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ABSTRACT 

In this thesis, we develop an efficient collapse prediction model, the PFA (Peak Filtered 

Acceleration) model, for buildings subjected to different types of ground motions.  

For the structural system, the PFA model covers modern steel and reinforced concrete moment-

resisting frame buildings (potentially reinforced concrete shear wall buildings). For ground motions, 

the PFA model covers ramp-pulse-like ground motions, long-period ground motions, and short-

period ground motions. 

To predict whether a building will collapse in response to a given ground motion, we first extract 

long-period components from the ground motion using a Butterworth low-pass filter with suggested 

order and cutoff frequency. The order depends on the type of ground motion, and the cutoff 

frequency depends on the building’s natural frequency and ductility. We then compare the filtered 

acceleration time history with the capacity of the building. The capacity of the building is a constant 

for 2-dimentional buildings and a limit domain for 3-dimentional buildings. If the filtered 

acceleration exceeds the building’s capacity, the building is predicted to collapse. Otherwise, it is 

expected to survive the ground motion.  

The parameters used in PFA model, which include fundamental period, global ductility and lateral 

capacity, can be obtained either from numerical analysis or interpolation based on the reference 

building system proposed in this thesis. 

The PFA collapse prediction model greatly reduces computational complexity while archiving good 

accuracy. It is verified by FEM simulations of 13 frame building models and 150 ground motion 

records. 

Based on the developed collapse prediction model, we propose to use PFA (Peak Filtered 

Acceleration) as a new ground motion intensity measure for collapse prediction. We compare PFA 

with traditional intensity measures PGA, PGV, PGD, and Sa in collapse prediction and find that 

PFA has the best performance among all the intensity measures. 

We also provide a close form in term of a vector intensity measure (PGV, PGD) of the PFA 

collapse prediction model for practical collapse risk assessment.  
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C h a p t e r  1  

INTRODUCTION 

Collapse prevention is a fundamental requirement in seismic building codes. Even though seismic 

building codes are continuously updated in response to findings from destructive earthquakes and 

laboratory research, collapse still occurs in every large earthquake. The collapsed buildings in 

recent earthquakes, including 2008 Wenchuan, China, 2010 Maule, Chile, and 2011 Tohoku, Japan, 

serve as a reminder of the importance of seismic design and preparedness. Unfortunately, current 

technology is unable to predict when and where the next big earthquake will occur, and hence is 

unable to predict when and where building collapse will next occur. However, what is certain is that 

there is no guarantee for buildings to survive the next big earthquake without collapse. 

1.1 Motivation 

There have been numerous collapses of multi-story buildings in recent earthquakes. These include 

examples from near-source ground motions that are characterized by strong displacement pulses 

and ramps (1995 Kobe, 1999 Izmit, 1999 Chi-Chi), examples from long-duration harmonic motions 

that occurred at relatively large distance (1985 Mexico City in Michoacán earthquake), and 

examples from large broadband motions with large duration (2008 Wenchuan, 2010 Chile). 

Examples of buildings that collapsed in larger earthquakes from the past three decades are shown in 

Figure 1.1. 

In addition to real earthquakes, simulations of the response of buildings in simulated ground 

motions from large earthquakes suggest that numerous buildings could collapse in future large 

earthquakes. These studies include simulations of a large earthquake on the San Andreas fault in 

southern California (Lynch et al., 2011; Muto & Krishnan, 2011) and simulations of long-duration 

motion in the Seattle region from a giant earthquake on the Cascadia subduction zone (Yang, 2009). 

These studies have demonstrated that ground motions of quite different characteristics can all pose a 

serious threat to multi-story buildings. 
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(a) The Nuevo Leon apartment building 

collapsed in 1985 Michoacán 

earthquake 

(b) A precast concrete parking structure of 

California State University Northridge 

collapsed in 1994 Northridge earthquake 

  
(c) Wenchuan Middle School building 

collapsed in 2008 Wenchuan earthquake 

(d) The Alto Rio apartment building in 

Concepcion collapsed in 2010 Chile 

earthquake 

Figure 1.1 Examples of building collapse in destructive earthquakes 

A large loss could result from collapse, both directly and indirectly. Direct loss includes economic 

loss and casualty. Economic loss refers to the partial or total loss of a building and the damage 

caused to the equipment housed inside the building. Casualty refers to the deaths and injuries 

caused by collapse. In addition to direct loss, collapse also causes various indirect losses, such as 

the loss of insurers and reinsurers due to the insurance coverage and the loss of business owners due 

to the business downtime. 



 

 

3 
In order to mitigate loss, collapse risk assessment is needed by various sectors (building owner, 

insurance, and government) both pre- and post-earthquake. A building owner would like to know 

whether his or her building will survive the next large earthquake in order to determine if the 

building needs to be retrofitted. An insurance or reinsurance company would like to know the 

collapse risk of the buildings in its business region in order to determine the cost of the insurance. 

The government would like to know the collapse risk of a state or the whole country in order to 

create disaster-related policies. A quick post-earthquake collapse risk assessment would be useful 

for the government in order to mitigate casualties through an effective rescue plan. 

In every case, an efficient collapse prediction model is needed. The model needs to be accurate to 

achieve the best assessment. It also needs to be easy to use, applicable to a large range of buildings, 

and require the least professionals and computational effort in order to be widely used by various 

sectors. However, such a collapse prediction model currently does not exist. 

All of the above issues motivated us to develop a collapse prediction model that combines accuracy, 

speed, and simplicity.  

1.2 Previous Work 

A collapse prediction model consists of three parts: building representation, ground motion intensity 

measure, and analysis method. Building representation is the way a building is modeled in collapse 

prediction. Ground motion intensity measure is a parameter that measures the potential of ground 

motion to damage buildings. Analysis method is the process through which the collapse prediction 

is obtained. A collapse prediction model takes the building representation and ground motion 

intensity measure as input and gives the collapse prediction result (standing or collapsed) as output 

through its analysis method.  

In the following section, previous work done by various researchers in the selection of building 

representation, ground motion intensity, and analysis method is briefly reviewed. 

1.2.1 Building Representations 

There are three commonly used building representations: direct use of real buildings, single-degree-

of-freedom (SDOF) model, and multi-degree-of-freedom (MDOF) model. 
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Direct Use of Real Buildings 

This kind of representation is usually used in statistical methods (see Section 1.2.3) and expert 

opinion methods (see Section 1.2.3). Since these two methods do not need numerical modeling and 

simulation, real buildings can be directly used as input. Usually, important parameters such as year 

built, structural type, number of stories, and floor area are documented to provide a detailed 

description of buildings. 

Single-Degree-of-Freedom (SDOF) Model 

In this model, a building is represented by a single-degree-of-freedom oscillator. In order to 

simulate the nonlinear collapse process, the oscillator needs to exhibit an elastoplastic force-

displacement relationship. 

Takizawa and Jennings (1980) examine the collapse capacity of ductile moment-resisting reinforced 

concrete frame buildings under extreme earthquake motions using the single-degree-of-freedom 

model. Their model has a tri-linear force-displacement relationship that accounts for the 

destabilizing action of gravity. They state that the model could provide a satisfactory description of 

the structural deformation at large deflections by approximately incorporating the effects of gravity, 

cracking, yielding, and degradation of stiffness.  

Bernal (1987) also employs a single-degree-of-freedom model to study the collapse of buildings. In 

this study, Bernal proposes an amplification factor which accounts for P-Δ effect. Bernal calculates 

the amplification factor using an empirical formula in terms of ductility factor and stability 

coefficient. 

More recently, in order to study the damage accumulation and P-Δ effect on the response of 

inelastic systems, Williamson (2003) explicitly considers the state of damage in a system to 

determine the response of a number of single-degree-of-freedom systems under various earthquake 

ground motions. The model is a rigid column with a concentrated mass at top and a rotational spring 

with a bilinear, damage-degrading moment-rotation relationship at the base. 
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Multi-Degree-of-Freedom (MDOF) model 

In contrast to single-degree-of-freedom models, multi-degree-of-freedom models are designed to 

represent buildings in detail. Usually, this is done by modeling buildings in member level (beam, 

column, and slab) using a finite-element technique.  

Hall (1995; 1997) investigates the nonlinear response and collapse of eight steel moment-resisting 

frame buildings under the effect of severe ground motions. Four of the eight buildings are designed 

according to the Japanese seismic building provisions of 1997, and the other four are designed 

according to 1994 Uniform Building Code seismic provisions. The buildings are modeled as planar 

frames with the displacement restricted in 2-dimentional space (vertical and horizontal). The 

building models use the fiber method, where each beam and column is subdivided along the length 

into eight segments, and each segment is divided into eight or ten fibers on the cross-section. Each 

fiber has a hysteretic, axial stress-strain relationship, and each segment has a linear shear stress-

strain relationship. The panel zones are also modeled. Four of the building models are considered to 

have brittle welds. For these four models, an axial fracture strain is assigned to each fiber at the 

weld section according to a user-defined distribution. If the developed axial strain of a fiber in a 

weld exceeds the fracture strain, then the fiber no longer resists tension, but will still resist 

compression. The modeling software is a finite-element code written by Hall (1995).  

A group of researchers (Haselton, 2006; Haselton et al., 2011; Liel et al., 2011) studied the seismic 

collapse safety of reinforced concrete moment frame buildings. 56 archetype buildings were 

designed specifically for the study. Among the 56 buildings, 30 buildings were ductile frames and 

the other 26 buildings were non-ductile frames. The buildings were modeled as planar frames in 

OpenSEES structural analysis platform. The gravity system was simplified into a leaning column to 

account for P-Δ effect. The frames were modeled with lumped plastic beam-column elements and 

finite joint shear panel springs. The beam-column elements were modeled using a nonlinear hinge 

model with degrading strength and stiffness developed by Ibarra et al. (2005). The joint shear panel 

springs were defined by a monotonic backbone and hysteretic rules which are similar to beam-

column elements. The difference between ductile frame models and non-ductile frame models is the 

plastic hinge behavior. The backbone and hysteretic curves of non-ductile frames have smaller 

ultimate deformation and higher degradation, and hence exhibit more brittle behavior than those of 
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ductile frames. The collapse criterion is also different for ductile and non-ductile frame models 

(see Section 1.2.3 for details). 

Krishnan et al. (Krishnan et al., 2006; Krishnan, 2007) investigate the behavior of 6 steel moment-

resisting frame tall buildings subjected to strong ground motions. The buildings are modeled using 

fiber beam-column elements and panel zone elements, which is similar to Hall’s approach. 

Krishnan’s models differ from Hall’s models in that Krishnan models buildings in 3-dimensional 

space instead of 2-dimensional space. The analysis platform used in the study is Frame3D 

developed by Krishnan (Krishnan 2003). 

Lu et al. (2013) simulated the collapse of two reinforced concrete frame-core tube buildings 

subjected to extreme earthquakes. The frame part of the building was modeled using fiber beam-

column elements. Unlike the steel frame buildings, the beam-column elements in RC frames have 

steel fibers and concrete fibers, and all fibers in the same section follow the assumption that “plane 

section remains plane”. The confinement effect of the stirrups in columns is considered by using 

confined uniaxial constitutive relationship for the fibers in core concrete. Since concrete exhibits 

brittle shear failure, the strength and stiffness of the element drop to zero when the internal shear 

force exceeds the prescribed shear strength of the beam-column element. The shear-wall members 

(walls and coupling beams) were modeled using multi-layer shell elements. This type of element is 

based on the principles of composite material mechanics and is capable of simulating coupled in-

plane/out-of-plane bending as well as in-plane direct shear and coupled bending-shear behavior of 

RC shear walls. A multi-layer element consists of layers with different thickness and materials. 

Rebars are smeared into one or more layers. For the boundary zones, the concentrated reinforcing 

bars were modeled using truss elements incorporated into the shell elements. The analysis platform 

is MSC.MARC. 

1.2.2 Ground Motion Intensity Measures 

Generally, there are two kinds of ground motion intensity measures: traditional intensity measures 

and modified intensity measures. Traditional intensity measures are already widely used in 

earthquake engineering (e.g. Sa and PGA). Modified intensity measures have been recently 

proposed by researchers to improve the accuracy of collapse prediction models. 
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Traditional Intensity Measures 

In collapse prediction, the most commonly used traditional intensity measure is spectral acceleration 

(Sa). Spectral acceleration is the maximum acceleration a damped, elastic single-degree-of-freedom 

oscillator experiences in an earthquake. Spectral acceleration can be measured at different 

oscillation periods and with different degrees of damping. In practical earthquake engineering, 

spectral acceleration is usually measured at the fundamental period of the corresponding building, 

and with 2% or 5% of critical damping. Even though spectral acceleration is measured using an 

elastic oscillator, it still gives a relatively good estimation of building response, especially those 

buildings that are dominated by the fundamental mode. Since spectral acceleration is fairly easy to 

compute, it is selected by many researchers in developing collapse prediction models. Kirçil and 

Polat (2006), Krawinkler et al. (2009), Haselton et al. (2011), Liel et al. (2011), and Champion and 

Liel (2012) all chose spectral acceleration as the ground motion intensity measure in their collapse 

prediction models.  

Peak ground acceleration (PGA) is also a commonly used traditional intensity measure. PGA is 

usually correlated with spectral acceleration at short periods, and hence is mostly used for the 

collapse prediction of buildings with short periods. Lee et al. (2002) collected data of totally and 

partially collapsed buildings in the Chi-Chi earthquake, and developed fragility curves in terms of 

PGA based on the collected data. Most of the surveyed buildings were masonry and concrete 

buildings with short periods. Kirçil and Polat (2006) designed three sample buildings (3, 5, and 7 

stories, respectively) with fundamental periods ranging from 0.46s to 0.83s, according to the 

Turkish seismic design code and used them to develop the fragility curves for mid-rise reinforced 

concrete buildings in Istanbul. PGA was selected as one of the intensity measures for the fragility 

curves. 

Besides Sa and PGA, another traditional intensity measure is the Modified Mercalli Intensity scale 

(MMI) that describes the effects of an earthquake on the earth’s surface, humans, objects of nature, 

and man-made structures on a scale from I (not felt) to XII (total destruction). Since MMI could not 

be computed numerically like Sa and PGA, it is not the primary option for intensity measure when 

numerical simulation is employed in collapse prediction. However, in the collapse prediction 

models that lack adequate information from ground motions, MMI is still a reasonable option. U.S. 

Geological Survey’s Prompt Assessment of Global Earthquake’s Response (PAGER) Project and 
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the Earthquake Engineering Research Institute’s World Housing Encyclopedia (WHE) developed 

a global database of building stocks and their earthquake vulnerability using MMI as the intensity 

measure (Porter et al., 2008).  

Modified Intensity Measures 

Among the aforementioned three traditional intensity measures, spectral acceleration (Sa) usually 

has the best performance in predicting building collapse since it is able to capture the difference 

between buildings with different periods. However, one limitation in Sa is that Sa is computed using 

an elastic single-degree-of-freedom oscillator. Hence, it only approximates the linear elastic 

response of the corresponding building, while collapse is a nonlinear plastic behavior that is quite 

different from the elastic approximation. Plastic deformation will elongate the period of a structure 

in dynamic response, which makes the structure vulnerable to a different frequency band. As a 

result, spectral acceleration is not the best intensity measure in collapse prediction.  

Knowing the limitations of traditional intensity measures, researchers have been looking for new 

intensity measures to improve the performance of collapse prediction models. The new intensity 

measures they propose are referred to as modified intensity measures in this thesis.  

Cordova et al. (2000) proposed a new two-parameter earthquake hazard intensity measure, SaRSa
0.5. 

RSa is defined as Sa(Tf) / Sa(T1) where T1 is the first mode period and Tf is a longer period 

(optimized value is approximately 1.65T1) that represents the inelastic (damaged) structure. 

Basically, the new intensity measure is a weighted average between Sa(T1) and Sa(Tf), considering 

both spectral intensity and spectral shape, and thus accounting for inelastic strength and stiffness 

degradation (period elongation). The results of the study show that the new intensity measure 

significantly reduces the record-to-record variability in the predicted response obtained from 

inelastic time history analysis. Instead of combining Sa and RSa into one scalar, Vamvatsikos (2002) 

proposes a vector intensity measure (Sa, RSa). The optimized value of RSa is Sa(1.5T1) / Sa(T1) in 

Vamvatsikos’s research. In a similar study, Haselton and Baker (Haselton and Baker, 2006; Baker 

and Cornell, 2008) use the same vector intensity measure (Sa, RSa) and suggest Sa(2T1) / Sa(T1) as 

the optimized value of RSa.  

Baker and Cornell (2005, 2006) propose another spectral shape indicator, Epsilon (ε). Epsilon is 

defined by engineering seismologists studying ground motions as the number of standard deviations 



 

 

9 
by which an observed logarithmic spectral acceleration differs from the mean logarithmic spectral 

acceleration of a ground motion prediction (attenuation) equation (Baker and Cornell, 2005). They 

studied the response of a reinforced concrete moment-resisting frame building and conclude that 

epsilon has a significant effect on the nonlinear response of structures, because it tends to indicate 

whether Sa at a specified period is in a peak or a valley of the spectrum (Baker and Cornell, 2005). 

Based on the above result, they proposed to use Epsilon together with spectral acceleration as a 

vector intensity measure (Sa, ε) in collapse prediction. 

Based on Baker and Cornell’s research, Mousavi et al. (2011) proposed an improved spectral shape 

indicator, Eta (η), which is a linear combination of spectral acceleration Epsilon (εSa) and peak 

ground velocity Epsilon (εPGV). They studied the influence of η–filtration in the collapse analysis of 

an 8-story reinforced concrete structure with special moment-resisting frames. The results show that 

the correlation between η and the nonlinear response is about 50% better than the correlation 

between εSa and the response. Based on the above results, they concluded that η is remarkably more 

efficient than εSa as a non-linear response predictor. 

Instead of using the intensity measures related to spectral shape, Olsen and Heaton (2013) proposed 

a vector intensity measure (PGD, PGV) consisting of peak ground displacement and peak ground 

velocity. They collected 59,965 synthetic, seismic ground motions and applied them to eight models 

of steel, moment-resisting frames. They used regression method to develop collapse thresholds in 

PGV-PGD plane for the eight studied buildings and conclude that (PGD, PGV) works better than 

(Sa, ε) in collapse prediction. 

It could be noticed that all of the aforementioned modified intensity measures have one similarity: 

they all put emphasis on the longer period component (usually longer than the first period) of 

ground motions. RSa explicitly uses the spectral acceleration at a period longer than the first period. 

Epsilon indirectly provides the information of the spectral acceleration at the periods longer than the 

first period by indicating whether Sa(T1) is in a peak or a valley of the spectrum. Although PGV and 

PGD are not directly related to any period of a building, they still provide information about the 

long period component of a ground motion. Velocity and displacement are obtained through 

integration(s) on acceleration. Since integration itself is a low-pass filter in frequency domain, PGV 

and PGD are actually indicators of the long period component in a ground motion. Usually, the 
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periods corresponding to PGV and PGD are longer than the first period of mid-rise buildings due 

to the inherent features of integration filters (see Chapter 3, Section 3.3.3 for details). 

1.2.3 Analysis Methods 

A variety of methods are used in developing collapse prediction models. In this section, we group 

them into statistical methods, expert opinion methods, nonlinear static methods, and dynamic step-

by-step time history analyses. 

Statistical Methods 

Statistical methods are the most straightforward methods in developing collapse prediction models. 

In these methods, collapse fragility relationships are established using statistical methods based on 

the observed damage in past earthquakes. 

After the 1994 Northridge earthquake, building damage inspection was carried out by United States 

Geological Survey (USGS) in collaboration with EQE International. The survey results and 

preliminary analyses are documented in ATC-38 (2000). Recently, Tan and Irfanoglu (2012) re-

examined the database in order to find reliable building damage indicators that provide more 

accurate relations between ground motion intensity and damage levels. Regular statistical 

correlation analysis, as well as the random parameter ordered probit statistical model, are 

considered in their study.  

Lee et al. (2002) used statistical methods to obtain the fragility curves for buildings in Taiwan based 

on the damage data of the 1999 Chi-Chi earthquake. In their study, Geographic Information 

Systems (GIS) is used as a spatial analysis tool to collect and quantify data, as well as to locate 

damaged buildings. 

Yakut et al. (2006) used statistical procedures to develop the empirical fragility functions for low- to 

mid-rise reinforced concrete buildings in Turkey, based on a damage database of nearly 500 

representative buildings that experienced the 1999 Kocaeli and Düzce earthquakes.  

Expert Opinion Methods 
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Expert opinion methods obtain seismic vulnerability of buildings by consulting experts. ATC 

(Applied Technology Council) conducted one of the first systematic attempts in expert opinion 

methods and summarized the results in the report ATC-13 (1985). ATC-13 derived damage 

probability matrices for 78 different engineering facility classes, 40 of which refer to buildings, by 

having asked 58 experts to estimate the expected damage of a specific structural type subjected to a 

given ground motion intensity. Experts provided their opinions by filling a questionnaire based on 

their knowledge and experience. In some cases, however, only a few felt themselves sufficiently 

expert with respect to a particular structural type to venture an opinion (Lang, 2002). 

More recently, the U.S. Geological Survey’s Prompt Assessment of Global Earthquake’s Response 

(PAGER) Project and the Earthquake Engineering Research Institute’s World Housing 

Encyclopedia (WHE) conducted a survey that involved experts from more than 30 countries 

worldwide to assess the collapse fragility of different structure types. The uncertainty on collapse 

fragility and the median collapse probability estimates at each shaking intensity level were then 

developed from the estimations provided by experts. 

It could be easily noticed that the primary drawback of expert opinion method is its subjectivity, as 

the vulnerability functions are based exclusively on the subjective opinion of experts. 

Nonlinear Static Methods 

The nonlinear static method, commonly known as “pushover analysis”, has become a standard 

method for estimating seismic deformation demands, as well as local and global capacities of 

building structures. Due to its simplicity, it is widely used by practicing engineers in evaluating the 

safety of buildings against earthquake-induced collapse. Nonlinear static method is introduced in 

FEMA 273 (1997) and updated in FEMA 356 (2000). It is recommended to use for structures in 

which higher mode effects are not significant. 

In nonlinear static method, a nonlinear model of a buildings structure is constructed. Then the base 

shear versus lateral displacement (usually roof displacement) relationship is obtained by applying 

gradually increasing forces with a prescribed distribution (uniform or triangle) to the above-ground 

part of the model. The analysis is terminated when the control node (usually in the middle of the 

roof) reaches the target displacement or the building model collapses. The target displacement 

represents the maximum displacement a building could experience in a certain level of ground 
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motions. Collapse is assumed to occur when the base shear-lateral displacement reaches negative 

slope and the base shear becomes zero. The resultant demands are compared with the capacities of 

the corresponding building to determine whether the building satisfies the requirements. 

