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ABSTRACT 

The technique of variable-angle, electron energy-loss spectroscopy has been 

used to study the electronic spectroscopy of the diketene molecule. The experiment 

was performed using incident electron beam energies of 25 eV and 50 eV, and at 

scattering angles between 10° and 90° . The energy-loss region from 2 eV to 11 

eV was examined. One spin-forbidden transition has been observed at 4.36 eV 

and three others that are spin-allowed have been located at 5.89 eV, 6.88 eV and 

7.84 e V. Based on the intensity variation of these transitions with impact energy 

and scattering angle, and through analogy with simpler molecules, the first three 

transitions are tentatively assigned to ann -+ 1r"' transition, a 7r -+ u• (3s) Rydberg 

transition and a 7r -+ 1r"' transition. 

Thermal decomposition of chlorodifluoromethane, chloroform, dichlorometh­

ane and chloromethane under flash-vacuum pyrolysis conditions (900-1100°C) was 

investigated by the technique of electron energy-loss spectroscopy, using the impact 

energy of 50 e V and a scattering angle of 10°. The pyrolytic reaction follows 

a hydrogen-chloride a-elimination pathway. The difiuoromethylene radical was 

produced from chlorodifluoromethane pyrolysis at 900°C and identified by its 

X1 A 1 -+ A1 B 1 band at 5.04 eV. 

Finally, a number of exploratory studies have been performed. The thermal 

decomposition of diketene was studied under flash vacuum pressures (1-10 mTorr) 

and temperatures ranging from 500° C to 1000°C. The complete decomposition 

of the diketene molecule into two ketene molecules was achieved at 900° C. The 

pyrolysis of trifluoromethyl iodide molecule at 1000° C produced an electron energy­

loss spectrum with several iodine-atom, sharp peaks and only a small shoulder 

at 8.37 eV as a possible trifluoromethyl radical feature . The electron energy-loss 

spectrum of trichlorobromomethane at 900° C mainly showed features from bromine 
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atom, chlorine molecule and tetrachloroethylene. Hexachloroacetone decomposed 

partially at 900°C, but showed well-defined features from chlorine, carbon 

monoxide and tetrachloroethylene molecules. Bromodichloromethane molecule was 

investigated at 1000°C and produced a congested, electron energy-loss spectrum 

with bromine-atom, hydrogen-bromide, hydrogen-chloride and tetrachloroethylene 

features. 
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CHAPTER 1 

INTRODUCTION 

The studies reported here use the technique called electron energy-loss 

spectroscopy (EELS) or electron-impact spectroscopy (EIS), both terms being 

used interchangeably. EIS involves focusing a monoenergetic beam of electrons 

with initial energy Eo into a gaseous target and then measuring the energy of the 

scattered electrons at a scattering angle 0. Plotting scattered electron intensity 

versus energy lost by the incident electrons yields the energy-loss spectrum and is 

analogous to an optical absorption spectrum. These two types of spectra may be 

directly compared. 

Two advantages over optical spectroscopy are provided by electron-impact 

spectroscopy: the capability of measuring an entire energy loss or absorption 

spectrum from the infrared to the vacuum ultraviolet in a single scan without 

alteration of the instrument and, more importantly, the ability to observe 

transitions which are forbidden by optical selection rules. A typical energy-loss 

spectrum spans a transition energy range of about 10 e V. Thus, a single spectrum 

may include features that result from low-energy excitations, such as vibrational 

transitions, that would be observed in the infrared region of an optical spectrum as 

well as features that result from excitation to high-lying electronic states that would 

be observed in the vacuum ultraviolet region of the optical spectrum. In addition, 

transition having excitation energy above 10 eV may be as readily observed as 

those below 10 eV by EIS. In contrast, the absence of window materials that are 

transparent above about 12 eV (105 nm LiF cut-off) make optical spectroscopy 

difficult in the high-energy region. The resolution of the electron energy-loss 

spectrum is substantially poorer than that of an optical spectrum at energies below 
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the vacuum ultraviolet. In the vacuum ultraviolet region, the resolution for the 

two techniques are still comparable. In the higher-lying, excited electronic states, 

vibrational structure is often lacking because of uncertainty principle broadening 

that is due to the very short lifetimes of these states.1 

The relative intensities of various types of transitions in electron scattering 

experiments is significantly different from those in optical studies. The principal 

difference is that the 6.S = 0 selection rule of optical spectroscopy2 is relaxed 

in electron impact. Spin-forbidden transitions that are very weak in optical 

spectroscopy are typically 0.02 to 0.5 times as intense as optically allowed 

excitations, at scattering angles greater than 40° and incident energies in the range 

20 eV to 60 eV .3 •4 

The mechanism that relaxes the 6.S = 0 selection rule is known as the 

exchange excitation. First discussed by Oppenheimer5 in 1928, the incident 

electron is interchanged with a molecular electron. While the exchange process 

must still conserve the overall spin of the incident, electron-target, molecule system, 

the molecule may undergo a net spin change of unity, while the scattered electron 

will have the opposite spin as compared to the incident electron. 

The intensities of spin-allowed but electric dipole-forbidden transitions are also 

enhanced relative to optically allowed excitations in electron scattering. Typically, 

these transitions are from 0.05 to 0.25 times as intense as optically allowed 

excitations. In electron scattering, spin-allowed transitions proceed primarily via a 

direct mechanism in which the incident electron interacts with the target through 

Coloumbic forces. These Coulomb interactions are believed to distort or polarize 

the molecular charge distribution and effectively alter the molecular symmetry 

allowing enhancement of dipole-forbidden transitions. 

The different types of excitation mechanisms allow one to extract information 

regarding the nature of transitions by examining how spectral intensities change 
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as a function of the scattering angle 0 and the incident electron energy E 0 • More 

specifically, what is measured is the differential cross section ;~ (DCS), that is, 

the cross section per unit solid angle, for scatttering into a given direction defined 

by the spherical polar angles 0 and ¢. For experiments in the gas phase with 

randomly oriented, molecules the DCS is independent of ¢.4 Another experimental 

value of interest is the integral cross section Q, which is the differential cross section 

integrated over all scattering angles. 

The following characteristics have been observed for the differential cross 

section when associated with various types of transitions.3 A transition that 

exhibits an approximately isotropic DCS (constant to within a factor of 2 or 3 over 

the range 0 = 10° to 0 = goo) is due to a spin-forbidden excitation. A transition 

displaying a strongly forward peaked DCS, which falls off by one to two orders of 

magnitude as 0 increases from 10° to goo, is due to a fully allowed transition (or 

elastic scattering peak). A DCS of intermediate behavior is most likely due to a 

spin-allowed/ symmetry-for bidden transition. 
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CHAPTER 2 

THE THEORY OF ELECTRON IMPACT 

In this chapter, we will present a simple approach that uses potential scattering 

theory1 in order to determine the general behavior of the differential cross section 

for both the direct (Coulomb interaction) and exchange-scattering processes. 

No attempt will be made for a rigorous derivation of the quantum mechanical 

formalisms of the electron-molecule scattering at low-impact energies. Detailed 

theoretical treatment can be found in the reviews on this subject.2 - 6 

The wave function of the incident electron, when it is far away from the target 

molecule,7 has the form of a plane wave 

tPinc = exp( £k.r), (1) 

where the r is the electron's position vector and k its wave-number vector. If the 

z axis is chosen as the direction of the incident electron, equation (1) becomes 

tPinc = exp(£kz). (2) 

Now, introducing a central field scattering potential, which interacts with the 

incident plane wave, the scattered electrons can be thought to emerge from the 

scattering center as an outgoing spherical wave which, as r-+ oo, has the form 

1/J~c = f(O) exp(£kr), 
r 

(3) 

where f(O) is the amplitude for the electron scattering into the direction that makes 

an angle 0 with the direction of the incident electron. The asymptotic behavior of 

the electron's total wave function is given by 

· '· ( "k) f({))exp(£kr) '1-' = exp t z + u , 
r 

(4) 
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and the differential cross section is related to the scattering amplitude by 

(5) 

By applying the partial wave analysis2 , it is possible to express the incident wave 

as a sum of products of radial and angular functions, 

(X) 

exp(ikz) = 2::)2! + 1)i1j1(kr)P1(cos8), (6) 
1=0 

where Jl is the spherical Bessel function of order l and PI is the zth Legendre 
I 

polynomial. One can consider the scattering processes as a distortion of the incident 

plane wave, which introduces a phase shift fJI in the different angular terms of the 

incident wave. In this way, the wave function must asymptotically reduce to the 

form of Equation (4) and the scattering amplitude must be related to this phase 

shift by 
1 (X) 

f(O) = kL)2l + 1)exp(2ryi)sin(ryi)PI(cos8), (7) 
1=0 

and the differential cross section can be written as 

da 1 ~ )12 dO = 4piL.)2l + 1)(exp(2771)- 1)P1(cos8 , 
1=0 

(8) 

where each term in the expansion is called a contribution of partial wave l to the 

differential cross section. If fJI is small, it can be shown that4 

71"1CX) 
fJI ~ -- [J1+.1 (kr)fU(r)rdr, 

2 0 l 
(9) 

where U(r) = ~V(r) is the electron-molecule interaction potential, and J1+-! IS 

the regular Bessel function. 

It is assumed that there exists an effective range rm.ax for which r2 U(r) never 

exceeds some finite value, and this can be expressed by the following conditions, 
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(lOa) 

(lOb) 

At low enough impact energy such that~ «: 1, one can use the small argument 

approximation of J1+! ,9 which, applied to Equation (9), gives 

I I 7r a rrme>:z(kr)21+ldr 21ra (kTmaX)21+l 1 ( ) 
771 < 2 [r(t + ~)]2 } 0 2 -;:- = (21 + 1)3 2 [r(l + ~)]2 11 

For small 171, Equation (8) can be written as 

(12) 

By examining Equation (12), one can observe that for long-range potentials, such 

as the Coulomb interaction, there will be more partial waves contributing to the 

differential cross section than for short-range potentials such as those involved in the 

exchange scattering processes. The inclusion of more Legendre polynomials makes 

the differential cross section to be more forward-peaked, whereas the exchange 

processes would produce a more isotropic differential cross section. At low impact-

energy (low k), only a few partial waves are included and the differential cross 

section presents again a more isotropic behavior. 

At higher-impact energies, the relation between the optical spectrum and the 

electron-impact spectrum can be found in the first Born approximation. Using this 

approach, the optical oscillator strengths can be obtained from electron- scattering 

measurements.6
•
9 For certain types of symmetry-forbidden processes, calculations 

have been performed to predict the behavior of the differential cross section. 10• 11 
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CHAPTER 3 

EXPERIMENTAL ELECTRON-IMPACT SPECTROSCOPY 

The results presented in this thesis were obtained using the electron-impact 

spectrometer, which has been described in the Ph.D. theses of C. F. Koerting1 and 

K. N . Walzl.2 In this chapter we will present a brief description of the spectrometer, 

including any recent changes. 

a} Vacuum system 

The vacuum system used in these experiments consists primarily of a 70 liter, 

stainless steel chamber pumped by a 1500 liter/ sec turbomolecular pump (Balzers, 

TPU 1500). This turbomolecular pump is backed by a 500 liter/min mechanical 

pump. The main chamber base pressure varies from 5 x 10-8 to 1 X 10-7 Torr. 

