that Pt_2 was both a strong reducing agent^{3,4} and a strong oxidant in water.¹ The modified Latimer diagram for Pt_2 in water is illustrated in Figure 2.1.

Since the potassium salt of Pt_2 is only soluble in water, attempts to find routes to new photochemical reactions were hampered by the limited solvent selection. Metathesis of the potassium salt to tetrabutylammonium, TBA⁺, yielded a salt soluble in a variety of solvents. Along with the increase in solvent selection, the reactivity of the dimer appeared to increase in non-aqueous media, which led to new questions concerning the reducing power of the dimer. This chapter describes electron transfer quenching experiments designed to probe the reducing power of Pt₂ in acetonitrile.
Figure 2.1

Modified Latimer diagram for $K_4[Pt_2(P_2O_5H_2)_4]$ (E in V vs. SCE) in water.

EXPERIMENTAL

Materials

All solvents, unless otherwise noted, were reagent grade and used as received without further purification.

 $K_4[Pt_2(P_2O_5H_2)_4]$ and $(TBA)_4[Pt_2(P_2O_5H_2)_4]$: The potassium salt of Pt₂ was prepared by the published procedure.⁶ Metathesis of the potassium salt to the tetrabutylammonium salt was carried out in the dark following, for the most part, the published procedure.⁷ For improved results: $K_4[Pt_2(P_2O_5H_2)_4]$ (0.25 g) was dissolved in 10 mL of water. A 4:1 molar excess of tetrabutlyammonium chloride (TBACl) in 30 mL of CH₂Cl₂ was added to the Pt₂ solution with vigorous shaking. The platinum complex was extracted into the organic layer (yellow) and separated. The (TBA)_4[Pt_2(P_2O_5H_2)_4] was precipitated from CH₂Cl₂ by adding an excess of dry diethyl ether (~ 100 mL).

Pyridinium hexafluorphosphates. The pyridinium hexafluorphosphate quenchers were prepared and recrystallized by Dr. Janet Marshall and used as received.⁸

Benzophenone and its derivatives. Benzophenone (Adrich, 99%), 4methylbenzophenone (Aldrich, 97%), 4-fluorobenzophenone (Aldrich, 97%), 4-methoxybenzophenone (Aldrich, 97%), 4-dimethoxyaminobenzophenone (Aldrich, 98%) were recrystallized from hot 2:1:1 (v/v/v)water:acetone:ether and used without further purification.

Methylviologen hexafluorphosphate. Methylviologen dichloride hydrate (Aldrich) was dissoved in a minimum amount of water to which a saturated solution of potassium hexafluorophosphate, KPF₆, (Aldrich, 98%) was added. Methylviologen hexafluorophosphate precipitated immediately, was filtered, washed with water, and recrystallized from hot 2:1:1 (v/v/v) water:acetone:ether yielding long white needles.

Tetrabutylammonium hexafluorophosphate, $TBAPF_6$. Equal molar concentrations of saturated tetrabutylammonium bromide, TBABr, (Aldrich, 98%) in water and saturated KPF₆ in water were added together. TBAPF₆ precipitated, was filtered, and recrystallized from hot absolute ethanol yielding white needles.

Physical Measurements

Electrochemical Measurements. All cyclic voltammograms were measured using EG&G PAR electronics, Models 175 (Universal Programmer), 173 (Potentiostat/Galvanostat) and 179 (Digital Coulometer) with a Houston Instruments 2000 X-Y Recorder. The reference electrode was a standard calomel electrode, SCE; both the working and auxiliary electrodes were platinum wires. The cyclic voltammograms were measured in acetonitrile (Burdick and Jackson, UV grade) solutions, purged with N_2 , with 0.1 M TBAPF₆ as the supporting electrolyte. Measurements were made at both 200 and 500 mV sec⁻¹ scan rates.

Stern-Volmer Quenching Procedures. Rate constants obtained from luminescence lifetime quenching data were measured using a Nd:YAG pulsed laser system described previously.⁹ Rate constants obtained from emission intensity quenching data were measured using an emission spectrophotometer constructed at Caltech and described elsewhere.¹⁰ All emission spectra were recorded and corrected for monochromator and photomultiplier tube response using the OLIS fluorimetry programs.¹¹

Samples for all electron transfer measurments were prepared by placing Pt_2 (~1 mg) was placed in a two-compartment spectrophotometric cell (referred to as a quenching cell) equipped with two teflon vacuum

valves and consisting of a square cuvette (1 cm pathlength) and a round bottom flask (pyrex, ~15 mls.). Exactly 4 mL of acetonitrile (Burdick and Jackson, UV grade) was added to the round bottom flask of the quenching cell and the solution was freeze/pump/thawed a minimum of 6 times on a high vacuum line (limiting pressure < 10^{-3} Torr). Quencher solutions were added to the square compartment in aliquots of known concentration; the quencher solvent was distilled off under vacuum to leave behind known quantities of the solid quencher. The quenching cell was re-evacuated while the already evacuated solution was sealed in the round bottom compartment to maintain the oxygen-free conditions of the experiment.

RESULTS and DISCUSSION

As in the case of the cyclic voltammograms measured for Pt_2 in water, those measured in acetonitrile showed irreversible redox couples.

Initial electron transfer quenching experiments were performed using a series of pyridinum quenchers with reduction potentials of -0.67 V to -1.85 V vs. SCE (see Table 2.1).⁸ (Energy transfer quenching can be ruled out since the pyridiniums' triplet energy is too high to make it a competitive process with electron transfer.) Data were collected using luminescent lifetime techniques (excitation wavelength 355 nm and emission wavlength 515 nm) and the electron transfer rates were calculated by fitting the lifetime and concentration values to the Stern-Volmer equation:

$$\tau_0 / \tau = 1 + k_0 [Q] \tau_0$$

 $(\tau_0$ is the phosporescent excited state lifetime in the absence of quencher, τ is the phosporescent excited state lifetime at various quencher concetrations [Q], and k_q is the quenching rate constant.) An example of Stern-Volmer quenching is illustrated in Figure 2.2.

The value of k_q for all pyridinium quenchers used was on the order of $10^9 - 10^{10}$ M⁻¹ sec⁻¹, which is the upper limit for diffusion controlled reactions in acetonitrile. Even 2,6,-dimethyl-4-methoxy-Nmethyl-pyridinium, with a reduction potential of -1.85 V, had a quenching rate constant of 1.5×10^9 M⁻¹ sec⁻¹, which is remarkably high (Table 2.1). The high quenching rate constants and the relatively insignificant drop off with increasing negative reduction potentials which were observed can be explained by electrostatic interactions. In

Table 2.1

Electron Transfer Data Using Pyridiniums

Quencher	R	R'	E (A/A^-) V vs. SCE	^k q
4-Cyano- N-methylpyridinium	CH3	4-CN	-0.67	2.0×10^{10}
4-Carbomethoxy- N-methylpyridinium	CH ₃	4-CO ₂ CH ₃	-0.78	3.2×10^{10}
4-Amido- N-methylpyridinium	CH ₃	3-CONH ₂	-1.14	1.4×10^{10}
4-Ethylpyridinium	CH ₃		-1.36	4.1×10^{10}
2-Methoxy- N-methylpyridinium	CH ₃	2-0CH ₃	-1.48	6.7×10^{10}
4-Methoxy- N-methylpyridinium	CH ₃	4-OCH ₃	-1.49	5.9×10^{10}
2,6-Dimethyl-4-methoxy- N-methylpyridinium	CH ₃	2,6-(CH ₃) ₂ 4-OCH ₃	-1.85	3.2×10^{10}

Figure 2.2 Stern-Volmer plot of the electron transfer quenching of $(TBA)_4[Pt_2(P_2O_5H_2)_4]$ with 2-methoxy-N-methylpyridinium $(E_{1/2} \sim -1.48 \text{ V } vs. \text{ SCE}).$

[Q] in M

solution, the positively charged pyridinium quenchers are attracted to the high negative charge (4-) of Pt_2 ; therefore, they congregate about the dimer, setting up a non-random, non-uniformly distributed, quencher-dimer localized system. When the laser pulse excites the platinum dimer, one electron transfer to a closely associated quencher molecule is easily facilitated, resulting in the observed high quenching rate constants. Along the same lines, attempts to gather quenching rate data using methylviologen, MV^{2+} , as the electron acceptor caused precipitation of an orange solid presumed to be Pt_2 tight-ion paired with the MV^{2+} cation. These results indicated that in order to get a more accurate description of the bimolecular electron transfer rate, neutral or negatively charged electron acceptors are required.

The second series of quenchers used were derivatized benzophenones with reduction potentials ranging from -1.86 V to -2.03 V vs. SCE (see Table 2.2). The cyclic voltammograms of the derivatized benzophenones showed quasi-reversible reduction couples. The peak to peak separation in all samples was significantly greater than 59 mV and the peak heights for the forward and back waves were not equivalent; however, reproducible $E_{1/2}$ values at different scan rates were obtained.

Electron transfer rates between Pt_2 and the various derivatized benzophenones were determined using emission intensity quenching techniques since lifetime data obtained from laser excitation of the phosphorescent excited state exhibited biphasic behavior. The observed biphasic behavior of the lifetime data was ascribed to energy transfer from the excited benzophenone quencher to the Pt_2 dimer. The electronic absorption spectrum of the derivatized benzophenones clearly

showed significant absorption at 355 nm. Thus, the derivatized benzophenones were excited by the laser pulse, then underwent energy transfer to the ground state Pt_2 to produce Pt_2^* . The biphasic lifetime decay reflected the fact that Pt_2 excitation to Pt_2^* was no longer occurring only from the laser pulse, but occurred as a result of the energy transfer mechanism as well.

In using the emission intensity quenching technique, Pt₂ was excited by continuous irradiation at 436 nm (a wavelength at which none of the derivatized benzophenones had any absorption). The decrease in phosphorescent intensity was monitored with respect to increasing quencher concentrations (see Figure 2.3). Once again Stern-Volmer kinetics:

$$\Phi_0/\Phi = 1 + k_0[Q]\tau_0$$

were used to determine the quenching rate constants; see Table 2.2. $(\Phi_0$ is the intensity of the emission band at 516.7 nm in the absence of quencher, and Φ is the intensity of the emission band at 516.7 nm at various quencher concentrations.)

The quenching rate constant obtained for benzophenone, whose reduction potential is quite similar to that of 2,6,-dimethyl-4-methoxy-Nmethyl-pyridinium, was an order of magnitude less than that obtained for the pyridinium quencher $(1.0 \times 10^8 \text{ M}^{-1} \text{ sec}^{-1}$ for benzophenone vs. $1.5 \times 10^9 \text{ M}^{-1} \text{ sec}^{-1}$ for the pyridinium quencher). This result supports the notion that the strong electrostatic attraction between the positively charged pyridinium quenchers and Pt₂ led to quenching rate constants which were anomalously high.

The quenching rate constant obtained for the quencher with the most

Table 2.2

Electron Transfer Data Using Benzophenones

Quencher	R	E (A/A") V vs. SCE	kq
Benzophenone	н	-1.86	1.0×10^{8}
4-Methylbenzophenone	CH ₃	-1.89	8.5×10^{7}
4-Fluorobenzophenone	F	-1.89	8.5×10^{7}
4-Methoxybenzophenone	OCH ₃	-1.98	4.8×10^7
4-Dimethylaminobenzophenone	$N(CH_3)_2$	-2.03	4.6×10^{7}

(a) Emission intensity quenching of $(TBA)_4[Pt_2(P_2O_5H_2)_4]$ with 4-dimethylaminobenzophenone (5.3 × 10⁻⁴ M aliquot additions of quencher).

Figure 2.3

(b) Stern-Volmer plot of the electron transfer quenching of (TBA)₄[Pt₂(P₂O₅H₂)₄] with 4-dimethylaminobenzophenone.

Intensity

[Q] in M

negative reduction potential, 4-dimethylaminobenzophenone, was $4.6 \times 10^7 \text{ M}^{-1} \text{ sec}^{-1}$, suggesting the Pt_2^* has an oxidation potential of about -2.0 V.

A plot of $RTlnk_q$ vs. the quencher reduction potential, should yield a slope whose value is 0.5 by Marcus theory for outer-sphere electron transfer;^{12,13} however for the benzophenone data the fit to Marcus theory was poor. One reason for the poor fit may be that the electron transfer is not occurring by a purely outer-sphere mechanism, but may be partially facilitated by an inner-sphere process as well. However, since the reduction potential range of the quenchers is less than 0.2 V, and the change in the quenching rate constant is less than one order of magnitude, the data range is insufficiently broad to allow any definite conclusions to be drawn.

REFERENCES

- Heuer, W. B.; Trotten, M. D.; Rodman, G. S.; Herbert, E. J.; Tracy, H. J.; Nagle, J. K. J. Am. Chem. Soc. 1984, 106, 1163.
- Che, C.-M.; Atherton, S. J.; Butler, L. G.; Gray, H. B. J. Am. Chem. Soc. 1984, 106, 5143.
- Che, C.-M.; Butler, L. G.; Gray, H. B. J. Am. Chem. Soc. 1981, 103, 7796.
- Nocera, D. G.; Maverick, A. W.; Winkler, J. R.; Che, C.-M.; Gray, H. B. "Inorganic Chemistry: Toward the 21st Century" (M. H. Chisholm, ed.) A. C. S. Symposium Series No. 211, Am. Chem. Soc.: Washington, D. C., 1983, pp 21-33.
- Bryan, S. A.; Dickson, M. K.; Roundhill D. M. J. Am. Chem. Soc. 1984, 106, 1882.
- Che, C.-M.; Butler, L. G.; Grunthaner, P. J.; Gray, H. B. Inorg. Chem. 1985, 24, 4662.
- Stiegman, A. E.; Rice, S. F.; Gray, H. B.; Miskowski, W. M. Inorg. Chem. 1987, 26, 1112.
- Marshall, J. L.; Stobart, S. R.; Gray, H. B. J. Am. Chem. Soc. 1984, 106, 3027.
- 9. Parker, C. A.; Rees, W. T. Analyst 1960, 85, 587.
- Nocera, D. G.; Winkler, J. R.; Yocom, K. M.; Bordignon, E.; Gray, H. B. J. Am. Chem. Soc. 1984, 106, 5145.
- Emission curves were corrected using the OLIS model 3820 Data System Fluorimetry program, SpexR Version 4.02.
- 12. Marcus, R. A. J. Chem. Phys. 1965, 43, 679.
- 13. Marcus, R. A. J. Chem. Phys. 1956, 24, 966.

CHAPTER 3

Translational Symmetries in the Linear-Chain Semiconductors

 $K_4[Pt_2(P_2O_5H_2)_4X] \cdot nH_2O$ (X = Cl, Br)

INTRODUCTION

Materials having anisotropic electrical conductivity, whether built from aromatic organic molecules or transition metal complexes, have been the subject of much contemporary research.¹⁻⁷ The electronic properties of a linear chain are determined by the extent of interaction between neighboring atoms along the chain and by the translational symmetry of the linear chain. While the importance of the overlap between atomic orbitals of neighboring atoms in the linear chain has been discussed,⁸⁻¹⁰ little attention has been directed to the desired characteristics of the translational symmetry¹¹ required for optimization of a property such as electrical conductivity. Indeed, the mechanisms of electrical transport in these materials are unknown. To date, the variety of translational symmetry types in linear chains has been limited. $K_2Pt(CN)_4Br_{0.3} \cdot 3.2H_2O$ is typical of the near perfect (A), symmetry found in most linear chain systems made from mononuclear transition metal complexes.^{5,12} Tetrathiofulvalenium tetracyanoquinodimethanide, TTF-TCNQ, with $(A)_n$ along each of the two segregated stacks of TTF cations and TCNQ anions, is representative of 1-dimensional organic conductors. 1,4,13 Salts of tetramethyltetraselenafulvalene, such as $[(TMTSF)_2(ReO_4)]$, also have this symmetry, and are members of the first class of linear chain compounds that has been found to undergo a transition to a superconductive phase.¹⁴⁻¹⁶

Our group has been concerned with the bonding in $d^8 d^8$ transition metal dimers, such as $Rh_2b_4^{2+}$ (b = diisocyanopropane).¹⁸⁻²² The rhodium dimer has interesting photophysical properties resulting from metal-metal interactions. For example, the lowest excited electronic state $({}^{3}A_{2u}; (d\sigma)^{2}(d\sigma^{*})^{1}(p\sigma)^{1})$ possesses a relatively strong Rh-Rh bond.^{20,21} Interestingly, some of the rhodium isocyanides are 1-dimensional materials.²² In our studies of d^{8} - d^{8} platinum complexes, we discovered a material that contained a linear chain of $[Pt_{2}(P_{2}O_{5}H_{2})_{4}]^{4}$ units bridged by a halide ion²³⁻²⁶ and having a metallic luster. The 300 K X-ray structure of $Pt_{2}Br$ ($Pt_{2}X = K_{4}[Pt_{2}(P_{2}O_{5}H_{2})_{4}X]$; X = Cl, Br, I) has been reported;²⁷ it revealed an apparent (AAB)_n linear chain system that prompted us to investigate the properties of this unusual system. Some of the possible translational geometries for the threeatom repeat unit of $Pt_{2}X$ are shown in Figure 3.1. In this chapter, focus is placed on the structures of the 1-dimensional materials, their Raman spectra, and which of these structural schemes are valid for the $Pt_{2}X$ system.

During the course of this work, the preparation and room temperature X-ray structures of an analogous 1-dimensional system, $Ni_2(CH_3CS_2)_4I$ and $Pt_2(CH_3CS_2)_4I$, were reported.²⁸ Also, the 300 K structure of $K_4[Pt_2(P_2O_5H_2)_4CI] \cdot 3H_2O$ has been independently determined and reported, together with Raman and infrared data for $K_4[Pt_2(P_2O_5H_2)_4X] \cdot nH_2O$ (X = Cl, Br, I).²⁹ Band theory calculations have been done for the general Pt_2X system.¹¹ Figure 3.1

Translational symmetries for $K_4[Pt_2(P_2O_5H_2)_4X]$ (X = Cl, Br).

EXPERIMENTAL

Materials

Preparation of $K_{4}[Pt_{2}(P_{2}O_{5}H_{2})_{4}Cl] \cdot 3H_{2}O$, $Pt_{2}Cl$: The preparations of both Pt_2Cl and Pt_2Br are similar in that Pt_2 and Pt_2X_2 ($Pt_2 =$ $K_4[Pt_2(P_2O_5H_2)_4]$ and $Pt_2X_2 = K_4[Pt_2(P_2O_5H_2)_4X_2]$; X = Cl, Br, I) are the However, an improved method for preparing the reduced reactants. $K_{4}[Pt_{2}(P_{2}O_{5}H_{2})_{4}] \cdot 2H_{2}O_{5}$ used.25 dimer, was parent metal $K_{4}[Pt_{2}(P_{2}O_{5}H_{2})_{4}]$ (0.08 g) and $K_{4}[Pt_{2}(P_{2}O_{5}H_{2})_{4}Cl_{2}]$ (0.08 g) were dissolved in a minimum amount of water together with 0.4 g KNO₃. Absolute methanol was added dropwise until a dark precipitate began to form. A few drops of water were added to clarify the solution. The solution was then cooled slowly to 5°C and allowed to stand for 2 days. The bronze crystals were filtered and dried. [Analysis calculated for $K_4[Pt_2(P_2O_5H_2)_4C1] \cdot 3H_2O$ (%): Pt, 32.19; P, 20.45; Cl, 2.93. Found: Pt, 32.4; P, 20.6; Cl, 2.82.]

Alternatively, 2 mL of chlorine water were added to a solution of 0.4 g $K_4[Pt_2(P_2O_5H_2)_4]$ in 5 mL of H_2O . A saturated solution of KCl in 5 mL H_2O was added next, followed by several drops of methanol to see if the dark precipitate was observed. Crystals were obtained in the same manner as that stated above.

Preparation of $K_4[Pt_2(P_2O_5H_2)_4Br] \cdot 3H_2O$, Pt_2Br : Pt_2Br was prepared from $K_4[Pt_2(P_2O_5H_2)_4]$ by the published procedure.²⁷

The appearance of Pt_2X under transmitted light shows some sample dependence resulting in subtle differences in the Raman data.³⁰

Physical Measurements

Crystal Structure Determinations. The general features of both

crystal structure determinations were the same. The parameters of Pt_2Cl at 22 K, and Pt_2Cl at 300 K were refined in the tetragonal space group, P4/mbm (#127). A summary of the crystal and intensity collection data for both structures is given in Table 3.1. The crystals were mounted with epoxy on glass fibers. The 300 K diffraction data were taken on a Syntex P2₁; low temperature data sets were taken on a locally modified Syntex PI diffractometer.³¹ Both diffractometers were equipped with graphite-monochromated Mo K α X-radiation ($\lambda = 0.71073$ A). Cell dimensions, given in Table 3.1, were determined from the setting angles of 15 reflections with $25^{\circ}<20<30^{\circ}$. The temperatures reported for the Syntex PI data sets have error limits of ±1 K.

Data were collected by Θ -2 Θ scans at 2°/minute from (2 Θ (K α_1)-1° to $2\Theta(K\alpha_2)+1^\circ)$. The three check reflections collected after every 97 reflections showed a slight decrease in intensity in all crystals (~3%). Variances, $\sigma^2(I)$, were assigned on the basis of counting statistics plus an additional term, $(0.024 \cdot I)^2$, to account for fluctuations proportional to the diffracted intensity. Intensities were corrected for Lorentz and polarization effects and crystal decay. Using the crystal dimensions and the linear absorption coefficient, the data were corrected for absorption by Gaussian integrations over an 8×8×8 grid. All structures were refined using full-matrix least-squares techniques, minimizing $\Sigma w(F_0^2 - F_c^2)^2$, where $w = 1/\sigma^2(F_0^2)$. For both structures, final difference maps were somewhat noisy, particularly in the plane containing the potassium ions and the water molecules. Alternative descriptions of the water would be consistent with the data. Residual peaks and holes (up to ± 2.9 eA⁻³) near the potassium ion positions suggest that some changes could be made in their description, but we Table 3.1

Crystal and Intensity Data Collection Summary. (Space group is P4/mbm (#127), with z=2.)

	Pt ₂ Cl at 300 K	Pt ₂ Cl at 22 K
Molecular Formula	K4[Pt ₂ (P ₂ O ₅ H ₂)4Cl]•3H ₂ O	K4[Pt ₂ (P ₂ 0 ₅ H ₂) ₄ Cl]•3H ₂ O
a, a C. a	(c):02:12 8.125(3)	13.170(4) 8.077(3)
crystal dimensions, mm	0.10×0.14×0.26	0.22×0.15×0.08
Absorption Coefficient	114.8	116.9
μ(Μο Κα) cm ⁻¹		
Transmission Coefficient	0.221, 0.343	0.193, 0.407
(min, max)		
20 Limits, deg	3.0-75.0	5.0-80.0
Number of Reflections	4112	3335
Collected		
Unique Reflections	2095	1428
Number of Reflections	1820	1333
with I>0		
Refined Parameters	63	61
R ^a	0.056	0.036
GOF ^b	2.2	2.0
	^a R = $(\Sigma F_0^- F_c)/\Sigma F_0^+$, based upon b GOF = $[\Sigma w (F_0^2 - F_c^2)^2 / (n-p)]^1 / 3$	data with I>0

did not develop a good alternative model. The maps suggest that the halide and potassium occupancies may be non-stoichiometric, but we have not been able to pursue this. Calculations were done with programs of the CRYM X-ray computing system plus ORTEP;³² scattering factors were taken from the standard compilations.³³ Hydrogen atoms were ignored in the calculations.

 Pt_2Cl at 22 K. A different Pt_2Cl crystal was used for the low temperature study than that which was used for the room temperature structure. This second crystal was cooled to 22 K in incremental steps at which time the unit cell dimensions were determined using the same 15 reflections as used to determine the cell dimensions at room temperature. No extra reflections were found at low temperature, thus confirming the choice of cell dimensions.

During data collection, the temperature was maintained at 22 ± 1 K. A full orthorhombic data set was taken and used for refinement in both orthorhombic and tetragonal unit cells; 3335 reflections were scanned in the range $5^{\circ} < 2 \otimes < 80^{\circ}$. Systematic absences in the diffractometer data of h0l, where h = 2n+1, and 0kl, where k = 2n+1, were consistent with space group P4/mbm (#127). The data were merged to give 1428 independent reflections, all of which were used in the structure solution and refinement. Although lattice cell constants and the goodness of fit did not indicate that an orthorhombic distortion had occurred, checks were made for both a doubled unit cell and for an orthorhombic distortion. Scans were taken in reciprocal space along [100], [010], [001], and [110] axes with the output of the counter circuit connected to a chart recorder. No extra reflections were observed along any axis that would indicate a radical change in cell dimension.³⁴⁻³⁶

Initially, refinement proceeded with ordered platinum atoms but two-site disordered bridging chloride ions. Because this yielded highly anisotropic platinum thermal parameters ($U_{11} = U_{22} = 0.0029(1)$, $U_{33} = 0.0082(1)$), an alternative model was refined, with the platinum atom also disordered between two sites. Allowing the two half-populated platinum atoms to move along the stacking axis gave a Pt-Pt site separation of 0.142(2) A,²⁹ or Pt-Pt bond distances of 2.685(2) A, 2.827(2) A, or 2.969(2) A, depending, as will be discussed later, on the overall translational symmetry. The final R value and goodness of fit were essentially the same as in the ordered model. An ORTEP of the Pt₂Cl unit is presented in Figure 3.2a, and a partial drawing of the structure illustrating the 1-dimensional stacking unit is shown in Figure 3.2b; atomic coordinates are given in Table 3.2.

 Pt_2Cl at Room Temperature. An earlier collected and refined data set was re-evaluated based upon the findings of Pt_2Cl at 22 K. The bridging halide was represented by a two site model with isotropic thermal parameters. One fully populated water site, W(1), was found, with additional sites of lower partial population in the region near K(1). The structure was refined with both a single platinum atom site and with a two-site model; both gave the same values for the R-index and the goodness of fit. Because spectral data indicate that both Pt_2 and Pt_2Cl_2 are present in the crystal, the parameters for the model with two platinum sites are reported herein. A partial drawing of the structure illustrating the 1-dimensional stacking unit is shown in Figure 3.2b; atomic coordinates are listed in Table 3.3.

Raman Spectroscopy. The Raman data were collected by Dr. Steven D.

Figure 3.2

- (a) ORTEP drawing of a $[Pt_2(P_2O_5H_2)_4Cl]^{4-}$ molecule.
- (b) ORTEP drawings of all $[Pt_2(P_2O_5H_2)_4X]^{4-}$ structures. Ellipsoids are drawn at the 50% probability level.

Table 3.2

Parameters for Pt_2Cl at 22 K. x, y, z and $U_{eq} \times 10^4$

Atom	x	У	Z	U_{eq}^{a}	POP†
PtA	0	0	3338(2)	0.22(3)*	2.0
PtB	0	0	3162(1)	0.22(3)*	2.0
C1	0	0	316(9)	287(10)	2.0
K1	2772(2)	7772	0	150(3)	4.0
K2	3892(2)	8892	5000	134(3)	4.0
P	1173(1)	1325(1)	3174(1)	90(2)	16.0
O1	2161(2)	1073(2)	2140(4)	122(6)	16.0
02	807(2)	2353(2)	2572(4)	129(7)	16.0
O3	1659(4)	1510(3)	5000	156(10)	8.0
W1	1030(10)	6030	5000	1.5(2)*	3.0
W2	0	5000	2272(60)	1.3(6)*	0.6
W3	0	5000	909(60)	0.8(7)*	0.5
W4	649(40)	5649	0	1.4(6)*	0.7
W5	612(30)	5612	2835(41)	1.1(5)*	1.2

^a $U_{eq} = 1/3(U_{11} + U_{22} + U_{33})$ * B (iso)

† Atoms per unit cell

Table 3.3

Parameters for Pt₂Cl at 300 K.

x, y, z and $U_{eq} \times 10^4$

Atom	x	У	Z	U_{eq}^{a}	POPt
PtA	0	0	3321(2)	1.0(.3)*	2.0
PtB	0	0	3180(2)	1.1(.3)*	2.0
C1	0	0	373(8)	668(18)	2.0
K1	2742(3)	7742	0	402(5)	4.0
K2	3874(3)	8874	5000	389(4)	4.0
Ρ	1174(1)	1304(1)	3181(2)	212(2)	16.0
01	2158(3)	1035(3)	2189(6)	340(8)	16.0
02	833(3)	2325(3)	2570(6)	363(9)	16.0
O3	1640(5)	1492(5)	5000	437(14)	8.0
W1	1014(14)	6014	5342(21)	3.1(3)*	3.2
W2	410(54)	5410	2186(76)	7.9(14)*	1.6
W3	0	5000	586(**)	5.2(24)*	0.4
W4	632(**)	5632	0	4.1(20)*	0.4
W5	4373(**)	9373	1134(**)	3.0(26)*	0.4

^a $U_{eq} = 1/3(U_{11} + U_{22} + U_{33})$ ** esd ≥ 100

* B (iso)

[†] Atoms per unit cell

Conradson at the Los Alamos National Laboratory, Los Alamos, New Mexico. Raman spectra of single crystals of Pt_2Cl and Pt_2Br were obtained using 676.4 nm excitation at several temperatures in the range 25-300 K. The crystals were mounted in a cell containing *ca.* 150 psi (room temperature) of He in order to minimize local heating. The cell was coupled to the cold end of an Air Products Displex closed-cycle cryostat and the temperature monitored and controlled using thermocouples. The spectra were obtained using a SPEX 1401 double monochromator with excitation from a Spectra Physics 171 Kr⁺ laser.

RESULTS

Given the 300 and 19 K structure of Pt_2Br reported earlier,³⁷ these efforts were directed towards establishing the structural variations that occur in Pt_2Cl and Pt_2Br and how they may be related to the conduction properties observed in these systems.

Structural Data on Pt_2Cl : Pt_2Cl retains a tetragonal unit cell on cooling to 22 K. The Pt_2Cl unit cell dimensions contracted with temperature in a fashion similar to that observed in Pt_2Br .³⁷ It is interesting to note that the unit cell did not double in size along any unit cell axis, although this has been seen in other 1-dimensional systems. Also, no evidence for an orthorhombic distortion was found nor was any tilting of the Pt-Cl-Pt unit with respect to the stacking axis observed.

Tables 3.2 and 3.3 list the final parameters of the models used to describe the two structures. Tables 3.4 and 3.5 compare selected bond distances and angles of Pt_2 , Pt_2Br (300 and 19 K) and Pt_2Cl (300 and 22 K). The Pt_2Cl structures were refined with a two-site model for the bridging chloride and both one- and two-site models for the platinum atoms. At both room temperature and at 22 K the chloride ion sites were well-separated and refined smoothly. At room temperature the Pt could be refined in a single site; changing to a two-site model gave nearly identical results. The resulting (AABCCB)_n translational symmetry is in better accord with spectral data, which will be discussed below, and thus we have accepted it. Upon cooling Pt_2Cl to 22 K, the chloride and platinum positions remain disordered, and the two-site model is retained. This model is not statistically better than a

Table 3.4

Selected Bond Distances

		Pt ₂ ^a	Pt ₂ Br ^b	Pt ₂ Br ^c	Pt ₂ Cl ^c	Pt ₂ Cl ^c
	T(K)	300	300	19	300	22
Pt-Pt		2.925(1)	2.793(1)	2.781(1)	2.729(2)	2.685(2)
					2.958(2)	2.969(2)
Pt-X (sho	ort)		2.699(1)	2.579(4)	2.281(7)	2.441(7)
					2.395(7)	2.299(7)
Pt-X (lon	g)			2.778(4)	2.886(7)	2.951(7)
					3.001(7)	2.809(7)
ΔX			0	0.199(5)	0.606(9)	0.510(10)
Pt-P		2.320(5)	2.334(1)	2.331(1)	2.334(2)	2.335(2)
					2.331(2)	2.331(2)
P-O(H)		1.579(9)	1.562(4)	1.572(4)	1.577(4)	1.581(3)
P=O		1.519(9)	1.505(4)	1.509(4)	1.514(4)	1.518(3)
P-O (brid	lging)	1.623(6)	1.618(3)	1.621(6)	1.622(6)	1.626(5)
P•••P		2.980(6)	2.935(2)	2.924(2)	2.956(2)	2.949(1)
O(H) • • • C)	2.505(19)	2.487(5)	2.482(5)	2.476(6)	2.479(4)
K(1)•••(O(H)	2.848(14)	2.915(5)	2.861(8)	2.884(10)	2.828(7)
K(1)•••C)	2.847(13)	2.912(6)	2.887(8)	2.873(10)	2.850(7)

^aReferences 23 and 40.