The nonlinear static method lacks a solid theoretical foundation (Villaverde, 2007). It is based on an 

incorrect assumption that the cyclic behavior of a structure could be approximated by the mono-

directional force-displacement relationship of the same structure. In addition, the deformation 

demands strongly depend on the characteristics of ground motions, and hence could not be easily 

obtained for pushover analysis. Researchers (Krawinkler and Seneviratna, 1998; Chi et al., 1998; 

Gupta and Kunnath, 2000; Chopra and Goel, 2004) have already shown that nonlinear static method 

does not provide an accurate estimation of building response in earthquakes. Although improved 

recently (Gupta and Kunnath, 2000; Chopra and Goel, 2002), nonlinear static method is still not 

proved to be universally applicable (Villaverde, 2007).  

Dynamic Step-by-Step Time History Analysis 

Dynamic step-by-step time history analysis could be applied to a variety of numerical models, 

ranging from single-degree-of-freedom oscillators to detailed 3D finite-element models. It is done 

by numerically solving the governing equation of motion step by step. Usually, since the models 

used in collapse simulation have elastoplastic behavior, Newton-Raphson iteration or its modified 

version is used to achieve convergence in each step.  

An important criterion in collapse simulation using dynamic step-by-step time history analyses is 

the definition of collapse. Generally, there are two kinds of collapse considered in numerical 

simulation, vertical collapse and sidesway collapse. Vertical collapse, sometimes referred to as 

pancake collapse, is defined as the point where a building lose its primary gravity load bearing 

member, due to the inadequate requirements on shear design for old buildings (typically pre-1980 

designs). Sidesway collapse, sometimes referred to as P-Δ collapse, is defined as the point of 

dynamic instability, where the lateral story drifts of the building increase without bounds. Sidesway 

collapse is the typical collapse mechanism for modern ductile buildings, in which capacity design 

requirements ensure no significant shear damage. Vertical collapse is considered in the study of Liel 

et al. (2011). It is done by comparing the joint shear deformation with the deformation capacity in 

each step. If the deformation exceeds the capacity, shear failure is assumed to happen and collapse 



 

 

13 
is achieved. Sidesway collapse is considered by Hall (1995; 1997), Haselton et al. (2011), Liel et 

al. (2011), Krishnan et al. (2006), and Lu et al. (2013) in their studies. 

In order to obtain collapse threshold, incremental dynamic analysis (IDA) is usually applied to the 

numerical models. It is done by scaling up the ground motion in the analysis from zero to the point 

that the building model collapses.  

1.3 Outline of Chapters 

Chapter 2 briefly introduces the collapse prediction model developed in this thesis. It includes the 

framework of the developed prediction model and the difference between the developed model and 

other collapse prediction models. Chapter 2 also introduces a fundamental tool, a reference building 

system, upon which the collapse prediction model is developed. 

The next two chapters, Chapter 3 and Chapter 4, describe the development of a collapse prediction 

model based on a new parameter, Peak Filtered Acceleration (PFA). Chapter 3 describes the 

development of the PFA model for 2D frame buildings. Chapter 4 describes how to extend the PFA 

model from 2D frame buildings to 3D frame buildings, and also discusses the effect of torsional 

irregularity on the capacity of buildings. 

Chapter 5 demonstrates the efficiency and effectiveness of the PFA model by predicting the 

collapse of a frame building tested by E-defense and comparing the prediction to the result of the 

experiment. 

Chapter 6 discusses several important topics, including how to obtain the parameters used in the 

PFA model from an actual building, the comparison between PFA and other intensity measures in 

collapse prediction, and the possibility of extending PFA model to other structural systems.  

Chapter 7 concludes the thesis by summarizing the PFA collapse prediction model, identifying the 

significant conclusions and suggesting how to expand on this work.  
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C h a p t e r  2  

COLLAPSE PREDICTION FRAMEWORK 

This chapter introduces the framework and important concepts of the collapse prediction model 

developed in this thesis. The developed collapse prediction model differs from traditional prediction 

models in that it serves as a computation-based fast prediction model. It was developed based on the 

results of numerical simulations, but highly simplified to minimize the computational effort needed 

in collapse prediction. This chapter also introduces a useful tool, the reference building system, 

upon which we developed the collapse prediction model. The reference building system serves as a 

data structure to systematically document information from real buildings and numerical models, as 

well as an interpolation tool in collapse prediction. 

2.1 Computation-based Fast Prediction Method 

Traditional collapse prediction methods (as reviewed in Chapter 1, Section 1.2) can be generally 

divided into two categories: empirical methods and computational methods (see Figure 2.1 and 2.2). 

Empirical methods include statistical methods and expert opinion methods; computational methods 

include nonlinear static methods and dynamic step-by-step time history analyses. 

The procedures to predict collapse using empirical models are straightforward: ground motion and 

building are taken as input, and prediction is provided through an empirical model. 

The benefits of empirical methods are obvious. First, they are fast, since they do not require any 

modeling or simulation process in the prediction procedures. The prediction is done by matching 

the information of target ground motions and buildings with the information in the damage database. 

Ideally, the prediction could be done in real-time using proper computer-aided tools. Second, less 

professional skills are required in performing collapse prediction using empirical methods. Because 

of the simple procedures in these methods, only fundamental earthquake engineering and structural 

engineering knowledge is needed to perform the analysis. 

The shortcomings of empirical methods are obvious as well. First, since these models are developed 

based on the existing damage data, the applicability of these models is limited by the availability of 
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data. For example, the newly built buildings that are not yet covered by the damage database 

could not be assessed using empirical methods. Second, empirical methods are developed under a 

statistical framework, and hence only have statistical meanings. In other words, the collapse 

fragility they provide is a mean value and a corresponding deviation for a group of buildings, not 

specifically for a single building.  

 

 

 Figure 2.1 Framework of empirical collapse prediction methods  

Compared with empirical methods, computational methods assess safety against earthquake-

induced collapse under a different framework, by simulating the response of buildings subjected to 

ground motion excitations. In order to perform collapse prediction using these methods, a numerical 

model of the studied building is first constructed. The model could vary from a single-degree-of-

freedom oscillator to a detailed multi-degree-of-freedom finite-element model. A ground motion 

record is then applied to the building model, by either equivalent static force (pushover analysis) or 

dynamic step-by-step time history analysis. Collapse is assessed based on the result of the 

simulation.  

Compared with empirical methods, the computational methods are designed specifically for the 

collapse assessment of a single building, since the numerical model is constructed based only on the 

information of the studied building. Given significant time, however, the statistical result for a 

group of buildings can be calculated by repeating the simulation to a number of buildings or ground 
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motions. Since computational methods use detailed information about buildings in the modeling 

process, they could provide a very accurate prediction of building responses under ground motion 

excitations.  

 

Figure 2.2 Framework of computational collapse prediction methods 

The accuracy comes at the cost of analysis speed. The more detailed the model is, the more time-

consuming the analysis is. For example, it usually takes hours to simulate the response of a mid-rise 

steel frame building under a strong ground motion. Because of the required computational effort, 

these methods are almost impossible to be achieved in real-time. Compared with empirical methods, 

a higher level of professional skills is required in conducting analysis using computational methods. 

Usually, knowledge of structural mechanics and finite-element analysis is the basic requirement.  

From the above discussion, it could be concluded that traditional collapse prediction methods could 

not achieve speed and accuracy simultaneously, which makes collapse risk assessment in some 

cases very difficult. The building-by-building collapse assessment for the Los Angeles area in the 

ShakeOut scenario is one of the examples. First, there was no large earthquake in Los Angeles after 

the 1994 Northridge earthquake. As a result, the damage data is quite limited, especially for 

buildings designed according to later versions of building codes (e.g. UBC 97, IBC 2003, and ACI-

318 2002), making empirical methods inapplicable. Furthermore, the large number of buildings in 

Los Angeles makes computational methods extremely time-consuming.  
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Figure 2.3 Framework of computation-based fast prediction method 

In order to conduct building-by-building collapse risk assessment at a community scale efficiently, 

a computation-based fast collapse prediction method is developed in this thesis. It is real-time fast 

while achieving computational accuracy. In this model, capacities are obtained from buildings 

through pushover analysis, and demands are obtained from ground motions using low-pass 

Butterworth filters with recommended order and cutoff frequency. To predict whether a building 

will collapse when subjected to a ground motion, it only needs to compare building capacity with 

ground motion demand. If the capacity is larger, the building will survive the ground motion, 

otherwise, it will collapse. Building capacity is an inherent property that could be computed 

beforehand and documented for the future use. The low-pass Butterworth filter is a simple 

computation that could be achieve in real-time. As a result, this prediction model is real-time fast 

since no simulation is needed in the prediction process. In addition, the model is developed based 

on the detailed finite-element analyses and hence has accuracy comparable to the methods using 

step-by-step dynamic time history analysis. 

2.2 Reference Building System 

In this section, we introduce an important tool used in this thesis: the reference building system. The 

reference building system has two uses, serving as a database to systematically document 

information and behaviors of various buildings, as well as a powerful interpolation tool in collapse 

prediction.  
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A reference building system consists of various structural archetypes that are comprehensive 

enough to represent typical collapse behaviors under earthquake excitations of a real-world building 

inventory of interest. An archetype is a prototypical representation of a seismic-force-resisting 

system. It could be developed based on either a real-world or a hypothetical building design, as long 

as it could represent the behavior of a typical category of buildings. If we consider the whole 

building inventory of the studied region as a set, the reference building system of the whole building 

inventory is a much smaller set. However, it is not a necessary subset, since hypothetical designs are 

allowed in reference building system.  

As for the selection of archetypes, since each archetype needs to be analyzed and the result needs to 

be documented, a smaller number of archetypes helps to reduce the computational effort and ensure 

the simplicity of the reference building system. However, due to the fact that the reference building 

system also serves as an interpolation tool to estimate parameters in collapse prediction, the 

distribution of archetypes needs to be dense enough to ensure the accuracy of interpolations, 

especially nonlinear interpolations. Thus, the selection of archetypes for a reference building system 

is always a trade-off between simplicity and accuracy. 

2.2.1 Data Structure of Reference Building System 

Considering that a reference building system serves as both a database and an interpolation tool, we 

choose to use a multidimensional array to describe the structure of a reference building system. In 

mathematics, a multidimensional array is an array having more than two dimensions. A two-

dimensional array is often called a matrix. When the number of dimensions is less than or equal to 

three, we can virtualize the array in 3D space. However, if the number of dimensions is larger than 

three, it is difficult to virtualize the array. 

In this thesis, we denote a multidimensional array with Building (d1, d2, …, dn), where dn is the nth 

dimension of the array. Since this multidimensional array is designed to represent buildings, we 

choose each dimension to be a key parameter of a building. A parameter is a key parameter if its 

change results in a significant change in building behavior. For example, fundamental period is a 

key parameter, but temperature is not, because when the fundamental period changes, the building 

will respond to a different frequency band. However, if temperature changes (assume the 

temperature is in normal range), the property of the building material will remain approximately 
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constant, therefore the building will respond in nearly the same way. Several possible key 

parameters are listed in Table 2.1.  

Table 2.1 Possible key parameters for dimensions in a reference building system 

Group Parameter Example 

Direct parameters 

Structural system Steel frame, RC frame 

No. of stories 1, 2, …, 20, … 

Year built 1960, 1980, 2000, … 

Location 1200 E California Blvd 

Design building code UBC94 

Design base shear 0.1×Weight 

Indirect parameters 

Fundamental period 1.54s, 3.47s 

 Global ductility 5.6, 7.8 

Lateral capacity 0.1g, 0.2g 

It could be noticed that some key parameters could be obtained directly from the document 

pertaining to a building. These parameters include structural system, number of stories, year built, 

location, design building code, etc. Other key parameters must be obtained from either 

measurement or analysis. For example, we can obtain the fundamental period of a building either by 

ambient noise vibration measurement or by numerical analysis using a finite-element model. We 

name those parameters that could be obtained directly from buildings “direct parameters” and all 

others as “indirect parameters”. Usually, indirect parameters are related to direct parameters. For 

example, fundamental period is related to number of stories since taller buildings generally have 

longer fundamental periods, and lateral capacity is related to year of built since later versions of 

building codes generally have higher requirements in seismic design, which results in higher lateral 

capacities. Hence, there exist transfer functions between direct parameters and indirect parameters. 

We will discuss these transfer functions in detail in Chapter 6. 

2.2.2 The Reference Building System Used in this Thesis 

In the previous section, we discussed the data structure of a reference building system. A reference 

building system consists of typical archetypes selected to study the collapse behaviors of the whole 
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building inventory. If we would like to understand the behaviors of the whole building inventory, 

we need to construct a reference building system that can represent the whole building inventory. 

Buildings usually cover a large range of characteristics. Take Los Angeles County as an example, 

buildings have been built from 1900 to present, and the structural system could be unreinforced 

concrete frame, reinforced concrete frame, steel frame, reinforced concrete shear wall, or wooden 

structure. If there is a reference building system that can represent the whole building inventory, it 

will consist of a large number of archetypes, even if all of them are properly selected. 

 

Figure 2.4 Buildings studied in this thesis 

However, in this thesis, we are aiming to propose a new methodology and demonstrate its capability 

in building collapse predictions. We are not aiming to study the seismic behavior of every building 
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category. Hence, we only chose a small subset of the whole building inventory to develop and 

demonstrate our new collapse prediction model. The extension of the collapse prediction model to 

the whole building inventory is considered as future work and will not be covered in this thesis. 

The subset of the building whole inventory studied in this thesis consists of buildings designed 

according to building codes no earlier than UBC94, with a height range from 4 to 20 stories (see 

Figure 2.4). We mainly focus on the structural system of steel and reinforced concrete moment-

resisting frame buildings and briefly discuss the potential application of the collapse prediction 

model on reinforced concrete shear wall buildings. In order to study the collapse behaviors of this 

building inventory subset, we select thirteen archetypes for the reference building system. The 

archetypes consist of six planar steel frames, four planar reinforced concrete frames, and three 3D 

steel frames. The fundamental information of the archetypes is listed in Table 2.2.  

Table 2.2 Archetypes in the reference building system used in this thesis 

Structural system 
Model 

dimensions 
No. of stories 

Number of 
archetypes 

Design building 
code 

Steel frame 

2D 

6 2 

UBC94 13 2 

20 2 

3D 
18 1 

UBC97 
19 2 

RC frame 2D 

4 1 

ASCE 7-02 

ACI 318-02 

8 1 

12 1 

20 1 

Total   13  

Since there are two kinds of key parameters, direct parameters and indirect parameters (see Section 

2.2.1), we propose two ways to represent a building in a reference building system, one using direct 

parameters (named as direct representation) and the other using indirect parameters (named as 

indirect representation).  
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Table 2.3 Two representations for the reference building system used in this thesis 

Building representation Parameter Comments 

Direct representation 

Structural system 

Could contain additional 
parameters 

No. of stories 

Location 

Design building code 

Indirect representation 

Fundamental period 
Generally no additional 
parameters are needed 

Global ductility 

Lateral capacity 

For direct representation, we chose structural system, number of stories, location, and design 

building code as primary key parameters. The number of key parameters is not limited to four. 

Additional information could be provided for a more detailed description of buildings. For indirect 

representation we chose three parameters, fundamental period, global ductility, and lateral capacity, 

as key parameters. The number of dimensions is strictly three in the second representation. Thus, 

for example, a 20-story steel moment-resisting frame building, designed according to UBC 94, 

located in Downtown LA, could be represented by either Building {steel moment-resisting frame, 

20, Downtown LA, UBC 94} or Building {3.47s, 4.25, 0.106W}, assuming that its fundamental 

period is 3.47s, its ductility ratio (see Section 2.3.1 for definition) is 4.25, and its lateral capacity is 

0.106W (W is the seismic weight of the building). 

Direct representation is designed to document the information of building designs, while indirect 

representation is used in the development of collapse prediction model, and also for the 

interpolation in collapse prediction. As discussed in section 2.2.1, the two building representations 

are related to each other. In Chapter 6, we will discuss how to obtain the values of key parameters in 

the indirect representation from the information provided by the direct representation. 

2.3 Important Definitions in This Thesis 

In this section, we introduce several important definitions used in this thesis, which may be different 

from other researchers’ definitions. 
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2.3.1 Global Ductility 

In this thesis, besides the traditional definition of ductility (material or structural element level), we 

introduce another ductility: global ductility. Global ductility is a parameter that can represent the 

deformation capacity of an entire structure. It combines the effects from material ductility, 

geometric nonlinearity, and P-Δ effect.  

The global ductility is defined as 

µ =
𝑑0.5

𝑑𝑦
 

(2.1) 

where dy is the roof displacement at which a structure starts to yield globally, and d0.5 is the roof 

displacement at which a structure losses half of its lateral capacity (see Figure 2.5). In this thesis, if 

not clarified, ductility refers to global ductility. 

 
Figure 2.5 Definition of global ductility 

dy d0.5

Pushover curve

Roof displacement
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2.3.2 Lateral Capacity 

Lateral capacity is the maximum total lateral load a structure can resist. If pushover curve is 

available, lateral capacity is just the maximum base shear. Otherwise, we could approximate lateral 

capacity using the method discussed in Chapter 6. In the following chapters which introduce the 

development of the collapse prediction model, the lateral capacity needs to be compared with the 

peak filtered acceleration. In order to make this comparison, the same unit needs to be used for both 

parameters. Hence, in this thesis, lateral capacity is normalized by the seismic weight of the 

corresponding building and percentage of g (%g) is used as its unit.  

2.3.3 Collapse 

Collapse can be induced by different causes. For example, vertical collapse is caused by the loss of 

vertical load bearing members (e.g. shear failure in columns), and P-Δ collapse (also called 

sidesway collapse) is caused by P-Δ instability. In this thesis, we focus on the prediction model for 

P-Δ collapse.  

P-Δ instability comes from the P-Δ effect. Lateral displacement of a structure induces arms for the 

gravity loads, which will result in an overturning moment proportional to lateral displacement (see 

Figure 2.6). This is called P-Δ effect. Since the overturning moment will make the structure deform 

further away from its equilibrium position, P-Δ effect will decrease the lateral resistance of a 

structure (see Figure 2.7). When the overturning moment is equal to or larger than the overall 

restoring moment, the displacement will predominately increase in only one direction. This is called 

P-Δ instability and the corresponding collapse is called P-Δ collapse. 

P-Δ collapse is achieved only if the lateral global ductility of the structure is large enough. 

Otherwise, vertical collapse due to the shear failures will develop at smaller story drift while P-Δ 

instability is not reached yet. However, since all of the buildings used in this thesis are designed 

according to building codes no earlier than UBC94, we assume shear failure is prevented by the 

modern design requirements, and thus only P-Δ collapse is considered for all the building models 

used in this thesis. In the numerical simulations, P-Δ collapse is defined as the point of dynamic 

instability, where the lateral story drifts of a building increase without bound. 
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Figure 2.6 Illustration of P-Δ effect 

 
Figure 2.7 Pushover curve with and without P-Delta effect 
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C h a p t e r  3  

PFA COLLAPSE PREDICTION MODEL FOR 2D BUILDINGS 

In this chapter, we develop a new building collapse prediction model and this model is based on a 

new parameter: peak filtered acceleration, or PFA. Peak filtered acceleration (PFA) is the peak 

value (or half peak-to-peak value) of the Butterworth low-pass filtered ground acceleration time 

history.  

The model developed in this chapter covers two types of buildings (steel and reinforced concrete 

moment-resisting frame buildings) and three types of ground motions (ramp-pulse-like, long-period, 

and short-period ground motions). All of the buildings we study in this chapter are 2D frame 

buildings. We will extend the model from 2D buildings to 3D buildings in Chapter 4, and discuss 

the potential of extending the method from frame buildings to other structural systems in Chapter 6. 

The procedures of the PFA collapse prediction model for 2D frame buildings are surprisingly 

simple. To predict whether a building will collapse when subjected to a given ground motion, we 

first estimate the maximum lateral capacity of the building. We then filter the ground acceleration 

time history using a low-pass Butterworth filter with suggested parameters and compare the result 

to the building lateral capacity (see Figure 3.1).  

It could be noticed that we chose a specific filter, the Butterworth filter, for the filtering process in 

the PFA model. There are two reasons why we chose the Butterworth filter: 1) compared with 

short-period ground accelerations, much smaller long-period ground accelerations cause buildings 

to collapse (see Section 3.1.2 for details). Thus to predict collapse, we neglect the unnecessary 

short-period component and extract the long-period component, which is dominant; 2) the peak 

acceleration from a 2nd-order Butterworth filtered record is equivalent to a 70.7% damped pseudo-

acceleration response spectrum (see Appendix A.3 for proof). 70.7% is the smallest damping at 

which an oscillator loses resonance behavior. When a building collapses due to P-Δ instability, the 

drift predominantly increases in only one direction; it no longer oscillates about an equilibrium 

position and tends to lose its resonant behavior. Consequently, a collapsing building does not 

respond to a particular frequency and will not have a resonance peak as is assumed in a traditional 

response spectrum. These two reasons explain why Butterworth low-pass filtered ground 



 

 

27 
acceleration time history is a proper tool in collapse prediction. 

 
Figure 3.1 Procedures for prediction of the PFA model (T1-fundamental period, Tc-cutoff period of 

Butterworth filter, c-developed coefficient which depends on the global ductility and ranges 
between 0.9 and 2.0) 
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In this chapter, we first discuss the development of the PFA collapse prediction model. We then 

provide an alternative to the PFA model, a collapse prediction model based on a vector intensity 

measure (PGV, PGD). We also discuss the equivalency between the two collapse prediction models.  

3.1 Development of the PFA Collapse Prediction Model 

3.1.1 Building Models Used in the Development 

Seven building designs are used to develop the PFA collapse prediction model in this chapter. They 

are denoted with U6, U13, U20, ID1003, ID1011, ID1013, and ID 1021, respectively.  

U6 and U20 are 6-story and 20-story steel moment-resisting frame (MRF) buildings designed by 

Hall (1995; 1997). The design of the lateral force-resisting system conforms to 1994 Uniform 

Building Code (UBC) seismic provisions for zone IV and site class C. U13 is a 13-story steel MRF 

building designed by the author using the same seismic provisions (UBC 94). In this study, each 

steel frame building could have perfect welds (denoted with P) or brittle welds (denoted with B). A 

Fiber beam-column model is used to simulate the weld condition. Fibers in perfect welds will never 

fracture during the dynamic simulation, while fibers in brittle welds will fracture at a random strain 

generated from the statistical distribution given by Hall (1997).  