In addition to the main chamber pumping system, two other pumps are mounted 

on the spectrometer. A 50 liter/ sec, turbomolecular pump (Balzers, TPU 050) 

differentially (with respect to the main chamber) pumps the electron optics, which 

are enclosed in isolation housings. A 60 liter /min mechanical pump provides the 

back pumping for the TPU 050 turbo pump. The base pressure of this pumping 

system after a couple of days of pumping varies from 3 x 10-7 to 8 x 10-7 Torr. The 

other pump is a gravity-fed, liquid nitrogen cryotrap, which is located above the 

sample jet source and acts as beam dump. Two orders of magnitude in pressure 

can be maintained between the electron optics and the main chamber. During a 

scan the pressure in the optics housing is kept at 9 x 10-7 to 3 x 10-6 Torr. 

The entire vacuum system is under the control of an interlock system described 

by Mosher.3 This system shuts the two turbomolecular pumps in case of an over-
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pressure. This interlock system also turns off the filament in the electron gun and 

the high voltage to the detector in order to prevent damage to these components. 

The turbomolecular pumps replaced the two previous, mercury-diffusion 

pumps. This replacement eliminated the costly liquid nitrogen consumption by 

the diffusion pump traps and provided a substantial improvement in the scattering 

chamber's ultimate pressure and in the pumping speed. As a result, after opening 

the system up to atmospheric pressure, the time needed to bring it back down to 

the low pressure needed to restart operation, was significantly decreased. 

b) Electron optics 

The spectrometer and electronics are contained within an RF shielded 

enclosure providing 100 dB attenuation of electromagnetic frequencies in the range 

of 10KHz to 100 GHz. The electron optics in the spectrometer are exposed to 

a reduced ambient magnetic field of 5 mG because of the shielding provided by a 

0 .050 inch thick J.L-metal sheath. 

The electron optics form the heart of the electron-impact spectrometer since 

the operational characteristics of the instrument are determined by them. The 

set of electron optics, used for the experiments reported here, is described by 

Koerting,l Walzl2 and Rianda.4 Briefly, electrons are emitted from a tugsten 

filament, focused onto a hemispherical-sector, electron-energy analyzer, energy­

selected, and focused onto the target gas. Typical beam currents at the scattering 

center range from 1 to 20 nAmp. Scattered electrons are then focused into a 

second hemispherical analyzer, energy-analyzed again, and finally focused onto an 

electron multiplier and detected. The spectrometer resolution, measured as the 

full width at half-maximum (FWHM) of the elastic peak, is typically 50-100 meV. 

The schematic diagram of the electron optics of our electron-impact spectrometer 

is shown in Figure 1. 
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The monochromator is mounted on a rotatable gear wheel and may be turned 

from -15° to 110° about the rotation axis. The actual scattering angle varies from 

about -10° to 100° because the analyzer and monochromator lie in a plane 20° 

with respect to the horizontal. 

c) Target source 

Two gas-target sources were used for the experiments reported here. The first 

is a static gas cell consisting of a copper {OFHC) tube, closed on one end, with a 

0.060 inch wide slot cut 120° around its circumference at 20° with respect to the 

horizontal and also two 0.060 inch holes drilled opposite to the slot at 0° and 55°. 

These holes allow the electron beam to exit into the analyzer and Faraday cup, 

respectively. This tube slides onto another copper tube, by which the sample gas 

is admitted, passing through the center of the rotating table via a rotary seal. 

The other gas-target source is an effusive jet produced by a quartz pyrolysis 

tube shown in Figure 2. This inlet consists of a 0.25 inch OD, clear-fused, quartz 

tube, which is constricted at one end to form a 0.125 inch OD, 0.060 inch ID, 

and 0.35 inch long capillary tube. The clear-fused quartz {from QSI) has a 

softening point of 1650°C.5 The pyrolyzer is heated by tantalum-sheathed, double­

stranded, tungsten-rhenium alloy wires (manufactured by Semco Inc.) wound over 

the quartz capillary. The alloy has 26% of tungsten and 5% of rhenium with a 

maximum recommended working temperature of 2300° C.6 The tantalum sheath 

has a maximum working temperature of 2400°C.6 The electrical insulator between 

the wires and the sheath is high-purity, alpha alumina, which has low vapor 

pressure ( < 10-6 Torr) for its maximum working temperature of 1900° C.7 The 

heater assembly is wrapped with two layers of 0.005 inch tantalum foil, which acts 

as a radiation shield. Temperatures up to 1100°C have been obtained, as measured 
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by an optical pyrometer, through a quartz window located on the spectrometer's 

front flange. 

We attempted to develop an effusive jet pyrolyzer capable of reaching 

temperatures above 1100° C under reliable operating conditions. A ceramic tube 

with similar shape and dimensions to the quartz one was carefully made from 

an Aremcolox (Grade 502-1400, maximum working temperature of 1427°C8
), 

machinable, ceramic rod. Grooves were machined into the capillary end in order 

to fit a double-stranded, tantalum wire heater coil, which was held in place by a 

cap made of the same machinable ceramic. This cap was externally covered with 

a 0.1 inch tantalum foil shield to minimize the radiation losses. It was expected 

that this entirely home-built pyrolyzer would get higher temperatures because the 

heater wires were thicker and less brittle than the tungsten-rhenium alloy wires. 

However, tests performed at 1100°C showed permanent deformation of the ceramic 

heater assembly. 

d) Data collection system and handling 

The detection of electrons is accomplished by a Galileo SEM 4219, Spiraltron, 

electron multiplier, which is connected to a Mechtronics Nuclear Model 509 

NIM preamplifier. A MSC 8001, Z80-based computer acts as a programmable 

multichannel scaler, which collects the counts from the electron multiplier and 

stores them in the memory. The computer also sweeps the voltages of the electron 

energy analyzer while incrementing the storage locations in its memory, resulting 

in the collection of the spectrum under study. The computer also displays the 

spectrum being accumulated on an oscilloscope and can plot the spectrum on an 

X-Y recorder. The spectra accumulated are stored on a diskette for transfer to a 

mainframe (VAX 11/ 780) computer where the data are analyzed. The transferred 

data may be further analyzed by a set of data analysis programs described by 
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Flicker9 and Rianda. 4 The procedure for using the data analysis programs is 

described in Appendix 4 of the K. N. Walzl thesis.2 The only modification is the 

use of the laser printer for all the necessary plotting. 
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Figure Captions 

Fig. 1 Schematic diagram of the electron optics that are described m detail by 

Koerting1 . 

Fig. 2 Schematic diagram showing the effusive jet target source. GI: gas inlet, 

H: tantalum-sheathed, tungsten-rhenium alloy, wire heater, QT: clear-fused , 

quartz tube, SL: swagelock fitting, TS: tantalum shield. 
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CHAPTER 4 

Paper 1: AN ELECTRON-IMPACT SPECTROSCOPY INVESTIGATION 

OF DIKETENE 
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AN ELECTRON-IMPACT SPECTROSCOPY INVESTIGATION 

OF DIKETENE1 

(Received 

Abstract 

I. M. Xavier Jr.2 , K. N. Walzl3 and A. Kuppermann 

Arthur Amos Noyes Laboratory of Chemical Physics,4 

California Institute of Technology, Pasadena, CA 91125 

) 

The electronic spectrum of diketene was investigated by the technique of 

variable-angle, electron energy-loss spectroscopy, using the impact energies of 25 

eV and 50 eV, and varying the scattering angle from 10° to 90°. Transitions have 

been observed at 4.36 eV, 5.89 eV, 6.88 eV and 7.84 eV. Based on the inten­

sity variation of these transitions with impact energy and scattering angle, and 

through analogy with simpler molecules, the first three are tentatively assigned to 

an n ---t 1r* transition, a 1r ---t a* (3s) Rydberg transition and a 1r ---t 1r* transition. 

1 This work was supported in part by the U.S. Department of Energy, Contract 

No. DE-AM03-76F00767, Project Agreement No. DE-AT03-76ER72004. 

2 Work performed in partial fulfillment of the requirements for the Ph.D . 

degree in Chemistry at the California Institute of Technology. 

3 Present address: The Pennsylvania State University, Department of Chem­

istry, University Park, PA 16802. 

4 Contribution No. 
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1. Introduction 

Low-energy, variable-angle, electron-impact spectroscopy, which is a useful 

method for studying both optically forbidden and optically allowed electronic 

transitions, 1•2 has been used to investigate the electronic spectrum of diketene. 

Previous optical studies3 •4 of diketene have shown only a weak, ultraviolet, 

absorption band at 313 nm (3.96 eV), but the present work shows four new, higher 

energy-loss, electronic transitions including a spin-forbidden one. The diketene ( 4-

methyleneoxetan-2-one, 1) structure5 was elucidated by x-ray diffraction in 1952, 

forty-five years after its first preparation. 

~'----o 

1 0 

The planarity of the four-membered ring has been established by Raman 

spectroscopy. 6 

Information about the nature of the excited electronic states observed in an 

electron-impact spectrum can be obtained by studying the dependence of the 

intensity of each transition on impact energy and scattering angle. 1 •2 Transitions 

which, in optical spectroscopy, are both electric dipole-allowed and spin-allowed 

have differential cross sections (DCS) in electron-impact spectroscopy, which are 

forward-peaked .1•2 In contrast, spin-forbidden transitions involving changes in the 

molecular spin quantum number by ±1, such as singlet -+ triplet excitation, have 

more nearly isotropic DCS in the angular range 10° to 90°.1•2 Such transitions 

occur by the mechanism of electron exchange.7 Spin-allowed but electric-dipole­

forbidden processes are forward-peaked, but often not as much as fully allowed 
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transitions. 8 •9 Finally, the optically forbidden processes, and in particular the 

spin-forbidden ones, become more intense with respect to the optically allowed 

processes.1 •2 Another advantage of the electron-impact method is that spectral 

features in the far ultraviolet are as easily examined as those in the visible and 

near ultraviolet. 

2. Experimental 

The electron spectrometer used in this study was similar to one described 

previously. 10 Briefly, an electron beam is energy-selected by a hemispherical 

electrostatic energy analyzer (and the associated focusing lenses) and scattered 

from the target vapor in a scattering box. In this work, the incident-beam current 

was between 1-10 nA and was typically 4 nA. Sample pressures were estimated to 

be between 5-10 mTorr. Electron-energy losses were determined at angles between 

10°-90° by means of a second electrostatic energy analyzer and detector. The 

energy-loss spectrum thus obtained is analogous to an optical absorption spectrum, 

except that optically forbidden processes are much more readily detected.1 •2 

The spectrometer resolution (as measured by the full width at half-maximum 

of the elastically scattered feature) varied between 50 and 100 meV for all reported 

spectra and was typically 80 meV. Diketene was obtained from Aldrich, and had 

a stated purity of 98%. All samples were subjected to three liquid nitrogen freeze­

pump-thaw cycles and used without further purification. 

