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- INTRODUCT ION

lar ‘In view of the recent experimental determlnation
of the dispersion by atomic hydr@genl it seems inter-
esting to apply the theory of dispersion developed by
Sehr@dinger? 0o thls case. In this paper we restrict
ourselves to an approximation in which terms of the
order of relativistle corrsction are neglected. For
thls purpose it is simpler to obtain our wave equation
by the operational method of Schrodinger> and Eckart®,
as extended by Epstein5, for in this way we lmmediately
obtain sn equation free of relativistic terms.

In what follows, in order to presserve & continuity
of the discussion, details of calculations are ocmitted
from the main text and are glven as Supplementary Notes
at the end of the paper. References will be found

immediately preceding the Supplementary Notes,

THE WAVE EQUATION

%, We assume the incident 1light to te a plane pol-
érized wave of fregquency ¥V propagated along the Y axis,
with the electric vector along 2, the nucleous belng
situsted at the origin. The field of the wave and of
the nucleous can be represented by a vector potentisl A
and a scaiar potential <P . We may take A, = Ay = 0,

A, = -c%F siné)(tey/c)/w , and ¢ = Xe/r, where ® = 2RV ,



Ke the charge of the nucleous, ¢ the veloclty of light,
and F s c@nstant all quantities being in electrostatic

units. In fact, using these potentials in B = = Cz VXA

we obtain -
B, = & Cosw(t- yf), By=B,=o0,

H, = Fc Cos <:0(7l:~-g/C)k,~ Hj=Hz_=O.

A
Similarly, subatituting Zand ¢ into E = -V~ c" a't'

there results

fm B g e £, FoFusaltosl)

These quantitles satisfy Maxwell's equations and repre-
sent the desired fields.

The.corresponding Hamilton~-Jacobl partial differw

- ential equatien is

éfb[(g)z+(?%s)z )7 f‘“’ 3'2 S""w& y/c) ‘—asz tot- _lj/c)
o

ee® 25 _
r T At
where (L = mass of the electron and p= (Pys Dys P Jite
S ; 0
momentum (see Note A). Putting 5% = %’5; ’
R_ ALD . S A2 5 A2
3y 3!!‘?5’ az ar 2z’ dt~ awot

and considering the resulting expression as operating

on \‘/ » we obtain, upon slight simplificatian
grpetre _ Fsin w(f H/C)J\Y
#E Lr 2 p

‘i__t‘:
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which, to the desired degree of approximation, reduces to

V Y + __LL_E_)C_ M 2__"_’,’: aoeF‘ faw S«.ha)i' (1)
| B Hh 2t v 02

where on the right we omitted terms in F2 and a factor

riwy/c
since c@yV& is very small for light of visible

frequsncies and lower,

To solve equation (2) we let
anmcbpt o
Y= vibmn)= Allmune * [hmm) ey bmn)] (3

where A(fr,m,n,) is a normalizing factor, and qg(lﬁ,m,n)

satisfles the equation

2 2 _
vz«n(e,m,n)+ ?l;?ﬁ()%g-f-Ei)q/o(l,m,n)— 0. @)

Then, to the desired order of approximation, equation (2)

reduces to

v, (bmym) + —{:r( Y *EE)‘V“"‘“)

4!"«-” ?‘Vlg'é m n) &c.eF ?‘K({ msn)
% T ot ST ot

We now express 21 slnaﬁ' as the difference of two

exponentials; then, letting

: — it
Vilbmn)= ¢, tmn)= € u lymn) (s)

equating separately the coefflclents of the two exponen-

tisls, and combining the two resulting equations into



one, we obtain

2 FBW@mn)
\%4 u,(émn)-'- %(“*E!}*m’)“(}z mn )’ -

—2 2 (¢)
where, as in the following, the upper sign goes with

the subseript 1, the lower with the subseript 2. (For
reduction of (1) to (6) see Note B).

