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Abstract

This thesis investigates the role of oxygen vacancies in determining ferroelectric proper-

ties and domain patterns of ferroelectric perovskites. Being non-polar (paraelectric) above

their Curie temperature but spontaneously polarized (ferroelectric) below it, ferroelectric

perovskites offer a tantalizing potential for applications: large actuation through domain

switching and memory storage via switchable electric polarization. Oxygen vacancies, com-

monly present and mobile at high temperature, are the primary defects and thus play a

central role in these applications.

We develop a model that combines the ferroelectric and semiconducting nature of ferro-

electric perovskites. Oxygen vacancies act as n-type dopants and thus affect the semicon-

ducting properties. We show that the ferroelectric and semiconducting features interact and

lead to the formation of depletion layers near the electrodes and double layers at the 90o do-

main walls. We find a potential drop across 90o domain walls even in a perfect crystal. This

potential drop marks the essential difference between a 90o and a 180o domain wall, drives

the formation of a space charge double layer in a doped crystal, promotes electronic charge

injection and trapping, and leads to the redistribution of oxygen vacancies at 90o domain

walls. The rearrangement of oxygen vacancies near 90o domain walls may form a basis for

domain memory and provides a potentially new mechanism for large electrostriction.

We also rigorously justify the continuum theory by calculating the Coulomb energy of a

spontaneously polarized solid starting from a periodic distribution of charges based on the

classical interpretation of ferroelectrics and with a definite choice of polarization per unit

cell. We prove that in the limit where the size of the body is large compared to the unit

cell, the energy of Coulombic interactions may be approximated by a sum of a local part

and a nonlocal part. The local part depends on the lattice structure, but is different from

the Lorentz formula for a lattice of dipoles. The nonlocal part is identical to the Lorentz

formula.
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Chapter 1

Introduction

Ferroelectric ceramics have long been used as sensors and actuators for their piezoelec-

tric properties. They have remained the mainstay of solid-state actuators for their linear,

high-frequency, and low-hysteresis characteristics. However, the strain and displacement

generated by these actuators are usually small, limited to a maximum strain of 0.15%

(Park and Shrout, 1997). This has led to some clever designs through which relatively large

displacement can be generated. One example is the RAINBOW (Reduced and Internally

Biased Oxide Wafer) actuator: a bending mode actuator comprised of an active (piezoelec-

tric) and a passive (paraelectric) layer obtained by selectively reducing oxygen from one

side of the otherwise piezoelectric material. However, this increased displacement usually

comes at the expense of force, and despite ingenious designs, current piezoelectric actuators

are inherently limited.

It has recently been recognized that large strain actuation can be achieved through

electrostriction in ferroelectric single crystals. Park and Shrout (1997) have reported an ul-

trahigh strain up to 1.7% in relaxor based ferroelectric single crystals like PMN-PT. It was

believed that PMN-PT lies near its morphotropic phase boundary (MPB) between rhom-

bohedral and tetragonal phases. Under strong electric field, a rhombohedral to tetragonal

phase transition is induced and an ultra high strain with minimum hysteresis is obtained∗.

Another way to achieve large actuation in ferroelectric single crystals was proposed by

Shu and Bhattacharya (2001) and it exploits domain switching via suitable electromechan-

ical loading. A ferroelctric crystal is non-polar (paraelectric) above its Curie temperature,

but spontaneously polarized (ferroelectric) below the Curie temperature. Along with the
∗Recent studies show that the high actuation generated by relaxor ferroelectrics may involve complex

nanosclale structures: local displacive disorder, short-range compositional order have been revealed (Egami
et al., 1997, 1998).
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spontaneous polarization, large distortion also occurs. Typically, there is also a reduction

of crystal symmetry at Curie temperature. This gives rise to symmetry-related variants:

crystallographically and energetically identical states that are oriented differently with re-

spect to the parent non-poplar state. These variants can coexist as domains separated by

domain walls. As an example, barium titanate (BaTiO3), the most extensively investigated

ferroelectric material, is cubic and non-polar above its Curie temperature (120◦C), and is

tetragonal and spontaneously polarized along 〈100〉 direction at room temperature. Since

it arises from cubic phase at high temperature, it can be polarized and distorted along any

one of its six “pseudo-cubic” directions at room temperature. We thus have six variants of

the polarized state, and they form patterns involving 180o and 90o domain walls.

Since symmetry-related variants are energy-equivalent, it is possible to switch one do-

main to another by suitable electromechanical loading. Such a switch is accompanied by

a change in distortion and can form the basis for large actuation. Shu and Bhattacharya

(2001) showed that such a program was viable through a nucleation and growth mech-

anism with an electromechanical loading consisting of a constant compressive stress and

bipolar cyclic electric field. Briefly, the stress favors (biases) one variant while the field

favors another. So the cyclic electric field in the presence of stress gives rise to repeatable

switching. Strain as high as 1% in BaTiO3 and 6% in PbTiO3 was predicted, and has been

experimentally validated by Burcsu et al. (2000, 2004) in BaTiO3.

Apart from demonstrating large electrostriction, the experiments of Burcsu et al. (2000,

2004) produced two noteworthy observations. First, the resistance of the ferroelectric crys-

tal to dielectric breakdown (where it changes from an insulator to a conductor) depended

critically on the electrodes. Specimens with silver paste broke down after a couple of cycles

whereas specimens with platinum electrodes underwent numerous cycles with no breakdown.

This observation compels one to reexamine the classical treatment of ferroelectrics as insu-

lating dielectrics, and provides a motivation for this thesis. Second, the experiment demon-

strated significant hysteresis. This aspect was further studied by Zhang (2004b) through

detailed observations of the inner-loops. The established phase field models (e.g., Ahluwalia

and Cao, 1991; Zhang and Bhattacharya, 2004a,b) reproduce the overall hysteretic response,

but are unable to capture all the details. The experiments display a pronounced stick-slip

(rate independent) character, but the simulations are more smooth (rate dependent). This

shows that defects and pinning play an important role in ferroelectrics. Indeed, oxygen
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vacancies are very common defects in ferroelectric perovskites and they have relatively high

mobility and interesting electrical properties. Shilo et al. (2004) recently studied the domain

wall structure using atomic force microscopy. An interesting finding is the strong evidence

of defect trapping at 90o domain walls in lead titanate (PbTiO3). This provides yet another

motivation for the work described in this thesis.

The role of defects has also been highlighted by the recent experiments of Ren (2004)

that promise another mechanism of large strain actuation. In Ren’s experiment, a BaTiO3

single crystal which contains a small amount of Fe3+ and O2− vacancies was cooled down

through the Curie temperature (128◦C) to form a fine pattern of 90o and 180o domains.

Before cooling down to the room temperature, the specimen was aged at 80◦C for five days.

At room temperature, when the aged specimen was subjected to a bipolar electric field, it

showed an interesting double P-E (polarization vs. electric field) hysteresis loop, instead

of the usual single loop. Consequently, large actuation was generated even by a mono-

polar field without any mechanical loading. In order to explain the experimental results,

Ren argues that during the aging process, “defect dipoles” align with the spontaneous

polarization in each unit cell through oxygen vacancy diffusion in order to reach the energy

minimum state. In other words, the material develops a memory for the domain pattern

during aging via oxygen diffusion. When a large enough electric field is applied to the aged

and cooled specimen, the spontaneous polarization aligns with the external field through

90o domain switching. This switching is accompanied by large strain. However, the defect

dipoles remain unchanged since oxygen vacancy diffusion is limited at room temperature.

When the external applied field is removed, the specimen undergoes a reverse 90o domain

switch so that the defect dipoles and the spontaneous polarization can align again and

restore the original domain pattern. This experimental observation reported by Ren (2004)

is very promising, since it may lead to a wide range of applications where mechanical loading

is prohibited. Providing a concrete mechanism to the observations of Ren (2004) provides

further motivation for this thesis.

Besides the large actuation promised by ferroelectric single crystals, an even more

promising application for ferroelectric material is the potential use of ferroelectric thin

films in non-volatile or high density memory applications. This, however, is impeded by

ferroelectric fatigue and dielectric breakdown. Ferroelectric fatigue is defined as the loss of

switchable polarization under bipolar switchings, and has received considerable attention in
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recent years. Various interlinked mechanisms have been postulated based on substantial ex-

perimental data, but a definitive understanding is yet to emerge (Scott, 2000; Damjanovic,

1998; Tagantsev et al., 2001; Shaw et al., 2000).

Interestingly, lead zirconate titanate (PZT) with conductive oxide electrodes, YBCO/

PZT/YBCO (Ramesh et al., 1992), and strontium bismuth tantalate with platinum elec-

trodes, Pt/SBT/Pt (De Araujo et al., 1995), make almost fatigue-free capacitors compared

to the pronounced fatigue in Pt/PZT/Pt capacitors. The fact that the use of oxide elec-

trodes in PZT dramatically improves its performance, and that SBT which has a com-

plicated oxide-perovskite layer structure has low fatigue suggests a link between oxygen

vacancies and fatigue. In addition, oxygen vacancies are indeed the most mobile ionic de-

fects in perovskite materials, and oxygen vacancy redistribution during polarization fatigue

has also been reported (Scott et al., 1991; Sanchez et al., 1991). However, many experi-

mental results also show that electronic charge injection may play an equally or even more

important role in ferroelectric fatigue. However, these two mechanisms, electronic and ionic

charges (oxygen vacancy) trapping, are yet to be fully developed as the very reasons for

their occurrence and their relations are still debated (Warren et al., 1994, 1995; Gütter

et al., 1995; Cillessen et al., 1997; Du and Chen, 1998; Nagaraj et al., 2001; Nuffer et al.,

2001). Most explanations are essentially phenomenological; a systematic and quantitative

model is still missing.

Motivated by all these reasons, this thesis aims at systematically investigating the role

of oxygen vacancies in determining ferroelectric properties, domain patterns, electric fatigue

and field-induced actuation in ferroelectric perovskites. The key step – and departure from

prior work – is to treat ferroelectric perovskites as polarizable semiconducting solids through

the introduction of space charges. It is well known that ferroelectric perovskites are wide

band-gap semiconductors (Scott et al., 1999; Moulson and Herbert, 2003): the band-gap for

BaTiO3 is about 3.0 eV, and PbZr0.40Ti0.60O3 is 3.4 eV†. Oxygen vacancies are donors or

n-type dopants that are mobile at high temperature. Yet virtually all continuum treatments

of ferroelectric materials (e.g., Devonshire, 1954; Ahluwalia and Cao, 1991, 2001; Zhang and

Bhattacharya, 2004a,b) assume them to be dielectrics or insulators. There are a few recent

exceptions: however, they either treat the polarization distribution as frozen and calculate
†Unlike typical semiconductors such as silicon and germanium, the precise band structures for oxide

semiconductors are hard to get because sufficiently precise physical and chemical characterization of the
materials is often extremely difficult (Moulson and Herbert, 2003).
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the space charges (Watanabe and Sawamura, 1997; Watanabe, 1998a,b,c) or they treat the

space charges as frozen and calculate the polarization (Tagantsev et al., 1995b; Bratkovsky

and Levanyuk, 2000). However, the polarization and space charges (i.e., the ferroelectric

and semiconducting aspects of ferroelectric perovskites) interact through the electrostatic

potential. Therefore they require an uniform treatment, and this thesis is the first work to

do so.

This unified model provides us with unique insights into the behavior of ferroelectric

perovskites. It allows us to study the space charge distribution near electrodes and near

domain walls. It points out differences between 180o and 90o domain walls. It provides an

insight into the redistribution of dopants including oxygen vacancies. And through all of

these, it provides us a new understanding to the practical problems of fatigue and domain

wall pinning.

The thesis is organized into seven chapters. In Chapter 2, we review some basic prop-

erties of ferroelectric perovskites with BaTiO3 as a typical example. For readers who are

not familiar with semiconductors, we also introduce some basic concepts.

We set up the continuum theory for ferroelectric semiconducting solids in Chapter 3.

Built on the preliminary ideas of Shenoy and Bhattacharya (2004), and strongly influenced

by the fundamental work of Toupin (1956) and Brown (1966), the theoretical framework

presented in this chapter, is an extension to the one proposed by Shu and Bhattacharya

(2001), and also those used in the study of ferromagnetic shape-memory alloys (James, 2002;

James and Kinderlehrer, 1990; DeSimone and Podio-Guidugli, 1996). The most significant

difference is that we now treat ferroelectric perovskites as polarizable semiconducting solids

doped with oxygen vacancies. We construct a detailed kinematic description of such a

solid. We then calculate the dissipation associated with any process that respects balance

laws, and this allows us to identify the dynamic (force) quantities conjugate to the kine-

matic variables. Combined with constitutive equations, we obtain the governing equations.

These are summarized in Section 3.5, along with a specialization to a number of simplified

circumstances.

Chapters 4 and 5 employ these equations to model a ferroelectric film/slab with shorted

top and bottom electrodes, specifically, to a Pt/BaTiO3/Pt structure. The normalization

of system equations and the selection of material parameters are covered in Section 4.1; the

equations for the diffusion of oxygen vacancies are covered in Section 4.2. Through finite
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element simulation, we obtain full field solutions in Section 5.1.1 for perfect crystals and in

Section 5.1.2 for crystals doped with oxygen vacancies. Besides the detailed polarization and

stress/strain profiles, the solutions show the formation of depletion layers near electrodes

and the complex electrical state prevailing near 90o domain walls. These two issues are

investigated further in Sections 5.2 and 5.3 through detailed numerical and analytical studies

of simplified one-dimensional models. The most important finding is the potential drop

across 90o domain walls even in a perfect crystal, which marks the essential difference

between 90o domain walls and 180o domain walls. This potential drop drives the formation

of a space charge double layer in a doped crystal, promotes electronic charge injection and

trapping and the accumulation of oxygen vacancies at the domain walls.

Chapter 6 is devoted to the Coulomb energy generated by a spontaneously polarized

solid. Starting from a periodic distribution of charges based on the classical interpretation

of the ferroelectric and with a definite choice of polarization per unit cell, we rigorously

justify the continuum theory of Chapter 3. The main result is a theorem which states that

in the limit where the size of the body is large compared to the unit cell, the energy of

Coulombic interactions can be approximated by a sum of a local part and a nonlocal part.

The local part depends on the lattice structure, but is different from the Lorentz formula

for a lattice of dipoles. However, because it can be incorporated into a local energy density

functional, we do not see the explicit manifestation of this difference. The nonlocal part is

identical to the Lorentz formula.

This thesis is by no means the end of the story. There are still numerous interesting

and open problems surrounding ferroelectric perovskites, both in the theoretical and in

the application aspects. In Chapter 7, we discuss some of the possible directions. In fact,

encountering new problems and new phenomena daily is the most pleasing and exciting

aspect of working on this thesis, and makes the long journey a truly worthy one.
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Chapter 2

Background

2.1 Ferroelectricity in Perovskites

Barium titanate (BaTiO3), which we have discussed briefly in Chapter 1, is only one mem-

ber of a large group of compounds called the perovskite family, of which the parent member

is the mineral CaTiO3, called perovskite (Jona and Shirane, 1993). The general formula of

these compounds is ABO3, where A is a monovalent, divalent or trivalent metal and B a

pentavalent, tetravelent or trivalent element, respectively. The ABO3 formula implies that

perovskite compounds are double oxides. Besides BaTiO3, perovskites like lead titanate

(PbTiO3), potassium niobate (KNbO3) and potassium tantalate (KTaO3) also show signif-

icant ferroelectric activity. In addition, many of their solid solutions are also ferroelectrics.

A widely used example is PZT, a solid solution of lead titanate (PbTiO3) and lead zir-

conate (PbZrO3). It is 〈100〉 polarized tetragonal in Ti-rich region and 〈111〉 polarized

rhombohedral in Zr-rich region.

In order to understand the origin of ferroelectricity exhibited by ferroelectric perovskites,

let us take a look of the prototypical ferroelectric perovskite, BaTiO3. Fig. 2.1 shows various

crystalline phases of BaTiO3 at different temperatures: cubic and non-polar above its Curie

temperature (120◦C), 〈100〉 polarized tetragonal at room temperature, 〈110〉 polarized or-

thorhombic under 5◦C, and 〈111〉 polarized rhombohedral below −90◦C. Fig. 2.2 shows the

crystal structures of BaTiO3 in their cubic and tetragonal phase. As shown schematically in

the figure, when BaTiO3 is cooled down through the Curie temperature, the Ba and Ti sub-

lattices shift upward relatively to the negatively charged oxygens, generating a polarization

(net dipole moment per unit volume) of 0.26C/m2. This shift breaks the cubic symmetry

into a tetragonal phase and results six symmetry-related and crystallographically-equivalent
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Figure 2.1: Various crystalline phases of BaTiO3.
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Figure 2.2: Crystal structures of BaTiO3 in their cubic and tetragonal phases.

variants, as shown in Fig. 2.3(a).

If we choose the cubic non-polar phase at Curie temperature as the reference configura-

tion, we can represent the different states of crystals by (F,p) where F is the deformation

gradient and p the polarization. According to the polar decomposition theorem, we can

always decompose F as a stretch/shear U followed by a rotation Q, i.e, F = QU where

U being positive-definite and symmetric, is called the transformation matrix. This decom-

position is unique. Thus, the cubic phase of BaTiO3 is represented by (I, 0), and the six

variants of the tetragonal phase are represented by (Ui,±pi), i = 1, 2, 3 with

U1 =




β 0 0

0 α 0

0 0 α


 ,U2 =




α 0 0

0 β 0

0 0 α


 ,U3 =




α 0 0

0 α 0

0 0 β


 (2.1)

and

p1 = p0{1, 0, 0}, p2 = p0{0, 1, 0}, p3 = p0{0, 0, 1}. (2.2)
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(a)

(b)

Figure 2.3: (a) Six variants of BaTiO3 at room temperature. (b) Domains separated by
domain walls.
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Figure 2.4: Compatibility condition.

where α = 0.9958, β = 1.0067 and p0 = 0.26C/m2 (Mitsui et al., 1981).

These variants can coexist as domains separated by domain walls as schematically shown

by Fig. 2.3(b). The formation of domain walls is by no means arbitrary. Instead, an

energy minimizing domain wall between variants i and j, i.e., an interface separating regions

of deformation gradient and polarization (F−,p−) and (F+,p+) shown in Fig. 2.4 with

F− = Q−Ui, p− = Q−pi, F+ = Q+Uj and p+ = Q+pj for some rotation Q− and Q+

must satisfy two compatibility conditions (Shu and Bhattacharya, 2001):

F+ − F− = a⊗ m̂, (2.3)

(p+ − p−) · n̂ = 0 (2.4)

where m̂, n̂ are the normal to the interface in the reference and the current configuration

respectively, and a an arbitrary vector.
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(a)

(b)

Figure 2.5: Schematic domain walls in BaTiO3 at room temperature: an 180o domain wall
(a) and a 90o domain wall (b).

The first condition is the mechanical compatibility condition also known as Hadamard’s

jump condition, it ensures the continuity or the coherence of the interface. The second

is the electrical compatibility condition which ensures that no bound charge exists in the

domain walls. Shu and Bhattacharya (2001)∗ proved that the 180o and 90o domain walls

are the only two types of domain walls that satisfy these two compatibility conditions

simultaneously during the paraelectric to a 〈100〉 polarized ferroelectric phase transition.

Fig. 2.5 shows the schematic domain walls in BaTiO3 at room temperature. A polarized

light optical micrographs of domain patterns in BaTiO3 single crystal is shown in Fig. 2.6

(Burcsu, 2001).

2.2 Perovskites As a Wide Band-Gap Semiconductor

To introduce a semiconductor, it is necessary to provide a short review of the electronic

structure of solids. This is determined from quantum mechanics, by solving Schrödinger’s

equation. This is an eigenvalue problem and the eigenvalues are labelled the energy states

and the eigenfunctions the orbitals. At zero temperature, the states are occupied by the

electrons starting from the lowest state till all the electrons are exhausted (there is an
∗Also see DeSimone and James (2002) for a similar result in ferromagnetic shape memory alloys.
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Figure 2.6: Polarized light optical micrographs of domain patterns in BaTiO3 single crystal
(Burcsu, 2001).

infinity of admissible states but only a finite number of electrons). The energy state up to

which they are occupied is called the Fermi level, Efm. This has a negative value signifying

that the electron has an incentive to occupy this state, and its magnitude – interpreted

as the work function necessary to remove an electron from the solid – is called the work

function, φM .

Broadly speaking, there are two types of orbitals in a crystal (periodic solid): the valence

state or valence band that is localized and the conduction state or conduction band that is

completely delocalized. Electrons in the conduction band can freely be transported across

the crystal and are responsible for its electrical conductivity. Typically the valence band has

lower energy than the conduction band, and there is a gap between them which is called the

band gap, Eg. If this gap is zero, and if the Fermi level includes portions of the conduction

band, then the solid is a conductor. If on the other hand, the band gap is not zero and the

Fermi level is below the conduction band, the solid is an insulator.

At finite temperature and in the presence of defects (dopants), electrons can be excited to

cross the band gap from the valance band to the conduction band even in an insulator. Such

a solid acquires some conductivity and is called a semiconductor. Clearly, there is no sharp

distinction between an insulator and a semiconductor. An insulator at low temperature

can become a semiconductor at a high temperature, it all depends on the energy gap, the

temperature and the impurity level. Roughly speaking, the energy gap in most important
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semiconductors is less than 2 eV and frequently as low as a few tenths of an electron volt

(Ashcroft and Mermin, 1976). For example, at room temperature, silicon and germanium,

the most widely used semiconductors have an energy gap of 1.12 eV and 0.66 eV respectively

(Sze, 1981).