^bReference 27.

^cThis work.

Table 3.5

Seclected Bond Angles

	Pt2 ^a	Pt ₂ Br ^b	Pt ₂ Br ^c	Pt ₂ C1 ^c	Pt ₂ Cl ^c
T(K)) 300	300	19	300	22
Pt-Pt-P	90.67(10)	91.74(2)	91.75(3)	92.78(6)	93.25(5)
				89.97(6)	89.76(5)
Pt-P-O(H)	114.0(5)	113.4(1)	113.1(1)	114.3(2)	114.7(1)
				112.7(2)	112.7(1)
Pt-P=O	118.0(5)	117.3(2)	117.5(2)	118.7(2)	118.4(1)
				117.7(2)	117.1(1)
Pt-P-O (bridge) 110.3(4)	110.4(2)	110.4(2)	109.0(2)	108.7(2)
				111.7(2)	112.1(2)
P-O-P	133.3(9)	130.2(3)	128.9(4)	131.4(4)	130.2(3)
^a References 23	and 40.	^b Referen	ce 27.	cTh	is work.
single-site platinum model (the R factor and goodness of fit are each improved by only 0.01) but, as in the room-temperature case, it has been adopted because of spectroscopic results. Listings of observed and calculated structure factors and anisotropic thermal parameters are tabulated in Appendix I.

Raman Spectroscopy: The Raman spectra of Pt₂Cl and Pt₂Br at ca. 25 K are shown in Figure 3.3; these spectra are similar to those reported by Kurmoo and Clark^{29b}. The wavenumbers of the bands observed for Pt₂Cl are significantly different from those reported earlier,^{29b} owing to the fact that different excitation wavelengths were used to obtain the Raman spectra. For Pt₂Cl, we employed 514.5 nm excitation, which is close to the IVCT absorption maximum, while Kurmoo and Clark employed 647.1 nm excitation. We note that the Raman spectrum of Pt2Br exhibits unusual relative intensity changes with excitation also wavelength. The origin of these differences has been investigated by Swanson and coworkers.³⁰ Kurmoo and Clark concluded that, on the basis of X-ray work at room temperature, both Pt₂Cl and Pt₂Br consist of polar dimers (Scheme 3 with (ABC), translational symmetry) and assigned the band observed at ~152 cm⁻¹ in the Pt₂Cl spectrum to the Pt-Pt stretch. The Pt(III)-Pt(III) stretch in the fully oxidized form, Pt₂Cl₂, is observed at 158 cm⁻¹ and the Pt(II)-Pt(II) stretch in the reduced form, Pt2, is at 115 cm⁻¹. If a polar dimer represents the true structure for Pt₂Cl, we would expect a Pt-Pt stretching mode intermediate in wavenumber to those found for Pt2 and Pt2Cl2. Accordingly, we believe that the ~152 cm⁻¹ band (155 cm⁻¹ in our spectrum) of Pt₂Cl should be assigned to the Pt(III)-Pt(III) stretch of the oxidized unit in a chain with $(AABCCB)_n$ translational symmetry. The band at 119 cm⁻¹ in Pt₂Cl is attributed to the Pt(II)-Pt(II) stretch of the reduced unit in the chain. The fact that the two bands assigned to Pt-Pt stretching in Pt₂Cl are quite close to those observed for the fully oxidized and fully reduced forms suggests strong valence localization for Pt₂Cl. The band at ~301 cm⁻¹ in Pt₂Cl is attributed to the symmetric Pt(III)-Cl stretch.

The Raman spectrum of Pt_2Br shows bands at ~117 and ~122 cm⁻¹. While the band at 117 cm⁻¹ is quite close to the Pt(II)-Pt(II) stretching frequency of Pt₂, the 122 cm⁻¹ feature is significantly lower than the 132 cm⁻¹ Pt(III)-Pt(III) stretching frequency of Pt₂Br₂.²⁹ Furthermore, the Pt-Br stretch of Pt₂Br is 211 cm⁻¹, by contrast to 223 cm⁻¹ for Pt_2Br_2 . The energies for the Pt-Br and "Pt(III)-Pt(III)" stretching modes are inconsistent with complete valence localization and (AABCCB), translational symmetry. The two Pt-Pt stretches could result from coupling of two Pt-Pt bonds of equal or nearly equal strengths, as would be expected for Schemes 3, 4, and 5 (Figure 3.1). However, the appearance of only one band attributable to a Pt-Br stretching mode suggests that Scheme 4, the symmetrically modified (AAB)_n structure, provides the best description. The bands at \sim 132 and \sim 223 cm⁻¹ are sample dependent in their intensities and wavenumbers (note that Clark and Kurmoo reported a band at 137 cm⁻¹). We attribute these two bands to Pt-Pt and Pt-Br stretches, respectively, of a local state. The presence of local states in these systems has been investigated by Swanson and coworkers.³⁰ The observed Raman bands and their assignments are given in Tables 3.6 and 3.7.

The relative intensities of the bands attributed to the Pt-Pt and

Figure 3.3

Raman spectra of $[Pt_2(P_2O_5H_2)_4X]^{4-}$ (X = Cl, Br) at resonance with the intervalence band.

Table 3.6

Raman Bands for Pt₂Cl

 v_1 (Pt^{II}-Pt^{II}) 119 (mw) 125.8 (mw) v_2 (Pt^{III}-Pt^{III}) 155 (vs) 152.3 (vs) v 3 260 (mw) 263 (mw) v_3 (Pt^{III}-Cl) 301 (vs) 291.3 (vs) $v_1 + v_3$ 419 (mw) 418 (w) $v_2 + v_3$ 453 (m) 443 (ms) $v_3 + v_3$ 557 (mw) 552 (w) 223 598 (m) 583 (ms)

Abbreviations: m=medium, v=very, w=weak, s=sharp. ^a λ_0 =514.5 nm, 25 K, single crystal. ^b Reference 29, λ_0 =647.1 nm, 80 K, K[ClO₄] disk matrix.

Assignment This work^a (cm⁻¹) Cla

Clark and $Kurmoo^b$ (cm⁻¹)

Table 3.7

Raman Bands for Pt₂Br

Assignment	This work ^a (cm ⁻¹)	Clark and Kurmoo ^b (cm ⁻¹)		
δ (Pt-Pt-Br)	93 (w)	93 (w)		
v_1 (Pt-Pt)	116.5 (vs)	117 (vs)		
v_2 (Pt-Pt)	122 (vs)	122 (vs)		
v_2 (Pt-Pt) ^c	132 (mw)	137 (mw)		
?	193 (mw)	195 (mw)		
v_3 (Pt-Br)	211 (m)	210 (m)		
ν ₃ (Pt-Br) ^c	223 (w)	223 (w)		
$2v_1$	231 (sh)			
$v_1 + v_2$	236 (m)			
² v ₂	241 (m)	239 (m)		
$v_2 + v_3$	332 (mw)	330 (mw)		
³ v ₂	360 (mw)	355 (mw)		
$2v_2 + v_3$	454 (w)	450 (w, br)		
⁴ v ₂	474 (w,br)	475 (w, br)		

Abbreviations:	m=medium, v=very, w=weak, s=sharp, sh=shoulder,
	br=broad.

^a λ_0 =676.4 nm, 25 K, single crystal. ^b Reference 29, λ_0 =647.1 nm, 80 K, K[ClO₄] disk matrix.

^c Raman bands attributed to local states; see text.

Pt-X stretching modes also provide information concerning the structures of these materials. The $\nu(Pt-Cl)$ is intense relative to the $\nu(Pt-Pt)$ bands of the Pt_2Cl complex, while $\nu(Pt-Br)$ is weak relative to the $\nu(Pt-Pt)$ bands of Pt_2Br . These observations are consistent with a significant shift of the Cl atom from the central position between the dimer units but with the Br atom being quite close to this special position.

The Raman spectra of Pt_2Cl and Pt_2Br do not change significantly in going from 25 K to room temperature, indicating that there is no structural phase transformation over this temperature range. The energies and widths of the Raman bands do vary slightly with temperature, as is expected.

DISCUSSION

A tetragonal unit cell has been found for the parent dimer, Pt_2 , and the 1-dimensional materials, Pt_2Cl and Pt_2Br . The *c* axis length is very similar for Pt_2Cl and Pt_2Br systems, and only slightly reduced for Pt_2 . Although the *c* axis lengths are similar, there is a significant difference in the halide separations between the chloride (0.606(9) A) and the bromide (0.199(5) A)³⁷. This difference is larger than expected from the difference in radius between Cl and Br (0.15 A), although similar to that found for Wolframs's red salts.³⁸ We conclude that the $Pt_2(P_2O_5H_2)_4$ cores and the K⁺ ions form a stable arrangement. We note the disorder found in the water positions and the fact that no disorder was evident in the K⁺ ion positions. Replacement of K⁺ by Na⁺ causes a major structural change in Pt_2 (from tetragonal to an orthorhombic unit cell);²⁵ thus, we conclude that the alkali metal ion metal ion has an important structural influence.

This regular array of potassium ions and Pt-Pt units fixes the coordination environment for bridging chloride or bromide (with potassium as the counter ion) as a tetragonal cavity approximately 5.34 A long. This distance corresponds to the Pt-Pt distance between neighboring dimers along the stacking axis. From the structures of fully oxidized Pt_2X_2 complexes, one finds the following Pt-X bond distances: Pt-Cl = 2.407(2), Pt-Br = 2.572(1), and Pt-I = 2.742(1) A.^{27,29,39} Thus a chloride ion is not constrained along the c axis, a bromide ion just fits, and an iodide ion is too large for the cavity (which may explain why the iodide complex does not crystallize in the same space group).

The translational symmetries $((AAB)_n, (ABC)_n$ and $(AABCCB)_n)$ shown in Schemes 1-5 (Figure 3.1) illustrate different structural arrangements for Pt₂X, and imply different patterns of platinum oxidation states; however, attempts by Butler *et al.*³⁷ to assign the oxidation states of the platinum atoms by ESCA did not yield much useful information. In fact, the ESCA measurements provided no conclusive evidence to suggest multiple platinum oxidation states or differing chemical environments for the platinum, bridging bromide or iodide, or ligated phosphorus atoms.

From earlier work on Pt_2Br at 19 K,³⁷ the Pt_2Br structure was fitted by a single site model for the platinum atoms and a two-site model for the bridging bromide ion. Of the translational symmetries schematically described in Figure 3.1, the only ones that permit relatively well-defined platinum atom positions and two-site disorder of the bridging halide are Schemes 3, 4, and 5 with $(ABC)_n$, symmetrically modified $(AAB)_n$, and asymmetrically modified $(AAB)_n$ translational symmetries, respectively. The separation between the linear chains of atoms in these structures is large, 9.3 A, and thus the interchain structural correlation is expected to be weak. A randomly ordered set of chains of Schemes 3, 4, and 5 will have equal numbers of chains pointing to the left and to the right; an average yields the X-ray diffraction results observed for Pt₂Br at 19 K.

The polar dimer of $(ABC)_n$ translational symmetry and the asymmetrically modified $(AAB)_n$ translational symmetry should yield spectra in which there are two bands attributable to Pt-Br stretches. Since only one such Raman band is observed for Pt₂Br, schemes 3 and 5 can be ruled out. Thus Scheme 4, the "intermediate" between the extremes of $(AAB)_n$ and $(AABCCB)_n$, best describes the Pt₂Br structure. Scheme 4, with the symmetrically modified $(AAB)_n$ translational symmetry, requires both a short and a long Pt-Br bond; at 19 K, bond distances of 2.579(4) and 2.778(4)A were found. At least in the limit of a short chain, we would not expect a large energy barrier for halide "atom transfer",⁴⁰ as shown below:

Halide motion should be thermally activated and, at 300 K, would be rapid. The 300 K X-ray structural results are consistent with either

66

fast halide motion in an upper vibrational state, or a centrally positioned bromide. We recall, however, that the room temperature Raman spectrum shows evidence for a band attributable to a Pt-Br stretch, demonstrating that the bromide ion remains slightly shifted, even at room temperature, from the special position equidistant from neighboring Pt atoms. Scheme 4 also allows for a very slight variation in Pt-Pt bond length, such that it may or may not (depending upon the sensitivity of the technique and the value of δ) be possible to resolve two distinct Pt-Pt bonds. Raman data do, in fact, give evidence for two bands attributable to Pt-Pt stretches, these being very close in wavenumber (ca. 116.5 and 122 cm⁻¹), whereas the X-ray data do not require two distinct Pt-Pt bond lengths. (Comparison of the isotropic thermal ellipsoids for the Pt atoms in Pt_2Br at 19 K^{37} and in Pt_2Cl at 22 K shows that the Pt atom thermal motion in Pt₂Br (0.074 A) is larger than that in Pt₂Cl (0.053 A).) Thus there may, in fact, be two distinct Pt-Pt bonds in the Pt₂Br structure. The Pt-Pt distance of 2.781(1)Å at 19 K, which reflects a formal Pt-Pt bond order of 0.5, is intermediate between that observed for the reduced dimer, Pt_2 , $d_{(Pt-Pt)} =$ 2.925(1) $A^{23,41}$ and the fully oxidized Pt_2Br_2 , $d_{(Pt-Pt)} = 2.716(1)$ A 29c,39

The translational symmetry of the Pt_2Cl structure is different from that of Pt_2Br . The Pt_2Cl structural data were refined using a two-site model for the halide and both a one-site and two-site model for the platinum centers giving nearly identical results. The Pt_2Cl Raman spectrum resembles a superposition of the Raman spectra of Pt_2 and Pt_2Cl_2 . Quite simply, Pt_2Cl appears, at both room temperature and 22 K, to be a combination of equal amounts of Pt_2 and Pt_2Cl_2 alternating along the chain. Therefore, the translational symmetry of Pt_2Cl is assigned as (AABCCB)_n (Scheme 2, Figure 3.1).

Whangbo and Canadell have performed band calculations using extended Hückel methods and halide p- and metal d-orbitals on a model for the Pt_2X systems, $Pt_2(HCS_2)_4I$.¹¹ They have discussed the results both in terms of a possible Peierls instability of a metallic system, and in terms of localized electronic states of a non-metallic system. In neither limit did the $(ABC)_n$ translational symmetry represent an energy minimum; instead $(AABCCB)_n$ was predicted to be more stable than $(AAB)_n$ by 4 kJ mol⁻¹. The results show that the subtle balance of forces (i.e., electron-phonon coupling, etc.) in the Pt_2X systems gives rise to different ground state structures for Pt_2CI and Pt_2Br .

 Pt_2Br is a moderate semiconductor, with conductivity 10^6 times greater than that of Reihlen's green, $[Pt^{II}(etn)_4][Pt^{IV}(etn)_4Br_2] \cdot 4H_2O$ (etn = ethylamine)³⁸, but 10^6 times weaker than that of $K_2[Pt(CN)_4]Br_{0.3} \cdot 3.2H_2O$. We note that an analogous system that uses iodide ion as the bridging unit between metal dimers, $Pt_2(CH_3CS_2)_4I$, forms a structure at 300 K with translational symmetry that is virtually $(AAB)_n$.^{28,29} The conductivity of this material is comparable to that of Pt_2Br .

In conclusion, the translational symmetry, $(AAB)_n$, which we anticipated for Pt_2Br , was not found in any structure, although the observed structure is only slightly different from this translational symmetry. Consideration of the cavity size between Pt_2 units indicates that bromide is more appropriate than chloride for creating a highly symmetric 1-dimensional material with $(AAB)_n$ symmetry. Chloride, which is not as well suited for the K^+/Pt_2 framework as bromide, leads to the $(AABCCB)_n$ structure. The Pt_2Cl and Pt_2Br complexes provide an interesting example of how competing interactions in a quasi 1-dimensional system lead to different ground state structures. An understanding of the relationship between the structures of these materials, the nature of the local states, and the macroscopic properties such as conductivity is essential in developing materials with useful properties.

REFERENCES

- Williams, J. M.; Beno, M. A.; Wang, H. H.; Leung, P. C. W.; Emge, T. J.; Geiser, U.; Carlson, K. D. Acc. Chem. Res. 1985, 18, 261.
- Miller, J. S., Ed. "Extended Linear Chain Compounds"; Plenum: New York, 1982; Vol. 1-3.
- Monceau, P., Ed. "Electronic Properties of Inorganic Quasi-One-Dimensional Compounds"; D. Reidel: Boston, 1985: Vol. 1,2.
- Ibers, J. A.; Pace, L. J.; Martinsen, J.; Hoffman, B. M. Struct. and Bond. 1982, 50, 1.
- Stucky, G. D.; Schultz, A. J.; Williams, J. M. Ann. Rev. Mater. Sci. 1977, 7, 301.
- 6. Toombs, G. A. Phys. Rev. 1978, 40, 181.
- 7. Friend, R. H.; Jerome, D. J. Phys. C: Solid State Phys. 1979, 12, 1441.
- 8. Whangbo, M.-H.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 6093.
- Hoffmann, R.; Christian, M.; Gray, H. B. J. Am. Chem. Soc. 1984, 106, 2001.
- 10. Whangbo, M.-H. Acc. Chem. Res. 1983, 16, 95.
- 11. Whangbo, M.-H.; Canadell, E. Inorg. Chem. 1986, 25, 1762.
- 12. Peters, C.; Eagen, C. F. Inorg, Chem. 1976, 15, 782.
- Schultz, A. J.; Stucky, G. D.; Blessing, R. H.; Coppens, P. J. Am. Chem. Soc. 1976, 98, 3194.
- Jerome, D.; Mazaud, A.; Ribault, M.; Bechgaard, K. J. Phys. Lett. 1980, 41, L195.
- Bechgaard, K.; Carneiro, K.; Olsen, M.; Rasmussen, F. B.; Jacobsen, C. S. Phys. Rev. Lett. 1981, 46, 852.
- 16. Bechgaard, K.; Rasmussen, F. B.; Olsen, M.; Rindorf, G.; Jacobsen,

C. S.; Pedersen, H. J.; Scott, J. C. J. Am. Chem. Soc. 1981, 103, 2440.

- Mann, K. R.; Gordon, II, J. G.; Gray, H. B. J. Am. Chem. Soc. 1975, 97, 3553.
- 18. Balch, A. L.; Olmstead, M. M. J. Am. Chem. Soc. 1976, 98, 2354.
- 19. Sigal, I. S.; Gray, H. B. J. Am. Chem. Soc. 1981, 103, 2220.
- 20. Rice, S. F.; Gray, H. B. J. Am. Chem. Soc. 1981, 103, 1593.
- Dallinger, R. F.; Miskowski, V. M.; Gray, H. B.; Woodruff, W. H. J. Am. Chem. Soc. 1981, 103, 1595.
- Gordon, II, J. G.; Williams, R.; Hsu, C.-H.; Cuellar, E.; Samson,
 S.; Mann, K.; Gray, H. B.; Hadek, V.; Somoano, R. Ann. New York Acad. Sci. 1978, 313, 580.
- Filomena Dos Remedios Pinto, M. A.; Sadler, P. J.; Neidle, S.; Sanderson, M. R.; Subbiad, A.; Kuroda, R. J. Chem. Soc., Chem. Commun. 1980, 13.
- Che, C.-M.; Butler, L. G.; Gray, H. B. J. Am. Chem. Soc. 1981, 103, 7796.
- Che, C.-M.; Butler, L. G.; Grunthaner, P. J.; Gray, H. B. Inorg. Chem. 1985, 24, 4662.
- 26. Isci, H.; Mason, W. R. Inorg. Chem. 1985, 24, 1761.
- 27. Che, C.-M.; Herbstein, F. H.; Schaefer, W. P.; Marsh, R. E.; Gray,
 H. B. J. Am. Chem. Soc. 1983, 105, 4606.
- (a) Bellitto, C.; Flamini, A.; Gastaldi, L.; Scaramuzza, L. Inorg. Chem. 1983, 22, 444. (b) Bellito, C.; Dessy, G.; Fares, V. Inorg. Chem. 1985, 24, 2815.
- 29. (a) Clark, R. J. H.; Kurmoo, M. J. Chem. Soc., Dalton Trans. 1985, 579. (b) Kurmoo, M.; Clark, R. J. H. Inorg. Chem. 1985, 24, 4420.

(c) Clark, R. J. H.; Kurmoo, M.; Dawes, H. M.; Hursthouse, M. B. Inorg. Chem. 1986, 25, 409.

- Swanson, B. I.; Conradson, S. D.; Stroud, M. A.; Zietlow, M. H.; Gray, H. B., manuscript in preparation.
- 31. Samson, S.; Goldish, E.; Dick, J. J. Appl. Cryst. 1980, 13, 425.
- 32. (a) Duchamp, D. J. Paper B-17, American Crystallographic Association Meeting, Bozeman, Montana, 1964. (b) Johnson, C. K. "ORTEP, A Fortran Thermal Ellipsoid Plot Program (ORNL-3794)" Oak Ridge National Laboratory: Oak Ridge, Tenn., 1965.
- International Table for Crystallography; Kynoch: Birmingham, England, 1974; Vol. IV, p. 72.
- Kistenmacher, T. J.; Destro, R.; Marsh, R. E.; Samson, S. Mol. Cryst. Liq. Cryst. 1980, 62, 173.
- Williams, R.; Lowe Ma, C.; Samson, S.; Khanna, S. K.; Somoano, R.
 B. J. Chem. Phys. 1980, 72, 3781.
- Lowe Ma, C.; Williams, R.; Samson, S. J. Chem. Phys. 1981, 74, 1966.
- Butler, L. G.; Zietlow, M. H.; Che, C.-M.; Schaefer, W. P.; Sridhar, S.; Grunthaner, P. J.; Swanson, B. I.; Clark, R. J. H.; Gray, H. B. J. Am. Chem. Soc. 1988, 110, 1155.
- Clark, R. J. H. In "Advances in Infrared and Raman Spectroscopy";
 Clark, R. J. H.; Hester, R. E., Eds.; Wiley: Chichester, 1984;
 Vol. 11, Chapter 3.
- Alexander, K. A.; Bryan, S. A.; Fronczek, F. R.; Fultz, W. C.; Reingold, A. L.; Roundhill, D. M.; Stein, P.; Watkins, S. F. Inorg. Chem. 1985, 24, 2803.
- 40. Burdett, J. K. Inorg. Chem. 1978, 17, 2537.

- 41. Marsh, R. E.; Herbstein, F. H. Acta Crystallogr., Sect. B 1983, 39, 280.
- Conradson, S. D.; Dallinger, R. F.; Swanson, B. I.; Clark, R. J. H.; Croud, V. B. Chem. Phys. Lett. 1987, 135, 463.
- 43. (a) Baeriswyl, D.; Bishop, A. J. Phys. C: Solid State Phys. 1988, in press. (b) Baeriswyl, D.; Bishop, A. Physics Scripta 1988, in press.

CHAPTER 4

Pressure Dependence of the Electronic Spectra of $K_4[Pt_2(P_2O_5H_2)_4X_n]$ (X = Cl, Br; n = 0, 1, 2)

INTRODUCTION

important characteristic of quasi-one-dimensional, halide-An bridged, mixed-valence transition metal complexes, MX, is that their physical properties may be controlled by varying the transition metal complex ions, the halogen, and external pressure.¹⁻⁷ These materials exhibit an intense intervalence charge-transfer excitation, the IVCT band, that is polarized along the chain axis. Resonance Raman spectra obtained by exciting into the IVCT band are also highly polarized along the chain axis and the frequencies of the Raman-enhanced modes have been used along with IVCT band energy as a measure of the extent of valence delocalization.^{1c} These highly anisotropic semiconductors are generally in the trapped-valence limit, with the metal atoms in alternating valence states. These and similar systems have recently been recognized as examples of commensurate charge-density-wave (CDW) systems.^{6,8,9} They exhibit a large distortion of the halogen from the central position between the metal dimers due to a Peierls instability.

Linear MMX chain complexes, $K_4[Pt_2(P_2O_5H_2)_4X] \cdot 3H_2O$, X=Cl,Br (Pt₂X), are of particular interest¹⁰⁻¹⁴ because they are more valence delocalized and show smaller distortions of the halide sublattice relative to the MX systems. Early structural work on Pt_2Br indicated that the halogen was centrally located between the Pt dimers.¹¹ However, theoretical calculations suggested that there should be a distorted halide sublattice and some mixed-valence character.¹³ Recent experimental studies have shown that there is a small distortion of the halogen from the central position in Pt_2Br .^{10,14} In contrast, Pt_2Cl is in the strongly trapped-valence limit with a large distortion of the chloride from the central position (see Chapter 3).

Original interest in investigating these types of systems under inspired by the research of was Interrante and high pressure coworkers.¹⁵ They investigated similar linear chain MX complexes and found that the conductivity could be increased by as much as nine orders of magnitude at 14.0 GPa, presumably because of a decrease in the Peierls gap with increasing pressure. This tremendous pressure dependence made these types of materials good candidates for spectroscopic studies. Tanino, et al.⁵ measured the effects of high pressure on the lattice parameters, optical gaps, luminescence peaks, and the Xray absorption near edge structure of MX complexes. It was concluded that the Peierls gap decreases with increasing pressure.

The effects of pressure on the electronic spectra of Pt_2Cl , Pt_2Br , $(TBA)_4[Pt_2(P_2O_5H_2)_4]$ (Pt₂), and $K_4[Pt_2(P_2O_5H_2)_4Cl_2]$ (Pt₂Cl₂) have been investigated in order to gain insight into the structural changes that can occur in these materials. The energy maximum of the IVCT band provides a direct diagnostic of the extent of valence delocalization in the monohalide complexes.¹⁶ In addition, study of the other bands in the electronic spectra should yield valuable information on the effects of pressure on the electronic structures of the complexes. The magnitude and direction of the pressure-induced changes in ligand field splitting and changes in the bond strength of the Pt-Pt complexes.

EXPERIMENTAL

Materials

All solvents were reagent grade and used without further purification.

The platinum dimers $K_4[Pt_2(P_2O_5H_2)_4]$, Pt_2 , and $K_4[Pt_2(P_2O_5H_2)_4]$, Pt_2Cl_2 , were prepared by published procedures.^{14,17,18} Linear chain complexes, $K_4[Pt_2(P_2O_5H_2)_4Cl]$, Pt_2Cl , and $K_4[Pt_2(P_2O_5H_2)_4Br]$, Pt_2Br , were prepared as described in the experimental section of Chapter 3.

Physical Measurements

The high pressure electronic absorption measurements were performed by Dr. Mary Ann Stroud with technical assistance from Dr. Stephen F. Agnew, Dr. Philip D. Stroud and Mr. Douglas G. Eckhart at the Los Alamos National Laboratory, Los Alamos, New Mexico.

Pressure was generated using a gasketed Merrill-Basset diamond anvil cell with an inconel gasket. The high energy working range of the cell was limited to 41700 cm⁻¹ because of the strong absorption by nitrogen impurities in the diamonds. A ruby fluorescence pressure calibration method was used to determine pressures. Absorption measurements were obtained at room temperature using a Perkin Elmer 330 spectrophotometer. The instrument was modified for DAC work by using a 100 W tungsten-halogen lamp source and by adding a Harrick 5 to 1 beam condenser to the sample chamber.¹⁹

Fluorescence measurements were obtained on a SPEX Model 1403 3/4-m double monochromator equipped with a Princeton Applied Research photon counting system. Typically, the 514.5 nm line of a Spectra-Physics 171 argon laser was used as the exciting line. The cell was allowed to equilibrate after each pressure increase and ruby fluorescence was routinely checked before and after the data collection to insure that the pressure had not varied significantly. When possible, the fluorescence from several rubies located in different parts of the cell were measured and the average value was used to estimate the pressure. Pressure gradients of as large as 0.4 GPa were observed at high pressures. Because of problems with sample degradation, the laser power at the sample was kept to less than 20 mW. For Pt_2Cl_2 , Pt_2 , and Pt_2Br , all pressure effects were reversible. Degradation of the Pt_2Cl sample was a problem. Peak positions were always reversible; however, intensity changes and weak additional features in the release spectra were observed when sample degradation had occurred.

For Pt_2Cl_2 , a 3-5% mixture of Pt_2Cl_2 in $KClO_4$ was prepared and mixed for several minutes in a dental amalgamator. The sample was loaded into the cell immediately after mixing. Pressure was applied to the sample until the salt fused and the sample became transparent. The cell was released to zero pressure before the run was started. The Pt_2 crystals were ground in mineral oil under flowing N₂. When the crystals were ground in air, the electonic absorption spectra suggested that the sample was reacting. Samples prepared by minimal grinding of Pt_2Br single crystals with $KClO_4$ in a mortar and pestle resulted in the best obtainable electronic spectra. Single crystals of Pt_2Cl were ground in air and under flowing N₂. Mineral oil or $KClO_4$ was used as the pressurizing medium.

Sample-dependent high-energy scattering was observed in the electronic spectra. After correction for this scattering tail had been made, peak locations were determined using a cursor. Polynomial fits

78

of all the energy vs. pressure electronic data were determined. For many of the electronic transitions, the ambient-pressure peak locations were somewhat dependent on the sample preparation, though the pressureinduced shifts were not. Most likely, the major cause of these differences was varying particle size. In order to compare the relative pressure-induced shift of the energy of a transition in the different runs, an energy correction factor was subtracted from each run. The correction factor, v_0 , was determined by minimizing the standard deviation of a polynomial fit to the data. Wherever a significant energy difference resulted between runs, the v_0 values are noted.

RESULTS and DISCUSSION

Pt2, Pt2Cl2, Pt2Cl, and Pt2Br contain Pt2Pg units of D4h symmetry built by four bi-nucleating pyrophosphite ligands, $[(HO_2P)_2O^2]$ (see Figure 1.1). The potassium salts of the fully reduced complex, Pt₂, and the monohalides, Pt₂Cl and Pt₂Br, are isostructural with the metalmetal bond aligned along the z axis of the tetragonal unit cell, P4/mbm, as illustrated in Figure 3.2b. In the monohalides, the Pt₂ units form an infinite linear chain in the z direction. The larger the distortion of the halogen from the central position, the larger the trapped-valence character of the chain. In Pt₂Cl, which is in the trapped-valence limit, the halogen is displaced 0.25 A from the central position at 22 K¹⁴ and the charge on the alternating Pt dimers is close Pt(II)-Pt(II) and Pt(III)-Pt(III). In the Pt₂Br complex, to the halogen is displaced only 0.1A from the central position at 19 K,¹⁴ and the charge on the Pt atoms is more delocalized. The ambient-pressure energies of all the electronic transitions studied as a function of pressure are listed in Table 4.1.

 Pt_2Cl_2 . Two electronic transitions were studied as a function of pressure in Pt_2Cl_2 , $d_{xz}, d_{yz} \rightarrow d\sigma^*$ and $\sigma(X) \rightarrow d\sigma^*$ (Figure 4.1).²⁰ The $d\sigma \rightarrow d\sigma^*$ transition has been assigned to an absorption (at about 46,500 cm⁻¹) that is too high in energy to be observed in a diamond anvil cell. The smoothed absorption spectra of Pt_2Cl_2 at 0.1 and 9 GPa are shown in Figure 4.2.

The $d_{xz}, d_{yz} \rightarrow d\sigma^*$ transition shifts blue with increasing pressure at a rate of 300 cm⁻¹/GPa from its position at 28,100 cm⁻¹. The shift is linear over the pressure range studied (Figure 4.3a). Increasing pressure enhances the overlap between the d_{τ^2} orbitals on adjacent Pt

Table 4.1

Ambient-Pressure Energies of Electronic Transitions (in cm⁻¹)

Transition	Pt ₂ Cl ₂	Pt ₂	Pt ₂ Br	Pt ₂ Cl
$d_{xz}, d_{yz} \rightarrow d\sigma^*$	28,100			
$\sigma(X) \rightarrow d\sigma^*$	34,500		32,800	35,400
dσ* → pσ		26,700	27,600	26,400
$d_{xz}, d_{yz} \rightarrow p\sigma$		40,200		
$d\sigma^* \rightarrow d_{x^2-y^2}$		35,300		
unassigned				25,600
IVCT			16,100	18,600

Figure 4.1 Energy level diagram for $[Pt_2(P_2O_5H_2)_4Cl_2]^{4-}$ at ambient pressure.

