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INTRODUCTION 

1. In ·view of the recent experimental determination 

ot the dispersion by atomic hydrogen1 it seems inter­

esting to apply the theory of dispersion developed by 

Schrodinger2 to this case. In this paper we restrict 

ourselves to an approximation in which terms of the 

order of relativistic correcticn1 are neglected. For 

this purpose it is simpler to obtain our wave equation 

by the operational method of Schrod1nger3 and Eckart4, 

as extended by Epste1n5, for in this way we immediately 

obttdn an equation free ot relativistic terms. 

In what follows, in order to preserve a continuity 

of the discussion, details of caloulatlons are omitted 

from the main text and are given as Supplementary Notes 

at the end of the paper. References will be found 

immediately preceding the Supplementary Notes. 

THE WAVE EQUATION 

!. We assume the incident light to be a plane pol-
... 
ariaed wave of frequency 1' propagated along the Y axis, 

with the electric vector along Z, the nucleoua being 

situated at the origin. The field of the wave and of 

the nucleous can be represented by a vector potential A 

and a scalar potential cl> • We may take Ax = Ay = O, 

Az = -c2F sin f.c> (t ... y/c)/c..> , and q> = t.e/r, where oo = 2itV , 
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~e the charge of the nucleous, c the velocity of light, 

and F a constant, all quantities being in elect,roetatic 

1 - I -un ts. In fact, using these potentials in B::: 2 VxA 

we obtain 

Bx = ~Gos w (t"- y/c), By=- Bz. = o, 

Hx =Pc. Cos <A>(t- ~/c),' H.!/= Hz.==- O. 

I ~A 
Similarly, subs ti tu ting A and <P into E :::. - Vcp- 2- if' 
there results 

e; 
E = --,.-, 

Y rr 

These quantities satisfy Maxwell's equations and repre­

sent the desired fields. 

The corresponding Hamilton-Jacobi partial differ ... 
• 

where r = mass of the 

momentum (see Note A). 

~- J..t l.. ~·-
C) 'a - a r ~g ' ~ '2. -

electron and 'P= (px, Py' Pz)its 

Putting 
kt 0 
r,r: i>z. ' 

oS J,,to 
~ = 1ln7iX ' 

<> s Ji,;. .1-
~ = ji'(}t 

and considering the resulting expression as operating 

on f , we obtain, upon slight s1mplif 1cation 

.t ~;. e F"' dtl' . (t-1//)+ 8.,r.fl!1[1t _ F2 
sin

2
(.c)(t-y/c:)lu1 

V 'f'- h1' fi" SU'\Cc) J/C h z. y- !t. f' C()~ jl 
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4Tr-'t': ~:::: 0 (i) 
{.. dt 



which, to the, desired degree of approximation, reduces to 

V~4'-+- srr,_tt e
2

lC 'II_ 41T-i ~ 1.y :::. :tie F' ~ s~~ wt (~) 
. h. 2. r 1i ot 'h:v ~z. 

where on the right we omitted terms 1n F2 and a factor 
±iwy/c 

e since w.!f/c is very small for light of visible 

frequencies and lower. 

To solve equation (2) we let 

'f' ~ 'I'( t, m, nJ=· A {I, .m, n)e u ~~d [ir.(l,m.,~ +'1'1 (~ m;n.)] (3) 

where A( l ,m,n,) is a normalizing factor, and ~ ( 1, ,m,n) 

sat1sf 1es the equation 

Q"~..Y,(t, m, n)..,.. 8~:t' ( T~£1).y0 (l,m, n)= O. (4) 

Then, to the desired order of approximation, equation (2) 

We now express 21 sinwt a.e the difference of two 

exponentials; then, letting 

twt fl _ :.a,-t (f, ) '¥,(f,m,n} = e u..
1
(-t.,m,n)- e u.t ;}')'I,,,,, (5) 

equa.t1ng separately the coefficients of the two exponen­

tials, and combining the two resulting equations into 



where, as in the following, the upper sign goes with 

the subscript 1, the lower with the subscript 2. (For 

reduction of (1) to (6) see Note B). 