SOLUTION OF THE WAVE EQUATION

3 The usual method of solving an equation such
as (6) 1s to expand IV, ( b ,m,n)/&z and u( y ,m,n),
each into a serles of sultable functions. For this
purpose 1t seems naturasl to use the set of solutions
of the equation of the unperturbed atom, 1i.e, the

set \Yo(z ,m,n), as was done by Schrodingerc.

Unfor=
tunately thls set is not a complete orthogonal set
unless a continuous range of complicated functions
corresponding to imaginary values of lf are included,
To avold this complication we follow a procedﬁre anale
ogous to that used by Epstein for a eimilar purpose,

1.6, we use for our expansion another set of functions,

T(%',m',n'), defined as follows

T, m,n) = ™ P (cos8) Z(4; !, (7)

where z([ sn', o) satisries Schrodinger's conditions
of finlteness and the differential equation



—

otrz Tr dr

L2ln) dz(l'n’oc)('(ﬂ+') REZL, }z(zmc) o ®

We have therefore, (see Note C)

AT (hamn) = (£ + ’?de)T'(f' 'n')=o0 (9)

It can be shown® (see Note D) that T('E',m',n',o()
thus defined, for any constant real value of «, forﬁ &
complete orthogonal set with respect to a function de-
creasing rapidly with increasing r, such as Y‘Bﬂé/éz .
We shall assume K to be negative. We may therefore

wrlte

r'b%(f,m,n)/éz = Za(f,m,n;f:m’,n')T(a my)  (lo)

and

w(mm) = Z'{-(f,m,h;i:m;n')T([:m:n') (1)

It may be objected that since we do not know the
properties of the function W we msy not write (11l), as
the set T(-f‘,m',n') may not be complete for thls func-
tion, However; if to complete the expansion of U we
would add to the right member of (1l1l) a sum of terms,
each of the type ¢S, where the 8's are functions dife
ferent from’the T's, we would find that on account of
inhomogenlety of equation (6) ell c'e must be zeros,
Thus, the set of T's is sufficient.

- Substituting (10) and (11) into (6)

I



= g(g,m,n; Z;M‘ n') (4w, n')

4+ 8¢ f‘( ~—-+E£+Av)2£,£mnfmn)7"(£m )

4\2'

= E——.r—'z allmn; £mn') T (4, m)

or using (9) and equating coefficlents of corresponding

T's, we obtain

b mym; L)+ 2l ”""(“’é i’f"ﬂf

= i_\‘?;F;— a(t,mm; Ly m, w) (12)

If we let

= — 8w (E £ hv ) /B (13)

equation (12) reduces to

&lr(z,m,n;li',m',n‘)[d'+ M[ ef'alt, m»” {min)

which 18 satisfied provided

Flhmm; {imn)=e F‘a(f,m,n;f[;m;n')/?/ﬂ(q-l— f&) (14)

' where n= 4172"&6&&/#: |

4, We normelize the solution of (8) in such a way that
brll Gl (2o y )7

Z(/K?’Lo().}.—z:' T 1—)! [2”+/+///) {i>n! (/5)




| Except for a numerical coefflcient and notaticn
these functions are the same as the 7{(s,c() functions
usédlby Epstein7, (see Note C), so that we may use the
relations obtained by him.

' The usual solutlon of (4) may be put in the form

¥ (4mm)= eim?am(us . )C(li,n) (16)
where | ‘ ’
bt yun gl arp/t)’
_ re Z 17 )
X(f’”) _Z 7L l-n-1=4)! Qn+i+/)! ( g
J=o
and

£, = -2mnin el

APPLICATION TO THE NORMAL STATE

Se We are interested in the case of atoms in the
ncrmal state, l.e. the case when f=l, m=n=0, in

this case, by (16) and (17)
-7

¥, (1,0,0) = X (1,0)= e

. -r
Y, (1,0,0) /22 = (ar-/az)aq;(l,o,o)/ar = -ne L os 0 (18)