3. Results and discussion 

Figure 1 shows the low-energy-loss part of the electron-impact spectrum of 

diketene at an impact energy (Eo) of 25 eV and scattering angle (8) of 10°, while 
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Figure 2 shows the spectrum at the same energy but with 0 = goo. Figures 

3 and 4 present the diketene spectrum at Eo = 50 eV and with () = 10° and 

() = goo, respectively. These figures indicate the presence of four transitions having 

maximum intensities at 4.36 eV, 5.8g eV, 6.88 eV and 7.84 eV energy loss. In 

Figures 5 and 6 we display the corresponding differential cross-section curves at the 

impact energies of 25 eV and 50 eV, obtained by a method previously described.8 

The most intense feature has a peak intensity at 6.88 eV. From Figures 5 

and 6 the elastic peak and the peak at 6.88 e V exhibit an intensity variation of 

about two orders of magnitude over the angular range, as should fully allowed 

bands. The transitions at 7.84 eV and 5.8g eV have DCS curves less forward­

peaked, but they can still be considered as allowed bands. The DCS of the 4.36 eV 

transition is nearly isotropic and has the characteristic behavior of a spin-forbidden 

transition.1•11 

No far-ultraviolet spectra of diketene have been reported, in spite of the recent 

appearance of an extensive review article on this molecule.5 In the absence of 

any calculations for this molecule, we are tentatively assigning these observed 

transitions of diketene under the qualitative assumptions described below. 

Diketene contains two important chromophores: the carbonyl and the ethylene 

groups. The carbonyl in small monoketones exhibits the well-known (n, 1r*) band 

in the ultraviolet followed by three Rydberg bands (n, (3s, 3p, 3d)) in the far­

ultraviolet.12 The ( 1r, 7r*) band is expected to be at relatively high-energy loss 

(possibly as high as g.o eV) superimposed by Rydberg bands.12•13 The carbon 

double bond in monoalkenes exhibits an intense ( 1r, 7r*) absorption band, which 

coincides with, or is preceded by, a ( 1r, 3s) Rydberg band.12 In ethylene itself, the 

Rydberg band is superimposed on the low-frequency wing of the ( 1r, 1r*) band, 14 

while in highly methylated or fluorinated olefins, the Rydberg ( 1r, 3s) becomes the 

first spectral band and is well separated from the ( 7r, 7r*) band.12 
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The observed spectral bands of diketene can be tentatively assigned by analogy 

to the properties of the isolated carbonyl and ethylene chromophores. In the 

energy-loss range of this work (3.5-8.5 eV), the spin-forbidden transition at 4.36 

eV is the only spectral feature that can be attributed to the carbonyl chromophore. 

By analogy with previous electron-impact assignments in monoketones/3 •15 this 

transition is assigned as n ~ 7r* ( S - T). The other three spin-allowed transitions 

can be attributed as due to mainly the carbon-carbon, double-bond chromophore. 

The strongest transition at 6.88 e V is assigned as 1r ~ 7r* ( S - S), based 

on the electron energy-loss spectroscopy of methyl-substituted ethylenes16 and 

fl.uoroethylenes.17 The shoulder at 5.89 e V resembles the shoulder on the strongest 

feature in the energy-loss spectrum of the fl.uoroethylenes 17 and is assigned as 

7r ~ a*(3s) Rydberg (S-S). Finally, the spin-allowed band at 7.84 eV is probably 

another Rydberg band, similar to those observed in ethylenes.14 

4. Summary 

In conclusion, we have used the method of low-energy, variable-angle, electron­

impact spectroscopy to study the far-ultraviolet spectrum of diketene. Four new 

transitions have been observed, including one that is spin-forbidden. Tentative 

assignment of these transitions was made under qualitative assumptions. We 

hope that calculations will be available in the near future in order to confirm 

our expectations. 
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Figure Captions 

Fig. 1 Electron energy-loss spectrum of diketene at an incident electron energy E 0 = 

25 eV and scattering angle 0 = 10°. 

Fig. 2 Electron energy-loss spectrum of diketene with Eo= 25 eV and 0 =goo. 

Fig. 3 Electron energy-loss spectrum of diketene with E 0 =50 eV and 0 = 10°. 

Fig. 4 Electron energy-loss spectrum of diketene with Eo =50 eV and 0 =goo. 

Fig. 5 Differential cross sections of diketene as a function of scattering angle at an 

incident-electron energy of 25 eV for elastic scattering (D) and for transitions 

to the excited states lying at 4.36 eV (0), 5.8g eV (6), 6.88 eV (+),and 7.84 

eV (x) above the ground state. 

Fig. 6 Differential cross sections of diketene as a function of scattering angle at an 

incident-electron energy of 50 eV for elastic scattering (D) and for transitions 

to the excited states lying at 4.36 eV (0), 5.8g eV (6), 6.88 eV (+),and 7.84 

eV (X) above the ground state. 
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Abstract 

Thermal decomposition of chlorodifluoromethane, chloroform, dichloromethane 

and chloromethane under flash-vacuum pyrolysis conditions (900-1100°C) was in­

vestigated by the technique of electron energy-loss spectroscopy, using an impact 

energy of 50 eV and a scattering angle of 10°. The pyrolytic reaction follows a 

hydrogen chloride a-elimination reaction pathway. The difluoromethylene radical 

was produced from the chlorodifluoromethane pyrolysis at 900°C and identified by 

its X1 A1 -+ A 1 B1 band at 5.04 eV. 

1 This work was supported in part by the U.S. Department of Energy, Contract 

No. DE-AM03-76F00767, Project Agreement No. DE-AT03-76ER72004. 

2 Work performed in partial fulfillment of the requirements for the Ph.D. degree 

in Chemistry at the California Institute of Technology. 

3 Present address: The Pennsylvania State University, Department of Chem­

istry, University Park, PA 16802. 
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1. Introduction 

The thermal decomposition of four halomethane molecules that follow similar 

pyrolysis pathways provides clues for generation of gas phase halocarbenes. By 

comparison between the electronic spectra of the pyrolytic precursor molecule at 

room temperature and at high temperature, one can determine the efficiency of 

decomposition and identify the possible pyrolytic products. 

This report presents an electron energy-loss study of the hydrogen chloride 

(HCl) a-elimination from halomethanes under flash-vacuum pyrolysis (FVP) 

conditions.1 •
2 The FVP conditions employed in this study were 1-10 mTorr of the 

gas sample over a quartz pyrolyzer surface at 900-1100°C. Under these conditions, 

thermal activation takes place primarily by contact with the hot pyrolyzer walls, 

so that processes observed in this study result mainly from very fast heterogeneous 

reactions. 1 

Electron-impact spectroscopy has been previously used in our laboratory for 

investigation of the methyl (CH3 ) radical and some of its pyrolytic precursors.3 

In that work, the number density of CH3 radicals in the jet at the pyrolysis 

temperature was estimated to be 1013 moleculesjcm3 on the basis of the intensity 

of the 5.73 eV band. 

2. Experimental 

The spectrometer used in the present experiment has been described previ­

ously.4 Briefly, electrons are emitted from a tungsten filament and focused into 

a hemispherical monochromator. The monoenergetic electrons are then focused 

into the scattering region and, after interaction with the target molecules, enter a 

hemispherical energy-loss analyzer prior to detection. 
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The spectrometer resolution (as measured by the full width at half-maximum 

of the elastically scattered feature) varied between 70 and 100 me V. For all 

reported spectra, the incident electron energy was 50 eV and the scattering angle 

was 10°. 

In order to produce thermal decomposition of the halomethanes, an in situ 

pyrolysis technique was employed.3 The pyrolysis takes place within a graphite­

coated quartz tube with an inner diameter of 0.060 in. The pyrolyzer is heated by 

tantalum sheathed double stranded tungsten-rhenium alloy wires wound over a 0.35 

in length of the quartz tube, and temperatures up to 1100°C (as measured by an 

optical pyrometer) can be reached. Since the pyrolysis is done at low pressures, the 

residence time in the pyrolyzer is kept in the few milliseconds' range and thermal 

activation results mainly from collisions with the wall. Because the distance from 

the end of the pyrolyzer to the scattering center region is short, most of the reactive 

intermediates should be detected. The background pressures in the scattering 

chamber are quite low ( < 5 x 10-5 Torr), so recombination rates are slow. 

The investigation of four halomethanes are reported: chlorodifl.uoromethane 

(Aldrich, 99.9%); chloroform (J.T.Baker, 99.5%); dichloromethane (J. T. Baker, 

99.7%) and chloromethane (Aldrich, 99.5%). The chloroform and dichloromethane 

samples were subjected to three liquid-nitrogen, freeze-pump-thaw cycles. Hydro­

gen chloride (Matheson, 99.0%) was used as reference in the study of the high­

temperature spectra. 

3. Results and Discussion 

Figure 1 shows the electron energy-loss spectrum of the HCl jet. The spectrum 

is featureless in the region 2.0-6.5 eV, which is followed by a broadband continuum 

with a maximum around 8 eV. The four peaks in the region above 9 eV consist 
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mainly of the C 1 II and b3 II states, which are Rydberg states corresponding to the 

1r --+ 4s transition.5 The strongest peak at 9.62 eV is assigned as C 1 II( v' = 0), 

while the two peaks at 9.93 and 10.28 eV are the C(v' = 1, 2) bands, respectively. 

The small peak at 9.31 eV corresponds to b3 II(v' = 0).6 

In Figures 2 and 3, we show the energy-loss spectra of chlorodifluoromethane 

at room temperature and at 900°C. The room temperature spectrum shows a 

broadband continuum with the maximum around 8.2 eV, followed by two peaks 

at 9.24 and 10.00 eV, which can be assigned as the Rydberg transitions Cl --+ 4s 

and Cl --+ 4p, respectively. The high-temperature spectrum suggests an extensive 

decomposition of the precursor molecule and we can observe the familiar b( v' = 0) 

and C( v' = 0, 1, 2) bands of HCl at the high-energy-loss side. However, there 

is a new broadband feature starting at 4.2 eV and peaking at 5.04 eV. We 

attribute this band to the X1 A1 -+A 1 B 1 transition of the difluoromethylene 

(CF2) radical. The spectrum of this radical was first observed and identified in 

the region 3300-2300 A by Venkateswarlu.8 This transition was assigned later by 

Mathews9 as X1 A 1 -+A 1 B 1. In our case, the possibility of the combination of two 

CF2 can be eliminated by comparison with the electron energy-loss spectrum of 

tetrafluoroethylene.10 The CF2 radical appears to be unreactive with itself and is 

thermochemically stable (6.HJ = -49 ± 3 kcaljmol).11 

Figure 4 shows the chloroform spectrum at room temperature. The first band 

with the maximum at 7.10 eV can be assigned as an n --+ a* Rydberg transition. 12 

The shoulder at 8.31 eV and the peak at 8.72 eV are both believed to stem from 

the n --+ 4s Rydberg manifold.12 The higher energy transition at 9.26 eV can be 

attributed as an n --+ 4p Rydberg. The one dominant feature at still higher energy 

is a peak at 10.62 eV. 