SOLUTION OF THE WAVE EQUATION 

3. The usual method of solving an equation such 

as (6) is to expand ~tp0 ( £ ,m,n)/az and u( l ,m,n), 

each into a series of suitable functions. For this 

purpose it seems natural to use the set of solutions 

of the equation of the unperturbed atom, i.e. the 

set \f'0 ( .€, ,m,n), as was done by Scbrodinger2 • Unfor­

tunately this set is not a complete orthogo1'18.l set 

unless a continuous range of complicated functions 

corresponding to imaginary values of ..{, are included. 

to avoid this complication we follow a procedure anal­

ogous to that used by Epstein for a similar purpose, 

i.e. we use for our expansion another set of functions, 

T(t' ,m',n'), defined as follows 

' .C.m'cp m.' ) Z(IJ' ' ) T ( f, m:, n') == e ~' (Cos & -t, '}'\,_,ti (1) 

where zcf',n•,cC) satisfies Schrodinger's conditions 

of finiteness and the differential equation 
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(8) 

We have therefore, (see Note C) 

.:t (o' I I} ( ~ ~«t';r(IJ' I ') v T i-,m,'"'/- ol + -y;- 1-,m,n. == o (9) 

It can be shown6 (see Note D) that T( { ',m' ,n', o() 

thus defined, for any constant real value of o( , form a 

complete orthogonal set with respect to a function de­

creasing rapidly with increasing r, such as ~ ~'l'o/~z • 
We shall assume o( to be negative. We may therefore 

write 

'Y'o~(~,m,n)/~z == L,a(.f,m,n;~;m1,n')T{l;rri,n!) (10) 

and 

u. ( ,e, m, n-) - z t(f, h'\,, h. j -t; m~ )1,
1

) r (1: »'!: n') ( 11) 

It may be objected that since we do not know the 

properties of the function \.t. we may not write (11}, as 

the set T( i ',m',n') may not be complete for this func-

tion. However, if to complete the expansion of u. we 

would add to the right member of (11) a sum of terms, 

each of the type cs, where the S's are functions dif• 

ferent from the T's, we would find that on account of 

1nhomogeniety of equation (6) all e's must be zeros. 

Thus, the set of T's is sufficient. 

Substituting (10) and (11) into (6) 



+ s::fl (¥"_,_Et I kv )2 f,.(i,m,11.; t;m~n)'T'(L: m: .,,_•) 
er' I c::::;" (A • A 1 I 1 >r("'m'n,') - h'J/ . r L,. a v 1 /111 ?'t J t,1 m,, n j ~I I j, 

or using (9) and equa.ting coefficients of corresponding 

T' s, we obt.ain 

,f,.( l, m, tt-; l; m~ n.'}[clt + ~~l' + 
8~/' (~+Et:!: t1:X 

eF' (' n' 1 1} ( ) == ~a.. -c.,m,n;.v,m, n; l:l 
hV>4 

If we let 

ol t. ::. -87i"~f (Et j; ~v )/-h ~ (13) 

which is satisfied provided 

{. (f ;m, ')'\,; ~; m', ta') ::: e r a (l, m, )1. ;-l; }1\~ n,
1 J A lri1( ~ T t 'ct.) (14) 

where 'lo 41\:i.fA-e~-c/"'1 ~ 

4. We normalize the solution of (8) in such a way that 
~I I , ' 

Id t c-h-/ r" e/"r (1lotr}j t 

z ("' n.,ct..)= if i! (t!.11 '-1--j}.' (.flt+!+/)/ J I '>11 '. (15) 

.... 6 .... 



Except for a numerical coefficient and notation 

these functions are the saine as the 'j... ( s, (J() functio-ns 

used by Epstein?, (see Note C), so that we may use the 

rele.tions obtained by him. 