Comparing (18) with (10) and (7) we see that since

Y. (1,0,0) doeg not contain ¢, a(1,0,0; {',m',n')=0, unless

-3~/
m'= O. Then, since 6 enters (18) only &s cosf ,



a(1l, 0, 0; {° , 0, n')=0, unless n'=1.
Puttlng n'=1, gnd remembering that [' >n', equation (10)

reduces to

roVY,(1,00)/0z = cos ee'Z a(1,0,0540,1) Z (L, 1,%)
2

Since a2's may depend upen «, we put 2(1,0,0; €10,1)=a(f;&),

so that, chenging the summation index, (10) reduces to
)
YO, (1,0,0)/22 = cos® 2 als,a) Z(s,1,«) (19)
$=2

The coefficents a(s,o ) are found to be (see Note E)

als) = =q(nea) (s+0)) (2k) Y im-o)T" (20)

We can now obtain the expression for \y‘(l,o,o) if
we note that now, by (7), (11), and (14),

U= cosaZPr (s, e )Z (s,1 a{)_ahv Co 92 als,oy) Zls L) 1)

sz 1+ 5%

with a simller expression for us. In equation (13) we

are to take + for o3 and « for olp.

If we impose the normalizing conditions that
/ Vit,mn)wire m,n)dr=1, when integrated over the whole
space, we obtain (see Note F) for A( { ,m,n) of the

3
equation (3) an expresgsion which gives A2(1,0,0)='- 72/77'

' ELECTRICAL MOMENTS AND DISPERSION

6. We can now compute the electric moments. We

obtain (eee Note G) lNy= My=0, and



My= efz ¥ (4 m,n) F(l,mn)dv

' 25~
—lzsezﬂ‘* e e sw’c[&" L, g 1)@n+sy) (M+ %)
° !

3hv S (st )(q-4) 3
-5 ‘
4 2 ) @esey) - dy)” (22)
2 2s5+5
s=2 (M + Sely) (- y) '

Since this quantity M ie also the leading term of the
matrix M( ﬁ,m,n), i.e, M(1,0,0;1,0,0) we have for the
index of refraction n, the relation n° w 1= 4ITMN/F cos wt,
where N is the number of gtoms per unit volume,

Thus we finally have (see Note G)

_ 16 NA° 22, s(st1)@2-59,) [1-4, \*°
-l = P . PG ]j(...p)zss 1) | (ﬁ)

[4 rl. 'ﬂ4 6=2 (Sq "‘)
'3 sty sqz)(l*‘i_z)isf (23)
(+p) =% (s9,—1) 1+9,

where P =«hv /E3 = V/ V= h3-y/2‘n'2792rle4’ ql"'m)’
q2=\/(1+ ), and Vl‘ the ionization frequency of the atom.
We may first note that n® - 1 becomes infinite when
gqy = 1=0, or h‘v==«-El(l - 1/82)’ i.es when VvV correspcnds
to one of the absorption frequencles of the atom in the
normal state. Since do and s are each grester than 1,

8qy - 1 18 never zeroc. Expanding in powers of (5 end of

the wave length A we may write



6 .
Wl 32,35'23‘”%4 (1+1.477 g*+ 2.39 p*....)
= 9NK
-"32,,.3,36 r3ﬂ4 (1 + .47 cz/v‘?)\z—f—,“ : )

When V=0, these formulse give n® ~ 1= 9N|'\6/321r5e6r431t4,

which 1s in exact agreement with the result obtained for

the dlelectric constant by Va,nVlecka, Epsteing, and Paulinglo.

APPLICATION TC THE HYDROGEN ATOM

Te For Hydrogen we put =1, and obtain
n? w 1=2.24 x 10°4(1+1.228 x 10°1°/72).
Substitution of numerical values into (22) gilves

the following

~hV/E, A in A. (n2 - 1) x 10%
0430 3039 2,59
0.25 3647 2,47
0.20 4559 2,38
0Cel5 6079 2431
0.10 9118 2.27
0400 P 2.24

These resulte are not in a very good agreement
- with Langer's determinatidnl,' but the great experimental
difficulties connected with this meas{ement. could account

for the disagreement.

w 10 =
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ful criticiem. Ky thenks are alsc¢ due tc C. F. Richter
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SUPPLEMENTARY NOTES