ID1003, ID1011, ID1013, and ID1021 are reinforced concrete (RC) special moment frame (SMF) 

buildings designed by Haselton (2006) according to ASCE7-02 (2002) and ACI318-02 (2002). The 

numbers of stories are 4, 8, 12, and 20, respectively. The nonlinear hinge model with degrading 

strength and stiffness developed by Ibarra et al. (2005) is used in the element modeling.  

Considering the variations of steel frame buildings with perfect welds and brittle welds, there are 

ten building models in total in this chapter. The basic information of the ten building models is 

listed in Table 3.1, and the details of the ten building models can be found in Appendix A.1 and A.2. 
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Table 3.1 Information of the building models 

Model No. of Stories Material T1 (s)(1) Max Strength(2) Ductility(3) Welds 

U6P 6 Steel 1.54 0.2319 6.67 Perfect 

U6B 6 Steel 1.54 0.1629 7.50 Brittle 

U13P 13 Steel 2.63 0.1387 8.00 Perfect 

U13B 13 Steel 2.63 0.0844 6.86 Brittle 

U20P 20 Steel 3.47 0.1060 4.25 Perfect 

U20B 20 Steel 3.47 0.0630 4.50 Brittle 

ID1003 4 RC 1.12 0.1472 8.50  

ID1011 8 RC 1.71 0.0800 7.40  

ID1013 12 RC 2.01 0.0748 7.55  

ID1021 20 RC 2.36 0.0880 6.80  

(1) - Fundamental period 

(2) - The maximum base shear in pushover analysis, normalized by seismic weight of the building 

(3) - Ductility as defined in section 2.3.1 
 

   
U6 U13 U20 

Figure 3.2 Steel frame building designs used to develop the PFA collapse prediction model 
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ID1003 ID1011 ID1013 ID1021 

Figure 3.3 Reinforced concrete frame building designs used to develop the PFA collapse prediction 

model 

3.1.2 Methodology of the PFA Collapse Prediction Model 

Earthquake ground motions display great variety; some are best characterized as pulse-like, others 

appear to be more like random noise, and yet others seem to resonate at characteristic frequencies.  

When a building is close to collapse instability, its behavior is extremely nonlinear and it is not 

possible to decompose the solution into a linear sum of responses at a spectrum of frequencies.  

Nevertheless, it can be quite instructive to investigate a building’s response to harmonic ground 

motion that is large enough to cause collapse. Towards this end, a series of sinusoidal ground 

motions of different periods and durations were generated. Incremental dynamic analysis (IDA) was 

applied to determine the threshold of collapse (see Figure 3.4). We denote this threshold with 

minimum collapse peak ground acceleration (MinCPGA). We conducted this analysis on all ten 

building models. The period of sinusoidal ground motion varies from 0.5 to 4 times the fundamental 

period of each building, and three ground motion durations (20s, 40s, and 100s) were chosen for the 

analysis. Examples of this analysis for a 6-story steel frame building with perfect welds (U6P), a 

20-story steel frame building with brittle welds (U20B), and an 8-story RC frame building (ID1011) 
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are shown in Figure 3.5. MinCPGA is plotted verses Ts/T1 (Ts is the period of sinusoidal ground 

motion and T1 is the fundamental period of the building, 1.54s for U6P, 3.47s for U20B, and 1.71s 

for ID1011).  

 
Figure 3.4 Illustration of the procedures to obtain MinCPGA curves 
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(b) U20B 

 
(c) ID1011 

Figure 3.5 Examples of minimum collapse PGA in sinusoidal ground motions for three selected 
buildings. The MinCPGA curves are shown on the left. The pushover curves are shown on the right.  

A common vertical axis is used for both panels in each plot. 

From Figure 3.5, it can be concluded that much smaller amplitudes are needed at long-period 

ground motions (Ts/T1>c) to cause collapse, and these long-period amplitudes are close to the 

maximum lateral strength calculated in the pushover analysis. This result implies that we should 

pay special attention to the long-period parts of the ground motion. Hence, we chose to use a low-

pass Butterworth filter to remove the high-frequency parts of the record that seem to have little 

overall effect on collapse, and used the long-period parts to predict collapse.  
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3.1.3 Determining the Parameters Used in the PFA Model 

A low-pass Butterworth filter is fully described by two parameters: cutoff frequency (or cutoff 

period) and filter order, n, where the response decays as f-n. We conducted a series of tests to 

determine these parameters. In addition, the measurement of the maximum size of the filtered 

acceleration can be determined by either the absolute maximum with respect to zero, or by 

measuring the peak-to-peak amplitude of the largest swing.   

Regression Model for Cutoff Period Coefficient c 

The cutoff period is determined from the MinCPGA spectrum for each of the different building 

models considered in this study. We chose it as the lowest period (Ts/T1 = c in Figure 3.5), where 

the MinCPGA spectrum approaches a constant. We found that the cutoff period is not necessarily 

the building’s fundamental period (see Figure 3.5). Furthermore, it is related to building’s ductility 

ratio. In this thesis, we define the ductility ratio μ to be d0.5/dy, where dy denotes the roof 

displacement at which building starts to yield globally, and d0.5 denotes the roof displacement at 

which the building loses 50% of the maximum strength. We used a linear equation to find the 

regression model between the cutoff period coefficient c and the ductility ratio. The result is shown 

in Figure 3.6 and Equation 3.1. 

c = 0.1241
𝑑0.5

𝑑𝑦
+ 0.6931 (3.1) 
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Figure 3.6 Regression model for cutoff period coefficient c 
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covered a wide range of ground motions, we divided them into three groups: 1. Ramp-pulse-like 

(RP) ground motions, 2. Long-period (LP) ground motions, and 3. Short-period (SP) ground 

motions.  

Ramp-pulse-like ground motion is actually the name of two kinds of ground motions: ramp-like 

ground motions and pulse-like ground motions. Ramp-like ground motions, also known as fling 

steps, are the result of the evolution of residual ground displacement due to tectonic deformation 

associated with rupture mechanism, and is generally characterized by a unidirectional velocity pulse 

and a monotonic step in the displacement time history (Kalkan and Kunnath, 2006). Pulse-like 

ground motions, also known as directivities, are observed when the rupture propagates forward 

toward the site and the direction of slip on the fault is aligned with the site. Ground motions 

oriented in this forward-directivity path may follow certain radiation patterns and generate long-

period, short-duration, and large-amplitude pulses (Somerville, 1998). In this thesis, we found that 

the two kinds of ground motions have a similar effect on building collapse, and hence are combined 

into one category.  

Long-period ground motions are rich in long-period components and seem to resonate at 

characteristic frequencies. This kind of ground motion usually results from basin amplification, and 

the characteristic frequencies are the model frequencies of the basin. Long-period ground motions 

are found to be very destructive, especially in 1985 Michoacán earthquake.  

Short-period ground motions are the most common ground motions. They do not exhibit ramps, 

pulses, or long-period components, and only have short-period vibrations. This kind of ground 

motion is widely observed as far-fault ground motions in every earthquake. 

In this thesis, ramp-pulse-like records are selected from a study by Graves and Somerville (2006). 

Long-period and short-period records are selected from the 1999 M 7.6 Chi-Chi earthquake. The 

corresponding response spectra and examples are plotted in Figure 3.7 to 3.9. The details of the 

selected ground motion records can be found in Appendix B.  
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(a) Response spectra of ramp-pulse-like ground motions 

 
(b) Example of ramp-pulse-like ground motions 

Figure 3.7 Response spectra and example of ramp-pulse-like ground motions 
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(a) Response spectra of long-period ground motions 

 
(b) Example of long-period ground motions 

Figure 3.8 Response spectra and example of long-period ground motions 
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(a) Response spectra of short-period ground motions 

 
(b) Example of short-period ground motions 

Figure 3.9 Response spectra and example of short-period ground motions 
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Result of Filter Order and Peak Representative Value 

After linearly scaling all 150 records so that they were just large enough to induce collapse (IDA 

analysis), we Butterworth low-pass filtered the scaled records and then determined the maximum 

value of the filtered record. This filtering process was repeated several times, each time with a 

different order Butterworth filter. While a 2nd-order filter seemed to work best for most records, a 

4th-order filter works better than 2nd-order for ramp-pulse-like ground motions. Furthermore, 

measuring half peak-to-peak filtered acceleration seems to provide more consistent results for ramp-

pulse-like and short-period ground motions, while peak ground acceleration works better for long-

period ground motions. Interestingly, determining the peak value of a 2nd-order Butterworth filter 

acceleration record is identical to obtaining the linear acceleration spectral value at the cutoff period 

and with 70.7% damping.  

The results are shown in Table 3.2, Table 3.3, Figure 3.10, and Figure 3.11. In Figure 3.10, we 

plotted ground acceleration, spectral acceleration at fundamental period, base shear of elastic finite-

element model, filtered acceleration, base shear of elastoplastic finite-element model, and roof 

displacement together. From Figure 3.10, it could be concluded that, in the plastic yielding region, 

filtered acceleration nearly capture the base shear of elastoplastic finite-element model, which is the 

indicator of damage state. Especially when the base shear is close to the lateral strength of the 

building, filtered acceleration almost exactly captures the shape of base shear, which explains why 

peak filtered acceleration is a good intensity measure for collapse prediction. In Figure 3.11, we 

plotted peak values of unfiltered acceleration and filtered acceleration at collapse threshold. It could 

be concluded that before filtering, the peak values are scattered, but approach a constant after 

filtering. Also it could be noticed that the constant is just the lateral capacity of the corresponding 

building.  

Table 3.2 Calibrated order and intensity measure 

Ground Motion Set Order of Butterworth Filter Intensity Measure 

RP 4 Half peak-to-peak acceleration 

LP 2 Peak ground acceleration 

SP 2 Half peak-to-peak acceleration 
 
 



 

 

40 

 
Figure 3.10 U6P building in long-period ground motion No. 4 
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(a) U6P building in ramp-pulse-like ground motions 

 
(b) U20B building in long-period ground motions 

 
(c) ID1011 building in short-period ground motions 

 
Figure 3.11 Comparison of peak values of original records, filtered records at thresholds of 

collapse with maximum values of pushover curves.  In the left panels each record is represented 
by the PGA of the scaled motion that caused collapse (red) and the ½ peak-to-peak amplitude of 
the filtered acceleration (blue).  The right panel shows a pushover curve for the building where 

the vertical scale (acceleration) is common to both panels. 
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Table 3.3 Geometric mean values of collapse thresholds (g) 

Building Ramp-pulse-like Long-period Short-period Pushover 

U6P 0.207 0.230 0.212 0.232 

U6B 0.173 0.162 0.164 0.163 

U13P 0.123 0.139 0.139 0.139 

U13B 0.072 0.086 0.081 0.084 

U20P 0.119 0.106 0.110 0.106 

U20B 0.062 0.063 0.062 0.063 

ID1003 0.155 0.134 0.122 0.147 

ID1011 0.072 0.081 0.086 0.080 

ID1013 0.066 0.078 0.081 0.075 

ID1021 0.091 0.088 0.087 0.088 

3.1.4 Summary of the PFA Model for2D Buildings 

To make the method more practical, we summarized the result in this study into standard 

procedures to predict the collapse of steel and RC frame buildings. 

Given a target building and a ground motion record, five steps should be followed to predict 

whether the building will collapse: 

Step 1: Obtain the fundamental period T1 , the maximum base shear force Vmax , the seismic weight 

W, and the ductility of the building. 

Step 2: Compute the cutoff period coefficient c for the building using Equation 3.1. 

Step 3: Identify the type of the ground motion as one of the following: 

a. Ramp-pulse-like ground motion (RP). 

b. Long-period ground motion (LP). 

c. Short-period ground motion (SP). 

Step 4: Filter the acceleration time history using a Butterworth filter with the order and the cutoff 

frequency given in Table 3.4.  
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Table 3.4 Parameters of Butterworth filter 

Type of ground motion Order Cutoff frequency 

Ramp-pulse-like 4 1/cT1 

Long-period & Short-period 2 1/cT1 

Step 5: Predict the building behavior with Table 3.5. 

Table 3.5 Chart of collapse prediction (g is gravity acceleration) 

Type of ground motion Intensity measure Condition Prediction 

Ramp-pulse-like 
Half of peak-to-peak 

acceleration 
>Vmax/W•g Collapse 

<Vmax/W•g Standing 

Long-period Peak ground acceleration 
>Vmax/W•g Collapse 

<Vmax/W•g Standing 

Short-period 
Half of peak-to-peak 

acceleration 

>Vmax/W•g Collapse 

<Vmax/W•g Standing 

 

3.2 Fragility Curves Based on the PFA Model 

The fragility curve, defined as a relationship between ground shaking intensity and the probability 

of reaching or exceeding a certain response level, is a powerful tool in the assessment of seismic 

losses, both for pre-earthquake disaster planning, and post-earthquake recovery and retrofitting 

programs (Jeong and Elnashai, 2007).  

In this section, we develop the fragility curves for the analyzed building at collapse level and give 

the regression model for the parameters of the fragility curves. 

3.2.1 Determining the Statistical Distribution Used for the Fragility Curves 

We first need to find the continuous probability distribution which best describes the distribution of 

computed collapse thresholds. We propose two candidates for investigation: log-normal distribution 

and Weibull distribution. 
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A log-normal distribution is a continuous probability distribution of a random variable, the 

logarithm of which is normally distributed. The probability density function of a log-normal 

distribution is 

𝑓(𝑥; 𝜇,𝜎) =
1

𝑥𝑥√2𝜋
𝑒− (𝑙𝑙𝑙−𝜇)2

2𝜎2           x > 0 (3.2) 

Named after Waloddi Weibull, Weibull distribution is a continuous probability distribution, for 

which the failure rate is proportional to a power of time. The probability density function of a 

Weibull distribution is 

𝑓(𝑥;𝜆,𝑘) = �

𝑘
𝜆

(
𝑥
𝜆

)𝑘−1𝑒−(𝑥/𝜆)2      𝑥 ≥ 0

0                                   𝑥 < 0 

 (3.3) 

where k>0 is the shape parameter and λ>0 is the scale parameter of the distribution. The reason why 

we chose log-normal distribution and Weibull distribution as two candidates is that the shapes of 

their probability density functions are quite close to the distribution of the computed collapse 

thresholds of the analyzed buildings. 

We used Akaike information criterion (AIC) to select a better model from the two candidates. The 

Akaike information criterion (AIC) is defined as 

𝐴𝐴𝐴 = 2𝑘 − 2ln (𝐿) (3.4) 

where k is the number of parameters in the statistical model and L is the maximized value of the 

likelihood function for the estimated model. Founded on information entropy, the Akaike 

information criterion is a measure of the relative quality of a statistical model for a given set of data. 

The smaller the AIC value is, the better the model is. Since both candidates have two parameters, 

evaluating the AIC values is then equivalent to evaluating the maximum likelihood. The AIC values 

of all the ten building models subjected to three ground motion sets are listed in Table 3.6 for log-

normal and Weibull distribution. 
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Table 3.6 AIC values for log-normal and Weibull distribution 

Building 
Ramp-and-pulse Long-period Short-period 

Log-normal Weibull Log-normal Weibull Log-normal Weibull 

U6P -256 -247 -199 -181 -134 -125 

U6B -257 -249 -245 -237 -167 -156 

U13P -261 -250 -222 -214 -175 -163 

U13B -330 -325 -289 -281 -235 -230 

U20P -215 -208 -240 -228 -192 -176 

U20B -280 -251 -274 -277 -251 -242 

ID1003 -234 -224 -269 -254 -252 -241 

ID1011 -388 -377 -312 -306 -263 -254 

ID1013 -347 -332 -292 -280 -272 -252 

ID1021 -316 -308 -261 -252 -264 -255 

 

 
Figure 3.12 Collapse fragility curve of U6P building in long-period ground motions 
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From the AIC values in Table 3.6, it could be concluded that log-normal distribution is the ideal 

model for the collapse prediction. We then fit a log-normal distribution to the data to obtain the 

corresponding fragility curve. An example (U6P in long-period ground motions) of the resultant 

fragility curves is shown in Figure 3.12. The fragility curves for all the ten buildings subjected to 

three ground motion sets can be found in Appendix A.3. 

3.2.2 Determining the Regression Models for the Standard Deviations of the Log-normal 

Fragility Curves 

For the fragility curves described by log-normal distribution, there are two parameters: mean value 

and standard deviation of ln(PFA), respectively. In the previous sections, we have already shown 

that the mean value is just the maximum value (fraction of g) of the pushover curve computed from 

the corresponding building. In this section, we will give a regression model for the remaining 

parameter, the standard deviation. The standard deviations of ln(PFA) for ten building models in 

three ground motion sets (thirty standard deviations in total) are shown in Table 3.7 and Figure 3.13.  

 

Table 3.7 Standard deviation of ln(PFA) 

Building Ramp-pulse-like Long-period Short-period 

U6P 0.0877 0.1398 0.2909 

U6B 0.1037 0.1243 0.2694 

U13P 0.1415 0.1834 0.2926 

U13B 0.1204 0.1507 0.2774 

U20P 0.2295 0.2018 0.3116 

U20B 0.2295 0.2425 0.3073 

ID1003 0.1451 0.1190 0.1544 

ID1011 0.0675 0.1289 0.1968 

ID1013 0.1101 0.1620 0.1901 

ID1021 0.1089 0.1972 0.1930 
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Figure 3.13 Computed standard deviations in collapse prediction 

From Table 3.7 and Figure 3.13, it could be concluded that generally σRP < σLP < σSP. Short-period 

ground motions have more high-frequency components, which would not control the collapse 

according to PFA model. Hence, in the framework of the current PFA model, high-frequency 

components are just considered noise. When the noise level increases, the uncertainty of the 

prediction will also increase. 

It is also found that the standard deviation is correlated with the ductility of the building. Generally, 

the standard deviation decreases when ductility increases. 

Based on the above conclusions, we developed the regression model for three ground motion sets 

separately. The results are shown in Figure 3.14 and Table 3.8. 
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(a) Regression of standard deviation for ramp and pulse ground motions 

 
(b) Regression of standard deviation for long-period ground motions 
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(c) Regression of standard deviation for short-period ground motions 

Figure 3.14 Regression of standard deviations for ramp-pulse-like, long-period, and short-
period ground motions 
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using a low-pass 2nd-order Butterworth filter (4th-order Butterworth filter for ramp-pulse-like 

ground motions) and with a cutoff frequency that is typically lower than the first mode frequency. If 

the amplitude of the filtered acceleration record (given as a fraction of g) exceeds the building’s 

pushover maximum strength (given as a fraction of the building weight) then P-delta instability is 

expected. 

While PFA is simple and effective for predicting collapse, it is a new parameter and thus unfamiliar. 

The purpose of this section is to demonstrate the relationship between the new unfamiliar PFA 

parameter and the vector parameter (PGV, PGD), which consists of two traditional ground motion 

intensity measures. In particular we show how to convert our PFA model for collapse into an 

equivalent (PGV, PGD) model for collapse. We also show a good agreement between our predicted 

results with Olsen and Heaton’s (2013) computational results. 

3.3.1 Converting PFA Model into (PGV, PGD) Model 

Although the proposed prediction method in previous sections is straightforward in concept, peak 

filtered acceleration (PFA) is a brand new concept which might not be adopted by engineers easily. 

In this section, we describe the same method in alternative measures, PGV and PGD, which are 

more widely used in measuring ground motion intensities.  

In order to obtain PGV and PGD, we first need to integrate ground acceleration time history with 

respect to time once and twice to get ground velocity and displacement time history. Since we use 

sinusoidal ground motion in computing MinCPGA, to obtain the corresponding PGV and PGD, 

simply multiply the amplitude by Ts/2π once and twice (Ts denotes the period of sinusoidal ground 

motion). 

However, in the PFA model we measured the size of a real ground motion record by the ½ peak-to-

peak value (except in the case of long-period motions when we use the peak value). Hence, to 

convert ½ peak-to-peak values into peak values (PGV and PGD), we needed to multiply the PFAs 

by coefficients cV and cD, where cV denotes the average ratio of peak ground velocity to ½ peak-to-

peak ground velocity and cD denotes the average ratio of peak ground displacement to ½ peak-to-

peak ground displacement. From the statistical results of the ground motions used in the previous 

sections, cV was chosen as 1.08 and cD was chosen as 1.57. Then the collapse threshold in terms of 

PGV and PGD could be obtained as a function of period from Equation 3.5 and Equation 3.6. 
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𝑃𝑃𝑃𝑡ℎ𝑟𝑟𝑟ℎ𝑜𝑜𝑜 = 𝑐𝑉 ∙
𝑇𝑠
2𝜋

∙ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (3.5) 

𝑃𝑃𝑃𝑡ℎ𝑟𝑟𝑟ℎ𝑜𝑜𝑜 = 𝑐𝐷 ∙ (
𝑇𝑠
2𝜋

)2 ∙ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (3.6) 

After obtaining PGVthreshold(TS) and PGDthreshold(TS), we eliminated the common variable, TS, and 

plotted the collapse threshold in Log (PGV)-Log (PGD) space, where TS is now a parameter along 

the collapse curve. An example is shown in Figure 3.16 for U20B, a 20-story steel building with 

brittle welds. To predict whether a building will collapse when subjected to a given ground motion, 

first compute PGV and PGD of the ground motion record, then plot the point (PGV, PGD) in the 

corresponding collapse prediction chart (e.g. Figure 3.16). If the point falls into region B, it is 

expected to collapse. Otherwise, it is expected to survive the ground motion if it is located in region 

A.  

Using the simple relationship between velocity and displacement for a sinusoid, we used equations 

3.7 and 3.8 to plot lines of constant period TS in Figure 3.16. Generally, most real data that is 

classified as strong shaking has periods between ½ and 5 seconds. Therefore most (PGV, PGD) 

points fall into a banded region.  