Ferroelectric perovskites are insulators in general. For example, the band gap for BaTiO3

is 3.0 eV, and PbZr0.40Ti0.60O3 is 3.4 eV (Scott et al., 1999). However, because large amount

of impurities typically exists in perovskites, they become semiconductors and in order to

investigate some properties concerning impurities or defects, it is crucial to treat them as

such (Scott, 2000; Scott et al., 1999). In the continuum theory we develop, this means that

we introduce a new kinematic quantity, the space-charge density.

Oxygen vacancies as n-type dopants BaTiO3 and PZT are typically p-type semi-

conductors in bulk if undoped (Scott, 2000). This is because there is always a greater

abundance of impurities such as Na, Al, Fe, Mg in the starting growth materials than there

are high-valence impurities. These impurities are almost always substitutional in ABO3

perovskites, with Na+1 going in for Ba+2 or Pb+2, Al+3, Fe+3 or Mg+2 for Ti+4.

This can be changed in thin films by surface donor states, which are apt to create n-type

inversion layers near the surface. It is known that the diffusion of electrode materials into

the semiconducting dielectric films can produce an n-type surface layer on an otherwise p-

type semiconductors, and this is the process that may occur in many ferroelectric memory

films, including PZT/Pt, SBT/Pt and BST†/Pt.

It is also possible to prepare n-type ferroelectric perovskites in bulk by growing specimen

in an oxygen-poor atmosphere. This is typically the case in thin films where oxygen loss

at high temperature is quenched into the room temperature. When oxygen is lost, it exits

the crystal as neutral O2, leaving behind two electrons as illustrated in Fig. 2.7. The

vacancy thus behaves as a donor with a binding energy of 1.0 eV (Waser, 1991; Zhang,

2004a). At room temperature, many of these electrons are thermally freed from the vacancy

sites to form an n-type semiconductors. Oxygen vacancies can also become mobile at high

temperature. Therefore we introduce the concentration of oxygen vacancies as an additional

kinematic quantity in the continuum model developed in Chapter 3.

Metal-semiconductor junction When two metals with different Fermi levels or

work functions are brought into contact, the electrons move from the surface of one to the
†Barium strontium titanate BaxSr1−xTiO3.
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Figure 2.7: Formation of oxygen vacancies.

surface of the other till they reach the same chemical potential (matched Fermi levels) on

both sides. The surface charges on each metal gives rise to a potential in the interior that

uniformly shifts all of the bulk levels together with the chemical potential. Since the shift

is uniform, the bulk properties in the interior are unaffected (Ashcroft and Mermin, 1976).

Similarly, when one metal and one semiconductor with different Fermi levels are put

together, the electrons in the metal and the free carriers in the semiconductor redistribute

themselves near the interface, so that when equilibrium is reached, the Fermi level on both

sides are the same. However, compared to metals which have large amount of electrons,

semiconductors usually have only limited free carriers. Hence, a certain region in the semi-

conductor in the vicinity of the junction will be practically depleted of mobile carriers. This

region is called depletion region or depletion layer, its width is called depletion layer width.

All the potential drops/raises caused by charge redistribution therefore takes place in the

semiconductor, mostly in the depletion region. This changes the band structure, known as

band-bending. Nevertheless, like metals, this potential does not affect the bulk properties

of the semiconductor far away from the contact interface.

To understand the orders of magnitude, we take a quick heuristic look at the situation

when Platinum and BaTiO3 crystal with n-type doping are brought together. Fig. 2.8 is

the energy diagram before and after contact is made. The Fermi level EPt
fm of Platinum is

−5.3 eV, corresponding to φM of 5.3 V. The constants of the band structure of BaTiO3 are

chosen to be (Scott, 2000): Ec = −3.6 eV, Ed = −4.0 eV, Ea = −6.2 eV, Ev = −6.6 eV,

where Ec is the energy at the bottom of the conduction band, Ev the energy on the top of

the valence band, Ed, Ea the donor and acceptor level respectively. After contact is made,

the electrons from the conduction band cross over into Pt in search of lower energy. The

outcome is a built-in potential in the BaTiO3 side, and a potential barrier between Platinum
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Figure 2.8: Energy diagrams for a junction between Pt and n-type BaTiO3 before contact
(a) and after contact (b).

and BaTiO3 crystal. This barrier is called Schottky barrier. From Fig. 2.8, we notice that

the barrier in the Platinum side is higher than the one in BaTiO3 side.

The Schottky barrier height, φB, is defined as the potential difference between the

Fermi energy of the metal and the band edge where the majority carriers reside (Solymar

and Walsh, 1984), which is the conduction band in our case. Therefore,

φB = φM − χe = 1.7V, (2.5)

where χe is the electron affinity of BaTiO3, and it is equal to |Ec|/e. This barrier has to be

overcame before any leakage current into the ferroelectric. This points to the importance of

the choice of electrode through its work function. The higher the work function, the higher

is the Schottky barrier.

The built-in potential, φbi, is equal to potential difference between the Fermi levels of
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Figure 2.9: The junction of Fig. 2.8 under forward bias. The potential barrier for electrons
on the semiconductor side is reduced by eU .

both sides before contact, i.e.,

φbi =
EBT

fm −EPt
fm

e
≈ 1

2e
(Ec + Ed − 2EPt

fm) = 1.5 V. (2.6)

The last equality comes from the fact (Ashcroft and Mermin, 1976) that

EBT
fm ≈ Ec + Ed

2
= −3.8 eV (2.7)

for n-type dominant semiconductors.

In light of the built-in potential in the interior, we have a large gradient (electric field)

near the electrode. This field, may drive the diffusion of oxygen vacancies.

Finally, in equilibrium, the number of electrons crossing over the barrier from both sides

is the same. When a forward potential is applied, the electrons from BaTiO3 into Platinum

will increase exponentially, while the electron current from Platinum to BaTiO3 remains

the same (Fig. 2.9), that is, the junction acts like a rectifier. The junctions of this kind

are usually referred to as Schottky barrier diodes or Schottky diodes‡. However, a Schottky

barrier can be transformed to an Ohmic contact if there is a heavily doped region near

the interface such that the depletion layer becomes thin enough to allow electrons tunnel

through the barrier (Fig. 2.10). In this case, the interface becomes conductive.

‡However, the name Schottky comes from another effect called Schottky effect which deals with the image-
force-induced lowering of potential barriers (Solymar and Walsh, 1984).
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2.3 Ferroelectric Fatigue in Ferroelectric Thin Films

Ferroelectric fatigue is defined as the loss of switchable polarization with increasing number

of bipolar switchings as shown in Fig. 2.11. It is one of the two critical issues (the other

is dielectric breakdown) which has hindered the commercialization of ferroelectric memory

devices, and therefore received considerable attention in the last decade. A large number

of experiments have been conducted to investigate the possible cause of fatigue. Based

on experimental observations, various mechanisms have been postulated, many of them

interlinked. Yet none are unanimously accepted. Here, we give a brief review of the existing

experiments mainly concerning two microscopic mechanisms: electronic and ionic charge

trapping.§ For more detailed discussion, see Scott (2000), Damjanovic (1998), Shaw et al.

(2000) and Tagantsev et al. (2001).

Electrons and holes injected from the electrodes into the ferroelectric film can be trapped

at deep levels and become immobilized producing simple charge defects. Fatigue mecha-

nisms involving the injection/trapping of electrons/holes are called electronic charge trap-

ping mechanism. Since oxygen vacancies are the most mobile ionic defects in perovskites,

fatigue mechanisms involving redistribution of oxygen vacancies are called ionic charge

trapping mechanism.

The strongest evidence for ionic charge trapping is the discovery of the almost fatigue-

free YBCO/PZT/YBCO (Ramesh et al., 1992) and Pt/SBT/Pt (De Araujo et al., 1995)

capacitors compared to the pronounced fatigue in Pt/PZT/Pt capacitors. The fact that

the use of oxide electrodes in PZT dramatically improves its performance, and that SBT
§We focus on electric fatigue here, for mechanical fatigue caused by microcracking, please refer to Lynch

et al. (1995); Lynch (1998); Park and Sun (1995); Kim and Jiang (1996); Zhu and Yang (1999); McMeeking
(2001); Arias et al. (2004).
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Figure 2.11: Ferroelectric fatigue (Damjanovic, 1998).

which has a complicated oxide-perovskite layer structure has low fatigue suggests a link

between oxygen vacancies and fatigue. In addition, oxygen vacancy redistribution during

polarization fatigue has also been reported (Scott et al., 1991; Sanchez et al., 1991).

Warren et al. (1994) conducted a series experiments on PZT thin films under different

conditions: 1) an ultra violet light (UV)/bias combination; 2) a temperature/bias combina-

tion; 3) electrical fatigue. Their results show that switching polarization can be suppressed

by any of these processes and can all be partially restored by an UV/saturating bias com-

bination. In the case of UV/bias combination, the suppression of switchable polarization is

maximized by partially switching the film with a bias near the switching threshold and by

illuminating with band-gap light (whose frequency is such that its energy is equal to Eg).

Since large amount of electrons can be generated either by band-gap light or by thermal acti-

vation, they argued that these three different fatigue are essentially the same in mechanism:

the electrons generated either by optical, thermal, or electrical process may get trapped in

the domain walls where they are energetically favorable, therefore the main mechanism for

ferroelectric fatigue is domain wall pinning caused by electronic charge trapping. The fact

all three fatigue can be partially restored by UV/bias combination is explained as the re-

combination of trapped charges in domain walls with holes generated by UV illumination.

They concluded that ionic defects such as oxygen vacancies may only peripherally involved

in the ferroelectric fatigue in Pt/PZT/Pt capacitors.
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In a later work, Warren et al. (1995) also conducted their experiments in a reduced

annealing (oxygen deficient) process. They found that oxygen-poor annealing can also

cause suppression of switchable polarization, and this suppression can not be restored by

UV/bias combination but can be restored by an oxygen-rich re-annealing. Based on this

discovery, they felt that oxygen vacancy also play a role in ferroelectric fatigue.

Another experiment that favors oxygen vacancy mechanism was reported by Gütter

et al. (1995). They found that fatigue leads to changes in phonon frequencies and Raman

cross sections in PbZr0.48TiO3. Simultaneously, a characteristic IR absorption band near

4000 cm−1 shifts towards higher energies. The results indicate that fatigue in PZT can be

related to an increase of the local lattice distortion and a formation of defects both caused

by oxygen loss from the samples.

Cillessen et al. (1997) reported a significant thickness dependence of switching voltage in

MgO/LSCO/PZT/Au capacitor, while MgO/LSCO/PZT/LSCO/Ag (heteroepitaxial) and

Si/LSCO/PZT/LSCO/Ag (textured film) showed no such dependence. A simple injection

model (capacitor with a nonlinear resistor) was proposed, the fact it successfully fits the

experimental data supports the electronic charge trapping mechanism.

Du and Chen (1998) reported that an Pt/p-Si/PZT/Pt or Pt/SiO2/PZT/Pt structure

can mitigate the fatigue, while Pt/n-Si/PZT/Pt can not. Based on their results, they

support the electronic charge injection mechanism.

Nagaraj et al. (2001) conducted an investigation on PNZT with different electrodes: Pt,

LSCO and SRO. They found that LSCO/PNZT/LSCO and SRO/PNZT/SRO capacitors

show much superior performance than Pt/PNZT/Pt capacitors. Further, Pt/PNZT/Pt has

significant leakage current relaxation while LSCO/PNZT/LSCO and SRO/PNZT/SRO do

not. The direct implication of their results is that electronic charges are trapped inside the

films, which may account for the fatigue of Pt/PNZT/Pt.

A strong opposition of oxygen vacancy as a fatigue mechanism was voiced by Nuffer

et al. (2001), based on their result that no significant amount of oxygen is released from

PZT during field cycling.

As to the role of domain walls in ferroelectric fatigue, Jang and Yoon (1999) investi-

gated the performance of capacitors made of various stacking sequences of sol-gel prepared

PZT/PZ layers (PZ is anti-ferroelectric). The results show that capacitors with only two PZ

layers (PZ1/PZ5/PZ1) maintain single hysteresis loop, while show almost no fatigue. The
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results was interpreted as less stress and less defects in domain walls can improve fatigue

performance since antiferroelectrics comprise of mainly 180o domains.

In addition, Bornand et al. (2000) also reported orientation dependence of fatigue behav-

ior in relaxor ferroelectric-PbTiO3 thin films. It was found that highly <001> pseudo-cubic

oriented PYbN-PT/SRO/LAO have better fatigue resistance than highly 〈111〉 pseudo-

cubic oriented PYbN-PT/SRO/STO films. They argued that the difference between domain

structures in those materials is the reason for this difference.

Besides the experimental efforts, researchers have also begun to conduct first principle

or Monte Carlo simulation concerning the role of oxygen vacancies on domain wall pinning.

He and Vanderbilt (2003) investigated the interaction of oxygen vacancies and 180o domain

walls in tetragonal PbTiO3 using density-functional theory. Their calculations show that

the vacancies do have a lower formation energy in domain walls than in the bulk, and thus

can be trapped in domain walls. Similarly, Calleja et al. (2003) conducted a Monte Carlo

simulation on 90o domain walls in orthorhombic CaTiO3, the binding energy of an oxygen

vacancies in the domain wall with respect to the bulk is calculated to be about 1.2 eV

smaller. Both of the calculations indicatd that oxygen vacancy may be a reason of domain

main wall pinning.

Alternatively, Brennan (1993) proposed: defects (most likely, oxygen vacancies) generate

field energy, therefore are more likely to induce tail to tail domain walls. The compensation

of the Coulomb potential of a vacancy by the opposing domains makes the site less attractive

to ions of the same species, at the same time, defects of the same type tends to align together

to share a domain walls in order to reduce the energy. However, this model is still in scenario

stage, more quantitative models are needed.

At the macroscopic level, blocking layer model (Larsen et al., 1994), passive layer model

(Tagantsev et al., 1995a), seeds inhibition (Colla et al., 1998) and domain wall pinning

(Colla et al., 1998) have been proposed. Unfortunately none of them are comprehensive

and able to capture all the phenomena accompanied with ferroelectric fatigue.
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Chapter 3

Continuum Model

In this chapter, we present a comprehensive continuum model that treats ferroelectrics as a

deformable, polarizable and (wide band-gap) semiconducting solids where oxygen vacancies

act as donors. Polarizable means that the material may be spontaneously polarized and

semiconducting means that the solid may be charged.

We introduce the kinematics in Section 3.1. In Section 3.2, we discuss space charge

density in semiconducting solids. We introduce the electrostatic theory for ferroelectrics in

Section 3.3. We introduce the concept of Maxwell stress and derive various jump conditions

in an electrostatic field containing deformable polarizable bodies.

In Section 3.4, we calculate the rate of the dissipation of the whole system in any process.

We then show that this can be written as a sum of products of conjugate pairs - generalized

velocity (time rate of change of some quantity or flux of some quantity) times a generalized

force (a quantity that depends on the state and not the rate of the change of the state).

Following arguments similar to those of Coleman and Noll (1963), we can use the dissi-

pation inequality (second law of thermodynamics) to write down the governing equations in

Section 3.5 with defects, free charges, polarization, electric potential and elastic deformation

as variables without making any a priori assumptions on the space charge distribution and

the polarization.

We conclude this chapter with a discussion of special cases.

3.1 Kinematics

Consider a ferroelectric semiconducting crystal in an external field shown in Fig. 3.1. It

occupies a region Ω ⊂ R3 in the reference configuration. A deformation y : Ω → R3 brings
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Figure 3.1: A ferroelectric semiconducting system in an external field generated by conduc-
tors Cq and Cv: Cq with fixed charge Q is fixed in space by external forces, while Cv with
fixed potential deforms with the ferroelectric body Ω.

it to the proximity of electrodes Cv ⊂ R3 with fixed potential φ̂ and Cq ⊂ R3 with fixed

charge Q under the action of traction t. The deformation gradient is F = ∇xy, and we

assume that the deformation is invertible and J = detF > 0 almost everywhere in Ω.

We find it convenient to choose the undistorted non-polar phase at Curie temperature as

our reference configuration. We invoke the Cauchy-Born rule (Ericksen, 1984) here, which

states that the overall distortion of the lattice follows the macroscopic deformation gradient,

or

ei = ∇xy e0
i , i = 1, 2, 3 (3.1)

where ei are e0
i are the lattice vectors in the reference and current configuration respectively.

We denote by p : y(Ω) → R3 the polarization of ferroelectric material per unit deformed

volume, and by p0 : Ω → R3 the polarization per unit undeformed volume. We have

p0(x) = (det∇xy(x))p(y(x)) . (3.2)

We shall make the following assumption for later. The conductor Cq is fixed in space but

the conductor Cv deforms with the body with negligible elastic energy. This is reasonable

since electrodes are usually very thin compared to the body.
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3.2 Space Charge Density in Semiconducting Solids

The total charge density at any point in a semiconductor in current configuration is (Ashcroft

and Mermin, 1976)

ρ = e
(
zNd − z′Na − nd − nc + pa + pv

)
(3.3)

where Nd is the density of donors (number per unit deformed volume), Na the density

of acceptors, nd the density of electrons in donor’s level, nc the density of electrons in

conduction band, pa the density of holes in acceptor’s level, pv the density of holes in

valence band, z and z′ the valency of donors and acceptors respectively, and e the coulomb

charge per electron.

We assume that oxygen vacancies are the dominant impurities in the semiconductor

being considered∗. Since oxygen vacancies act as donors, we may set Na = pa = 0 in

Eq. (3.3). Further, electrons and holes have much higher mobility than defects, so we group

defect-based charges and electronic charges separately. Thus,

ρ = e(zNd − nd − nc + pv) = ezNd + ρc (3.4)

with

ρc = e(−nd + pv − nc) . (3.5)

We call ρc free charge density.

We define the counterparts of Nd, ρ, ρc in the reference configuration as Nd0, ρ0, ρc0

(number per unit undeformed volume) respectively. Assuming that no oxygen vacancies or

charges are generated in the interior, we have the following conservation principles:

Ṅd0 = −∇x · JNd0
, (3.6)

ρ̇c0 = −∇x · Jρc0 (3.7)

where JNd0
and Jρc0 are the flux of defects and free charges in the reference configuration

respectively.

We point out here that the dot on Nd0 and ρc0 denotes the material time derivative of
∗We could proceed analogously for any other dopants.
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Nd0 and ρc0 respectively. For any variable ξ defined on y(Ω),

ξ̇(y(x, t), t) =
∂ξ(y(x, t), t)

∂t


x

=
∂ξ(y, t)

∂t

∣∣∣∣∣
y

+ v · ∇yξ(y, t) (3.8)

where we call ∂ξ(y,t)
∂t |y the spatial time derivative of ξ and denote it as

o
ξ.

3.3 Electric Field

The polarization and the space charges in the ferroelectric body as well as the charges on

the surfaces of conductors generate an electric field in all space. The electrostatic potential

φ at any point in R3 is obtained by solving Maxwell equation:

∇y · (−ε0∇yφ + pχ(y(Ω, t))) = ρχ(y(Ω, t)) in R3\(Cv ∪ Cq),

∇yφ = 0 on Cv ∪ Cq (3.9)

subject to

∫

∂Cq

∂φ

∂n̂
dSy = −Q

ε0
,

φ = φ̂ on Cv,

φ → 0 as |y| → ∞, (3.10)

where ε0 is the permittivity coefficient of the free space, and χD is the characteristic function

of domain D.

Precisely, φ ∈ H1(R3) satisfies the following:

−
∫

R3

(−ε0∇yφ + pχ(y(Ω)) · ∇ψ dy =
∫

y(Ω)
ρψ dy +

∫

∂Cv∪∂Cq

σ ψ dSy. (3.11)
∫

∂Cq

σ dSy = Q on Cq, (3.12)

φ = φ̂ on Cv (3.13)

for each ψ ∈ H1(R3), where σ : ∂Cv ∪∂Cq → R measurable is the surface charge density on
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Figure 3.2: An interface separating D− from D+ in an electric field. D− is a dielectric or
ferroelectric body with polarization p; D+ can be a conductor or vacuum; σ is the surface
charge density on the interface; n̂ is the unit norm of interface, pointing to D+ from D−;
and v is the velocity of a material point on the interface.

the interface, and it is defined as

σ = J−ε0∇yφ + pχ(y(Ω)K · n̂. (3.14)

Here J K denotes the jump across an interface: JξK = ξ+ − ξ−, with ξ being some variable

defined in both domains; n̂ is the unit norm of the interface, pointing to D+ from D−.

Although φ is continuous in R3, other quantities like ∇yφ can be discontinuous across

some interfaces, as Eq. (3.14) shows. Here we discuss some jump conditions in a more general

setting for later use. In particular, we shall be interested in time-dependent processes. So

the polarization p and the deformation y could depend on time, and we solve Eq. (3.11)-

(3.13) at each time to find the electric potential.