Note A. The Lagrangian function in thils case 1is

L= TP‘+ T, —U, where
" kinetic energy of the electron mass
1 v 0L a2
g (x*+ §ra 22)

T, = kinetlic energy of the electro-magnetic field of

the electron

v.A /R = evz/lz/cz-= —ez Fisin co(z‘—y/c//w

potential energy of the slectiron
- eq5 = —1C 82/7'

i

Now

P"’*"f" Pya =pi, P -?‘:szaersinw[t—y/:)/&o

and therefore

S=f s G BIWs 2= Bfp + eFsineo(t-yle) /e

Therefore the Hamiltonian function is

-1 +21oq :——L-\-—P,‘)‘(_...Pyg-l- ’Pz:z‘

_5[ M ()22+(32+22) + ez Fsin w{t-éj/c)/co —xer

+ pk’+rxg2_’+ Mz'z~ eFz &in co(tﬂa/c)/w

aaV12 -



M ()'(2+5'{2+ %) - x ¥

I\

%M[Pf/?k + p\} /YL + 4 /r, zF"zst'nzw(t—y/c)/,fwz
+2P26Fﬂsinw(-t— y/c)/)\fw]-“rcez/v‘
= él}l(ﬁcz"' p;.,. pZ) + pzeF'sinw(t—y/c)/P«,w

+ & F&in%w (t——g/c)/ﬂrxw"‘ _ )cez/'r.

Therefore the Hamilton-Jecobl equation is

2S5 38
H(X,}/,z; X ? STa’ 32’*)*‘ a't'-'o

opr alPL{(as) (S; (as)g ;S( )Aw\w(jt y/c)

AF?
2po0

+ sinfw(t-y/lc) - wetr + g—? =

Note B. Taking F as large as o04E.S.U. we have

i;joo”' sin“w (t-y/e) (=) F'z/ﬂybwz
2 Z

A _ A e &

2pw?, = qpw?  swEpYE

X /4
00/6x05 510", ;0% /y*

| & 8m3x 9x )0 %8 V2
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Thus the term in F° of equation (1) can certainly
: -4
be neglected 1if 10‘4/v2'< 10, or V> 10°
Since ot —iwgfe —lwt (wylk
Sinew{t-y/) =3 - K‘ tgfe_ e e
and iy
wy
e

il

Cos (wy/e) = i sin (wy/e)
= | £ iwyle - (wy/e)?*

b I:wj/c
e

the factor will be negligible whenever wy/c <« |.

But  wy/e ) 2mv-5.16°/3-10°=) 16"y
and since for visible v < 10" y wyle < Io_3<< 1,
we are justified in writing sinwl 1instead of sinw(t —5‘/C)-
Equation (1) then tskes the form of (2).

Viy + __n‘___&e Ly 1"—"&' ;;V Q‘:;r 3;’ sin wt (2)
Usling substitution

art ng/fl ['\]’

11/ A(ﬁ mn) em,n)-g—-‘\y'([’m’nﬂ (3)

we reduce (2) to the form

Atmgn) & [y vy, B )-mIEE(y,

+ .\},) 4!!‘4 M ( 2:/ 31’) QLQFA /{ m n)imEft/{\(%%—i—a—%)gbhw{‘_

By the condition (4), since )}, is not a functlon of t,

this becomes on division by A(4, m, } 2ni E;¢/%,
2, + 811& e 4
v B (R - i o
- ?_,wi"('i‘fa+ 20 sinat.
LV 2Z 22

“ 14 -



Since, as we will see, 1¥ is small compared to qg

2
the second term on the right side 1ls a small correction

to 8 small quantity, and hence pan be neglected.