The usual solution of (4) may be put in the form 

(lb) 

where • 
1-n-t r"e-rr/l(-2rf(l)I 

'X ( 1> n) =? j! (l-12-1-j)! {.111+/+j)/ 
J:::.o 

and 

APJ?l1ICAT ION TO THE NORM.AL STATE 

5. We are interested in the case of atoms in the 

normal state, i.e. the case when i:: l, m = n =-0. In 

this case, by (16) and (17) 

'¥0(1,0,0)::.. /((1,0)= 
-l"i 

e 

(16) 

Comparing (18) with (10) and (7) we see that since 

o'l'l>(l,o,o) does not contain w, a(l,O,O; l' ,m' ,n' )= O, unless 
~::z. . T' 

m1 = O. Then, since 9 enters (18) only as coeO , 
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a(l, O, O; l', O, n')=O, unless n'::::.l. 

Putting n' = 1, and remembering that l 1 > ni, equation (10) 

reduces t.o 

m I J 
r ""), ''1(1 o o) !.~.., = r ... c. 11-.:::;:' a,,( I, o,o ,· ,{,,' O, I) Z (t, /,c(. 

Q To 1 1 1 U ""' \.;Vv rT ~ 
t'=J. 

Since a's may depend upon ol, we put a(l,O,O; f~O,l)==a(f}ol_), 

so that, changing the summation index, (10) reduces to 
CD 

Y"Otfo (I, o, o) /oz = cos I> La, ( s,ol) Z (s, l,cX.) 
S=t 

( 19) 

The coefficente a(s,ol) are found to be (see Note E) 

s-.t 4 / S1-Z 
a(s,o() = -1l(rt+o() (s+r)! (~cl) ;('Y/_-ol). (20) 

We can now obtain the expression for 't'
1
(1,o,o) if 

we note that now, by (7), (11), and (14), 

U = Cl)s0~ t-(s c£ )Z(s 1 d) = el41 Co~9 ~ a(s,cl.i) Z(s_,t,d,) (!ti) 
I Sd.. ' 1 ' ' i ~ h V z_ )') + So( . ~t l 1 

with a similar expression for u2• In equation (13) we 

are to take + for ci.1 and ... for o1.. 2 • 

If we impose the normalizing conditions that 

f ~fl,m,,n)'lj/f~m,n.)1?:~1, when integrated over the whole 

space, we obtain (see Note F) for A( l ,m,n) of the 

equation (3) an expression which gives A2(1,o,o)~ ~3j'fr'. 

ELECTRICAL MOMENTS AND DISPERSION 

6. We can now compute the electric momenta. We 

obte.1n (see Note G) Mx= My= O, and 



Since this quantity M is also the leading term of the 

matrix M( l ,m,n), 1.e. M(l,o,0;1,0,0) we have for the 

index of refraction n, the relation n2 .. 1 = 41rMN/F cos wt, 

where N is' the number of atoms per unit volume. 

Thus we finally have (see Note G) 

where ~-::::. ... h V /E1 ::= V / Y1 ::: h3 V /21t 2 11? 2 t" e4, ci1::v'(l ... ~ ) , 

ci2 =..JC1+ ~ ), and V1 the ionization frequency of the atom. 

We may first note that n2 • 1 becomes infinite when 

sql.., l=O, or hV:::. ... Ei(l .. 1/s2 ), i.e. when 1' corresponds 

to one of the absorption frequencies of the atom in the 

normal state. Since q2 and s are each greater than 1, 

sq2 • 1 is never zero. F.xpanding in powers of ~ and of 

the wave length i\ we may write 

... 9 .... 



(
. z 4 ) 1+1.477 ~ +- ~. 39 ~ ....... 

2 .. 1L6 /. S' ?> 4 When 1'= o, these formulae give n ... 1::. 9rm/..321\' er 1t' 

which is in exact agreement with the result obtained for 

the dielectric constant by VanVleck8, Epstein9, and Paul1nglO • 

. APPLICATION TO THE HYDROGEN ATOM 

7. For Hydrogen we put lC = 1, and obtain 

n2 - 1=2.24 x io·4 c1+1.22e x io-10/A.2 ). 