𝑃𝑃𝑃 = 2𝜋𝜋𝜋𝜋/𝑇𝑠 (3.7) 

𝐿𝐿𝐿(𝑃𝑃𝑃) = 𝐿𝐿𝐿(𝑃𝑃𝑃)− 𝐿𝐿𝐿(𝑇𝑠) + 0.8 (3.8) 

3.3.2 Verification of the Developed Model 

Olsen (2008) collected 64,765 synthetic, seismic ground motions and applied them to eight finite 

element models of welded, steel moment-resisting frame buildings. Each ground motion is 

characterized with a vector intensity measure (PGV, PGD), and the building model response to each 

ground motion is characterized as “collapsed” or “standing”. Among the eight finite element models, 

four are identical with what we used in the previous sections. They are U6P, U6B, U20P, and U20B, 

respectively. In this section, we predict collapse thresholds of the four building models using the 

(PGV, PGD) prediction model derived from the PFA prediction model. We then compare the 

predicted collapse thresholds with the computational results Olsen has obtained. 
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Figure 3.15 Example of minimum collapse PGA 

for U20B. The motion is sinusoidal, with duration 
of 40s and period TS. T1 is the period of the 1st 

mode, which is 3.47 s for this building. 

Figure 3.16 Example of collapse threshold in 
terms of PGV and PGD of the same building 

in Figure 3.15 

 
Figure 3.17 Minimum collapse PGA spectra in sinusoidal ground motions for U6P, U6B, U20P, 

and U20B 
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MinCPGA Spectra of the Studied Buildings 

In section 3.1.2, we have discussed the procedures to generate the minimum collapse PGA 

(MinCPGA) spectrum. Figure 3.17 shows the computed MinCPGA spectra for U6P, U6B, U20P, 

and U20B; a 40s duration of sinusoidal ground motions is used in each case.  

Comparison of the Predicted and Computational Results 

After obtaining collapse thresholds in term of PGA, we converted them into collapse thresholds in 

terms of PGV and PGD using Equation 3.5 and Equation 3.6. The predicted collapse thresholds, 

based on our proposed model and the computational results obtained by Olsen, are plotted in Figure 

3.18. The first mode of the U20P and U20B is 3.47s, and Olsen was able to use simulated records 

that had a 2s cutoff frequency dictated by the grid size in finite element models used to simulate 

ground motions. However, the first period of U6P and U6B is only 1.54s, and so Olsen was forced 

to use broad-band simulated motion records; unfortunately, there were far fewer of these available 

to study. To ensure enough data points, results for U6P and U6B from previous sections are also 

included in Figure 3.18. In Figure 3.18, black dots represent the ground motions that cause collapse 

of the corresponding building, while gray dots are those that do not. The predicted thresholds are 

plotted in red solid lines. Since our proposed model is developed based on the minimum ground 

motions that cause collapse of buildings, the threshold we predict is actually the lower boundary of 

collapse. In Figure 3.18, the predicted thresholds and lower boundaries of collapse show good 

agreement. Especially for U20P and U20B, the predictions captured the features of the collapse 

boundaries. However, the predictions work slightly worse for U6P and U6B, especially when they 

are subjected to high frequency ground motions (high PGV to PGD ratios). One possible 

explanation is that when computing collapse thresholds, we assumed the ground motions to be 

harmonic. However, high frequency ground motions are quite different from harmonic motions, 

which leads to poor performance in predicting collapse of buildings subjected to high frequency 

ground motions. 

Olsen and Heaton (2013) proposed a collapse prediction model based on the regression from the 

computed results. However, it is difficult to capture the features of collapse threshold using this 

method, since it needs a complicated regression equation.  
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Figure 3.18 Comparison of predicted collapse thresholds and Olsen’s computed result 
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The first model, the PFA, extracts long-period components from a ground motion record with a 

Butterworth filter, while the second (PGV, PHD) model does it with integration. The log-log gain 

functions of 2nd-order Butterworth filtering, time integration (acceleration to velocity), and double 

integration (acceleration to displacement) are plotted in Figure 3.19. 

 
Figure 3.19 Gain functions of 2nd-order Butterworth filter and integration 

Although integration can be viewed as a type of filter that enhances long periods linearly with 

period (or as period squared in the case of double integration), integration has no inherent scale. 
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Butterworth filter, the parameters of which are determined by the dynamic characteristics of the 

building. Alternatively, the (PGV, PGD) model ignores the extraneous high frequencies by 

integration, and then considers the difference among buildings to be given by a threshold curve that 

is determined from nonlinear analysis of a broad range of ground motions.  
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C h a p t e r  4  

PFA COLLAPSE PREDICTION MODEL FOR 3D BUILDINGS 

This chapter is a continuation of Chapter 3. In Chapter 3, we proposed a collapse prediction model 

based on a new parameter: peak filtered acceleration (PFA). To predict whether a building will 

collapse in response to a given ground motion, we first estimated the maximum lateral capacity of 

the building. We then filtered the ground acceleration time history using a low-pass Butterworth 

filter with suggested order and cutoff frequency. If the amplitude of the filtered acceleration record 

(given as a fraction of g) exceeded the building’s pushover maximum strength (given as a fraction 

of the building weight) then P-Δ instability was expected. 

The result in Chapter 3 is verified only by 2D frame buildings. In this chapter, we extend the PFA 

collapse prediction model from 2D frame buildings to 3D frame buildings. In the PFA model, we 

obtain two important parameters, lateral capacity and global ductility, through pushover analysis. 

The pushover analysis, also known as non-linear static procedure, was developed by Saiidi and 

Sozen (1981), Fajfar and Gapersic (1996), and Chopra and Goel (2002) over the past thirty years, 

and recommended by FEMA 273 and ATC 40. However, pushover analysis is usually performed in 

principal directions. Thus, we could only obtain the properties of a building in principal directions 

through commonly used pushover analysis. 

In this chapter, we apply pushover analysis to a 3D steel moment-resisting frame building in various 

horizontal directions (from 0 to 360 degree) and obtain its limit domain (maximum base shear 

versus angle in polar coordinates). The limit domain is either of square shape (regular stiffness 

distribution) or square shape with round corners (irregular stiffness distribution). Based on these 

results, we extend the PFA collapse prediction model developed in the previous chapter from 2D 

frame buildings to 3D frame buildings. We show that for a regular 3D frame building, we could 

decompose it into two 2D frame buildings and apply the PFA collapse prediction model to each of 

them. The performance of the 3D frame building could be predicted by combining the results from 

the two decomposed 2D frame buildings. For an irregular 3D frame building, we directly use the bi-

directional filtered ground acceleration and the 2D limit domain to predict collapse. If the filtered 

bi-directional acceleration exceeds the 2D limit domain, the building will collapse, otherwise, the 
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building will survive the ground motion. The results are compared with the FEM simulations in 

Frame3D and show good agreement in collapse prediction. 

4.1 Building Models 

We use three building models in this chapter: an 18-story building (denoted with B1) (Krishnan et 

al., 2006), a 19-story L-shaped irregular building (denoted with B2), and a 19-story torsionally 

irregular building (denoted with B3) (Krishnan, 2007). All three buildings are steel moment-

resisting frame buildings designed according to UBC 97 (ICBO 1997). 

B1 is a redesigned version of an existing modern 18-story welded steel moment-resisting frame 

building located within five miles of the epicenter of the 1994 Northridge earthquake. The 

original design was done in 1984 according to the lateral force requirements of the 1982 Uniform 

Building Code (ICBO, 1982), and redesigned according to UBC 97 (ICBO, 1997). The new 

design gives a relatively symmetric plan view. B2 is L-shaped in plan, with one elevator core 

serving both wings of the building. The two wings are identical in design. B3 is rectangular-

shaped in plan, with the elevators and stairs located along one face of the building to obtain a 

better ocean view. 

The three selected building models could represent a large range of existing buildings, since B1 is 

relatively symmetric both in plan and in stiffness, B2 has an asymmetric plan but regularly 

distributed frames that give regular stiffness distribution, and B3 is symmetric in plan but 

asymmetric in stiffness. 
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(a) Typical floor plan of B1 (b) Isometric view of B1 
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(c) Typical floor plan of B2 (d) Isometric view of B2 
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(e) Typical floor plan of B3 (f) Isometric view of B3 

Figure 4.1 Typical floor plans and isometric views of studied building models 
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The periods and modal direction factors corresponding to the first three modes of the three 

buildings are listed in Table 4.1.  

Table 4.1 Information on the studied 3D frame building models 

Building 
Model 

Mode T (s) 
Modal direction factor 

X-
translational 

Y-
translational 

Z-
rotational 

B1 

1 3.72 47.24 52.72 0.04 

2 3.51 52.71 47.27 0.02 

3 2.24 0.08 0.01 99.91 

B2 

1 3.39 50.00 50.00 0.00 

2 3.32 49.89 49.89 0.22 

3 2.33 0.12 0.12 99.76 

B3 

1 3.21 0.00 72.64 27.36 

2 2.03 100.00 0.00 0.00 

3 1.22 0.00 30.99 69.01 

All three buildings are modeled and analyzed in Frame3D (Krishnan, 2003). Beams and columns 

are modeled using elasto-fiber elements, beam-column joints are modeled using panel zone 

elements, and floor slabs are modeled using elastic plane-stress elements. The elasto-fiber beam 

element is divided into three segments, with the interior segment being modeled as a cubic-

interpolated displacement-based elastic beam, and nonlinearity being restricted to the two exterior 

segments (Krishnan, 2007). 

4.2 2D Pushover Analysis and Limit Domain 

In this section, we introduce 2D pushover analysis and its result, limit domain, which is different 

from commonly used pushover analysis and its result, pushover curve. 

4.2.1 Procedures of 2D Pushover Analysis 

We performed pushover analyses to all building models in the horizontal directions from 0° to 

360° with a 15° interval. In these analyses, the building model was subjected to a slow, ramped, 

horizontal ground acceleration that increased by 0.001g/s, and the building response was 
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computed dynamically. In order to produce the lateral forces, the mass in horizontal directions 

of each node was recalculated to match the UBC 97 force distribution. 

4.2.2 Result of 2D Pushover Analysis – Limit Domain 

We extracted the maximum base shear in the loading direction from each pushover analysis and 

computed its components in the principal directions X and Y. We repeated the process for all 24 

pushover analyses and plotted the maximum base shear forces into one figure defined as limit 

domain. The limit domains (LD) in term of maximum base shear over seismic weight of all three 

building models are shown in Figure 4.2, Figure 4.3, and Figure 4.4. 

From Figure 4.2 to 4.4, it could be noticed that LD1 and LD2 are close to square shapes, while 

LD3 has a square shape with round corners. Although not intuitive, these results are easy to 

understand. Moment-resisting frame buildings resist lateral force through moment-frames. A 

moment-frame resists the lateral force through a frame mechanism along the direction it is placed 

(the direction of beam axis). If the force is in a perpendicular direction, the frame mechanism 

does not deform, and the moment-frame resists it only through the bending of columns. The out-

of-plane strength of a moment-frame is much lower compared with the in-plane strength. 

Therefore, when we applied a lateral force to a building, we could decompose the lateral force 

into the two principal directions of the building, and assign them directly to the moment-frames in 

the corresponding directions, neglecting the contribution from the out-of-plane strength of frames 

in the perpendicular direction. As a result, a regular moment-frame building without torsion 

should be strongest in a 45° direction approximately, since the moment-frames in both principal 

directions contribute their maximum strengths. This conclusion comes from the assumption that 

the building has similar strength and ductility in both principal directions, which prevents the 

frames in one direction from failing much earlier than the frames in the other direction. In design 

procedures, design requirements such as base shear and displacement limit are identical for both 

principal directions; hence a regularly designed building should have similar properties in two 

principal directions.  

Building B1 is a regular building with a relatively symmetric floor plan and a regular frame 

distribution. Thus, it does not have torsional deformation when subjected to lateral force. It is 

therefore not surprising that the limit domain is close to a square. However, it should be noted 

that the limit domain is not a perfect square, since the values at the corners decrease slightly from 
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those along the edge. This is mainly caused by the corner columns that are shared by two 

frames in perpendicular directions. By decomposing the lateral force directly into the frames in 

two principal directions of the building, we applied force to a corner column twice each time in 

one principal direction. It is therefore equivalent to saying the corner column is subjected to 

biaxial loading. The limit domain in term of maximum base shear for a column under biaxial 

bending is close to an ellipse (not a square), which provides less strength than simply adding the 

strengths in two principal directions together. In other words, for a column under biaxial bending, 

the maximum strength in either of the principal directions is smaller than its maximum strength 

under uniaxial bending. Since the corner column could not contribute its maximum uniaxial 

strength in two principal directions simultaneously, the limit domain is reduced by a small 

amount at the 45° direction. 

Building B2 has an irregular L-shape in plan. However, its limit domain is still very close to a 

square. A possible explanation is that even though the building is irregular in plan, the frames are 

still regularly distributed, which results in a regular stiffness distribution and does not cause 

significant torsional response. Hence, when the building is loaded at 45° direction, the frames in 

two principal directions will still contribute their maximum strengths, which results in a square-

shaped limit domain. It could be concluded that the primary factor which controls the shape of 

limit domain is the irregularity in stiffness, not the irregularity in plan. 

B3 is a torsionally irregular building. Since the lateral force is applied through inertial force in the 

analysis, it is equivalent to applying the total force at the center of mass. Because the building is 

symmetric in plan but asymmetric in stiffness, the center of mass and the center of stiffness are 

not located at the same position. Hence, when we apply the lateral force, it introduces a torque 

and the building deforms in both translation and torsion. For the loading in 45°, as the lateral 

force increases, the directions of frames will change due to the torsional effect (see Figure 4.5). 

As a result, frames in one direction take larger portion of load while frames in the other direction 

take smaller portion of load. Thus the load is no longer equally distributed along frames in two 

directions. The frames which take the larger portion of the load will fail before the frames in the 

perpendicular direction have reached their maximum strength, which significantly reduces the 

total strength of the building in 45° loading. This is the reason why LD3 shows four rounded 

corners, which is different from LD1 and LD2. 
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Figure 4.2 Limit domain in term of base shear over seismic weight for B1 

 
Figure 4.3 Limit domain in term of base shear over seismic weight for B2 
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Figure 4.4 Limit domain in term of base shear over seismic weight for B3 

 
Figure 4.5 Roof position of original and deformed B3 building in 45° pushover 
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4.2.3 Comparison with the Results from Petti et al. 

Petti et al. (2008) have analyzed two benchmark structures with a similar approach and obtained 

the limit domains of collapse. The first structure (Structure A) is a 5-story L-shaped building from 

the ReLUIS project, with RC frames in two orthogonal directions. The second structure 

(Structure B) is the 3-story building from the Spear Project. Both structures are modeled and 

analyzed in OpenSEES. Structure A uses spread plasticity non-linear elements with fiber sections 

for beams and columns, and elastic shells with appropriate thickness for floors. Structure B uses 

lumped plasticity with plastic hinges for beams and columns, and numeric constraints for floors. 

  

Structure A Structure B 

Figure 4.6 Plan views of two benchmark structures in the study of Petti et al. (2008) 

The limit domains of structure A and B in term of base shear given by Petti et al. (2008) are 

shown in Figure 4.7. It could be noticed that the limit domain of structure A is close to a circle 

and the limit domain of structure B is close to a square. 
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(a) Structure A (b) Structure B 

Figure 4.7 Limit domains in term of base shear of benchmark structure A and B 

 

Figure 4.8 Example of collapse curvature domain for columns (Petti et al., 2007) 

In Structure A, linear interpolation in the plane of the section is used to evaluate limit curvature 

for columns (rhomboidal domain). In addition, in the pushover analysis, the state at which the 
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first primary element goes beyond its limit is assumed to be global collapse. Under the above 

assumptions, the whole structure may not reach P-Δ instability at collapse. Since collapse is 

usually controlled by the failure of columns, the limit state of columns controls the limit domain 

of the whole structure. In the previous discussion, an elliptical column limit domain leads to a 

square structure limit domain. Similarly, a rhomboidal column limit domain leads to a circular 

structure limit domain. 

In Structure B, two independent plastic hinges for bending about the two principal axes are used 

for columns. Since it is assumed the hysteretic behavior has no effect on the perpendicular 

direction, the limit domain of a column is a square domain with a constant value in X and Y. 

Therefore, the moment-frames in two principal directions are no longer coupled by the columns 

subjected to bi-axial bending. Based on this assumption, it could be easily concluded that the 

limit domain in terms of base shear for structure B should be close to a square. 

The assumption in modeling Structure A tends to be conservative. Hence underestimate the limit 

domain is underestimated. While the assumption in modeling Structure B could over-estimate it. 

From the above discussion it could be concluded that the definition of collapse state is another 

factor that controls the shape of the limit domain.  

4.3 Extending PFA Collapse Model to 3D Frame Buildings 

The result of the study in the previous sections of this chapter could extend the use of the PFA 

collapse prediction model developed in Chapter 3 from 2D structures to 3D structures. 

In Chapter 3 we proposed a collapse prediction model based on a new parameter: peak filtered 

acceleration (PFA). In order to predict whether a building will collapse in response to a given 

ground motion, we first estimated the maximum lateral capacity of the building. We then filtered 

the ground acceleration time history using a low-pass 2nd-order Butterworth filter (4th-order for 

ramp-like and pulse-like motions) and with a cutoff frequency that is typically lower than the first 

mode frequency. If the amplitude of the filtered acceleration record (given as a fraction of g) 

exceeds the building’s pushover maximum strength (given as a fraction of the building weight) 

then P-Δ instability is expected. However, in Chapter 3, all the ten buildings are modeled in 2D 

space as planar frames. Thus, the developed prediction model is verified only for 2D buildings. 

The result of this chapter provides a tool to extend the result of Chapter 3 from 2D buildings to 
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3D buildings. 

4.3.1 PFA Collapse Prediction Model for Regular 3D Buildings 

For buildings that have regular distribution of moment-resisting frames (such as B1 and B2), the 

base shear limit domains are close to a square, with two principal axes identical to axes of 

moment frames in the structure. Therefore, it could be approximated that the ultimate strength of 

the structure is independent in two principal directions. Under this assumption, the original 3D 

structure could be decomposed into two independent 2D structures. In order to predict collapse of 

a 3D structure, we first decomposed the bi-directional ground motion into the two principal 

directions of the structure, then applied the PFA model to each of the decomposed 2D structure 

subjected to the ground motion in the corresponding direction. If one of the 2D structures 

collapsed, the corresponding 3D structure was predicted to collapse. The original 3D structure 

would survive the ground motion only if both decomposed 2D structures survived the 

corresponding ground motion. 

4.3.2 Verification Using B1 Building  

We verify the proposed PFA collapse prediction model for regular 3D buildings using building B1 

and long-period ground motion set in this section. The long-period ground motion set has 50 

records in total, and all of them are chosen from the 1999 Chi-Chi earthquake. However, all of the 

records are uni-directional. In order to simulate collapse of 3D structure in bi-directional ground 

motions, we grouped the 50 records into 25 bi-direction ground motion records.  

In order to verify the PFA prediction model, we first predicted the threshold scale of each bi-

direction record that could collapse the B1 building using the proposed method. We then 

compared the predicted collapse threshold scales to those computed by Frame3D simulations. If 

the scales obtained from the two methods agree with each other, then the proposed method is 

verified to be accurate. 

In the PFA model, first we needed the fundamental period T1 in each decomposed 2D structure. 

Since the first mode has 47.24% in X direction and 57.72% in Y direction, the first period of the 

3D structure was used as the fundamental period for both decomposed 2D structures. Due to the 

fact that 40% live load was included in the dynamic analysis, T1 was set to be 4.05s instead of 
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3.72s. From the pushover curve, the cutoff period coefficient c was calculated to be 1.3. The 

ultimate strength was 0.104g in X direction and 0.108g in Y direction. In order to compute the 

scale of each bi-direction record that could collapse B1 building, we first filtered the two ground 

acceleration components using a 2nd-order low-pass Butterworth filter with cutoff period c*T1, 

and obtained the peak absolute values of the filtered records. We then divided the ultimate 

strength in X direction of the structure by the peak filtered acceleration (PFA) in the same 

direction to obtain the collapse threshold scale in this direction. We did the same calculation in 

the Y direction. Finally, we took a smaller collapse scale in the X and Y direction as the collapse 

scale for the entire 3D structure. The above calculation was repeated to all 25 bi-direction ground 

motion records. The results were compared with the collapse scales computed by Frame3D (see 

Table 4.2 and Figure 4.9), and they generally agree with each other very well. 

Table 4.2 B1 building in long-period ground motion set 

Record 
PFA 

Collapse Scale 

Frame3D 

Collapse Scale 
PFA/Frame3D 

1 6.9 6.0 1.14 

2 5.6 5.4 1.04 

3 6.6 5.6 1.17 

4 8.7 12.5 0.69 

5 6.9 7.4 0.93 

6 8.2 8.4 0.98 

7 6.2 5.4 1.15 

8 12.6 17.0 0.74 

9 5.8 6.4 0.91 

10 5.4 4.6 1.17 

11 5.5 4.6 1.20 

12 6.2 5.0 1.23 

13 5.3 6.2 0.86 

14 3.5 2.8 1.26 

15 2.3 2.1 1.09 

16 3.6 3.2 1.11 
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17 3.4 3.8 0.89 

18 2.7 2.8 0.97 

19 3.2 4.0 0.80 

20 2.0 2.1 0.97 

21 2.7 2.8 0.95 

22 2.7 2.8 0.96 

23 3.0 2.4 1.25 

24 15.6 17.0 0.92 

25 9.6 9.0 1.07 

 

 Geometric mean 1.01 

 

Figure 4.9 Comparison of PFA collapse scales and Frame3D collapse scales (building B1) 
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4.3.3 PFA Collapse Prediction Model for Irregular 3D Buildings 

A 3D building with irregular stiffness distribution has a limit domain of square shape with round 

corners. Therefore, the strengths in two principal directions are not independent of each other. In 

this case the decomposition method we have proposed for 3D regular buildings would not apply. 

Hence we have no choice but to use filtered bi-directional ground motion as demand and 2D limit 

domain as building capacity. If the filtered bi-direction ground motion exceeds the limit domain in 

any direction, the building is expected to collapse. Otherwise, it will survive the ground motion. It 

should be noticed that the ground acceleration and the corresponding inertial force are in the 

opposite directions, and thus the limit domain in Figure 4.9 is reversed with respect to X and Y 

coordinates comparing to Figure 4.4. 

 

Figure 4.10 Collapse prediction for an irregular 3D frame building 
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4.3.4 Verification Using B3 Building 

We verified the proposed PFA collapse prediction model for irregular 3D buildings using the B3 

building and long-period ground motion set in this section. Similar to the previous section, the 50 

long-period ground motion records are grouped into 25 bi-directional ground motion records. 

The verification procedures are the same as used in section 4.3.2. We first calculated the scale of 

each bi-direction record that could collapse the B3 building using the PFA model; we then 

compared them to the collapse scales computed by Frame3D simulations. If the scales obtained 

from the two methods agreed with each other, then the proposed method was verified to be accurate. 