Figure 4.2 Smoothed electronic absorption spectra of $[Pt_2(P_2O_5H_2)_4Cl_2]^{4-}$ at 0.1 and 9.0 GPa.

- Figure 4.3 (a) Pressure shift of the $d_{xz}, d_{yz} \rightarrow d\sigma^*$ transition in $[Pt_2(P_2O_5H_2)_4Cl_2]^{4-}$.
 - (b) Pressure shift of the $\sigma(Cl) \rightarrow d\sigma^*$ transition in $[Pt_2(P_2O_5H_2)_4Cl_2]^{4-}$.

atoms, thereby destabilizing $d\sigma^*$. The two sets of d_{xz}, d_{yz} orbitals interact only weakly, so the shift of the $d_{xz}, d_{yz} \rightarrow d\sigma^*$ transition is attributed to the pressure-induced destabilization of $d\sigma^*$. Any increase in the splitting of the d_{xz}, d_{yz} orbitals would reduce the magnitude of the observed blue shift.

The energy of the $\sigma(Cl) \rightarrow d\sigma^*$ transition also blue shifts linearly, at a rate of 300 cm⁻¹/GPa from 34,500 cm⁻¹ (Figure 4.3b). Accordingly, this blue shift is attributed mainly to the destabilization of $d\sigma^*$ with increasing pressure.

Pt₂. The MO diagram of the $d^8 - d^8$ Pt₂ complex is given in Chapter 1 (Figure 1.2); however, for convenience the energy levels are presented again in Figure 4.4. The effects of pressure on three electronic transitions, $d_{xz}, d_{yz} \rightarrow p\sigma$, $d\sigma^* \rightarrow p\sigma$, and $d\sigma \rightarrow d_{x^2-y^2}, 2^{1}$ have been investigated (Figure 4.5).

The $d_{xz}, d_{yz} \rightarrow p\sigma$ transition in Pt₂ (40,200 cm⁻¹ at ambient pressure) exhibits a linear blue shift of 190 cm⁻¹/GPa with increasing pressure (Figure 4.6a). An explanation of the observed shift is that the p_z orbitals are coupled strongly to d_z^2 orbitals on adjacent Pt atoms, while the d_{xz}, d_{yz} orbitals experience only very weak π interactions. This pattern of interactions with increasing pressure results in a destabilization of p_z relative to d_{xz}, d_{yz} .

The $d\sigma^* \rightarrow d_{\chi^2-y^2}$ energy (ambient-pressure energy of 35,400 cm⁻¹) exhibits unusual nonlinear behavior with increasing pressure. The $d\sigma^*$ $\rightarrow d_{\chi^2-y^2}$ transition shifts red up to 5.5 GPa at an initial rate of about 230 cm⁻¹/GPa, then levels off and begins to shift blue until at least 10.0 GPa (Figure 4.6b). This transition is expected to be affected both by increased splitting of $d\sigma$ and $d\sigma^*$, resulting from

88

Figure 4.4 Energy level diagram for $[Pt_2(P_2O_5H_2)_4]^{4-}$ at ambient pressure.

Figure 4.5 Smoothed electronic absorption spectra of $[Pt_2(P_2O_5H_2)_4]^{4-}$ at 0.1, 5.2, and 11.7 GPa.

ENERGY (cm⁻¹)

- (a) Pressure shift of the $d_{xz}, d_{yz} \rightarrow p\sigma$ transition in $[Pt_2(P_2O_5H_2)_4]^{4-}$.
 - (b) Pressure shift of the $d\sigma^* \rightarrow d_x^2 y^2$ transition in $[Pt_2(P_2O_5H_2)_4]^{4-}$.
 - (c) Pressure shift of the $d\sigma^* \rightarrow p\sigma$ transition in $[Pt_2(P_2O_5H_2)_4]^{4-}$.
- Figure 4.6

greater overlap of the d_{z^2} orbitals on adjacent Pt atoms, and an increased ligand field that destabilizes $d_{x^2-y^2}$ relative to d_{z^2} . In the absence of large changes in the ligand field splitting, an increase in the overlap of adjacent d_{z^2} orbitals would lead to a red shift, and it is reasonable that this is the dominant effect at low pressure. At higher pressures, increased ligand field splitting between $d_{x^2-y^2}$ and d_{z^2} begins to dominate and the $d\sigma^* \rightarrow d_{x^2-y^2}$ transition shifts to the blue. The strong nonlinearity of the ligand field effect is attributed to nonlinear compression of the P-Pt bonds as the pressure is increased. At low pressure, compression along the *a* and *b* crystallographic axes results in compression of the interchain separation and little or no change in the P-Pt bonds. At higher pressure, as the interchain interactions stiffen, the P-Pt bonds begin to compress, thereby destabilizing $d_{x^2-y^2}$.

There is little shift in the 26,700 cm⁻¹ energy of $d\sigma^* \rightarrow p\sigma$ up to 5.0 GPa, though the transition does appear to initially shift slightly to the blue. At higher pressures, a significant red shift is observed; this shift appears to level off at ca. 11.0 GPa. Increased splitting of d σ and d σ^* would result in a red shift of the d $\sigma^* \rightarrow p\sigma$ transition. The $d\sigma^*$ and $p\sigma$ levels are coupled, and any increase in the coupling as the pressure is raised would tend to repel $d\sigma^*$ and $p\sigma$, resulting in a blue shift. For the $d\sigma^* \rightarrow p\sigma$ transition, there is probably a delicate balance between these two effects. Because a weak shift is observed, other effects also may significantly influence the behavior of this transition. At higher pressures, when the transition begins to red shift, increased coupling between the phosphorus σ orbital and $d\sigma^*$ occurs. Increased $\sigma(P)$ -d₇2 coupling is expected at higher pressures in light of the observed pressure shift of the $d\sigma^* \rightarrow d_{x^2-y^2}$ transition. This effect suggests that the energy of the $d\sigma^*$ orbital may be tuned in binuclear complexes by varying the bridging ligand. For monohalide complexes, the ligands may be used to control the extent of delocalization of the chain.

The weak 22,000 cm⁻¹ absorption attributable to the triplet $d\sigma^* \rightarrow p\sigma$ transition²¹ initially shifts weakly blue with increasing pressure. The weak 31,800 cm⁻¹ shoulder is probably the $d\sigma^* \rightarrow d_{x^2-y^2}$ triplet,²¹ which shifts red with increasing pressure.

Pt₂Br. A diagram of the electronic transitions in Pt₂Br is shown in Figure 4.7. The absorption spectrum of Pt₂Br is a superposition of electronic transitions in Pt₂ and Pt₂Br₂, modified slightly depending on the degree of delocalization, and an additional broad low energy band, which is the IVCT band characteristic of the mixed-valence complex itself (Figure 4.8). The highest energy transition observed in this study, 32,800 cm⁻¹ at ambient pressure, shifts to higher energy with increasing pressure at a rate of 270 cm⁻¹/GPa (Figure 4.9a). The rate of the shift is within 10% of the observed shift of the $\sigma(Cl) \rightarrow$ d σ^* transition in Pt₂Cl₂ and it is linear over the pressure range studied. The band position at ambient pressure is very close to that of $\sigma(Br) \rightarrow d\sigma^*$ in Pt₂Br₂ (32,800 cm⁻¹),^{17,22} and the absorption is intense. Based on this evidence, the band is assigned to the $\sigma(Br) \rightarrow$ d σ^* transition.

The pressure-induced energy change of the 27,600 cm⁻¹ transition is shown in Figure 4.9b. The energy of the transition shifts weakly to the red with increasing pressure and appears to level off above 5.0 GPa. Based on our analysis of the Pt_2Cl_2 and Pt_2 results, a red shift

96

Figure 4.7 Energy level diagram for $[Pt_2(P_2O_5H_2)_4Br]^{4-}$ at ambient pressure.

Figure 4.8 Smoothed electronic absorption spectra of $[Pt_2(P_2O_5H_2)_4Br]^{4-}$ at 0.3, 2.4, 4.9, and 9.4 GPa.

ABSORBANCE

- - Figure 4.9 (a) Pressure shift of the $\sigma(Br) \rightarrow d\sigma^*$ transition in $[Pt_2(P_2O_5H_2)_4Br]^{4-}$.
 - (b) Pressure shift of the $d\sigma^* \rightarrow p\sigma$ transition if $[Pt_2(P_2O_5H_2)_4Br]^{4-}$ ($\nu_0 = 27,200, 27600, and 27,900$ cm⁻¹).

of $d\sigma^* \rightarrow p\sigma$ is plausible, while a blue shift is expected for $d_{xz}, d_{yz} \rightarrow d\sigma^*$. In Pt₂Br, a red shift of $d\sigma^* \rightarrow p\sigma$ also is expected at high pressure, because of enhanced intermolecular interactions along the metalmetal axis. Accordingly, the intense 27,600 cm⁻¹ band is assigned to $d\sigma^* \rightarrow p\sigma$.

 $Pt_2Cl.$ The energy level diagram for Pt_2Br (Figure 4.7) can also be utilized in discussing the spectrum of Pt_2Cl , where four electronic transitions have been studied as a function of pressure (Figure 4.10). The highest energy transition observed for Pt_2Cl (35,400 cm⁻¹ at ambient pressure) shifts to higher energy with increasing pressure at a rate of 290 cm⁻¹/GPa (Figure 4.11a). The shift is linear with pressure and its magnitude is within 10% of the observed shift of the $\sigma(Cl) \rightarrow$ dσ^{*} transition in Pt_2Cl_2 . The energy of the transition at ambient pressure is very close to that of $\sigma(Cl) \rightarrow d\sigma^*$ in Pt_2Cl_2 (Table 4.1). Since the transition is also very intense, it is assigned to $\sigma(Cl) \rightarrow$ dσ^{*}.

The weak blue shift, 75 cm⁻¹/GPa, of the transition at 26,700 cm⁻¹ is illustrated in Figure 4.11b. A blue shift of the $d_{xz}, d_{yz} \rightarrow d\sigma^*$ band has been observed in Pt_2Cl_2 and can be inferred in Pt_2 by taking the difference between the pressure-induced shift of $d_{xz}, d_{yz} \rightarrow p\sigma$ and that of $d\sigma^* \rightarrow p\sigma$; however, the shifts in Pt_2Cl_2 and Pt_2 are over twice that of the blue shift observed for the 26,700 cm⁻¹ transition in Pt_2Cl . A blue shift is also plausible for $d\sigma^* \rightarrow p\sigma$ if an increase in the coupling between $d\sigma^*$ and $p\sigma$ is the dominant pressure effect. Accordingly, the intense 26,700 cm⁻¹ band is assigned to the $d\sigma^* \rightarrow p\sigma$ transition.

There is a very strong pressure-induced linear red shift (-510 cm⁻¹ /GPa) of the Pt_2Cl electronic transition with an ambient-pressure

Figure 4.10	Smoothed	electronic	absorption	spectrum	of
	$[Pt_2(P_2O_5H_2)_4Cl]^{4-}$ at 0 and 2.2 GPa.				

ENERGY (cm⁻¹)

- (a) Pressure shift of the $\sigma(Cl) \rightarrow d\sigma^*$ transition in $[Pt_2(P_2O_5H_2)_4Cl]^{4-}$.
 - (b) Pressure shift of the $d\sigma^* \rightarrow p\sigma$ transition in $[Pt_2(P_2O_5H_2)_4Cl]^{4-}$ ($\nu_0 = 26,200, 26,800, and 27,100$ cm^{-1}).
 - (c) Pressure shift of the unassigned transition in $[Pt_2(P_2O_5H_2)_4C1]^{4-}$.

Figure 4.11

energy of 25,600 cm⁻¹. A weak red shift of the $d\sigma^* \rightarrow p\sigma$ transition has been observed for Pt₂Br and at pressures greater than 5.0 GPa for Pt₂. The magnitude of the red shift of the 25,600 cm⁻¹ band is several times larger and for this reason assignment to $d\sigma^* \rightarrow p\sigma$ is unlikely. (In addition, the 26,700 cm⁻¹ has already been assigned to the $d\sigma^* \rightarrow p\sigma$ transition.) Another unusual characteristic of this transition is that the intensity of the peak varies considerably with the method of sample preparation. The peak has been observed previously in the electronic spectra of samples in $KClO_4$ pellets,¹⁰ and there is no peak in the Pt₂Br electronic spectrum that exhibits similar behavior. Because of these observations, the peak has not been assigned to a metal-based transition of the ground-state structure. The transition may result from a defect state present in the crystal. Resonance Raman spectra of Pt₂Cl show evidence for fine structure that grows in when the excitation wavelength is tuned to the red of the IVCT band. This fine structure was attributed to a polaronic local state resulting from a deficiency of K^+ ions.¹² On the basis of the Peierls-Hubbard 3/4filled band model developed by Baeriswyl and Bishop,⁶ the energies of the defect electronic transitions are predicted to be to the blue as well as to the red of the IVCT band.

Intervalence Charge-Transfer Excitation. In the limit of a strongly trapped-valence material with a large distortion of the halogen from the central position, the IVCT band corresponds to $d\sigma^* \rightarrow d\sigma^*$ electron transfer along the chain axis from Pt₂ to an adjacent Pt₂X₂ (Figure 4.9). The energy of the IVCT band at ambient pressure in the trapped-valence Pt₂Cl complex is 18,600 cm⁻¹; it is significantly lower (16,100 cm⁻¹) in the more delocalized Pt₂Br complex. (The lower

the energy of the IVCT band, the more delocalized the complex.¹⁶) In Pt_2Cl and Pt_2Br , as the pressure increases, the IVCT band initially shifts strongly to lower energy and then appears to level off above 4.0 GPa (Figure 4.12). The initial red shift is approximately -750 cm⁻¹ /GPa in Pt_2Cl and -1000 cm⁻¹ /GPa in Pt_2Br . By way of comparison, the absorption edge of Wolfram's red salt shifts to lower energy at a rate of -1600 cm⁻¹ /GPa up to 3.4 GPa.^{5c}

The strong red shift of the IVCT band with increasing pressure is consistent with a continuous change toward a symmetric structure with the halogen located equidistant between adjacent Pt dimers. As the halogen becomes more centrally located, there will be a decrease in the energy difference between $d\sigma^*$ orbitals on adjacent Pt dimers. The red shift of the IVCT band will be further enhanced by a decrease in the halide distortion, because the extent of delocalization along the z axis will increase the band character of the $d\sigma^*$ orbitals. Band calculations by Whangbo and Canadell on a related MMX system support these conclusions.¹³

In interpreting pressure-induced changes of the IVCT band, it is important to separate the effects of structural changes from those of changes in orbital overlap. In this case we can establish an upper limit to the red shift caused by increasing overlap by comparing the shifts of the IVCT bands in Pt_2Cl and Pt_2Br . The red shift observed for the IVCT band in Pt_2Br is 4/3 times as large as that observed for Pt_2Cl . Accordingly, at least the increased red shift of the IVCT band in Pt_2Br is attributed to the movement of the Br atom towards the center position relative to the surrounding Pt_2 fragments. Figure 4.12 Relative energy shifts of the IVCT bands in $[Pt_2(P_2O_5H_2)_4Br]^{4-}$ ($\nu_0 = 15,700, 16,200, and 16,400 \text{ cm}^{-1}$) and $[Pt_2(P_2O_5H_2)_4Cl]^{4-}$ ($\nu_0 = 18,400, 18,500, and 18,800 \text{ cm}^{-1}$).

110

Comparisons of Pt₂Cl₂, Pt₂, and Pt₂X Transitions.

A pressure-induced blue shift of the $d_{xz}d_{yz} \rightarrow d\sigma^*$ transition in Pt_2Cl_2 of approximately 300 cm⁻¹/GPa was observed and a shift of 190 cm⁻¹/GPa can be inferred for Pt_2 . It is reasonable for the $d\sigma^*$ orbital in Pt_2Cl_2 to be destabilized more rapidly than in Pt_2 because it is coupled to the halogen orbitals. By way of comparison, the $Mn_2(CO)_{10}$ $d_{xz}d_{yz} \rightarrow d\sigma^*$ transition blue shifts at an initial rate of 500 cm⁻¹/GPa in the solid state.²³ However, the pressure-induced shift of the transition in $Mn_2(CO)_{10}$ is influenced by stabilization of the $d\pi$ levels because of increased π -backbonding with the carbonyl ligands.

The pressure-induced shifts of the $d\sigma^* \rightarrow p\sigma$ transition in Pt₂, Pt₂Br, and Pt₂Cl are compared in Figure 4.13. A weak shift was observed in all three complexes; however, the direction of the shift varies, thereby indicating that there is a delicate balance among several competing effects. Increased coupling between the d_z² and p_z orbitals, which may be somewhat larger in the monohalides because of the presence of the bridging halide, blue shifts $d\sigma^* \rightarrow p\sigma$. This appears to be the dominant effect in Pt₂Cl. The observed red shift in Pt₂Br can be explained in terms of band broadening of the $d\sigma^*$ and $p\sigma$ orbitals due to enhanced intermolecular interactions along the z axis. The band broadening should be larger in Pt₂Br than in Pt₂Cl, since Pt₂Br becomes delocalized more rapidly with increasing pressure.²⁴ A red shift of the $d\sigma^* \rightarrow p\sigma$ transition also results from an increase in coupling of $d\sigma^*$ with the phosphorus σ orbitals, an effect that becomes important in Pt₂ at high pressure.

REFERENCES

- (a) Clark, R. J. H. Ann. N. Y. Acad. Sci. 1978, 313, 672. (b) Keller, H. J. Extended Linear Chain Compounds; J. S. Miller: Plenum: New York, 1982; pp 357. (c) Clark, R. J. H. Advances in Infrared and Raman Spectroscopy; Vol. 11, R. J. H. Clark and R. E. Hester: Wiley: Heyden, 1984; pp 95. (d) Clark, R. J. H. Mixed Valence Compounds; D. B. Brown: Reidel: Dordrecht, 1982; pp 271.
- Clark, R. J. H.; Kurmoo, M. J. Chem. Soc., Faraday Trans. 1983, 79, 519.
- Tanaka, M.; Kurita, V. J. Phys. C.: Solid State Phys. 1986, 19, 3019.
- Conradson, S. D.; Dallinger, R. F.; Swanson, B. I.; Clark, R. J. H.; Croud, V. B. Chem. Phys. Lett. 1987, 135, 463.
- (a) Tanino, H.; Koshizuka, N.; Hoh, K.; Yamashita, M.; Kobayashi, K. Physica 1986, 39, 140B, 487. (b) Tanino, H.; Kobayashi, K; Yamashita, M. Solid State Physics under Pressure; S. Minomura: Terra Scientific Publ. Co., 1985; pp 115. (c) Tanino, H.; Koshizuka, N.; Kobayashi, K.; Yamashita, M.; Hoh, K. J. Phys. Soc. Jpn. 1985, 54, 483.
- 6. (a) Baeriswyl, D.; Bishop, A. R. J. Phys. C: Solid State Phys.
 1988, in press. (b) Baeriswyl, D.; Bishop, A. R. Physics Scripta
 1988, in press.
- (a) Tanaka, M.; Kurita, S.; Koyima, T.; Yamada, Y. Chem. Phys. 1984, 91, 257.
 (b) Tanaka, M.; Kurita, S. J. Phys. C. Solid State Phys. 1986, 19, 3019, and references therein.
- Ueta, M.; Kanzaki, H.; Kobayashi, K.; Toyozawa, Y.; Hanamura, E. Excitonic Processes in Solids, Vol. 60, Springer Series in Solid

State Sciences, Berlin, 1986, Ch.9.

- 9. Onodera, Y. J. Phys. Soc. Jpn. 1987, 56, 250.
- 10. Kurmoo, M.; Clark, R. J. H. Inorg. Chem. 1985, 24, 4420.
- Che, C.-M.; Herbstein, F. H.; Schaefer, W. P.; Marsh, R. E.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 4604.
- Conradson, S. D.; Stroud, M. A.; Zietlow, M. H.; Swanson, B. I.; Baeriswyl, D.; Bishop, A. R. Solid State Communications, 1988, in press.
- 13. Whangbo, M.-H.; Canadell, E. Inorg. Chem. 1986, 25, 1726.
- Butler, L. G.; Zietlow, M. H.; Che, C.-M.; Schaefer, W. P.; Sridhar, S.; Grunthaner, P. J.; Swanson, B. I.; Clark, R. J. H.; Gray, H. B. J. Am. Chem. Soc. 1988, 110, 1155.
- Interrante, L. V.; Browall, K. W.; Bundy, F. P. Inorg. Chem. 1974, 13, 1158.
- 16. Clark, R. J. H. Chem. Soc. Rev. 1984, 13, 219.
- Che, C.-M.; Schaefer, W. P.; Gray, H. B.; Dickson, M. K.; Stein, P. B.; Roundhill, D. M. J. Am. Chem. Soc. 1982, 104, 4253.
- Che, C.-M.; Butler, L. G.; Grunthaner, P. J.; Gray, H. B. Inorg. Chem. 1985, 24, 4662.
- 19. The glitches that occurred in some of the electronic spectra at approximately 30,000 and 28,000 cm⁻¹ were caused by the lamp change. The glitch at approximately 21,000 cm⁻¹ was caused by a grating anomaly.
- Che, C.-M.; Mak, T. C.; Miskowski, V. M.; Gray, H. B. J. Am. Chem. Soc. 1986, 108, 7840.
- Stiegman, A. E.; Rice, S. F.; Gray, H. B.; Miskowski, W. M. Inorg. Chem. 1987, 26, 1112.

- 22. Isci, H.; Mason, W. R. Inorg. Chem. 1985, 24, 1761.
- Carroll, T. L.; Shapley, J. R.; Drickamer, H. G. Chem. Phys. Lett. 1985, 119, 340.
- 24. (a) Stroud, M. A.; Swanson, B. I., manuscript in preparation. (b)
 See IVCT section of this article. (c) Swanson, B. I.; Stroud, M.
 A.; Conradson, S. D.; Zietlow, M. H. Solid State Communications
 1988, in press.

CHAPTER 5

Photophysics of [Pt2(µ-dppm)2Y2]ⁿ⁺

 $(Y = Cl, Br; n = 0 \text{ or } Y = PPh_3, PPh_2Me, PPhMe_2; n = 2)$

INTRODUCTION

Adjacent coordination sites are necessary for concerted, small molecule addition to a photo-excited metal center to occur. $Pt_2(\mu-dppm)_2Cl_2$ (dppm = bis(diphenylphosphino)methane) and its analogs are good candidates for the study of this type of reactivity. The ligand arrangement about each platinum metal center is square planar with each platinum atom acting as the other platinum's fourth ligand.^{1,2} The two bridging dppm ligands are opposite of one another; thus, unlike in the unbridged d⁹-d⁹ complex $Pt_2(CNCH_3)_6^{2+}$ which adopts a staggered structure,³ this molecule adopts a more planar (or eclipsed) structure with an ~40° degree twist (see Figure 1.4). Overall, these bridged complexes have four sites available for substrate addition, two adjacent sites above and two below the molecular plane.

These molecules are known to possess a rich thermal chemistry dominated by small molecule addition across the metal-metal bond⁴⁻¹⁰ (see Figure 1.5). For example, reacting $Pt_2(\mu$ -dppm)_2Cl₂ with CS₂ results in the formation of an A-frame d⁸-d⁸ dimer in which the CS₂ group bridges the metal centers through a carbon and a sulfur atom.⁷

Although the thermal reactivity of these complexes have been explored, no investigations into their photochemistry have been reported. Having the necessary structural requirements for concerted, small molecule addition, it is worthwhile to evaluate the photochemical potential of this system by gaining some understanding of the nature of the excited state and the factors which govern its reactivity.

EXPERIMENTAL

Materials

All solvents used in the synthesis reactions were used as received without further purification. Solvents used in spectroscopic experiments were purified, if necessary, dried, freeze/pump/thaw degassed (4 cycles), then bulb-to-bulb distilled under vacuum into storage flasks (glass solvent pots equipped with teflon vacuum valves) and again freeze/pump/thaw degassed (3 cycles). Dichloromethane (Burdick and Jackson, UV grade) was dried over calcium hydride and stored over freshly activated Linde 3A molecular sieves. The sieves were activtated by heating under dynamic vacuum (<10⁻³ Torr) for 24 - 48 hours. Significant purification of 2-methyltetrahydrofuran, 2-MeTHF, (Aldrich, 99%) was necessary. The 2-MeTHF was first distilled from a 0.5% suspension of CuCl₂ followed by distillation from potassium hydroxide pellets. Finally the 2-MeTHF was dried over calcium hydride and stored over sodium metal and benzophenone. Absolute ethanol (USI Chemicals Co., punctillious) was dried over sodium metal and stored over freshly activated 3A Linde molecular sieves. Methanol (Burdick and Jackson, UV grade) was stored over freshly activated Linde 3A molecular sieves.

 $Pt(dppm)Cl_2$: K_2PtCl_4 (Aldrich, 98%) and bis(diphenylphosphino)methane, dppm, (Aldrich, 97%) were used to prepare $Pt(dppm)Cl_2$ by a method similar to that used by Westland to prepare $Pt(dppe)Cl_2$ (dppe = 1,2-bis(diphenylphosphino)ethane).¹¹ K_2PtCl_4 (0.50 g) and dppm (0.45 g) were refluxed in a mixture of 17 mL ethanol and 17 mL concentrated HCl for 4 1/2 hours. During the course of the reaction the desired product precipitated from the hot mixture as a fine powder. The reaction was completed when the initial red color of K_2PtCl_4 disappeared and only the white powder product remained. The product was clean and further purification was not necessary. (If desired, the complex may be recrystallized from hot dimethylformamide, DMF, by adding a mixture of petroleum ether and diethyl ether.) The yield is essentially 100%. [Analysis calculated for $Pt_2(dppm)Cl_2$ (%): C, 46.17; H, 3.41. Found: C, 45.99; H, 3.43.]

 $Pt_2(\mu-dppm)_2Cl_2$: The procedure of Brown et al.¹² was followed with slight modification. Pt(dppm)Cl₂ (1.2 g) was suspended in 20 mL of nitrogen purged ethanol in a round bottom flask equipped with a stir bar. Sodium borohydride, NaBH_d, (0.5 g) was suspended in 15 mL of nitrogen purged ethanol in an addition funnel. Over a 40 - 60 minute period, the NaBH₄ mixture was added dropwise to the Pt(dppm)Cl₂ mixture with rapid stirring; the white mixture began to take on a yellow-brown tinge during the addition. After all the NaBH₄ was added, the mixture was stirred for another 5 minutes, then filtered. The solid was rinsed with methanol and water to get rid of any unreacted NaBH₄. The impure $[Pt_2(\mu-dppm)_2(\mu-H)(H)_2]Cl$ solid was prepared for the next reaction step by futher rinsing with ethanol, diethyl ether, and lastly benzene. (On occasion, the impure $[Pt_2(\mu-dppm)_2(\mu-H)(H)_2]Cl$ was dried in vacuo for 1 hour as suggested in the original procedure.)¹² Next, impure $[Pt_2(\mu$ dppm)₂(µ-H)(H)₂]Cl (1.0 g) was supended in 45 mL of benzene and 1.5 mL concentrated HCl and refluxed for 15 minutes. The hot yellow solution was decanted off from the red-brown residue, allowed to cool, and precipitated by adding ~15 mL iso-octane. The final product recrystallized as the lemon-yellow benzene solvate Pt₂(µ-dppm)₂Cl₂ • C₆H₆ in ~70% yield. In most instances, the benzene solvate obtained directly from the reaction was pure; however if further cleaning was necessary, there were several methods of purification depending upon which solvate was desired. Compounds studied gave acceptable elemental analysis and clean NMR spectra which matched published results.

Pt₂(µ-dppm)₂Cl₂ dissolves in only a few solvents, mainly Recrystallizing Pt₂(µ-dppm)₂Cl₂ from halocarbons. the solvent of choice and precipitating with iso-octane will yield crystals of Pt₂(µ $dppm)_2Cl_2$ with the corresponding solvate. $Pt_2(\mu-dppm)_2Cl_2 \cdot C_6H_6$ is not soluble in benzene. If the sample obtained from the reaction mixture needs to be cleaned and the benzene solvate is desired, any impurities present must be washed from the solid. The easiest way to remove the impurities is to stir a suspension of Pt₂(µ-dppm)₂Cl₂ •C₆H₆ in boiling benzene for ~15 minutes, then filter. Repeat this procedure as often as necessary to obtain pure product.

Occasionally during the course of recrystallization, white crystalline specks were observed in addition to the desired yellow $Pt_2(\mu$ dppm)_2Cl_2•solvate crystals. The white impurity is believed to be $[Pt_2(\mu$ -dppm)_2(\mu-H)Cl_2]Cl. Addition of a few drops of triethylamine, NEt₃, clears up this contamination problem.

 $Pt(\mu - dppm)_2 Br_2 \cdot 0.5 CH_2 Cl_2$, $[Pt_2(\mu - dppm)_2(PPh_3)_2](PF_6)_2$, $[Pt_2(\mu - dppm)_2(PPh_2Me)_2](PF_6)_2$, $[Pt_2(\mu - dppm)_2(PPhMe_2)_2](PF_6)_2$: These platinum complexes were prepared by the published procedures.^{12,13}

 $Pd_2(\mu - dppm)_2Cl_2$: This palladium complex was prepared by method 2 of the published procedure.⁸

Physical Measurements

Electronic Absorption Spectropscopy: Electronic absorption spectra were measured using a Cary Model 17 or Shimatzu UV-260 spectrophoto-

meter. Low temperature, 77 K, electronic absorption spectra were measured using the Cary Model 17 spectrophotometer equipped with a quartz optical dewar (copper block base). Samples for the absorption measurements were prepared by placing $Pt_2(\mu$ -dppm)_2Cl₂ (~1 mg) into an extra long spectrophotometric cell consisting of a square cuvette (1 cm pathlength) and a teflon vacuum valve.

Emission and Excitation Spectroscopy: Emission spectra were recorded using an emission spectrophotometer constructed at Caltech and described elsewhere.¹⁴ Samples for these measurements (solids and solutions) were placed in NMR tubes equipped with a 14/20 ground glass joint and capped with a septum. Samples were run in aerated, N_2 purged, and degassed solutions; no significant differences were observed. Emission and excitation spectra were measured using a Perkin-Elmer spectrofluorimeter MPF-66 interfaced to a Perkin-Elmer computer. Emission and excitation spectra measured at 77 K were obtained by placing the sample in an NMR tube and immersing the tube in liquid-nitrogen-filled quartz finger dewar. Samples for a these measurements were placed in 3 mm (o.d.) quartz EPR tubes capped with a septum and parafilm. Lower temperature emission and excitation spectra (down to 16 K) were measured by placing the solid sample (adhered on a quartz disk with silicon grease) into a CTI Model 21 cryocooler. The temperature inside the cryocooler was varied with a small resistive heater; a chromel/Au-Fe thermocouple was used to measure the temperature.

Emission Lifetime Measurements: Luminescent lifetime data were collected using a pulsed Nd:YAG laser system described previously.¹⁵ The third harmonic (355 nm) was used as the excitation line. Low

temperature, 77 K experiments were carried out using the before mentioned liquid-nitrogen-filled quartz finger dewar. Samples for these measurements (solids and solutions) were placed in NMR tubes equipped with a 14/20 ground glass joint and capped with a septum. Samples were run in aerated, N₂ purged, and degassed solutions; no significant differences were observed. Variable temperature experiments were performed using a continuous-flow nitrogen gas dewar in which the nitrogen gas was cooled by travelling through copper tubing immersed in a liquid-nitrogen-filled dewar. The temperature was regulated by the speed of gas flow and measured by a copper vs. copper nickel (copper-constantan) thermocouple. Variable temperature samples were placed in extra long 5 mm (o.d.) quartz EPR tubes and capped with a septum and parafilm.

Other. Elemental analyses were performed by Mr. Larry Henling and Mr. Fenton Harvey at the Caltech Analytical Laboratory, Pasadena, California.