Figure 5 presents the chloroform spectrum at 1000°C, which at high energy loss 

very much resembles the HCl one, as a result of the efficient thermal decomposition. 
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Beginning at about 4 eV, we have two broadband continua with peaks roughly at 

6.3 and 8.0 eV. The last one probably corresponds to the HCl continuum, while the 

first one occurs in the same region (5.0-7.0 eV) where tetrachloroethylene shows 

an intense broad transition. 16 Tetrachloroethylene can be formed by bimolecular 

processes that usually do not occur under FVP conditions except in the case 

of radical-radical reactions.2 These facts suggest that the first broadband is 

probably due mainly to the combination of two dichloromethylenes (CCl2) to give 

tetrachloroethylene. It is known that the radical CC12 has a weak visible absorption 

band in the region 2.21-2.81 eV13 and an ultraviolet absorption band centered at 

3. 76 eV.14 The shoulderlike band in the region 4.0-5.0 eV could tentatively be 

attributed as the 1 A 1 ---+ 1 A2 band of CCh, which ab initio and CI calculations 

predict to be at 4.5 eV.15 However, there is no conclusive evidence for the presence 

of thermochemically unstable CCh (D.HJ = 39 ± 3 kcaljmol). 11 

In Figures 6 and 7, the dichloromethane spectra are displayed at room 

temperature and at 1100°C, respectively. The room temperature spectrum has 

a shoulder at 7.16 eV that can be assigned as an n ---+ u* Rydberg transition.12 

The first peak with the maximum at 8.26 eV can be attributed to degenerate 

n ---+ 4s Rydberg transitions, while the broadband at 9.12 eV is due to n ---+ 4p 

Rydberg transitions.12 At still higher energy is a sharp peak at 10.30 eV. The 

high-temperature spectrum suggests that the dichloromethane is only partially 

decomposed at 1100°C. The strong and sharp peak at 9.6 eV is the C 1 II( v' = 0) 

transition of the HCI. Except for a shoulder like feature in the region 5.0-6.0 e V that 

could not be assigned, the rest of the spectrum resembles a broad and noisy version 

of the room temperature one. No evidence for the presence of the thermochemically 

unstable CClH (D.HJ = 71 ± 5 kcaljmol) 11 was found at this temperature. 

Figure 8 shows the room temperature spectrum of chloromethane. The 

shoulder from 6 .50 to 7.65 eV can be assigned as ann---+ u* Rydberg transition.12 
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The next band centered at 7.91 eV is attributed to ann- 4s Rydberg transition.12 

Then, we have an intense feature at 8.91 eV assigned as an n - 4p Rydberg 

transition, followed by a sharp and intense peak at 9.22 eV, which has been 

tentatively assigned to the n - 3d Rydberg transition.12 Another intense peak 

is at 10.20 eV and can be considered as the n - 5p Rydberg transition. 12 

Finally, Figure 9 presents the spectrum of chroromethane at 1100°C, which is 

noisy and the lacks fine structure of the one at room temperature. There is no HCl 

feature about 9.6 eV, and we can assume that there was no measurable thermal 

decomposition at this temperature. 

4. Summary 

In conclusion, we have used the method of electron energy-loss spectroscopy 

to investigate the pyrolysis of four halomethanes via HCl a-elimination reaction. 

At sufficiently high temperature we observed a complete and clean thermal 

unimolecular decomposition of halomethanes that contain at least one hydrogen 

and one chlorine atom. The difluoromethylene radical can be easily generated by 

the chlorodifluoromethane pyrolysis at 900°C. We also assigned the far-ultraviolet 

bands of the pyrolytic precursor molecules based only on the optical spectra. To our 

knowledge, no low-energy-loss study of these compounds has been published.17
•
18 
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Figure Captions 

Fig. 1 Electron energy-loss spectrum of hydrogen chloride with E 0 = 50 eV and 

0 = 10°. All spectra were measured at the same impact energy and scattering 

angle, using an effusive jet as the target source. 

Fig. 2 Electron energy-loss spectrum at room temperature of chlorodifiuoromethane. 

Fig. 3 Electron energy-loss spectrum at 900°C of chlorodifiuoromethane. 

Fig. 4 Electron energy-loss spectrum at room temperature of chloroform. 

Fig. 5 Electron energy-loss spectrum at 1000°C of chloroform. 

Fig. 6 Electron energy-loss spectrum at room temperature of dichloromethane. 

Fig. 7 Electron energy-loss spectrum at 1100°C of dichloromethane. 

Fig. 8 Electron energy-loss spectrum at room temperature of chloromethane. 

Fig. 9 Electron energy-loss spectrum at 1100°C of chloromethane. 
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CHAPTER 6 

EXPLORATORY STUDIES 

The far-ultraviolet spectrum of diketene was assigned in Chapter 4. Here 

we will be concerned with the flash-vacuum pyrolysis of diketene. It is known 

from the literature1 that diketene (at pressures around 100 Torr) cleaves cleanly 

into ketene at 550° C. The pyrolysis of diketene has been shown to be a homo­

geneous, unimolecular process by demonstrating that the intermolecular secon­

dary deuterium isotope effect is pressure-dependent, decreasing with decreasing 

pressure.2 An activation energy of 50 kcal /mol was obtained for the pyrolysis of 

diketene in a flow system. 2 

In our laboratory, we used the method of electron energy-loss spectroscopy to 

investigate the temperature dependence of the flash-vacuum pyrolysis of diketene. 

The diketene (Aldrich, 98%) sample was subjected to three liquid-nitrogen, freeze­

pump-thaw cycles. The temperature range studied varied from 500° to 1000° C, 

in steps of 100°C. The temperature was measured by a thermocouple or an 

optical pyrometer. We observed that under flash-vacuum pressures (1-10 mTorr) a 

higher temperature, 900° C' was necessary to achieve the complete decomposition 

of diketene molecule into two ketene molecules. 

Figure 1 shows the room temperature spectrum of diketene, while Figure 2 

shows the spectrum at 800°C. At this temperature we can observe new features , 

for example, a shoulder band around 6 e V, but the strongest peak is still the 

6.88 eV peak of diketene, and this suggests only partial decomposition. Figures 

3 and 4 show the spectra of diketene at 900°C and 1000°C, respectively. At 

these temperatures, the spectra look completely different from the one at room 
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temperature. The diketene peak at 6.88 eV seems to be absent and the strongest 

peak now is at 7.06 eV, the 1r ---+ 1r* transition of ketene, which was studied 

previously by this group.3 Figure 5 shows a room-temperature spectrum of ketene3 

for comparison. 

b) TRIFLUOROMETHYL IODIDE 

Figure 6 shows the room-temperature spectrum of trifluoromethyl iodide 

(CF3I, Aldrich, 98%). There is a weak continuous A band peaking around 4.7 

eV that corresponds to n---+ a* continuum transitions4 • The peak at 7.26 eV and 

the strong peak at 7.91 eV correspond to the C- X and :6- X bands, respectively.5 

The peak at 8.89 eV is theE- X band5 . 

Figure 7 presents the spectrum of trifluoromethyl iodide at 1000°C. We can 

observe the absence of the strong CF3I peak at 7.91 eV and the appearance of many 

new sharp peaks. These facts suggest a complete thermal decomposition. Duignan 

et al. have reported the thermal decomposition of CF3I at 1000°C producing 

trifluoromethyl ( CF 3) radical and iodine (I) atom6 . Before trying to find features 

that are due to CF3 radical, let us first identify the features that are due to the 

iodine molecule (12 ) and atom. The weak peaks at 8.96 and 10.17 eV, as well as 

the shoulders at 7.12, 7.87, 8.26,and 9.40 eV can be considered as 12 bands.7 The 

iodine-atom spectrum is a very congested one.8 We can assign all the strong peaks 

and the other features, except perhaps the shoulder at 8.37 eV, as iodine-atom 

bands. The CF3 radical has several transitions in the region 7.50 to 8.49 eV.9 Its 

strong peaks are at 7.74, 7.85, 7.95, 8.17, 8.27, and 8.37 eV.6 •9 Thus, the shoulder 

at 8.37 eV may possibly be considered as a CF3 feature. 
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c) TRICHLOROBROMOMETHANE 

Figure 8 shows the room-temperature spectrum of trichlorobromomethane 

(BrCC13). The BrCC13 sample (Aldrich, 99%) was subjected to three freeze-pump­

thaw cycles. We can observe two broad peaks at 6.72 and 8 .16 eV followed by an 

even broader peak superimposed with three smaller peaks at 9.00, 9.33, and 9.62 

eV. No far-ultraviolet spectrum of BrCCls has been reported in the literature. 

Figure 9 shows the spectrum of chlorine (Cb) molecule at room temperature 

for comparison with the high-temperature BrCC13 spectrum. The Cb shows peaks 

at 8.12, 9.20, and 9.74 eV. The two last peaks can be assigned as 7rg --t 4pa and 

1r g --t 4p7r Rydberg transitions, 10 respectively. 

Figure 10 shows the BrCC13 spectrum at 900°C. Now we have a very congested 

and noisy spectrum. It was suggested that this thermal decomposition occurs via 

production of trichloromethyl (CC13) radicals and bromine (Br) atoms,11 but in 

our case the carbon-chlorine bonds were broken, too. The spectrum shows a broad 

band peaking around 6.3 eV which combined with a shoulder around 9.6 eV and 

a broad peak around 10.4 eV would suggest the presence of tetrachloroethylene 

(C2Cl4).12 The sharp features are tentatively attributed to Br, Br2, Cl, and Cb. 

The Br peaks are at 8.12, 8.39, 8.58, 9.45, and 10.20 eV.13 The Br2 feature is at 

8.66 eV.14 The Cl features are at 9.04 and 10.12 eV.15 Finally, the Cb has a peak 

at 9.22 eV, which corresponds to the strongest Cl2 peak in figure 9. 

~HEXACHLOROACETONE 

Figure 11 presents the room temperature spectrum of hexachloroacetone 

(CClsCOCCls). The CClsCOCCls sample (Aldrich, 98%) was subjected to three 

liquid nitrogen freeze-pump-thaw cycles. In this spectrum, the first feature is a 
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broadband continuum peaking around 4.2 e V, followed by two broad peaks at 

6.31 and 7.62 eV, respectively. An even broader peak with two smaller sharp 

peaks superimposed occurs at 9.28 and 9.68 eV. The far- ultraviolet spectrum of 

CClsCOCCb has not been reported in the literature. 

Figure 12 shows the CC13 COCC13 spectrum at 900° C. This spectrum suggests 

partial decomposition with well-defined, new features . Again, a broadband peaking 

around 6.3 eV in connection with peaks at 9.6 and 10.4 eV is indicative of 

tetrachloroethylene.12 A sharp peak at 9.2 eV can be recognized as the strongest 

Cb peak in Figure 9. Starting about 8 eV and ending just before 9 eV, there 

is a broad peak with some structural features that can be attributed to the 

X 1 E+ -+ A 1 IT carbon monoxide band with some of its vibrational structure.16 

The shoulderlike feature in the region 4.0-5.0 eV was not identified (see chloroform 

in page 38 of the Chapter 5) . 

e) DICHLOROBROMOMETHANE 

Figure 13 shows the spectrum of dichlorobromomethane (BrCHCb) at room 

temperature. The BrCHC12 sample (Aldrich, 98%) was subjected to three 

liquid-nitrogen, freeze-pump-thaw cycles. The spectrum starts with a broadband 

continuum shoulder peaking around 5.8 eV, followed by a broad peak at 6 .62 eV. 

A broad shoulder starts at 7 eV, ending at 8.2 eV, and is followed by a broad flat 

peak that ends at 9 eV. Then we have two broad peaks at 9.28 and 10.45 eV, 

respectively. The spectrum of BrCHC12 in the far-ultraviolet region has not been 

reported in the literature. 

Figure 14 shows the spectrum of hydrogen bromide (HBr, Matheson, 99.8%) at 

room temperature for comparison with the high-temperature BrCHC12 spectrum. 