The fundamental period T1 is 2.03s in X direction and 3.21s in Y direction. The calculated cutoff 

period coefficient is 1.40 in X direction and 1.13 in Y direction. In order to predict whether building 

B3 will collapse when subjected to a bi-directional ground motion, we first filtered the bi-

directional ground acceleration record in X and Y direction with the corresponding cutoff period 

(c*T1), and plotted the filtered acceleration in X-Y plane together with the 2D limit domain of 

building B3. The building was expected to collapse if the filtered ground motion exceeds the 

boundary of the limit domain in any direction. We compared the prediction with the FEM result in 

Table 4.3 and Figure 4.11. It could be concluded that, although not as good as the B1 building, the 

two results are still close to each other. 

Table 4.3 B3 building in long-period ground motion set 

Record 
PFA 

Collapse Scale 

Frame3D 

Collapse Scale 
PFA/Frame3D 

1 12.4 11.5 1.08 

2 11.9 11.5 1.03 

3 13.1 10.5 1.25 

4 15.6 17 0.92 

5 11.0 14 0.79 

6 15.0 14 1.07 

7 13.2 11.5 1.15 

8 15.6 19 0.82 

9 10.9 10.5 1.04 
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10 10.9 8.5 1.28 

11 11.7 9.5 1.23 

12 12.0 8.5 1.41 

13 10.0 8.5 1.18 

14 6.3 7 0.90 

15 4.8 5.25 0.91 

16 7.3 5.75 1.27 

17 6.3 7.25 0.87 

18 3.9 4.2 0.93 

19 5.7 5.4 1.06 

20 4.7 3.5 1.34 

21 4.8 5.4 0.89 

22 5.3 5.4 0.98 

23 5.6 5.4 1.04 

24 23.3 27 0.86 

25 15.2 14 1.09 

 

 Geometric mean 1.04 
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Figure 4.11 Comparison of PFA collapse scales and Frame3D collapse scales (building B3) 
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fundamental period in each principal direction, which determines the cutoff frequency of the low-
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3D frames analyzed in this chapter, there is no restriction on horizontal displacements. In this 

case, there is no guarantee that the mode shapes are along the principal directions. Since the 

fundamental period used to determine the cutoff period is defined in the principal direction, it 

must be chosen carefully. We propose that for each principal direction, if a mode has a modal 

direction factor that is larger than 45% in this direction, it is considered as a mode in this 

direction. Then the fundamental period in this principal direction is the longest period of all the 

modes in this direction. We use this principle in Section 4.3.2 and 4.3.4, and they show good 

result.  

Procedures of PFA Collapse Prediction Model for 3D Frame Buildings 

Case 1: Regular 3D building without torsional effect 

Step 1: Decompose the 3D building into two 2D buildings in the principal directions 

Step 2: Apply the PFA model to each 2D building as it is done in Chapter 3, using the properties 

(fundamental period and ductility) and ground motion in the corresponding direction. 

Step 3: If one of the 2D buildings collapses, then the 3D building is expected to collapse. The 3D 

building will survive the bi-directional ground motion only if each of the 2D buildings can resist 

the corresponding uni-directional ground motion. 

Case 2: Irregular 3D building with torsional effect 

Step 1: Obtain the limit domain of the building using multi-directional pushover analysis 

Step 2: Filter the ground motion in each of the building’s principal direction using the properties 

(fundamental period and ductility) in the same direction.  

Step 3: If the filtered bi-directional acceleration exceeds the limit domain, then the building is 

expected to collapse under the ground motion. Otherwise, the building will survive the ground 

motion. 

4.4 Discussion on the Effect of Torsion 

In the previous sections of this chapter we obtained the limit domains in term of maximum base 

shear for three steel moment-resisting frame buildings. Based on the results, we extended the PFA 

(peak filtered acceleration) collapse prediction model from 2D buildings to 3D buildings. The limit 
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domains we obtained for the three steel moment-resisting frame buildings are different. For the 

two buildings without torsional irregularity the limit domains are close to squares, while for the 

building with torsional irregularity the limit domain is a square with round corners. We concluded 

that the torsional irregularity is an important factor which affects the buildings’ limit domains and 

hence the buildings’ collapse behavior. 

Researchers have studied buildings’ torsional effect in different ways. Stathopoulos (2005) has 

investigated the inelastic earthquake response of eccentric, multistory, frame-type, reinforced 

concrete buildings and shown the difference of ductility demands at the flexible and stiff side. 

Krishnan (2007) has studied the seismic response of three steel moment-frame buildings with 

torsional plan irregularity and shown that twisting in the torsioinally sensitive buildings causes the 

plastic rotation on the moment frame on one face of the building to be as high as twice that on the 

opposite face. 

In the second part of this chapter, as a first attempt we propose a new method, twistover analysis, to 

analyze the torsional capacity and behavior of buildings. We also discuss the effect of torsion on the 

shape of limit domains. 

4.4.1 Twistover Analysis 

Pushover analysis is a nonlinear static procedure which is widely used in structural analysis to 

determine the lateral capacity of a building. It is performed by applying lateral forces to each story 

based on specified distribution and increasing the forces until the building reaches its required limit 

state. The result is usually described by a pushover curve which plots base shear versus roof 

displacement. However, since pushover employs translational forces, it is not designed specifically 

for examining the torsional behavior and capacity of a building. 

In order to break this limitation, we propose a modified nonlinear static procedure, twistover, to 

analyze buildings’ torsional behavior and capacity. The general procedures are the same as 

pushover analysis except we use torsional displacement and force. 

The steps of twistover analysis are listed as follows: 

1) Apply torque in a vertical direction to each floor (see Figure 4.12). The torque has a specified 

distribution along the height. 
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2) Gradually increase the torques from zero until the building reaches its required limit state. 

3) Plot roof torsional angle versus base torque. 

We conducted the twistover analysis to building B1. The torque was applied using a force couple at 

the center of east and west sides of the building (Figure 4.12), and the distribution of torque along 

the building height was triangular. The result of the twistover analysis is plotted in Figure 4.13 and 

4.14. In Figure 4.13, we plotted base torque against roof torsional angle. The shape is close to a 

pushover curve. The curve increases linearly at first, then goes into a plateau, and finally decreases 

at a negative slope. Three critical points are marked in the twistover curve. Point 1 is the start of 

global yielding. After Point 1 the twistover curve loses linearity and increases nonlinearly. Point 2 is 

the start of the plateau. After Point 2 the base torque approaches to a constant while the torsional 

angle still increases. Point 3 is the point of the maximum base torque. In Figure 4.14 we plotted the 

distribution of torsional angles along the building height at the three critical points. It could be 

noticed that before the building starts to yield, the torsional angles are approximately equally 

distributed along the height. After yielding the torsional angles increase faster at lower stories 

compared with upper stories. The building finally fails at the lower stories due to the larger 

deformations. 

 
Figure 4.12 Force couple applied at each story of building B1 
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Figure 4.13 Twistover curve of building B1  

 
Figure 4.14 Rotational angles along the height of building B1 at different deformation stages 
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In the analysis we obtained the base torque through the forces at the ends of columns of the 

ground floor. If we used an equivalent force couple, located at the center of the east and west sides 

of the building (Figure 4.12), the maximum force would be 0.1238 times the seismic weight of the 

building. If we considered the forces to be generated by ground acceleration, the acceleration at the 

east and north sides of the building would be 0.1238g, but in opposite directions. It is equivalent to 

saying the ground needs to rotate with an angular acceleration of 5.087 rad/s2. 

4.4.2 Effect of Torsion on Limit Domain 

In Section 4.2, we obtained the limit domain in term of base shear of the same building. The 

resultant limit domain is close to a square shape since the frames in two principal directions are not 

strongly coupled and will take the load in the frames’ own direction. However this result is under 

the assumption that the frames will stay in their own directions while deformed. Usually, even if a 

building is symmetric in design, it is still possible to have accidental eccentricity during 

construction and operation. In this section we analyze the effect of torsion on the capacity (limit 

domain) of building B1. We conduct the analysis by applying three different initial torsions to the 

building and compute the limit domain with these initial torsions. The three initial deformations 

correspond to Point 1, 2, and 3 in Figure 4.13. The limit domains of building B1 with different 

initial torsions are plotted in Figure 4.15.  
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Figure 4.15 Effect of torsion on the limit domain of building B1 

It could be concluded that when the initial torsion increases, the shape of the limit domain changes 

from a square with sharp corners to a square with round corners, then close to a circle and finally to 

an irregular asymmetric eclipse. From zero initial torsion to initial torsion 1, which is close to the 

end of elastic regime, the change of limit domain is relatively small. The scale is 0.93 on average at 

the principal direction and 0.85 on average at the diagonal directions. When the structure starts with 

the initial torsion 2, which is the beginning of the plateau in twistover curve, the limit domain is 

close to a circle, with the average scale 0.8 at the principal directions and 0.62 at the diagonal 

directions. It also could be noticed that the limit domain is no longer symmetric at this stage. The 

reason is that the analyzed building is not perfectly symmetrical throughout the building height. The 

floor plan is asymmetric at the second floor (see Figure 4.16). In the traditional pushover analysis 

this asymmetry does not show up, as the building does not have significantly large deformation at 

-0.1 -0.05 0 0.05 0.1 0.15

-0.1

-0.05

0

0.05

0.1

0.15

X Direction (g)

Y
 D

ire
ct

io
n 

(g
)

 

 

Undeformed
Deformed 1
Deformed 2
Deformed 3



 

 

83 
the second floor. However, when we increase the torsion, the asymmetry starts to show up 

because the lower stories are weakened. Finally, when it comes to initial torsion 3, which is at the 

maximum strength point in the twistover curve, the limit domain loses symmetry completely and 

shows an irregular shape compared to the previous ones.  

 

Figure 4.16 Second floor plan of building B1 

From the above discussion, it could be concluded that torsion is a main factor that affects the shape 

of limit domains. When increasing the torsion, the limit domain could change from a sharp square 

to a round-cornered square and finally to a circle. Torsion could also expose the hidden asymmetry 

of a building, which does not show in pushover analysis. 
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C h a p t e r  5  

PREDICTING THE COLLASPE OF A BUILDING TESTED BY E-DEFENSE USING THE PFA 

MODEL 

In September 2007, a shaking table test of a full-scale 4-story steel moment frame building was 

conducted at the E-Defense 3-dimensional shaking table facility. The experiment was designed to 

evaluate the structural and functional performance of the building under design-level ground 

motions, as well as the safety margin against collapse under exceedingly large ground motions. The 

specimen building was shaken by five different levels of ground motions and finally collapsed in 

the experiment. In this chapter, we will use the PFA model to predict the response of the building 

under different levels of excitations, and compare the prediction with the result of the experiment.  

5.1 Brief Description of the Experiment 

The specimen building is a 4-story, two-bay by one-bay steel moment frame building (see Figure 

5.1 and 5.2). The structure is 10m long in the longitudinal direction (Y) and 6m long in the 

transverse direction (X). It is designed following the most common design considerations exercised 

in Japan for post-Kobe steel moment frames. The columns are made of cold-formed square-tubes; 

the beams are made of hot-rolled wide-flanges and through diaphragm connection details are 

adopted in which short brackets are shop-welded to the columns. “Due to the recent adopted 

improvements, there is little likelihood that moment connections would fracture even under 

exceedingly large ground motions.” (Suita et al., 2008) External wall cladding panels of ALC are 

placed on three sides of the building, as shown in Figure 5.1.  

The total weight of the building, including the safeguards inside, is 2113kN. The measured first 

period is 0.82s in the X direction and 0.76s in the Y direction. 

The shaking tests are conducted at the E-Defense shaking table. The specimen is subjected to the 

ground motion recorded during 1995 Kobe earthquake at JR Takatori train station (see Figure 5.3). 

The tests consist of repeated applications of the same record with progressively increasing scale 

factors (0.05, 0.2, 0.4, 0.6, and 1.0).  
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Figure 5.1 Photos of the specimen building (reproduced from Yamada et al., 2008) 

 

 
Figure 5.2 Plan and elevation views of the specimen building 

(reproduced from Yamada et al., 2008) 
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Figure 5.3 EW, NS, and UD components of Takatori record in 1995 Kobe earthquake 
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5.2.1 Pre-test Prediction 

Three parameters, fundamental period, lateral capacity, and global ductility, are needed to predict 

the response of the specimen building using the PFA model. Before the experiment, the 

fundamental period was known through the free vibration test (Yamada et al., 2008). The estimation 

of the lateral capacity was provided by the pushover analyses in Figure 5.4 (Suita et al., 2008). The 

global ductility was the only unknown parameter. Hence, we needed to estimate the global ductility 

of the building. Unfortunately, the reference building system and the corresponding interpolation 

functions in this thesis were developed based on the US buildings, and could not properly represent 

the Japanese buildings. Hall (1997) designed a 6-story steel frame building according to Japanese 

building code, which is similar to the building tested in E-Defense. We used the 6-story building 

designed by Hall to estimate the global ductility of the 4-story frame building tested in E-Defense. 

Similar to the US steel frame building models used in Chapter 3, there are two numerical models of 

the 6-story Japanese building, one with perfect welds and the other with fracture-prone welds. Since 

post-Kobe specifications and practice ensure no weld fracture (Suita et al., 2008), we used the 6-

story building model with perfect welds (J6P) in this analysis. From Figure 5.5, the global ductility 

of the building is 4.6667 and the cutoff period coefficient is 1.2722. We used these values for both 

the X and Y directions.  

 

Figure 5.4 Story shear versus story drift relationships obtained from pushover analyses (reproduced 

from Suita et al., 2008)  

(black lines – nominal material strength, gray lines – actual material strength) 
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As discussed in Chapter 4, since the building has a regular frame distribution, its limit domain is 

a square shape with 1000kN lateral capacity in both the X and Y directions (see Figure 5.4). 

However, it should be noted that the pushover analysis is applied to an undamaged numerical 

building model, while the actual specimen building is not guaranteed undamaged before each 

shaking test, as it experienced five ground motions in series. Thus, before the specimen building is 

shaken by the full scale Takatori ground motion, it probably already has some damage, since it has 

experienced the 0.6-scaled Takatori ground motion. The damage in the structure could decrease its 

seismic load resistance; as a result, the lateral capacity provided by the pushover analysis is actually 

the upper limit of the actual specimen building. We needed to find a lower limit of the lateral 

capacity for the structure. In order to make the estimation simple, we assumed that the first three 

ground motion inputs, 0.05-, 0.2-, and 0.4-scaled Takatori records did not damage the specimen 

building significantly, so we could neglect them. Therefore, we only needed to pay attention to the 

last two ground motion inputs, 0.6- and 1.0-scaled Takatori records. By neglecting the damage from 

the first three ground motion inputs, we assumed the structure was undamaged before being shaken 

by the 0.6-scaled record. We directly used the lateral capacity obtained from pushover analysis in 

the prediction for the 0.6-scaled record. For the 1.0-scalted record, since it was probably damaged 

by the previous 0.6-scaled record, we used an upper limit and a lower limit of the lateral capacity in 

the prediction. 

 
Figure 5.5 Estimating the ductility ratio of the tested structure using the J6P building  

µ=210/45=4.6667

c=0.1241µ+0.6931=1.2722
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In order to find the lower limit of lateral capacity for the specimen building subjected to the 1.0-

scaled Takatori record, we first increased the last two ground motion inputs to two consequent 1.0-

scaled Takatori records. Because the ground motion input is stronger, the collapse threshold should 

be smaller than the actual threshold in the test and could be used as the lower limit of the lateral 

capacity for the specimen building (see Figure 5.6).  

 
Figure 5.6 Estimating the upper limit and lower limit of lateral capacity for the specimen building 

under the 1.0-scaled Takatori record 

From Figure 5.3, the duration of the record is 20s, and hence the duration of the two consequent 

records is about 40s. The problem then became how to find the collapse threshold of the specimen 

building subjected to the 40s-long ground motion. As discussed in Section 3.1.2, when we 

computed the minimum collapse PGA (MinCPGA) for building models, we used three ground 

0 10 20 30 40 50 60 70 80
-1

0

1

0 10 20 30 40 50 60 70 80
-1

0

1

0 10 20 30 40 50 60 70 80
-1

0

1

Threshold 1

Threshold 2

Threshold 3

Upper Limit

Lower Limit

Experiment
0.6 1.0

1.01.0

1.0

Damage Level



 

 

90 
motion durations: 20s, 40s, and 100s. The results of 20s- and 40s-long ground motions could be 

directly used in this analysis. The MinCPGA curves of the U6P building, which is the closest to the 

test building, are shown in Figure 5.7.  

 

Figure 5.7 Estimating the lower limit of lateral capacity for the damaged building after being shaken 

by the 0.6-scaled Takatori record 

From Figure 5.7, it could be concluded that when the period is longer than the cutoff period, the 

threshold in 20s ground motion is the closest to the lateral capacity of the building, while the 

threshold in 40s ground motion is smaller. The average ratio of the threshold in 40s ground motion 

over the threshold in 20s ground motion is 0.88. Hence, we used the lateral capacity obtained from 

pushover analysis as the upper limit of the limit domain and scaled it using the ratio 0.88 to obtain 

the lower limit. 

We Butterworth low-pass filtered the ground motions with a cutoff period of c*T1,x in the X 

direction and c*T1,y in the Y direction. We then plotted the filtered bi-directional ground 

acceleration together with the limit domain of the specimen building. The results are shown in 

Figure 5.8 and Figure 5.9. In Figure 5.8, the filtered acceleration is well within the limit domain; 

thus the specimen building will not collapse in the 0.6-scaled record. In Figure 5.9, the filtered 

acceleration exceeds both the upper limit and the lower limit of the limit domain; therefore the 

specimen building will collapse in the 1.0-scaled record.  
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Figure 5.8 Pre-test collapse prediction for the structure subjected to the 0.6-scaled Takatori record 

 
Figure 5.9 Pre-test collapse prediction for the structure subjected to the 1.0-scaled Takatori record 
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The result of the experiment is shown in Figure 5.10. The building experienced yielding under 

the 0.6-scaled excitation, but did not collapse. It collapsed in the Y direction under the 1.0-scaled 

excitation. The prediction provided by the PFA model agrees with the result of the experiment. 

 

Figure 5.10 Collapse of the specimen building after being shaken by the 1.0-scaled Takatori record 

5.2.2 Post-test Prediction 

After the experiment, the measured base shear versus story drift relationship became available. It 

provides the actual lateral capacity and global ductility of the specimen building. In this section, we 

use the measured data to calibrate the pre-test prediction. 

 
Figure 5.11 Calculating the cutoff period coefficient c using the measured data 
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We first calculated the cutoff period coefficient c for the X and Y direction. The relationship of 

base shear versus 1st story drift angle is provided in Suita et al. (2008). For the specimen building, 

collapse is caused by the large drift in the 1st story and the drifts of the upper stories almost stay in 

elastic range. Therefore, we used the data of the 1st story to calculate the global ductility of the 

building.  

From Figure 5.11, the cutoff period coefficient c is 1.5618 in the X direction and 1.2640 in the Y 

direction. We Butterworth low-pass filtered the ground acceleration in the X direction with a cutoff 

period of cx*T1,x and the ground acceleration in the Y direction with a cut off period of cy*T1, y. The 

bi-directional filtered ground acceleration was plotted in Figure 5.12, together with the actual limit 

domain of the building. The pre-test prediction has already shown that the 0.6-scaled record was far 

away from collapsing the specimen building, thus only the collapse prediction for the 1.0-scaled 

record was shown in the post-test prediction. The limit domain is a square with 1200kN in the X 

direction and 1000kN in the Y direction, since the moment frames are regularly distributed. In 

Figure 5.12, the filtered ground acceleration exceeds the limit domain in Y direction; hence the 

building will collapse in Y direction. The post-test prediction is the same as the pre-test prediction. 

 
Figure 5.12 Post-test collapse prediction for the structure subjected to the 1.0-scaled Takatori record 
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C h a p t e r  6  

DISCUSSION 

6.1 Estimating the Fundamental Period, Global Ductility, and Lateral Capacity of an Actual 

Building 

In the PFA collapse prediction model, three parameters are determined from a given building to 

predict whether or not it will collapse in response to loading by different ground motions. The 

parameters are fundamental period, lateral capacity, and global ductility. In the previous chapters, 

all three parameters were obtained by analyzing the finite element model of each building. The 

fundamental period was obtained by eigenvalue analysis; the lateral capacity and global ductility 

were obtained by pushover analysis. Hence, up until now, it could only be concluded that the PFA 

model can predict collapse for buildings simulated using fully nonlinear simulation. 

The PFA collapse prediction model can be applied to an actual building, if it is possible to obtain all 

three parameters to accurately represent the building. Constructing a finite element model of the 

studied building and obtaining the parameters through numerical analysis is one solution to this 

problem. However, in this chapter we will discuss another possible solution to the problem of how 

to obtain fundamental period, lateral capacity, and global ductility from the fundamental 

information of a real-world building directly, and without constructing a numerical model.  

6.1.1 Fundamental Period 

Generally, there are two ways to obtain the fundamental period of a building. The first one is to 

measure the period directly using instruments, while the second one is to estimate the period using 

an empirical equation. 

Measurement of Fundamental Period 

In practice there are two kinds of tests designed to measure the periods of buildings: they are 

ambient vibration tests and forced vibration tests. 
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The ambient vibration tests use wind, micro tremors, microseisms, and various local random and 

periodic sources as the sources of excitation (Ivanovic et al., 2000), and measure the response of 

buildings when subjected to the excitation. 

The forced vibration tests generally require larger forces to produce a larger response. Usually this 

is done by a vibration generator (a shaker) located on top of a building.  

The ambient vibration test is usually the easier one of the two methods, since it requires light 

equipment and a smaller number of operators (Ivanovic et al., 2000). 

Estimation of Fundamental Period 

If measurement of the fundamental period is not available, there are still empirical equations which 

can be used to estimate the fundamental period of a building. 

Since the fundamental period is usually related to the structural system and building height, 

empirical equations usually take structural system and building height as input parameters. For 

example, in UBC 97 (ICBO, 1997), the fundamental period T of a building may be approximated 

from the following formula: 

𝑇 = 𝐶𝑡(ℎ𝑛)3/4 (6.1) 

where: Ct=0.0853(SI) for steel moment-resisting frames, 0.0731(SI) for reinforced concrete 

moment-resisting frames and eccentrically braced frames, and 0.0488(SI) for all other buildings  

6.1.2 Lateral Capacity 

Lateral capacity is the maximum lateral force a structure can resist. This is a parameter that is 

impossible to measure since it needs a destructive experiment to make the structure yield globally. 