RESULTS and DISCUSSION

In order to discuss the origin of the chemical reactivity of these d^9-d^9 dimers, a description of their electronic distribution would prove useful; however no detailed molecular orbital (MO) diagram for these systems has been proposed. There may be several reasons for this, one being that the electronic absorption spectra of these complexes are quite complicated and the bands are not well resolved, making the measurement of exact band maxima, peak intensities, and band widths difficult.

A plausible MO diagram may be constructed from MO diagrams of monomeric d^{10} complexes which possess similar geometries and ligand environments. The MO diagram for $[Au(PEt_3)_2]^+$ is shown in Figure 5.1a.¹⁶ Bringing two such diagrams together along the x-axis (designated as the metal-metal bonding axis) results in the diagram illustrated in Figure 5.1b. When axial ligands are added to $Pt_2(P_2O_5H_2)_4^{4-}$, the resulting d^7-d^7 MO diagram has the same basic orbital ordering as the d^8-d^8 MO diagram except with two additional $\sigma(X)$ orbitals and two fewer metal localized electrons (see Figures 4.1 and 4.4). Therefore, addition of axial halides to the $d^{10}-d^{10}$ MO diagram constructed in Figure 5.1b, along the x axis, will most likely change the energies of several of the levels, without perturbing the orbital ordering very much. The MO diagram presented in Figure 5.1c takes these perturbations into account.

From Figure 5.1c, the highest occupied molecular orbital, HOMO, is expected to be $\delta^*(d_{z^2})$. However, depending upon how close the monomer d_{z^2} and d_{xy} , $d_{x^2-y^2}$ levels are, the possiblity that $\pi^*(d_{xy})$ is the HOMO cannot be completely ruled out. Figure 5.1

- Molecular orbital diagram for MP₂ (taken from reference 16).
- (b) Proposed molecular orbital diagram for $(MP_2)_2$.
- (c) Proposed molecular orbital diagram for $(MP_2)_2X_2$.

The lowest unoccupied molecular orbital, LUMO, is predicted to be $\sigma^*(d_x^2_{-y}^2)$; however, the $\pi(py)$ orbital cannot be immediately excluded from consideration. In d^{10} - d^{10} systems the HOMO level is $d\sigma^*(d_x^2_{-y}^2)$ and the LUMO is p_x, p_y ; however addition of the axial halide along the x axis in this d^9 - d^9 systems may raise the $d\sigma^*(d_x^2_{-y}^2)$ level up sufficiently, making the $\pi(p_y)$ level lower in energy. On the other hand, photochemically induced oxidative-addition reactions of unbridged d^9 - d^9 systems¹⁷⁻¹⁹ show metal-metal bond cleavage and production of Pt(II) 15e⁻ radical species as the predominant reaction intermediate. Similarly, in bridged systems, where the dissociative pathway is unlikely, substrate addition across the metal-metal bond occurs with net metal-metal bond cleavage.⁴⁻⁶ Therefore, the assignment of the LUMO as $d\sigma^*(d_x^2-y^2)$ is given additional support considering the observed thermal and photochemical reactivity.

Group theory analysis of the proposed MO diagram predicts several orbitally allowed electronic transitions which are listed in Table 5-1. The first six transitions are most likely to be the lowest energy transition assuming that the σ^* (d_x²-y²) and $\pi\pi^*$ (p_y) orbitals are close in energy.

Crystals of the platinum(I) complexes are yellow in color; whereas, the palladium(I) analogs are more intensely orange colored. The room temperature electronic absorption spectrum of $Pt_2(\mu-dppm)_2Cl_2$ in dichloromethane first reported by Alves *et al.*²⁰ is shown in Figure 5.2. Three bands are observed; however, they are not well resolved and do not allow for any theoretical analysis. Electronic absorption band maxima of $Pd_2(\mu-dppm)_2Cl_2$ have been reported by Benner *et al.*;⁸ the Figure 5.2

Electronic absorption spectrum of $Pt_2(\mu-dppm)_2Cl_2$ in dichloromethane (300 K).

Wavelength (nm)

Absorbance

Figure 5.3

Electronic absorption spectrum of $Pd_2(\mu-dppm)_2Cl_2$ in dichloromethane (300 K).

Absorbance

actual spectrum is shown in Figure 5.3. In this spectrum two absorption bands at lower energy are fairly well resolved with a shoulder at higher energy. Surprisingly, the absorption band shapes and extinction coefficients for the platinum(I) and palladium(I) dimers do not look as similar as might be expected for such closely related complexes. More than likely the observed absorption bands do not correspond to the same transitions in the platinum and palladium systems.

Luminescence from the platinum(I) dimers is observed only in the solid state and frozen solution. Similar luminescence is not observed in the analogous palladium system. It was necessary to confirm that the d^9 - d^9 molecule present in solution was the species responsible for the observed luminescence, since highly luminescent d^8 - d^8 and d^{10} - d^{10} platinum complexes are known and may have been present in trace quantities. Comparison of the excitation spectra of $Pt_2(\mu$ -dppm)_2Cl_2 $\cdot 0.5CH_2Cl_2$ and $Pt_2(\mu$ -dppm)_2Br_2 $\cdot 0.5CH_2Cl_2$ with their absorption spectra verified that the observed luminescence was definitely arising from these d^9 - d^9 dimers. (The low temperature solid emission and excitation spectra for $Pt_2(\mu$ -dppm)_2Cl_2 $\cdot 0.5CH_2Cl_2$ and $Pt_2(\mu$ -dppm)_2Br_2 $\cdot 0.5CH_2Cl_2$ are shown in Figures 5.4 and 5.5, respectively.)

The low temperature solid excitation spectrum of $Pt_2(\mu-dppm)_2Cl_2$ revealed the presence of additional electronic transitions at ~380 and ~465 nm which were either completely masked or too weak to detect in solution. This observation prompted further investigation into the electronic absorption spectrum of $Pt_2(\mu-dppm)_2Cl_2$. At low temperature, 77 K, in a 1:1 CH_2Cl_2 :2-MeTHF glass (Figure 5.6), the absorption band at 380 nm begins to be resolved, but the absorption band at ~465 nm is

- Figure 5.4 (a) Corrected emission spectrum of Pt₂(μ-dppm)₂Cl₂ •0.5CH₂Cl₂, powder sample, 21 K. Emission maximum at 714 nm.
 - (b) Corrected excitation spectrum of Pt₂(μ-dppm)₂Cl₂
 •0.5CH₂Cl₂, powder sample, 21 K. Absorption maxima at 465, 429, and 389 nm.

Intensity

- Corrected emission spectrum of $Pt_2(\mu-dppm)_2Br_2$ Figure 5.5 (a) •0.5CH₂Cl₂, powder sample, 16 K. Emission maximum at 716 nm.
 - Corrected excitation spectrum of $Pt_2(\mu-dppm)_2Br_2$ (b) •0.5CH₂Cl₂, powder sample, 16 K. Absorption maxima at 478, 441, 390 nm.

Figure 5.6 Electronic absorption spectrum of Pt₂(µ-dppm)₂Cl₂ in a 1:1 dichloromethane:2-methyltetrahydrofuran glass (v/v) at 77 K.

Absorbance

still too weak to be detected. It appears that single crystal electronic absorption measurements will be required to observe the absorption bands at wavelengths longer than 450 nm. Thus, at present, it seems reasonable to estimate that the 465 nm absorption, observed in the solid state excitation spectrum, of $Pt_2(\mu$ -dppm)_2Cl_2 is much less than 100 M⁻¹ cm⁻¹. (A similar argument may be made for the absorption band at ~478 nm observed in the solid state excitation spectrum of $Pt_2(\mu$ -dppm)_2Br_2.)

The extinction coefficients of the two low energy absorption bands of $Pt_2(\mu$ -dppm)₂Cl₂ at 427 nm ($\varepsilon = 200 \text{ M}^{-1} \text{ cm}^{-1}$)²⁰ and 465 nm ($\varepsilon < 100 \text{ M}^{-1} \text{ cm}^{-1}$) indicate that these transitions are most likely spin forbidden, orbitally allowed transitions such as ${}^{3}[\delta^{*}(d_{z^2}) \rightarrow \pi^{*}(py)]$ or ${}^{3}[\delta(d_{z^2}) \rightarrow \sigma^{*}(d_{x^2-y^2})]$ or spin allowed, orbitally forbidden transitions such as ${}^{1}[\delta^{*}(d_{z^2}) \rightarrow \sigma^{*}(d_{x^2-y^2})]$. The transitions lying to higher energy ($\lambda > 380$ nm) all have extinction coefficients greater than 1000 $M^{-1} \text{ cm}^{-1}$ and can be assigned to a variety of spin and orbitally allowed transitions (see Table 5.1).

Surprisingly, the luminescence intensity and band maxima of solid samples were found to be dependent upon which solvate was present in the unit cell. Figure 5.7 shows the emission and excitation spectrum of $Pt_2(\mu$ -dppm)_2Cl_2 · C_6H_6. The luminescence intensity is much greater and the emission band maxima is significantly shifted to higher energy for the benzene solvate as compared to the dichloromethane solvate. On the other hand, the excitation spectrum for $Pt_2(\mu$ -dppm)_2Cl_2 · C_6H_6 has nearly identical peak maxima to the excitation spectrum for $Pt_2(\mu$ dppm)_2Cl_2 · 0.5CH_2Cl_2.

Table 5.1

Orbitally Allowed Transitions assuming D_{2h} symmetry

$\delta^{*}(d_{z^{2}})$	→	π* (py)	y allowed
δ (d _z 2)	→	$\sigma^* (d_{x^2-y^2})$	x allowed
δ (d _z 2)	→	π (p _y)	y allowed
$\pi^* (d_{xy})$	→	$\sigma^* (d_{x^2-y})$	y allowed
$\pi^* (d_{xy})$	→	π (p _y)	x allowed
π (d _{xy})	→	π* (p _y)	x allowed
$\pi^* (d_{XZ})$	→	$\sigma^* (d_{x^2-y^2})$	z allowed
$\delta^* (d_{yz})$	→	π* (p _y)	z allowed

	(-XZ)		- (-xy-)	L uno vu
δ*	* (d _{yz})	→	π* (p _y)	z allowed
δ	(d _{yz})	→	π (p _y)	z allowed
σ	(d _{x²-y²)}	→	$\sigma^* (d_{x^2-y^2})$	x allowed
σ	$(d_{x^2-y^2})$	→	π (p _y)	y allowed

Figure 5.7

- (a) Corrected emission spectrum of Pt₂(μ-dppm)₂Cl₂ •C₆H₆,
 powder sample, 20 K. Emission maximum at 672 nm.
- (b) Corrected excitation spectrum of Pt₂(μ-dppm)2Cl₂
 •C₆H₆, powder sample, 20 K. Absorption maxima at 465, 428, 388 nm.

Differences in the solid state emission band maxima and lifetimes of $Pt_2(\mu$ -dppm)₂Cl₂ complexes are listed in Table 5.2. The longest lifetime obtained is that of the benzene solvate, 900 ns; and the shortest lifetime is observed for the dichloromethane solvate, 130 ns.

The general trend of high-energy-emission/long-lifetime and lowenergy-emission/short-lifetime is in accord with the energy gap law which relates the non-radiative rate out of an excited state with the energy of the excited state within a given chromophore.²¹ This law is based on the extent of vibrational coupling between the zeroeth vibrational level of the excited state, and the higher lying vibrational levels of the ground state.²² In the case of $Pt_2(\mu$ dppm)₂Cl₂ • solvate, it appears that the solvate is somehow affecting the $Pt_2(\mu$ -dppm)₂Cl₂ excited state resulting in an emission-energy/emissionlifetime correlation similar to that predicted by the energy gap law.

These results indicate that the solvate molecule interacts with the fashion. excited state in some One possibility is that this interaction is dependent upon the polarity of the solvate molecule, such that a more polar solvent decreases the emission energy and lifetime. Another possibility is that the π system of the solvate interacts with the unfilled σ^* $(d_{x^2-y^2})$ and $\pi\pi^*$ (p_y) orbitals of the $Pt_2(\mu$ -dppm)₂Cl₂ molecule resulting in an increase of the excited state emission energy and lifetime. Unfortunately, the investigation of these suggestions is not straightforward since these complexes do not luminesce in fluid solution.

Additional evidence for solvate interaction with the metal complex is obtained from glass emission and excitation spectra of $Pt_2(\mu-dppm)_2Br_2 \cdot 0.5CH_2Cl_2$ in a 1:1 dichloromethane/2-methyltetrahydrofuran

Table 5.2

Emission Maxima and Lifetimes of $Pt_2(\mu-dppm)_2Cl_2$ •solvate

Solvate	Emission Maximum	Lifetime	
	(nm, 77 K)	(ns, 300 K)	
•C6H6	667	870	
•C6H2CI	674	470	
•CHCl ₃	683	120	
•CH ₂ Cl ₂	709	71	

×

(v/v) mixed solvent system (see Figure 5.8). The emission spectrum is comprised of two bands, one of which has its maximum at ~626 nm and the other which manifests itself as a shoulder to lower energy, λ_{max} ~705 nm. The lower energy shoulder may be residual dichloromethane interacting with the $Pt_2(\mu-dppm)_2Br_2$ molecule, since $Pt_2(\mu-dppm)_2Br_2 \cdot 0.5CH_2Cl_2$ has its emission maximum at ~716 nm. The higher energy emission band may be ascribed to the interaction of 2-methyl-tetrahydrofuran with the $Pt_2(\mu$ -dppm)₂Br₂ excited state. The excitation spectrum of the $Pt_2(\mu$ dppm)₂Br₂ glass, on the other hand, exhibits excitation bands with identical peak maxima to those recorded for the solid excitation spectrum of $Pt_2(\mu-dppm)_2Br_2 \cdot 0.5CH_2Cl_2$. Apparently, the solvate interacts strongly with the lowest energy excited state but not with higher energy states observed in anv of the the absorption and excitation spectra. (Similar emission maxima shifts were observed for the $Pt_2(\mu$ -dppm)₂Cl₂ complex in this mixed solvent system.)

Considering the sensitivity of the emissive excited state to a single solvate molecule in the crystal, it is not surprising that no luminescence is observed in fluid solution. In fluid solution the relaxation of molecular rigidity and the increased frequency of solvent collision with the $Pt_2(\mu$ -dppm)₂X₂ molecule results in more deactivation pathways accessible to the excited state.

In order to gain some information about the primary deactivation pathway available to the excited state in the solid, and also to more clearly chart the effect of temperature on the luminescent lifetime, variable temperature studies on $Pt_2(\mu$ -dppm)_2Cl_2 · C_6H_6 were performed.²³ The results show that the lifetime of the excited state is indeed

- Figure 5.8 (a) Corrected emission spectrum of Pt₂(μ-dppm)₂Br₂
 •0.5CH₂Cl₂ in a 1:1 dichloromethane:2-methyltetrahydrofuran glass (v/v) at 77 K. Emission maximum at 626 nm with a shoulder at 705 nm.
 - (b) Corrected excitation spectrum of Pt₂(μ-dppm)₂Br₂
 •0.5CH₂Cl₂ in a 1:1 dichloromethane:2-methyltetrahydrofuran glass (v/v) at 77 K. Absorption maxima at 438, 388, 360, 335 nm.

Vitensity

YJIENSJNI

temperature dependent, increasing from 900 ns at 300 K to 27.3 μ s at 77 K. A similarly dramatic increase in the luminescent intensity was observed between 300 and 77 K implying that the variation of the lifetime with temperature is primarily due to variations in the non-radiative rate constant, k_{nr} . Therefore, $k_{obs} \approx k_{nr}$, and the Arrhenius expression may be used in this study. Plotting lnk_{obs} vs. 1/T and fitting the linear portion of these data to the Arrhenius expression:

$k_{obs} = Aexp(-E_a/RT)$

(where $k_{obs} = 1/\tau_{obs}$, A is the pre-exponential factor, and E_a is the activation energy for the thermally accessible, non-radiative pathway leading to the deactivation of the excited state) yields values of $E_a = 1450 \text{ cm}^{-1}$ and $A = 1 \times 10^9 \text{ sec}^{-1}$. The data are listed in Table 5.3 and plotted in Figure 5.9. These results suggest that the major deactivation pathway accessible to the excited state lies ~1450 cm^{-1} to higher energy; however, since there is no vibrational mode readily assignable to this energy, the interpretation of this result is nebulous.

Several cationic phosphine and amine complexes of the form $[Pt_2(\mu-dppm)_2L_2]^{2+}$ were synthesized and studied. Their electronic absorption and emission spectra are presented in Figures 5.10, 5.11, and 5.12. The absorption spectra of the three complexes are nearly identical; two resolved bands at ~400 nm and ~340 nm with molar extinctions in the range of 5000 - 25,000 M⁻¹ cm⁻¹. As observed for the neutral halide complexes, the phosphine complexes only luminesce in the solid state and frozen solution, not in fluid solution. Of the three phosphine complexes studied, the PPh₃ adduct exhibits the most intense luminescence with a emission maximum at 583 nm, while the PPhMe₂ adduct is the

Table 5.3

$Pt_2(\mu-dppm)_2Cl_2 \cdot C_6H_6$ Variable Temperature Data

τ_{obs} (µs)	k _{obs} (sec ⁻¹)	ln k _{obs}	T (K)	1/T (× 1000 K)
0.85	1176624	13.98	296	3.38
1.50	667999	13.41	279	3.58
1.87	535407	13.19	273	3.66
2.73	365656	12.81	261	3.83
3.33	300492	12.61	254	3.94
4.47	223620	12.32	243	4.12
5.74	174094	12.07	233	4.29
8.41	118844	11.69	214	4.67
10.01	99898	11.51	203	4.93
11.51	86872	11.37	195	5.13
12.87	77695	11.26	187	5.35
15.28	65445	11.09	172	5.81
17.61	56791	10.95	157	6.37
19.74	50657	10.83	146	6.85
21.13	47320	10.77	135	7.41
22.13	45187	10.72	128	7.84
23.12	43255	10.68	119	8.44
24.70	40483	10.61	110	9.09
26.27	38062	10.55	97	10.31

Figure 5.9 Arrhenius plot for $Pt_2(\mu-dppm)_2Cl_2 \cdot C_6H_6$ (τ measured at 670 nm).

- Figure 5.10 (a) Electronic absorption spectrum of $[Pt_2(\mu dppm)_2(PPh_3)_2](PF_6)_2$ in ethanol (300 K). Absorption maxima at 404 and 350 nm.
 - (b) Uncorrected emission spectrum of [Pt₂(μdppm)₂(PPh₃)₂](PF₆)₂, powder sample, 300 K. Emission maximum at 583 nm. (A grating anomaly occurs at ~667 nm.)

Absorbance

- (a) Electronic absorption spectrum of [Pt₂(μ-dppm)₂(PPh₂Me)₂](PF₆)₂ in acetonitrile (300 K). Absorption maxima at 400 and 335 nm.
 - (b) Uncorrected emission spectrum of [Pt₂(μdppm)₂(PPh₂Me)₂](PF₆)₂, powder sample, 300 K. Emission maximum at 624 nm. (A grating anomaly occurs at ~667 nm.)
- Figure 5.11

Absorbance

- 2 (a) Electronic absorption spectrum of $[Pt_2(\mu dppm)_2(PPhMe_2)_2](PF_6)_2$ in acetonitrile (300 K). Absorption maxima at 404 and 330 nm.
 - (b) Uncorrected emission spectrum of [Pt₂(μdppm)₂(PPhMe₂)₂](PF₆)₂, powder sample, 300 K. Emission maximum at ~675 nm. (A grating anomaly occurs at ~667 nm.)
- Figure 5.12

Absorbance

168

weakest with its emission maximum at 675 nm at 300 K. Similar emission profiles were obtained for glass samples, run at 77 K, where the phosphine complex was dissolved in a 5:2 ethanol/methanol (v/v) mixed solvent system.

Attempts to measure the luminescent lifetime of the phosphine complexes were unsuccessful at both 300 and 77 K in the solid state. On the other hand, glass samples (5:2 ethanol:methanol) of the phosphine complexes gave luminescent lifetimes at 77 K on the order of 20 μ s. The luminescent lifetimes measured for the three complexes were within experimental error, suggesting that they were the same or similar molecular species. Although these results are rather confusing, in light of the phosphine solubilizing ability of ethanol, the possibility exist that all the complexes were $Pt_2(\mu$ -dppm)_2(CH_3CH_2OH)_2²⁺ or $Pt_2(\mu$ dppm)_2(CH_3OH)_2²⁺. These results indicate that axial ligand dissociation may be a facile deactivation pathway of the $Pt_2(\mu$ -dppm)_2Cl_2 excited state in solution.

A list of electronic absorption data of several platinum(I) and palladium(I) complexes is presented in Table 5.4.^{8,20,24,25} Several similarities between the electronic absorption spectra of Pt(I) and Pd(I) dimers can be seen immediately. Both systems exhibit a multitude of electronic transitions, none of which is distinct or well resolved from the other. The extinction coefficients for the high energy transitions are quite large, characteristic of spin and orbitally allowed transitions. Difficulties arise when trying to compare the low energy electronic transitions of the Pt halide(X) molecule with those of either the Pt phosphine(L) or Pd halide(X) complexes. From comparison

Table 5.4

Absorption Band Maxima of Some Pt(I) and Pd(I) Dimers[†]

.....

Platinum(1) Dimers	
$Pt_2(\mu-dppm)_2Cl_2$	465 (<100), 427 (200), 380 (~2000), 360 (2600), 323(7800)
Pt ₂ (µ-dppm) ₂ Br ₂	478, 441, 390, 360, 323
$[Pt_2(\mu-dppm)_2(PPh_3)_2](PF_6)_2$	404 (15500), 350 (23000)
$[Pt_2(\mu-dppm)_2(PPh_2Me)_2](PF_6)_2$	400 (7480), 335 (13400)
$[Pt_2(\mu-dppm)_2(PPhMe_2)_2](PF_6)_2$	404 (5260), 330 (14000)
$[Pt_2(\mu-dppm)_2(SnCl_3)_2$	450sh(15700), 438(16800), 360(24600), 303 (26700), 276sh (30800)
Palladium(I) Dimers	
Pd ₂ (µ-dppm) ₂ Cl ₂	416 (7550), 347 (16800), 293 (25900)
Pd ₂ (µ-dppm) ₂ Br ₂	428 (10600), 364 (17500), 301(23100), 285sh (21300), 258sh (29400)
Pd ₂ (µ-dppm) ₂ I ₂	488 (13000), 439 (11900), 394(11900), 313 (20000), 280sh (23900), 262sh(28500)
Pd ₂ (µ-dppm) ₂ (SCN) ₂	426 (14600), 303(21200), 259sh(30400)
Pd ₂ (µ-dppm) ₂ (NCO) ₂	394(7390), 326sh(13500), 290sh(36300)
$Pd_2(\mu-dppm)_2(N_3)_2$	428 (19900), 305sh (19700), 287sh(25000), 265sh (28100)
$Pd_2(\mu-dppm)_2(NO_2)_2$	434 (11500), 362 (9300), 316sh (13800), 294sh (22000)
Pd ₂ (µ-dppm) ₂ (SnCl ₃)Cl	495(14200), 422 (8640), 340 (18200), 294sh (18100), 260sh (31,700)
$Pd_2(\mu-dppm)_2(SnCl_3)_2$	536 (21200), 500sh (17900), 417sh(6120), 353(19000), 261sh(35000)

[†]Some of the data taken from references 8, 20, 24, and 25.

of the molar extinction coefficients, the lowest energy electronic absorption bands observed for $Pt_2(\mu-dppm)_2X_2$ are attributable to transitions different from those observed in the analogous $Pd_2(\mu-dppm)_2X_2$ and $Pt_2(\mu-dppm)_2L_2^{2+}$ complexes. Also, the temperature dependence of the emissive excited state lifetime of $Pt_2(\mu-dppm)_2X_2$ is significantly different from that of $Pt_2(\mu-dppm)_2L_2^{2+}$.

Finally, for $Pt_2(\mu-dppm)_2Cl_2$, no intensity overlap between the lowest energy absorption band and the emission band is observed. This large "window" may be attributed to a significant Stokes shift, or it may be indicative of the presence of a very weak absorption band which is, as of yet, unobserved. The emission spectra of the $Pt_2(\mu-dppm)_2Cl_2$ molecule show significant environment dependence, whereas, the corresponding excitation spectra are all identical to one another, showing no environment dependence. This apparent contradiction may be best explained by the presence of a lower energy absorption, too weak to be observed, which is directly related to the observed emission and is environment sensitive. Thus, the higher energy absorption bands observed in the excitation spectra, which are not environment sensitive, are not directly related to the emission band; instead, they merely communicate by various deactivation pathways with the lower energy state responsible for the observed luminescence.

REFERENCES

- Brown, M. P.; Puddephatt, R. J.; Rashidi, M.; Manojlović-Muir, Lj.; Muir, K. W.; Solomun, T.; Seddon, K. R. Inorg. Chim. Acta, 1977, 23, L33.
- Manojlović-Muir, Lj.; Muir, K. W.; Solomun, T. Acta Cryst. 1979, B35, 1237.
- 3. Goldberg, S. Z.; Eisenberg, R. Inorg. Chem. 1976, 15, 535.
- Brown, M. P.; Puddephatt, R. J.; Rashidi, M.; Seddon, K. R. J. Chem. Soc. Dalton Trans. 1978, 516.
- Brown, M. P.; Puddephatt, R. J. Rashidi, M.; Seddon, K. R. J. Chem. Soc. Dalton Trans. 1978, 1540.
- Brown, M. P.; Fisher, J. R.; Puddephatt, R. J.; Seddon, K. R.; Inorg. Chem. 1979, 18, 2808.
- Cameron, T. S.; Gardner, P. A.; Grundy, K. R. J. Organomet. Chem. 1981, 212, 135.
- 8. Benner, L. S.; Balch, A. L. J. Am. Chem. Soc. 1978, 100, 6099.
- Olmstead, M. M.; Hope, H.; Benner, L. S.; Balch, A. L. J. Am. Chem. Soc. 1977, 99, 5502.
- Balch, A. L.; Benner, L. S.; Olmstead, M. M. Inorg. Chem., 1979, 18, 2996.
- 11. Westland, A. D. J. Chem. Soc. 1965, 3060.
- Brown, M. P.; Puddephatt, R. J.; Rashidi, M.; Seddon, K. R.; J. Chem. Soc. Dalton Trans. 1977, 951.
- Brown, M. P.; Franklin, S. J.; Puddephatt, R. J.; Thomson, M. A.; Seddon, K. R. J. Organomet. Chem. 1979, 178, 281.
- 14. Nocera, D. G.; Winkler, J. R.; Yocom, K. M.; Bordignon, E.; Gray,
 H. B. J. Am. Chem. Soc., 1984, 106, 5145.

- 15. Parker, C. A.; Rees, W. T. Analyst 1960, 85, 587.
- 16. Savas, M. M.; Mason, W. R. Inorg. Chem. 1987, 26, 301.
- Boehm, J. R.; Doonan, D. J.; Balch, A. L. J. Am. Chem. Soc. 1976, 98, 4845.
- Miller, T. D.; St. Clair, M. A.; Reinking, M. K.; Kubiak, C. P. Organometallics 1983, 2, 767.
- Reinking, M. K.; Kullberg, M. L.; Cutler, A. R.; Kubiak, C. P. J. Am. Chem. Soc. 1985, 107, 3517.
- Alves, O. L.; Vitorage, M.-C.; Sourisseau, C. Nouv. J. Chim. 1983, 7, 231.
- 21. Englman, R.; Jortner, J. Molecular Physics 1970, 18, 145.
- Caspar, J. V.; Kober, E. M.; Sullivan, B. P.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 630.
- 23. As the temperature was lowered from 300 to 77 K all of the $Pt_2(\mu dppm)_2Cl_2 \cdot solvate$ lifetimes increased. In a few cases biphasic decays were observed. This biphasic decay may be due to the presence of $Pt_2(\mu dppm)_2Cl_2$ in different solvate environments. If, for example, one environment allows for greater solvent interaction with the $Pt_2(\mu dppm)_2Cl_2$ excited state than another environment, a superposition of these different luminescent lifetimes may be observed, resulting in a net multiphasic decay. As for $Pt_2(\mu dppm)_2Cl_2 \cdot C_6H_6$, this complex exhibited a monophasic decay throughout the entire temperature range studied.
- Muralidharan, S.; Espenson, J. H. J. Am. Chem. Soc. 1984, 106, 8104.
- Olmstead, M. M.; Benner, L. S.; Hope, H.; Balch, A. L. Inorg. Chim. Acta 1979, 32, 193.

CHAPTER 6

Energy Transfer Studies of $Pt_2(\mu-dppm)_2Cl_2$

INTRODUCTION

An understanding of the nature of the excited state is necessary in order to intelligently discuss the observed excited state reaction chemistry. Traditional techniques used to elucidate excited state information are not ameniable to this $Pt_2(\mu-dppm)_2Cl_2$ system since (*i*) these complexes do not luminesce in fluid solution at room temperature and (*ii*) absorption and/or emission band fine structure are not observed at low temperature. Instead, indirect methods for gaining the required information must be sought.

From data presented in Chapter 5, it is believed that the absorption band corresponding to the observed emission is not observed in solution electronic absorption or solid state excitation spectra. Both excitation spectra of the benzene and dichloromethane solvates of $Pt_2(\mu$ -dppm)₂Cl₂ show an ~3000 cm⁻¹ window where no other transitions between the lowest absorption band and the emission band are observed (see Figures 5.4ab and 5.7ab). (A Stokes shift of this type or magnitude makes little physical sense; therefore, these high energy absorptions have been ruled out as being directly related to the emissive excited state.) The absorption band corresponding to the emissive excited state is assumed to have an extremely small molar extinction coefficient and is, logically, attributed to a singlet-triplet transition. Besides this argument, there is no other experimental evidence supporting the spin assignment of the emissive excited state. In energy transfer experiments, the conservation of spin is quite important. Investigating the energy transfer rates between Pt2(4dppm)₂Cl₂ and other known triplet excited states may provide direct evidence for the triplet spin assignment of the emissive excited state.

From emission and lifetime studies of the solvate effect on powder $Pt_2(\mu$ -dppm)_2Cl_2 samples, it has been determined that the excited state is environment sensitive. Exactly what the excited state energy of the complex is in solution is unclear since direct measurement is impossible; however, indirect determination of its approximate energy is possible by conducting energy transfer experiments aimed at determining the energy at which the rate of transfer from donor to acceptor begins to drop off. Since $Pt_2(\mu$ -dppm)_2Cl_2 does not luminesce in fluid solution its role must be that of acceptor. A series of molecules which do luminesce in fluid solution and have excited state lifetimes greater than several hundred nanoseconds are employed as donors; in this experiment $W_6X_8Y_6^{2-}$ (X,Y = Cl, Br, I), $ReO_2L_4^+$ (L = pyridine and its derivatives), and Ru(bpy)_3^{2+} (bpy = 2,2'-bipyridine) were used.

EXPERIMENTAL

Materials

All solvents, unless otherwise noted, were reagent grade and used as received without further purification. Dichloromethane (Burdick and Jackson, UV grade), used in the energy transfer quenching experiments, was dried and stored in glass solvent pots as described in the experimental section of Chapter 5.

Donors. Hexanuclear clusters, $(TBA)_2[W_6I_{14}]$, $(TBA)_2[W_6I_8Cl_6]$, $(TBA)_2[W_6Br_8I_6]$, $(TBA)_2[W_6Cl_8I_6]$, $(TBA)_2[W_6Cl_8Br_6]$, $(TBA)_2[W_6Cl_{14}]$ were prepared by Dr. Thomas Zietlow and used as received.¹ $(TBA)_2[W_6I_8Cl_6]$ required recrystallization from dichloromethane and petroleum ether prior to use. Rhenium dioxo complexes, $[ReO_2(4\text{-picoline})_4]BPh_4$, $[ReO_2(pyridine)_4]BPh_4$, and $[ReO_2(d_5\text{-pyridine})_4]BPh_4$ were prepared by Dr. Jay Winkler and used as received.² $[ReO_2(\text{isoquinoline})_4]PF_6$ was prepared by Mr. John Brewer and used as received.³ $[Ru(2,2^2\text{-bipyridine})_3](PF_6)_2$ was prepared by Dr. Michael Hopkins and used as received.⁴

Acceptors. $Pt_2(\mu$ -dppm) $_2Cl_2 \cdot 0.5CH_2Cl_2$ was prepared as described in the experimental section of Chapter 5 and recrystallized from dichloromethane and iso-octane. Anthracene (Aldrich, 98%) was recrystallized from a hot 2:1:1 (v/v/v) acetone:ethanol:water mixture.