The HBr spectrum starts with a broadband continuum peaking around 6.8 eV, 
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which is attributed to the 4pa --t a* band.17 This band is followed by a series of 

sharp peaks at 8.33, 8.76, 9.08, 9.35, 9.91, 10.08, 10.41, and 10.80 eV, which have 

been assigned by Nee et a/. 17 The two first sharp peaks correspond to the Rydberg 

states of C 1 TI and b3TI which belong to the ns series with n = 5.17 

Figure 15 shows the BrCHC12 spectrum at 1000°0. The spectrum looks 

somewhat noisy and congested. It was suggested that this thermal decomposition 

occurs via production of a dichloromethyl (CHCb) radical and bromine atom,l8 

but in our case the carbon-chlorine and carbon-hydrogen bonds were broken, too. 

Once again, a broadband around 6.3 eV plus two peaks at 9.6 and 10.4 eV is 

indicative of tetrachloroethylene.12 There are bromine atom sharp peaks at 8.10, 

8.37, 8.56, 9.43, and 10.18 eV. 13 The Br2 feature is at 8.64 eV.14 There are HBr 

peaks at 8.31, 8.74, 10.40 and 10.80 eV. 17 The strong and sharp peak at 9.62 eV is 

due mainly to HC119 (see Figure 1 in Chapter 5), but has some contribution from 

the C2Cl4 9.6 eV peak. The shoulders in the regions 4.0-5.0 eV (see chloroform in 

page 38 of the Chapter 5) and 7.0-8.0 eV were not identified. 
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Figure Captions 

Fig. 1 Electron energy-loss spectrum at room temperature of diketene with Eo = 

50 eV and 0 = 10°. All spectra were measured with an effusive jet as the 

target source. 

Fig. 2 Electron energy-loss spectrum at 800°C of diketene with Eo 100 eV and 

0 = 15°. 

Fig. 3 Electron energy-loss spectrum at 900°C of diketene with Eo 50 eV and 

0 = 10°. 

Fig. 4 Electron energy-loss spectrum at 1000°C of diketene with Eo 50 eV and 

0 = 10°. 

Fig. 5 Electron energy-loss spectrum at room temperature of ketene with E 0 =50 eV 

and 0 = 20°. 

Fig. 6 Electron energy-loss spectrum at room temperature of trifiuoromethyl iodide 

with Eo= 50 eV and 0 = 10°. 

Fig. 7 Electron energy-loss spectrum at 1000°C of trifluoromethyl iodide with Eo= 

50 eV and 0 = 10°. 

Fig. 8 Electron energy-loss spectrum at room temperature of bromotrichloromethane 

with E 0 =50 eV and 0 = 10°. 

Fig. 9 Electron energy-loss spectrum at room temperature of chlorine with Eo -

50 eV and 0 = 10°. 

Fig. 10 Electron energy-loss spectrum at 900°C of bromotrichloromethane with Eo= 

50 eV and 0 = 10°. 

Fig. 11 Electron energy-loss spectrum at room temperature of hexachloroacetone with 

Eo= 50 eV and 0 = 10°. 

Fig. 12 Electron energy-loss spectrum at 900°C of hexachloroacetone with Eo = 50 eV 

and 0 = 10°. 
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Fig.13 Electron energy-loss spectrum at room temperature of bromodichloromethane 

with E 0 = 50 eV and() = 10° . 

F ig. 14 Electron energy-loss spectrum at room temperature of hydrogen bromide with 

E o = 50 eV and () = 10°. 

F ig.15 Electron energy-loss spectrum at 1000°C of bromodichloromethane with Eo= 

50 eV and () = 10° . 
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APPENDIX 1 

Paper 3: AN ELECTRON-IMPACT SPECTROSCOPY INVESTIGATION 

OF CH3 AND SOME OF ITS PYROLYTIC PRECURSORS 

( Published at J. Chem. Phys., 86, 89 (1987) . ) 
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An Electron-Impact Spectroscopy Investigation of CHs 

and Some of Its Pyrolytic Precursorsa 

K. N. Walzlb, C. F. Koertingc, I. M. Xavier, Jr.d, and A. Kuppermann 

Arthur Amos Noyes Laboratory of Chemical Physics,e 

California Institute of Technology, Pasadena, CA 91125 

(Received 14 August 1986; accepted 3 September 1986) 

Abstract 

The electronic spectrum of the methyl radical CHs was investigated by 

the technique of variable-angle, electron energy-loss spectroscopy. By means 

of pyrolytic decomposition, three possible sources of this radical were tried 

(tetramethyl tin, ethyl nitrite, and di-t-butyl-peroxide). The spectra of these 

precursors were obtained. Using di-t-butyl-peroxide, relative differential cross 

sections for the lowest-allowed A~ 3s Rydberg transition in CH3 (5.73 eV) were 

determined at incident energies of 50 e V and 25 e V. The behavior of the differential 

cross section for this band is analogous to that of a spin-allowed transition in a 

closed shell system and, as expected, in the vicinity of this band no transition of a 

spin-forbidden nature is detected. 
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1. INTRODUCTION 

Free radicals play a major role in upper atmospheric chemistry, interstellar 

chemistry, and combustion chemistry. Many have low-lying electronic states 

energetically accessible under combustion conditions. In order to fully understand 

these processes it is necessary to understand the nature of the electronic states 

involved. 

The methyl radical is one of the most important of the polyatomic free radicals 

and, being one of the simplest hydrocarbons, is a useful model system for molecular 

orbital theory. It has been extensively studied by Herzberg via optical techniques1 . 

CH3 is planar with D3h symmetry and has the ground-state electron configuration 

The ground state is of 2 A~ symmetry, the unpaired electron lying in a Pr. orbit al 

of ~ symmetry. The lowest observed transition is the 2 A~ +-2 A~ 3s Rydberg 

excitation at 5. 73 e V. The forbidden excitation to the lowest 2 E' valence state has 

not been observed; however, calculations by Lengsfi.eld et a/.2 and McDiarmid3 

place it about 1.5 e V above the lowest 3s Rydberg state. The transitions to the 3p 

Rydberg states are also dipole, symmetry-forbidden in D3h symmetry, but Hudgens 

et al. 4 have found them to be at 7.42 e V by a resonantly enhanced, multi photon 

ionization technique. The excitation energy of the 3d state is 8.27 e V 1 , and the 

first ionization potential (IP) is at 9.85 eV. 1b 

A useful technique for probing the nature of electronic transitions is the 

method of variable-angle, electron energy-loss spectroscopy. When an electron 

scatters from and excites an atom or molecule, two mechanisms of electronic 

excitation are possible. The first is the long-range Coulomb excitation and is caused 

by the electric field produced when an electron passes the target. The differential 

cross section (DCS) for a transition excited in this manner exhibits a maximum a t 
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the scattering angle 0 = 0° (no change in direction) and decreases by approximately 

two orders of magnitude as 0 increases from 0° to 90° 5 •6 . The second mechanism 

of electronic excitation involves the physical exchange of the incident electron with 

a target electron. The incident electron may exchange with a target electron of 

either the same or opposite spin; the former exchange process may or may not 

result in target excitation, while the latter results in excitation to a spin-forbidden 

state. Transitions excited primarily by this mechanism possess a nearly uniform 

DCS as a function of scattering angle because of the loss of directional information 

carried by the incident electron5 •6 . 

With the above considerations in mind, a variable-angle, electron energy-loss 

spectroscopy study was undertaken of the polyatomic, free-radical CH3 • It was 

hoped that this investigation would yield information about possible low-lying, 

spin-forbidden transitions. Previous electron spectroscopy of free radicals had been 

limited to stable species that were triatomic or smaller; for example, the electron 

spectroscopy and differential cross sections have been determined for doublet­

doublet allowed and doublet-quartet forbidden transitions in N02 by Rianda et 

a/. 7
. The present paper reports the first electron-impact spectroscopy investigation 

of a transient, polyatomic free radical. 

2. EXPERIMENTAL 

The spectrometer used in the present experiments has been described previously8 . 

Briefly, electrons are emitted from a tungsten filament and focused into a hemi­

spherical monochromator. The monoenergetic electrons are then focused into the 

scattering region and, after interaction with the target molecules, enter a hemi­

spherical analyzer prior to detection. 

In order to generate the methyl radicals for the study, an in situ pyrolysis 

technique was employed8b. A quartz tube of 0.060 inch ID with an outer layer of 
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stainless steel sheathed heater wire (Figure 1) produces an effusive jet of molecules. 

Pyrolysis temperatures of up to 800° C, as measured by a thermocouple placed on 

the tube's outer surface, were used in these experiments. 

Three sources of methyl radicals were investigated. The first was tetramethyl 

tin (Aldrich, 99% ), known to be a reliable source of methyl radicals9
• Taylor and 

Milazzo10 found a 30% conversion of tetramethyl tin at ~600°C, with 20% of the 

organic products existing as CH3 . Using our inlet, temperatures of~ 800°C were 

required to achieve appreciable decomposition. Unfortunately, after five hours of 

continuous operation, the quartz capillary became obstructed with metallic tin. 

A second source of methyl radicals that was tried was ethyl nitrite. It is known 

that ethyl nitrite thermally decomposes by the reaction 11 

The gaseous ethyl nitrite was synthesized by mixing ethanol (U. S. Industrial 

Chemicals Co., anhydrous) and isoamyl nitrite (Aldrich, 97%) in a 2:1 ratio 

by volume; an ester alcoholysis takes place, producing isoamyl alcohol and 

continuously bubbling ethyl nitrite12 . A pyrolysis temperature of 450°C was used 

for the decomposition. 

The third source of methyl radicals used was di-t-butyl-peroxide (Columbia 

Organic Chemicals Co., Inc.). It has been shown13•14 that the decomposition of 

di-t-butyl-peroxide (TBP) proceeds according to the following scheme: 

TBP -.. 2 t-butyl-0· 

2 t-butyl-0· -.. 2 CH3· + 2 (CH3 )2CO . 

Since this was the precursor that was used for nearly all of the investigation, an 

optimization of the temperature needed for methyl production was carried out. 

The ratio of the methyl peak intensity at 5.73 eV to the acetone peak intensity 

at 6.36 eV versus temperature was examined at an incident-electron energy Eo= 

50 eV and scattering angle 0 = 10°(Figure 2). The ratio was found to possess a 
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maximum at 300 ±50°C, and this temperature was used in all subsequent studies. 

The number density of methyl radicals in the jet at this temperature was estimated 

to be 1013 moleculesjcm3 , on the basis of the intensity of that 5.73 eV band. 

3. RESULTS AND DISCUSSION 

In Figure 3 are shown two electron-impact spectra taken at Eo= 100 e V and 0 

= 0° between 4.5 and 9.5 eV energy loss. Figure 3a is the spectrum of tetramethyl 

tin obtained using the pyrolysis source at room temperature. It consists of two 

broad features with an onset at 5.7 eV and maxima at 6.71, 8.24, and 8.57 eV. Only 

two previous spectra for this compound have been reported. The first describes 

merely a continuum with an onset at 5.6 e V rising up to 6.2 e V.15 The second shows 

a maximum at 6.7 eV and ends at 7.1 eV. 16 Ours is the first reported UV spectrum 

of this compound extending to the first IP, located at about 9. 7 e V.17 Intense 3s 

Rydberg transitions are known to occur in molecules with Td symmetry, if the 

originating orbital is of t 2 type.18 In this case, the 6. 71 e V and 8.24 e V features 

can be fit to the first two members of a Rydberg series with a quantum defect of 0.84 

and and IP = 9.62 eV. Figure 3b shows the same spectral region of the compound 

with the source heated to 800° C. Immediately apparent are the sharp transitions 

located at 5.70, 8.30, and 8.98 eV. The 5.70 eV transition is assigned to the methyl 

A~ 3s Rydberg excitation. The 8.30 eV and 8.98 eV transitions are assigned to 

the 3d and 4d Rydberg excitations, respectively. Also of interest is the shoulder 

extending from 4.90 to 5. 75 e V not present in the room-temperature spectrum. It 

is possible that this shoulder is due to incompletely dissociated tetramethyl tin. 