Hence, we can only estimate the lateral capacity of an actual building. For convenience, we broke 

lateral capacity into two parts: design strength and over-strength factor. Design strength is the base 

shear required in building code that a building needs to resist. Design strength is usually the lower 

limit of actual strength. However, due to different reasons, an actual building usually shows a 

significant reserve strength which makes actual strength larger than design strength. This reserve 
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strength is characterized by the over-strength factor, which is the ratio between actual strength 

and design strength.  

Thus, the relationship of lateral capacity, design strength, and over-strength factor is 

Lateral capacity = Design strength × Over-strength factor (6.2) 

The reason for breaking lateral capacity into design strength and over-strength is that design 

strengths could be obtained directly from building codes and over-strength factors could be 

obtained through numerical analysis of reference buildings and documented into the reference 

building system. 

Design Strength 

Calculating design strength is straightforward. For a specific building, it is only needed to follow 

the standard procedures in the building code upon which the building is designed.  

For example, in UBC 97 (ICBO, 1997), section 1630.2.1, the design base shear shall be determined 

from the following formula: 

𝑉 =
𝐶𝑣𝐼
𝑅𝑅

𝑊 (6.3) 

where Cv is the seismic coefficient, I is the seismic importance factor, R is the strength reduction 

factor, and T is the fundamental period. 

Over-strength Factor (Ω) 

Over-strength factors are obtained from the regression model based on the reference buildings. In 

this section we only illustrate the regression model of over-strength factors for RC frame buildings 

as an example. Over-strength factors for other structural systems could be obtained using the same 

method. For all the RC frame buildings designed by Haselton, we plot over-strength factors versus 

fundamental period in Figure 6.1. 
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Figure 6.1 Over-strength factors versus fundamental periods for space and perimeter RC frame 

buildings in Haselton’s study (Haselton, 2006) 

From Figure 6.1 it could be noticed that the over-strength factor for perimeter frame buildings is 

close to a constant. 

Ω𝑃 = 1.7 (6.4) 

For space frame buildings, the over-strength factor decreases with fundamental period increasing. 

The corresponding regression equation is  

Ω𝑆 = −0.9626T1 + 4.3872 (6.5) 

The difference between perimeter frame buildings and space frame buildings is that every bay of 

frames is designed as a moment-resisting frame in space frame buildings, while only perimeter 

frames are designed as a moment-resisting frame in perimeter frame buildings.  
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For space frame buildings, since every bay of frame is designed as a moment-resisting frame, 

seismic load is distributed into each frame when calculating the design requirements. For shorter 

space frame buildings with smaller seismic load, the resultant seismic design requirement is usually 

weaker than other requirements such as minimum beam and column section. For shorter space 

frame buildings, this will contribute to a reserve strength which leads to larger over-strength factors. 

The shorter a building is, the smaller the seismic load is and hence the larger the reserve strength is. 

This explains why the over-strength factor for space frame buildings decreases when the number of 

stories (fundamental period) increases. 

For perimeter frame buildings, seismic load is only distributed to perimeter frames. This usually 

results in a design requirement which is stronger than other design requirements. The designs of 

perimeter frame buildings differ from space frame buildings in that seismic loads usually control 

them, and less reserve strength is introduced by other design requirements. As a result, the over-

strength factors for perimeter frame buildings are smaller than those of space frame buildings and 

are unaffected by number of stories (fundamental period). 

6.1.3 Global Ductility 

Global ductility is another parameter that is impossible to measure from an actual building, since a 

destructive experiment is also needed. Hence, we can only obtain ductility through a reference 

building system. Toward this end, we need to do numerical analysis to every reference building and 

document the resultant ductility into a reference building system.  

The global ductility ratios of all ductile frame buildings analyzed in Chapter 3 are plotted in Figure 

6.2. The regression equation for the global ductility ratio is  

µ = −1.3081𝑇1 + 9.7975 (6.6) 
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Figure 6.2 Ductility ratios versus fundamental periods for frame buildings analyzed in Chapter 3 

6.1.4 Transfer Functions between Direct Parameter and Indirect Parameters 

As discussed in Chapter 2, there are two kinds of parameters in building representation, direct 

parameters and indirect parameters. The parameters that could be obtained directly from a building, 

such as structural system, number of stories, and year of built, are direct parameters, while the 

parameters that must be obtained through analysis are indirect parameters. The three parameters 

used in the PFA collapse prediction model (fundamental period, lateral capacity, and global 

ductility) are all indirect parameter.  

From Section 6.1.1 to 6.1.3, we discussed the procedures to obtain indirect parameters from direct 

parameters. Fundamental period is selected as a primary indirect parameter and other two indirect 
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capacity and global ductility could be easily obtained using a regression model such as Equation 

6.4, 6.5, and 6.6. 

 

Figure 6.3 Procedures to obtain indirect parameters from direct parameters 

Again, this thesis aims to develop the framework for a new collapse prediction model. Therefore, 

only the regression equations of indirect parameters for a selected building inventory are provided. 

If the reader would like to predict the collapse of types of buildings which are not discussed in this 

thesis, they will need to develop their own regression models using the framework provided in this 

thesis. 

6.2 Comparison of PFA with other Intensity Measures in Collapse Prediction 

In this section, we compare the PFA with the traditional and modified ground motion intensity 

measures reviewed in Chapter 1, Section 1.2.2. 

6.2.1 Comparison with Traditional Ground Motion Intensity Measures 

We first compared the performance of PFA with traditional ground motion intensity measures in 

collapse prediction. We chose four traditional ground motion intensity measures: PGA (peak 

ground acceleration), PGV (peak ground velocity), PGD (peak ground displacement), and Sa 
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building. A total of 1500 collapse data points were used. We then multiplied the scales by 

different intensity measures to obtain the intensity measures at collapse thresholds 

Plotted in Figure 6.4 to Figure 6.6 are the histograms of all five ground motion intensity measures at 

collapse thresholds. The three plots correspond to three ground motion sets, ramp-pulse-like ground 

motions, long-period ground motions, and short-period ground motions. In order to better compare 

the performances of different intensity measures, each intensity measure is normalized by its 

geometric mean value and plotted in log scale. The intensity measures are ordered according to their 

performances in each plot, with the best on top and the worst at the bottom. We used standard 

deviation to evaluate the performance of each intensity measure in collapse prediction. The smaller 

the standard deviation is, the better the performance is. 
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Figure 6.4 Comparison of performance of PFA, PGA, PGV, PGD, and Sa in collapse prediction of 

buildings subjected to ramp-and-pulse ground motions 
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Figure 6.5 Comparison of performance of PFA, PGA, PGV, PGD, and Sa in collapse prediction of 

buildings subjected to long-period ground motions 
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Figure 6.6 Comparison of performance of PFA, PGA, PGV, PGD, and Sa in collapse prediction of 

buildings subjected to short-period ground motions 
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Table 6.1 Performance of different ground motion intensity measures 

Rank Ramp-and-pulse Long-period Short-period 

No.1 PFA PFA PFA 

No.2 PGD PGV Sa 

No.3 PGV PGD PGV 

No.4 PGA PGA PGA 

No.5 Sa Sa PGD 

It could be concluded that PFA has the best performance in all of the three ground motion sets. 

However, the other four intensity measures have different performance orders in each ground 

motion set (see Table 6.1). It could be noticed that in ramp-pulse-like ground motions and long-

period ground motions, PGV and PGD have the best performance among the traditional intensity 

measures, while Sa was the worst one. In short-period ground motions, Sa is the best one while PGD 

falls into the last place. If all three ground motion sets are considered, PGV has the best 

performance among the traditional intensity measures (1st or 2nd), while PGA always has a bad 

performance. The reason why PGA is not a good intensity measure for collapse prediction is that 

PGA usually corresponds to the high-frequency component of a ground motion record, but the 

buildings we used in developing the PFA model have a relatively long period, with 1.12s being the 

shortest. According to the PFA model, the high-frequency component of ground motion is 

irrelevant in collapse prediction. Hence PGA is obviously not a good intensity measure in this case. 

The result in this section also explains why in Olsen’s study (Olsen and Heaton, 2013) (PGV, PGD) 

is a good intensity measure in collapse prediction. In Olsen’s study, all the ground motion records 

are not scaled. In this case, the ground motions that are strong enough to collapse the buildings very 

likely belong to either the ramp–pulse-like ground motion set or the long-period ground motion set, 

which are typically extremely strong and destructive, while the short-period ground motions are 

usually less strong since most of them are far-field ground motions that are already subjected to 

significant decay. In ramp-pulse-like and long-period ground motions, either PGV or PGD is the 

best traditional intensity measure in collapse prediction. If PGV and PGD are combined into one 

vector intensity measure, the performance is further improved by the guarantee of including the best 

intensity measure. Hence, (PGV, PGD) is found to be a good intensity measure for collapse 

prediction in Olsen’s study. 
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6.2.2 Comparison with Modified Ground Motion Intensity Measures 

In this section we compare PFA with typical modified ground motion intensity measures, Epsilon 

(ε), RT1,T2, and Eta (η), by discussing the similarities and differences between PFA and each 

modified ground motion intensity measure.  

Epsilon (ε) 

Baker and Cornell (2005) have shown that the spectral shape factor has an important effect on the 

non-linear response of structures. One of the spectral shape indicators they introduce is Epsilon (ε), 

which measures the deviation of a given intensity measure (IM) of a ground motion from the 

geometric mean IM computed from a ground motion prediction model. In other words, Epsilon is 

defined as the difference between the natural logarithms of two IMs normalized by the standard 

deviation of the IM obtained from the attenuation model: 

𝜀𝐼𝐼 =
𝑙𝑙𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑙𝑙𝐼𝐼𝑀𝑀𝑀𝑀

𝜎𝑙𝑙𝑙𝑙
 (6.7) 

By definition, Epsilon is a standard random variable. In practice, Epsilon corresponds to the spectral 

acceleration at the fundamental period of the structure with a specific damping ratio, e.g. Sa(T1, 5%). 

From Equation 6.7, it could be concluded that if the observed IM is larger than the mean IM, 

Epsilon has a positive value and the response spectrum shows a peak at the corresponding period 

(see Figure 6.7). Similarly, if the observed IM is smaller than the mean value, Epsilon has a 

negative value and the response spectrum shows a valley at the corresponding period (see Figure 

6.7). It is concluded by Baker and Cornell (2005) that for a fixed Sa(T1), records with positive ε 

values cause systematically smaller demands in structures than records with negative ε values.  



 

 

107 

 
Figure 6.7 Examples of a record with a positive ε and a record with a negative ε scaled to the same 

Sa(T1) (Baker and Cornell, 2005) 

If we interpret the above result using the framework of the PFA model, the result becomes obvious. 

When Epsilon has a positive value, the corresponding response spectrum has a peak near the period 

T1. Usually, this means that when Sa(T1) is scaled to a specific value, Sa(cT1) (c is the cutoff period 

coefficient in the PFA model and usually larger than 1) will be below average since Sa(T1) is a local 

peak. This will give a smaller PFA because the only difference between Sa(cT1) and PFA is the 

corresponding damping ratio. The PFA model indicates that ground motions with smaller PFA are 

less destructive, which agrees with Baker and Cornell’s conclusion. The above discussion works the 

same for records with negative ε values. 
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RT1,T2 

Cordova et al. (2000), Vamvatsikos (2002), and Baker and Cornell (2008) introduce another 

spectral shape indicator, RT1,T2. They define RT1,T2 as the ratio two spectral accelerations: 

𝑅𝑇1,𝑇2 =
𝑆𝑎(𝑇2)
𝑆𝑎(𝑇1)

 (6.8) 

T1 is chosen as the fundamental period of the structure. As for T2, the recommended value is 1.65 

by Cordova et al. (2000), 1.5 by Vamvatsikos (2002), and 2 by Baker and Cornell (2008). 

 

Figure 6.8 Calculation of RT1,T2 for a given response spectrum (Baker and Cornell, 2008) 

Compared with Epsilon, the RT1,T2 indicator is even more straightforward, since it explicitly 

considers the effect of the long-period component of a ground motion. For the fixed Sa(T1), if RT1,T2 

is small, the ground motion has less long-period component compared with the average level, and 

hence is less destructive. Similarly, if RT1,T2 is large, the ground motion has more long-period 

component compared to the average level, and hence is more destructive.  

Eta (η) 

In order to improve the performance of the spectral shape indicator in predicting linear and non-

linear structural response, Mousavi et al. (2011) have introduced an alternative spectral shaper 

indicator, Eta (η). The Eta indicator is defined as 
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η = 𝜀𝑆𝑎 + 𝑐1𝜀𝑃𝑃𝑃 + 𝑐2𝜀𝑃𝑃𝑃 + 𝑐3𝜀𝑃𝑃𝑃  (6.9) 

By definition, the concept of this new spectral shape indicator is just employing more IM’s 

associated with Sa by a linear combination of them. The coefficients of IM Epsilons are determined 

through an optimization problem in such a way that the average correlation between the indicator 

and the non-linear response of 84 SDOF with different periods and ductility becomes maximized. 

As a result, the combination of εSa and εPGV works approximately equivalently to the full 

combination. Hence, the Eta indicator is simplified to  

η = 𝜀𝑆𝑎 − 𝑏𝜀𝑃𝑃𝑃 (6.10) 

If we interpret this result using the PFA framework, it does nothing but includes more long-period 

component. As we discussed in Chapter 3, integration is a low-pass filter, hence PGV represents the 

amplitude of long-period component of ground motion. Since collapse is controlled by long-period 

component, including more long-period component usually leads to a better prediction model.  
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Since most modified intensity measures are vectors not comparable with the scalar intensity 

measure PFA, we only compare the performance of 
1 2

0.5
a T ,TS R  proposed by Cordova et al. (2000) 

with PFA in collapse prediction. From Figure 6.9, it could be noticed that compared with Sa itself, 

the performance of 
1 2

0.5
a T ,TS R  is improved by considering the spectral shape effect. However, it is 

still not as good as PFA.  

From the above discussion, it could be concluded that all the modified ground motion intensity 

measures improve their performance in collapse prediction by explicitly or implicitly considering 

the effect of long-period components of ground motions (including (PGV, PGD) discussed in 

Chapter 3), which has the same physics as the PFA model. However, it should be noted that all of 

the above modified intensity measures are developed by maximizing the correlation between 

predictions and measured data using statistical methods. These studies do not reveal the 

fundamental physics in collapse, and hence the results strongly depend on the characteristics of the 

ground motion records and the building models used in the studies. This explains why for the same 

intensity measure RT1,T2, three research groups end up with three different recommended values. In 

contrast, the PFA model is developed based on the understanding of the fundamental physics of 

collapse by constructing the equivalency among structural collapse, highly damped response 

spectrum, and Butterworth low-pass filter. We also identify the most important parameters that 

control the performance of collapse prediction and give the regression equation for each of them. 

Hence, the PFA model is a collapse prediction framework that could be easily extended to other 

buildings not considered in this study.  

From the discussion in this section, we conclude that PFA is a more advanced ground motion 

intensity measure in collapse prediction compared with all the traditional and modified ground 

motion intensity measures. Based on the result, we propose to use PFA as a ground motion intensity 

measure in practicing collapse prediction. 

6.3 Potential Application of the PFA Collapse Prediction Model to other Structural Systems 

In Chapter 3 and Chapter 4, we develop the peak filtered acceleration (PFA) collapse prediction 

model and verify the model using steel and reinforced concrete moment-resisting frame buildings. 

The results demonstrate that the PFA model has a good performance in collapse prediction for these 

buildings. 
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However, besides steel and reinforced concrete moment-resisting frames, there are still other 

structural systems that are commonly used in seismic design, such as concrete shear wall buildings, 

brace frame buildings, wooden buildings, and base-isolated buildings. 

In this section we discuss the possibility of applying the PFA collapse prediction model to other 

structural systems, using RC shear wall building as an example. Again, the goal of this thesis is to 

provide the methodology and framework of the PFA collapse prediction model, not to demonstrate 

the possibility of applying it to different structural systems. Towards this end, we only provide some 

support for extending the PFA collapse prediction model to other structural systems, using some 

simple numerical models. Those who are interested in applying the PFA model to a specific 

structural system can develop their own version of the PFA model based on the framework we 

provide in addition to their knowledge and experience. 

In order to examine the possibility of applying the PFA collapse prediction model to RC shear wall 

buildings, we designed a simple 6-story RC shear wall building. The elevation and floor plan were 

identical to the U6 building. It should be noted that this building model was only designed for 

demonstrating the possibility of applying the PFA collapse prediction model to RC shear wall 

buildings, not for studying the behaviors of RC shear wall buildings. Under this assumption, the 

details of the building were highly simplified, only ensuring that the model could represent the most 

important behaviors of RC shear wall buildings. The placement of shear walls is shown in Figure 

6.10 and 6.11. The building was designed according to UBC 97 (ICBO, 1997); the details of the 

design can be found in Appendix A.3. 

The reinforced concrete shear wall was modeled using multi-layer shell elements. The same 

analysis was conducted on the shear wall building model as was done with the building models in 

Chapter 3. The shear wall building model was subjected to a series of sinusoidal ground motions of 

different periods, and incremental dynamic analysis (IDA) was applied to determine the threshold 

of collapse. The result is shown in Figure 6.12; minimum collapse peak ground acceleration 

(MinCPGA) is plotted versus Ts/T1, and compared with the pushover curve. A similar conclusion is 

made for the U6 shear wall building. Much smaller amplitudes are needed at long-period ground 

motions (Ts/T1>c) to cause collapse, and these long-period amplitudes are close to the maximum 

lateral strength calculated in the pushover analysis. Hence, a low-pass Butterworth filter could be 



 

 

112 
used to extract the long-period components from a ground motion to predict collapse, which 

means the PFA collapse prediction model could be extended to shear wall buildings.  

  

Figure 6.10 Floor plan of building U6SW Figure 6.11 Elevation view of building U6SW 

 

Figure 6.12 Minimum Collapse PGA (left) and pushover curve (right) for U6 shear wall building. 
 A common vertical axis is used for both panels. 

However, when we calculated the cutoff period using the regression equation developed in Chapter 
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(approximately 3.3). Therefore, it could be concluded that the cutoff period regression equation 

developed using frame buildings does not apply to shear wall buildings. A new cutoff period 

regression model is needed for the PFA shear wall building collapse prediction model.  
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C h a p t e r  7  

CONCLUSIONS AND FUTURE WORK 

7.1 Summary of PFA Collapse Prediction Model 

In this section, we summarize the PFA collapse prediction model developed in this thesis.  

Given a building and a ground motion, whether the building will collapse in the ground motion 

could be predicted by the PFA model, and the prediction could be divided into three cases. 

Case 1: 2D building subjected to uni-directional ground motions 

Step 1: Obtain the fundamental period T1, the maximum base shear force Vmax, the seismic weight 

W, and the ductility μ of the building. Ductility is defined as 

µ =
𝑑0.5

𝑑𝑦
 (7.1) 

where dy denotes the roof displacement at which the building starts to yield globally, and d0.5 

denotes the roof displacement at which the building loses 50% of the maximum strength. If 

numerical model is not available, measurement or estimation of the three parameters could be used 

instead (see Chapter 6, section 6.1). 

Step 2: Compute the cutoff period coefficient c for the building with Equation 7.2. 

c = 0.1241µ + 0.6931 (7.2) 

Step 3: Identify the type of the ground motion as one of the following: 

a. Ramp-pulse-like ground motion (RP). 

b. Long-period ground motion (LP). 

c. Short-period ground motion (SP). 

Step 4: Filter the acceleration time history using low-pass Butterworth filter with the order and the 

cutoff frequency given in Table 7.1.  
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Table 7.1 Parameters of Butterworth filter 

Type of ground motion Order Cutoff frequency 

RP 4 1/cT1 

LP & SP 2 1/cT1 

Step 7: Predict the building behavior with Table 7.2. 

Table 7.2 Chart of collapse prediction (g is gravity acceleration) 

Type of ground motion Intensity measure Condition Prediction 

RP 
Half of peak-to-peak 

acceleration 
>Vmax/W•g Collapse 

<Vmax/W•g Standing 

LP Peak ground acceleration 
>Vmax/W•g Collapse 

<Vmax/W•g Standing 

SP 
Half of peak-to-peak 

acceleration 

>Vmax/W•g Collapse 

<Vmax/W•g Standing 

Case 2: 3D regular building without torsional effect subjected to bi-directional ground motion 

Step 1: Decompose the 3D building into two 2D buildings in the principal directions. 

Step 2: Apply the PFA model to each 2D building as it is done in Case 1, using the properties 

(fundamental period and ductility) and ground motion in the corresponding direction. 

Step 3: If one of the 2D buildings collapses, the 3D building is expected to collapse. The 3D 

building will survive the bi-directional ground motion only if each of the 2D buildings can resist 

the corresponding uni-directional ground motion. 

Case 3: 3D irregular building with torsional effect subjected to bi-directional ground motion 

Step 1: Obtain the limit domain of the building using multi-directional pushover analysis. 

Step 2: Filter the ground motion in each of the building’s principal directions using the properties 

(fundamental period and ductility) in the same direction as it is done in Case 1.  

Step 3: If the filtered bi-directional acceleration exceeds the limit domain, the building is expected 

to collapse under the ground motion. Otherwise, the building will survive the ground motion. 
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For Case 2 and Case 3, the fundamental period in each principal direction is the longest period 

of all the modes that have a modal direction factor larger than 45% in this direction. 

7.2 Conclusions 

In this thesis, we develop a new collapse prediction model, the PFA (Peak Filtered Acceleration) 

model, for buildings subjected to different types of ground motions.  

For the structural system, this model covers modern steel and reinforced concrete moment-resisting 

frame buildings (potentially reinforced concrete shear wall buildings). For ground motions, this 

model covers ramp-pulse-like, long-period, and short-period ground motions. 

To predict whether a building will collapse in a given ground motion, we first extract long-period 

components from the ground motion using a low-pass Butterworth filter with suggested order 

(related to ground motion type) and cutoff frequency (related to fundamental period and global 

ductility). We then compare the filtered acceleration time history with the capacity of the building 

(constant for 2D building and limit domain for 3D building). If the filtered acceleration exceeds the 

building’s capacity, the building is predicted to collapse. Otherwise, it is expected to survive the 

ground motion.  

The parameters used in the PFA model (fundamental period, global ductility, and lateral capacity) 

could be obtained from either numerical analysis, measurement, or interpolation based on the 

reference building system proposed in this thesis. 