We
then obtein
2 2
Vi + 8T M [xe _ATip oW 2ieF’ Y
v+ o (Y, +E£) R a2 sinwt

t. —wt -1
Putting \y-emu e‘ U, , and smwz‘.--a/"wf mt)

we have, assuming uy and u2 1ndependent of ¢,

Lt 2, reet
e {Vzu.‘ﬂ— 812"" <E3+E€)u + ATpe uJ

h
-iwt 2y /e 4w M w
- [Vaw,ﬁ o M(‘fe’ *Ef)“‘z* Wﬁ\“ %.}

AZ
_ __F_’_' Y, [ ¢ t ~iat
B Ev T( * )

Equating coefficlents of the two exponentials

2 aumee? ' F v,
Viu, + "E.&(Y* "’Eg*’lw)u,= f; ;—{2 and

2 gmip [/ Kel - _ eF’ 3%

which can be written as (6).

Note C. Equation (7) may be written

T = Snz/rn, where S 1s a spherical harmonic.



’

.« 7 !
S,= rtem? P“r,n (cos®).

Then

S ST Z, 2 Z
VT—;”’ V.};),*QVJ;I,'VYJI + h'v F-Tl"

Now v‘?sn, =C, and V ‘%,: is in the direction of the radius

vector so that we only need V.S, which is equel to xS ¢/r.

Therefore
AT L (Z s Ldad(Z)
r Ar (\““/ nNor2drl’ Jp\en
wrd*Z a2 AZ (m'+1)
= Sh!rn [ oh‘z + F _—;\— _ L ’;»2 Z],

1
(%)
%l
~

]
+
&

which 1s the equation (9).

If in the equation (8) we put o= —-Q/AE/W'E
dul'=-29 Me""/}dz, and n'= k-1, we obtein Epstein's
equation for X(s,« ). See reference 7, equation (2).

Note D. Bince em! P):.n’(ufie) of T is the usual
surface spherical harmonic we need to prove only the
completeness of the function Z (f', n’, o ; Y‘) as
defined in equation (15).

Equation (8) can be put in the usual Sturm=Liouville's
6 .

form® by multiplying by re

.- 16 -



pZ'+ pZ'- [n'(ns)+ ]2 + AgZ =0
where p =r2, ¢=r, A= —.‘?o(f,. Thus the set of ail
solutions satisfying the Sturm«Liouville's‘boundary
conditisns form s cowmplete orthogonal set.

In the first place A must be rezl. For, .suppose
that correspozi\ng to a complex A there 1s & complex .
sclution 2(A ), then obviously the conjugate of 2Z will
be a solution for the conjugate value of A,

Thus, 1f Z(A ) =X-+1Y is & solution, X - 1Y
will be the solution z(A¥). Then

Jzmza%)pdr =[xy s atr

which 1s 2 positive quantity, contrary to the ortho=
gonality conditionas.

We may therefore assume 'ff' to be real.

‘The solution of (8) is easily put in the form

Z=fn‘U, where U satisfies the equation

y ’ 2 aqul’
V + g(nrﬂ)U/— (o + g7,—)U=‘-0

g0 that

nwl’

£ = / “(z- oc} (z-m(} Az
c

where C is cosen s¢ that

/[/;rz[z d/ﬂ L%t (z-f-o(/ﬂ{f-/—/f-:/d? _

.17 -



From (9) 1t 1s evident thst the only singularities
to be considered are at r=0, and r=o9ao, The first has
as exponents n' and en'-l, Of these the second leads
to a solution infinite at the origin. Thus, our soclution
must behave as ro' et the origin. Then, by investigation
completely anslogous to that used by Schrodingeru, we
can easlly establish that & can be finite everywhere only
if 'e’ is an integer greater than n', Then Z=«« 18 an
ordinary point, and Z=« 1is a pole. This lsads immedil-
ately to (15). |

Note E. Using formula (21) of reference 7, our ortho-

gonality relatione for Z(s,n,«< ) become

/Z(J,)z,ac/Z/J;rz,o(/ﬁ/r =0, ¢ s#5]

/Z@@&/Z/s, nol)rdr = !

(s+r)! (5—n-2)! (Re)37*%

We can also derive the relation

4

m_pr - (=1)"*" /”’“”_/ VY 5-n-4
/' R oy P e v e

where X = —-.Za(/(o(-f-/g/_
Bquations (18) and (19) give

_7r*e”f'f =§; s o) E (s, 1)

therefore

w 18 =



~p JrASTOZ s ft) b = alsa) s 4 2) £ bt

or, by the above formulae

oA (.74
(-2)! (g-«)°" %  (s+1)! (-2 (2) %

which gives equation (20).