Physical Measurements

Stern-Volmer Quenching Procedures. A Nd:YAG pulsed laser system, previously described,⁵ was used to measure the luminescent lifetimes as a function of quencher concentration. Energy transfer rate constants were calculated using Stern-Volmer analysis as described in the results and discussion section of Chapter 2. Samples for all energy transfer experiments were prepared by placing the donor (-1 mg) into a quenching cell and evacuating it on a high vacuum line (limiting pressure < 10^{-3} Torr). (The quenching cell is described in the experimental section of Chapter 2.) Four to six mL of dichloromethane was distilled from the storage flask into the quenching cell under vacuum; the exact volume of dichloromethane used was recorded. Acceptor solutions were added following the same procedures for quencher addition outlined in the experimental section of Chapter 2. Figure 6.1 illustrates the energy transfer quenching of (TBA)₂[W₆Br₈I₆] with Pt₂(µ-dppm)₂Cl₂.

In the ideal energy transfer experiment only the donor molecule should absorb the laser excitation; the acceptor should be unaffected by the laser excitation and remain in its ground state. The majority of the reported energy transfer experiments, however, were carried out using the laser's second harmonic, 355 nm, as the excitation wavelength, a wavelength at which the acceptor, Pt₂(µ-dppm)₂Cl₂, has an appreciable absorption. Therefore, to insure that the acceptor's excited state was not involved in initiating the energy transfer process, several measurements were made using the laser's first harmonic, 532 nm, as the excitation wavelength; (Pt₂(µ-dppm)₂Cl₂ has no absorption at this wavelength). Donors, $Ru(bpy)_3^{2+}$ and $ReO_2(py)_4^+$ which do have appreciable absorption at 532 nm were used in this control experiment. Nearly identical energy transfer rate constants were calculated for the data collected using 532 nm (no $Pt_2(\mu$ dppm)₂Cl₂ absorption) and 355 nm (significant Pt₂(µ-dppm)₂Cl₂ absorption) excitation wavelengths. Thus, any excited state Pt₂(µdppm)₂Cl₂* molecules generated using 355 nm excitation appear to be Figure 6.1 Stern-Volmer plot of the energy transfer quenching of $(TBA)_2[W_6Br_8I_6]$ with $Pt_2(\mu$ -dppm)_2Cl₂ in dichloromethane.

e²

uninvolved in the energy transfer process.

Emission Spectroscopy. Attempts to observe the luminescence from excited $Pt_2(\mu$ -dppm)₂Cl₂ were conducted on the emission instrument built at Caltech and described previously.⁶ An excitation wavelength, 547 nm, was chosen in order to excite only the donor, $ReO_2(d_5-py)_4^+$. Emission spectra were recorded between 585 and 825 nm. Samples were placed in NMR tubes equipped with 14/20 ground glass joints and capped with a septum. First, emission spectra of frozen dichloromethane solutions containing only $ReO_2(d_5-py)_4^+$ (1 × 10⁻³ M) were measured. Next, emission spectra of frozen dichloromethane solutions containg 2 × 10^{-3} M $ReO_2(d_5-py)_4^+$ and 1 × 10^{-2} M $Pt_2(\mu$ -dppm)₂Cl₂ were measured. Comparison between these emission spectra revealed subtle changes in the emission band profile of the $ReO_2L_4^+$ chromophore (not attributable to concentration changes).

RESULTS and DISCUSSION

There are several mechanisms (other than the intrinsic radiative and non-radiative processes) by which an excited state molecule, D^* , can decay to its ground state, D: (1) energy transfer, (2) electron transfer, (3) a chemical reaction (other than electron transfer), (4) spin-catalyzed deactivation, (5) external heavy-atom effect, and (6) complex (excimer and exciplex) formation.⁷

Energy transfer is by far the most common deactivation pathway. Its basic requirement is that the acceptor molecule, A, possess an excited state, A*, in which the energy required for the $A \rightarrow A^*$ transition is approximately equal to or less than the $D^* \rightarrow D$ transition energy.⁷⁻⁹

The second prevalent deactivation pathway is electron transfer between the excited state donor and a ground state acceptor, such that either (i) $D^* + A \rightarrow D^+ + A^-$ or (ii) $D^* + A \rightarrow D^- + A^+$ is a favorable reaction.^{7,10,11} In the first case (i), the donor must have an accessible oxidized state and D^* must be of high enough energy such that it is energetically favorable to give up an electron from its excited state and reduce the acceptor. Similarly, the same type of requirements exist for the second case (ii), in which the donor must have an accessible reduced state and D^* must be of high enough energy to oxidize the acceptor.

Chemical reactions between coordination complexes which do not involve electron transfer but rather some type of ligand loss or substitution are rare, since they are second order reactions which are usually unable to compete on the timescale of the donor's excited state lifetime.⁷ If, however, such reactions were occurring, they would be

182

readily detected by changes in the electronic absorption spectrum which are not attributable to the donor or acceptor species.

The latter three processes are very rare, with very little, if any, evidence in support of them occurring between inorganic donors and acceptors.⁷ Therefore, it is supposed that these processes are far too inefficient to compete with the more facile energy and electron transfer deactivation pathways.

Since no changes in the electronic absorption spectrum (aside from changes in acceptor concentration) were noted during the course of the quenching experiment, excited state deactivation by a chemical process (pathway 3) was ruled out. Although the acceptor and all donor molecules exhibit some type of oxidation wave more positive than -1 V vs. SCE, neither acceptor nor donor molecules (other than $Ru(bpy)_3^{2+}$) have a reduction potential less than +1.5 V vs. SCE. Therefore, deactivation by way of an electron transfer mechanism is not favorable.

The best way to prove energy transfer as being the operative deactivation pathway is to observe the luminescence from the excited acceptor molecule. Since $Pt_2(\mu$ -dppm)_2Cl_2, the acceptor, does not luminesce in fluid solution at room temperature, it is difficult to prove that energy transfer is the deactivation pathway. However, energy transfer mechanisms have been shown to occur even in frozen solutions according to the Perrin formula.⁸ Excitation at 547 nm of a frozen dichloromethane solution containing $ReO_2(d_5-py)_4^+$ and $Pt_2(\mu-dppm)_2Cl_2$ did show subtle changes in the emission band profile of the $ReO_2L_4^+$ chromophore which may be due to emission from excited $Pt_2(\mu-dppm)_2Cl_2$. This information alone is not definite proof of the energy transfer mechanism; however, combined with the unlikelihood that an

electron transfer or chemical reaction is occurring, electronic energy transfer from the donor to $Pt_2(\mu$ -dppm)_2Cl_2 is the most logical deactivation pathway available.

In fluid solution, there are two electronic mechanisms by which electronic energy transfer may occur: coulombic interaction (dipoledipole mechanism) and exchange interaction (collisional mechanism). Detailed theoretical analysis of these mechanisms is available elsewhere.^{12,13} However, the main difference between the two is that energy transfer by the coulombic interaction depends upon the oscillator strength of the $D^* \rightarrow D$ and, more importantly, $A \rightarrow A^*$ (A = acceptor, D = donor) transitions, whereas, the energy transfer by the exchange interaction is independent of these terms.⁸ Thus, singlet-singlet transitions $[D(S_1) + A(S_0) \rightarrow D(S_0) + A(S_1)]$ are spin allowed by both coulombic and exchange interactions; triplet-triplet transitions $[D(T_1)]$ + $A(S_0) \rightarrow D(S_0) + A(T_1)$] are spin forbidden by the coulombic interaction and spin allowed the exchange interaction; and both tripletsinglet $[D(T_1) + A(S_0) \rightarrow D(S_0) + A(S_1)]$ and singlet-triplet $[D(S_1) + A(S_1)]$ $A(S_0) \rightarrow D(S_0) + A(S_1)$] are spin forbidden by both interactions (and rarely observed).

The majority of donors in this study are either tungsten hexanuclear dianionic clusters or rhenium dioxo monocationic monomers. Although the hexanuclear clusters are significantly larger in size than the rhenium monomers, they are both octahedral-like complexes. Also, although the hexanuclear clusters are tungsten(II) d⁴ and the monomers are rhenium(V) d² molecules, the lowest energy absorption and emission in both systems arises from d \rightarrow d transitions.^{1,2} It has been experi-

184

mentally observed in organic systems that triplet-triplet energy transfer rates are not very sensitive to the type of orbitals involved.⁸ Therefore, the difference in donor type, W vs. Re, is presumed to be of little consequence in this study.

The electronic energy transfer data between the various donors $(W_6X_8Y_6^{2-}, \text{ReO}_2L_4^+, \text{ and } \text{Ru}(\text{bpy})_3^{2+})$ and the acceptor $(\text{Pt}_2(\mu-\text{dppm})_2\text{Cl}_2)$ are presented in Table 6.1 and plotted in Figure 6.2.¹⁴ Since electronic energy transfer is observed from donor molecules, known to have triplet emissive excited states, to the acceptor, further evidence supporting the triplet spin label of the $\text{Pt}_2(\mu-\text{dppm})_2\text{Cl}_2$ excited state is gained.

The highest energy transfer rate of 2.1×10^9 M⁻¹ sec⁻¹ is observed with $(TBA)_2[W_6Br_8I_6]$ ($\lambda_{max} = 752$ nm). It is at this approximate energy that facile energy transfer between the donor and acceptor is believed to be occuring. Using the equation, k_{dif} (M⁻¹ sec⁻¹) = (2 × 10⁵) \cdot T/n where T = 300 K (temperature) and η = 0.004 P (viscosity), the diffusion controlled rate constant (kdif) in dichloromethane is calculated to be $\sim 1.5 \times 10^{10}$ M⁻¹ sec⁻¹. In triplet-triplet energy transfer experiments, exothermic energy transfer is not expected to occur with energy transfer rate constants, ket, greater than kdif. In fact, in many cases, upper limits for energy transfer quenching rate constants have been observed to be several orders of magnitude lower then the kdif when one or both donor/acceptor molecules is a transition metal complex.⁷ Activation barriers to energy transfer (similar to those observed in bimolecular photochemical reactions), although not required from a theoretical standpoint, may exist which keep the rate constants

Table 6.1

Energy Transfer Data Using $Pt_2(\mu$ -dppm)₂Cl₂ as the Acceptor

Donor	Emissio	n Maximum	ka	RTInk _a
	nm	cm ⁻¹	-	4
Ru(bpy)3 ²⁺	610	16393	$< 1 \times 10^{6}$	< 2880
$\text{ReO}_2(\text{py})_4^+$	650	15385	8.1×10^{7}	3796.6
$\text{ReO}_2(\text{py-d}_5)_4^+$	650	15385	1.6×10^{7}	3458.4
$\text{ReO}_2(4\text{-pic})_4^+$	670	14925	2.9×10^{6}	3102.3
ReO ₂ (isoquin) ₄ ⁺	670	14925	3.6×10^{7}	3627.5
$W_{6}I_{14}^{2}$	698	14327	1.8×10^{8}	3963.0
W ₆ I ₈ Cl ₆ ²⁻	701	14265	8.5×10^{8}	4286.8
W ₆ Br ₈ I ₆ ²⁻	752	13298	2.1×10^{9}	4475.2
W ₆ Cl ₈ I ₆ ²⁻	802	12469	2.6×10^8	4039.7
W ₆ Cl ₈ Br ₆ ²⁻	814	12285	3.1×10^{7}	3596.2
W ₆ Cl ₁₄ ²⁻	833	12005	$< 1 \times 10^{6}$	< 2880

Figure 6.2

Plot of the energy transfer data between donors $(W_6X_8Y_6^{2-}, ReO_2L_4^+, Ru(bpy)_3^{2+})$ and the acceptor, $Pt_2(\mu$ -dppm)_2Cl_2. (For an explanation of x axis error bars, please see reference 14.)

of the most facile energy transfer reactions below kdif.⁸

When the acceptor's excited state energy level surpasses the donor's energy level, and the energy transfer becomes endothermic by several kilocalories per mole, energy transfer quenching is essentially shut down (see Figure 6.3a). This expected drop off in energy transfer rate constants is clearly observed in Figure 6.2. An estimate of the acceptor's excited state energy is obtained from the point at which the quenching rate begins to drop off as the energy transfer reaction becomes endothermic. Thus, the estimated energy of the $Pt_2(\mu$ -dppm)₂Cl₂ excited state in dichloromethane at room temperature is ~13000 cm⁻¹.

A similar drop off in transfer rates is observed for reactions in which the donor's excited state energy level is significantly greater than the acceptor's energy level (exothermic energy transfer reaction). Energy transfer theory,⁹ which closely parallels Marcus theory for electron transfer, predicts a drop off of energy transfer rate constants in this the "inverted region".^{10,11,17,18} In most cases, this theoretically predicted decrease in energy transfer rates is not observed; instead as the energy level difference between the donor and the acceptor becomes more exothermic, the energy transfer rate constants tend to saturate at some value, usually near k_{dif} .⁸

The most straightforward explanation for the saturation of the energy transfer rate constants as the system becomes more exothermic is depicted in Figure 6.3b. Typically, the acceptor molecule has several other higher lying electronic excited states. As the energy transfer reaction becomes more exothermic the donor's triplet level may overlap with these higher lying acceptor states; thus, the donor's energy may be transferred into these states and cascade down through established

189

- Figure 6.3 (a) Donor and acceptor energy level schematic for endothermic energy transfer.
 - (b) Donor and acceptor energy level schematic for exothermic energy transfer. (Inverted region is not observed.)
 - (c) Donor and acceptor energy level schematic for exothermic energy transfer. (Inverted region is observed.)

deactivation pathways to the lowest triplet excited state of the acceptor. When this occurs, the anticipated inverted region is not observed. If, however, the situation arises in which the acceptor's additional electronic levels lie much higher in energy and are unable to accept the donor's excited state energy (see figure 6.3c), then the energy transfer rate constants should follow theory and the predicted decrease should be observed. It is this latter scenario which is proposed to be operative in the $Pt_2(\mu-dppm)_2Cl_2$ system.

The energy transfer inverted region has been observed by a few researches in fluid solution, most notably by Engel and coworkers.^{19,20} Their studies involved singlet-singlet energy transfer from various organic donors to azoalkane acceptors. In these systems, the exchange interaction was found to be the dominant energy transfer mechanism, and, a similar "window" or energy gap between the lowest electronic level and the next higher lying level was observed for the azoalkane acceptors.

In order to assert that the observed drop off in energy transfer rate is due to inherent properties of the acceptor molecule, $Pt_2(\mu$ dppm)₂Cl₂, and not the nature of the donor molecules, information about energy transfer experiments of the donors with anthracene as the acceptor^{21,22} was gathered and is presented in Table 6.2 and Figure 6.4. Clearly these data show the usual saturation of rates as the energy transfer reaction becomes more exothermic. Therefore, the marked decrease in energy transfer rate constants in the inverted region is attributable to the inherent characteristic of the $Pt_2(\mu$ dppm)₂Cl₂ molecule.

Table 6.2

Energy Transfer Data Using Anthracene as the Acceptor[†]

Donor	Emissio	n Maximum	kq	RT <i>ln</i> kq
	nm	cm ⁻¹		
Ru(bpy)3 ²⁺	610	16393	2.2×10^9	4485.0
W ₆ I ₁₄ ²⁻	698	14327	1.9×10^{9}	4454.4
W ₆ Br ₁₄ ²⁻	752	13298	1.1×10^{8}	3860.4
W ₆ Cl ₁₄ ²⁻	833	12005	1.0×10^{7}	3360.5

[†]Data taken from references 21 and 22.

Figure 6.4

Plot of the energy transfer data between donors $(W_6X_8Y_6^{2-}, Ru(bpy)_3^{2+})$ and the acceptor, anthracene. (Data taken from referees 21 and 22.)

REFERENCES

- Zietlow, T. C.; Nocera, D. G.; Gray, H. B. Inorg. Chem. 1986, 25, 1351.
- 2. Winkler, J. R.; Gray, H. B. Inorg. Chem. 1985, 24, 346.
- 3. Brewer, J. C.; Gray, H. B., unplublished results.
- 4. Broomhead, J. A.; Young, C. G. Inorg. Synth. 1982, 21, 127.
- 5. Parker, C. A.; Rees, W. T. Analyst 1960, 85, 587.
- Nocera, D. G.; Winkler, J. R.; Yocom, K. M.; Bordignon, E.; Gray, H. B. J. Am. Chem. Soc. 1984, 106, 5145.
- Balzani, V.; Moggi, L.; Manfrin, M. F.; Bolletta, F.; Laurence, G.
 S. Coord. Chem. Rev. 1975, 15, 321.
- Turro, N. J. "Modern Molecular Photochemistry"; Benjamin/ Cummings: Menlo Park, CA, 1978, Ch. 9.
- 9. Scandola, F.; Balzani, V. J. Chem. Ed. 1983, 60, 814.
- 10. Kavarnos, G. J.; Turro, N. J. Chem. Rev. 1986, 86, 401.
- 11. Meyer, T. J. Prog. in Inorg. Chem. 1984, 30, 389.
- 12. Förster, T. Disc. Faraday Soc. 1959, 27, 7.
- 13. Dexter, D. L. J. Chem. Phys. 1953, 21, 836.
- 14. The error bars shown along the x axis for the $W_6 X_8 Y_6^{2-}$ complexes are derived from λ_{max} values reported by Zietlow *et al.*¹, Maverick *et al.*¹⁵, and the Ph.D. thesis of Daniel G. Nocera;¹⁶ x axis error bars for the ReO₂L₄⁺ complexes are estimated.
- Maverick, A. W.; Najdzionek, J. S.; Mackenzie, D.; Nocera, D. G.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 1878.
- Nocera, D. G. "Spectroscopy, Electrochemistry, and Photochemistry of Polynuclear Metal-Metal Bonded Complexes", Ph.D. Thesis, Calif. Inst. of Tech.: California, 1984, pp 152-155.

- 17. Marcus, R. A. J. Chem. Phys. 1965, 43, 679.
- 18. Marcus, R. A. J. Chem. Phys. 1956, 24, 966.
- 19. Engel, P. S.; Steel, C. Acc. Chem. Res. 1973, 6, 275.
- Engel, P. S.; Fogel, L. D.; Steel, C. J. Am. Chem. Soc. 1974, 96, 327.
- 21. Zietlow, T. C.; Hopkins, M. D.; Gray, H. B. J. Solid State Chem. 1985, 57, 112.
- 22. Wrighton, M.; Markham, J. J. Phys. Chem. 1973, 77, 3042.

CHAPTER 7

Electron Transfer Studies of $Pt_2(\mu-dppm)_2Cl_2$ and Its Analogs

INTRODUCTION

Oxidation and reduction reactions are common in inorganic chemistry; thousands of examples are known. All redox reactions occur by either an inner-sphere (the complexes share one ligand in their coordination environment) or an outer-sphere (the complexes have separated coordination environments) electron transfer mechanism.¹ The electron transfer mechanism is also one of the more common excited state deactivation processes observed in inorganic photochemistry.²⁻⁴ Rates of inner-sphere electron transfer are frequently limited by the rate of ligand substitution and are unlikely to be competitive with excited state decay rates.² Therefore, most of the excited state redox reactions occur by the outer-sphere electron transfer mechanism. Two examples of this type of reactivity are shown below:^{5,6}

$$Ir_{2}(pz)_{2}(COD)_{2} + MV^{2+} \xleftarrow{k_{q}}_{k_{q'}} Ir_{2}(pz)_{2}(COD)_{2}^{+*} + MV^{+*}$$
$$\lambda_{em} = 684 \text{ nm}; \ \tau = 250 \text{ ns}$$
$$k_{q} = 8.7 \times 10^{9} \text{ M}^{-1} \text{ sec}^{-1}; \ k_{q'} = 1.4 \times 10^{9} \text{ M}^{-1} \text{ sec}^{-1}$$

and

$$Ru(bpy)_{3}^{2+} + TMPD \xrightarrow{k_{q}} Ru(bpy)_{3}^{+*} + TMPD^{+*}$$

$$\lambda em = 610 \text{ nm}; \ \tau = 600 \text{ ns}$$

$$k_{q} = 1.2 \times 10^{10} \text{ M}^{-1} \text{ sec}^{-1}; \ k_{q}^{*} = 2.8 \times 10^{10} \text{ M}^{-1} \text{ sec}^{-1}$$

(where pz = pyrazine, COD = cyclooctadiene, $MV^{2+} = methylviologen$, bpy = 2,2'-bipyridine, and TMPD = N,N,N',N'-tetramethyl-1,4-phenylenediamine). These transition metal complexes luminesce in room temperature, fluid solution and have excited state lifetimes on the order of 10^{-7} sec.

A few examples of transition metal complexes which do not luminesce
in fluid solution, but which have long-lived excited states (in fluid solution) are known. Keep in mind, that the lack of fluid solution luminescence does not rule out the possibility of excited state electron transfer reactivity. But rather, since luminescence is used as a tool for monitoring excited state electron transfer reactions, complexes which do not luminesce rarely have their excited state electron transfer reactivity investigated.

This chapter describes experiments designed to investigate the potential thermal and photochemical electron transfer reactivity of $Pt_2(\mu$ -dppm)_2Cl_2, which does not luminesce in fluid solution, and its analogs.

EXPERIMENTAL

Materials

All solvents, unless otherwise noted, were reagent grade and used without further purification. The dichloromethane (Baker) used in the electrochemical experiments was dried over calcium hydride and freshly distilled prior to use. The dichloromethane (Burdick and Jackson, UV grade) used in the electronic absorption and flash photolysis studies was also dried over calcium hydride and stored over Linde 3A molecular seives in a storage flask as described in the experimental section of Chapter 2. The acetonitrile (Burdick and Jackson, UV grade) used in the flash photolysis studies was dried over calcium hydride and stored over alumina in a storage flask as outlined in the experimental section of Chapter 2.

The platinum complexes, $Pt_2(\mu-dppm)_2Cl_2 \cdot 0.5CH_2Cl_2$ and $[Pt_2(\mu-dppm)_2(PPh_2Me)_2^{2+}](PF_6)_2$, were prepared as described in the experimental section of Chapter 5.

Tetracyanoethylene, TCNE, (Aldrich, 98%) was recrystallized twice from chlorobenzene and sublimated under vacuum. White crystalline chunks were obtained.

Tetracyanoquinodimethane, TCNQ, (Aldrich, 98%) was recrystallized twice from chlorobenzene and dried *in vacuo*. This complex darkens after several weeks in air; therefore, recrystallization and drying was carried out immediately prior to the EPR experiments.

Methylviologen hexafluorophosphate, MV^{2+} , and tetrabutylammonium hexafluorophosphate, TBAPF₆, were prepared and purified as outlined in the experimental section of Chapter 2.

Physical Measurements

Electrochemical Measurements. All cyclic voltammograms were measured in dichloromethane using the same equipment and operating procedures as detailed in the experimental section of Chapter 2. Several sets of electrochemical experiments were done. First, cyclic voltammograms were measured of $Pt_2(\mu$ -dppm)_2Cl₂ and $[Pt_2(\mu$ dppm)_2(L)_2(PF_6)_2 where L = PPh₃, PPh₂Me, and PPhMe₂. Next, bulk electrolysis of a dichloromethane solution of 1 × 10⁻³ M TCNE and 0.1 M TBAPF₆ was performed. And, finally, cyclic voltammograms monitoring the progress of the $Pt_2(\mu$ -dppm)_2Cl₂ + TCNE thermal reaction were measured in conjunction with EPR experiments. These samples consisted of an N₂ purged dichloromethane solution of 1 × 10⁻³ M Pt_2(μ -dppm)_2Cl₂, 1 × 10⁻³ M TCNE, and 0.1 M TBAPF₆.

Electronic Absorption Spectroscopy. Spectra were recorded using the Shimatzu UV-260 spectrophotometer. The $Pt_2(\mu-dppm)_2Cl_2$ + TCNE dark reaction was run in a special photometric cell which consisted of a central square precision quartz cuvette (1 cm pathlength), flanked on either side by a pyrex round bulb (2 in total), which were separated from the cuvette by teflon vacuum valves. A third teflon vacuum valve atop the photometric cell was used to keep the entire vessel under vacuum. The platinum complex and TCNE were placed in separate bulbs and the entire cell was evacuated on a high vacuum line (limiting pressure <10⁻³ Torr). Under vacuum, ~4 mL of dichloromethane was distilled from the solvent pot into the bulb containing the platinum complex. This solution was transfered to the cuvette and an absorption spectrum was measured. Subsequently, some TCNE from the second bulb was added to the platinum solution in the cuvette and the progress of the ensuing dark reaction was monitored by successive absorption scans.

Electron Paramagnetic Resonance Spectroscopy. All EPR spectra were measured on a Varian E-line Century Series spectrometer at 5 mW power. EPR spectra run in conjunction with electrochemical measurements were prepared under N₂ by syringing 0.5 mL of the electrochemical solution (described under the electrochemical measurements) into a N₂ purged EPR tube capped with a septum. All other EPR samples were prepared by mixing 1:1 dichloromethane solutions of 1×10^{-3} M or 5×10^{-4} M Pt₂(μ $dppm)_2Cl_2$ with 1 × 10⁻³ M or 5 × 10⁻⁴ M TCNE (v/v) together in a graduated cylinder and syringing 0.5 mL into a quartz EPR tube. Most of these samples were prepared in air; however, several $Pt_2(\mu-dppm)_2Cl_2$ + TCNE samples were prepared under N₂ or degassed completely. No significant differences between the EPR spectra of samples prepared in air, under nitrogen, or in degassed solutions were observed. Similar procedures were used for preparing $Pt_2(\mu-dppm)_2(PPh_2Me)_2^{2+}$ + TCNE and $Pt_2(\mu$ -dppm)₂Cl₂ + TCNQ samples.

Microsecond Flash Photolysis Experiments. Flash photolysis studies were conducted on an apparatus constructed at Caltech and described elsewhere.^{7,8} Flash lamp excitation wavelengths greater than 350 nm were used. Absorption changes were monitored at 360 and 605 nm. A 1:1 $CH_2Cl_2:CH_3CN$ (v/v) mixed solvent containing ~1 × 10⁻⁴ M Pt_2(µ-dppm)_2Cl_2 and 5 × 10⁻³ M MV²⁺ was prepared in a flash photolysis cell consisting of a cylindrical pyrex compartment (15 cm pathlength), a 50 mL pyrex bulb, and a square cuvette (1 cm pathlength), each oriented 90° from one another. A set of control experiments to check for MV^{2+} and solvent contamination were done. The transient absorption at 605 nm of a CH_3CN solution of 5 × 10⁻³ M MV^{2+} and a 1:1 $CH_2Cl_2:CH_3CN$ (v/v) mixed solvent of 5 \times 10⁻³ M MV²⁺ were measured; however, in both cases no MV^{+*} was detected.

Steady State Photolysis Procedures. A 1000 W high pressure Hg/Xe arc lamp equipped with Corning cutoff filters ($\lambda > 350$ nm) was used for the irradiations. Samples were prepared by placing Pt₂(μ -dppm)₂Cl₂ (~1 mg) in a two compartment spectrophotometric cell equipped with a teflon vacuum valve and evacuating on a high pressure vacuum line (limiting pressure < 10⁻³ Torr). Dichloromethane was distilled from the storage flask into the spectrophotometric cell under vacuum. The dichloromethane solutions of Pt₂(μ -dppm)₂Cl₂ (various concentrations) were photolyzed over a period of 3 days. No electronic absorption spectral changes were observed over the course of the photolysis; hence, Pt₂(μ -dppm)₂Cl₂ is considered to be photo-stable in dichloromethane.

RESULTS and DISCUSSION

The redox properties of $Pt_2(\mu-dppm)_2Cl_2$ and $Pt_2(\mu-dppm)_2L_2$ have been investigated and the results are presented in Table 7.1. The $Pt_2(\mu-dppm)_2Cl_2$ complex exhibits an irreversible oxidation +0.85 V vs. SCE. Similar studies performed by Nemra *et al.*⁹ on $Pd_2(\mu-dppm)_2Cl_2$ and $PtPd(\mu-dppm)_2Cl_2$ in 1,2-dichloroethane show irreversible oxidations at +0.98 V and +0.96 V vs. SCE, respectively. In the Pd(I) and mixed Pd(I)Pt(I) dimers, the oxidation occurs by way of a one electron process; this same process is believed to occur in the platinum system. No return peak on the reverse is observed in the cyclic voltammogram at scans rates up to 500 mV/sec; therefore, the Pt(I,II) species produced must be fairly unstable, possibly reacting with the solvent.

No reduction wave was observed as far out as -1.5 V vs. SCE for the platinum(I) dimer. Irreversible two electron reductions were observed for $Pd_2(\mu$ -dppm)_2Cl_2 and $PtPd(\mu$ -dppm)_2Cl_2 at -1.26 V and -1.70 V vs. SCE, respectively.⁹ From these results, a similar two electron irreversible reduction of $Pt_2(\mu$ -dppm)_2Cl_2 is expected to occur at a potential more negative than -1.70 V vs. SCE. Thus, for the most part, any electron transfer chemistry observed with the platinum(I) dimers will most likely involve a one electron oxidation of the complex.

Thermal and photochemical reactions designed to probe the electron transfer reactivity of these platinum complexes with various organic acceptors were undertaken. Tetracyanoethylene, TCNE, is very easily reduced, with a one electron reduction potential of +0.15 V vs. SCE.¹⁰ Owing to the pronounced energy difference between neutral TCNE and TCNE²⁻, the TCNE^{-*} has a high solution stability, making it an ex-

Oxidation Potentials of $[Pt_2(\mu-dppm)_2Y_2]^{n+}$

Complex

 $\sim E_{1/2}$ vs. SCE

$Pt_2(\mu-dppm)_2Cl_2$	+0.85	V
$[Pt_2(\mu-dppm)_2(PPh_3)_2](PF_6)_2$	+1.3	v
$[Pt_2(\mu-dppm)_2(PPh_2Me)_2(PF_6)_2]$	+1.3	v
$[Pt_2(\mu-dppm)2(PPhMe_2)_2(PF_6)_2$	+1.35	v

cellent one electron acceptor.¹¹ Upon mixing $Pt_2(\mu$ -dppm)₂Cl with TCNE in deaerated dichloromethane, TCNE^{-*} was immediately produced, even in reactions where room light was rigorously excluded. Successive scans of the electronic absorption spectrum of the reaction mixture (Figure 7.1) clearly show an absorption band with the vibrational fine structure characteristic of the TCNE^{-*} growing in at ~440 nm.

Although ground state electron transfer from the platinum complex to TCNE should not occur based on ground state redox potentials, some type of adduct formation may occur which facilitates the electron transfer. Considering that several examples of small molecules adding thermally across the metal-metal bond of $Pt_2(\mu-dppm)_2Cl_2$ are known to occur, the prospect for a $Pt_2(\mu-dppm)_2Cl_2$ -TCNE adduct forming prior to the electron transfer step is quite reasonable. Further oxidation of the platinum complex to produce a stable d^8-d^8 platinum dimer containing a tetracyanoethane bridge does not seem to occur due to the high stability of the TCNE^{-*}.

Evidence for the proposed $Pt_2(\mu-dppm)_2Cl_2^{+*}$ / $TCNE^{-*}$ adduct is obtained from EPR spectra. The EPR spectrum of the electrochemically generated $TCNE^{-*}$ in dichloromethane (tetrabutylammonium hexafluorophosphate, $TBAPF_6$, present as electrolyte) and spectrum of the $TCNE^{-*}$ generated by reduction with $Pt_2(\mu-dppm)_2Cl_2$ in dichloromethane (no $TBAPF_6$ present) have several similarities, but, the overall shapes of the spectra are different.

The EPR spectrum of the electrochemically generated TCNE[•] is shown in Figure 7.2a. The EPR lines are significantly broadened from spectra previously reported for the TCNE[•].¹² This broadening is due to selfexchange between neutral TCNE and the radical facilitated by the

209

Figure 7.1 Electronic absorption spectrum of the thermal electron transfer reaction between $Pt_2(\mu$ -dppm)_2Cl_2 and TCNE in dichloromethane (room light excluded).