As stated previously, operation of the source with tetramethyl tin was limited 

to about five hours. In addition, the lowest allowed methyl transition strongly 

overlapped with the lowest band of the compound, making DCS measurements 

more difficult. A second precursor investigated was ethyl nitrite. It was expected 
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that there could be much overlap of the methyl bands with the spectral features 

arising from the additional products NO and formaldehyde, and this was indeed 

found to be the case. Figure 4a shows the spectrum of ethyl nitrite without 

heating. It consists of several broad, structureless features. Previous studies19
•
20 

have examined only the lowest band in the region between 3.10 and 4.09 e V 14• H>, 

not shown in Figure 4a. Peaks are observed at 5.69, 6.70, 7.76, 8.24, 8.94, 9.44, and 

9.76 eV. In analogy with results for methyl nitrite21 , the transition at 5.69 eV is 

assigned as 1r--+ 1r* from an OCH2 CH3 -localized orbital to a NO-localized orbital. 

The remaining bands are probably attributable to Rydberg transitions. Figure 4b 

shows the spectrum of the pyrolyzed ethyl nitrite; the spectrum is highly congested. 

No feature can be definitively attributed to a known methyl radical feature; every 

peak in the spectrum can be assigned to either N022 or formaldehyde23
•
24 One 

interesting observation is that the intensities of two "f(A 2 E+ +- X 2 II)features at 

5.92 eV and 6.27 eV are much larger with respect to the nearby .B(B 2 II +-X 2 II) 

peaks (at 5.47, 5.75, 6.04, and 6.33 eV) than previously reported.25•26 In fact, under 

conditions of similar incident electron energy and scattering angle, the height of the 

transition at 6.27 e V is only about 10% of the height of the 6.34 e V transition. 25•26 

The precursor molecule that was finally used to generate methyl radicals was 

TBP. Figure 5a shows a spectrum of TBP between 4.25 and 7.75 eV energy-loss 

at Eo= 50 eV and 0 = 10° at room temperature. It consists of a rising continuum 

with very little structure visible (the sharp feature at 6.67 eV is due to a Hg 

contamination). In Figure 5b is shown TBP at a pyrolysis temperature of 400° C 

(results obtained prior to temperature optimization). The spectrum is drastically 

different and, as expected, most of the features are due to the pyrolysis product 

acetone with the exceptions being the sharp peak at 5.74 eV and the broad feature 

between 5.8 and 6.3 eV. The peak at 5.74 eV is again attributed to the methyl 3s 

Rydberg transition. 
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To help confirm the nature of the methyl transition, an angular study was 

conducted. Figure 6a again shows the spectrum of TBP at Eo= 50 eV and () = 

10° between 5.6 and 6.4 eV energy loss and at the optimum temperature of 300°C. 

In contrast, the spectrum of TBP under the same conditions except at 0 = 60° is 

shown in Figure 6b. It is apparent that no drastic changes occur, although the ratio 

of the methyl 3s Rydberg transition to the acetone singlet-singlet A1 3s transition 

at 6.36 eV goes from approximately 1:2 to 1:3. Increasing the angle further to 

90° produces a change in this ratio back to about 1:2; however, because of the 

increase in the relative intensity of the intervening region of the spectrum, the 

methyl peak is obscured. Most of the increase in the relative intensity between 5.8 

and 6.3 eV is due to the presence of the singlet-triplet 1r ~ 1r* band of acetone. 

As previously discussed, the intensity of such spin-forbidden bands are constant 

with angle, while the intensity of fully allowed bands decreases with angle, hence 

the relative increase in the acetone singlet- triplet 1r ~ 1r* band. 

The DCS curves plotted in Figure 7 illustrate the integrated intensity changes 

for these bands. The elastic peak and the acetone n~3s peak exhibit an intensity 

decrease of about two orders of magnitude as should fully allowed bands. The 

methyl A~ 3s Rydberg band seems to be exhibiting this behavior also, but the 

curve begins to become more constant, starting at () = 60°. This is the angle 

where the spin-forbidden 1r ~ 1r* band of acetone begins manifesting itself more 

strongly and, if this effect is subtracted out using the known angular behavior of 

this acetone band24 and the acetone 3s Rydberg transition as a scaling feature, the 

DCS curve behaves more like a fully allowed band. At Eo= 50 eV, there seems to 

be little contribution from a spin-forbidden transition in methyl in the region of 

the A~ 3s Rydberg band. 

For CH3 , one would probably expect no low-lying, spin-forbidden bands t o 

be in evidence. All transitions from the highest-occupied ~ orbital are spin-
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allowed because the electron is unpaired. Likewise, only a spin-allowed version 

of the predicted lowest valence transition is possible. This constrasts with 

allowed Rydberg transitions converging to the second IP, which would have spin­

forbidden counterparts. A calculation by Millie and Berthier27 places the second 

IP approximately 5 eV higher than the first IP. Thus, a spin-allowed excitation 

from the 2e' orbital to the 3s orbital would lie at about 10.5 eV and the spin­

forbidden excitation at about 9.5 e V, allowing a singlet-triplet splitting of 1 e V 

(as Brongersma and Oosterhoff28 found for the 3s Rydberg transition from a 

corresponding orbital in methane). 

Another angular study was performed with the incident energy lowered to 

Eo = 25 eV (Figure 8). In this case the behavior is not as marked; however, the 

general trend, suggesting that there is no spin-forbidden contribution to the methyl 

spectrum in the vicinity of the A~ 3s Rydberg band, is confirmed. 

4. SUMMARY 

The spectra of three pyrolytic sources of methyl radicals (tetramethyl tin, ethyl 

nitrite, di-t-butyl-peroxide) were investigated by variable-angle, electron energy­

loss spectroscopy, both at room temperature and at elevated temperatures. Of 

the three precursors, di-t-butyl-peroxide was found to be the most useful for 

radical generation. The spectrum of the decomposition c~product acetone has 

only moderate overlap with that of methyl and also is fairly well understood, so 

that its effect can be removed. Regarding the 3s Rydberg excitation in CH3 , it has 

been found to possess a DCS in accord with its fully allowed nature. 
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FIGURE CAPTIONS 

Figure I. Schematic diagram showing the free-radical beam source. GI: gas inlet, 

H: heater, QT: quartz tube, SL: swagelock fitting, TS: tantalum shield. 

Figure 2. Graph of the ratio of integrated intensity for the methyl 3s Rydberg 

transition at 5. 73 e V to the acetone, 3s Rydberg transition at 6.36 e V as a function 

of temperature. Eo= 50 eV, (} = 10°. 

Figure 3. Energy-loss spectrum of tetramethyl tin with a) pyrolysis source off, 

b) pyrolysis source on T = 800°C. For both spectra Eo= 100 eV, (} = 0°. Incident­

electron current = 5 nAmp, estimated sample pressure = 1 mtorr. 

Figure 4. Energy-loss spectrum of ethyl nitrite with a) pyrolysis source off, b) 

pyrolysis source on, T = 450°C. For both spectra Eo= 50 eV, (} = 10°. Incident­

electron current = 10 nAmp, estimated sample pressure = 1 mtorr. 

Figure 5. Energy-loss spectrum of TBP with a) pyrolysis source off, b) pyrolysis 

on, T = 400°C. For both spectra Eo= 50 eV, (} = 10°. Conditions same as Figure 

4. 

Figure 6. Energy-loss spectrum of TBP at a pyrolysis temperature of 300°C and 

Eo= 50 eV: a) (} = 10°, b) (} = 60°, c) (} = 90°. Conditions same as Figure 4. 

Vertical lines indicate magnitude of error in spectral intensity. 

Figure 7. DCS plot of pyrolyzed TBP Eo= 50 eV. Elastic scattering (EP) x 0.1 

+ , acetone 3s Rydberg x 100: 0 , methyl 3s Rydberg x 100 : U , methyl 3s 

Rydberg (corrected by subtracting contribution of acetone spin-forbidden band) 

x 100 : 6 . Arbitrary units are the same for all curves, which are multiplied by 

scaling factor before plotting. 

Figure 8. DCS plot of pyrolyzed TBP Eo= 25 eV. EP x 0.1 : + , acetone 3s 

Rydberg x 100: 0, methyl3s Rydberg x 1000: U, corrected methyl3s Rydberg 

X 1000: 6. 
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FIGURE 4. 
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FIGURE 7. 
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APPENDIX 2 

Paper 4: ELECTRON-IMPACT SPECTROSCOPY OF VARIOUS 

DIKETONE COMPOUNDS 

(Published at J. Chem. Phys., 86, 6701 (1987). ) 
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Electron-Impact Spectroscopy of Various 

Diketone Compoundsa 

K. N. Walzl,b I. M. Xavier, Jr.,c and A. Kuppermann 

Arthur Amos Noyes Laboratory of Chemical Physics,d 

California Institute of Technology, Pasadena, CA 91125 

(Received 10 December 1986; accepted 15 January 1987) 

Abstract 

The spectra of the diketone compounds biacetyl, acetylacetone, acetonylace-

tone, 1,2-cyclohexanedione, and 1,4-cyclohexanedione have been investigated by 

the technique of low-energy, variable-angle, electron energy-loss spectroscopy. With 

this method, low-lying, spin-forbidden transitions have been observed. The energy 

difference between the lowest spin-allowed and spin-forbidden n~ :rr* excitations in 

the acyclic diketones is found to be 0.35 eV, on average, which is nearly the same 

as that of comparable acyclic monoketone compounds; in 1,2-cyclohexanedione , 

however, this energy difference is 0.84 e V, more than twice as large. This discrep-

ancy in the magnitude of then~ :rr* singlet-triplet splittings may be attributed to 

differing amounts of overlap between the initial and final orbitals. 

a This work was supported in part by the U.S. Department of Energy, Contract 
No. DE-AM03-76F00767, Project Agreement No. DE-AT03-76ER72004. 

b Work performed in partial fulfillment of the requirements for the Ph.D. degree 
in Chemistry at the California Institute of Technology. 

c On leave from Departamento de Quimica Fundamental; Universidade Federal 
de Pernambuco; 50000, Recife, Pernambuco; Brazil. 

d Contribution No. 7516. 