The jump condition across any interface separating D+ and D− is (Fig. 3.2),

J−ε0∇yφ + pK · n̂ = σ . (3.15)

If we assume as shown in Fig. 3.2 that p = 0 in D+, and if p denotes the polarization in

D− (for example, D+ can be a conductor or vacuum and D− a dielectric or ferroelectric

body), then Eq. (3.15) can be rewritten as

J∇yφK · n̂ = − 1
ε0

p · n̂− σ

ε0
. (3.16)
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Now, let ŷ(α) be a curve on the interface at time t0 parameterized by α. We have, from

the continuity of φ,

φ−(ŷ(α)) = φ+(ŷ(α)) . (3.17)

Differentiating it with respect to α, we have

J∇yφK · ∂ŷ
∂α

= 0. (3.18)

Since this holds for any curve on the interface, we obtain continuity of ∇yφ along the

tangent, i.e.,

J∇yφK · t̂ = 0, ∀ n̂ · t̂ = 0. (3.19)

Combining this with Eq. (3.16), we obtain

J∇yφK = −
(

1
ε0

p · n̂ +
σ

ε0

)
n̂ . (3.20)

Now consider a material point x on the interface. Let us assume that the interface does

not propagate in the reference configuration, so that particle velocity remains continuous

across the interface. Since electric potential φ is continuous, we have

φ−(y(x, t), t) = φ+(y(x, t), t), (3.21)

so that
˙

φ−(y(x, t), t) = ˙
φ+(y(x, t), t), (3.22)

or,
o

φ− +∇yφ− · v =
o

φ+ +∇yφ+ · v . (3.23)

We point out that φ̇ here denotes the material time derivative of φ, and
o
φ denotes the

spatial time derivative of φ. Hence,

J
o
φK = −J∇yφK · v (3.24)

where v is the particle velocity of the material point x.
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Plug Eq. (3.20) into Eq. (3.24) to find

J
o
φK =

1
ε0

(p · n̂)(v · n̂) +
σ

ε0
(v · n̂) . (3.25)

Another important quantity we will use later is that of the Maxwell stress tensor defined

as

TM = E⊗D− ε0
2

E ·EI (3.26)

where E = −∇yφ is the electric field and D = ε0E + pχ(Ω−) is the electric displacement.

The discontinuity of E or D across an interface leads to the discontinuity of TM. By a di-

rect calculation on an interface as above between a ferroelectric and vacuum or a conductor,

we have

JTMn̂K = J(E⊗D− ε0
2

E ·EI) · n̂K

= 〈E〉 JD · n̂K+ JEK 〈D〉 · n̂− ε0(〈E〉 · JEK)n̂

= 〈E〉σ + JEK
(

ε0〈E〉 · n̂ +
1
2
p · n̂

)
− ε0(〈E〉 · JEK)n̂

=
(
E− +

JEK
2

)
σ + ε0JEK〈E〉 · n̂ +

1
2
(p · n̂)JEK− ε0〈E〉 · ((JEK · n̂) n̂) n̂

=
(
E− +

JEK
2

)
σ +

1
2
(p · n̂)JEK

= E−σ +
1

2ε0
(p · n̂ + σ)2n̂ . (3.27)

The second equality uses the identity

JφψK = JφK〈ψ〉+ 〈φ〉JψK (3.28)

where

〈φ〉 =
φ+ + φ−

2
(3.29)

is the average of the limiting values of a discontinuous quantity φ. The third recalls the

definition of D and the assumption that p = 0 on D+ and the fourth the continuity of

E = −∇yφ along the tangential direction. The last equality is obtained by using Eq. (3.20).
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3.4 Rate of Dissipation of the System

The rate of dissipation of the whole system D is defined as the difference between the rate

of external working F and the rate of the change of the total energy dE/dt:

D = F − dE
dt

. (3.30)

3.4.1 Rate of External Working

The rate of external working F should include the mechanical work done by external forces,

the electric work done by the electrodes, and the chemical energy flux from Cv into Ω:

F = φ̂
d

dt

∫

y(∂Cv)
σ dSy +

∫

y(∂sΩ)
t · ẏ dSy

−
∫

∂Ω
µNd0

JNd0
· m̂ dSx −

∫

∂Ω
µρc0Jρc0 · m̂ dSx

(3.31)

where µNd0
and µρc0 are respectively the chemical potential carried by the flux of the

oxygen vacancies Nd0 and that of charges ρc0, dSy and dSx are the differential area in the

current and reference configuration respectively, m̂ the normal to surface in the reference

configuration, and n̂ its counterpart in the current configuration.

Using the divergence theorem and Eq. (3.6) and (3.7), we can rewrite F as

F = φ̂
d

dt

∫

y(∂Cv)
σ dSy +

∫

y(∂sΩ)
t · ẏ dSy

−
∫

Ω
(∇xµNd0

· JNd0
+∇xµρc0 · Jρc0) dx

+
∫

Ω

(
µNd0

Ṅd0 + µρc0 ρ̇c0

)
dx .

(3.32)

3.4.2 Total Energy of the System

The total energy of the system consists of two parts: the energy stored in the ferroelectric

material and the electrostatic field energy generated by external and internal sources, i.e.,

E =
∫

Ω
W0 dx +

ε0
2

∫

R3

|∇φ|2 dx . (3.33)

We will justify this statement and discuss related issues in Chapter 6. Here, W0 is the

stored energy per unit reference volume in the ferroelectric material. We make the con-
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Figure 3.3: A simplified version of Fig 3.1: Sv is the part of ∂y(Ω) with fixed potential.

stitutive assumption that it depends on defect density Nd0, free charge density ρc0, po-

larization p0, polarization gradient ∇xp0, and deformation gradient ∇xy, i.e., W0 =

W0(Nd0, ρc0,p0,∇xp0,∇xy). We require the stored energy density W0 to satisfy frame

indifference and material symmetry.

Recall that the electrical potential φ is obtained by solving Eq. (3.9) and its boundary

conditions (Eq. (3.10)). Recall also the assumption that Cq is fixed and Cv deformable with

zero elastic energy. A better way to picture this is Fig. 3.3, where we idealize Cv as an

interface Sv = y(Sv0) between the vacuum and semiconductor y(Ω) on which the potential

is fixed. We also denote Sf = ∂y(Ω)\Sv as the interface where y(Ω) has direct contact with

vacuum.

3.4.3 Rate of Change of Total Energy

The rate of change of total energy in Eq. (3.30) is,

dE
dt

=
∫

Ω
Ẇ0 dx +

d

dt

[
1
2

∫

R3

ε0|∇yφ|2 dy

]
. (3.34)

We can directly calculate the first term on the right-hand side of Eq. (3.34),

∫

Ω
Ẇ0(Nd0, ρc0,p0,∇xp0,∇xy) dx

=
∫

Ω

(
∂W0

∂Nd0
Ṅd0 +

∂W0

∂ρc0
ρ̇c0

)
dx

+
∫

Ω

{
∂W0

∂p0
· ṗ0 −

[
∇x ·

(
∂W0

∂∇xp0

)]
· ṗ0

}
dx +

∫

∂Ω

(
∂W0

∂∇xp0
m̂

)
· ṗ0 dSx
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−
∫

y(Ω)

[
∇y ·

(
1
J

∂W0

∂F
FT

)]
· v dy +

∫

∂y(Ω)

(
1
J

∂W0

∂F
FT n̂

)
· v dy . (3.35)

We have used the divergence theorem in the reference configuration to obtain the second

and third integral on the right, and the divergence theorem in the current configuration to

obtain the last two integrals. We clarify using indicial notation that

[
∇x ·

(
∂W0

∂∇xp0

)]
· ṗ0 =

(
∂W0

∂p0I,J

)

,J

ṗ0I ,

(
∂W0

∂∇xp0
m̂

)
· ṗ0 =

∂W0

∂p0I,J
m̂J ṗ0I ,

[
∇y ·

(
1
J

∂W0

∂F
FT

)]
· v =

(
1
J

(
∂W0

∂FiI

)
FjI

)

,j

vi,

(
1
J

∂W0

∂F
FT n̂

)
· v =

1
J

(
∂W0

∂FiI

)
FjIvin̂j

in Eq. (3.35).

The calculation of the second term in Eq. (3.34), the change of electrostatic field energy,

needs some manipulation. The difficulty arises from the fact that the electric energy exists

in all space. So we follow a procedure similar to that used by James (2002) and divide the

calculation into three steps in Sections 3.4.4 to 3.4.6. The final result is shown in Eq. (3.44).

3.4.4 Rate of Change of Field Energy: Step 1

First, by setting ψ = φ in Eq. (3.11), we have

∫

R3

ε0∇yφ · ∇yφdy =
∫

y(Ω)
∇yφ · p dy +

∫

y(Ω)
φρ dy +

∫

Sv

φ̂ σ dSy +
∫

∂Cq

φσ dSy . (3.36)

Therefore,

d

dt

[∫

R3
ε0|∇yφ|2 dy

]

=
d

dt

{∫

y(Ω)
∇yφ · p dy +

∫

y(Ω)
φρ dy

}
+ φ̂

d

dt

∫

Sv

σ dSy +
∫

∂Cq

φ̇ σ dSy

=
d

dt

{∫

Ω
∇yφ · p0 dx +

∫

Ω
φρ0 dx

}
+ φ̂

d

dt

∫

Sv

σ dSy +
∫

∂Cq

φ̇ σ dSy

=
∫

Ω

d

dt
(∇yφ) · p0 dx +

∫

Ω
∇yφ · ṗ0 dx +

∫

Ω
φ̇ ρ0 dx +

∫

Ω
φ ρ̇0 dx
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+ φ̂
d

dt

∫

Sv

σ dSy +
∫

∂Cq

φ̇ σ dSy

=
∫

Ω
(∇y

o
φ + v · ∇y∇yφ) · p0 dx +

∫

Ω
∇yφ · ṗ0 dx

+
∫

Ω
(

o
φ + v · ∇yφ) ρ0 dx +

∫

Ω
φ ρ̇0 dx + φ̂

d

dt

∫

Sv

σ dSy +
∫

∂Cq

φ̇ σ dSy

=
∫

y(Ω)
(∇y

o
φ + v · ∇y∇yφ) · p dy +

∫

y(Ω)
(

o
φ + v · ∇yφ) ρ dy

+
∫

Ω
∇yφ · ṗ0 dx +

∫

Ω
φ ρ̇0 dx + φ̂

d

dt

∫

Sv

σ dSy +
∫

∂Cq

φ̇ σ dSy . (3.37)

Notice that we use the fact that Cq is the conductor with fixed charged Q in deriving the

second equality.

3.4.5 Rate of Change of Field Energy: Step 2

Second, we multiply
o
φ on both sides of Maxwell equation (3.9), and integrate over R3 to

obtain ∫

R3

∇y · (−ε0∇yφ + pχ(y(Ω)))
o
φdy =

∫

R3

ρχ(y(Ω))
o
φdy . (3.38)

We clarify that these integrals should be interpreted in classical sense rather than in the

sense of distribution. The left side of Eq. (3.38) therefore can be split to three parts on

which divergence theorem can be applied:

∫

R3

∇y · (−ε0∇yφ + pχ(y(Ω)))
o
φdy

=
∫

y(Ω)
∇y · (−ε0∇yφ + p)

o
φdy +

∫

Cq

∇y · (−ε0∇yφ)
o
φdy

∫

R3\(y(Ω)∪Cq)
∇y · (−ε0∇yφ)

o
φdy

= −
∫

y(Ω)
∇y

o
φ · (−ε0∇yφ + p) dy

+
∫

S−v

o
φ (−ε0∇yφ + p) · n̂ dSy +

∫

S+
f

o
φ (−ε0∇yφ + p) · n̂ dSy

−
∫

Cq

∇y

o
φ · (−ε0∇yφ) dy +

∫

∂C−q

o
φ (−ε0∇yφ) · n̂q dSy

−
∫

R3\(y(Ω)∪Cq)
∇y

o
φ · (−ε0∇yφ) dy +

∫

∂C+
q

o
φ (−ε0∇yφ) · (−n̂q) dSy

+
∫

S+
v

o
φ (−ε0∇yφ) · (−n̂) dSy +

∫

S+
f

o
φ (−ε0∇yφ) · (−n̂) dSy
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=
∫

R3

ε0∇y

o
φ · ∇yφdy −

∫

y(Ω)
∇y

o
φ · p dy −

∫

∂Cq

J
o
φ(−ε0∇yφ)K · n̂q dSy

−
∫

Sv

J
o
φ(−ε0∇yφ + p)K · n̂ dSy −

∫

Sf

J
o
φ(−ε0∇yφ + p)K · n̂ dSy . (3.39)

Here, n̂, n̂q are the outward unit norms of y(Ω) and Cq respectively, S−v , S−f the inner

surfaces of y(Ω), S+
v , S+

f the outer surfaces of y(Ω), C−
q and C+

q the inner and outer

surfaces of Cq respectively. And the last equality comes from Eq. (3.15) and the fact that

σ = 0 on Sf .

Since Cq is fixed in space, and
o
φ = φ̇ on Cq, Eq. (3.38) and (3.39) lead to

∫

R3

ε0∇yφ · ∇y

o
φdy =

∫

y(Ω)
∇y

o
φ · p dy +

∫

y(Ω)

o
φρ dy +

∫

∂Cq

φ̇ σ dSy

+
∫

Sv

J
o
φ(−ε0∇yφ + p)K · n̂ dSy +

∫

Sf

J
o
φ(−ε0∇yφ + p)K · n̂ dSy . (3.40)

Therefore, by using Reynolds’ transport theorem, we have

d

dt

[
1
2

∫

R3

ε0|∇yφ|2 dy

]

=
ε0
2

∫

y(Ω)

∂

∂t
|∇yφ|2 dy +

ε0
2

∫

R3\(y(Ω)+Cq)

∂

∂t
|∇yφ|2 dy

− ε0
2

∫

∂y(Ω)
J |∇yφ|2Kv · n̂ dSy

=
∫

R3

ε0∇yφ · ∇y

o
φ dy − ε0

2

∫

Sv+Sf

J |∇yφ|2Kv · n̂ dSy

=
∫

y(Ω)
∇y

o
φ · p dy +

∫

y(Ω)

o
φ ρ dy +

∫

∂Cq

φ̇ σ dSy

+
∫

Sv

J
o
φ(−ε0∇yφ + p)K · n̂ dSy − ε0

2

∫

Sv

J |∇yφ|2Kv · n̂ dSy

+
∫

Sf

J
o
φ(−ε0∇yφ + p)K · n̂ dSy − ε0

2

∫

Sf

J |∇yφ|2Kv · n̂ dSy . (3.41)

Let S = Sv
⋃

Sf = ∂y(Ω). Using the jump conditions (3.15), (3.20) and (3.25), we can

simplify the last four terms in Expression (3.41):

∫

S
J

o
φ (−ε0∇yφ + p)K · n̂ dSy − ε0

2

∫

S
J |∇yφ|2Kv · n̂ dSy

=
∫

S
〈

o
φ〉J−ε0∇yφ + pK · n̂ dSy +

∫

S
J

o
φK〈−ε0∇yφ + p〉 · n̂ dSy
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− ε0

∫

S
〈∇yφ〉J∇yφKv · n̂ dSy

=
∫

S
〈

o
φ〉σ dSy +

∫

S
J

o
φK〈p〉 · n̂ dSy

− ε0

∫

S
J

o
φK〈∇yφ〉 · n̂ dSy − ε0

∫

S
〈∇yφ〉J∇yφKv · n̂ dSy

=
∫

S

[
φ̇− v · 〈∇yφ〉

]
σ dSy +

1
2ε0

∫

S
(p · n̂)2(v · n̂) dSy

+
1

2ε0

∫

S
σ (p · n̂)(v · n̂) dSy

=
∫

S
φ̇ σ dSy −

∫

S
v ·

[
∇yφ− +

1
2
J∇yφK

]
σ dSy

+
1

2ε0

∫

S
(p · n̂)2(v · n̂) dSy +

1
2ε0

∫

S
σ (p · n̂)(v · n̂) dSy

=
∫

S
φ̇ σ dSy −

∫

S
σ v · ∇yφ− dSy

+
1

2ε0

∫

S
σ(p · n̂)(v · n̂) dSy +

1
2ε0

∫

S
σ2(v · n̂) dSy

+
1

2ε0

∫

S
(p · n̂)2(v · n̂) dSy +

1
2ε0

∫

S
σ (p · n̂)(v · n̂) dSy

=
∫

S
φ̇ σ dSy −

∫

S
σ v · ∇yφ− dSy +

1
2ε0

∫

S
(p · n̂ + σ)2 (v · n̂) dSy

=
∫

S
φ̇ σ dSy +

∫

S
JTMn̂K · v dSy

=
∫

S
JTMn̂K · v dSy . (3.42)

The last equality comes from the fact that φ = φ̂, thus φ̇ = 0 on Sv, and σ = 0 on Sf .

Substituting Eq. (3.42) into Eq. (3.41), we have

d

dt

[
1
2

∫

R3

ε0|∇yφ|2 dy

]
=

∫

y(Ω)
∇y

o
φ · p dy +

∫

y(Ω)

o
φρ dy

+
∫

∂Cq

φ̇ σ dSy +
∫

Sv
S

Sf

JTMn̂K · v dSy .

(3.43)
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3.4.6 Rate of Change of Field Energy: Step 3

Now, subtracting Eq. (3.43) from Eq. (3.37), we obtain,

d

dt

[
1
2

∫

R3

ε0|∇yφ|2 dy

]

=
∫

Ω
∇yφ · ṗ0 dx +

∫

Ω
φ ρ̇0 dy +

∫

y(Ω)
v · ∇y∇yφ · p dy

+
∫

y(Ω)
v · ∇yφρ dy + φ̂

d

dt

∫

Sv

σ dSy −
∫

∂y(Ω)
JTMn̂K · v dSy .

(3.44)

3.4.7 Rate of Dissipation: the Final Expression

Putting together Eq. (3.30), (3.32), (3.34), (3.35), (3.44), we now have the final expression

for the rate of dissipation of the whole system:

D = F − dE
dt

= −
∫

Ω
(∇xµNd0

· JNd0
+∇xµρc0 · Jρc0) dx

+
∫

Ω

[(
µNd0

− ∂W0

∂Nd0
− ezφ

)
Ṅd0 +

(
µρc −

∂W0

∂ρc0
− φ

)
ρ̇c0

]
dx

+
∫

Ω

[
∇x ·

(
∂W0

∂∇xp0

)
− ∂W0

∂p0
− F−T∇xφ

]
· ṗ0 dx−

∫

∂Ω

(
∂W

∂∇xp0
m̂

)
· ṗ0 dSx

+
∫

y(Ω)

[
∇y ·

(
1
J

∂W0

∂F
FT

)
− (∇y∇yφ)p− ρ∇yφ

]
· v dy

−
∫

∂y(Ω)

(
1
J

∂W0

∂F
FT n̂

)
· v dSy

+
∫

∂y(Ω)
JTM n̂K · v dSy +

∫

∂y(Ωs)
t · v dSy. (3.45)

From Eq. (3.45), we can see that the dissipation of the system has three contributions:

the first two integrals on the right-hand side of the equation are the dissipation caused by

the diffusion of vacancies and charges, the third integral is the dissipation caused by the

polarization evolution, and the remaining terms are the contribution from the deformation

of the ferroelectric body.
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3.5 Governing Equations

According to the second law of thermodynamics specialized to isothermal processes that

we are currently considering, the rate of dissipation D should always be greater or equal to

zero. Notice in the expression (3.45) for the rate of dissipation, each term is a product of

conjugate pairs – generalized velocity (time rate of change of some quantity or flux of some

quantity) times a generalized force (a quantity that depends on the state and not the rate

of change of the state). Therefore we may argue as Coleman and Noll (1963) to obtain the

governing equations. Specifically, by considering various processes that have the same state

at some instant of time but different rates and insisting that D ≥ 0 for all these processes,

we conclude that

∇x

(
∂W0

∂∇xp0

)
− ∂W0

∂p0
− F−T∇xφ = 0 in Ω, (3.46)

∂W0

∂∇xp0
m̂ = 0 on ∂Ω, (3.47)

∇y ·
(

1
J

∂W0

∂F
FT

)
− (∇y∇yφ)p− ρ∇yφ = 0 in y(Ω), (3.48)

1
J

∂W0

∂F
FT n̂− JTMn̂K− tχ(y(∂sΩ)) = 0 on ∂y(Ω) (3.49)

and

∂W0

∂Nd0
− µNd0

+ ezφ = 0 in Ω, (3.50)

∂W0

∂ρ0
− µρc0 + φ = 0 in Ω, (3.51)

JNd0
· ∇xµNd0

≤ 0 in Ω, (3.52)

Jρc0 · ∇xµρc0 ≤ 0 in Ω . (3.53)

The first two equations, Eq. (3.46) and (3.47) are, respectively, the equilibrium equation

of polarization and its boundary condition. Eq. (3.48) is the force equilibrium equation

with boundary condition (3.49).

If we define the Cauchy stress tensor as

σ =
1
J

(
∂W0

∂F

)
FT , (3.54)
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and also notice that

− (∇y∇yφ)p− ρ∇yφ = −φ,ijpj − ρφ,i

= −φ,ij(Dj + ε0φ,j)− φ,iDj,j

= −(φ,ijDj + φ,iDj,j)− ε0φ,ijφ,j

= (−φ,iDj),j − (
ε0
2

φ,kφ,kδij),j

=
(
EiDj − ε0

2
|∇yφ|2 δij

)
,j

= ∇y ·
(
E⊗D− ε0

2
E ·EI

)

= ∇y ·TM,

then Eq. (3.48) and (3.49) can then be rewritten as

∇y · (σ + TM) = 0 in y(Ω), (3.55)

σn̂− JTMn̂K− tχ(y(∂sΩ)) = 0 on ∂y(Ω) . (3.56)

We make the additional constitutive assumption that

JNd0
= −K1∇xµN0 , (3.57)

Jρc0 = −K2∇xµρc0 (3.58)

for some positive definite and symmetric tensor K1, K2 to satisfy Eq. (3.52) and (3.53).

K2 is the conductivity of the solid and K1 is the diffusivity of defects.