The PFA collapse prediction model is simple in concept, easy to use, and real-time fast while 

archiving computational accuracy. It is verified by FEM simulations of 13 frame building models 

and 150 ground motion records. 

Based on the developed collapse prediction model, we propose to use PFA (Peak Filtered 

Acceleration) as a new ground motion intensity measure for collapse prediction. We compare PFA 

with traditional intensity measures PGA, PGV, PGD, and Sa in collapse prediction and find that 

PFA has the best performance among all the intensity measures. 

We also provide a close form in term of a vector intensity measure (PGV, PGD) of the PFA 

collapse prediction model for practical collapse risk assessment.  
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7.3 Future Work 

7.3.1 Full-range Intensity Measure 

The PFA model developed in this thesis only works for one damage level: collapse. However, in 

seismic risk assessment, there are still other damage levels, such as slight damage, moderate 

damage, and heavy damage. 

Researchers have shown that spectral acceleration at T1, Sa(T1), is an effective IM in structure 

response prediction, especially within their elastic range (Shome et al, 1998). Hence, Sa(T1) has 

good performance in assessment of a building with no damage or slight damage. 

Since Sa(T1) works well for no damage or slight damage and PFA works well for collapse, if we 

make a linear combination of the two intensity measures (Equation 7.3), we could end up with a 

new parameter that potentially works for all damage levels. 

𝐼𝐼 = 𝑎 ∙ 𝑆𝑎(𝑇1) + 𝑏 ∙ 𝑃𝑃𝑃 (7.3) 

In Equation 7.3, a and b are coefficients of Sa(T1) and PFA. If the ground motion intensity is small 

enough that the building response is within its elastic range, IM should be equal to Sa(T1). In this 

case, coefficient ‘a’ should be equal to 1 and coefficient ‘b’ should be equal to 0. If the ground 

motion intensity is large enough that the building response is close to collapse, IM should be equal 

to PFA. In this case, coefficient ‘a’ should be equal to 0 and coefficient ‘b’ should be equal to 1. If 

ground motion intensity is increased from zero to collapse level, coefficient ‘a’ is a decreasing 

function from 1 to 0 and coefficient ‘b’ is an increasing function from 0 to 1. The forms of these 

functions are to be determined. 

7.3.2 Updating Scheme Using Measured Data 

In the PFA collapse prediction model developed in this thesis, three key parameters are needed in 

collapse prediction of a building: fundamental period, lateral capacity, and global ductility. Among 

these parameters, only fundamental parameter could be measured from a real building, while the 

other two parameters could be estimated using the reference building system. The building 

reference system is designed to represent the real-world building inventory. However, the actual 
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property of a specific building could be very different from the estimation due to unpredictable 

reasons. In this case, the PFA model could result in a wrong prediction. This proposes a challenge 

that if we could use the measured data from the building to update the PFA model, the prediction 

will get closer and closer to the situation in the real world. The most challenging part in this 

problem is that the collapse is an extreme nonlinear behavior, while the response data obtained from 

the building is most likely within the elastic range. Once the nonlinear response was measured, the 

model could receive a better update. However, if nonlinear deformation happens, the building must 

be damaged and either be retrofitted (repairable) or abandoned (not repairable). In this case, the 

updated model could not be applied to the building anymore since the property of the building is 

changed. Hence, we can only use linear response data to update a prediction model for nonlinear 

response. This will be a challenging research project. 

7.3.3 3D Limit Domain and the Corresponding Collapse Prediction 

It could be noticed that, in this thesis, all the ground motions used are in horizontal directions. For 

2D buildings, we use uni-directional ground motion in horizontal direction. For 3D buildings, we 

use bi-directional ground motion in horizontal direction. We have not discussed vertical ground 

motion, since most of time it has little contribution to collapse. However, strong vertical ground 

motions are recorded in some earthquakes, and field evidence shows that these strong vertical 

ground motions have caused significant damage in buildings (Papazoglou and Elnashai, 1996). So, 

in order to predict building collapse under strong vertical ground motions, the PFA model needs the 

inclusion of 3D ground motions. We obtained 3D limit domain of building B1 (see Figure 7.1) by 

applying forces in various directions, similar to in Chapter 4. It could be noticed that the 3D limit 

domain has an obelisk shape. The challenge of predicting collapse using this 3D limit domain is that 

the building has different behaviors in the horizontal and vertical direction. In the horizontal 

direction, the building deforms in frame mechanism, while in the vertical direction, the building 

deforms mainly in axial deformation of columns. How to combine different mechanisms into one 

collapse prediction model is a challenging research project. 
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Figure 7.1 3D limit domain of building B1 
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APPENDIX A: BUILDING MODELS USED IN THIS THESIS 

Appendix A describes all the building models used in this thesis. They are grouped into four 

categories: (1) 2D steel moment-resisting frame buildings; (2) 2D RC moment-resisting frame 

buildings; (3) 2D RC shear wall buildings; (4) 3D steel moment-resisting frame buildings.  

A.1 2D Steel Moment-resisting Frame Buildings 

A.1.1 Building Designs 

Three designs for steel moment-resisting frame buildings are used in this thesis. They are denoted 

with U6, U13, and U20, respectively. U represents that the design of the lateral force-resisting 

system conforms to 1994 Uniform Building Code (UBC) and the following number is the number 

of stories above ground for each building. U6 and U20 are designed by Hall (1997) and U13 is 

designed by the author. Figures A.1 to A.3 list the floor plan, frame elevation, and beam and 

column schedule of U6, U13, and U20. All three designs have five frames. The perimeter frames 

have moment-resisting joints, while the interior frames mostly have simply-supported joints. 

For all buildings, the first floor height is 5.49m, and the height of each upper story is 3.81m. All 

three designs contain one story of basement, of the height 5.49m. Hence, the ground-to-roof height 

is 24.54m for U6 building, 51.21m for U13, and 77.88m for U20. 

Designs are carried out for gravity plus wind (basic wind speed=113kph, urban exposure B) and 

gravity plus seismic loads (Zone 4, deep stiff soil, Type S2). 
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(a) Floor plan and frame elevations 
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(b) Beam and column schedule 

Figure A.1 6-story building (U6), designed according to the 1994 UBC seismic provisions. 

Reproduced from Hall (1997). 
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(a) Floor plan and frame elevations 



 

 

130 

 

(b) Beam and column schedule 

Figure A.2 20-story building (U20), designed according to the 1994 UBC seismic provisions. 

Reproduced from Hall (1997). 
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(a) Floor plan. 
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(b) Frame elevation, Grid 1. 
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(c) Frame elevation, Grid 2. 

Figure A.3 13-story building (U13), designed according to the 1994 UBC seismic provisions. 
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A.1.2 Finite Element Models 

We used finite element models of each building design, detailed in Hall (1997), as well as the 

computer program Frame-2d, which is specifically designed to calculate the response of steel, 

moment-frame, and braced-frame buildings to large ground motions. Challa and Hall (1994), Hall 

and Challa (1995), and Hall (1998) validate the special features of Frame-2d, such as joint modeling, 

nodal updating, and weld fracture, by extensive numerical testing and comparison with 

experimental data.  

Although Hall takes advantage of the buildings’ symmetry by modeling only half of each building, 

all three-bay, moment-resisting, or gravity frames are explicitly modeled to the same level of detail. 

Interior gravity frames contribute realistically to each building’s stiffness and strength. The bending 

strength at a simple beam-to-column connection is modeled by connecting only the web fibers to 

the joint. The models also fully account for geometric non-linearities (that is, moment amplification 

and P-∆): each member has geometric stiffness, and the Frame-2d program updates the positions of 

end-member nodes. Structure-foundation interaction is modeled with horizontal and vertical springs 

at the base of each column. The stress-strain relationship of the springs is bilinear and hysteretic; 

see Hall (1997) for specifications of the springs. We do not, however, expect that this interaction 

contributes significantly to the behavior of the frame models (Tall Buildings Initiative Guidelines 

Working Group, 2010, Section 5.3).  

Figure A.4 shows pushover curves for modified finite element models of the six buildings following 

the procedure described in Hall (1997). We modified the masses assigned to the horizontal degrees 

of freedom such that the total mass is the seismic design mass and is distributed in proportion to the 

seismic design loads. Then we applied a horizontal ground acceleration that increases linearly at a 

rate of 0.3 g per minute and calculated the frame model’s response dynamically. Since the ground 

acceleration increases slowly, we could use a dynamic analysis procedure to replicate a series of 

static calculations, with the applied lateral forces at each time step proportional to the seismic 

design forces. As seen in Figure A.4, this approach introduces dynamic vibrations in the frame 

models when the stiffness changes at yielding and especially at weld fracture. This method of 

pushover analysis allows us to model the strength-degrading part of the curve. 

The finite element models use the fiber method to capture the behavior of beams and columns. The 

length of each beam or column is subdivided into eight segments, and the cross-section of each 
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segment is divided into eight fibers representing the steel, wide-flange beam or column and, for 

each beam, two additional fibers representing the concrete slab and metal deck. Each fiber has a 

hysteretic, axial stress-strain relationship, including a yield plateau and strain hardening, and each 

segment has a linear shear stress-strain relation. The end segments of the beams and columns are 

short to capture the spread of yielding at plastic hinge zones. The yield strength of steel is higher 

than the nominal value. Hall and Challa (1995) compared models of steel members using the plastic 

hinge method or the fiber method to experimental test data. The model using the fiber method (also 

employed in this study) showed excellent agreement with the experimental results. 

The weld fracture model is based on the failures observed after the 1994 Northridge Earthquake. In 

general, these welds proved to be brittle, fracturing prior to local flange buckling. Beam-to-column, 

column splice, and column baseplate welds are represented by sets of fibers at each weld location. 

The model randomly assigns an axial fracture strain to each weld according to a user-defined 

distribution. If the developed tensile strain of a weld fiber exceeds the fracture strain, then the fiber 

no longer resists tension. For frame models with fracture-prone welds, the distribution of axial 

fracture strain, εf, normalized by the yield strain, εy, throughout all welds in the building is as 

follows: for beam top-flange welds, column splices, and welds at column baseplates, 40% have εf 

/εy = 1, 30% have εf /εy = 10, and 30% have εf /εy = 100; and for beam bottom-flange welds, 20% 

have εf /εy = 0.7, 40% have εf /εy = 1, 20% have εf /εy = 10, 10% have εf /εy = 50, and 10% have εf 

/εy = 100. (Again, these distributions are denoted B.) Hall (1998, Sections 2.4-2.5) defined a 

different set of fracture strains (denoted F) and found agreement between the model simulations and 

observations of weld fractures in the Northridge Earthquake. Olsen (2008, Section 2.7.3) compared 

frame model responses assuming the B and F distributions. For the same ground motion, the B 

distribution resulted in frame models less likely to “collapse” than models with the F distribution, 

and when the frames did not “collapse,” frames with the B distribution tended to have smaller IDRs 

than those with the F distribution. Thus, the fracture strain distributions used in this paper are less 

“bad” than those Hall (1998) used to compare with observations of weld fracture in the Northridge 

Earthquake. 

Although weld fibers are allowed to fail in tension, welded connections maintain residual bending 

strength through several mechanisms. First, our distribution of axial fracture strains assumes that 

beam bottom-flange welds are more susceptible to fracture, consistent with observations after the 

Northridge Earthquake. Thus, in many simulations with weld fractures, only the fibers representing 
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the bottom-flange weld fail, leaving the other fibers intact. Second, a fractured fiber is allowed 

to resist compression if the fracture gap closes. Third, the nodal positions of the beam segments are 

updated during the simulation, which accounts for axial compression in the beam resulting from 

flange fracture. This prevents some drop in the bending moment due to the higher force in the 

flange carrying compression. Finally, fibers representing the shear tab cannot fracture. 

Special elements model the behaviors of panel zones and basement concrete walls. A panel zone is 

represented by an element with a nonlinear and hysteretic relationship between moment and shear 

strain, calibrated with test data (Challa, 1992). Also, the panel-zone element has the capability to 

model doubler plates by increasing the thickness of the panel zone.  The panel zone element 

occupies a properly dimensioned finite space within the column and connects to beam elements on 

their edges. Thus, the beams have clear-span dimensions. For basement stories, a plane stress 

element represents the stiffness of concrete walls. 

Table A.1 Information of the building models 

Building No. of Stories Material T1 (s)* Max Strength ** ductility Welds  

U6P 6 Steel 1.54 0.2319 6.67 Perfect 

U6B 6 Steel 1.54 0.1629 7.50 Brittle 

U13P 13 Steel 2.63 0.1387 8.00 Perfect 

U13B 13 Steel 2.63 0.0844 6.86 Brittle 

U20P 20 Steel 3.47 0.1060 4.25 Perfect 

U20B 20 Steel 3.47 0.0630 4.50 Brittle 

*- Fundamental period 

** - The maximum base shear in pushover analysis, normalized by seismic weight of the building 
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(a) Buildings with sound welds 
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(b) Buildings with brittle welds 

Figure A.4 Pushover curves of steel moment-resisting frame buildings 
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A.2 2D RC Moment-resisting Frame Buildings 

A.2.1 Structural Designs 

All of the 2D RC moment-resisting frame buildings are designed by Haselton et al. (2006, 2011). 

They designed 30 building archetypes which encompass key structural design parameters, including 

building heights from 1 to 20 stories, space and parameter frame systems, and bay widths of 20 and 

30 ft (6.1 and 9.1m). Each archetype is designed according to the provisions of the International 

Building code [International Code Council (ICC) 2003], ASCE 7-02 (ASCE 2002), and ACI 318 

(ACI 2002), including requirements for strength, stiffness, capacity design, and detailing. The 

designs were reviewed by a practicing engineering (J. Hooper, June 15, 2006) to ensure they 

conform to typical design practice. 

 

Figure A.5 Illustration of the gravity/lateral tributary areas for a space frame and a perimeter frame 

building. Reproduced from Haselton (2006). 
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Table A.2 Summary of design information of 30 RC MRF buildings. Reproduced from 

Haselton (2011). 

 

 

 D
es

ig
n 

ID

St
or

ie
s

Framing
System

Design
Case*

First Mode
Period (T1)

[sec]
Static Ω

Margin
Against

2%  in 50
Year

Motion

σ
LN(Sa,col) P[C|Sa2/50]

λcol

[10-4]
Median
IDRcol

Median
RDRcol

2061 Baseline 0.42 4.0 2.40 0.46 0.10 2.6 0.071 0.071

2062 Base: P 0.42 4.9 2.62 0.44 0.07 1.7 0.075 0.075

2063 Base: F 0.42 4.0 2.40 0.46 0.10 2.6 0.069 0.069

2069 Perimeter Baseline 0.71 1.6 1.69 0.39 0.20 7.0 0.078 0.078

1001 Baseline 0.63 3.5 3.07 0.42 0.04 1.0 0.097 0.075

1001a Base: P 0.56 4.4 3.00 0.40 0.04 1.0 0.080 0.061

1002 Base: F 0.63 3.1 2.55 0.43 0.08 2.0 0.083 0.059

2064 Perimeter Baseline 0.66 1.8 2.19 0.43 0.12 3.4 0.075 0.061

1003 Baseline 1.12 1.6 2.04 0.37 0.13 3.6 0.076 0.039

1004 Uniform 1.11 1.7 2.37 0.41 0.09 2.5 0.085 0.047

1008 Space Baseline 0.94 2.7 2.56 0.38 0.07 1.7 0.080 0.045

1009 Perimeter Bays: 30' 1.16 1.6 2.51 0.41 0.08 2.1 0.078 0.050

1010 Space Bays: 30' 0.86 3.3 3.42 0.42 0.03 0.7 0.083 0.053

1011 Perimeter Baseline 1.71 1.6 1.77 0.40 0.19 6.3 0.054 0.021

1012 Baseline 1.80 2.3 2.29 0.37 0.09 2.4 0.068 0.027

1022 Uniform 1.80 2.6 2.25 0.36 0.09 2.5 0.077 0.033

2065 WS-1 (65%) 1.57 3.3 2.44 0.39 0.08 2.3 0.069 0.021

2066 WS-1 (80%) 1.71 2.9 2.78 0.40 0.05 1.7 0.074 0.027

1023 WS-2 (65%) 1.57 2.9 1.97 0.39 0.14 4.3 0.066 0.018

1024 WS-2 (80%) 1.71 2.7 1.95 0.40 0.15 4.6 0.067 0.020

1013 Perimeter Baseline 2.01 1.7 1.84 0.37 0.16 5.2 0.053 0.016

1014 Baseline 2.14 2.1 1.91 0.38 0.15 4.7 0.055 0.018

1015 Uniform 2.13 2.1 2.20 0.39 0.11 3.1 0.060 0.021

2067 WS-1 (65%) 1.92 3.2 2.07 0.38 0.12 3.2 0.066 0.016

2068 WS-1 (80%) 2.09 2.5 2.07 0.37 0.12 3.1 0.057 0.018

1017 WS-2 (65%) 1.92 2.8 1.87 0.37 0.16 4.5 0.065 0.015

1018 WS-2 (80%) 2.09 2.5 1.89 0.38 0.15 4.9 0.058 0.016

1019 Space Bays: 30' 2.00 2.4 2.54 0.41 0.07 2.1 0.059 0.021

1020 Perimeter Baseline 2.63 1.6 2.00 0.36 0.13 3.7 0.051 0.013

1021 Space Baseline 2.36 2.0 2.50 0.40 0.08 2.0 0.058 0.015

 Legend and Notes:
     Note that collapse predictions are adjusted for spectral shape (epsilon) effects, according to Haselton et al. (ASCE JSE 2009), for epsilon = 1.5.
     Base - The baseline foundation case considers the rotational stiffness of the grade beam and any basement columns (in both the design and 
          the structural model used for the collapse assessment).  The two design alternatives are "P" for pinned based and "F" for fixed base.  This 
          only adjusts what is assumed in the design, and does not affect the model used for the assessment.
     Bays - The baseline designs have 20' bays, and the alternative designs have 30' bays.
     Uniform - Conservative uniform design; neither member sizes nor reinforcement of beams/columns are decreased over building height
     WS - Weak story designs.  WS-1 is for designs with only the first  story being weak, and WS-2 is for the first  and second stories being weak.
          The percentage is the percentage of strength between the weakened stories and the story above.

20

Space

Collapse DriftsCollapse Capacity/Risk Predictions

12

2

1
Space

Space

Design Information

Perimeter

8

4

Space

Period and Pushover



 

 

141 
A.2.2 Finite element models 

The analysis model for each building is a two-dimensional three-nay nonlinear frame model in 

OpenSEES (OpenSEES 2009), as illustrated in Figure A.6. 

 

Figure A.6 Schematic of RC frame structural analysis model. Reproduced from Haselton (2006). 

P-Δ effects are accounted for by applying gravity loads on a leaning column in the analysis model. 

Rayleigh damping corresponding to 5% of critical damping in the first and third modes is applied. 

Element modeling consists of lumped plasticity beam-column elements and finite joint shear panel 

springs. The nonlinear hinge model with degrading strength and stiffness is developed by Ibarra et 

al. (2005). All the designs and analysis models are downloadable from Haselton’s website 

http://myweb.csuchico.edu/~chaselton/.  

 

 

 

 

 

http://myweb.csuchico.edu/~chaselton/


 

 

142 
A.3 Fragility Curves of Steel and RC Frame Buildings 

The collapse fragility curves of all 10 buildings described in Chapter 3 are shown in Figure A.7 

  
(1) U6P in ramp-pulse-like ground motions (2) U6P in ramp-pulse-like ground motions 

  
(3) U13P in ramp-pulse-like ground motions (4) U13B in ramp-pulse-like ground motions 
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(5) U20P in ramp-pulse-like ground motions (6) U20B in ramp-pulse-like ground motions 

  
(7) ID1003 in ramp-pulse-like ground motions (8) ID1011 in ramp-pulse-like ground motions 

  
(9) ID1013 in ramp-pulse-like ground motions (10) ID1021 in ramp-pulse-like ground motions 

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
U20P in ramp-pulse-like ground motions

PFA (g)

P
ro

ba
bi

lit
y 

of
 c

ol
la

ps
e

 

 
Data
Model

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
U20B in ramp-pulse-like ground motions

PFA (g)

P
ro

ba
bi

lit
y 

of
 c

ol
la

ps
e

 

 
Data
Model

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ID1003 in ramp-pulse-like ground motions

PFA (g)

P
ro

ba
bi

lit
y 

of
 c

ol
la

ps
e

 

 
Data
Model

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ID1011 in ramp-pulse-like ground motions

PFA (g)

P
ro

ba
bi

lit
y 

of
 c

ol
la

ps
e

 

 
Data
Model

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ID1013 in ramp-pulse-like ground motions

PFA (g)

P
ro

ba
bi

lit
y 

of
 c

ol
la

ps
e

 

 
Data
Model

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ID1021 in ramp-pulse-like ground motions

PFA (g)

P
ro

ba
bi

lit
y 

of
 c

ol
la

ps
e

 

 
Data
Model



 

 

144 

  
(11) U6P in long-period ground motions (12) U6B in long-period ground motions 

  
(13) U13P in long-period ground motions (14) U13B in long-period ground motions 

  
(15) U20P in long-period ground motions (16) U20B in long-period ground motions 
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(17) ID1003 in long-period ground motions (18) ID1011 in long-period ground motions 

  
(19) ID1013 in long-period ground motions (20) ID1021 in long-period ground motions 

  
(21) U6P in short-period ground motions (22) U6P in short-period ground motions 
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(23) U13P in short-period ground motions (24) U13B in short-period ground motions 

  
(25) U20P in short-period ground motions (26) U20B in short-period ground motions 

  
(27) ID1003 in short-period ground motions (28) ID1011 in short-period ground motions 
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(29) ID1013 in short-period ground motions (30) ID1021 in short-period ground motions 

Figure A.7 Fragility curves of steel and RC frame buildings 
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A.3 2D RC Shear Wall Buildings 

A.3.1 Design Parameters 

To make a better comparison between moment-resisting frame buildings and shear wall buildings, 

for shear wall building design, we use exactly the same floor plan as used in frame building design 

(see Figure A.8). The designed shear wall building is denoted with U6SW. The load and material 

used in the design are listed in Table A.3 and A.4.  