99 

1. INTRODUCTION 

Because of their importance in photochemistry and photophysics, diketones 

have been studied extensively by both spectroscopic1 - 5 and theoretical6 - 9 meth­

ods. Compounds with two carbonyl groups provide useful structures for the study 

of intramolecular energy transfer, found to be a relevant process in both singlet and 

triplet excited states10 and interactions involving remote carbonyl groups.11 Work 

has been performed, primarily photoelectron spectroscopy,l2 in order to identify 

the mechanism by which carbonyl groups interact with each other. Even though the 

"through-space" interaction is expected to be small between two carbonyl groups in 

the same molecule,8 •13 the "through-bond" interaction leads to molecular orbitals 

with clearly split energies.14 

In order to more fully understand the nature of the interaction between 

the carbonyl groups in diketone compounds, it is helpful to have a complete 

picture of the low-lying electronic states, both allowed and forbidden. With the 

exception of biacetyl, the low-lying triplet states have not been definitively detected 

in most larger diketones. In biacetyl the two lowest, singlet-triplet transitions 

have been observed in fiuorescence2 and by opto-acoustic spectroscopy.1 Electron­

impact spectroscopy is a useful technique for observing and identifying forbidden, 

especially spin-forbidden, transitions in spectra. It is known that a spin-forbidden 

band exhibits a relatively constant intensity with scattering angle while a spin­

allowed band is strongly forward-peaked, falling by two orders of magnitude 

between the scattering angles 10° to 90°.15 The combination of these effects results 

in a relative intensity increase of a spin-forbidden band with increased scattering 

angle. Another advantage of the electron-impact method is that spectral features 

in the far ultraviolet are easily examined. The compounds biacetyl, acetylacetone, 

acetonylacetone, 1,2-cyclohexanedione, and 1,4-cyclohexanedione were chosen for 

study as representative samples of such compounds. 
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2. EXPERIMENTAL 

The electron spectrometer and the methods of data accumulation and analysis 

have been described previously.16 Briefly, an electron beam is energy-selected by 

a hemispherical, electrostatic energy analyzer (and the associated focusing lenses) 

and scattered from target vapor in a collision cell. In this work the incident beam 

current was between 0.5- 10 nA and was typically 3 nA. Sample pressures were 

estimated to be between 1-10 mtorr. Electron energy-losses were determined at 

angles between 0° - 90° by means of a second electrostatic energy analyzer and 

detector. 

The spectrometer resolution (as measured by the full width at half-maximum 

of the elastically scattered feature) varied between 50 meV and 125 meV for all 

reported spectra and was typically 85 me V. Peak locations determined from the 

spectra have an estimated uncertainty of ±.07 eV, and Franck-Condon limits are 

estimated to be within ±.15 eV. 

Liquid samples of biacetyl (Matheson, Coleman and Bell 97 + %) , acetyl acetone 

(J. T . Baker 99.7%), acetonylacetone (Aldrich 97%) and 1,2-cyclohexanedione 

(Aldrich 98%) were subjected to three freeze-pump-thaw cycles and used without 

further purification. 1,4-Cyclohexanedione (Aldrich 98%), a room temperature 

solid, was warmed to approximately 50° C during scanning to provide sufficient 

vapor pressure. 
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3. RESULTS 

BIACETYL (2,3-BUTANEDIONE) 

The biacetyl molecule is of C2h symmetry with the two highest occupied 

molecular orbitals being largely nonbonding and confined to the oxygen atoms. 

The degeneracy of the two oxygen nonbonding orbitals, n 1 and n2 is lifted by 

the interaction of these two orbitals. The levels arising from the symmetry­

adapted linear combinations of these orbitals are designated n+ and n_, where 

n± = 1/Vz (n1±n2), with symmetries ag and bu, respectively. The energy 

difference is 1.9 eV, with I.P. (n+, ag) = 9.55 eV and I.P. (n-, bu) = 11.45 

e V.17 For two carbonyl groups bonded directly together the difference in energy 

between the n+ and n_ orbitals is found to be relatively independent of torsional 

angle,17 implying that the through-bond interaction dominates the through-space 

interaction even for biacetyl. The next two lower occupied 1r orbitals have 

ionization potentials IP(bg) = 13.20 eV and IP(au) = 14.73 eV. 18 The two lowest 

unoccupied molecular orbitals are 1r* in nature with 1r* (bg) higher than 1r* (au) . 

Fig. 1 shows the low energy-loss region of the biacetyl spectrum between 2.0 eV 

and 7.0 eV at Eo = 25 eV and(} = 10° and 90° . In the 10° spectrum (Fig. la), one 

observes two low energy-loss features and a shoulder on the edge of a very intense 

band at about 7.0 e V. The lowest is the A 1 Au +---X 1 Ag transition with a measured 

onset at 2.67 eV, maximum at 2.91 eV, and extending to 3.45 eV.19 Lying between 

3.82 eV and 5.28 eV with a maximum at 4.49 eV is a transition that ab initio SCF 

and CI results indicate should be designated B 1 Bg +---X 1 Ag. 6 The broadness of this 

band may be due to the presence of an enolic 1r ---+ 1r* excitation.20 The sharp peak 

at 6.24 e V is the first 3s member of an s Rydberg series converging to the lowest 

ionization potential, I.P. = 9.53 e V. As the scattering angle is increased, three spin­

forbidden features become apparent (Fig. 1b).21 The lowest, overlapping greatly 
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with the A 1 Au +-X 1 A 0 band, has an onset at 2.28 eV and a maximum at 2.54 eV. 

It is attributed to a combination of the a 3 Bu +-X 1 A 0 spin-forbidden excitation, 1 

previously seen in fluorescence experiments,2 and a 3 Au +- 1 A 0 excitation,19 the 

latter being the dominant contributor. A second spin-forbidden band is seen in the 

region between 5 eV to 6 eV with a maximum at 5.47 eV. Calculations place several 

7r --+ 1r• spin-forbidden transitions in this region,6 •22 particularly a 3 Bu +- 1 A 0 

excitation predicted to be at 5.56 eV.22 A last feature is observed at 5.80 eV 

and seems to be identifiable as the spin-forbidden counterpart of the 3s Rydberg 

excitation because of its relative sharpness. 

The spectral region extending from 5 eV to 10 eV (just beyond the lowest I.P.) 

is shown in Fig. 2a under the optical conditions Eo = 100 e V and 8 = 3° . All 

the transitions observed appear to be Rydberg in nature, and indeed, members of 

three series can be distinguished. Peaks at 6.24, 8.05, and 8.70 eV can be fit as the 

first three members of an s Rydberg series with a quantum defect 8 = 0.97. The 

s members are now much weaker than in the 25 e V spectra because the n0 -+3s 

transition is parity-forbidden by dipole selection rules. The first two members of a 

p series at 7.21 eV and 8.42 eV are fit with 8 = 0.58, and a feature at 7.72 eV is 

assigned to a 3d excitation. Transitions at 6.28 eV and 7.20 eV have been observed 

previously by Ells.3 

ACETYLACETONE (2,4-PENTANEDIONE) 

As a room temperature vapor, acetylacetone consists of two structural isomers. 

One has the expected diketo molecular structure; however, acetylacetone exists 

predominantly as an enol.23•24 In the diketo form the two highest occupied 

molecular orbitals have a mostly oxygen, nonbonding character and are labeled 

n_ (I.P. = 9 .60 eV) and n+ (I.P. = 10.15 eV).23 The highest occupied molecular 

orbitals in the enol compound are of the 7r type (I.P. = 9.00 e V) and the non bonding 
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type (I.P. = 9.60 eV).25 

In Fig. 3 are shown spectra of acetylacetone between 3.0 eV and 6.0 eV energy 

loss at Eo = 25 eV and 8 = 10° and 90° . At 10° (Fig. 3a) one sees a very strong 

band between 4.10 eV and 5.73 eV with a maximum at 4.70 eV. It is identified with 

the lowest spin-allowed 71" --+ 7r* transition in the enol molecule.24 One also observes 

a weak band with an onset at 3.83 eV and a maximum at 4.04 eV because of the 

first spin-allowed n--+ 7r* band in the acetylacetone diketo form.7 •24•26 An increase 

in scattering angle (Fig. 3b) reveals the presence of a spin-forbidden transition 

beginning at 3.15 eV with a maximum at 3.57 eV and overlapping with the diketo 

n --+ 7r* singlet-singlet (S-S) band. This feature can either be attributed to a 

71" --+ 7r* singlet- triplet (S-T) excitation in the acetylacetone enol or possibly 

a n--+ 7r* (S-T) excitation in the acetylacetone keto form. An additonal spin­

forbidden excitation is evident at 5.52 eV and is assigned as a singlet-triplet 3s 

Rydberg excitation in the enol. 

The 3.5 eV to 8.5 eV energy-loss region of the spectrum measured at Eo 

100 e V and () = 10° is shown in Fig. 2b. All the structure above 5.5 e V can b e 

explained as being due to Rydberg transitions converging to the first I.P. of the 

enol. Indeed, peaks at 5.84 e V and 7.50 e V are the first two members of an s series 

with o = 0.93, peaks at 6.52 eV and 7.75 eV are the first members of a p series 

with o = 0.66, and peaks at 7.32 eV and 8.10 eV are the first members of a d 

series with o = 0.15. This fact disagrees with the assignment of Nakanishi et al.27 

who observed transitions at 7.4 eV and 8.08 eV and assigned, with the aid of a 

CNDO-CI calculation, the former as a valence 71" --+ 7r* excitation and the latter as 

a valence u --+ u* excitation. 

ACETONYLACETONE (2,5-HEXANEDIONE) 

The similarity between the ultraviolet absorption of 1,4-diketones and their 
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corresponding monoketones is striking, suggesting that the two carbonyl groups in 

the diketones can be considered isolated in the ground and first excited states.10 In 

fact, Schippers and Dekkers, 13 using a simple electrostatic model,28 calculated that 

the splitting of the n--+ 1r* levels should be only 50 em -l . This calculation results 

in an underestimate of the splitting, however, because it neglects any through-bond 

interaction. Indeed, Dougherty et al.12 , using photoelectron spectroscopy, found 

that for the (limited) group of 1,4-diketones investigated, the mean splitting of the 

nonbonding orbitals was 0.3 e V . This splitting is still relatively small, explaining 

why Schippers and Dekkers11 found that the spectra of certain rigid, cyclic 1,4-

di.ketones appeared very similar to those of the complementary monoketones. 

The region of the acetonylacetone spectrum between 2.5 e V and 6.5 e V 1s 

displayed in Fig. 4. At Eo = 25 eV and 0 = 10° (Fig. 4a), one observes two 

broad bands and the onset of a third. The lowest, between 3.97 e V and 5.15 e V 

with a maximum at 4.40 eV, can be assigned with confidence as the spin-allowed 

n-+ 1r* excitation. The second band onsets at 5.34 eV and possesses a maximum 

at 5.85 e V . Since the splitting between n,1r* states is expected to be very small, an 

assignment for this band is the lowest 1r --+ 1r* (S- S) excitation. This transition is 

not observed in the smaller monoketones but is expected to be at a relatively high 

energy-loss (possibly as high as 9.0 eV) superimposed by Rydberg bands.29 The 

large peak beginning about 6.2 eV is the n-+3s Rydberg excitation (vide infra) . 