Eq. (3.50), (3.51), (3.57), (3.58), together with the continuity equations (3.6) and (3.7),

are equations concerning two diffusion processes. The first one is the diffusion of oxygen

vacancies,

Ṅd0 = ∇ ·
(
K1∇

(
∂W0

∂Nd0
+ ezφ

))
, (3.59)

and the second one is the diffusion of free charge,

ρ̇c0 = ∇ ·
(
K2∇

(
∂W0

∂ρc0
+ φ

))
. (3.60)

In summary, Eq. (3.46), (3.54), (3.55), (3.59), (3.60), plus Maxwell equation (3.9) are

the governing equations subject to boundary condition (3.10), (3.47), (3.56), plus suitable
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boundary and initial conditions for Nd0 and ρc0.

We now discuss some special cases.

(i) Transient Conduction

The diffusion of free charges are usually much faster than the diffusion of the defects

(minλ(K2) À maxλ(K1), where λ(K) is an eigenvalue of K). By choice, we can

consider phenomena on timescales on which there is no diffusion of defects but only

transport of free charges. We do so by setting K1 = 0, so that Ṅd0 = 0 and Nd0 is

fixed and given. In this case, we have Eq. (3.46), (3.54), (3.55), (3.60), (3.9) as the

governing equations, plus Eq. (3.47), (3.56), and (3.10) as their boundary conditions.

We point out that the real transportation of free carrier in semiconductors is usually

more complicated than described by Eq. (3.60). In Eq. (3.60), electrons and holes are

assumed to have the same mobility, which is usually not the case. Our derivation can

easily be modified to account for it.

(ii) Defect Diffusion

We now work on a time scale appropriate for the diffusion of the defects. We do so by

assuming K2 = ∞, so that the free charges ρc are always in equilibrium, or ρ̇c0 = 0.

The assumption that K2 = ∞, ρ̇c0 = 0, together with Eq. (3.60), leads to

∂W0

∂ρc0
+ φ = 0 (3.61)

which may be interpreted as constitutive relation between free charge density and

electric potential. If we further assume that W0 is convex in ρc0, we can then invert

Eq. (3.61) to obtain ρc0 = ρc0(φ), or

ρ = ρ(φ,Nd) (3.62)

in the current configuration. As an example we shall use later, for a typical semicon-
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ductor, the charge density in thermal equilibrium state is (Sze, 1981):

ρ(φ, Nd) =− eNcF 1
2
(
Efm − Ec + eφ

KbT
) + eNvF 1

2
(
Ev − eφ−Efm

KbT
)

+ zeNd(x)


1− 1

1 + 1
2exp

(
Ed−eφ−Efm

KbT

)



− z′eNa(x)


1− 1

1 + 1
2exp

(
Efm+eφ−Ea

KbT

)



(3.63)

where Nc and Nv are the effective density of states in the conduction band and in

the valence band respectively, Ec the energy at the bottom of the conduction band,

Ev the energy on the top of the valence band, Ed, Ea the donor and acceptor level

respectively, Kb the Boltzmann constant, T the absolute temperature, F 1
2

the Dirac-

Fermi integral, and Efm the Fermi level of the semiconductor. The first two terms in

Eq. (3.63) calculate the electrons in conduction band and the holes in valence band

respectively, while the last two terms are the contributions from donors and acceptors.

We point out that Efm of the semiconductor varies with its doping type and doping

level. And if the semiconduction is in contact with a metal, Efm should be equal to

the metal’s Fermi level.

Therefore, instead of solving the diffusion equation for ρc0, we only need to solve the

Maxwell equation (3.9) with ρ decided by Eq. (3.63).

If further, we assume that the total number of defects is conserved in Ω, and that

the diffusivity of oxygen vacancies is isotropic (K1 = k1I), then the final diffusion

equation we need to solve are

Ṅd0 −∇ ·
(

βNd0∇
(

∂W0

∂Nd0
+ ezφ

))
= 0 in Ω, (3.64)

where β = k1/Nd0 is the defect’s mobility, with an integral constraint

d

dt

∫

Ω
Nd0 dx = 0 . (3.65)

In summary, we now need to solve Eq. (3.9), (3.46), (3.54),(3.55), (3.63), (3.64), subject

to boundary conditions (3.10), (3.47), (3.56) and an integral constraint (3.65).
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(iii) Steady State

In this case, we assume K1 = 0, and K2 = ∞, i.e, we assume that the defects are

immobile, and free charges adjust themselves into thermal equilibrium in no time.

Consequently, we only need to solve Eq. (3.9), (3.46), (3.54), (3.55), (3.63) subject

to boundary conditions (3.10), (3.47) and (3.56).

(iv) Polarization Evolution

The polarization equation (3.46) we derived is for its equilibrium state. One way of

quickly deriving equations for polarization evolution is to state that it has to overcome

a dissipation of
∫
Ω µṗ2

0 dx. Hence,

D = F − dE
dt
−

∫

Ω
µṗ2

0 dx ≥ 0. (3.66)

By recourse to Eq. (3.45) and the argument by Coleman and Noll (1963), we obtain,

(f [p0]− µṗ0) · ṗ0 ≥ 0 (3.67)

where

f [p0] = ∇x ·
(

∂W0

∂∇xp0

)
− ∂W0

∂p0
− F−T∇xφ . (3.68)

Consider any process p0(t) such that p0(t0) = p̃0, ṗ0(t0) = q̃0 6= 0. We have for

Eq. (3.67) that (f [p̃0]− µq̃0) · q̃0 ≥ 0. Now let us consider another process p̂0(t) with

p̂0(t0) = p̃0, ˙̂p0(t0) = −q̃0. Then

− (f [p̃0] + µq̃0) · q̃0 = − (f [p̃0]− µq̃0) · q̃0 − 2µq̃2
0 ≥ 0,

which means

(f [p0]− µq̃0) · q̃0 ≤ 0 . (3.69)

In view of Eq. (3.67) and (3.69), we therefore conclude:

f [p̃0]− µq̃0 = 0. (3.70)
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Since p0 was an arbitrary process, we conclude that

µṗ0 = ∇x ·
(

∂W0

∂∇xp0

)
− ∂W0

∂p0
− F−T∇xφ . (3.71)

Eq. (3.71) is a gradient flow type of equations. And this type of equations have been

widely used in simulating the phase evolution problems (Gunton et al., 1972; Ahluwalia

and Cao, 1991; Hu and Chen, 1997; Chen and Shen, 1998; Zhang and Bhattacharya,

2004a,b).

(v) Linear Elasticity

We have derived our force equilibrium equation (3.55) from a general setting with

finite deformations. However, searching for a suitable constitutive relation like (3.54)

and working with finite deformation is a demanding task. For some materials, like

BaTiO3, a small strain description often suffices.

We define the infinitesimal strain tensor

ε =
1
2

(∇u + (∇u)T
)
, (3.72)

where u is the displacement, set W = W (p, ε) as in the Devonshire-Ginzburg-Landau

models (Devonshire, 1949a,b, 1954). The Maxwell stress is zero in this setting, and

the Cauchy stress

σ =
∂W (p, ε)

∂ε
. (3.73)

Therefore the governing equations (assuming K2 = ∞, K1 = k1I) are given by

dNd

dt
−∇ ·

(
βNd∇

(
∂W

∂Nd
+ ezφ

))
= 0 in Ω, (3.74)

µṗ−∇
(

∂W

∂∇p

)
+

∂W

∂p
+∇φ = 0 in Ω, (3.75)

∇ · σ = 0 in Ω, (3.76)

∇ · (−ε0∇φ + pχ(Ω)) = ρ(φ, Nd)χ(Ω) in R3, (3.77)

together with constitutive Eq. (3.63) and (3.73), subject to appropriate boundary and

initial conditions, and any other constraints like Eq. (3.65).
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Chapter 4

Barium Titanate with Platinum
Electrodes: Formulation

We consider perovskite ferroelectrics in this chapter and in Chapter 5. Specifically, we

consider a Pt/BaTiO3/Pt structure with shorted electrodes (a slab of barium titanate with

platinum electrodes on top and bottom with zero applied voltage between them as shown in

Fig. 4.1) at room temperature. We assume the material properties and kinematic quantities

are invariant along z direction, therefore we only work in two dimensions.

We rewrite the equations in non-dimensional form and select parameters in Section 4.1.

Section 4.2 is devoted to a discussion of oxygen vacancies and the normalization of their

diffusion equations. Numerical and analytical analysis are covered in Chapter 5.

For simplicity, we only consider small deformation here; therefore we do not differentiate

current configuration from the reference configuration, and also ignore the Maxwell stress.

This is a reasonable choice for BaTiO3 where the c/a ratio for the tetragonal phase is 1.011.

But note that this would be questionable for PbTiO3 where the c/a ratio is about 1.064

(Mitsui et al., 1981). Finally, we assume the stored energy functional W (Nd,p,∇p, ε) can

BaTiO3 single crystal

Pt

Pt

y

x
z

BaTiO3 single crystal

Pt

Pt

y

x
z

y

x
z

Figure 4.1: Computation domains.
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be split into three parts:

W (Nd,p,∇p, ε) = Wd(Nd) + Wg(∇p) + Wp(p, ε). (4.1)

The first term is the energy of defects. The second term, associated with the polarization

gradient, penalizes rapid changes of polarization. The last term is the energy of deforma-

tion and polarization, it contains important information of crystallography. Under these

assumptions, the governing equations become:

Ṅd −∇ ·
(

βNd∇
(

dWd

dNd
+ ezφ

))
= 0 in Ω (4.2)

µṗ−∇ ·
(

dWg

d∇p

)
+

∂Wp

∂p
+∇φ = 0 in Ω, (4.3)

∇ · σ = 0 in Ω, (4.4)

∇ · (−ε0∇φ + pχ(Ω)) = ρ(φ,Nd)χ(Ω) in R3. (4.5)

subject to appropriate boundary and initial conditions. We point out that by splitting

the stored energy functional W into three parts as in Eq. (4.1), we ignore the effect of

strain/stress on the concentration of defects Nd. Consequently, the stress induced diffusion

of Nd is not considered here.

We discuss the particular choices of Wg, Wp and the normalization of Eq. (4.3), (4.4),

(4.5) in Section 4.1. We discuss Wd and Eq. (4.2) separately in Section 4.2.

4.1 Normalization and Parameter Selection

We choose the stored energy of polarization gradient, polarization and deformation to be the

Devonshire-Ginzburg-Landau energy (Devonshire, 1949a,b, 1954) with slight modification

(Zhang and Bhattacharya, 2003). Specifically, we choose Wg to be

Wg(∇p) =
a0

2
|∇p|2 (4.6)

where

|∇p|2 := ∇p · ∇p := Trace
(∇p∇pT

)
= p2

x,x + p2
x,y + p2

y,x + p2
y,y, (4.7)
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and

Wp(p, ε)

=
a1

2
(p2

x + p2
y) +

a2

4
(p4

x + p4
y) +

a3

2
p2

xp2
y +

a4

6
(p6

x + p6
y) +

a5

4
(p4

xp4
y)

− b1

2
(εxxp2

x + εyyp
2
y)−

b2

2
(εxxp2

y + εyyp
2
x)− b3εxypxpy

+
c1

2
(ε2

xx + ε2
yy) + c2εxxεyy +

c3

2
ε2
xy.

(4.8)

Let W ′
g = Wg/c0, W ′

p = Wp/c0, p′ = p/p0 and x′ = x/L0, where c0 is some constant

with units of stress, L is some constant length scale, and p0 is some constant polarization.

With little effort, we can rewrite W ′
g and W ′

p as

W ′
g(∇′p′) =

Wg

c0
=

a′0
2

∣∣∇′p′∣∣2 =
a′0
2

(p′x,x
2 + p′x,y

2 + p′y,x
2 + p′y,y

2) (4.9)

and

W ′
p(p

′, ε) =
Wp

c0

=
a′1
2

(p′x
2 + p′y

2) +
a′2
4

(p′x
4 + p′y

4) +
a′3
2

p′x
2
p′y

2

+
a′4
6

(p′x
6 + p′y

6) +
a′5
4

(p′x
4
p′y

4)

− b′1
2

(εxxp′x
2 + εyyp

′
y
2)− b′2

2
(εxxp′y

2 + εyyp
′
x
2)− b′3εxyp

′
xp′y

+
c′1
2

(ε2
xx + ε2

yy) + c′2εxxεyy +
c′3
2

ε2
xy,

(4.10)

where a′0 = a0p
2
0/c0L

2
0, a′1 = a1p0

2/c0, a′2 = a2p0
4/c0, a′3 = a3p0

4/c0, a′4 = a4p0
6/c0,

a′5 = a5p0
8/c0; b′j = bjp0

2/c0 and c′j = cj/c0 with j = 1, 2, 3; p′x,x denotes ∂p′x/∂x′, and the

analogous definitions apply to p′x,y, p′y,x and p′y,y. Also notice that ∇′ = î ∂/∂x′+ ĵ ∂/∂y′ in

the above expression.

The obvious choice of p0 would be the spontaneous polarization, so that the normalized

spontaneous polarization is 1. For BaTiO3, the spontaneous polarization in room temper-

ature is 0.26C/m2. Therefore, we choose p0 = 0.26C/m2.

In order to choose c0 and L0, it is necessary to understand the role of the parameter a0.

We are interested in studying domain walls, and the classical calculation∗ shows that the

domain wall thickness is proportional to
√

a0/|a1|. This is not surprising because a0 (the
∗A version of this calculation is shown in Section 5.3.2.1.
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coefficient of ∇p term) penalizes changes in polarization while a1 is related to the steepness

of the energy wells which promotes formation of domain walls. Since the energy barrier

for switching from one spontaneous state to another in BaTiO3 is a few MPa, while the

stiffness of the material is of order 100GPa, we choose c0 = 1GPa and L0 = p0

√
a0/c0, so

that a′0 = 1, and both the domain wall thickness and the normalized elastic moduli are of

moderate range (10-100). This choice also has the feature that the normalized solution for

the classical perfect crystal case does not depends on a0.

However, a0 does play a very important role in defected crystals, and therefore it is im-

portant to decide the range of a0. From experimental data (Shilo et al., 2004) and first prin-

ciple calculation (Padilla et al., 1996), people believe that the domain wall thickness is usu-

ally about 1 ∼ 10 nm, although domain wall thickness as large as 150 nm has been reported

in LiNbO3 (Wittborn et al., 2002). Here, we will work on two cases: a0 = 10−9 Vm3C−1

corresponding to a domain wall thickness of a few nanometer, and a0 = 10−7 Vm3C−1 for

one order thicker domain walls.

Other material constants we choose are (Zhang and Bhattacharya, 2003): c′1 = 185,

c′2 = 111, c′3 = 54, b′1 = 1.4282, b′2 = −0.185, b′3 = 0.5886, a′1 = −0.007, a′2 = −0.009,

a′3 = 0.003, a′4 = 0.0261, a′5 = 5. Notice that a′1 and a′2 are both negative since the cubic

to tetragonal phase transition of BaTiO3 is a first order phase transition (Strukov and

Levanyuk, 1998; Padilla et al., 1996).

Since we will use the finite element method to simulate the domain wall structures, it

is advantageous to rewrite W ′
p as

W ′
p(p

′, ε) =
a′1
2

(p′x
2 + p′y

2) +
(

a′2
4
− d′

)
(p′x

4 + p′y
4)

+
(

a′3
2
− f ′

)
p′x

2
p′y

2 +
a′4
6

(p′x
6 + p′y

6) +
a′5
4

(p′x
4
p′y

4)

+
1
2
(ε− εs) ·C′ (ε− εs),

(4.11)

so that the normalized stress σ′ = σ/c0 can be easily written as

σ′ = C′(ε− εs), (4.12)
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where C′ is the normalized stiffness matrix,

C′ =




c′1 c′2 0

c′2 c′1 0

0 0 c′3


 (4.13)

in Voigt notation, εs the eigenstrain caused by spontaneous polarization,

εs =




a′p′x
2 − b′p′y

2

b′p′x
2 − a′p′y

2

c′p′xp′y


 (4.14)

and

a′ =
b′1c

′
1 − b′2c

′
2

2(c′1
2 − c′2

2)
= 0.0065, (4.15)

b′ =
b′2c

′
1 − b′1c

′
2

2(c′1
2 − c′2

2)
= −0.0044, (4.16)

c′ =
b′3
c′3

= 0.0109, (4.17)

d′ =
−2b′1b

′
2c
′
2 + (b′1

2 + b′2
2)c′1

8(c′1
2 − c′2

2)
= 0.0025, (4.18)

f ′ =
2b′1b

′
2c
′
1 − (b′1

2 + b′2
2)c′2

4(c′1
2 − c′2

2)
− b′3

2

2c′3
= −0.0005. (4.19)

With Eq. (4.11), we can easily see the meaning of each term in the energy functional W ′
p. The

last term is the strain energy. The remaining part of W ′
p is a polynomial of polarization, and

embodies the multi-well structure corresponding to the spontaneous polarizations. Fig. 4.2

clearly shows the multi-well structure of W ′
p by setting ε = εs for each p. The minima

correspond to the four spontaneous states: p′x = ±1, p′y = 0 or p′x = 0, p′y = ±1. The

energy barrier between different wells is E′
b = 3.924 × 10−3, or Eb = 3.924MPa, which is

about the right range for BaTiO3 (Zhang, 2004a). From Eq. (4.14), we notice that the c/a

ratio of the tetragonal phase of BaTiO3 is (1 + a′)/(1 + b′) = 1.0109, which is consistent

with experimental data. For detailed discussion of the material constants selection, refer to

Zhang and Bhattacharya (2004a).

With the normalized energy functional W ′
g and W ′

p, the normalization of Eq. (4.3) to
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Figure 4.2: (a): Multi-well structure of normalized energy functional W ′
p. (b): W ′

p as a
function of p′y only when p′x = 0.

Eq. (4.5) follows naturally. Let φ′ = φ/φ0, ρ′ = ρ/ρ0 and t′ = t/T0, Eq. (4.3) to Eq. (4.5)

then become:

µp2
0

T0c0

∂p′

∂t′
−∇′ ·

(
dW ′

g

d∇′p′
)

+
∂W ′

p

∂p′
+

φ0p0

L0c0
∇′φ′ = 0,

∇′ · σ′ = 0,

∇′ · (− ε0φ0

L0p0
∇′φ + p′ χ(Ω)) =

L0ρ0

p0
ρ′(φ′, Nd).

By choosing φ0 = L0c0/p0, ρ0 = p0/L0, T0 = µp0
2/c0, we obtain,

µ′
∂p′

∂t′
−∇′ ·

(
dW ′

g

d∇′p′
)

+
∂W ′

p

∂p′
+∇′φ′ = 0, (4.20)

∇′ · σ′ = 0, (4.21)

∇′ · (−ε′∇′φ + p′ χ(Ω)) = ρ′(φ′, Nd) (4.22)

with µ′ = 1 and ε′ = ε0φ0/L0p0 = ε0c0/p2
0.

To summarize, we now obtain a set of normalized governing equations (Eq. (4.20) to

Eq. (4.22)) which has the same form as the original set (Eq. (4.3) to Eq. (4.5)). The

normalized variables are:

x′ =
x
L0

, t′ =
t

T0
, W ′

g =
Wg

c0
, W ′

p =
Wp

c0
,

p′ =
p
p0

, φ′ =
φ

φ0
, ρ′ = ρ/ρ0, σ′ =

σ

c0

(4.23)
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with characteristic constants,

c0 = 1 GPa, p0 = 0.26 C/m2,

L0 = p0

√
a0

c0
, φ0 =

√
a0c0, ρ0 =

√
c0

a0
, T0 =

µp2
0

c0
,

(4.24)

and material constants,

µ′ = 1, ε′ =
ε0c0

p2
0

= 0.131. (4.25)

We point out that although a0 does not explicitly appear in the normalized equations,

it is implicitly included in ρ′(φ′) in Eq. (4.22) since

ρ′(φ′) =
1
ρ0

{
−eNcF 1

2
(
Efm − Ec + eφ0φ

′

KbT
) + eNvF 1

2
(
Ev − eφ0φ

′ −Efm

KbT
)

+ zeNd


1− 1

1 + 1
2exp

(
Ed−eφ0φ′−Efm

KbT

)



−z′eNa


1− 1

1 + 1
2exp

(
Efm+eφ0φ′−Ea

KbT

)







(4.26)

and ρ0, φ0 defined by Eq. (4.24) depend on a0. For example, for a0 = 10−9 Vm3C−1,

ρ0 = 109 Cm−3, φ0 = 1 V, while for a0 = 10−7 Vm3C−1, ρ0 = 108 Cm−3 and φ0 = 10 V,

Therefore, the solution of normalized equations still depends on a0, and thus depends on

the physical thickness of domain walls. The only exception is when ρ′(φ′) ≡ 0. However

even in this case, a0 still enters itself since the size of the computational specimen depends

on a0.

We now specify the material constants we use for BaTiO3 in Eq. (4.26). As we have

stated before, the first two terms in Eq. (4.26) calculate the electrons in conduction band

and the holes in valence band respectively, while the last two terms are the contributions

from donors and acceptors. F 1
2

is the Dirac-Fermi integral; Nc and Nv are respectively the

effective density of states in the conduction band and in the valence band, and they are

approximately 1.0 × 1024 m−3 (Ashcroft and Mermin, 1976; Sze, 1981). Kb as Boltzmann

constant is 1.3807 × 10−23 JK−1. T is the absolute temperature; since we work on room

temperature, we choose T = 300K.

The Fermi level Efm of the electrodes is −5.3 eV. The constants of the band structure
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of BaTiO3 are chosen to be (Scott, 2000): Ec = −3.6 eV, Ed = −4.0 eV, Ea = −6.2 eV,

Ev = −6.6 eV, where Ec is the energy at the bottom of the conduction band, Ev the energy

on the top of the valence band, Ed, Ea the donor and acceptor level respectively.