Absorbance

presence of the supporting electrolyte, TBAPF₆ (required for bulk electrolysis).¹³ The uncoordinated TCNE^{-•} spectrum exhibits a total of 13 lines. The nine predominant lines (center of the spectrum) are expected for the four equivalent ¹⁴N (I=1) nuclei; whereas, the smaller lines found at the beginning and end of the spectrum are best attributed to ¹³C nuclei.¹² The spectrum has a g value of 2.001 and the spacing is 1.56 Hz; both results are in excellent agreement with previously reported results for TCNE^{-•}.¹²

As for the EPR spectrum obtained when TCNE is reduced with $Pt_2(\mu-dppm)_2Cl_2$, a similar g value of 2.000 and a range of line spacings 1.52 to 1.56 Hz is observed, see Figure 7.2b. From these results it is evident that the radical generated from this reaction does indeed resemble that of TCNE^{-*}. However, in this spectrum, ~27 lines are observable. Since the total number of lines observed far exceeds that expected for uncoordinated TCNE⁻ radical, it is presumed that the electron primarily localized on the TCNE also feels the presence of other nuclei in the vicinity such as ³¹P (I = 1/2) and ¹⁹⁵Pt (I = 1/2). It is the observation of all these additional EPR lines which supports the supposition that some type of $Pt_2(\mu-dppm)_2Cl_2$ -TCNE adduct formation occurs to facilitate the electron transfer.

An EPR signal attributable to the oxidized platinum species was not observed. Since it is not uncommon for transition metal complexes to have spin lattice relaxation times which are too short to allow for signal detection at room temperature,¹⁴ the absence of the oxidized platinum complex's signal is not unusual.

The overall shape of the EPR spectrum obtaining from the $Pt_2(\mu$ dppm)₂Cl₂ + TCNE reaction differs from reaction mixture to reaction

- (a) EPR spectrum of electrochemically generated TCNE^{-•} in dichloromethane (0.1 M TBAPF₆, 300 K).
- EPR spectrum of the thermal electron (b) transfer reaction between $Pt_2(\mu-dppm)_2Cl_2$ and TCNE in dichloromethane (300 K).
- (c) A second EPR spectrum of the thermal electron transfer reaction between $Pt_2(\mu$ -dppm)2Cl₂ and TCNE in dichloromethane (300 K).

213

Figure 7.2

mixture, although about the same number of EPR lines are observed and the g value and range of line spacings are identical in all cases. (Examples of these differences may seen by comparing Figures 7.2b and 7.2c.) The difference in shape, along with the general complexity of the EPR spectrum itself, seems to indicate that the reaction mixture may contain several structural isomers of the $Pt_2(\mu-dppm)_2Cl_2$ -TCNE adduct.

Similar thermal electron transfer experiments between $Pt_2(\mu - dppm)_2Cl_2$ and 7,7,8,8-tetracyanoquinodimethane, TCNQ were also conducted. TCNQ, like TCNE, is easy to reduce, $E_{1/2} = +0.127$ V vs. SCE;¹⁵ but unlike TCNE, TCNQ is a much bulkier electron acceptor and may not allow similar adduct formation to occur. Upon mixing the platinum complex with TCNQ a very complicated radical signal was observed. However, since the EPR spectrum of uncoordinated TCNQ^{-*} is reported to contain 43 lines, information regarding $Pt_2(\mu - dppm)_2Cl_2$ -TCNQ adduct formation was not forthcoming.

Surprisingly, reaction of $Pt_2(\mu-dppm)_2(PPh_2Me)_2^{2+}$ with TCNE did not result in the formation of any radical species. There are two explanations for this lack of reactivity: (i) the phosphine groups in the axial positions of $Pt_2(\mu-dppm)_2(PPh_2Me)_2^{2+}$ constricts access to the metal-metal bond, thus making adduct formation much more difficult than in the halide analog, and (ii) $Pt_2(\mu-dppm)_2(PPh_2Me)_2^{2+}$ is ~45 mV more difficult to oxidize than $Pt_2(\mu-dppm)_2Cl_2$.

In order to obtain additional information about the $Pt_2(\mu-dppm)_2Cl_2$ + TCNE thermal reaction, its progress was simultaneously monitored by cyclic voltammetry and EPR over a 14 hour period. An N₂ purged dichloromethane solution of 1×10^{-3} M Pt₂(μ -dppm)₂Cl₂, 1×10^{-3} M TCNE, and 0.1 M TBAPF₆ was prepared; 11 mL of the solutions was placed in the electrochemical cell and 0.5 mL was placed in a septum-sealed quartz EPR tube.

At first only the TCNE reduction and $Pt_2(\mu-dppm)_2Cl_2$ oxidation waves were observed in the cyclic voltammogram, but, within a few minutes a new quasi-reversible wave at ~+0.3 V vs. SCE and an irreversible oxidation wave at ~+1.2 V vs. SCE appeared. After about 2 and a half hours the quasi-reversible wave at ~+0.3 V vs. SCE disappeared. And after 14 hours, the reduction wave of TCNE was substantially diminished (only 10% of the original signal remained) and only the irreversible oxidation wave at +1.2 V vs. SCE was observed.

The initial EPR spectrum obtained resembled the EPR spectra previously obtained for the thermal $Pt_2(\mu$ -dppm)_2Cl₂ + TCNE reaction (without electrolyte). However, as the reaction progressed, some of the EPR lines began to disappear and all the remaining lines began to sharpen. By the end of the experiment (14 hours later), the EPR spectrum consisted of 13 rather sharp lines, remarkably resembling uncoordinated TCNE^{-*}. The results of these experiments are puzzling, especially in light of the fact that the EPR spectra of dichloromethane solutions of $Pt_2(\mu$ -dppm)_2Cl₂ + TCNE without electrolyte present do not show this unusual behavior with time. Naturally, these results raise questions about the role of the TBAPF₆ in this reaction.

One possiblity is that the electrolyte facilitates the further oxidation of the $Pt_2(\mu$ -dppm)_2Cl_2^{+•} / TCNE^{-•} adduct to produce a d⁸-d⁸ platinum dimer containing a tetracyanoethane bridge. Since the reaction was run at a 1:1 stoichiometry and only ~90 % of the TCNE was

consumed during the course of the reaction, possible platinum dimer decomposition may have occurred resulting in uncoordinated TCNE existing in its radical state. With this in mind, the transient quasireversible wave at ~+0.3 V vs. SCE may be attributable to the $Pt_2(\mu$ $dppm)_2Cl_2^{+*}$ / TCNE^{-*} adduct, the irreversible oxidation at ~1.2 V vs. SCE may be attributable to the d^8-d^8 platinum dimer (which is EPR silent), and the residual TCNE^{-*} (whose oxidation wave is observed in the final cyclic voltammogram) remains as the only species observed in the final EPR spectrum.

Further electron transfer experiments between $Pt_2(\mu-dppm)_2Cl_2$ and methylviologen hexafluorophosphate, MV^{2+} , were investigated; the reduction potential of MV^{2+} is -0.45 V vs. SCE.⁶ Unlike in the TCNE experiments, no ground state electron transfer between the platinum complex and MV^{2+} was observed. Flash photolysis of MV^{2+} in the presence of $Pt_2(\mu-dppm)_2Cl_2$, however, resulted in the production of MV^{+*} . Although a complete transient absorption spectrum of the MV^{+*} was not collected, an increase of the absorptions at 605 and 360 nm were observed and the characteristic blue color of the MV^{+*} radical was detected after several repetitive flashes.

Since a mixed solvent system, 1:1 (v/v) CH₂Cl₂:CH₃CN was used, several control experiments were done to rule out the possibility of MV^{2+} or solvent contamination; see insert in Figure 7.3a. Monitoring at 605 nm, the transient decay signal shown in Figure 7.3a was obtained. These data were evaluated according to the bimolecular rate equation:

$$1/\Delta C = 1/C_{t} - 1/C_{0} = kt$$

(where C_t is the concentration of the absorbing species at some time t, and C_0 is the inital concentration). Since the flash photolysis data obtained are in absorption units and $A = \varepsilon bC$, the bimolecular rate expression used to calculate the rate constant for back electron transfer, k_b , is modified as:

$$b\Delta \varepsilon / \Delta A = b\varepsilon_t / A_t - b\varepsilon_0 / A_0 = k_b t$$

or

$$1/\Delta A = (k_{\rm b}/b\Delta\varepsilon)t.$$

The plot of $1/\Delta A$ vs. t is shown in Figure 7.3b. Since most of the absorption at 605 nm is due to the MV^{+*}, $\Delta \varepsilon$ is approximated as $\Delta \varepsilon_{MV}^{+*}$, whose value has been experimentally determined by Kosower *et al.*¹⁶ as 13,000 M⁻¹ cm⁻¹. The cell pathlength, b, is 15 cm and the slope of the $1/\Delta A$ vs. t plot is 0.07 sec⁻¹. Therefore, the back electron transfer rate constant is calculated to be 1.5 (±0.5) × 10⁴ M⁻¹ sec⁻¹. For stability, the oxidized platinum dimer may coordinate solvent, namely CH₃CN, which could account for the surprisingly slow back electron transfer rate. There is, however, no direct evidence for this proposed solvent coordination.

In conclusion, these experiments have shown that both ground state and excited state electron transfer from $Pt_2(\mu-dppm)_2Cl_2$ are possible even though the platinum complex does not luminesce in fluid solution.

- Figure 7.3
- (a) Flash photolysis trace of the back electron transfer from MV^{+*} to the oxidized $Pt_2(\mu$ -dppm)_2Cl_2 in 1:1 dichloromethane:acetonitrile (v/v). [Insert: Flash photolysis trace of MV^{2+} in 1:1 dichloromethane :acetonitrile (v/v).] Absorption monitored at 605 nm.
- (b) Plot of $1/\Delta A$ vs. t (sec) for the back electron transfer from MV^{+*} to the oxidized Pt₂(μ -dppm)₂Cl₂.

time (sec)

REFERENCES

- Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry, Fifth Ed."; Wiley: New York, 1988, pp 1306-1318.
- Balzani, V.; Moggi, L.; Manfrin, M. F.; Bolletta, F.; Laurence, G. S. Coord. Chem. Rev. 1975, 15, 321.
- 3. Kavarnos, G. J.; Turro, N. J. Chem. Rev. 1986, 86, 401.
- 4. Meyer, T. J. Prog. Inorg. Chem. 1984, 30, 389.
- Marshall, J. L.; Stobart, S. R.; Gray, H. B. J. Am. Chem. Soc. 1984, 106, 3027.
- Bock, C. R.; Connor, J. A.; Gutierrez, A. R.; Meyer, T. J.; Whitten, D. G.; Sullivan, B. P.; Nagle, J. K. J. Am. Chem. Soc. 1979, 101, 4815.
- Nocera, D. G.; Winkler, J. R.; Yocom, K. M.; Bordignon, E.; Gray, H. B. J. Am. Chem. Soc. 1984, 106, 5145.
- Milder, S. J.; Goldbeck, R. A.; Kliger, D. S.; Gray, H. B. J. Am. Chem. Soc. 1980, 102, 6761.
- Nemra, G.; Lemoine, P.; Braunstein, P.; de Meric de Bellefon, C.; Ries, M. J. Organomet. Chem. 1986, 245.
- Meites, L.; Zuman, P. "CRC Handbook Series in Organic Chemistry" 1976, Vol 1.
- Webster, O. W.; Mahler, W.; Benson, R. E. J. Am. Chem. Soc. 1962, 84, 3678.
- Phillips, W. D.; Rowell, J. C.; Weissman, S. I. J. Chem. Phys. 1960, 33, 626.
- 13. Weissman, S. I. J. Am. Chem. Soc. 1957, 79, 2086.
- Drago, R. S. "Physical Methods in Chemistry"; Saunders: Philadelphia, 1977; Ch. 9.

- Bard, A. J.; Faulkner, L. R. "Electrochemical Methods, Fundamentals and Applications"; Wiley: New York, 1980.
- Hermolin, J.; Levin, M.; Ikegami Y.; Sawayanagi, M.; Kosower, E. M. J. Am, Chem. Soc. 1981, 103, 4795.

CHAPTER 8

Preliminary Investigations of [Pt2(CNCH3)6](BF4)2

INTRODUCTION

Another class of d^9-d^9 platinum and palladium dimers exist which are unbridged, being supported only by a single metal-metal bond. These complexes, unlike the dppm bridged molecules, have a staggered geometry (see Figure 8.1).¹

The thermal and photochemistry of these unbridged complexes are dominated by homolytic metal-metal bond cleavage reactions producing 15e⁻ radical species which rapidly react with an available substrate or the solvent to form d⁸ monomeric complexes. For example:

$$[Pt_2(CNCH_3)_6]^{2+} + X_2 \xrightarrow{h\nu} 2 [Pt(CNCH_3)_3X]^+$$

and

$$[Pt_2(CNCH_3)_6]^{2+} + X_2 \xrightarrow{\Delta} 2 [Pt(CNCH_3)_3X]^+$$

(Such reactions have been investigated by several authors, most notably Balch *et al.*² and Kubiak and coworkers.^{3,4})

Similar single metal-metal bond cleavage reactions are observed with $Mn_2(CO)_{10}$, which, upon photo-excitation, undergoes homolysis to produce $17e^-$ radical species.^{5,6} Also, reactions of this type are seen with the dppm bridged palladium(I) and platinum(I) dimers which oxidatively add small molecules resulting in net metal-metal bond cleavage;⁷⁻¹³ however, these complexes do not dissociate into monomers due to the presence of the dppm bridges which maintain the dimeric framework.

The $Pt_2(CNCH_3)_6^{2+}$ molecule shows great potential as a precursor for synthesizing new d⁹-d⁹ and d⁸-d⁸ A-frame dimers. Direct substitution of four CNCH₃ groups with two bridging ligands would afford new d⁹-d⁹

dimers; whereas, substitution of three $CNCH_3$ groups by two bridging ligands would produce $d^8 d^8$ A-frame complexes containing a bridging $CNCH_3$ group. Preliminary experiments along these lines are described in this chapter.

Figure 8.1 Structure of $[Pt_2(CNCH_3)_6](BF_4)_2$ and ORTEP of $[Pd_2(CNCH_3)_6](BF_4)_2$. (ORTEP taken from reference 1.)

EXPERIMENTAL

Materials

All solvents, unless otherwise noted, were reagent grade and used without further purification.

 $[Pt_2(CNCH_3)_6](BF_4)_2$ was prepared by published procedures.² To obtain the best results, it is important that the water solution containing K_2PtCl_4 and NaBF₄ be stirred for 30-45 minutes to attain the maximum NaBF₄ saturation.

Bis(diphenylphosphino)methane, dppm, (Aldrich, 98%) and bis(dimethylphosphino)methane, dmpm, (Aldrich, 98%) were used as received. 1,3-Diisocyanopropane, $CN(CH_2)_3NC$, was prepared following published procedures,¹⁴ was purified by column chromotography (Alumina, Woelm, Grade A), and gave a clean NMR spectrum.

Physical Measurements

Nuclear Magnetic Resonance. ¹H NMR spectra were recorded at 400 MHz on a JEOL GX-400 spectrometer, at 90 MHz on a Jeol FX90-Q spectrometer, and at 90 MHz on a Varian EM-390 spectrometer. ¹H chemical shifts are reported in ppm (δ) vs. CD₃CN (δ 1.98), CDCl₃ (δ 7.24), CD₂Cl₂ (δ 5.32), and (CD₃)₂CO (δ 2.04). ³¹P NMR spectra were recorded at 36.28 MHz on a JEOL FX90-Q spectrometer. The ³¹P chemical shifts are reported in ppm (δ) vs. H₃PO₄ external standard. All NMR spectra were run at ambient temperature.

Electronic Absorption Spectroscopy. Absorption spectra were recorded on a Shimatzu 260-UV spectrophotometer.

Emission Spectroscopy and Lifetime Measurements. Emission spectra were measured using an emission instrument constructed at Caltech and described previously.¹⁵ Emission lifetimes were measured using a Nd:YAG laser system described elsewhere.¹⁶ Low temperature, 77 K, spectra were collected using a liquid-nitogen-filled quartz finger dewar. Solid samples were placed in an NMR tube and sealed with a septum and parafilm. Acetonitrile solutions of $[Pt_2(\mu-CN(CH_2)_3NC)_2(\mu-CN(CH_3)_2](BF_4)_2$ were placed in a two-compartment photometric cell equipped with a teflon vacuum valve and degassed (a minimum of 6 freeze/pump/thaw cycles) on a high vacuum lime (limiting pressure < 10^{-3} Torr).

RESULTS and DISCUSSION

The electronic absorption spectrum of $[Pt_2(CNCH_3)_6](BF_4)_2$ reveals a shoulder at 296 nm and a larger broad absorption band maximizing at 272 nm (Figure 8.2a). Reinking *et al.*⁴ report the molar extinction of the 296 nm absorption as 4350 cm⁻¹ M⁻¹ in acetonitrile. This complex does not luminesce in fluid solution or the solid state at room temperature; however, upon cooling the sample (powder) down to 77 K, yellow emission is observed ($\lambda_{max} = 542$ nm); see Figure 8.2b. This result implies that some facile deactivation pathway exist at room temperature. Since these complexes are known to readily undergo thermal and photochemical homolytic bond cleavage, the rupture of the metal-metal bond may be one of the temperature dependent deactivation pathways.

In order to synthesize another class of bridged $d^{9}-d^{9}$ dimers, a color-less acetontrile solution of $Pt_2(CNCH_3)_6^{2+}$ was added to a color-less acetonitrile solution of dppm (1:2 stoichiometry). The reaction was immediate as evidenced by the resulting bright orange solution. The absorption spectrum of this solution shows a new absorption at 452 nm; the absorption spectrum is presented in Figure 8.3a. The solvent was evaporated and an orange solid was obtained. Free CNCH₃ was detected. NMR analysis of the isolated complex clearly revealed the presence of the dppm ligand bridging two platinum centers $\delta = 5.57$ ppm; see Figure 8.4. Bands attributable to methylisocyanide were located at $\delta = 2.83$ and 2.50 ppm. Several smaller peaks, unassignable to the starting material or the proposed $Pt_2(\mu-dppm)_2(CNCH_3)_n^{2+}$ complex were observed. These peaks are presumed to be decomposition products and d^8 monomeric $Pt(dppm)(CNCH_3)_2^{2+,17}$ from comparison with NMR data of sim-

- (a) Electronic absorption spectrum of $[Pt_2(CNCH_3)_6](BF_4)_2$ in acetonitrile (300 K). Absorption maxima at 296 (shoulder) and 272 nm.
- (b) Uncorrected emission spectrum of [Pt₂(CNCH₃)₆](BF₄)₂, powder sample, 77 K. Emission maximum at 542 nm.
- Figure 8.2

Absorbance

- Figure 8.3 (a) Electronic absorption spectrum of $[Pt_2(\mu-dppm)_2(\mu-CNCH_3)(CNCH_3)_2](BF_4)_2$ in acetonitrile (300 K). Absorption maximum at 452 nm.
 - (b) Uncorrected emission spectrum of [Pt₂(μ-dppm)₂(μ-CNCH₃)(CNCH₃)₂](BF₄)₂, powder sample, 77 K. Emission maximum at 604 nm. (A grating anomaly occurs at ~667 nm.)

Absorbance

Figure 8.4

¹H NMR spectrum of the methylene protons in the bridging dppm ligand of $[Pt_2(\mu-dppm)_2(\mu-CNCH_3)(CNCH_3)_2](BF_4)_2$ in d₆-acetone. ³J(PtH) coupling 58.4 Hz; ²J(PH) coupling 9.3 Hz.

ilar platinum(II) monomers. The ³¹P NMR revealed only one phosphorus signal at $\delta = 4.41$ ppm.

Similar reaction between $Pd_2(CNCH_3)_6^{2+}$ and dppm afforded $Pd_2(\mu-dppm)_2(\mu-CNCH_3)(CNCH_3)_2^{2+}$ which has been crystallographically characterized.⁸ Based on the palladium reaction, the platinum complex obtained is presumed to be $Pt_2(\mu-dppm)_2(\mu-CNCH_3)(CNCH_3)_2^{2+}$. Of course, additional characterization and possible structural evaluation is necessary to confirm this structural assignment. Attempts to grow crystals have been hampered by the slow decomposition of the complex when in solution. (Futher loss of CNCH₃ is detected when the sample remains in solution for prolonged periods of time.)

For this new dppm A-frame $d^8 - d^8$ complex, as for the studied $d^9 - d^9$ starting materials, no fluid solution or solid state luminesence at room temperature was observed. However at low temperature in the solid state, orange emission was detected ($\lambda_{max} = 604$ nm); see Figure 8.3b. Reaction of $Pt_2(CNCH_3)_6^{2+}$ with bis(dimethylphosphino)methane, dmpm, afforded a complex similar in absorption and emission properties as the complex formed from the $Pt_2(CNCH_3)_6^{2+}$ + dppm reaction.

Additional reactions between $Pt_2(CNCH_3)_6^{2+}$ and other bridging ligands were investigated in hopes of unearthing a dimeric complex which did show fluid solution emission at ambient temperature. Reaction of $Pt_2(CNCH_3)_6^{2+}$ with 1,3-diisocyanopropane, $CN(CH_2)_3NC$, resulted in the expected orange solution ($\lambda_{max} = 443$ nm, see Figure 8.5a) and also produced a species which luminesced in fluid solution at room temperature (emission spectra are shown in Figure 8.5b-d). These complexes appear to be air and possibly even moisture sensitive. Eventual decomposition of the product is observed. The emission lifetime of

- Figure 8.5
- (a) Electronic absorption spectrum of [Pt₂(μ-CN(CH₂)₃NC)₂(μ-CNCH₃)(CNCH₃)₂](BF₄)₂ in acetonitrile (300 K). Absorption maximum at 443 nm.
- (b) Uncorrected emission spectrum of [Pt₂(μ-CN(CH₂)₃NC)₂(μ-CNCH₃)(CNCH₃)₂](BF₄)₂ in acetonitrile, 300 K. Emission maximum at 529 nm. (A grating anomaly occurs at ~667 nm.)
- (c) Uncorrected emission spectrum of [Pt₂(μ-CN(CH₂)₃NC)₂(μ-CNCH₃)(CNCH₃)₂](BF₄)₂ in dichloromethane, 77 K. Emission maximum at 613 nm. (A grating anomaly occurs at ~667 nm.)
- (d) Uncorrected emission spectrum of [Pt₂(μ-CN(CH₂)₃NC)(μ-CNCH₃)(CNCH₃)₂](BF₄)₂, powder sample, 77 K. Emission maximum at 626 nm. (A grating anomaly occurs at ~667 nm.)

Absorbance

Intensity

Intensity

Intensity

this complex in room temperature fluid solution is 220 ns, and increases to 7.4 μ s at 77 K in frozen solution. As in the dppm case, this complex is presumed to be $[Pt_2(\mu-CN(CH_2)_3NC)_2(\mu-CNCH_3)(CNCH_3)](BF_4)_2$.

Why is fluid solution emission observed with the bridging isocyanide ligand and not the phosphine bridging ligand? Apparently, the bridging isocyanide ligand is decreasing the platinum dimer's nonradiative rate constant. One possible non-radiative deactivation pathway in the dppm complex is rapid cleavage and reassembly of the Pt-P(dppm) bond.¹⁸ Replacement of the neutral dppm bridging ligand with the bridging 1,3-diisocyanopropane ligand may hinder this deactivation pathway by inducing an electrostatic interaction between the Pt(+1) center and the formal negative charge on the carbon atom in the isocyanide ligand.

Obviously, further work in the areas of product characterization and photophysical analysis is required, and merited, on these reactions.

REFERENCES

- 1. Goldberg, S. Z.; Eisenberg, R. Inorg. Chem. 1976, 15, 535.
- Boehm, J. R.; Doonan, D. J.; Balch, A. L. J. Am. Chem. Soc. 1976, 98, 4845.
- Miller, T. D.; St. Clair, M. A.; Reinking, M. K.; Kubiak, C. P. Organometallics 1983, 2, 767.
- Reinking, M. K.; Kullberg, M. L.; Cutler, A. R.; Kubiak, C. P. J. Am. Chem. Soc. 1985, 107, 3517.
- 5. Wrighton, M.; Bredesen, D. J. Organomet. Chem. 1973, 50, C35.
- 6. Wrighton, M. S.; Ginley, D. S. J. Am. Chem. Soc. 1975, 97, 2065.
- 7. Benner, L. S.; Balch, A. L. J. Am. Chem. Soc. 1978, 100, 6099.
- Olmstead, M. M.; Hope, H.; Benner, L. S.; Balch, A. L. J. Am. Chem. Soc. 1977, 99, 5502.
- Balch, A. L.; Benner, L. S.; Olmstead, M. M. Inorg. Chem., 1979, 18, 2996.
- Brown, M. P.; Puddephatt, R. J.; Rashidi, M.; Seddon, K. R. J. Chem. Soc. Dalton Trans. 1978, 516.
- Brown, M. P.; Puddephatt, R. J. Rashidi, M.; Seddon, K. R. J. Chem. Soc. Dalton Trans. 1978, 1540.
- Brown, M. P.; Fisher, J. R.; Puddephatt, R. J.; Seddon, K. R.; Inorg. Chem. 1979, 18, 2808.
- Cameron, T. S.; Gardner, P. A.; Grundy, K. R. J. Organomet. Chem.
 1981, 212, 135.
- Weber, W. P.; Bokel, G. W.; Ugi, I. K. Agnew. Chem. Int. Ed. Engl. 1972, 11, 530.
- Nocera, D. G.; Winkler, J. R.; Yocom, K. M.; Bordignon, E.; Gray,
 H. B. J. Am. Chem. Soc. 1984, 106, 5145.

- 16. Parker, C. A.; Rees, W. T. Analyst 1960, 85, 587.
- Treichel, P. M.; Knebel, W. J.; Hess, R. W. J. Am. Chem. Soc. 1971, 93, 5424.
- Muralidharan, S.; Espenson, J. H. J. Am. Chem. Soc. 1984, 106, 8104.

APPENDIX

Anisotropic Thermal Parameters and Listings of Observed and Calculated Structure Factors for $K_4[Pt_2(P_2O_5H_2)_4Cl]$ at 22 and 300 K

Table A.1

Anisotropic Parameters Pt_2Cl at 22 K. $U \times 10^4$

Atom U₁₁ U₂₂ U33 U12 U₁₃ U₂₃ Cl 241(11) 241(11) 378(64) 0 0 0 **K**1 172(5) 172(5) 107(9) 61(7) 0 0 K2 103(5) 103(5) 197(10) 15(6) 0 0 86(4) Ρ 82(4) 103(4) -18(4) 13(4) 0(4) 01 82(13) 137(14) 148(16) -19(11) 26(12) 7(13) 02 152(14) 68(13) 166(17) -25(11) 27(14) 10(13) O3 204(24) 174(24) 90(19) -90(18) 0 0

Table A.2

Anisotropic Parameters Pt_2Cl at 300 K. $U \times 10^4$

Atom	U ₁₁	U22	U33	U ₁₂	U13	U23
C1	835(31)	835(31)	334(42)	0	0	0
K1	478(10)	478(10)	250(11)	202(12)	0	0
K2	338(8)	338(8)	490(18)	36(10)	0	0
Р	202(5)	194(5)	241(5)	-29(4)	32(5)	8(5)
01	284(18)	317(18)	418(23)	-48(15)	117(18)	2(19)
02	352(20)	192(16)	544(28)	-52(14)	52(21)	82(19)
O3	491(37)	584(42)	235(22)	-335(30)	0	0

Table A.3 (for deposit).

Structure Factors for Pt2Cl at 22 K.

The columns contain, in order, 1, 10Fo, 10Fc and 10[(Fo**2 - Fc**2)/sigma(Fo**2)]. A minus sign preceeding 10Fo indicates that Fo**2 is negative.