Increasing the scattering angle (Fig. 4b) produces two changes. The first is an 

apparent change in the onset and maximum of the spin-allowed n-+ 1r* transition 

to 3.55 eV and 4.16 eV, respectively. As previously discussed, this change is due 

to the presence of a relatively enhanced, spin-forbidden, n-+ 1r* transition. The 

second spectral change is the relative increase in intensity in the region between 

5.15 e V to 5.34 e V, also caused by a singlet-triplet contribution. A definitive band 

maximum is not obtained from the spectra. 
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The Rydberg portion of the acetonylacetone spectrum is included in Fig. 2c, 

which was measured under the optical conditions Eo = 100 eV and 0 = 10° and 

spans the energy-losses between 3.5 eV and 8.5 eV. In addition to those already 

mentioned, peaks are observed at 6.62, 7.49, and 8.17 eV. Assuming that the 

transition at 6.62 e V corresponds to the n--+3s excitation, the transition at 7.49 e V 

to the n--+3p excitation, and the transition at 8.17 eV to the n--+3d excitation, the 

best fit to the previously measured diketone (and ketone29•30) quantum defects is 

found using an ionization potential I.P. = 9.95 eV. Specifically, for this I.P. one 

calculates 6 (n--+3s ) = 0.98, 6 (n--+3p ) = 0.65, and 6 (n--+3d ) = 0.24. An 

additional peak was observed at 8.84 e V and is possibly due to an overlapping 

combination of higher Rydberg transitions. 

1,2-CYCLOHEXANEDIONE 

Even though 1,2-cyclohexanedione is exclusively in the ketonic form in the 

solid state,31 it exists to a large extent in the enolic form in solution.32 Calculations 

indicate that it may be primarily enolic in the gas phase as well.33 Fig. 5 shows 

spectra in the energy-loss region between 2.5 eV and 6.0 eV at Eo = 50 eV, 0 = 
10° and Eo = 25 e V, 0 = 50° . The similarity between the spectrum of acety I acetone 

and 1 ,2-cyclohexanedione in this energy-loss region is striking. At Eo = 50 e V and 

0 = 10° (Fig. 5a), one sees an intense band between 4.34 eV and 5.70 eV with a 

maximum at 4.84 eV. As with acetylacetone, this band is assigned to the lowest, 

spin-allowed 1r ---+ 1r* enol transition. The weak band with an onset at 3.69 e V and 

maximum at 4.02 e V is due to the lowest, spin-allowed n--+ 1r* transition of the 

ketonic form. Even though the orientation of the carbonyl groups is different from 

that in biacetyl , one expects nearly the same energy difference (1.9 e V) between the 

n+ and n_ orbitals because of the dominance of the through-bond interaction.17 

Thus, the second lowest, spin-allowed n--+ 1r* transition should be at approximately 
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5.9 eV and should be obscured by enol Rydberg bands. An increase in scattering 

angle and a decrease in incident electron energy (Fig. 5b) reveal the presence of a 

spin-forbidden band beginning at 2.70 eV with a maximum at 3.18 eV assigned as 

the lowest n~ 7r* (S-T) excitation of the ketonic form. The DCS curves for these 

valence transitions confirm their spin-allowed or spin-forbidden nature. 

The higher energy-loss region between 4 eV and 10 eV, at Eo = 100 eV and 

8 = 10° , is shown in Fig. 2d. Only three distinct Rydberg bands are evident, 

located at 6.10, 6.92, and 7.48 eV. An ionization potential I.P. = 9.40 eV is 

determined if one assumes the three bands to be due to transitions to the 3s, 

3p, and 3d orbitals and also assumes quantum defects 6 = 0.97, 0.66, and 0.34, 

respectively. 

1 ,4-CYCLOHEXANEDIO NE 

1,4-Cyclohexanedione has D 2 symmetry (a "twist" configuration34
) with coax­

ial carbonyl groups. Through-space interactions provide a minimum contribution; 

thus, the splitting of the two highest occupied, nonbonding orbitals is relatively 

small (0.2 eV) when compared to that in other 1,4-diketones,12•17 with the mea­

sured ionization potentials being I.P. (n_) = 9.65 eV and l.P. (n+) = 9.85 eV.12 

Fig. 6 shows the 3.0 eV to 6.5 eV energy-loss region of the 1,4-cyclohexanedione 

spectrum at Eo= 50 eV, 8 =5° and Eo= 25 eV, 8 = 35°. The low intensity of the 

spectra arises from the relatively low sample pressure achieved for this compound 

at the scattering center (estimated to be "' 2 mtorr) . Under optical conditions 

(Fig. 6a) one observes a band with an onset at 3.73 eV and a maximum at 4 .68 eV. 

This is due to then~ 7r*, 1 A+-1 A dipole, symmetry-forbidden transition and has 

been seen previously in solution (maximum = 4.34 eV)35 and in low-temperature, 

single crystals (onset = 3.89 eV, maximum = 4.40 eV) .36 The onset of a broad­

band, which appears to be superimposed by a 3s Rydberg transition, is observed 
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at 5.66 eV and may be due to the 1r-+ 1r*, 1 B 1 ~
1 A excitation. When the incident 

energy is lowered and the scattering angle increased (Fig. 6b), the n-+ 1r*, 3 A~ 1 A 

transition becomes evident, onsetting at 3.20 eV and maximizing at 4.13 eV. The 

presence of another spin-forbidden band with maximum at 5. 78 e V is indicated. 

Contributions to the intensity may come from either the 1r -+ 1r*, the 3 B 1 ~1 A 

excitation or the n-+3s (S-T) Rydberg excitation. 

The 1,4-cyclohexanedione spectrum under optical conditions (Fig. 6a) IS 

extended to 10 e V energy-loss in Fig. 2e. Additional peaks are observed at 

6.58, 7.36, and 7.95 eV. (The peak at 6.67 eV is due to an Hg impurity in the 

vacuum system.) Using an I.P. = 9.75 eV, the mean of I.P. (n-) and I.P. (n+),12 

assignments and quantum defects of n-+3s (8 = 0.93) at 6.58 eV, n-+3p (8 = 0.61) 

at 7.36 eV, and n-+3d (8 = 0.25) at 7.95 eV are determined. 

4. DISCUSSION AND CONCLUSIONS 

As one might expect from previous results, 10 the energies of the lowest 

n-+ 1r* excitations for the acyclic diketones, as the distance between carbonyl 

groups increases, approach those of acetone. The lowest spin-allowed and spin­

forbidden n-+ 7r* excitations are 2.91 eV and 2.54 eV for biacetyl, 4.04 eV and 

3.57 eV for acetylacetone, 4.40 eV and 4.16 eV for acetonylacetone, and 4.38 eV and 

4.18 e V for acetone.29•37 The values for these transitions in 1,4-cyclohexanedione 

are also comparable to those for acetone, the lowest singlet-singlet and singlet­

triplet n-+ 1r* excitations being 4.68 eV and 4.13 eV, respectively. This trend 

appears to hold also for the lowest spin-forbidden 1r -+ 1r* excitation, at least as 

regards the band onsets (the most reproducible measure of the band positions) ; 

the onset is 5 .15 eV for both acetonylacetone and acetone. 

The mean value for the singlet-triplet splitting of the n,1r* state in the acyclic 

diketones examined in this paper is 0.35 eV, a splitting comparable to the mean 
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value of 0.30 eV for the small monocarbonyls formaldehyde, acetaldehyde, and 

acetone.29•38•39 A remarkable contrast is provided by 1,2-cyclohexanedione, in 

which the singlet-triplet splitting for the n,?r* state is 0.84 e V. The singlet-triplet 

energy difference for a given electron orbital configuration results from the stronger 

correlation of electron motions in the triplet state than in the singlet state; i.e., 

the Pauli principle acts as a force minimizing electron-electron repulsion in the 

triplet state.40 A simple qualitative analysis41 reveals that the magnitude of the 

singlet-triplet energy splitting is proportional to the overlap integral of the initial 

and final orbitals. For a single carbonyl group oriented along the z-axis, the highest 

occupied nonbonding orbital is represented by an oxygen Pv orbital, and there is 

minimum overlap with the 1r and 7r* orbitals, for which the yz-plane is a nodal 

plane. This small n,1r* overlap also applies to the case of biacetyl . The highest 

occupied n orbital and the lowest unoccupied 7r* orbital are linear combinations of 

the corresponding isolated orbitals; however, since the carbonyl groups are oriented 

in a trans arrangement, the linear combinations of n and 7r* orbitals overlap to the 

same small extent as in the monocarbonyls. 

In 1,2-cyclohexanedione , a different orientation may exist because of the 

constraint imposed by the ring. Unlike the carbonyl groups in biacetyl, which lie in 

a plane, the two carbonyl groups in 1,2-cyclohexanedione can be twisted away from 

coplanarity. The overlap of the highest occupied n orbital (a linear combination of 

individual carbonyl nonbonding orbitals) with the lowest unoccupied 7r* orbital (a 

linear combination of individual carbonyl 7r* orbitals) would now be larger, hence, 

a larger n,?r* singlet-triplet splitting. Whether the effect of the increased orbital 

overlap is enough to account for an increase of the n,1r* singlet-triplet splitting by 

a factor larger than two or whether additional factors are at play is uncertain. 

In summary, the low-energy, variable-angle, electron energy-loss spectroscopy 

of five diketone compounds with varying carbonyl separations and orientations 
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has been investigated. The increase in the number of bands compared to 

the monocarbonyls is in accord with the splitting caused by the through-bond 

interaction of like orbitals. Low-lying, spin-forbidden excitations have been 

observed and in the case of 1,2-cyclohexanedione, a very large singlet-triplet 

splitting arises from an increased overlap of initial and final orbitals. 
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Figure Captions 

1. 2,3-Butanedione (biacetyl) energy-loss spectra at an incident-electron energy 

Eo = 25 eV and scattering angles: a) 0 = 10° and b) 0 = goo . Incident-electron 

current = 2 nA. Spectra are multiplied by any indicated expansion factors before 

plotting. 

2. a) 2,3-Butanedione (biacetyl) energy-loss spectrum between 5 .0 eV and 

10.0 eV at Eo = 100 eV and 0 = 3° . The peak at 6.67 eV is due to an Hg 

contamination in the vacuum system. b) 2,4-Pentanedione (acetylacetone) energy­

loss spectrum between 3.5 eV and 8.5 eV at Eo = 100 eV and 0 = 10° . c) 2,5-

Hexanedione (acetonylacetone) energy-loss spectrum between 3.5 eV and 8.5 eV at 

Eo = 100 eV and 0 = 10° . d) 1,2-Cyclohexanedione energy-loss spectrum between 

4.0 eV and 10.0 eV at Eo = 100 eV and 0 = 10° . e) 1,4-Cyclohexanedione energy­

loss spectrum between 3.0 eV and 10.0 eV at E 0 = 50 eV and 0 =5° . 

3. 2,4-Pentanedione (acetylacetone) energy-loss spectra at an incident energy 

E 0 = 25 eV and scattering angles: a) 0 = 10° and b) 0 =goo . Incident electron 

current = 2 nA. 

4. 2,5-Hexanedione (acetonylacetone) energy-loss spectra at an incident energy 

E 0 = 25 eV and scattering angles: a) 0 = 10° and b) 0 = goo . Incident electron 

current = 4 nA. 

5. 1,2-Cyclohexanedione energy-loss spectra at: a) Eo = 50 eV and 0 = 10° and 

b) E 0 = 25 e V and 0 = 50° . Incident electron current = 0.5 nA. 

6. 1,4-Cyclohexanedione energy-loss spectra at: a) Eo = 50 eV, 0 

b) E 0 = 25 eV, 0 = 35° . Incident electron current = 5 nA. 
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FIGURE 5. 
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FIGURE 6. 
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