As to the defects, we set Na = 0 here since we are mainly interested in oxygen vacancies,

which act like donors. And we estimate the oxygen vacancy density Nd as follows. For

BaTiO3, a = 3.9920 Å, c = 4.0361 Å (Mitsui et al., 1981), therefore the volume of a unit cell

is about 60 Å3. Since there are 5 atoms per unit cell, the volume per atom is approximately

10 Å3, thus the total atoms sites per unit volume is Nt = 1029 cm−3. According to Zhang

(2004a), the oxygen vacancy density ranges from 10 ppm to 1000 ppm, and it corresponds a

Nd ranging from 1024 m−3 to 1027 m−3. The nominal valency of oxygen vacancy z is equal

to 2, although the effective valency is usually less (Zhang, 2004a). We choose z = 1 here.

Fig. 4.3 shows the relation with Nd = 1024 m−3 and Na = 0m−3. As we can see from

Eq.(4.26), the first two terms (electrons in conduction band and holes in valence band)

balance each other as long as (Ev−Efm)/e < φ < (Ec−Efm)/e, or −1.3V < φ < 1.7V, and

the charge contribution is mainly from the donors (the third term in Eq.(4.26)). However,

when φ > (Ec − Efm)/e = 1.7V, because of its low energy level, electrons are attracted

into the BaTiO3 domain which then becomes negatively charged. On the contrary, when

φ < (Ev − Efm)/e = −1.3V, electrons start to flow outside the BaTiO3 domain, which

then becomes positively charged. Since KbT in Eq. (4.26) equals to 0.0258 eV at room

temperature, a slight change of potential φ will result a big change of ρ. These are clearly

shown in Fig. 4.3(a). If we look into the charge contribution from donors, we notice that

φc = (Ed−Efm)/e = 1.3V is another threshold: when φ < φc, all the donors are ionized and

the free electrons are swept into platinum side, therefore the BaTiO3 domain is positively

charged, and reaches a saturated value of ρc = ezNd; when φ > φc, the donors are hardly

ionized, and BaTiO3 domain remains charge neutral. These are clearly shown in Fig. 4.3(b).

We mainly work on the range when the major charge contribution comes from donors.

However, as we will see later, since there is a big electrical mismatch between 90o domain

walls, a potential height and well will form near the domain walls, and the first term in

Eq.(4.26) starts to play an important role.
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Figure 4.3: Charge-potential relation in thermal equilibrium at room temperature in
BaTiO3 in contact with platinum with Nd = 1024 m−3 and Na = 0m−3.

4.2 Diffusion of Oxygen Vacancies

For a regular binary solution of component A and B with mole Gibbs free energy GA, GB,

mole fraction XA, XB, (XA + XB = 1), the mole Gibbs free energy after mixing is (See for

example, Porter and Easterling, 1981):

G = µ̂AXA + µ̂BXB, (4.27)

with

µ̂A = GA + Ω(1−XA)2 + NaKbT lnXA, (4.28)

µ̂B = GB + Ω(1−XB)2 + NaKbT ln XB, (4.29)

and Ω = Nazε, where Na is the Avogadro’s number, z the number of bonds per atom, ε the

energy difference between A−B bond and average of A−A and B −B bonds. In the case

of vacancies, we set

XA = 1−Xv, XB = Xv. (4.30)

where Xv = Nd/Nt is the mole fraction of vacancies.

We are interested in mole Helmholtz free energy here since the free energy W we defined

in Eq. (4.1) is Helmholtz free energy per unit volume. However, considering the fact that
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we work with small deformation in a moderate stress state, it is reasonable to assume

Wd =
Nt

Na
G (4.31)

with G defined by Eq. (4.27) and Eq. (4.30). Further,

dWd

dNd
=

dWd

dXv

dXv

dNd
=

1
Na

∂G

∂XB

∣∣∣∣∣
XA

=
µ̂B

Na
. (4.32)

Recalling that the equation governing the diffusion of defects (Eq. (4.2)) may be written

as,

Ṅd = −∇ · J, (4.33)

J = −βNd∇
(

dWd

dNd
+ ezφ

)
, (4.34)

we have using Eq. (4.32) that

J = −β
Nt

Na
Xv∇

(
GB + Ω(1−Xv)2 + NaKbT ln Xv

)− βezNd∇φ

= −β
Nt

Na
Xv

(
NaKbT

1
Xv
∇Xv − 2Ω(1−Xv)∇Xv

)
− βezNd∇φ

= −βKbT

(
1− 2Ω(1−Xv)Xv

RT

)
∇Nd − βezNd∇φ

= −d∇Nd − βezNd∇φ

(4.35)

where d is the diffusion coefficient defined as

d = βKbT

(
1− 2Ω(1−Xv)Xv

RT

)
= βKbTF, (4.36)

and F is the thermodynamic factor defined as

F = 1− 2Ω(1−Xv)Xv

RT
, (4.37)

where R = NaKb is the gas constant. For dilute case, Xv ¿ 1, F is approximately equal to

1. For simplicity, we will work only with the dilute case here.
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Now, defining

C = Xv =
Nd

Nt
, φ′ =

φ

φ0
, x′ =

x
L0

, t′ =
t

T0
,

J′ =
T0

L0Nt
J, α =

T0

L2
d, γ =

ezφ0

KbT
,

(4.38)

where L0, φ0, T0 are defined by Eq. (4.24) in Section 4.1, we obtain,

∂C

∂ t′
= −∇′ · J′, (4.39)

J′ = −α∇′C − αγC∇′φ′. (4.40)

In a steady state, ∂C/∂ t′ = 0, and J′ = const. If we further assume that J′ = 0 in the

steady state, we obtain,

∇′C + γC∇′φ′ = 0. (4.41)

In the case of one dimension, if we assume the defect population is conserved in the

computed domain [−L,L], we have

dC

dx′
+ γC

dφ′

dx′
= 0 (4.42)

with ∫ +L

−L
C dx′ = 2LC0. (4.43)

Or

C = Q exp(−γφ′) (4.44)

with

Q =
2LC0∫ L

−L exp(−γφ′) dx′
(4.45)

where C0 is the average defect concentration.

Eq. (4.42) has an integral constraint (Eq. (4.43)). In order to solve it numerically, we

first define (Ascher and Russell, 1981)

S =
∫ x′

−L
C dx′, (4.46)
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and then add equation,
dS

dx′
= C (4.47)

and boundary conditions,

S(−L) = 0, S(L) = 2LC0 (4.48)

into the original equation sets.

Finally we point out here that γ defined in Eq. (4.38) is approximately equal to 40φ0

at room temperature with z chosen to be 1. Substituting this in Eq. (4.44), we see that

a slight difference of potential φ will result in a huge difference in defect concentration.

This poses a computational challenge, and gives rise to an almost singular Jacobian in

both the collocation method and the Newton-Raphson method. At the same time, this

is physically unlikely since Eq. (4.44) is based on the assumption that we are working in

the dilute case and the thermodynamic factor F can be approximated by 1. Indeed, in

most diffusion processes in semiconductors, the diffusion coefficient d defined Eq. (4.36) is

not a constant, and it approaches to zero when the diffused species reaches a saturated

value (Sze, 1981). Nevertheless, the potential difference is indeed a crucial driving force for

defect redistribution, and a small potential difference does result a big difference in defect

concentration. Therefore, we choose γ = 4φ0 for our numerical calculation here.
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Chapter 5

Barium Titanate with Platinum
Electrodes: Results

We continue the discussion of Pt/BaTiO3/Pt structure in this Chapter. In Section 5.1, we

use the finite element method to study the detailed structure of 180o and 90o domain walls

of the tetragonal phase. In particular, we consider a BaTiO3 thin film with a 180o or 90o

domain wall in the middle, and with shorted Platinum electrodes on both sides of the film

(Fig. 5.1). The advantage of using finite element method is that the computed variable

is the displacement. Most simulations in the literature use finite difference with strain

as their primary variable and this requires higher regularity. The disadvantages of using

displacement as primary variables is the difficulty of applying periodic boundary conditions.

We first work on perfect crystals in Section 5.1.1. We are specially interested in the

strain, stress, and electric field near the domain walls. In Section 5.1.2, we investigate

the possible role of oxygen vacancies on ferroelectric behavior by working on a BaTiO3

crystal doped with oxygen vacancies. Through finite element simulation, we illustrate the

formation of depletion layers; we also investigate the interaction of oxygen vacancies with

different domain walls.

In Section 5.2, we further explore the depletion layers by working with a one-dimension

situation far away from domain walls (along the y direction shown as Case A in Fig. 5.1).

By numerical simulation, we study thin films with different thicknesses and doping levels in

Section 5.2.1. This enables us to investigate the effects of doping level and film thickness.

We also study the diffusion of oxygen vacancies to the depletion layers, and discuss its

implications on ferroelectric fatigue and dielectric breakdown. In Section 5.2.2, we estimate

the depletion width and approximate the potential profile in the depletion layer analytically.
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Figure 5.1: Computation domains.

The results verify the numerical simulation in Section 5.1 and Section 5.2.1.

In Section 5.3, we focus on domain walls by studying one-dimensional problems trans-

verse to isolated domain walls: x direction for 180o walls (Case B in Fig. 5.1) and r direction

for 90o domain walls ( Case C in Fig. 5.1). Our analysis clearly shows the essential differ-

ences between 180o and 90o domain walls, the formation of electronic double layers at 90o

domain walls, and redistribution of oxygen vacancies near 90o domain walls.

5.1 Domain Walls in a Thin Film

5.1.1 Domain Walls in Perfect Crystals

We consider a Pt/BaTiO3/Pt structure with shorted electrodes at room temperature (Fig. 5.1).

We first consider BaTiO3 without defects, so ρ′(φ′) ≡ 0 in Eq. (4.22).

We compute on a 800× 200 rectangular domain corresponding to a single crystal whose

pseudocubic axes are parallel to the edges of the domain. The boundary conditions we

choose are: upper or lower boundary shorted, no flux at left and right side; no rota-

tion/reflection allowed, no displacement at left lower corner point, no x displacement along
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left side, and stress free elsewhere. We start with an initial guess (an ideal domain wall)

for an 180o or a 90o domain wall in the middle of specimen, and then let it relax until it

reaches its equilibrium state.

Fig. 5.2 is the polarization profile cross 180o and 90o domain walls through the mid-

section (y = 100). It is easy to see that the relaxed domain walls have finite thickness.

Figs. 5.3 and 5.4 are the strain and stress field near 180o and 90o domain walls. It is

easy to see that the strain/stress are raised near the domain walls, and concentrated at the

intersections of domain walls with electrodes (not shown). These strain/stress concentration

sites may likely serve as starting points for microcracking or domain wall pinning. It is also

interesting to notice that there is not much difference in terms of magnitude of stress

concentration between 180o and 90o domain walls. This is a little surprising, since the

conventional wisdom states that 90o domain walls undergo much more distortion than 180o

domain walls.

Fig. 5.5 is the deformed configuration near 180o and 90o domain walls. Compared to 180o

domain wall, 90o domain wall does undergo much larger distortion. However, most of the

deformation comes from the rigid rotation caused by the matching of two differently oriented

domains. This does not contribute extra strain or stress, and therefore it is consistent with

same level of stress and strain concentration in 180o and 90o domain walls. The computed

angle of the rigid rotation in BaTiO3 is about 0.6o, and it can be verified by a simple

calculation. We also point out that the displacement profile of 90o domain walls can be

used to identify the location of the domain walls due to the large rotation. This has been

experimentally realized in PbTiO3 by Shilo et al. (2004) through atomic force microscopy.

Fig. 5.6 is the potential profile across 180o and 90o domain walls. We notice that the

potential change across 90o domain wall is one order of magnitude larger than the potential

change across 180o domain walls. This tells us that 90o domain walls indeed have much

larger electrical mismatch than 180o domain walls. It is exactly this electrical mismatch

which makes a 90o domain walls a plausible site for electronic charge trapping as we will

see in Section 5.1.2.

5.1.2 Domain Walls in an Oxygen-Vacancy Doped Crystal

We now turn our attention to BaTiO3 with defects. We still consider the Pt/BaTiO3/Pt

structure, but with oxygen vacancies in BaTiO3. For simplicity, we look at a single snap-
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Figure 5.2: Polarization profile near (a) 180o and (b) 90o domain wall at y = 100.
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Figure 5.3: Strain profile near (a) 180o and (b) 90o domain wall.
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Figure 5.4: Stress profile near (a) 180o and (b) 90o domain wall(GPa).
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Figure 5.5: Deformed configuration near (a) 180o domain wall with amplification factor=50
and (b) 90o domain wall with amplification factor=30.
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Figure 5.6: Electric potential near 180o (upper) and 90o (lower) domain walls. The real value
of φ depends on a0, the number (Volt) shown here is by choosing a0 = 1.0× 10−7 Vm3C−1.

shot in time when the oxygen vacancy concentration is uniform, and also ignore the effects

of elasticity. Therefore, the equations reduce to

µ′
∂p′

∂t′
−∇′

(
dW ′

g

d∇′p′
)

+
∂W ′

p

∂p′
+∇′φ′ = 0 in Ω, (5.1)

∇′ · (−ε′∇′φ′ + p′ χ(Ω)) = ρ′(φ′) in R3 (5.2)

with W ′
g defined by Eq. (4.9), W ′

p defined by Eq. (4.11) with ε = εs and ρ′(φ′) defined by

Eq. (4.26) with Na = 0 and Nd = 1.0× 1024m−3.

We first investigate the electrostatic consequences of the interaction between the oxygen

vacancies and domain walls. Still using the finite element method, we compute a 400× 200

rectangular domain, with a 180o or a 90o domain wall in the middle. We choose the

coefficient of ∇p term a0 to be 1.0 × 10−7 Vm3C−1, the film thickness is therefore about

520 nm.

The computational result is shown in Fig. 5.7. The first difference we immediately notice

from the case with no defects (Fig. 5.6) is the sharp rise in electrostatic potential from the

electrodes to the interior of the film by as much as 1.5V. This is caused by the the diffusion

of electrons from BaTiO3 into Pt giving rise to “ depletion layers” of approximate thickness

of 100 nm. These depletion layers also generate the Schottky barriers across the interfaces.
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(a)

(b)

Figure 5.7: Electric potential (V) and charge densities (C m−3) near 180o(a) and 90o(b)
domain walls
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The Schottky barriers are important in preventing dielectric breakdown by resisting the

injection of charges into the ferroelectric. As we shall see later in Section 5.2.3, the large

electric field in the depletion layer however provides a driving force for the field-driven

diffusion of oxygen vacancies. This in turn reduces the depletion layer width and promotes

electronic charge tunneling which may accelerate dielectric breakdown.

In the case of the 180o domain walls (Fig. 5.7(a)), the depletion layer overwhelms any

contribution from the domain wall and we barely notice the domain wall in either the

distribution of potential or charges. Thus we conclude that 180o domain walls has very

little interaction with the space charges. In turn, we will see in Section 5.3.3 that 180o

domain wall has little effect on oxygen vacancies and their diffusion.

In contrast, there is a significant interaction between 90o domain walls and the space

charges as shown in Fig. 5.7(b). We see the depletion layers as before, but we also see

that very large amounts of negative charges are accumulated along the domain wall. In

other words, we have electrons injected from electrodes and trapped at the domain wall

at equilibrium. The reason for this can be understood by going back to the the electric

potential in Fig. 5.6 without defects and noting the large electric field at the domain wall.

This drives the injection of charges into the domain wall. Despite this, an electric field

remains at the domain wall as shown in Fig. 5.7 and this in turn can force the diffusion

of oxygen vacancies and lead to pinning of domain walls. We will examine this later in

Section 5.3.3.

In summary, we find that the field caused by the depletion layers near the electrodes

can promote oxygen vacancy diffusion and reduce the depletion layer thickness which may

cause electronic charge tunnelling. We also find that 90o domain walls can contribute to

dielectric breakdown by promoting the injection of charges and to fatigue by pinning of

domain walls.

5.2 Depletion Layers

We now study in detail the depletion layers caused by electrodes away from domain walls.

It is sufficient to study this problem only in one dimension, i.e., the thickness or y direction

shown as Case A in Fig. 5.1, and assume ∂/∂x = 0. For simplicity, we assume px = 0,

and consider only the polarization along y direction, and denote it as p′. With no elasticity
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being considered, the system equations are now:

d2p′

dy′2
− dW ′

p

dp′
− dφ′

dy′
= 0, (5.3)

−ε′
d2φ′

dy′2
+

dp′

dy′
= ρ′(φ′, Nd). (5.4)

with

W ′
p =

a′1
2

p′2 +
(

a′2
4
− d′

)
p′4 +

a′4
6

p′6 (5.5)

as shown in Fig. 4.2(b).

5.2.1 Effects of Film Thickness, Doping Level and a0

We begin by studying the situation when the oxygen vacancy concentration is uniform.

This problem is the same as that studied by Shenoy and Bhattacharya (2004) except they

consider p-type dopants. Our results are very similar but for a change of sign in ρ and φ.

We show the polarization, potential, and charge profiles with different doping level, film

thickness and a0 in Fig. 5.8, 5.9, 5.10. Fig. 5.8 is for low concentrations with Nd = 1024 m−3;

Fig. 5.9 is for medium doping with Nd = 1025 m−3; and Fig. 5.10 is for films with doping

level as high as Nd = 1026 m−3. In these figures, left columns are computed results with

a0 = 10−9 Vm3C−1, and right columns are computed results with a0 = 10−7 Vm3C−1. The

solid blue lines are for thin films about 13 nm thick, the green dashed lines are for medium

thick films with thickness equal to 52 nm, and the red dash-dot lines are for thick film with

thickness equal to 520 nm.

Let us first examine the low-doping case when Nd = 1024 m−3. From Fig. 5.8, we can

see that when the film is thin (blue solid and green dashed lines), all the donors across

the film are ionized, and the free electrons are swept into the electrodes. The whole film

is therefore fully depleted and the charge density reaches a saturated value of ρc = eNd =

1.6 × 105 Cm−3. Due to the small amount of free electrons, the built-in potentials are

relatively small, and the whole films remain in the regime of 0 < φ < φc. However things

are quite different in the thick film (red dash-dot lines). Because relatively large amount of

free electrons are available and swept into electrodes, the built-in potential starts to reach

the critical value of φc = 1.3V, and the donors inside the films remain unionized. As a

result, depletion layers about 100 nm wide are formed near the electrodes, and the middle
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part of the film remains almost charge neutral. This is consistent with our two-dimension

simulation in Section 5.1.2, where we work with the same doping level and the same film

thickness (Nd = 1024 m−3 and L = 520 nm). Finally we notice that when the films are thin,

the polarization across the films changes only slightly and linearly around its spontaneous

value p0 = 0.26Cm−2; however, when the film thickness increases, polarization starts to

have large derivation from p0 and changes nonlinearly.

For the medium-doping case with Nd = 1025 m−3 (Fig. 5.9), things are very similar to

what we have discussed in the low-doping case. In particular, we notice that the depletion

layers in the thick film decreases with increased doping level. Also, the built-in potential in

the film starts to reach the saturated value of built-in potential φbi = 1.5V which we have

discussed in Section 4.1 and will further investigate in Section 5.2.2.

Fig. 5.10 shows the the polarization, potential, and charge profiles for highly doped films

with Nd = 1026 m−3. We see dramatic changes of the profiles in the medium and thick film

cases. Compared to the low-doping and medium doping cases, the first difference we notice

is the charged layer in the middle of the film. For the medium film thickness, polarization

changes linearly from negative to positive; while in the thick film, a head-to-head domain

pattern occurs. In these cases, the films lose their ferroelectricity, and become more like

nonlinear dielectric or paraelectric. It can actually be proved that the critical doping level

and film thickness when the loss of ferroelectricity occurs are related to the energy barrier

Eb of the ferroelectrics (Shenoy and Bhattacharya, 2004).

Finally, we examine the effect of a0 on the film properties. We do not see much differences

by comparing the left columns of Fig. 5.8, 5.9, 5.10 where a0 = 10−9 Vm3C−1 to the right

columns where a0 = 10−7 Vm3C−1. The only exception is the high-doping cases, where

polarization varies significantly across the film. However, even in these cases, no essential

and qualitative changes are observed. This is reasonable considering the fact that a0 only

penalizes the rapid changes of polarization, and does not effect the charge-potential relation

directly.

5.2.2 Potential Profile and Depletion Layer Width

We now derive approximate analytic description of the profile of the electric potential and

estimate the depletion layer width. As discussed in Section 4.1 and shown in Section 5.2.1,

the free electrons on BaTiO3’s side flow into Pt side which has a lower energy, creating a
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Figure 5.8: Polarization, potential, and charge profiles of films with Nd = 1024 m−3. Left
column: a0 = 10−9 Vm3C−1, right column: a0 = 10−7 Vm3C−1. Blue solid lines: L =
13nm; green dashed lines: L = 52 nm; red dash-dot lines: L = 520 nm.
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Figure 5.9: Polarization, potential, and charge profiles of films with Nd = 1025 m−3. Left
column: a0 = 10−9 Vm3C−1, right column: a0 = 10−7 Vm3C−1. Blue solid lines: L =
13nm; green dashed lines: L = 52 nm; red dash-dot lines: L = 520 nm.



66

0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

p 
(C

/m
2 ) 

y/L
0 0.2 0.4 0.6 0.8 1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

p 
(C

/m
2 )

y/L

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

φ 
(V

)

y/L
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

φ 
(V

)

y/L

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
x 10

7

ρ 
(C

/m
3 )

y/L
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2
x 10

7

ρ 
(C

/m
3 )

y/L

(a)

Figure 5.10: Polarization, potential, and charge profiles of films with Nd = 1026 m−3. Left
column: a0 = 10−9 Vm3C−1, right column: a0 = 10−7 Vm3C−1. Blue solid lines: L =
13nm; green dashed lines: L = 52 nm; red dash-dot lines: L = 520 nm.
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Figure 5.11: (a): Potential profile across Pt/n-type BaTiO3 interface. (b): Double well
energy for ferroelectric crystal: the reversal of the solid line is the potential profile in the
depletion layer on the left.

positive charged depletion layer near the interface on BaTiO3 side and a built-in potential

φbi = 1.5 V. The potential profile is shown schematically in Fig. 5.11(a).