Substitution of numerical values into (22) gives 

the following 

... hV/E
1 

i\ in ;. • (n2 ... 1) x io4 

0.30 3039 2.59 

0.25 3647 2.47 

0.20 4559 2.38 

0.15 6079 2.31 

0.10 9118 2.27 

o.oo co 2.24 

These results are not in a very good agreement 

with Langer'e determ1nation1, but the great experimental 

difficulties connected with this meaei{ement could account 

for the disagreement. 
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SUPPLEMENTARY NOTES 

Note A. The Lagrangian function in this caee is 

L = Tr-+Te-U, where 

T fA- = kinetic energy of the electron mass 

= tfA (xi+ ~1+ z.") 

Te = kinetic energy of the electro•magnetlc field of 

the electron 

= .eV-.A/cz = evz.Az/cz= -ez P.si~ w(t-y/c)/C<J 

U = potential energy of the electron 

Now 

and therefore 

Therefore the Hamiltonian function is 

H = - L -t- 2 f q = - L + p" x + p ~ y + ~z .z. 

.., 12 -



;:: ttt[ 'P; /~2 -t- ~;k;'t-i-+- fz.!J,/f' + l· f2Si'l\ZW(t-'j/c)/tt"w'­

+ ipzePsiYl w (1:- y/c)/~~w ]- ~e/'f' 

=- fri" (p. z + t)2 +- fzz) + Pz e, F' si,, c:.J (t-y/c J /ri-CAJ 

Therefore the Hamilton-Jacobi equation is 

Note B. Taking F as large as .04E.s.u. we have 

... 13 .... 



Thus the term in F2 of equation (1) can certainly 

\4/ t -4 !) be neglected if to v < 10 , or -v) to • , 

and 

Since . / ./) t {}c..>t -iw,/c -l°'t i.w1/c) 
Sin w Lt- .<fie =-~ \e -e. - e e 

± iwy/c , 
e = <.os {wy/e) j: l ~iYl lwy/e) 

=- I ± ~wyfc - (wy/c.)"'± · ··· ·· 

the factor 
±i.wy/c 

e will be negligible whenever wy/c << I. 

But wy/c (?) ~lT v ·5·10-9
/3 · 10

10 
(=J 

IS and since for visible V <'.. Io , 

-IS 
to v 

-3 coy/c < 10 <.< I, 

we a.re justified in writing sinwt instead of sinw(t -J/C ). 

Equation (1) then takes the form of (2). 

Using substitution 

(3) 

we reduce (2) to the form 

A[l m n) irriEet/'1fv1tr, +v~,v + sv"f'e:ir_('\u "J<)-4Trir'-·!h·i.f:i(,v 
J ' o 11 1,.1'(' 'fo-t" 1 -k . ~ io 

) 
4rr~ ~ ( () 'l'o do/,)- ~i.e. PA ro )'1t'tEc~fJt( ~ +~ )s~wt. 

+ 1Y, - J, dt + dt - h '}I \°LJm,n, e, ;)z d°Z. 

By the condition (4), since y
0 

le not a function of t, 

A / /) ) :J11i E~t-~ this becomes on division by ("'J hi, n e 
fl 81T2 t<. (-ee'- ) 4 . 

v -ir, -t- -h ~ r ..... E.e Y', - "ti." t-A ff' 
_ ~ ~e_E(' ~ -r d 1"1) Sin wt. 
- h 11 ~z Jz 

.. 14 ;;., 



Since, ae we will see, 'f
1 

is small compared to '/{,, 

the second term on the right side ls a small correction 

to a small quantity, and hence flan be neglected. We 

then obtain 

\7.z'\f': + 8Tf'J.,,.. (~'i,-t- £ ) lY, - 4rr~ tt ~ - ~ i er o_fo s ~~ u>t-
1 -h" r .e 1 h Jt - kv .;}Z · 

iwt -iwt I I i,wt- -~CA>t) 
Putting '\',:. e Ll. 1 -~ u..i, tNwtL siJi\ (Alt == f[ le - .e 

we have, assuming u1 and u2 independent of t, 

Equating coefficients of the two exponentials 

which can be written as (6). 