 

Figure A.8 Floor plan of building U6SW 

 

Table A.3 Design load for building U6SW 

Dead load 
Roof 0.391 tons/m2 

Floor 0.464 tons/m2 

Live load Floor 0.244 tons/m2 
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Table A.4 Material properties for building U6SW 

Concrete 4 ksi 

Steel Grade 60 

A.3.2 Design Result 

In order to study the behavior of shear wall buildings and avoid including the interaction between 

shear walls and moment-resisting frames, we use only shear walls to resist seismic load. The shear 

walls are placed between axis A and B, C and D at each bay (see Figure A.9 and A.10). The 

thickness of the shear wall is set to be 15cm from the second to sixth floor and 25 cm for the first 

floor. The design is carried out according to the 1997 Uniform Building Code for gravity and 

seismic load using ETABS. The resultant building has a fundamental period of 0.3930s. 

  
Figure A.9 Floor plan of building U6SW Figure A.10 Elevation View of building U6SW 

The result of reinforcement is listed in Table A.5. The result is identical for every shear wall in the 

same story.  
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Table A.5 Design reinforcement ratio (%) and placement of rebars 

Story Reinforcement ratio (%) Rebar placement 

6 
Top 0.25 

#3@0.4 
Bottom 0.25 

5 
Top 0.25 

#3@0.4 
Bottom 0.25 

4 
Top 0.25 

#3@0.4 
Bottom 0.25 

3 
Top 0.25 

#4@0.4 
Bottom 0.47 

2 
Top 0.39 

#5@0.3 
Bottom 0.90 

1 
Top 0.36 

#5@0.2 
Bottom 0.77 

A.3.3 Finite Element Model 

The building was modeled in SAP2000. For simplicity, only the walls in Grid-③ are modeled, and 

the deformation of the model is restricted in 2D space. 

Shear walls are modeled with multi-layered shell element. This type of element is based on the 

principles of composite material mechanics and is capable of simulating coupled in-plane/out-of-

plane bending, as well as in-plane direct shear and coupled bending-shear behavior of RC shear 

walls. For this building model, the multi-layer shell element is divided into five layers with different 

material properties. The rebars are smeared into the second and fourth layer, as shown in Figure 

A.11. The multi-layer shell elements are constructed using the build-in shear wall modeling toolbox 

in SAP2000 V14. 

Since it was found that the shear walls of U6SW building fail mainly at the bottom part, only the 

shear walls at the first floor are meshed into small elements to reduce computational effort (see 

Figure A.12). 
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Figure A.11 Layers of shell element in building U6SW 

 
Figure A.12 Mesh of building U6SW 

Concrete layer

Concrete layer

Concrete layer

Rebar layer

Rebar layer
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A.3.4 Pushover Result 

The pushover curve is plotted in Figure A.13. Triangular lateral force distribution is used in the 

pushover analysis. 

 

Figure A.13 Pushover curve of building U6SW 

 

 

 

 

 

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Roof Drift Ratio

B
as

e 
S

he
ar

 / 
S

ei
sm

ic
 W

ei
gh

t



 

 

153 
A.4 3D Steel Moment-resisting Frame Buildings 

Three steel moment-resisting frame buildings are studied using 3D finite-element models in this 

thesis. They are denoted with B1, B2, and B3, respectively. All three buildings are designed by 

Krishnan (2006; 2007) according to UBC 97 (1997), assumed to be located in Seismic Zone 4 at a 

distance of 5km from a Type A fault. The soil at the site is assumed to be of Type Sb per the UBC97 

soil classification. ASTM-A572, Grade 50 is used for the beams and columns in all the three 

buildings. It is assumed that the nominal yield stress is 344.85 MPa (50ksi) and the nominal 

ultimate stress is 448.31 MPa (65ksi). 

All three buildings are modeled as 3D finite-element models using Frame3D (Krishnan, 2003) and 

analyzed in the Virtual Shaker platform (virtualshaker.caltech.edu). Frame3D is the extended 

version of Frame2D and Krishnan (2003) showed that both versions give the same results for a 

specialized two-dimensional problem. Similar to Frame2D models, in Frame3D, moment-frames 

beams and columns are modeled using fiber elements, beam-column joints using panel zone 

elements, and floor slabs using elastic plane stress elements.  

A.4.1 Building B1 

Building B1 is a redesigned version of an existing 18-story building. The building is a modern 18-

story welded steel moment-frame building located within five miles of the epicenter of the 1994 

Northridge earthquake. It was designed in 1984 according to the lateral force requirements of the 

1982 Uniform Building Code (ICBO, 1982). It has 17 office stories above ground and a mechanical 

penthouse on top (see Figure A.14). The height of the building above ground is 75.7m, with a 

typical story height of 3.96m and taller 1st, 17th, and penthouse stories. The redesigned version has a 

greater number of bays of moment frames in each direction due to the higher requirements of UBC 

97 (ICBO, 1997).  
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Figure A.14 Isometric view of building B1 

 
Figure A.15 Second floor plan of building B1 
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Figure A.16 Plan of third and fourth floors of building B1 

 
Figure A.17 Typical floor plan – floor 5 through 17 of building B1 
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Figure A.18 Penthouse plan of building B1 

 

Figure A.19 Roof plan of building B1 
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A.4.2 Building B2 

Building B2 is L-shaped in plan (Figure A.20) with one elevator core serving both wings of the 

building. The height of the building above ground is 78.3m with a typical story height of 4m.  

 

Figure A.20 Isometric view of building B2 
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Figure A.21 Typical floor plan of building B2 
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A.4.3 Building B3 

Building B3 is rectangular-shaped in plan (Figure A.22) with the elevators and stairs located along 

one face of the building in order to achieve a better ocean view. The height of the building above 

ground is 78.3m with a typical story height of 4m. 

 

Figure A.22 Isometric view of building B3 
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Figure A.23 Typical floor plan of building B3 
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APPENDIX B: GROUND MOTIONS USED IN THIS THESIS 

There are 150 ground motion records used in this thesis. They are divided into three groups: ramp-pulse-like ground motions, long-period ground 

motions, and short-period ground motions. Ramp-pulse-like ground motions are selected from a study by Graves and Somerville (2006). Long-period 

and short-period ground motions are selected from the 1999 M7.6 Chi-Chi earthquake. The detail information of all the ground motion records is 

listed in Table B.1, Table B.2, and Table B.3 

Table B.1 Information of ramp-and-pulse-like ground motion set 

No. Scenario Station Direction 
PGA 

(cm/s2) 

PGV 

(cm/s) 

PGD 

(cm) 

Sa(1s) 

(cm/s2) 

Sa(2s) 

(cm/s2) 

Sa(3s) 

(cm/s2) 

1 1 s0081 NS 833.64 124.28 154.65 1009.07 561.05 503.46 

2 1 s0082 NS 887.26 130.17 147.83 1787.42 756.27 508.19 

3 1 s0083 NS 591.50 113.56 118.77 1517.06 479.83 385.56 

4 1 s0084 NS 630.36 102.18 94.48 1279.69 442.92 288.79 

5 1 s0093 NS 698.54 129.19 146.73 722.91 760.08 532.41 

6 1 s0094 NS 751.96 200.35 163.36 1943.13 1240.19 713.10 

7 1 s0095 NS 873.85 192.75 139.67 2204.12 962.48 613.29 

8 1 s0096 NS 883.10 112.83 106.26 1648.18 499.92 439.33 

9 1 s0097 NS 766.54 98.85 99.48 1282.60 574.21 419.89 

10 1 s0098 NS 910.95 105.46 90.23 1029.07 609.92 394.32 
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11 1 s0106 NS 765.52 228.43 177.13 1584.89 1496.63 851.07 

12 1 s0107 NS 705.96 183.23 143.05 1355.37 1083.98 691.97 

13 1 s0225 EW 1438.45 349.95 255.40 3180.39 2718.99 1313.33 

14 1 s0239 EW 1295.80 308.08 234.81 2642.23 2154.52 1213.43 

15 2 s0081 NS 994.28 177.41 171.22 906.22 945.95 622.45 

16 2 s0082 NS 846.35 171.66 157.17 1606.00 1036.56 636.21 

17 2 s0083 NS 879.40 165.62 136.02 1948.48 1136.14 610.45 

18 2 s0084 NS 968.96 189.69 126.05 2445.91 1248.32 641.77 

19 2 s0094 NS 812.92 187.50 170.92 1157.56 1242.92 792.62 

20 2 s0095 NS 1070.72 256.55 157.14 2221.77 1674.17 829.44 

21 2 s0096 NS 1369.32 231.17 133.99 2808.33 1438.72 785.09 

22 2 s0106 NS 1107.47 247.97 188.20 1740.70 1696.12 947.96 

23 2 s0107 NS 1011.22 228.20 141.39 1217.82 1443.96 851.30 

24 3 s0083 NS 818.24 175.81 159.56 1494.43 1277.99 679.16 

25 3 s0084 NS 622.48 155.47 137.60 1168.77 1068.16 586.07 

26 3 s0094 NS 928.95 212.12 183.49 1764.77 1497.73 794.05 

27 3 s0095 NS 954.53 204.02 175.72 1859.40 1523.03 789.67 

28 3 s0096 NS 697.32 158.89 137.94 1045.33 1115.95 618.90 

29 3 s0097 NS 488.47 92.04 93.73 610.32 677.29 403.56 

30 4 s0081 NS 684.04 152.00 155.82 771.88 732.92 534.51 
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31 4 s0082 NS 823.64 153.39 149.65 1179.26 1010.34 594.75 

32 4 s0083 NS 483.03 109.83 103.67 816.14 714.34 381.67 

33 4 s0093 NS 579.60 122.26 134.06 819.67 616.76 450.14 

34 4 s0094 NS 627.40 149.94 143.01 894.94 1048.05 639.35 

35 4 s0095 NS 581.49 138.93 111.16 1053.18 764.90 527.95 

36 4 s0106 NS 813.84 140.36 138.08 896.60 907.94 606.81 

37 4 s0107 NS 584.88 102.41 104.83 723.39 617.58 453.89 

38 5 s0068 NS 1095.73 251.81 208.38 2050.68 1982.91 973.30 

39 5 s0070 NS 838.75 217.75 155.33 1943.21 1641.06 734.29 

40 5 s0071 NS 650.67 153.61 114.93 1164.03 999.35 522.57 

41 5 s0081 NS 1016.09 245.51 209.38 1617.37 1796.87 939.70 

42 5 s0082 NS 1220.03 235.12 196.13 1730.09 2023.30 965.49 

43 5 s0083 NS 912.48 194.50 152.02 1571.70 1563.84 730.06 

44 5 s0084 NS 896.51 154.07 114.06 1005.67 1192.13 570.62 

45 5 s0093 NS 962.20 242.08 202.33 1239.62 1725.87 909.38 

46 5 s0094 NS 1229.04 242.53 207.08 1554.58 2110.18 1028.36 

47 5 s0095 NS 1099.86 257.77 179.14 2185.74 1978.07 952.01 

48 5 s0096 NS 789.04 204.23 142.01 1606.90 1458.84 804.46 

49 5 s0106 NS 1452.22 279.26 220.84 2097.64 2223.81 1082.35 

50 5 s0107 NS 1263.68 312.11 202.45 2652.63 2147.65 1073.86 
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Table B.2 Information of long-period ground motion set 

No. 
Sequence 

No. 
Station Direction 

PGA 

(cm/s2) 

PGV 

(cm/s) 

PGD 

(cm) 

Sa(1s) 

(cm/s2) 

Sa(2s) 

(cm/s2) 

Sa(3s) 

(cm/s2) 

1 1180 CHY002 EW 114.90 45.74 45.39 286.41 267.37 259.85 

2 1180 CHY002 NS 143.95 52.83 59.78 330.77 178.28 133.93 

3 1189 CHY017 EW 51.60 14.86 13.00 138.46 99.32 89.29 

4 1189 CHY017 NS 54.83 18.60 15.48 165.08 138.92 103.38 

5 1195 CHY026 EW 74.61 46.18 35.21 219.14 224.04 296.49 

6 1195 CHY026 NS 64.22 32.61 26.96 188.68 179.16 163.41 

7 1199 CHY032 EW 86.71 26.38 17.73 251.47 356.17 182.52 

8 1199 CHY032 NS 76.52 19.34 18.99 250.04 156.10 94.99 

9 1216 CHY059 EW 48.29 11.94 12.92 116.30 144.41 128.99 

10 1216 CHY059 NS 48.44 19.08 14.26 154.86 139.60 104.03 

11 1228 CHY076 EW 70.60 23.99 20.36 187.07 103.32 98.37 

12 1228 CHY076 NS 71.33 15.74 16.96 192.77 84.66 106.90 

13 1233 CHY082 EW 65.77 20.92 20.69 120.82 95.59 119.53 

14 1233 CHY082 NS 61.37 24.65 25.77 94.48 74.84 86.97 

15 1238 CHY092 EW 109.06 54.73 37.24 329.51 278.39 335.10 

16 1238 CHY092 NS 80.64 34.39 30.52 294.62 235.29 211.76 

17 1239 CHY093 EW 52.73 17.61 13.73 96.89 65.12 85.69 
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18 1239 CHY093 NS 68.85 14.11 12.78 180.92 54.26 48.44 

19 1240 CHY094 EW 66.78 24.30 19.52 134.99 115.90 109.42 

20 1240 CHY094 NS 53.00 18.90 19.75 110.81 164.44 114.46 

21 1246 CHY104 EW 158.63 52.54 36.12 368.22 441.56 251.21 

22 1246 CHY104 NS 182.95 55.17 47.20 377.43 476.28 297.11 

23 1356 KAU010 EW 32.92 11.26 9.14 84.85 127.04 35.88 

24 1356 KAU010 NS 33.80 16.60 14.68 130.39 62.46 109.08 

25 1390 KAU075 EW 27.90 9.43 6.55 94.97 71.31 47.22 

26 1390 KAU075 NS 38.92 11.64 8.03 138.28 114.41 70.38 

27 1397 KAU086 EW 40.64 9.88 11.33 108.24 127.05 47.62 

28 1397 KAU086 NS 44.32 16.39 17.99 152.19 102.73 148.41 

29 1398 KAU087 EW 26.07 10.02 11.96 124.37 96.57 88.93 

30 1398 KAU087 NS 31.10 13.02 8.43 162.14 92.47 85.82 

31 1537 TCU111 EW 132.83 57.79 55.20 515.21 261.91 309.48 

32 1537 TCU111 NS 97.29 35.54 31.28 235.54 139.09 250.43 

33 1538 TCU112 EW 81.12 41.32 30.04 289.30 207.14 211.24 

34 1538 TCU112 NS 71.59 33.39 37.41 195.31 228.10 194.18 

35 1539 TCU113 EW 68.16 27.84 22.20 116.04 185.08 103.62 

36 1539 TCU113 NS 73.04 23.41 27.11 163.88 162.72 78.04 

37 1540 TCU115 EW 93.73 53.94 37.80 270.90 232.15 283.73 
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38 1540 TCU115 NS 114.58 38.69 33.01 130.35 314.15 258.36 

39 1542 TCU117 EW 116.72 57.77 48.98 330.09 311.39 204.51 

40 1542 TCU117 NS 117.91 54.34 45.51 483.36 355.57 304.36 

41 1543 TCU118 EW 112.00 30.45 23.86 239.22 189.67 175.69 

42 1543 TCU118 NS 90.55 33.46 36.46 162.72 183.60 144.77 

43 1544 TCU119 EW 70.18 26.50 22.51 159.41 113.97 109.76 

44 1544 TCU119 NS 57.28 16.75 19.74 102.79 165.42 122.42 

45 1552 TCU140 EW 68.84 23.99 21.43 194.14 249.02 138.43 

46 1552 TCU140 NS 55.37 20.51 17.52 114.45 124.77 140.51 

47 1553 TCU141 EW 103.25 43.28 34.97 257.23 185.69 141.66 

48 1553 TCU141 NS 83.12 28.07 23.10 176.09 256.51 156.84 

49 1554 TCU145 EW 75.71 28.06 27.55 227.28 258.28 136.39 

50 1554 TCU145 NS 63.38 19.20 18.60 148.82 122.12 109.62 
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Table B.3 Information of short-period ground motion set 

No. 
Sequence 

No. 
Station Direction 

PGA 

(cm/s2) 

PGV 

(cm/s) 

PGD 

(cm) 

Sa(1s) 

(cm/s2) 

Sa(2s) 

(cm/s2) 

Sa(3s) 

(cm/s2) 

1 1190 CHY019 EW 62.39 6.41 14.68 53.73 43.27 37.21 

2 1190 CHY019 NS 49.00 6.31 16.60 44.48 23.20 13.53 

3 1191 CHY022 EW 42.62 5.02 7.83 48.45 21.45 19.05 

4 1191 CHY022 NS 63.75 6.83 7.70 60.13 38.44 35.93 

5 1192 CHY023 EW 57.24 10.10 9.94 88.45 59.15 30.93 

6 1192 CHY023 NS 45.71 8.16 8.20 90.08 46.79 43.18 

7 1210 CHY050 EW 58.35 10.78 10.25 78.06 34.20 34.65 

8 1210 CHY050 NS 57.79 8.76 10.86 42.32 58.23 42.12 

9 1214 CHY057 EW 66.51 7.98 60.59 57.63 32.17 13.30 

10 1214 CHY057 NS 104.07 8.75 232.19 73.04 27.68 24.70 

11 1215 CHY058 EW 38.04 10.26 8.36 168.15 113.63 92.92 

12 1215 CHY058 NS 44.84 10.84 9.11 101.50 45.35 53.79 

13 1219 CHY062 EW 54.27 6.15 8.02 52.14 26.59 38.99 

14 1219 CHY062 NS 37.55 7.21 31.52 30.37 31.26 33.57 

15 1220 CHY063 EW 55.22 14.43 10.89 86.31 46.94 52.94 

16 1220 CHY063 NS 48.68 9.36 32.42 41.63 40.48 18.05 

17 1221 CHY065 EW 44.38 9.84 7.71 220.38 83.22 71.36 
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18 1221 CHY065 NS 51.13 11.04 7.82 116.44 48.53 64.77 

19 1222 CHY066 EW 43.54 10.85 9.04 115.47 80.84 71.88 

20 1222 CHY066 NS 31.50 7.38 7.52 111.60 75.31 74.20 

21 1223 CHY067 EW 45.70 9.77 10.45 96.31 79.26 51.33 

22 1223 CHY067 NS 84.07 9.96 6.92 153.87 52.48 69.26 

23 1224 CHY069 EW 29.29 10.64 9.63 99.38 83.07 48.96 

24 1224 CHY069 NS 25.46 6.87 8.90 139.06 41.45 53.81 

25 1232 CHY081 EW 29.42 5.98 5.49 138.18 45.98 47.24 

26 1232 CHY081 NS 31.16 6.40 6.37 128.45 66.87 61.17 

27 1241 CHY096 EW 23.30 9.11 6.87 103.16 93.59 52.52 

28 1241 CHY096 NS 22.52 6.13 8.22 73.56 49.08 56.81 

29 1358 KAU012 EW 32.44 7.97 8.33 58.78 48.96 18.96 

30 1358 KAU012 NS 26.82 6.63 10.34 67.33 62.07 78.60 

31 1359 KAU015 EW 40.47 10.36 11.23 119.68 95.38 48.17 

32 1359 KAU015 NS 38.59 12.51 11.57 54.37 38.45 31.92 

33 1362 KAU022 EW 51.92 4.80 35.17 90.29 46.47 23.57 

34 1362 KAU022 NS 51.74 4.46 1.60 105.60 45.22 15.37 

35 1382 KAU058 EW 67.03 9.34 7.22 88.72 39.58 36.97 

36 1382 KAU058 NS 58.41 7.90 8.68 60.23 43.98 21.38 

37 1383 KAU062 EW 30.68 8.40 8.51 55.82 52.80 31.05 
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38 1383 KAU062 NS 39.47 7.81 7.00 104.30 56.48 30.87 

39 1384 KAU063 EW 42.09 7.66 6.93 119.37 62.02 67.57 

40 1384 KAU063 NS 32.89 8.36 8.14 97.72 124.63 62.78 

41 1385 KAU064 EW 30.00 8.75 6.54 129.22 55.34 33.12 

42 1385 KAU064 NS 23.55 8.88 9.79 134.75 60.01 33.92 

43 1386 KAU066 EW 28.41 5.99 2.37 103.23 39.50 25.16 

44 1386 KAU066 NS 37.28 7.70 3.69 87.93 38.47 50.74 

45 1399 KAU088 EW 44.76 7.07 3.42 61.60 59.89 36.20 

46 1399 KAU088 NS 92.21 8.92 2.90 89.84 55.53 68.20 

47 1405 SGL EW 95.52 12.50 8.64 80.46 35.96 20.30 

48 1405 SGL NS 115.58 15.87 43.20 96.34 37.80 13.35 

49 1408 TAI1 EW 40.35 10.72 9.77 110.12 45.49 27.43 

50 1408 TAI1 NS 54.42 10.33 10.02 108.70 61.62 41.86 
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APPENDIX C: EQUIVALENCY BETWEEN BUTTERWORTH FILTER AND DAMPED 

OSCILLATOR 

C.1 Equivalency between 2nd-order Butterworth Filter and 70.7% Damped Oscillator 

The following is proof of the equivalency of the 2nd-order Butterworth filter and 70.7% 

damped oscillator. Starting from the governing equation of a damped oscillator with 70.7% 

damping, we have 

𝑥̈(𝑡) + √2𝜔𝑛𝑥̇(𝑡) + 𝜔𝑛2𝑥(𝑡) = −𝑎(𝑡) (C.1) 

Apply Laplace transform and notice the oscillator is initially at rest, 𝑥(0) = 0 and 𝑥̇(0) =

0 

𝑠2𝑋(𝑠) + √2𝜔𝑛𝑠𝑠(𝑠) + 𝜔𝑛2𝑋(𝑠) = −𝐴(𝑠) (C.2) 

Then the pseudo spectral acceleration is  

𝑆𝑎 = 𝜔𝑛2𝑋(𝑠) =
−𝐴(𝑠)

1 + √2 𝑠
𝜔𝑛

+ ( 𝑠𝜔𝑛
)2

 (C.3) 

Notice this is just the governing equation of a 2nd-order Butterworth filter. 

C.2 Equivalency between 4th-order Butterworth Filter and Highly Damped Oscillators 

The governing equation of a 4th-order Butterworth filter could be written as 

𝑆𝑎 =
−𝐴(𝑠)

[1 + 0.7654 𝑠
𝜔𝑛

+ ( 𝑠𝜔𝑛
)2] ∙ [1 + 1.8478 𝑠

𝜔𝑛
+ ( 𝑠𝜔𝑛

)2]
 (C.4) 

It could be noticed that this is equivalent to the combination of two damped oscillators, one 

with 38.27% damping and the other with 92.39% damping.  
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