We consider the interface of a half-infinite BaTiO3 slab in contact with a platinum

slab. We denote d as the depletion layer width. Since the material is charge neutral deep

inside the BaTiO3 domain, in order to estimate the thickness of the depletion layer, we

assume ρ = 0 outside the depletion layer and ρ = ρc = ezNd inside the depletion layer. We

also assume that φ reaches the built-in potential φbi after the depletion layer. These are

consistent with our discussion at the end of Section 4.1. From the numerical simulation in

Section 5.2.2, we know that a0 doesn’t effect the properties of depletion layer significantly,

therefore we ignore the gradient term here. Putting the assumption together, we solve the

following equations:

−ε0φ,yy + p,y = ρ, (5.6)

dWp(p)
dp

+ φ,y = 0 (5.7)

with

ρ =





ezNd if 0 < y < d,

0 if y > d,

(5.8)
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and

φ(0) = 0, φ(d) = φbi. (5.9)

For a dielectric semiconductor, since Wp(p) = p2/(2χε0) or p = ε0χE with χ being the

electric susceptibility, the above equation is easy to solve and the answer is well known.

The width of depletion layer in this case is (Sze, 1981)

d =

√
2εrε0φbi

ρ
=

√
2εrε0φbi

ezNd
(5.10)

where εr = 1 + χ is the relative dielectric constant.

For a ferroelectric semiconductor, however, things are not so straightforward. Since ε0

is small, we follow Shenoy and Bhattacharya (2004) and neglect that term in Eq. (5.6) and

solve:

p,y = ρ, (5.11)

dWp(p)
dp

+ φ,y = 0 (5.12)

with Wp(p) the usual polynomial with double-well shape as in Fig. 5.11(b). It is easy to see

that p = ρy + k1, where k1 is some constant. And

φ(y) =
∫
−dWp

dp
(ρy + k1) dy + k2 =

∫
−dWp

dp

dy

dp
dp + k2

= −1
ρ
Wp(ρy + k1) + k2

(5.13)

where k2 is some constant. Therefore, the potential profile across the depletion layer looks

like the inverted graph of Wp near its potential well (the solid line in Fig. 5.11(b)).

Assuming that far from the interface, we have p = p0 (or p = −p0 depending on the

polarization direction), we obtain

p = p0 + ρ(y − d) when 0 < y < d. (5.14)

Therefore, we have

φ(0) = −1
ρ
Wp(p0 − ρd) + k2 = 0, (5.15)
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φ(d) = −1
ρ
Wp(p0) + k2 = φbi, (5.16)

which leads to:

φbiρ = W (p0 − ρd)−W (p0). (5.17)

We perform a Taylor expansion of the right-hand-side and note that for a ferroelectric

crystal with Wp(p) as described by Fig. 5.11(b), ∂Wp/∂p(p0) = 0. We conclude,

d =

√√√√√2φbi

ρ


∂2Wp

∂p2

∣∣∣∣∣
p0



−1

=

√√√√√ 2φbi

ezNd


∂2Wp

∂p2

∣∣∣∣∣
p0



−1

. (5.18)

This is similar to the result for a dielectric semiconductor if we set∗:

εr =


∂2Wp

∂p2

∣∣∣∣∣
p0

ε0



−1

. (5.19)

With the material constants we have chosen for BaTiO3, εr ≈ 113. If Nd = 1.0 ×
1024 m−3, then the depletion layer is about 100 nm thick, which agrees with our computation

results in Section 5.1.2 and Section 5.2.1. Finally we point out that as the oxygen vacancy

concentration Nd increases, so does ρ resulting in a reduction of d and an increase of

electronic charge injection. We can therefore conclude that increasing oxygen vacancy

concentration near the electrodes makes it susceptible to failure.

5.2.3 Oxygen Vacancy Diffusion in Depletion Layers

We now consider the same problem of depletion layers considered in Section 5.2.1; however,

we now allow the oxygen vacancies to be mobile. In fact we study the equilibrium situation

following the methods described in Section 5.1.2.

The results for a film with low doping level are shown in Fig 5.12, and compared with

the previous calculation with immobile defects. The polarization and potential profiles are

similar. However a large number of oxygen vacancies accumulate at the electrodes creating

a significant charge concentration there. Further the depletion layer becomes thinner (con-

∗

0
@ ∂2Wp

∂p2

�����
p0

ε0

1
A
−1

is actually equal to the electric susceptibility χ, but since χ À 1, we may set εr =

χ + 1 ≈ χ.
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sistent with the calculation in Section 5.2.2). We conclude that mobile vacancies can lead

to significant charge injection into the ferroelectric and make it even more susceptible to

failure.

This situation becomes worse when the (average) dopant concentration is increased as

shown in Fig. 5.13. Even though Nd = 1025 m−3 here, the film behaves as if Nd = 1025 m−3

if it were uniform.

5.3 Structure of Isolated Domain Walls

In Section 5.1.1, our numerical results showed that in a perfect BaTiO3 crystal, the potential

change across 90o domain wall is one order larger than the potential change across 180o

domain walls. We also showed in Section 5.1.2 that compared to 180o domain walls, 90o

domain walls play a much more active role in the interaction with defects and a pronounced

charge trapping occurs near the 90o domain walls. In this section, we examine this further.

Specifically, we examine a region of the ferroelectric containing one or more domain walls

that is far away from the electrodes. Thus we isolate the effects of the domain wall from

the depletion layer. Further, since the domain wall are planar defects, it suffices to study

the problem in one dimension transverse to the domain wall.

5.3.1 System Equations in One Dimension

For 180o domain walls, we work in the x direction and assume ∂/∂y = 0 (Case B in

Fig. 5.1). For 90o domain walls, we work in the r direction and assume ∂/∂s = 0 (Case C

in Fig. 5.1). We confine ourselves to the region away from the electrodes in both cases. For

simplicity, we only consider steady state. We also ignore elasticity here. As we have shown

in Section 5.1.2, strain as a second order parameter in the para-ferro phase transition does

not play a key role in our problem.

By choosing

W =
a0

2
|∇p|2 + Wp(p) (5.20)

where

Wp =
a

2
(p2

x + p2
y) +

b

2
p2

xp2
y +

c

4
(
p4

x + p4
y

)
(5.21)
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Figure 5.12: Depletion layers in films with average Nd = 1024 m−3 and L = 520 nm. Left
column: a0 = 10−9 Vm3C−1, right column: a0 = 10−7 Vm3C−1. Blue dashed lines: w/o
diffusion; red solid lines: with diffusion.
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Figure 5.13: Depletion layers in films with average Nd = 1025 m−3 and L = 520 nm. Left
column: a0 = 10−9 Vm3C−1, right column: a0 = 10−7 Vm3C−1. Blue dashed lines: w/o
diffusion; red solid lines: with diffusion.
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with a < 0, c > 0, the simplified two-dimensional equations become

a0∆p− ∂Wp

∂p
−∇φ = 0 in Ω, (5.22)

∇ · (−ε0∇φ + p) = ρ(φ) in Ω. (5.23)

with suitable boundary conditions for p and φ. This particular choice of Wp is for simplic-

ity, and is appropriate for crystals like PZT which undergo second-order para-ferro phase

transitions. At the same time, we believe that it captures the essential features and the

results are representative even for materials like BaTiO3.

We follow the same normalization process as in Section 4.1 (Eq. (4.23)) except we define

the normalized energy function W ′
p as

W ′
p =

Wp

Eb
(5.24)

where Eb = a2/4c is the energy barrier between different wells. Therefore, the normalized

variables are

x′ =
x
L0

, p′ =
p
p0

, φ′ =
φ

φ0
, ρ′ =

ρ

ρ0
(5.25)

with characteristic constants,

Eb =
a2

4c
, p0 =

√
−a

c
,

L0 = p0

√
a0

Eb
, φ0 =

√
a0Eb, ρ0 =

√
Eb

a0
.

(5.26)

The reason we choose Eb to normalize Wp instead of c0 as in Eq. 4.23 is because we do

not consider elasticity here. By choosing Eb, we obtain a normalized energy functional W ′
p

of order unity, and therefore a domain wall thickness of order unity.

The normalized system equations now are:

∆′p′ − ∂W ′
p

∂p′
−∇φ′ = 0 in Ω, (5.27)

∇ · (−ε′∇φ′ + p′) = ρ′(φ′) in Ω (5.28)
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with W ′
p defined as

W ′
p(p

′
x, p′y) =

a′

2
(p′x

2 + p′y
2) +

b′

2
p′x

2
p′y

2 +
c′

4

(
p′x

4 + p′y
4
)

(5.29)

where a′ = −4, c′ = −a′ = 4, and b′ = 4b/c = 20 if we choose b/c = 5 for a good

approximation to real crystals.

A very important parameter in Eq. (5.28) is ε′ defined as

ε′ =
ε0Eb

p2
0

(5.30)

If we pick p0 = 0.26 C/m2 as of BaTiO3, and Eb = 5 × 106 Jm−3 which is about the same

order as of the one we pick for BaTiO3 in Section 4.1, then ε′ = 6.54 × 10−4. We notice

that ε′ ¿ 1, while the remaining terms in Eq. (5.27) and Eq. (5.28) are all of O(1) except

ρ′(φ′) which varies dramatically with φ′. In addition to numerical solutions to the full set

of equations, we will use the fact that ε′ ¿ 1 to perform an asymptotic analysis.

We now write down the full one-dimensional equations. For 180o domain walls, by

assuming ∂/∂y′ = 0, from equation Eq. (5.27) and Eq. (5.28), we obtain,

d2p′x
dx′2

− ∂W ′
p

∂p′x
− dφ′

dx′
= 0, (5.31)

d2p′y
dx′2

− ∂W ′
p

∂p′y
= 0, (5.32)

−ε′
d2φ′

dx′2
+

dp′x
dx′

= ρ′(φ′). (5.33)

with suitable boundary conditions and W ′
p defined by Eq. (5.29).

For 90o domain walls, by assuming ∂/∂s′ = 0, we obtain,

d2p′r
dr′2

− ∂W ′
p

∂p′r
− dφ′

dr′
= 0, (5.34)

d2p′s
dr′2

− ∂W ′
p

∂p′s
= 0, (5.35)

−ε′
d2φ′

dr′2
+

dp′r
dr′

= ρ′(φ′). (5.36)
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with suitable boundary conditions and W ′
p defined by Eq. (5.29) with

p′x =
√

2
2

p′r +
√

2
2

p′s, (5.37)

p′y = −
√

2
2

p′r +
√

2
2

p′s. (5.38)

5.3.2 Structure of Domain Walls without Defects

5.3.2.1 180o Domain Walls

To understand the structure of a 180o domain wall, we seek a “ kink” solution for Eq. (5.31)–

(5.33) with ρ′ = 0 which satisfies the following boundary conditions:

dp′x
dx′

(±∞) = 0, (5.39)

dp′y
dx′

(±∞) = 0, (5.40)

dφ′

dx′
(±∞) = 0, (5.41)

and in the form of a 180o domain wall located at x′ = 0. By the last condition, we mean

that p′x should approximate to 0 at infinity, while p′y should approximately be −1 at one

end and 1 at the other.

Since
∂W ′

p

∂p′x
= p′x

(
a′ + c′p′x

2 + b′p′y
2
)

, (5.42)

a solution with

p′x ≡ 0 and φ′ ≡ 0 (5.43)

satisfies Eq. (5.31), Eq. (5.33), and boundary condition (5.39) and (5.41). We only need

to solve Eq. (5.32) which is now

d2p′y
dx′2

− p′y(a
′ + c′p′y

2) = 0 (5.44)

by substituting p′x = 0 into

∂W ′
p

∂p′y
= p′y

(
a′ + b′p′x

2 + c′p′y
2
)

. (5.45)
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Figure 5.14: Structure of an 180o domain wall without defects.

Eq. (5.44) has an exact solution

p′y = tanh

(
x′√
−2/a′

)
= tanh

(√
2x′

)
(5.46)

which satisfies boundary condition (5.40) and has a 180o domain wall located at x′ = 0.

In summary, for a 180o domain wall in perfect crystal, the polarization and potential

profile is

p′x = 0, p′y = tanh
(√

2x′
)

, and φ′ = 0. (5.47)

This is shown in Fig. 5.14.

We notice that φ′ here can actually be any constant since φ appears in our problem only

in the form of dφ′/dx′. Therefore, the solution also holds when we have an equally fixed
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potential at both ends. When the infinite domain is replaced by a finite domain [−L,L],

the solution still holds approximately as long as L À
√
−2/a′.

Finally we point out that the polarization profile of 180o domain walls we obtain here

is by no means new. Indeed, Cao and Cross (1991) has worked out the solution for a first

order phase transition. However, in their approach, although they considered the effects

of strain energy, they ignored electric field energy completely, i.e., no Maxwell equation is

solved. Although the omission of electric field energy leads to the same solution for 180o

domain walls, for 90o domain walls, it results in the loss of some essential information as

we will show next.

5.3.2.2 90o Domain Walls

For a 90o domain wall, we seek a “ kink” solution for Eq. (5.34)–(5.36) with ρ′ = 0 which

satisfies the following conditions:

dp′r
dr′

(±∞) = 0, (5.48)

dp′s
dr′

(±∞) = 0, (5.49)

dφ′

dr′
(±∞) = 0, (5.50)

and in the form of a 90o domain wall located at r′ = 0. By the last condition, we mean that

p′r should approximately be
√

2/2 or −√2/2 at both ends, while p′s should approximately

be −√2/2 at one end and
√

2/2 at the other.

Since
∂W ′

p

∂p′r
= p′r

(
a′ +

b′ + c′

2
p′r

2 +
3c′ − b′

2
p′s

2
)

, (5.51)

unlike 180o domain walls, a solution with

p′r ≡
√

2
2

and φ′ ≡ 0 (5.52)

does not satisfy Eq. (5.34) and Eq. (5.36) simultaneously. As we will see later, this is

actually the essential difference between 180o and 90o domain walls.

The above problem can be solved by numerical simulation, and the results are shown in

Fig. 5.15. Note that there is a drop in potential across the domain wall. This is consistent
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with our two dimensional solution in Fig. 5.6. This potential drop across the 90o domain

wall is different from the 180o domain wall and is the essential difference between the two.

To understand this further, we recall that ε′ ¿ 1, and seek a perturbative solution by

assuming that:

φ′ ∼ φ′0 + ε′φ′1,

p′r ∼ p′r0 + ε′p′r1,

p′s ∼ p′s0 + ε′p′s1.

(5.53)

We obtain the following equations at O(1):

d2p′r0
dr′2

− ∂W ′
p

∂p′r0

∣∣∣∣∣
p′r0, p′s0

− dφ′0
dr′

= 0, (5.54)

d2p′s0
ds′2

− ∂W ′
p

∂p′s0

∣∣∣∣∣
p′r0, p′s0

= 0, (5.55)

dp′r0
dr′

= 0. (5.56)

And the equations at O(ε′) are

d2p′r1
dr′2

− ∂2W ′
p

∂p′r
2

∣∣∣∣∣
p′r0, p′s0

p′r1 −
∂2W ′

p

∂p′r∂p′s

∣∣∣∣∣
p′r0, p′s0

p′s1 −
dφ′1
dr′

= 0, (5.57)

d2p′s1
ds′2

− ∂2W ′
p

∂p′r∂p′s

∣∣∣∣∣
p′r0, p′s0

p′r1 −
∂2W ′

p

∂p′s
2

∣∣∣∣∣
p′r0, p′s0

p′s1 = 0, (5.58)

−d2φ′0
dr′2

+
dp′r1
dr′

= 0. (5.59)

The solution of the O(1) equations can be worked out without much effort:

p′r0 ≡ pm,

p′s0 = −A tanh(Br′),

φ′0 = Cr′ + D tanh(Br′) + φm

(5.60)

where

A =

√
−2a′ + (b′ + 3a′)p2

m

b′ − a′
(5.61)
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B =
1
2

√
−2a′ + (b′ + 3a′)p2

m (5.62)

C =
2a(b′ + a′)

b′ − a′
pm(−1 + 2p2

m) (5.63)

D =
−(b′ + 3a′)

b′ − a′
pm

√
−2a′ + (b′ + 3a′)p2

m (5.64)

and pm, φm are some constants decided by boundary conditions (Eq. (5.48), Eq. (5.49),

Eq. (5.50) with p′r, p′s, φ′ being replaced by p′r0, p′s0 and φ′0 respectively). We therefore have

pm =
√

2
2

, A =
√

2
2

, B =
√

3, C = 0, D = −
√

6
3

(5.65)

and φm can be any constant.

With the equations of O(1) solved, we now turn to the equations of O(ε′). p′r1 can be

solved easily from Eq. (5.59),

p′r1 = DB sec(Br′). (5.66)

The other two equations of O(ε′) are however quite messy, and can not easily be solved

analytically. Fortunately, numerical simulation shows that the first order approximation of

p′s and φ′ is good enough to capture the essential profiles. Fig. 5.15 shows the numerical

solution of the exact equation (5.34)-(5.36) and compares it with the perturbation solution

(p′r0 + ε′p′r1, p′s0 and φ′0).

In light of the potential drop across the domain wall, the potential does not vanish at

infinity. To explore this further, we consider a finite domain [−L,L] with fixed potential at

both ends: φ′(±L) = 0. In order to satisfy the boundary, we have

−CL + D tanh(−BL) + φm = 0,

CL + D tanh(BL) + φm = 0,

which leads to:

φm = 0, (5.67)

CL + D tanh(BL) = 0. (5.68)

Therefore, in order to find pm, we only need to solve an algebraic equation (Eq. (5.68)).
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Figure 5.15: Structure of a 90o domain wall without defects.



81

Further, for L À 0, B ∼ O(1), Eq. (5.68) can be simplified as:

CL + D = 0. (5.69)

For example, for L = 10, both Eq. (5.68) and Eq. (5.69) lead to the same solution:

pm = 0.699438, A = 0.70456, B = 1.72581,

C = 0.0804732, D = −0.804732.

Similarly, for the equations of O(ε′), it is enough to just solve p′r1 from Eq. (5.59).

Fig. 5.16 shows the numerical solution of the exact equations (Eq. (5.34)-(5.36)) and the

perturbational solution (p′r0 + ε′p′r1, p′s0 and φ′0). The results show that there is an uniform

electric field that balances the potential drop.

We point out that the perturbative solution we obtain for small ε′ is no different from

the solution for ε′ = 0 except the small modification for p′r in the transition layer, although

ε′ is a coefficient of highest order term. This is because the boundary conditions we choose

for p′r and p′s does not allow the occurrence of boundary layers.

From our analysis and numerical simulation, we conclude that the potential drop across

the 90o domain wall (Fig. 5.15) is the essential difference between the two types of domain

walls. When a fixed potential is prescribed at the boundary, because of the potential drop,

the whole potential profile is tilted (Fig. 5.15). An internal field is therefore formed inside

the whole domain with a potential height and well near the wall. It is exactly because of

this, 90o domain walls become potential sites for charge trapping and injection as we have

showed in Section 5.1.2 and will further explore in following sections.

We also note that the thickness of 90o domain wall is thinner than 180o domain walls

if b′ + 3a′ > 0 (Eq. (5.62)). The sign of b′ + 3a′ also decides whether it is a potential drop

or a potential increase across the wall (Eq. (5.64)). The implication of the these facts and

the choice of b′ need further investigation.

5.3.3 Structure of Domain Walls with Defects and Diffusion

We now turn our attention to the structure of isolated domain walls with defects and

diffusion. We found in Section 5.3.2 that the essential difference between 180o and 90o

domain walls is a potential drop across the domain wall. In this section, we investigate
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Figure 5.16: Structure of a 90o domain walls without defects with fixed potentials on both
ends.
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the consequence that this difference has on the space charges and vacancies. We focus on

numerical analysis due to the complexity of the problem.

For 180o domain walls, we solve Eq. (5.31)–Eq. (5.33) subject to boundary condi-

tions (5.39)–(5.41). However, instead of infinite domain, we now work on finite domain

[−L,L] with L À 1, i.e, ±∞ in Eq. (5.39)–Eq. (5.41) are replaced by ±L. The results are

identical to the case with no defects or diffusion and hence are not shown. For 90o domain

walls, we solve Eq. (5.34)–Eq. (5.36) subject to boundary conditions (5.48)–(5.50) with ±∞
being replaced by ±L. In addition, for mobile defects, we also need to solve Eq. (4.42) and

Eq. (4.43) simultaneously.

5.3.3.1 Interaction of Defects with Domain Walls

Fig. 5.17 and Fig. 5.18 show the isolated 90o domain wall under different circumstances.

Fig. 5.17 is the computed results on the domain [−50, 50] with a0 = 10−7 Vm3C−1. Fig. 5.18

is the computed results with a0 = 10−9 Vm3C−1. Since the physical domain is scaled by

L0 = p0

√
a0/Eb, we compute on [−500, 500] in Fig. 5.18 for comparison reason.