Note c. Equati.on (7) may be written 

T = S z/rn, where S is a spherical harmonic. 
n n 

- 15 ... 



I I 

S n' im Cf rn ( ) n'= r e ~, cos e . 
Then 

~ . z fl z tt 2 z 
V T = - , 'VS + '-VS,· \l -n' -t- .>. 1 'V _'TL, • 

14 n l'I' 11 r- n r 

Now V 2sn' =O, and V ~, is in the direction of the radius 
r 

vector so th.at we only need V'rSn'wh1ch ls equal to Yi.snlr. 

Therefore 

or by equation (8) 

z ('o(l' ~) ::: stt' rn' r + r:I.. , 

( 
~ ot. l' ~) 

= T y;-+ol , 

which is the equation (9). 

If in the equation (8) we put o( a== - ~ff.£ /.1'~ 

lot.l':::::. - ~ pA-e'!l./;x"J., and n'= k-1, we obtain Epstein's 

equation for X( s, «'. ) • See reference 7, equation (2). 

Note D. Since of T is the usual 

surf ace spherical harmonic we need to prove only the 

completeness of the function Z ( t ~ YV
1
, d..; r) a.s 

defined in equation (15). 

Equation (8) can be put in the usual Sturm•Liouville's 

form6 by multiplying by r2 
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pz'' + p1.:z'-[n,'(-n,,1+1)+o("-]z + AfZ =o 

where p ~ r2, ~ = r, >. :: -:totl '. Thus the set of all 

solutions satisfying the Sturm-L1ouv1lle's boundary 

conditions form a complete orthogonal set. 

In the first place A must be real. For, ,suppose 

that correspoz6_ng to a complex A there is a complex 

solution Z( A ) , then obviously the conjugate of Z will 

be a solution for the conjugate value of A. 
Thus, if Z( A ) = X+iY is a solution, X ... iY 

will be the solution Z(A*). Then 

j;rAJ Z(A*)yt/,,. = j{x'+ y'},dr 
0 0 

which is a positive quantity, contrary to the orthoM 

gonality conditions. 

We may therefore assume -f 1 
to be real. 

The solution of (8) is easily put in the form 

' Z = rn U, where U satisfies the equation 

v" + u~+•J TJ 1
- ("'-2.+ ~~')v =a 

so that 

Z = n.'f rz n'-t
1 

11'+!
1 

r e (z-o<.} (z-+~) dz 
t' 

where C " is c"osen so that 

/ c1 r_ ,..z . (1 1
-t(,..1 n'+l+J J dzf e (Z-o<) (Z-ro<) d-z = 0. 

C' 
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From (9) 1t is evident that the only singularities 

to be considered are at r =- o, and r= oo. The f'i~st has 

as exponents n' and •n'-1. Of these the second leads 

to a solution infinite at the origin. Thus, our solution 

' must behave as rn at the origin. Then, by investigation 

completely ans..logous to that used by Schrod1nger11 , we 

can easily establish that Z can be finite everywhere only 

if ~ / ls an integer greater than n' • Then Z = ... oC. is an 

ordinary point, and Z = tX. is a pole. 

ately to (15). 

This leads 1mmed1= 

Note E. Using formula (21) of reference 7, our ortho-

gonality relations for Z(s,n,~ ) become 

a) 

jzrs,n,a:JZ(J;n,at)Pa'r ~ o, tf' srs: 
0 

DO 

jz(.s,n,a:J Z(J, n,at) rdr = 
0 

I 
(s+n)! (S-h-/)/ (2otjZ11+,e 

We can also derive the relation 

where X = -.ta/rot-r13). 