		Sti	ructur	F	actor	for	Pt 2Cl	at	22 K		Pa	ge	1		
	0	0 1		11 12	776	816	-15 - 12	11	64	124	- 10	0	\$232	\$223	5
123	2150 2554 2953	2285 2606	- 62	0	8	1 1	. 68	0	4 3273	2 1 3222	17	123	684 1999 3324	661 1955 3286	27 24 13
456	1823 2241 2872	1866 2441 3131	- 32	123	776	649 295	143	234	2442	2350	41	507	1345	1364	-13
780	449	511 1190	-26	456	684 921	644 937	41	507	1422	1416	-15	89	1557	1569	-6
10	726	783 1621	- 20	780	233	233	- 20	89	1235	1274	- 25	11	1022	1029	- 3
13	315	327	- 2	10	148	164 649	- 4	11	1075	1076	0	0	106	85	15
0	\$369	\$229	40		3	2 1	- 9 9	0	29	82	- 32	23	\$20 \$05	\$49 \$23	- 37
234	2512 3260	2426	32	01	34 317	51 372	-100	23	530 383	498	40	456	83 394	46	12 12 9
567	1553	1638 2058	-44	484	988 112	991	- 3	50	54 397	11 400	14	89	67 172	110 112 169	-17 -13 1
89	1620 1438	1763	- 62	67	201 546	168	23	89	18 143	138 3 147	-18 0 -1	10	235	200	15
10 11 12	1172 726	1209 757	-13 -10	9 10	-41 132 157	84 164	- 2 13 - 2	10 11	175 - 95	170 10	- 8	0	5 1326	5 l 1416	- 57
	2	0 1		11 12	226 63	195 98	- 3	0	4	4 1 4111	10	1 2 8	1002 1561 3147	978 1536 \$114	17 13 14
012	2069 1550 1445	1928 1556 1446	75 -4 0	0	3 3717	3 1 3724	-1	1 2 3	2032 601 3325	1947 528 3302	38 61	4 5 6	1605 1742 1751	1573 1727 1697	16
345	2317 1269 1790	2310 1287 1868	-14 -45	123	1750 1829 2612	1667 1796 2611	43	4 5 6	406 2573 3105	369 2576	29 -1	7 8 9	212 1793	167 1817 1216	18
6 7 8	1517 373 1409	1576 402 1493	- 37 - 20 - 50	4 5 6	485 1916 2160	488 1901 2189	-2 6	7 8 9	123 1573 1369	108 1558 1396	4	10 11	231 1083	200 1037	20
9 10 11	892 235 1073	927 206 1092	- 22	7 8 9	418 1558 1252	402 1570 1293	- 5	10 11	623 1465	564 1462	28	0	6	0 1	- 88
12	550	595 1 1	-19	10 11	164 1299	157 1325	-10	0	5	1 1	19	1 2	1194 521 2050	1163 514	24
0	480	563	-162	0	4	0 1	20	12	1267 611	1221 566	\$6 52	45	1369	1384	-10
234	343 229 411	342 219	13	1 2 3	1196	1209	-15	45	113	55 1120	28	780	341 1404	350 1452	- 29
567	291 154 90	279 154	10	456	636 468	643 425	-7	780	577 610	627 581	-41 21	10 11	-66	40 1030	- 5
89	267	270	-11	780	191 414	250	-31	10 11	-39	\$0 825	-2		6	1 1	
11 12	130 181	\$7 192	10	10 11	466	445	-20 12 17		5	2 1		1 2	645 53	672 660 83	-16 -15
	2	2 1			4	1 1		1 2	348 291 86	353 300 68	- 12 11	345	141 362 686	130 373 672	- 11 12
12	2950 555 217	2894 508 45	18 52 116	012	95 592 516	48 614 547	37 - 31 - 42	345	143 64 229	123 24 195	16 11 27	678	138	107	12
345	2893 506 1128	2896 486 1124	-1 17 2	345	111 106 651	94 118	12	678	276	258	12	9	364 120	\$55 185	-18
678	2223 110 1001	2303	- 32 10	67.	184	224	- 24	9	-104	48	-17	*1	6	2 1	0
9 10	1259	1349 256	-41	10	217	223	- 23	**	5	\$ 1	11	01	2849 510	2945	- 38

	5	tructure	Fact	ors fo	r Pt2Cl	at	22 K		Pa	ge	2		
2 1 3 2 4	567 149 497 250 348 31	0 49 6 -4 7 30	5 17 6 22 7 1	53 176 38 221 19 2	6 -7 6 10 23	8 9 10	289 373 -115	277 355 47	6 10 - 19	0	8 866	4 1 861	4
5 6 1	982 93 598 159	7 36	8 14 9 12	$ \begin{array}{r} 64 \\ 41 \\ 124 \end{array} $	3 11 5 - 2		7	7 1		12	132 513	36	43
7 8 1	124 8 088 108	8 13 0 5	$ \begin{array}{ccc} 10 & 2 \\ 11 & 11 \end{array} $	26 17 40 110	2 18 8 17	0	2457	2481	- 8	34	1220 627	1200	14
10 -	142	5 -11 0 -22	7	2	1	12	1346	1328	17	5	211 843	43 817	20
11	6 10 01 6 1	1 10	0 4	25 45	5 - 38	34	565	547	11	8	602 001	611	-13
0	610 A	3 . 39	2 3	04 32	9 - 28	67	1483	1458	11	10	254	205	20
1 2	97 10	3 -4	4 5	58 55	0 7	8	1346	1314	14		8	51	
3	82 S	7 -1	6 - 7 2	63 1 57 22	1 -8	10	191	123	15	0	204	223	-17
5	77 0	5 4	8 4 9 2	51 42 82 23	4 19 0 27		8	0 1		23	345	381	- 38
7	67 10 480 44	$\begin{array}{ccc} 2 & -11 \\ 7 & 24 \end{array}$	10 1 11	27 7 44 3	1 12 2 0	01	3897 1568	3935 1529	-11 25	4 5	143 326	135	10
10	64 122 1	6 4 8 - 5	7	8	1	23	1677 2761	1634 2766	25	67	95 186	90	- 24
11	113 12	-3	0 16	06 161	9 -8	45	283 2088	245 2072	31	8	331 134	302 18	18 21
0.2	192 911	1	2 12	21 59 82 126	4 29	67	2430	2437 301	- 2 - 5	10	75	35	5
1 1	136 109	9 30	4 6	38 6 0	8 28	9	1416	1558	-1		8	6 1	
3 1	942 192	7 7	6 10	34 99	0 33	11	1450	1419	15	1	1876	629	13
5 1 6 1	428 141	7 7	8 9	43 94	2 0		8	1 1		3	2016	1986	15
7 8 1	379 37 210 121	8 0	10 2 11 7	58 25	3 2	0	912	935	-21	5	1043	1020	17
9	981 98 153 2	7 -4	7	4	1	23	147	168	-16	7	160	153	3
11 1	008 99	2 9	0 2	02 19	29	4 5	451	447	3	9	1105	1068	23
	6 5	1	$\begin{array}{ccc} 1 & 2 \\ 2 & 1 \end{array}$	63 25 71 17	8 5	67	473 229	471 232	-2		8	7 1	
0	369 41 84 8	7 -60	3 1	91 18 23 6	1 8 3 - 12	89	113	124 200	-17	0	681	728	- 46
3	285 20	5 19	6 -	84 38 51 1	3 O	10 11	274	255	96	12	84 203	70 193	57
5	105 12 68 2	0 8	8 -	95 8 36 1	6 2		8	2 1		84	143	135 293	3 11
7	122 7 107	6 15	10 1	07 7	4 14 3 7	0	2331	2376	-21	5	120 272	81 254	14
9	142 17	3 -12	- 11	10 4	3 - 8	12	1228	1224	2	8	105	52	13
ĩĭ	-79	1 -8	0 92	0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	4	404	407	-2	10	129	145	- 5
×	6 6	1	1 4	18 37	2 49	67	1426	1391	32		8	8 1	
0 3 1 1	254 320	8 13 3 33	3 14	91 147 98	2 11 1 23	8	976	984	- 5	0	2812	2837	- 8
2 1 3 1	059 107	6 -11	5 4 6 14	95 46 02 136	3 27 5 23	10	146	130	4 23	2	1169	1163	35
4 5 1	3 51 29 280 12	4 36	7 3	01 29 32 53	8 1 3 0		8	8 1	20	4 5	508	514	- 3
6 1 7	499 149 321 33	6 1	9 10 10 1	29 101 49 5	0 12 3 21	0	139	152	-10	67	2188	2159	11
9	960 92	2 20	11 6	17 59	7 12	12	423 397	444 386	-24	8	1483 1246	1468	6
10	846 84	7 0	7	6	1	34	346 269	361 278	-14	10	\$67	\$11	19
	7 1	1	1 3	13 29 29 34	3 19 5 -17	5	271 193	254	11	-	9	1 1	
0 2	704 277	5 - 29	3 4	55 54 61 44	9 11	8	488	472 475	12	0	2622 584	2619	12
2 3 2	995 101 871 284	0 -13	5 2	62 26	4 -1	10	57	150	- 23	NS	2703	2210	14
4	729 65	7 29	7 1	72 14	6 12	11	# 10	401	40	5	1138	1123	-11

		e		F.			D. 601								
		DU	ructure	Fac	tors	Ior	PIZCI	at	22 K	•	Pat	ţe	3		
6789	1455 70 1573 1428 202	1411 1563 1408 77	26 8 5 11	0 2 1 2 3 2	155 605 927 641	2193 582 906 2640	-18 20 16 0	10	19 10	15 3 1	0	6789	1367 351 784 822	1351 322 783 807	10 17 0 9
10				5 1	159	1175	-10	1	\$18	\$00	16		10	9 1	
0123456	9 708 242 371 215 216 339 148	728 237 362 210 221 308 166	- 19 4 9 3 - 2 24 - 9	6 1 8 1 9 1 10	925 288 267 353 201 9	1890 210 1244 1320 149 8 1 414	17 41 13 18 17	N#4607800	268 567 -23 94 182 409 -64 171	259 557 46 103 186 390 38 155 46	785323850	01234567	208 55 192 237 -61 104 -10	221 58 178 230 23 133 112 56	-9 8 4 -7 -10 -19
7	23	1	0	1	73	67	1		10		•	8	135	134	Ő
9	- 61	53	- 8	3	258	255	- 11		10	4 1		8	71	91	- 3
10	- 36	87	-10	45	117 157	118	- 4	01	1937 510	1962 505	-13		10	10 1	
012	9 1876 859 198	\$ 1 1877 822	0 33 78	6789	66 34 81 120	0 89 62 56	- 10 3 12	23454	1265 2039 513 930	1267 2016 509 908	-1 11 3 16	0123	1851 714 483 1052	1842 725 494 1066	
3	1393	1400	-4		9	9 1		7	36	72	- 5	5	874	853	11
567	995 1541 256	1006 1523 243	-8	01	804 750 713	1840 763 1737	-16 -8 -11	910	1014 1098 186	1032 1092 114	-11 4 21	6 7 8	1368 473 607	1321 449 633	20 11 -12
ş	699	687	11	4	750	746	- 5		10	5 1			11	1 1	
10	- 3 2 9	31 4 1	- 2	5 1 6 1 7 8 1	011 151 344 469	1024 1128 363 1446	-7 11 -8 9	0123	253 252 558 135	256 248 551 75	-2 3 6 23	0123	1222 442 517 1547	1217 435 479 1535	3 6 51 7
01	220 51	238	-16	9 1	112	1109	1	4	63	38	5	4	569	569	, Ó
20400	215 159 21 - 34	243 153 37 23	- 25 3 - 1 - 3	1 0 2	523 837	0 1 2532 814	19	6789	228 91 83	206 134 101 60	12 -14 -4 4	6789	1220 130 761 848	1197 119 783 852	15 15 - 15 - 2
78	-81	41 85	-15	\$ 1	599	1561	22 -12	10	10	6 1	-11	10	120	2 1	0
10	-41 26	77 15	-10	5 1	015	999	11	o	1769	1768	0	0	164	183	-10
	9	5 1		8 1	001	986	- 2	2	1292	1282	12	2	631	628	2
0	1584	1531	32	10	164	169	-1	4	669	672	- 2	4	247	218	- 25
2	463	440	22	1	0	1 1		6	1025	1226	28	6	-116	29	- 22
4	471	463	6	0	99	149	- 30	8	1169	1168	18	8	406	145 367	23
6	1348	1334	8	2	595	579	-16	9	1117	1104	7	10	265	231	15
8	803	793	-12	4	184	206	-13		10	7 1			11	8 1	
10	112	59	11	6	237	328 447	6	01	- 65	33	-11 -11	0	2171	2195	-11
	9	6 1		7	109 98	113 88	-12	23	459	445 358	-10	12	1063 1247	1060 1230	2 11
0	\$11	287	21	10	205 278	201 272	1	45	178	179 204	-4	34	1958	1947 582	-13
12	98	115	- 8 - 7	1	0	2 1		67	166	176 201	-4	5	1441	1434	4
34	182	175 67	- 6	0 1	787	1814	- 15	8	247	179	29	7	\$26	281	26
5	164	146	10	1	955	915	32	-	10	8 1	•	9	1041	1026	9
7	-80	39	-13	\$ 1	695	1699	- 2	0	2144	9154	. 4	10	11	4 1	
9	129	135	-1	5 1	251	1233	12	1	881	881	0	•	**	* 1	-
	9	7 1	90	7 8 9	\$19 996 923	293 982 901	16 9 13	1945	1448 122 1162	1434 130 1169	- 8 - 3	123	143 230 240 129	127 219 211 66	7 7 18 22

		Str	ucture	F	actors	for	Pt 2C1	at	22 K	•	Page	e	4		
4	182	150	16	67	104	85	4	9	1162	1169	-4	1	284	284	07
67	208	185	11	8	400	346	28		12	51		8	137	103	11
80	58	85	- 5		11 1	1 1		0	578	575	2	5	409	377	19
	11	5 1		0	1191	1210	-10	2	-60	46	- 12	7	65	13	4
0	2860	2883	. 5	20	908	903	- 13	4	161	164	-1		12	12 1	
12	781	751	24	4	824	807	8	67	431	432	Ő	0	2203	2189	5
3	2166	2159	3	67	1186	1210	-11	8	78	73	0	2	1045	1032	6
5	1155	1149	3		12	0 1	v		12	A 1	U	4	165	182	-4
78	166	109	20	0	957	962	- 3	0	1701	1809	. 9	ő	1431	1428	1
9	1275	1236	22	12	511	481	25	1	730	710	15		13	1 1	
	11	6 1		3	1040	1018	15	3	1422	1428	- 3	0	1779	1766	6
01	453	450	-1	56	704	673	23	5	947	946	0	2	569	571	-1
2	582	590 450	$\frac{1}{17}$	7	227	205	10	7	366	\$35	18	4	61	53	1
4 5	-66	6	-8	9	482	498	-9	9	949	937	6	67	1136	1132	2
67	-63	39	- 8		12	1 1			12	7 1		80	510	504	3
8	\$15 \$83	284	16	0	179	184	- 3	0	306	289	12		1.	• 1	
	11	7 1		23	166	148	9	2	73	91	-5	0	107	100	- 1
0	1243	1255	- 8	4 5	113	141	-12	4	- 63	22	-7	i	166	149	8
12	784	794	- 8	67	213	197	8	67	202	229	- 15	5	448	462	-11
34	1186	1184	12	8	203	223	-9	8	176	151	8	5	311	844	- 22
56	999	1006	-4		12	2 1			12	8 1		7	227	181	19
7	342 857	326	97	0	1826	1818	7	0	924	907	12	9	128	80	10
9	658	640	11	1	535	513	19	2	476	471	3		13	3 1	
	11	8 1		3	1824	1818	2	4	371	369	1	0	1973	1981	-4
0	439	438	0	5	850	855	- 3	67	713	711	1	2	1284	1267	11
2	62	27	5	7	90	115	-6	8	481	488	-4	4	551	581	- 23
4	169	185	- 8	ğ	1098	1074	13		12	9 1		6	1473	1452	12
67	229	255	-14		12	3 1		0	165	174	:4	8	1266	1260	3
8	46	9	2	0	957	984	-21	2	-40	101	- 20		1402	1200	10
	11	9 1		2	81	103	-7	4	103	125	-7	0	10		
0	1353	1385	-21	4	459	468	-7	67	233	246	-6	1	-102	71	- 32
2	418	442	- 18	67	424	380	29	8	270	259	5	3	-48	14	-4
4	145	166	-9	80	109	92	- 43		12	10 1		5	-10	71	- 15
67	1050	1036	9		12	4 1		0	1215	1201	9	7	55	53	0
8	441	462	-13	0	9794	9758	-18	2	799	810	- 8	0	100	149	- 9
	11 1	10 1		1	1092	1090	1	44	619	639	-14	0	1407	1408	0
01	109	138	-12	3	2205	2172	15	67	1048	1055	-4	1	695	700	- 3
23	208	207	0	56	1600	1581	10		12	11 1	- 0	3	1963	1942	10
45	\$75 52	342 104	22	7	235	240	-2	0	108	184	- 9	156	1144	1155	-7

		Sti	ructure	F	actors	for	Pt 2Cl	at	22 K		Pag	e	5		
7	120	1276	17		13 1	13 1		8	103	23	10		14	14 1	
	13	6 1	20	01	1227	1281 565	- 25		14	6 1		0	1016	1018	- 1
0	134	162	-13	23	1066	1077	- 5	01	1421 778	1435	- 8	ĩ	464	479	- 6
12	229 318	222 324	-4	4	438	437	0	2 3	510 1129	528 1118	-13		15	1 1	
34	230	233 172	-1		14	0 1		4 5	843 955	335 988	- 22	01	1825 804	1825 822	- 12
007	101	333	20	1	219	212	-14	7	1152 334	1161 335	- 5	NS	754	765	- 8
8	306	296	4	NON	1967	1915	-10		14	7 1		45	423	457	-23
	13	7 1		15	576	585	-6	0	154	135	8	7	177	209	- 12
0	1326	1334	- 5	7	88	81	11	23	67	117	-14	0	15	9 1	0
23	272	229	26	Ŭ	14	1 1	**	45	- 98	0	-14	0			- 10
45	224	234	- 5	0	104	119	- 5	67	-72	56	-10	12	49	17	3
67	1255 256	1244 255	6	12	187	202	- 8		14	8 1	•	34	595	590	3 5
8	571	575	- 2	34	159	173	- 19	0	1448	1455	-4	56	181	199	- 7
	13	8 1		5	116	170 42	- 20	12	341 1076	354	- 13	7	280	276	i
01	-17	33 90	-14	8	89 122	147 91	-16	34	1524 420	1515 438	- 12		15	3 1	
3	100	80 412	- 4		14	2 1		56	612 911	621 904	- 6	01	1264 512	1259 520	- 6
5	26	65	- 5	0	1561	1573	- 6	7	- 65	97	-15	23	700 1156	718 1172	-13
7	309	269	20	12	1100	1107	-15	-	14	9 1		45	\$57 691	388 701	-19
	13	91		44	576	592	- 11	1	- 53	58	-17	7	226	237	-4
0	1340	1353	- 7	07	1138	1141	-1	3	144	92	12		15	4 1	
23	665 1017	671	-4	8	1185	1132	30	5	72	70	0	0	247	242	,2
4 5	332 1025	317 1018	94		14	3 1		Ŭ	14	10 1	**	2	166	168	0
67	958 374	988	-19	01	\$30 - 28	\$17 64	-8	0	1454	1479	- 14	4	109	151	-14
	13 1	10 1		23	57	50	-3	1	416 942	423 980	- 26	67	202	211	- 3
0	295	283	7	45	333 -78	837 51	- 12	34	1653 497	1643 504	- 4		15	5 1	
12	104	19	0 4	67	- 99	25 85	$-\frac{11}{21}$	5	776	762 1124	-9	0	1134	1125	5
4	425	443	-12	8	231	279	- 2 2		14	11 1		12	263	274 663	- 6
6	184	153	-13		14	4 1		0	159	130	10	34	1363 307	1358	-13
	13	11 1		1	786	1876	-9	12	-91	205	- 12	6	511 867	532 810	-13
0	2019	2007	5	3	1509	1493	9	4	- 52	39	- 5	7	84	19	7
23	793	840	- 33	56	1172	1181	- 10	0	- 10	83 19 1	- 0	•	10		
4 5	196	183	- 27	7	126	105	5	0	1415	1424	- 5	1	24	121	-21
6	1480	1442	20		14	5 1	- 10	1 2	655	679	-16	3	359	310	28
	13	12 1		0	240	225	9	34	1037	1025	-13	5	242	245	-1
01	112	88	16	12	44	40 53	Ő	-	14	13 1		7	46	63	- 2
284	195	196	01	34	217	175	20	0	112	84	6		15	7 1	
5	214	176	15	007	171	156	05	12	110	68 165	- 3	01	1632	1673	- 22

		Sti	ructure	Fac	tors	for	Pt 2Cl	at	22 K		Pag	e	6		
5450	1447 375 913 1035	1446 364 932 1048	0 6 - 12 - 8	1 2 3 1 4	427 601 520 95	452 626 1518 171	-17 -18 1 -24	123	530 571 1214	597 595 1177	-46 -15 21	1234	-32 195 65 215	96 212 26 228	-12 -7 4 -5
	15	8 1		6 1	253	1240	Ĩ	•	10 .				17	9 1	
0123	352 307 295 229	334 286 278 218	11 12 9 5	, 1	6 498	8 1 467	21	1 2	253 81	244 66	4 2	0123	1142 493 764	1149 479 783	-4 8 -12
4	81	123	-10	1	374	\$55	11	0	1551	1549	E		17	10 1	
6	-115	13	-16	3	56	61	Ő	1	514	550	- 2 3	~		10 1	-
	15	91		5	418	394	14	3	1647	1644	1	1	168	155	4
0	1928	1903	12	7	152	155	10	5	897	910	- 17 - 7		18	0 1	
2	633	666	- 23	1	6	4 1		6	1062	1060	1	0	1801	1822	-10
4	1575	1501	-6	0	919	941	-15		17	2 1		12	533	571 423	-24 -32
5	1115	1125	- 6	12	464	477 577	- 25	01	245	250	- 20	34	1093	1081	6
	15	10 1		34	714	716	-1	2	411	405	3	5	703	720	-10
0	95	95	0	5	518	536	-11	4	-80	129	- 28		18	1 1	
2	107	29	13		A.	5 1		6	136	98	8	0	125	11	17
4	132	122	2						17	\$ 1		2	-138	79	- 20
Č				1	296	298	-1	0	1245	1242	1	4	-149	25	- 28
~	10 .			3	352 112	329	13	12	508 441	466	-21 -15	5	-41	18	- 2
1	619	624	-16	5	133 410	164 374	-10 20	34	985 185	986 215	- 12		18	2 1	
3	573 948	601 963	-19	6	159	125	9	5	693	694 975	0	0	1199	1230	-18
4	\$91	367	13	1	6	6 1			17	4 1		2	770	800	-19
	15	12 1		01	515	1502	7	0	181	920	- 17	4	358	381	- 12
01	358	\$35	13	2 1	751	781	- 21	1	104	136	-9	•	1.0	. 1	- 4
2	208	137	25	4	277	304	-14	3	89	115	-6		10	9 1	
	15	1 2 1	10	6 1	072	1062	- 46	5	- 30	154	-15	1	-137	35	- 26
0	745	745		1	6	7 1			17	51		NS	49	220	-11
ĭ	199	195	-13	0	322	331	- 5	0	1281	1260	12	4	159	162	0
	16	0 1		12	208	218 122	-4	12	560 458	581 475	-13		18	4 1	
0	1679	1696	-9	34.	218 107	179	-15	34	956 257	960 303	- 1	01	1130 150	1123 208	- 22
12	897	926 1188	-20	5	\$07	291	7	5	691	693	-1	2	669	691	-14
34	1855 670	1845	-17	1	6	8 1			17	6 1		4	479	504	-14
5	1460	1421	20	0 1	664	1692	-14	0	529	515	8		18	51	
7	-113	96	- 24	2 .	870	880	-6	2	264	299	-18	0	126	72	11
	16	1 1		4	462	450	7	4	91	120	-6	2	-83	20	-14
0	309	\$20	- 6	0 1	101	1194	U	Ð	38	57	-1	34	-36	23	- 2 - 9
2	254	253	0	1	.0	9 1			17	7 1			18	6 1	
4	-102	16	-14	1	893 62	\$75 93	10 - 6	0	1495 579	1490 601	- 14 - 14	0	1244	1245	0
00	556	532	2 14	2	167	182 220	- 14	23	747	776	-19	12	520	566	- 30
7	- 37	37	- 2	4	- 56	67	- 9	4	386	430	- 26	3	1374	1357	9
-	16	2 1		1	6 1	0 1			17	8 1			18	7 1	
0	1700	1717	- 8	0 1	225	1209	9	0	88	157	-20	0	118	119	0

		S	tructure	F	actors	for	Pt 2Cl	at	22 K		Pag	e	7		
1	-103	4	9 -16	1	289	322	-16						19	5 1	
2	159	12	3 10	2	554	620	- 4 2	0	1380	1357	12				
3	115		4 13	3	1056	1049	3	1	578	605	-16	0	1655	1605	24
								2	602	637	-21	1	795	769	15
	18	8	1		19	2 1		3	1329	1325	2	2	671	694	-14
0	1357	137	2 - 8	0	188	230	-17		19	4 1			19	6 1	
1	585	60	7 -13	1	- 88	85	-17								
				2	\$46	324	10	0	115	24	13	0	\$51	\$41	5
	19	1	1	3	296	271	10	1 2	132	171	-12				
0	926	94	0 -8		19	3 1		-							

÷

Table A4 (for deposit).

Structure Factors for Pt2Cl at 300 K.

The columns contain, in order, k, 10Fo, 10Fc and 10 [(Fo**2 - Fc**2)/sigma(Fo**2)]. A minus sign preceeding 10Fo indicates that Fo**2 is negative.

		St	ructu	re Fa	actors	for	Pt 2Cl	at	800 K.	Pa	ge	1		
	1 k	0		0	2235	2234	23	12	1354 1352 119 43	27	567	978 159 705	966 131 704	10 12 0
1	3172 3	219	-14	2	1610	1583	17	3	981 975	4	8	120	102	6
•	2 k	0	E 7	45	1617	1589	18	56	859 836 79 66	21	10	128	45	23
12	461 2842 2	548	- 177	780	142	34 1661	46		225 173 1229 1214	34 11	14	20]	k 0	20
	3 k	0		10	1387	1407	-11	11	765 780	-13	0	452	470	-16
1	1440 1	536	- 78		11 1	. 0		12	157 142 470 501	- 29	12	181 725	201 714	-11
2 3	-159 3519 3	96	-123	1	1081	1067	12	14	68 82 567 590	- 3	34	\$10 916	307 906	28
	4 ' k	0		23	137	125	8		16 k 0		5	197	176	11
0	708	715	- 9	4 5	152	122	22	0	1809 1294	11	7	216	180	19
1	-128	68	-84	6	275	267	8	1	231 196	26	9	144	50	27
3	-211	107	- 142	8	256	247		ŝ	265 235	24	10	001	940	- 1
	2301 3	9903	0	10	150	43	-14	5	308 298	8	-	21 1	K O	4.4
	D K	0		11	859	873	-10	7	1031 1021 205 203	7	12	606	593 145	11
12	2611 2	295	- 69		12 1	к О		89	1223 1209 245 242	10	34	756	737	15 20
34	3129 3	137	- 3	0	782	758	25	10	807 798	7	5	694	696	-1
5	1306 1	1383	- 54	2	1405	1377	20	12	484 496	- 11	Ť	428	439	-8
	6 k	0		4	2324	2325	0	14	576 581	- 4	0	114	19	18
0	1063 1	119	- 57	6	1402	1391	- 27	16	180 144 822 798	14		22 1	k O	
2	2756 2	489	-15	78	210	225 694	-13		17 k 0		01	589	589 55	- 2
34	517 1968 1	513	5	10	160 863	122 853	22	1	1162 1144	14	23	589	594	-1
5	341 2854 2	360	- 27	11	137	125	6	2	183 195 815 824	- 7	4	643	631	10
	7 k	0	-		18 1	- 0	•	4	129 102	11	6	467	457	6
1	2480 2	514			1950	1	0	6	273 286	-10		0 1	k 1	
2	415	405	15	2	228	212	14	8	118 49	20	0	2297	2284	6
4	185	142	42	34	1637	1621	46	10	806 792 94 49	12		1 1	t 1	
0	174	1990	- 24	5	1257	1243	10	11 12	609 618 124 114	- 8	1	1359	1157	133
7	2279 2	2291	- 5	7 8	925	926	0	13	570 585 136 105	-13		2 1	. 1	
	8 k	0		10	912	926	-12	15	762 755	6	0	1516	1525	- 6
0	3538 3	681	- 36	11	1353	1352	Ö		18 k 0		1	150	193	- 52
2	2086 2	2092	- 2	13	948	961	- 8	0	1133 1119	11		040	419	10
4	822	755	70		14 1	к О		2	860 863	- 3		3 1	L 1	
6	1601 1	143	35	0	1209	1196	9	34	183 159 716 702	13	12	203	676 337	120 - 207
8	491 2451 2	512 2432	- 25	12	151 1294	57 1269	46	5	119 2 816 810	23	3	1718	1611	85
	9 k	0		34	264	221	37	7	110 52 833 830	16		4 1	k 1	
1	2429	2460	- 14	5	187	123	39	10	164 113	22	0	1136	1184	-48
28	581	585	-4	7	78	77	ō	11	121 54	18	2	1272	1267	4
4	189	190	-1		87	32	13	13	92 61	- 20	4	1930	1850	38
67	255	285	- 35	11	94	52	- 5		19 k 0			5]	k 1	
8	341	334	37	12	117	83	12	1	628 632	- 3	1	1200	1155	\$9
9	1600 1	1023	- 21	14	601	613	- 8	23	128 83 863 859	16	2 3	231 717	297	-92
	10 k	0			15 1	k 0		4	-17 10	- 1	4	124	111	11

		Sti	ucture	F	LCLOTS	for	Pt 2Cl	at	300 K.		Pag	e	2		
5	924	925	0	2	572	573	-1	12	167	166	0	7	215	228	- 7
	6 k	1		45	900 107	922	- 21 21	14	304 156	294	-9 7 81	0	22 k	: 1	- 4
0123456	1088 1 550 529 -121 1121 1 132 948	147 564 467 56 110 25 887	- 59 - 21 87 - 67 10 57 48	6 7 8 9 10 11 12	609 243 268 163 432 141 585	635 243 240 108 441 135 593	-29 0 25 30 -9 3 -6	16 1 2 3	315 17 k 455 123 360	\$10 1 462 90 \$80	- 7 13 - 18	012345	166 75 270 115 266 - 55	207 9 283 4 282 1	-20 8 -8 18 -10 -4
	7 k	1			13 k	1		4 5	119 367	50 384	21 - 14		0 k	2	
12	1164 1 197	140 174	22 28	12	637 173	638	-126	78	-84 417 -85	427	-14 -9 -6	0	2673	2556	42
34507	598 241 445 296	586 180 451 266	15 65 -8 33	34567	516 110 595 147	532 42 608 148	-19 24 -14 0	9 10 11 12	397 112 222 87	383 72 220 27	11 12 1 11	1	1 k 2570	2404	62
•	.8 k	1	- 5	89	41 557	553	3	14 15	68 276	10 297	-11 7 -15	0	2 E 1451	1457	-4
0	1484 14	83	102	10 11 12	83 444 77	37 476	- 33		18 k	1		12	270 104	\$40 76	-114
2345	960 360 154 289	971 822 8 273	-11 47 66 15	13	437 14 k	439	-1	0123	418 54 413 94	436 10 435 39	-16 5 -21 13	12	3 k 351 205	318 296	48 - 118
78	103 999 10	46 011	22 24 -9	0123	325 150 526 58	319 118 540 33	20 - 15 5	4567	210 61 379 101	251 48 385 21	-28 2 -5 16	3	1807 4 k	1746	\$1
1234	637 248 748	1 625 222 729	14 29 20	456780	669 116 558 135 324	508 78 340	- 27 - 10 25 - 21	8 9 10 11 12	388 67 259 120 235	406 1 282 10 255	-15 7 -16 23 -13	01234	964 385 2310 334 622	825 449 2253 373 546	140 - 103 28 - 58 74
50	970 148	971 114	-1 23	10 11	377 71	865 9	14 10 10	13	-40 19 k	29	-4		5 k	2	
789	595 121 660	601 63 694	-6 27 -28	12 13 14	461 68 284	477 31 294	- 15 7 - 5	123	260 84 411	262 29 405	-1 10 5	1234	654 -68 1945 219	599 18 1910 254	72 - 20 19 - 44
012	813 193 703	831 162 704	-20	12	620 142	638 23	-19	1567	461 54 322	452 11 315	10 7 4 5	9	6 k	1437	-1
345678	278 548 234 479 126 766	249 567 201 470 25 791	30 -24 29 10 37 -26	3456789	422 43 308 27 504 135 493	420 5 310 54 494 122 512	-4 -1 -4 10 6	9 10 11 12	-51 202 98 283 144	10 177 37 265 62	- 5 13 13 12 25	0123456	479 -89 1433 414 1113 267	513 68 1396 429 1072 163	- 55 - 52 28 - 22 36 99
9 10	- 35 524	49 552	-23	10 11	83 437	33 429	11	0	260	275	-10	Ŭ	7 k	2	
1234	11 k 450 158 920 180	1 444 77 912 127	7 51 7 39	12 13 14 15	111 194 141 303 16 k	46 179 20 307	18 9 \$1 -1	1234567	104 261 139 426 115 267 71	107 299 96 412 70 286 95	0 - 27 15 11 13 - 12 - 6	123456	964 277 1221 270 629 395	974 263 1199 155 606 403	-10 20 18 103 27
5678	674 162 649	680 132 656	-620-8	012	700 200 424	709 131 423	-9 42 0	8 9 10	163 106 252	207 59 254	-23 12 -1	7	1515 8 k	1536	- 12
9 10 11	284 127 566	292 18 577	- 7 35 - 8	34567	225 301 189 361 113	210 307 177 370 98	11 - 6 7 - 8 5	12	21 k 271 -61	1 278 26	- 5 - 7	0123	1497 249 1197 307	1474 124 1210 309	16 114 -10 -2
0	17 k	1	14	9	543	551 41	-8	34	313	825 2	- 8	45	458	378	- 22
ĭ	306	101	- 2	10	100	840	- 34	0	100	310	- 0	2	1034	222	32