Let us first consider the of potential profile. The green dashed and cyan dotted lines

show the potential drop in a perfect crystal cross the 90o domain wall as we have discussed in

Section 5.3.2.2. When there are defects (oxygen vacancies in our case) present but immobile,

the results are shown in blue dash-dot lines. We may interpret it as follows. The potential

drop described above sweeps the electrons freed from ionized defects to one side of the

domain wall which has higher potential and thus lower energy. The big potential drop is

then lowered. In the mean time, a potential height and a well are formed cross the domain

wall. When the defects are mobile, the results are shown in red solid lines. The positively

charged defects flow into the potential well discussed above and redistribute near the domain

wall. The defect concentration profile shown in these figures are normalized according to the

initial uniformly distributed concentration. We can see the big difference between mobile

defects and immobile defects. However, we also notice that the redistribution of defects

only slightly change the polarization, potential and charge profile. Part of the reason may

be that we use γ = 4φ0 instead of γ = 40φ0 in our computation (See Section 4.2 for details).
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5.3.3.2 Parallel Arrays of Domain Walls

Fig. 5.19, 5.20, 5.21, 5.21 are computed results of Eq. (5.34), (5.35), (5.36) with periodic

boundary conditions, with different a0, defect concentration and periodicity. The existence

of these almost periodic solutions and the redistribution of oxygen vacancies near 90o domain

walls gives a concrete mechanism for the domain memory observed by Ren (2004) and

provides a potentially new mechanism for large electrostriction.

5.3.3.3 Effect of a0 and Doping Level

We compare 90o domain wall structures with different a0 when defects and diffusion are

considered in Fig. 5.23. We see no essential differences between a0 = 10−7 Vm3C−1 and

a0 = 10−9 Vm3C−1, except the size of the potential differences cross the walls, the amount

of charges accumulated near the walls, and the degree of the defect redistributions. All

these quantitative differences comes from the fact that a bigger a0, or a thicker domain

wall in a perfect crystal has a bigger potential drop. We recall that potential is scaled by

φ0 =
√

a0Eb in Eq. (5.25), therefore, a bigger a0 means a bigger potential drop. This is

clearly shown by comparing Fig. 5.17 and Fig. 5.18.

We compare 90o domain wall structures with different doping level in Fig. 5.24. Again,

we do not see any qualitative differences between different Nds.

5.3.3.4 A Final Remark

Finally, we point out that although we are working on isolated domain walls in Section 5.3,

we still assume that far away from the wall, the crystal is connected to electrodes made

of Platinum. Therefore, the Fermi level in our calculation is the Fermi level of Platinum.

However, the results we obtain in this section also apply to isolated crystals. In that case,

we simply replace the Fermi level of Platinum by the Fermi level of the crystal itself in

Eq. (4.26), and the result is just a simple shift of potential. This is numerically shown in

Fig. 5.25.
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Figure 5.23: Isolated 90o domain walls with defects and diffusion with different a0. Blue
dashed lines: a0 = 10−7 Vm3C−1; red solid lines: a0 = 10−9 Vm3C−1.
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Chapter 6

Field Energy Revisited

A ferroelectric crystal is spontaneously polarized below its Curie temperature, i.e., there is

a non-vanishing dipole moment in each of its primitive cells. This non-vanishing moment

is caused by a distortion of the primitive cell from the unpolarized configuration above the

Curie temperature. For example, the polarization in BaTiO3, as we illustrated schematically

in Chapter 2, is the result of a shift of the positively charged ions relative to the negatively

charged ones. Therefore, a ferroelectric crystal can be treated as a periodic distribution

of charges such that it has zero net charge but non-zero polarization (dipole moment) in

each primitive cell. In this chapter, we seek to derive a continuum theory starting from this

atomistic (discrete) picture.

Recall that in Chapter 3, we wrote the energy of a ferroelectric as the sum of a local

and nonlocal term: ∫

Ω0

W0 dx +
ε0
2

∫

R3

|∇φ|2 dx (6.1)

where W0 depends on the pointwise polarization density and φ is obtained from the polar-

ization density p via the Maxwell’s equation∗

∇(−ε0∇φ + p) = 0 .

Alternately, we can write the electric field

E(x) = −∇φ(x) =
∫

Ω0

K(x− y)p(y) dy (6.2)

∗The field energy in Chapter 3 also included the energy generated by external sources. However, in this
Chapter, it is sufficient to restrict ourselves to the field energy generated by the spontaneous polarization
only.
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l

d̂le

l

d̂le

Figure 6.1: A periodic arrangement of charges which has zero net charge but non-zero
polarization in each primitive cell inside Ω.

where

K(x) =
1

ε0|x|3
{
I− 3

x
|x| ⊗

x
|x|

}
, x ∈ R3. (6.3)

In this chapter, we examine if this can be justified starting from the discrete situation.

This question poses various difficulties. On the discrete or atomistic side, the calculation

of Coulomb energy by lattice summation is not straightforward. This is because Coulomb

energy has a decay rate of 1/r which falls off very slowly. Or mathematically speaking, the

Coulomb interaction gives a series like
∑∞

n=1(−1)n/r which is only conditionally convergent.

So it can be summed to any value, depending on the order of the summation. Similarly,

on a continuum level, there are also tricky issues when dealing with the field inside a

polarized material, since the dipole induced a non-integrable 1/r3 singularity in the field

(See Eq. (6.3)). Indeed, this is the mathematical origin of the so-called Lorentz local field,

a crucial concept in developing electromagnetic theory for continua.

The milestone work in addressing these difficulties is due to Lorentz (1952). When

developing a theory for dielectrics, he calculated the electrostatic field of an array of point

dipoles arranged on a uniform space lattice and concluded that†

ES = EL + EMS (6.4)

†We follow the notation of Toupin (1956) here.
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where ES is the total electric field at a point inside the dielectrics, EMS the Maxwell

self field, or the macroscopic electric field generated by the dielectric body, and EL the

Lorentz local field which depends on lattice symmetry. For example, EL = p/3ε0 for a

cubic lattice where p is polarization per unit volume. In a fundamental work concerning

continuum theory of elastic dielectrics, Toupin (1956) reinterpreted Lorentz’s result and

extended it to deformable dielectrics. He also argued that the Lorentz local field which

depends on the lattice symmetry, and thus on the deformation, provides a contribution to

W0, the local energy density, along with contributions from other short range interactions.

Brown (1966) developed similar theories for ferromagnetism. James and Müller (1994)

rigorously calculated the Coulomb energy and the dipole field of a finite ferromagnetic

body following Lorentz (1952). They also considered cases in which there is no oscillation of

polarization, oscillation on the scale much larger than the lattice parameter, and oscillation

on a scale comparable to the lattice parameter. Schlömerkemper (2002) studied magnetic

forces in three-dimensional lattice and continuum settings. But, all of these authors start

from a lattice of dipoles and none of them address a periodic arrangement of charges.

Other important work includes Tiersten (1990) and Bobbio (2000), in which they developed

electromagnetic equations for continua starting from the Maxwell’s equations in free space;

nevertheless, their approach is quite formal.

Starting from a periodic arrangement of charges poses a new and difficult set of problems.

In fact, it is difficult to even define the polarization or dipole moment per primitive cell since

it depends on the choice of the cell. For example, for a charge distribution q(x) = q0 sin(x),

the polarization
∫ α+2π
α q(x)x dx = −2πq0 cosα depends on α! Or for example, we could

get different values for the dipole if we make different choices of primitive cell in Fig. 6.1.

King-Smith and Vanderbilt (1994) argued that while the polarization itself may be an ill-

defined quantity, the change in polarization from a non-polar reference state is well defined

and this is the experimentally relevant quantity. In the context of Fig. 6.1, if we choose

the state ε = 0 (where the two sub-lattices coincide) as the reference, then the dipole per

unit cell is well defined to be d = qλεd̂. Some researchers (Resta, 1994) have also argued

that this classical picture of primitive charges is insufficient and polarization should be

regarded as a fundamental quantum mechanical quantity (a gauge-invariant phase feature

of the electronic wave function). There are also issues of surface closure and charges. Many

of these issues remain open for the future.
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In this chapter, we rigorously justify the continuum theory of Chapter 3 with the classical

interpretation of the ferroelectric as a distribution of charges as shown in Fig. 6.1 and with

a definite choice of polarization per unit cell. The main result is Theorem 6 given in

Section 6.4.1. It states that in the limit where the size of the body is large compared to the

unit cell, the energy of Coulombic interactions is given by Eq. (6.1). It consists of a local

part and a nonlocal part. The local part depends on the lattice structure, but is different

from the Lorentz formula‡. The nonlocal part is as described before and identical to the

Lorentz formula. At short distances, one sees the pair of charges, but at large distance, one

only sees the dipoles.

6.1 Formulation of Problem

Consider a finite spontaneously polarized body. As we have just discussed, microscopically,

we can view it as a group of positive charges residing on a Bravais lattice Lλ, and the

same group of charges with negative values defined on the L′λ which is L with a shift ελd̂,

i.e., the positive charges are located on Lλ ∩ Ω, while the negative charges are located on

(Lλ + ελd̂) ∩ Ω.

A Bravais lattice L(ei,o) in R3 is an infinite set of points generated by translations of

a single point o through three linear independent lattice vectors e1, e2, e3:

L(ei,o) =
{
x ∈ R3 : x = νiei + o where νi ∈ Z, i = 1, 2, 3

}
. (6.5)

We assume (by normalization) that the unit cell defined by {ei},

U :=
{
z ∈ R3 : z = x + αiei, x ∈ L(ei, o), 0 ≤ αi ≤ 1, i = 1, 2, 3

}
(6.6)

has unit volume, i.e., [e1, e2, e3] = e1 ·(e2⊗e3) = 1. A family of Bravais lattices Lλ, λ ∈ (0, 1]

is defined as

Lλ = λL1 := L(λei,o). (6.7)

Clearly, each unit cell for Lλ has volume λ3. We define another family of Bravais lattices

L′λ, λ ∈ (0, 1] by shifting Lλ a small distance of λε along d̂ direction, that is, L′λ = Lλ +λεd̂.

‡However, since it is absorbed into W0, we do not see the explicit manifestation of this difference.



98

We place a negative charge qλ(x) at each point x ∈ Lλ. At the corresponding point

x + λεd̂ ∈ L′λ, we place a positive charge qλ(x + λεd̂), and qλ(x + λεd̂) = −q(x) in order

to maintain neutral charge in each unit cell (Fig. 6.1). In another word, we place at each

point of Lλ an electric dipole with magnitude

dλ = qλλε (6.8)

along d̂ direction. Note that we allow the charge qλ to vary from one lattice point to another

but not the direction d̂.

We want to calculate the limiting energy of these electric dipoles when λ → 0 with ε

held constant, and

dλ(x) → p ∈ L2(R3,R) as λ → 0. (6.9)

By Eq. (6.9) we mean d∼λ ∈ L2(R3,R) defined by

d∼λ (z) = λ−3dλ(x) for z ∈ x + λU and x ∈ Lλ. (6.10)

converges to p ∈ L2(R3,R), i.e.,

d∼λ → p in L2(R3,R). (6.11)

This is equivalent to (See Lemma 8)

pλ → p in L2(R3,R) (6.12)

where pλ ∈ L2(R3,R) is any background field such that

dλ(x) =
∫

x+λU
pλ(z) dz. (6.13)

6.2 Energy of Array of Dipoles

The electric potential at x with −q at origin, and q at λεd̂ (Fig. 6.2) is

φ(x) = q

(
1

|x− λεd̂| −
1
|x|

)
. (6.14)
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Figure 6.2: Electric field of an electric dipole.

Then the energy of the array shown in Fig. 6.1 is:

Eλ = −1
2

∑

x,y∈Lλ

y 6=x

qλ(x)

(
1

|x− y − λεd̂| −
1

|x− y|

)
qλ(y)

+
1
2

∑

x,y∈Lλ

y 6=x

qλ(x)

(
1

|x− y| −
1

|x− y + λεd̂|

)
qλ(y)

−
∑

x∈Lλ

q2
λ(x)
λε

= −1
2

∑

x,y∈Lλ

y 6=x

qλ(x)

(
1

|x− y − λεd̂| −
2

|x− y| +
1

|x− y + λεd̂|

)
qλ(y)

−
∑

x∈Lλ

q2
λ(x)
λε

(6.15)

Our goal is to understand this energy. We first estimate the last term in Eq. (6.15). We

assume dλ → d as λ → 0, by Lemma 8 and Eq. (6.8), we obtain

dλ =
∫

x+λU
pλ(z) dz, (6.16)

qλ =
∫

x+λU
ρλ(z) dz (6.17)

with

pλ(z) = λερλ(z) (6.18)
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and

pλ → p in L2(R3,R). (6.19)

The convergence of pλ to p indicates that pλ is bounded. For ε being constant, we

obtain,

ρλ(z) ∼ O(1)
λ

. (6.20)

Therefore,

∑

x∈Lλ

q2
λ(x)
λε

=
1
λε

∑

x∈Lλ

(∫

x+λU
ρλ(z) dz

)2

≤ 1
λε

∑

x∈Lλ

λ3

∫

x+λU
ρ2

λ(z) dz

=
λ2

ε

∫

R3

ρ2
λ(z) dz. (6.21)

Notice we use Jensen’s inequality in the above derivation. In view of Eq. (6.20) and (6.21),

we conclude that the energy of charge-charge interaction is finite if dλ → p as λ → 0 and ε

being constant.

Therefore, from now on, we only consider:

Eλ = −1
2

∑

x,y∈Lλ

y 6=x

qλ(x)


 1∣∣∣x− y − λεd̂

∣∣∣
− 2
|x− y| +

1

|x− y + λεd̂|


 qλ(y) (6.22)

Eq. (6.22) can be rewritten as

Eλ = −1
2

∑

x,y∈Lλ

y 6=x

dλ(x)Kλ(x− y)dλ(y) (6.23)

where

Kλ(x− y) =
1

(λε)2

(
1

|x− y + λεd̂| −
2

|x− y| +
1

|x− y − λεd̂|

)
. (6.24)

Before we proceed to derive the energy in terms of macroscopic quantities, we first briefly

review some mathematical concepts and a few kernels which will be used in the derivation.
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6.3 Preliminaries

6.3.1 Field of Monopoles and Dipoles

The field of a unit charge (monopole) in a vacuum is §:

u =
x
|x|3 , x ∈ R3. (6.25)

Except at the origin where it has a r−2 singularity, u is smooth and satisfies

u(x) = −∇φ = −∇
(

1
|x|

)
(6.26)

where

φ =
1
|x| (6.27)

is the electric potential of a monopole.

The field of a unit dipole in a vacuum is

K(x) =
1
|x|3

{
I− 3

x
|x| ⊗

x
|x|

}
, x ∈ R3. (6.28)

K has a r−3 singularity at the origin; else where it is smooth and satisfies

K(x) = −∇u = ∇∇φ. (6.29)

6.3.2 Dipole Field in the Sense of Distribution

Since the dipole field has a r−3 singularity, it is not a locally integrable function. An

integral or a volume average of in a classical sense is meaningless. We therefore introduce

the concept of distribution (See for example, Mitrović and Žubrinić, 1998, Ch. 4).

We denote C∞
0 (Rn) as the space of all infinitely differentiable function with compact

support on Rn. A sequence of function (ϕm), m ∈ N, converges to zero in C∞
0 (Rn) if

1. ϕm ∈ C∞
0 (Rn) for every m ∈ N;

§1/ε0 should be added in the expression in order to be consistent with the unit we use in previous
chapters. However, for simplicity and without causing much confusion, we omit it here and in the discussion
that follows.
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2. there exists a compact set K ⊂ Rn independent of m, such that supp(ϕm) ⊆ K for

all m ∈ N;

3. for every multi-index α = (α1, . . . , αn), the sequence of partial derivatives (Dαϕm(x))

converges uniformly to zero on K (and therefore on Rn), that is

max
Rn

|Dαϕm(x))| → 0 as m →∞. (6.30)

Also, we say that ϕm → ϕ in C∞
0 (Rn) if ϕ− ϕm → 0 in C∞

0 (Rn) as m →∞.

We denote D(Rn) as the space C∞
0 (Rn) equipped with such a topology of convergence.

A distribution is any linear and continuous functional defined on D(Rn) with values in R.

The space of all distributions defined on D(Rn) is denoted by D′(Rn).

Briefly, the continuity of a distribution T means:

ϕm → ϕ in D(Rn) ⇒ < T, ϕm > → < T, ϕ > in C as m →∞. (6.31)

And a sequence of distributions Tk converges to T in D′(Rn) if and only if

< Tk, ϕ > → < T, ϕ > as k →∞, ∀ ϕ ∈ D(Rn). (6.32)

Let u : Rn → R be a locally integrable function, then a functional Tu : D(Rn) → C

defined by

< Tu, ϕ >=
∫

Rn

u(x)ϕ(x) dx, ϕ ∈ D(Rn), (6.33)

is a distribution. Any distribution that is representable in form (6.33) is called regular

distribution, otherwise it is called singular distribution.

As an example of singular distribution and also for later use, we introduce Dirac’s delta

distribution δa here. Let a ∈ Rn, δa is defined by

< δa, ϕ >= ϕ(a) (6.34)

for every ϕ ∈ D(Rn).

Given any distribution T ∈ D′(Rn) and multi-index α ∈ Nn
0
¶, the derivative of order α

¶N0 = N ∪ 0 denotes the set of nonnegative integers.
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of the distribution T is the distribution DαT defined by

< DαT, ϕ >:= (−1)|α| < T, Dαϕ >, ∀ ϕ ∈ D(Rn). (6.35)

The convolution of a distribution T with ϕ ∈ D(Rn) is the function T ∗ ϕ : Rn → R

defined by

(T ∗ ϕ)(x) =< Ty, ϕ(x− y) > . (6.36)

More clearly, if T is a regular distribution representable by a locally integrable function

u : Rn → R, then,

(T ∗ ϕ)(x) =
∫

Rn

u(y)ϕ(x− y) dy. (6.37)

We define

T (ϕ)(x) =< T (x,y), ϕ(y) >, ϕ ∈ D(Rn), (6.38)

if T defined on Rm × Rn is a distribution on D(Rn) for each x ∈ Rm.

The domain of distribution T can also be extend from D(Rn) to L2 ‖ if

‖T (ϕ)‖L2 ≤ c ‖ϕ‖L2 ∀ ϕ ∈ D(Rn) (6.39)

for some constant c ∗∗. This is because if ϕk ∈ D is a Cauchy sequence in L2, then

‖T (ϕk)− T (ϕj)‖L2 ≤ c ‖ϕk − ϕj‖L2 , (6.40)

which means T (ϕk) is a Cauchy sequence in L2. Thus, for any ϕ ∈ L2, we define

T (ϕ) := lim
k→∞

T (ϕk) (6.41)

where ϕk ∈ D(Rn) and ϕk → ϕ in L2.

Now, let’s return to our subject. Since the monopole field u is a locally integrable

function, we can review it as a vector-valued distribution (a distribution in each component).

Further, since K = −∇u in R3 except at the origin, we can review K as a matrix-valued
‖Or any normed linear space in which C∞0 (Rn) is dense.
∗∗The same argument also applies to convolution of a distribution.
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distribution, which is a gradient of a distribution −u, and

K(ϕ) :=
∫

R3

u⊗∇ϕ(x) dx, ϕ ∈ D(R3). (6.42)

With this interpretation, K is well defined.

6.3.3 A Few Kernels

Define

P(r)
MS(x) =




K(x) |x| > r,

0 |x| ≤ r.

(6.43)

Lemma 1.

∫

∂B(%)
P(r)

MS(x) da = 0, (6.44)
∫

B(%)
P(r)

MS(x) dx = 0. (6.45)

Proof. (i). When % ≤ r, obviously,
∫
∂B(%) P

(r)
MS(x) da = 0.

when % > r,

∫

∂B(%)
P(r)

MS(x) da = − 1
%3

[
4π%2I− 3

∫

∂B(%)
n̂⊗ n̂ da

]

= − 1
%3

[
4π%2I− 3

4π%2

3
I
]

= 0.

Notice that in the above derivation we use the fact that

∫

∂B(%)
n̂⊗ n̂ da =

4π%2

3
I. (6.46)

(ii). When % ≤ r, obviously,
∫
B(%) P

(r)
MS(x) dx = 0.
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When % > r,

∫

B(%)
P(r)

MS(x) dx =
∫

B(%)\B(r)
P(r)

MS(x) dx

=
∫

B(%)\B(r)
−∇

(
x
|x|3

)
dx

=
∫

∂B(r)

n̂⊗ n̂
|x|2 dx−

∫

∂B(%)

n̂⊗ n̂
|x|2 dx

= 0.

Lemma 2. let K(x) and P(r)
MS(x) be defined as Eq. (6.28) and Eq. (6.43) respectively, we

have P(r)
MS(x) converges to K(x) + 1

3Iδ0 in the sense of distribution, i.e.

P(r)
MS(x) → K(x) +

1
3
Iδ0 (6.47)

in D′ as r → 0.

Proof. This proof follows James and Müller (1994) page 298.

Lemma 3. Let K(x) and P(r)
MS(x) be defined as

K(x) = d̂ ·K(x)d̂ (6.48)

P(r)
MS(x) = d̂ · P(r)

MS(x)d̂ (6.49)

then

∫

∂B(%)
P(r)

MS(x) dx = 0, (6.50)
∫

B(%)
P(r)

MS(x) dx = 0. (6.51)

and

P(r)
MS(x) → K(x) +

1
3
δ0 (6.52)

Proof. (i).

∫

∂B(%)
P(r)

MS(x) dx = d̂ ·
(∫

∂B(%)
P(r)

MS(x) dx

)
d̂ = 0,
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∫

B(%)
P(r)

MS(x) dx = d̂ ·
(∫

B(%)
P(r)

MS(x) dx

)
d̂ = 0.

(ii). We have by Lemma 2

P(r)
MS(x) → K(x) +

1
3
Iδ0,

thus

P(r)
MS(x) = d̂ · P(r)

MS(x)d̂ → d̂ ·
(
K(x) +

1
3
Iδ0

)
d̂ = K(x) +

1
3
δ0

as r → 0.