Equations (18) and (19) give 

there tore 
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or, by the above formulae 

- a (s,, d') 
- ( s + I)/ (s--~/.-/-~-'.f.-or J__,,4 

which gives equation (20). 

Note F. We must normalize if so that /~ f" dz ::::: /. 
By (3) this condition becomes 

Az/I, m,n) /! Y::/~m,n)-r 11'; (./,m,nJj~T === I. 
Neglecting ~ 'ii{ the left member becomes 

,. 

Ag/t,m,nJj(r: Yo'+~~+ i[z;:)d~. 
Now 

integration, 

with respect to <f , will introduce a f~H~tor 

JJi • J:ur 
( ± /mp J <f) - __!_ f ±:. unY' - ;. 

1 e t?f; - . e -v. / ~tm 0 
0 

Our norms.lizing condition therefore becomes 

- 19 ... 



Using equation (22) of reference 7, we easily obtain 

;'; 2 12"1+4 
i r ? ! ¥( L m. !'l Jl dr -= ___,,_--.,....---,,! __ _ 
~ / //t -,, ' ;/), (~f;:tn+3 (/+11).I (/-l'l-1)/ ? 

so that 

A~!'' )- {tn+/)(llr//1+
3
(11.-m)/ (/-r11// (-1-n-I)! 

-t/ ll1. 12 - -
.., 81T.( Jt+m)/ 1.tn+4 

When l=-1, m= n=O, this becomes A2(1,o,o) = >7.._
3/rr 

Note G. 

M, = e f 11' ~oh: ~ e .4 J;, CJ, t! Jf / ¥:, It, +- Y: 1/( + ff I/( }/-t 
as in Note F. Since the expression in brackets now does 

not contain ~ and x= r sin 9- costf , integration with 

l
:ur 

respect to lf will introduce a factor 
0 

~ 'f d f =. 0. 

Thus Mx =-(). Precisely similar argument holds for My• 

For Mz the calculations are ae follows: 
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!r1ti::;:gre..tion of the first term with resp0ct fJ will 
. "lt 

contain e, fact,:;r j C:Cs & S ;,,, & d# == () . Therefore 
0 

,. 
Mz. == £ A~ { 1, o, o) J 2 ( 1fo tv, + 11{, ir;) dr 

= e A
1

( t, D:; 0) j~ ~ { V: +- 'lf{) d7_, since ~ == ~. 

Now 

Further , by ( 11), { 14) 

' ~_, } I I I I ') T , t I I ') U.( 1,0,o;=L ir-1. ,o,o; t,·ni..,Yl t ,m,ri 

r1 I 0 0 I "I·. I ') I I ') = ~ 9 ~ (__, ? 2 .-v ,_rvt. '-~ T ( 1 , m, >i 
/}/..11~ t't\_+i'ol) \. 

whi":.h, since m'= 0 and n':::. l, becomes cm. using (7) 

¥vi th notation ae in ( 19} and (20).. ·rhus u is real, and 

~ /' 

Mz. = 2eA l f,o,o) Cosait Jz~ (tt,-t<,.)dz-

- 21 .... 



Now 

;; w11dr =/reds~;(( I, o) ll di: 

Using the formula of Note E, this becomes 

rl aJ ~ - J / .r- 3 = ~ z Clfs;t7{.)(2f'~S/ ( [+,::('/ 
3),p S=.t (S-,t/_I (1f+Jt>f/ ( 1-~/s+ 3 

or, substituting from (20) 

fz fo ti ti T "' _ '411?e£c(.4 :J!: s(s'-1) (2 r+ds/ f '[+ d )
2
s-S 

3AP s=2. (?+sat) (1-~J,t{f+.5" 

Thus 

M z =- ;;2 ~ A:z (1, o, o) CAH UJ t Jr. 1fo ( U-1-11.11.) clr::, 
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= 1 + ~ , where ~:::. -h V/E1 • Putting ~.=VI-~ :J 

ch ::::: V \ + ~ , and subs ti tu ting these relations 

into (22) we obtain (23) • 
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