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Str	ucture	F	actors	for	Pt 2Cl	at	\$00 K		Pa	ge	8		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	1046	1057	- 8	23	846 107	841	17	89	3 55 110	366	-9 18	01	2077	2155	-43 -17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	9 k 2002	2 1999	1	456	478 154 425	467 70 432	11 37 -7	10 11 12	359 92 390	358 20 365	1 13 19	234	1798 313 3087	1806 345 3099	- 5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	248	247	89	78	122 712	75	18-27	13	118	59	16		5 1	. 8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45	159	153	22	9 10	105 642	666	21 -23		19 k	2		1	1116	1107	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	861	112 872	-10	11	148	139	- 23	12	413 182	398 136	12 22	3	130 3013	135 2984	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ŝ	1427	1436	- 5	14	198	199	25	4	65	16	6	45	258 2885	2863	66 10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10 k	2			15 k	2		67	157 391	97	23		6 1	۲ S	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	1070	1078	-7	12	648 149	651 118	- 3 17	8	103 332	30 360	- 22	01	1846	1905	- 36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	153	96	32	34	554	585 61	- 33 27	10	137 346	116	8	2	2273	2330	-28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	\$36	\$47 978	-12	67	285	258	-12	12	57 20 1	5	5	45	200	1831	21
9 135 $\frac{84}{41}$ 26 10 $\frac{-64}{41}$ 331 $\frac{-16}{45}$ 1 $\frac{2}{56}$ $\frac{2}{56}$ $\frac{-1}{56}$ $\frac{-1}{56}$ $\frac{-1}{56}$ $\frac{1}{56}$ $\frac{1}{$	78	337 810	329 806	9	8	151	132	10	0	280	266	0	0	7	1044	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 10	135	84	26	10 11	64	38 431	-16	12	54 350	68	- 2	1	2558	2544	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		11 k	2		12	65 276	32 257	13	34	100 578	143 575	-16	2	493	491 1416	3 28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	503	472	37	14 15	168	119 418	-17	5	106 412	54 416	12	45	184 1308	136 1285	36 18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34	1027	1038	-10		16 k	2		8	247	262	-9	7	355 1735	333 1700	24 17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1223	1247	-18	0	780	776	23	10	\$08	290	12		8 1	: 3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78	677 25	697 13	- 21	23	564 115	564	07		21 k	2		0	2570	2637	-30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	412	418	- 6 24	45	371 179	380 204	- 8	12	301 126	304 134	- 2	28	1803	1801 262	1116
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	041	642	0	67	599 122	603 54	- 3 21	34	431 105	454	-18	4 5	1066	1062 37	33
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	12 8	2		9	108	92	- 10	5	401 184	413	10	67	1571	1546	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	165	146	15	11	73	60	- 3	8	118	235	20	8	2172	2132	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34	115	93 1314	12	13	127	79	15		22 k	2		1	2314	2323	-4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	133 641	13 651	38 -10	15	132	51	22	01	\$40 -65	380 38	- 30	23	149	154	-4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	144 345	110 351	18-6		17 k	2		2 3	357 59	374	-12	4	148	83 827	39 38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	604	613	- 39	12	209	764 195	-9	45	259	277 50	-11 2	67	127 2130	95 2139	17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	729	725	29	4	18	55	- 5		0 k	3		9	169	173 1503	-14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		13 k	2		67	164	176	-6	0	\$089	8087	0		10	: 3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	519 73	529 25	-12	89	78 539	67 518	218		1 k	3		01	1417	1412	3 39
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34	1053	1052	28	10 11	155 336	118 348	16	1	3251	\$\$20	- 21	28	1502 407	1516 404	-10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	007	930	937	-16	12	125	74 319	16		2 k	3		45	1610	1586	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80	90	35	15	14	90	00	7	1	-129	158	-131	7	1770 271	1752	11 24
12 154 64 35 1 118 69 16 13 736 727 5 2 540 531 8 1 1895 1901 -3 11 k 3 14 k 2 4 425 441 -14 3 2499 2530 -12 1 1221 1209 10 5 27 16 0 2 334 346 -14 0 785 772 13 6 542 525 15 4 k 3 3 1668 1638 18 1 85 44 13 7 127 118 3	10 11	117 642	71	17	0	420	443	- 22	-	3 1	8 194	U		189	152	- 2
14 k 2 3 160 137 11 2 789 811 -27 14 k 2 4 425 441 -14 3 2499 2530 -12 1 1221 1209 10 0 785 772 13 6 542 525 15 4 k 3 1668 1638 18 1 85 44 13 7 127 118 3 1 6 1638 18	12 13	154 736	64 727	35	12	118 540	69 531	16	1	1895	1901	- 3		11 1	200	1.0
0 785 772 13 6 542 525 15 4 k 3 1668 1638 18 1 85 44 13 7 127 118 3		14 k	2		34	160	137 441	-14	2	789	811	-27	1	1221	1209	10
	01	785	772	13	67	27 542 127	16 525 118	15		4 k	3		234	334	346	-14

	Str	ucture F	actors for	Pt 2Cl	at	\$00 K.	Page	4	
5 6 7 8 9 10	1778 1753 282 279 974 966 167 66 956 940 228 212 1110 1112	14 0 3 1 7 2 16 3 14 4 12 5 -1 6 7	1348 1348 232 196 1039 1022 103 66 567 549 84 86 884 882 191 154	0 26 13 12 17 0 1 30	123456	21 k 3 537 534 146 172 702 689 124 0 651 630 88 114	2 5 -11 6 10 7 21 8 17	205 175 476 469 161 97 608 604 216 186 459 459	26 8 37 4 23 0
01234567	12 k S 857 846 138 91 1427 1414 270 242 1821 1796 209 207 1136 1135 121 67	8 9 10 10 27 11 8 12 26 13 14 14 1 15 1 22	1091 1084 152 131 765 766 91 76 505 529 145 96 555 556 82 80 17 k 3	5 10 -1 4 -22 17 -1 9	7 0 1 2 3	422 435 22 k S 616 594 74 27 533 542 32 19 0 k 4	-9 12 17 4 6 5 -7 6 0 7 8 9	556 564 180 144 233 185 86 20 404 414 75 17 563 571 74 8 493 510	-10 28 41 19 -11 13 -8 -4 -13
9	729 742 95 73	-12	1149 1136	.9	0	1661 1568	76	10 k 4	
11 12	144 96 1253 1243 13 k 3	21 3 6 4 5 7	220 199 660 647 -16 53 624 625 228 196 999 983	17 11 -5 -1 20 12	1	1 k 4 778 760 2 k 4	0 12 2 3 4	230 235 126 97 485 489 140 11 431 453	-5 17 -4 47 -26
123450	546 827 \$02 \$05 1687 1676 119 11 1497 1481 181 150	18 8 -3 9 6 10 32 11 10 12 19 13	137 40 853 846 174 114 562 565 -64 72 465 474	28 5 -2 -16 -7	0 1 2	1254 1257 320 346 514 483 3 k 4	-2 6 -39 7 32 8 9	80 23 521 532 169 140 236 234 106 24	14 -11 18 1 23
7 9 10 11 12 13	816 805 248 214 713 713 245 222 1164 1165 166 106 873 880	10 14 26 0 17 0 0 28 1 -4 2	179 94 18 k 3 777 769 146 24 744 743	33 7 34 0	123	644 638 89 111 510 496 4 k 4	-17 -17 14 1 2 3 4	11 k 4 455 472 188 161 507 516 145 105	- 20 21 - 10 21
0123	14 k 3 1306 1283 198 147 1126 1129 131 6	36 36 36 36 36 36 36 36	48 51 886 861 114 8 827 839 -70 32 668 671 74 44	0 21 -10 -2 6	01234	561 554 134 128 416 405 172 24 540 425 5 k 4	10 5 6 6 15 7 85 8 97 9 10 11	187 141 114 22 377 389 147 87 161 138 183 163 594 598	31 27 -11 28 13 12 -2
567890	1128 1129 118 98 909 914 208 196 1019 1000 106 17 1061 1066	0 10 8 11 -3 12 8 13 15 20 -3	514 524 123 71 565 556 57 4 19 k 3	- 8 16 7 5	12345	214 41 192 17 555 597 75 27 1382 1379	125 98 -57 0 13 1 2 2 3	12 k 4 306 305 128 106 433 449 290 280	1 12 -18 9
11 12 13 14	145 116 684 701 124 72 622 614 15 k 3	13 1 -16 2 17 3 5 4 5 6	618 633 148 150 829 815 -44 28 807 788 202 169	-13 0 11 -4 15 17	0123	6 k 4 1153 1215 256 253 294 250 455 469	-56 6 3 7 50 8 -17 9	826 826 147 102 825 844 29 17 243 246 105 75	0 23 -18 1 -2 11
12345	1236 1230 324 325 882 866 97 46 895 894	7 4 8 0 9 14 10 14 11	643 632 137 37 516 508 93 70 568 557	26 7 5 8	456	726 722 135 133 200 127 7 k 4	4 10 1 11 39 12	443 462 99 12 213 219 13 k 4	-18 18 -3
67 89 10 11 12 13 14 15	224 189 1007 1006 133 55 1072 1056 240 207 627 632 95 23 608 607 132 92 594 613 16 k 3	22 0 26 13 1 21 21 21 21 21 21 21 21 21 21 21 21 2	20 k 3 436 443 102 90 738 703 90 795 90 793 795 90 90 642 115 50 427 430 65 61	- 24132620	1234567 012	735 732 395 415 498 512 113 29 122 44 150 63 449 442 8 k 4 285 248 324 294 444 459	\$ 1 -28 2 -17 3 \$5 5 43 6 5 7 8 9 10 \$9 11 39 11 -19 13	92 107 88 45 451 467 148 94 603 599 122 73 212 234 61 33 252 255 191 197 106 54 300 264	-7 13 -17 25 4 19 -17 5 -2 -11 5 -3 18

		Sti	ructure	F	actors	for	Pt 2Cl	at	300 K.	Pa	ge	5		
01234567	14 k 366 115 389 225 240 55 252 100	4 365 887 204 225 57 272 6	0 20 16 11 0 -16	5 6 7 8 9 10 11 12	51 293 103 156 98 118 -45 194 19 k	9 288 17 159 59 109 213 4	4 3 16 -1 9 3 -3 -10	0123456	6 k 5 1307 1353 476 478 908 877 117 57 1288 1290 120 26 1041 1036	- 37 - 2 30 26 - 1 33 3	3 4 5 6 7 8 9 10 11 12	126 1210 114 757 277 522 100 581 193 785	127 1192 94 766 284 325 109 594 178 804	0 13 -85 -23 -139 -12
8	332	347	- 13	12	243	244	0		7 k 5			13 k	5	
10 11 12 13 14	281 66 195 94 178 15 k	288 37 177 16 191 4	-5 5 10 14 -4	8456789	237 -55 149 68 157 120 157	241 4 177 8 145 56 180	-2 -5 -13 7 5 17 -11	1234567	1522 1528 90 5 749 786 285 249 542 534 189 182 1306 1294	-4 23 13 35 8 5 7	1 2 3 4 5 6 7	669 252 834 118 877 175 430	668 245 823 38 889 187 427	1 6 10 25 -10 -7 3
1	387	391	-4	10	78	52	5		8 k 5		8	108	72	11
23456789	156 258 100 212 71 291 -33 247	131 263 46 230 112 276 51 241	13 -4 15 -12 -14 11 -7 4	012345	20 k 231 -86 170 119 205 87	4 223 15 198 91 219 17	4 -12 -14 -8 -8 10	0123456	1787 1812 174 77 1188 1201 170 182 222 120 238 226 901 888	-15 59 -10 -10 73 10 12	10 11 12 13	124 647 151 594 14 k 508	121 660 80 595 5	1 -11 26 -1 -7
10	112 243	68 227	13 11	67	129	131	-4	78	153 68 1357 1366	38 - 5	12	122	58	23
12 13 14 15	-30 214 84 239	34 224 13 237	- 3 - 6 11 0	8	177 21 k	167	4	1	9 k 5 1070 1073	-1	3456	61 864 113 675	36 856 11 678	5 7 23 - 2
	16 k	- 4		2	87	22	10	3	258 238 799 791	19	8	470	477	10-6
01234	470 78 215 36	486 12 209 2	-15 11 4 2	3456	-104 220 -56	203 9 182 25	-11 -16 18 -4	45678	81 20 909 899 112 112 1008 999 104 114	15 9 0 7 -4	9 10 11 12 13	121 543 83 559 89	60 543 51 566 49	19 0 7 -6 9
5	99	53	-10		UE	0	-	9	910 925	-10	14	299	374	13
7	86	17	12	0	2208	196	5		10 k 5			15 k	5	
9	120	50	19		1 8	5		0	897 909 197 161	-12 29	12	789	793	- 3
11	35	23	- 2	1	1008	1022	19	28	964 973 143 80	- 8 \$1	34	538	540 15	-1 12
13	112	24	19		2 K	0		45	815 822 188 180	-75	6	450	463	-7
1.4	17 1	414	25	1	298	243	68	7	836 817 128 139	-6	78	617	619 92	- 27
1	297	291	5	4	1000 . 8 F	1042 K	34	.9	111 92	-07	10	- 59	575 32	-1
23	119	48	20	1	879	905	- 27	10	11 1 5	- 20	12	-26	33	-3
45	- 53 216	37 252	- 7 - 25	23	78	7	20	1	642 614	20	14	- 58	51	-9
67	140 284	47 285	28		4 k	5		2	98 27	21	10	16 1	591	-10
89	63 306	88	-67	0	821	272	61	4 5	203 157 916 914	31	0	995	967	23
10 11	71 93	76 121	-1	12	485	503	-23	67	156 81 770 774	35-3	12	197 584	193 583	20
12	106	35 164	15	34	112 2165	38 2171	27 - 2	89	107 95 396 405	-8	34	201 349	223	-14
	18 k	4			5 k	5		10 11	47 50 737 738	0	5	205	202	- 27
0	146	88	22	1	956	963	- 6		12 k 5		8	133	131725	16
234	222 84 335	231 79	-5	34	1286	64	-11 21	01	467 460 428 450	- 24	10	564	568	-3

		Struc	ture	F	actor	for	Pt 2Cl	a t	300 K	ζ.	Pa	ge	6		
13	115 371	83 359	9	12	1287	1279	5 84		11 k	6		13	450	465	-11
	17 k	5		3	1885	1909	- 12	12	968 125	955	12 84		16 k	6	
1 2 3 4 5 6 7 8 9 10 11 12	670 156 443 398 590 556 296 95	668 150 433 52 418 - 590 59 538 116 296 22	2 8 24 17 0 9 16 16 16 13	01234 1234	4 1 6666 146 258 2656 5 1 1206 191 1763 241	629 128 1169 267 2678 6 1210 165 1731 240	41 13 13 - 10 - 8 - 3 22 19	345678910111 01	1244 91 1186 92 764 89 758 102 859 12 k 521 130	1231 90 1186 29 749 112 746 68 852 6 518 121	9 0 15 13 -8 10 10 4	012345678901112	1026 259 793 141 449 87 629 156 862 146 622 146 622 130 886	1010 255 786 133 463 61 640 190 861 98 627 58 893	13 5 6 -9 -17 0 17 -4 200
	18 k	5		5	1507	1560	- 30	23	1057 256	1059 241	-1 11		17 k	6	
0 1 2 3 4 5 6 7 8 9 10 1	506 64 532 -89 361 111 522 -56 508 100 \$12 140	517 - 536 525 - 579 - 48 535 - 503 13 524 11	10 4 -3 14 14 15 10 -7 4 15 -9 28	0123456	6] 1554 158 1397 177 1321 216 1264 7]	1565 58 1426 151 1317 218 1261 k 6	-70 -21 20 -1	4 5 6 7 8 9 10 11 12	1320 234 1013 135 532 121 711 143 933 13 k	1318 243 1009 134 544 119 710 146 953 6	-7 3 0 -11 0 0 -12	12345678910 10	729 118 580 43 661 102 746 -34 607 -88	731 92 589 16 632 94 746 611 43 892	-19 -24 -13 -15 -15
	19 k	5		12	1803	1840 34	- 22	12	789	772	16		18 k	6	
123456789	321 94 523 101 563 55 431 67 229 20 k	\$ 36 - 5 26 40 5 70 \$ 3 4 27 29 2 29 5	11 -2 12 -5 3 5 0	34567 0123	900 26 1102 44 1213 8 1990 299 1199 148	870 16 1085 3 1199 4 6 2034 326 1183 113	27 13 4 8 -24 -31 12 21	3 4 5 6 7 8 9 10 11 12 13	1089 106 985 156 789 95 633 95 633 94 882 55 587	1091 994 91 805 73 616 101 869 41 589	-1 21 -7 27 -14 15 -2 10 -3 0	01234567890	723 59 597 76 615 100 610 140 411	708 22 570 13 613 613 612 601 19 432	12 4 -11 9 -13 2 15 27 27
0	289	\$11 -	16	4	753	714	38		14 k	6		20	19 k	6	
1234567	142 409 110 566 139 \$81 151 21 k	129 408 116 533 94 386 99	5 1 -2 26 14 -3 17	678 123	1100 168 1665 9 1 1249 141 1161	1096 182 1638 4 6 1236 141 1154	3 -9 13 10 0 5	012345678	833 90 850 75 985 149 789 76 638	821 38 841 1 971 92 810 42 638	10 13 7 10 11 23 -19 6 0	1234567	509 94 642 97 624 114 472	513 62 633 633 65 468	-3 6 13 -7 12 3
1	337	355 -	12	45	91 1014	1006	16	10	93 725	735	-9		20 k	6	
3	426 0 k	432	- 4	0789	198 1441 80 908	170 1424 37 926	19 11 10 -12	11 12 13 14	96 638 146 543	626 53 536	14 10 27 4	0 1 2 3 4	436 93 545 90 582	421 110 552 75 591	11 -5 -5 3 -7
0	2775	2752	8	0.66.0.1	10 1	k 6			15 k	6		-	0 k	7	
1	1 k 1896 j 2 k	6 1906 6	- 5	01234	1189 281 1273 139 972	1186 252 1260 118 968	26 9 10 3	12345	1047 110 678 99 601	1028 105 669 86 591	15 1 7 4 9	0	875 1 k	8 94 7	-18
0	1428	172	3	567	155	106	25	67	- 37	698	- 2	1	214	162	33
2	1990 :	2015 -	11	180	991	981	8	9	872 130	871 106	0	0	3 K 874	379	- 5
	3 k	6	:	10	889	919	- 20	11 12	587 152	580 109	6	12	118	77	24 27

		Sti	uctur	e F	actors	for	Pt 2Cl	at	300 K		Pag	e	7		
	S k	7		9 10	\$5 202	36 341	-19	11 12	187 81	144 26	19		5 k	8	
1	193	193	0		11 k	7			16 k	7		1	590	577	13
3	303 345 4 k	368 360 7	- 12	123	151 138 186	148 91 207	21 - 15	012	103 35 77	79 35 82	7 0 -1	2040	128 1230 76 1361	100 1235 50 1373	13 - 3 7 - 7
0	139	104	21	45	- 50	103	- 5 - 3	34	161	58 181	- 10		6 k	8	
1234	88 482 177 124	495 108 97	20 -15 43 10	6789	96 192 54 - 65	49 201 20 106	12 -5 4 -29	567 80	85 103 60 138	29 123 10 97	10 -7 5 14	012	1037 50 845	1082 71 865	- 39 - 6 - 18
	5 k	7		11	165	151	5	10	77	79	ŏ	4	1021	1035	- 12
1	465	475	-11		12 k	7		11	- 61	7	- 6	6	591	590	- 10
34	144 131 123	138 28 48	38 29	01	155 76	139	8	1	17 k -94	40	-18		7 k	8	
5	85	30	10	23	107	123	-6	23	81 145	\$0 155	8	12	1110	1146	- 29
0	6 k	7	. 15	4 5	122	166	- 23	4 5	48 215	14 178	\$ 18	34	748	752	-13
12	103	78	11	7 8	26	30 117	0	7	-128	69	- 29	67	153	459	-9
34	120 273	40 252	28 18	10	-42	35 101	- 5	9	17	61 17	-5	1	8 k	930 R	11
5	55 227	57	0	11	-86	16	- 13		18 k	7	•	0	1186	1919	- 20
	7 k	7			13 k	7		0	148	139	3	12	104 836	54 870	16-32
12	129	97	17	1 2	261	257	3	2	100	128	-9	34	438	423	29
34	273	267	5	3	- 29	36	-4	4	73	55	3	67	825	830	-4
5	244	245	- 6	5	105	75	9	67	35	60	- 5	8	1039	1036	10
7	292	\$20	- 17	7	191	166	13	8	125	99	8		9 k	8	
	8 k	7		9	224	204	11		19 k	7		1	1120	1121	0
01	206	163	32 28	11 12	110 32	60 21	13	12	136	113	-14	34	420	425	- 5
23	226 282	200	20 - 8	13	112	94	4	34	87 - 21	78	-1	5	599 134	601 137	-2
45	190	192 125	-19		14 k	7		5	133	89	13	78	924	924	0
6 7	261 85	235	19 13	01	112 119	99	5 10		0 k	8		9	900	906	-4
8	108	94	3	2 3	177	194 45	-10	0	1161	1143	12		10 k	8	
	9 k	7		45	123 81	81 45	14		1 k	8		01	814 67	826	-10
12	73	94	11	67	153	151 79	9	1	1417	1411	3	2 8	734 90	744	-9 15
4	108	13	-10 24	9	89	40	- 8 8		2 k	8		45	697 - 80	713	-15
00	-51	29	-10	10	- 53	66 22	-125	01	1302	1296	41	67	759	786	-24
8	92	58	21	12 13	174	158	7 3	2	896	895	1	89	644	647	-20
y	184	210	-11		15 k	7			S k	8		10	461	473	- 8
0	10 k	7		1	108	138	-12	12	706	722	-17 21		11 k	8	
1	93	54	15	NS	148	104	-10	3	1279	1251	17	12	583 187	584 204	-11
3	243	226	14	45	107	64	11		4 k	8		34	882	883	00
506	138	74	25	7	123	152	-11	0	420	392 93	29	5	777	773	3
78	58	98	-11	9	80	74	12	3	1043	1046	- 5	780	-30	591	-14

		Str	ucture	Factors	for	Pt 2Cl	at	\$00 K		Pa	ge	8		
10	130	138	- 3	17 k	8		1	136	112	10		14 k	0	
0	12 k 356	8 \$50	5	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	559 139 340 13	12 -17 -3 5	13450	-39 589 -39 718	22 613 12 720	- 4 - 22 - 3 - 1	0 1 2	654 111 597	645 35 603	7 16 - 5
12345	173 656 103 951 24	152 686 18 945 43	-27 18 4	5 383 6 82 7 533	391 81 522	- 6 0 8	7	82 908 9 k	72 911 9	-1 -1	34567	-13 489 -93 465	11 501 37 464	- 10 - 16 0
6789	645 143 330 72	651 105 315 130	-5 14 10 -18	0 387 1 45 2 424	390 24 414	- 2 2 7	1234	961 -59 562 44	980 35 572 42	-16 -9 -9 0	8 9 10	553 -83 528	529 21 529	-18 -11 0
11 12	106	47	13	4 424 5 -33	432	-6	67	18 876	68 878	-18 -7 -1	1	634	615	16
	13 k	8		0 k	9		89	49	34	-1	NS	103	72 463	- 11
12	408	392 110	14	0 1444	1392	29		10 k	9		4 5 6	56 429	433	- 3
344	840 110	836	39	1 k	9		01	764 98	782 104	-17	78	529	531 3	-2
67	163	150	50	2 k	1151	22	34	128 703	687 83 698	16		16 k	9	
9 10 11	-44 393 86 526	27 427 58 541	-4 -28 6 -13	0 803 1 100 2 1094	784 57 1047	18 16 31	5678	84 729 109 565	34 735 6 571	10 -5 19	0123	557 115 501 128	562 41 509 20	-4 16 -5
12 13	- 25 523	67	-7 14	8 k	9		9 10	-32 519	42 560	- 26	456	\$73 84 507	874 10	-1
0	14 k	8		1 762 2 151	744	17 36		11 k	9			17 k	9	
123	53 665 157	43 662 125	12 1 2 13	4 k	9	12	1234	573 147 702 44	586 114 740 30	-12 13 -34 1	1 2 3	519 57 405	514 58 388	3 0 12
50	- 56	18	-12 -5	0 801	808 127	10	567	860	853	6		0 k	10	
7	-41 526	\$1 526	-4	3 139 4 1156	80 1147	26	89	-76	35	-11	0	445	\$94	37
10	- 37	70 527	- 9	5 k	9		10 11	51 525	54 532	-4		1 k	10	2.5
12	442	431	- 3	1 674	672	1		12 k	9		1	133	41	24
1	15 k 688	8 687	1	3 1146 4 139 5 874	1135 99 901	8 17 -18	012	401 132 676	411 84 667	-9 16 8	01	192 123	176	11
34	457	469	- 10	6 k	9		84	129 787	79 822	- 30	2	129	104	8
567	333 123 549	360 126 545	- 21 0 3	0 746 1 229 2 961	724 194 981	20 24 -17	678	589 -113 422	603 35 423	-12 -23	12	160 74	137	13
9	-84	32 533 78	-13	8 43 4 786	13	13	9	69 518	46	3	8	109	61	11
11	429	416	- 15	6 764	760	-13	11 12	584	571	6	0	4 k	10	81
01	16 k 753 65	8 756 67	- 2	7 k 1 945 2 80	9 958 132	-10	1	13 k 488	9 487 43	0	1284	90 173 88	80 138 93	3 19 -1
23	454 80	477 93	-19	3 669 4 -42	689 58	-18	84	781	763	15		5 k	10	- 3
4567	332 30 446 106	329 68 448 52	- 5 - 1 12	5 692 6 164 7 755	711 183 758	-17 -10 -1	5678	603 -56 498 48	629 34 489 28	-22 -6 7 2	1 2 3	53 70 94	99 49 56	-13 4 10
89	609 -66	583 47	-10	8 k 0 1066	9 1065	0	9 10 11	410 - 55 574	414 26 571	- 3 - 5 1	45	27 128	80 50	-10

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Sti	ucture	Factors	for	Pt 2C1	at	\$00 K.		Pag	e	9		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	6 k 74 71	10 56	4-3	4 56 5 -24 6 21 7 -83	64 98 33	-1 -15 0 -12	1234	54 587 61	59 595 58	-6	1234	890 -71 495	898 54 502	- 5 - 11 - 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	234	59 43 -12	11 71 78	- 5 - 11	8 77 9 21 10 30	80 39 77	- 1 - 7	56	-113 555	10	- 21 - 5	5	500 14 k	500 11	ŏ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	-48	84	- 8 - 2	13 k	10			7 k	11		0	895	893	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7 k	10		1 -72	66	-15	12	749	744	-4		0 k	12	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	80	67	- 6	2 - 58 8 - 40	46	- 8	34	500 -108	507 28	- 20	0	819	771	30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	177	53 147	15	4 -63 5 -91	16	- 13	5	418 - 80	440	-18 -10		1 k	12	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45	- 62	11	-15	$ \begin{array}{r} 6 & 23 \\ 7 & -135 \end{array} $	21	- 28	7	714	704	5	1	545	556	- 7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	-77	15	-10	8 -30 9 71	87	- 1 - 3		8 k	11			2 k	12	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	8 k 133	10 164	- 15	14 k	10	- 9	0123	879 61 618 181	870 2 612 182	7 6 4 0	012	411 37 588	408	- 57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3	145	136	47	1 48 2 64	32 21	1 5	45	262	302 120	- 27 - 16	-	3 k	12	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5	115	119	-1	4 71	28	6	7	-76	54	-12	1	457	441	14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	67	41	64	- 3	6 -82	18	-10	0	0 1	11	10	8	543	552	- 6
9 k 10 1 158 16 38 2 53 10 1 -45 38 -4 3 428 427 0 1 21 5 1 158 16 38 2 5 10 3 -12 18 0 4 -115 40 -22 6 -79 69 -16 4 668 663 4 41 18 2 5 72 56 2 7 547 553 10 5 117 87 9 6 28 67 -5 0 k 11 9 605 604 0 7 65 63 0 8 -70 11 -7 0 1098 1095 1 10 k 11 2 31 2 9 60 21 3 1 k 11 0 566 580 -12 4 -34 21 - 1 6 1 39 3 5 469 455 0 -82 17 -12 1 910 904 4 2 536 53 2 0 -82 17 -12 1 910 904 4 2 536 53 2 0 -82 17 -12 1 910 904 4 2 536 53 2 0 -82 17 -12 2 k 11 4 510 515 2 0 -82 17 -12 3 0 817 792 22 6 488 475 10 0 444 454 -1 3 18 51 -3 0 817 792 22 6 488 475 10 0 444 454 -1 5 -62 56 -11 2 634 610 16 8 496 506 -7 3 -48 79 -1 6 -56 29 -6 7 -11 48 -3 5 k 11 9 -75 24 -9 1 499 500 0 10 -12 3 27 -17 2 9 3 86 2 1 417 404 10 7 k 12 9 -75 24 -9 1 499 500 0 10 -12 3 27 -17 2 9 3 86 2 1 417 404 10 7 k 12 1 -32 31 - 3 0 4 11 3 70 15 6 -85 37 -11 4 -92 18 -11 1 -32 31 - 3 0 27 704 15 6 -85 37 -11 4 -92 18 -11 1 -32 31 - 3 0 4 11 3 70 13 7 421 435 -10 5 406 433 -22 4 -74 2 -9 2 779 782 14 8 70 47 8 6 -117 9 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12	8	80	113	- 6	15 k	10	-10	1	805	601			4 k	12	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9 k	10		1 -45	28	- 4	2	- 53	71	- 12	0	412	410	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	158	16 58	38	2 53	10	- 13	4 5	-105	15	-18	2	423	436	-10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34	-12 41	18	0 2	4 -115 5 72	40	- 22	67	-79	69	-16	ä	668	663	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	117 28	87 67	- 5	0 k	11	_	89	- 82 605	18	-9		5 k	12	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	- 70	63 11	- 7	0 1098	1095	1		10 k	11		12	457 31	443	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	60	21	3	1 k	11		0	566	580	-12	34	527	529	-1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10 k	10		1 910	904	4	12	61 536	39 533	32	5	469	455	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	- 82	97	-12	2 k	11		34	70 519	63 515	12		6 k	12	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	18	51	- 3	0 817	792	22	5	- 60	58 475	-10	01	444	454	- 8 - 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	- 62	56	-11	1 37 2 634	610	16	8	- 61 496	16	- 5 - 7	28	481 - 48	495	-11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	-11	48	- 3	S k	11		9	-92	27	-12	45	387	396 40	- 24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	-75	24	-9	1 499	500	0		11 8	11		6	523	495	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11 1	10	-11	\$ 925	908	10	2	-53	35	-6		7 8	12	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	- 82	\$1	- 3	4 k	11		4	101	30	13	2	-127	23	- 10
4 -74 2 -9 2 799 782 14 8 70 47 8 6 -117 9 -11 5 38 37 0 3 96 0 15 7 40 47 3 6 -117 9 -11	23	-79	8	- 10	0 227	204	15	67	-83	37	-11	4	-92	18	-12
	4 5	-74 38	37	- 9	2 799	782	14	8	70	47	-10	67	-117	9	-19
6 -83 25 -12 4 986 932 82 12 k 11 7 130 71 16	67	-83	25	-12	4 986	932	\$2		12 k	11		•	8 1	12	
8 55 37 2 5 k 11 0 298 292 4 9 -42 10 -2 1 -69 106 -24 0 579 568 1	8	- 42	37	- 2	5 k	11		01	298	292	- 24	0	579	568	8
10 -116 11 -21 1 580 558 19 2 465 463 1 1 11 86 -10 11 126 49 12 2 65 102 -10 3 55 46 1 2 416 428 -10	10 11	-116 126	11 49	-21	1 580 2 65	558	19 -10	23	465	463	1	12	11 416	86	-10
12 k 10 4 -76 12 -11 4 682 651 24 3 -70 49 -10 4 -76 12 -10 5 -96 52 -17 4 307 343 -20		12 k	10		3 749	762	-11	4 5	682	651 52	-17	34	-70	49	-10
0 164 154 4 5 756 751 3 6 497 487 7 5 -77 20 -4 7 64 72 -1 6 412 391 14	0	164	154	4	5 756	751	3	67	497	487	-1	5	-77	20 391	-8
2 73 12 7 3 53 108 -13 0 709 714 -4 13 k 11 8 466 469 -1	23	73	12	-7	0 700	11	- 4		15 k	11		8	-102 466	469	-15

		Stru	acture	Fa	c \$ 0	r 8	for	Pt 2Cl	at	1	10	0	K	•		Pag	ţe		10				
	9 k	12		1	36	2	354	5	2		1	19	l.	41	-	26	0	•	89	2	2	- 1	1
		-		2	- 3	7	15	- 2	3		1	30		66		24	1	-1	42	5	7	- 3	2
1	404	425	-16	3	87	0	408	- 27						14114			2	-	85	- 5	17		2
2	-90	17	-12			÷.,					4		k	13			- 8	- 1	01		7	- 1	4
3	400	442	17		0		13		-								- 4	1	96	5	0	- 1	0
4	- 44	8	- 2						0			51		11		3	D	- 1	27		13	- 2	4
5	342	351	- 0	U	23	Ð	313	10	1	-	1	03		31	-	18							
5	-91	4.8.0	-11						2			08	£	. 6		0		- 7			3		
1	433	439	- 3		1	x	13		3		-	01		42		- 8							
	10 1					-			4		1	4 5		170		-9	1		34	- 1	D	- 3	1
	10 8	12		1	- 4	1	117	-18					1				- 2	- 1	29	- 5	0	- 2	0
0			0			1					Ð		×.	12			3		31		0		1
	308	301	8		2	×.	13											- 1	00		8	- 3	0
	100	410	- 2	0		2			-			10	•	34		0			1				
	128	414	- 13	ų.	0	2	- 1	0			•	01		.12		11					19		
2	-145	407	- 40	-	- 4	3	105	- 1	-		-	00		140	-	17	0				0		
- 2	399	407	- 0		0	0	105	- 4	- 2		• •	14			-	21	ų		01	- 11		- 1	
0	-05	14	-0			h.	1.0		•	1	• •	11		0.8	•	41	- 4		57			- 1	.0
	11 1	19			•		19						۱.	1.0				• 1	101			- 4	
	** *		224	1	0	0		19			0		*	19									
			-			U		14															