Note F. We must normslize }D go that /;1/7/? =/
By (3) this condition bhecomes

Al %ﬂ///%%%ﬂ/v“ ¥ (b, n) dT =

Neglecting y{ ?17 the left member becomes
2.7 S _ —
AUGmn) [(WT + AT+ H ).
Now
— I t/ﬂﬁ’ .—La)l‘ ‘COZ‘—- .
BT Ty = &F /co;ﬂ/)(//n/[ 7-cg
. —lwlt

z ”MP (tosb/ ] [4, 1) e 4{ -e wdz ],

so that in the (/% Z#— 32‘%’//2' integration,

with respect to ¥, will introduce a factor

. 27
+,',,;p o/ 1:1/77}7 o
'/ //(0 L7 /'e o .

0

Our normslizing condition therefors beccmes

Az/jzi/”,ﬂ//%/{%n/ Zilmn)="1.

- 19 -



N@w

i~ 1 7 s oot
< o] dr/ 2

_ A (l?-f-/ﬂ//
= i m/// /}{/{/7////

Using equation (22) of reference 7, we easily obtain
/ / //2;2+4
{/?7/7 //
ﬁ/ / &g/fll—l-j// ”////_/7_.///
so that

/42///}7 /z/: @/7—/-//(;?7/7’7*3/”—/”/.//"/_,_/7/'//{,n__/!‘./

ET (700 ) ] £ 277

‘ 3
When [=1, m=n=0, this beccmes A%(1,0,0) = ?‘(/JT

Note G.

M, =e xz//y—/'}/t = 942/’40,0//’/7537{*7{?*757]/1'
a8 in Note F. Since the expression in brackets now does
not contain ¢ and x=r sin&cosy , 1nt@;gnr_'ation with .
respect to  will introduce a factor '/;Co—.s\f d¥ =a,
Thus M, = 0. Precisely similar argument helde for My.

" For M, thé calculationg are as follows:

M= e[z yTde = ¢ 4°0,00)[2 [y T+ 47+ By e



Inte gv@tion of the fir
7T
contain & factor J/'Cb

[~

,5’,,‘,,5,;{,/450

et term with respect to € will

Thersfore

MZ: {«;;42(‘1,0, 0’)/2{1{{, Q7,'+ " U/ljg{‘c’

Further , by (11), {14)

wll,
Ihv (

which, sgince m'= 0 and

¥ /V{*?-I/T)&’/T)

since Y=%.

—dwd 7 -l _ c'a’ZL——]

D,O ‘L,I% Y\/)

n+ {a(,)

£, ~ € “,

-(+,0,05 4, Lo, n!) T4 m n)

Elmin')

n'= 1, becomes on using (7)

eF & q(4,0,054,0,0) n ),/
W(1,0,0) = e o ELODET2L T (L g, ! )

L9
~|f
<
th
{

with notation 28 in (19

therefore

%’-/*;';i: 9?(/%/,%/

Casayf’

2 ”
M, = e/ U,0,0)Coswi‘jz% (U -ty )dT



Now

ﬁ Yudr = /nma X(40)udz

) o, -2
=24y Z(;fm// reos®b.e 73[-’; 4ol ) AT

< 27
= 2hv S Z’dﬂ’ d// a0 /;a”///%.: /.rm// ¥/ Ay

f. f-f-.!‘a(}

Z(;fs:;/ 2{-" /“’// cod iﬁmé’ﬂ/f

;'z/‘eﬁ" @25,/

3 =2
347/ 522 (7.,.;0(/ e ‘Z&v/;a//ﬂ/ff

Using the formule of Note E, this becomes
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or, substituting from (20)
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Since by (13) and (14)
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=1F(, where =-bV/E). Putting q=Vi-p,
qy = Vi B , and substituting these relations
into (22) we obtain (23),
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