6.4 From Discrete to Continuum

6.4.1 Energy in Integral Form

By defining

Jλ(x,y)

=
∑

v,w∈Lλ

v 6=w

χv+λU (x)





1
(λε)2


 1∣∣∣v −w + λεd̂

∣∣∣
− 2
|v −w| +

1∣∣∣v −w − λεd̂
∣∣∣






 χw+λU (y),

(6.53)

we can rewrite the energy expression in Eq. (6.23) as

Eλ = −1
2

∫

R3

∫

R3

pλ(x)Jλ(x,y)pλ(y) dx dy. (6.54)

Or,

Eλ = −1
2

< pλ, Tλpλ >L2 (6.55)

where

Tλp :=
∫

R3

Jλ(x,y)p(y) dy (6.56)

Proposition 4. The map

Tλ : p →
∫

R3

Jλ(.,y)p(y) dy (6.57)
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defined on C∞
0 (R3,R) extends to a bounded linear map from L2(R3,R) to L2(R3,R). More-

over,

‖Tλ‖L(L2,L2) = ‖T1‖L(L2,L2), ∀ λ > 0. (6.58)

Proof. First, we assume that T1 is a bounded linear map from L2(R3,R) to L2(R3,R). From

the definition of Jλ(x,y), it is easy to see

Jλ(x,y) =
1
λ3

J1(
x
λ

,
y
λ

). (6.59)

Set

(Sλf) (x) := λ
3
2 f(λx), x ∈ R3. (6.60)

It is easy to prove that

‖f(x)‖L2 = ‖λ 3
2 f(λx)‖L2

so that

‖f‖L2 = ‖Sf‖L2

and S is an isometry from L2(R3,R) to L2(R3,R).

Therefore,

(Tλp)(x) =
∫

R3

Jλ(x,y)p(y) dy

=
∫

R3

1
λ3

J1(
x
λ

,
y
λ

)p(y) dy

=
∫

R3

1
λ3

J1(
x
λ

, z)p(λz) dλz

=
∫

R3

J1(
x
λ

, z)p(λz) dz

=
∫

R3

J1(
x
λ

, z)λ−
3
2 Sλp(z) dz

= T1(λ−
3
2 Sλp)(

x
λ

)

= λ−
3
2 T1(Sλp)(

x
λ

).

From the definition of Sλ in (6.60), we have

S−1
λ

(
λ

3
2 f(λx)

)
= f(x),
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S−1
λ (f(λx)) = λ−

3
2 f(x),

S−1
λ (f(y)) = λ−

3
2 f(

y
λ

).

Thus

(Tλp)(x) = λ−
3
2 T1(Sλp)(

x
λ

) = S−1
λ T1(Sλp)(x).

Therefore,

‖Tλ‖L(L2,L2) = ‖T1‖L(L2,L2), ∀ λ > 0.

We now prove that T1 extends to a bounded linear map from L2(R3,R) to L2(R3,R).

From the review in Section 6.3.2, we need to prove:

‖T1p ‖L2 ≤ c‖p‖L2 , ∀ p ∈ C∞
0 (R3,R) for some constant c. (6.61)

In order to prove Eq. (6.61), we first define

L(r)(x,y) := J1(x,y)− P(r)
MS(x− y). (6.62)

We will prove in Lemma 9 that there exists a function g(r) ∈ L1(R3,R), such that

∣∣∣L(r)(x,y)
∣∣∣ ≤ g(r)(|x− y|). (6.63)

By a standard result on convolution (See for example, Wheeden and Zygmund, 1977, Ch.

9),

∥∥∥∥
∫

R3

L(r)(x,y)p(y) dy
∥∥∥∥

L2

≤
∥∥∥∥
∫

R3

g(r)(|x− y|)p(y) dy
∥∥∥∥

L2

≤
∥∥∥g(r)

∥∥∥
L1

‖p‖L2
, ∀ p ∈ C∞

0 (R3,R).
(6.64)

In Lemma 3, we prove that

∫

∂B(r)
P(r)

MS(x) dx = 0.
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By a standard result in singular integral (For example, Stein, 1970, Ch. 2), we obtain,

∥∥∥∥
∫

R3

P(r)
MS(x− y)p(y) dy

∥∥∥∥
L2

≤ A‖p‖L2 (6.65)

where A is a constant and independent of p.

The results follows by combining Eq. (6.64) and Eq. (6.65).

Theorem 5. Let

dλ(x) =
∫

x+λU
pλ(z) dz (6.66)

and suppose

pλ → p in L2(R3,R). (6.67)

Let Tλ be defined as Eq. (6.56), and let Eλ be given as Eq. (6.55), then

Tλpλ → K ∗ p +
(

1
3

+ S
)

p in L2(R3,R) (6.68)

and

Eλ → −1
2

(
< p,K ∗ p >

)
+

1
3
‖p‖2+ < p,Sp > (6.69)

where K is the kernel defined in Eq. (6.48) and

S := lim
%→∞

∑

y∈(L1∩B(%))\{o}
K1(y) (6.70)

Proof. Since

‖Tλ(pλ − p)‖ ≤ ‖Tλ‖ ‖pλ − p‖ = ‖T1‖ ‖pλ − p‖ (6.71)

we obtain

lim
λ→0

Tλ(pλ − p) → 0. (6.72)

Hence,

lim
λ→0

Tλpλ = lim
λ→0

(Tλp + Tλ(pλ − p)) = lim
λ→0

Tλp = lim
k→∞

lim
λ→0

Tλpk (6.73)

where

pk → k in L2(R3,R), pk ∈ C∞
0 (R3,R). (6.74)

Therefore, we only need to consider p ∈ C∞
0 (R3,R).



110

Now, by recourse to Eq. (6.59) and (6.62), we have

Jλ(x,y) = λ−3P(r)
MS

(
x− y

λ

)
+ λ−3L(r)

(x
λ

,
y
λ

)

= P(rλ)
MS (x− y) + λ−3L(r)

(x
λ

,
y
λ

) (6.75)

Since the limiting behavior of P(rλ)
MS as λ → 0 is known by Lemma 3, we only need to

consider L(r).

First, we write

λ−3

∫

R3

L(r)
(x

λ
,
y
λ

)
p(y) dy

=
∫

R3

λ−3 ÃL(r)
(x

λ
,
y
λ

)
dyp(x)

−
∫

|x−y≥Rλ|
λ−3L(r)

(x
λ

,
y
λ

)
dyp(x)

+
∫

|x−y≤Rλ|
λ−3L(r)

(x
λ

,
y
λ

)
(p(y)− p(x)) dy

+
∫

|x−y≥Rλ|
λ−3L(r)

(x
λ

,
y
λ

)
p(y) dy.

(6.76)

We now consider the limit of Eq. (6.76). First let λ → 0 with R fixed, we have

lim
λ→0

∫

|x−y≤Rλ|
λ−3L(r)

(x
λ

,
y
λ

)
(p(y)− p(x)) dy → 0 (6.77)

since p ∈ C∞
0 (R3,R).

We also notice that for any R > 0, we have

∫

|x−y≥Rλ|
λ−3

∣∣∣L(r)
(x

λ
,
y
λ

)∣∣∣ dy

≤ Cλ

∫

|x−y|≥Rλ

1
|x− y|4 dy

= Cλ

∫

|z|≥Rλ

1
|z|4 dz

= 4πCλ

(
−1

r

) ∣∣∣∣∣
∞

Rλ

=
4πC

R
=

C ′

R

(6.78)

where C, C ′ are independent of λ.
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Thus,

∫

|x−y|≥Rλ
λ−3L(r)

(x
λ

,
y
λ

)
dyp(x) ≤ C ′

R
max
R3

|p(x)| → 0 as R →∞, (6.79)

and

∣∣∣∣∣
∫

|x−y|≥Rλ
λ−3L(r)

(x
λ

,
y
λ

)
p(y) dy

∣∣∣∣∣

≤
∣∣∣∣∣
∫

|x−y≥Rλ|
λ−3L(r)

(x
λ

,
y
λ

)
dy

∣∣∣∣∣ max
R3

|p(y)|

=
C ′

R
max
R3

|p(x)| → 0 as R →∞.

(6.80)

Combining Eq. (6.76), (6.77), (6.79) and (6.80), we obtain

λ−3

∫

R3

L(r)
(x

λ
,
y
λ

)
p(y) dy

=
∫

R3

λ−3L(r)
(x

λ
,
y
λ

)
dyp(x)

=
∫

R3

L(r)
(x

λ
,y

)
dyp(x)

=
∫

R3

L(r)(0,y) dyp(x).

(6.81)

The last equality comes from Lemma 10 which we will prove shortly.

Finally, we define

S =
∫

R3

L(r)(0,y) dy, (6.82)

it can be rewritten as

S =
∫

R3

L(r)(0,y) dy

= lim
%→∞

∫

B(%)
L(r)(0,y) dy

= lim
%→∞

∫

B(%)
J1(0,y)− P(r)

MS(−y) dy

= lim
%→∞

∫

B(%)
J1(0,y) dy

= lim
%→∞

∑

y∈(L1∩B(%))\{0}
K1(y)

(6.83)
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By combining Eq. (6.52), (6.56), (6.75), (6.81), and also by the argument we have at

the beginning of the proof, we conclude that as λ → 0,

Tλpλ → K ∗ p +
(

1
3

+ S
)

p in L2(R3,R),

and

Eλ → −1
2

(
< p,K ∗ p >

)
+

1
3
‖p‖2+ < p,Sp > .

Theorem 6. Let

dλ(x) =
∫

x+λU
pλ(z) dz (6.84)

and suppose

pλ → p in L2(R3,R). (6.85)

Let Eλ be given as Eq. (6.55), and define

pλ = pλ d̂ and p = p d̂, (6.86)

then

Eλ → −1
2

(< p,K ∗ p >) +
1
3
‖p‖2+ < p, Sp > (6.87)

where K is the field of a dipole defined in Eq. (6.28) and

S := lim
%→∞

∑

y∈(L1∩B(%))\{o}
K1(y)d̂⊗ d̂. (6.88)

Proof. The proof is straightforward following Theorem 5, and the definition of K and S.

Remark 7. The expression in Eq. 6.87 consists a long-range term

−1
2

(< p,K ∗ p >) (6.89)

and a local contribution
1
3
‖p‖2+ < p,Sp > . (6.90)

which is the energy caused by Lorentz local field, and can be incorporated into the deformation
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energy as we have discussed before.

The long-range term is equal to

∫

R3

ε0
2
|∇φ|2 dx (6.91)

which is exactly the field energy we used in Chapter 3. This can be easily seen by looking at

the weak form of Maxwell equation

−
∫

R3

(−ε0∇φ + p) · ∇ψ dx = 0, ∀ ψ ∈ H1(R3) (6.92)

and setting ψ = φ.

6.4.2 Technical Lemmas

It remains to prove the following technical lemmas.

Lemma 8. Let dλ defined on Lλ, and d∼λ defined by

d∼λ (z) = λ−3dλ(x) for z ∈ x + λU and x ∈ Lλ. (6.93)

If

d∼λ → p in L2(R3,R), (6.94)

then there exists a background field pλ ∈ L2(R3,R) with

dλ(x) =
∫

x+λU
pλ(z) dz (6.95)

and

pλ → p in L2(R3,R). (6.96)

Conversely, if there exists a background field pλ ∈ L2(R3,R) with

dλ(x) =
∫

x+λU
pλ(z) dz

is convergent to some p in L2(R3,R), then d∼λ defined by

d∼λ (z) = λ−3dλ(x) for z ∈ x + λU and x ∈ Lλ. (6.97)
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is convergent to p in L2(R3,R).

Proof. This proof follows James and Müller (1994) page 301-303.

Lemma 9. Let

L(r)(x,y) := J1(x,y)− P(r)
MS(x− y), (6.98)

with J1(x,y) and P(r)
MS defined by Eq. (6.53) and Eq. (6.49) respectively, then there exists

a function g(r) ∈ L1(R3,R), such that

∣∣∣L(r)(a,b)
∣∣∣ ≤ g(r)(|a− b|), ∀ a,b ∈ R3. (6.99)

Proof. We prove the Lemma in two steps.

(i). We first prove that for any R satisfying diamU + r < R < ∞, any a, b satisfying

|a− b| < R, ∃ g1 ∈ L1(B(R),R), such that

∣∣∣L(r)(a− b)
∣∣∣ ≤ g1(|a− b|). (6.100)

(a) When |a − b| < r, and a, b are in the same cell, then P(r)
MS = 0, K1(a,b) = 0,

thus

L(r)(a,b) = 0.

(b) When |a− b| < r, but a, b are not in the same cell, then P(r)
MS = 0, and

∣∣∣L(r)(a,b)
∣∣∣ = |J1(a,b)| = |K1(x1(a)− x1(b))| < ∞.

Here, x1(a) is the corner map defined as

xλ(y) = x for y = x + λU, ,x ∈ Lλ. (6.101)

(c) When |a− b| > r, and a, b are in the same cell, then K1(a,b) = 0, and

∣∣∣L(r)(a,b)
∣∣∣ =

∣∣∣P(r)
MS(a− b)

∣∣∣ < ∞, (6.102)

(d) When |a − b| > r, but a, b are not in the same cell, by definition of P(r)
MS and
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K1(a,b), we still have

∣∣∣L(r)(a,b)
∣∣∣ =

∣∣∣K1(x1(a)− x1(b))− P(r)
MS(a− b)

∣∣∣ < ∞, (6.103)

Therefore, when diamU + r < R < ∞ and |a − b| < R,
∣∣L(r)(a,b)

∣∣ is always

bounded. We can always pick some function g1 ∈ L∞(B(R),R) ⊂ L1(B(R),R),

such that ∣∣∣L(r)(a,b)
∣∣∣ ≤ g1(|a− b|). (6.104)

(ii). We now prove that for R large enough satisfying diamU + r < R < ∞, any a, b

satisfying |a− b| > R, ∃ g2(|x|) ∈ L1(R3/B(R),R) such that

∣∣∣L(r)(a− b)
∣∣∣ ≤ g2(|a− b|). (6.105)

According to the definition of L(r),

∣∣∣L(r)(a,b)
∣∣∣ =

∣∣∣∣∣
1
ε2

(
1

|x1(a)− x1(b) + εd̂| −
2

|x1(a)− x1(b)| +
1

|x1(a)− x1(b)− εd̂|

)

− 3
|a− b|3

d̂ · (a− b)
|a− b| ⊗ (a− b) · d̂

|a− b| +
1

|a− b|3

∣∣∣∣∣
(6.106)

In Lemma 10, we will prove that

|(x1(a)− x1(b))− (a− b)| ≤ 2 diamU, ∀ a,b ∈ R3.

Thus, if we let x = a− b, we can denote

x1(a)− x1(b) = x +4, (6.107)

where |4| ≤ 2 diamU .
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Therefore, we can rewrite Eq. (6.106) as

∣∣∣L(r)(a,b)
∣∣∣ =

∣∣∣∣∣
1
ε2

(
1

|x +4+ εd̂| −
2

|x +4| +
1

|x +4− εd̂|

)

− 3
|x|3

d̂ · x
|x| ⊗

x · d̂
|x| +

1
|x|3

∣∣∣∣∣ .

(6.108)

Also, we can choose R big enough such that x, x +4+ εd̂, x +4− εd̂ are far away

from zero.

Since

(
1
|x|

)′
= − x

|x|3 , (6.109)
(

1
|x|

)′′
= −3x⊗ x

|x|5 − I
|x|3 , (6.110)

(
1
|x|

)′′′

ijk

= −15xixjxj

|x|7 +
3(xiδjk + xjδik + xkδij)

|x|5 , (6.111)

by Taylor expansion around x +4, we obtain

1

|x +4+ εd̂| =
1

|x +4| −
1

|x +4|3 (x +4) · εd̂

+
3

2|x +4|5 εd̂ · (x +4)⊗ (x +4) · εd̂− |εd̂|
2|x +4|3 + f1,

(6.112)

where

f1 =
1
6

{
(−15)

[(x +4+ θ1εd̂) · εd̂]3

|x +4+ θ1εd̂|7
+

9ε2(x +4+ θ1εâ) · εd̂
|x +4+ θ1εd̂|5

}
(6.113)

with 0 < θ1 < 1. And

1

|x +4− εd̂| =
1

|x +4| +
1

|x +4|3 (x +4) · εd̂

+
3

2|x +4|5 εd̂ · (x +4)⊗ (x +4) · εd̂− |εd̂|
2|x +4|3 + f2,

(6.114)

where

f2 = −1
6

{
(−15)

[(x +4− θ2εd̂) · εd̂]3

|x +4− θ2εd̂|7
+

9ε2(x +4− θ2εâ) · εd̂
|x +4− θ2εd̂|5

}
(6.115)
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with 0 < θ2 < 1.

Substituting Eq. (6.112), (6.114) into Eq. (6.108), we have

∣∣∣L(r)(a− b)
∣∣∣

≤
∣∣∣∣
(

3
|x +4|5 d̂ · (x +4)⊗ (x +4) · d̂− 1

|x +4|3
)
− 3
|x|5 d̂ · x⊗ x · d̂ +

1
|x|3

∣∣∣∣

+
∣∣∣∣
f1

ε2

∣∣∣∣ +
∣∣∣∣
f2

ε2

∣∣∣∣
(6.116)

In light of Eq. (6.113), we have

f1

ε2
≤ 1

6





15ε
∣∣∣(x +4+ θ1εd̂) · d̂

∣∣∣
3

|x +4+ θ1εd̂|7
+

9ε
∣∣∣(x +4+ θ1εâ) · d̂

∣∣∣
|x +4+ θ1εd̂|5





(6.117)

The first term on the right-hand side of Eq. (6.117) can be estimated as follows.

15ε
∣∣∣(x +4+ θ1εd̂) · εd̂

∣∣∣
3

|x +4+ θ1d̂|7
= 15ε

∣∣∣(x̂ + 4
x + θ1εd̂

|x| ) · εd̂
∣∣∣
3

|x|4
∣∣∣x̂ + 4

x + θ1εd̂
|x| )

∣∣∣
7

≤ 15ε

∣∣∣|x̂ · d̂|+ |4·d̂|
|x| + θ1ε

|x|
∣∣∣
3

|x|4
∣∣∣(x̂ + 4

|x| +
θ1εd̂
|x|

∣∣∣
7

≤ 1 + 2diamU
diamU + θε

diamU

|x|4
∣∣∣x̂ + 4

|x| +
θ1εd̂
|x|

∣∣∣
7

≤ c1

|x|4

(6.118)

for some constant c1 > 0, since we can always choose R big enough, such that

|4|
|x| << 1,

θε

|x| << 1, (6.119)

thus ∣∣∣∣∣x̂ +
4
|x| +

θ1εd̂
|x|

∣∣∣∣∣ ≥ some constant ∼ 1. (6.120)

We apply similar argument to the the second term on the right-hand side of Eq. (6.117),
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and therefore obtain ∣∣∣∣
f1

ε2

∣∣∣∣ ≤
A1

|x|4 (6.121)

for some constant A1 > 0.

Similarly, we can prove that ∣∣∣∣
f2

ε2

∣∣∣∣ ≤
A2

|x|4 (6.122)

for some constant A2 > 0.

We now estimate the first term on the right-hand side of Eq. (6.116).

∣∣∣∣
(

3
|x +4|5 d̂ · (x +4)⊗ (x +4) · d̂− 1

|x +4|3
)
− 3
|x|5 d̂ · x⊗ x · d̂ +

1
|x|3

∣∣∣∣

=
∣∣∣∣
(

3
|x +4|5

(
d̂ · x⊗ x · d̂

)
− 3
|x|5

(
d̂ · x⊗ x · d̂

))

+
(

1
|x|3 −

1
|x +4|3

)

+
(

3
|x +4|5 d̂ · (x⊗4+4⊗ x) · d̂

)

+
(

3
|x +4|5 d̂ · (4⊗4) · d̂

)∣∣∣∣

≤
∣∣∣∣3

(
1

|x +4|5 −
1
|x|5

)
d̂ · x⊗ x · d̂

∣∣∣∣ +
∣∣∣∣

1
|x|3 −

1
|x +4|3

∣∣∣∣

+
3

|x +4|5
∣∣∣d̂ · (x⊗4+4⊗ x) · d̂

∣∣∣ +
3
∣∣∣d̂ · 4

∣∣∣
2

|x +4|5
(6.123)

Obviously,

3
|x +4|5

∣∣∣d̂ · (x⊗4+4⊗ x) · d̂
∣∣∣ ≤ c2

|x|4 , (6.124)

3|d̂ · 4|2
|x +4|5 ≤

c3

|x|4 (6.125)

for some constant c2, c3 > 0.

By Taylor expansion of 1
|x+4|5 near x, we obtain

∣∣∣∣3
(

1
|x +4|5 −

1
|x|5

)
d̂ · x⊗ x · d̂

∣∣∣∣ ≤
c4

|x|4 (6.126)
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for some constant c4 > 0.

Similarly, by Taylor expansion of 1
|x+4|3 near x, we obtain

∣∣∣∣
1
|x|3 −

1
|x +4|3

∣∣∣∣ ≤
c5

|x|4 (6.127)

for some constant c5 > 0.

Combining Eq. (6.123), (6.124), (6.125), (6.126), (6.127), we have

∣∣∣∣
(

3
|x +4|5 d̂ · (x +4)⊗ (x +4) · d̂− 1

|x +4|3
)
− 3
|x|5 d̂ · x⊗ x · d̂ +

1
|x|3

∣∣∣∣ ≤
A3

|x|4
(6.128)

for some constant A3 > 0.

In light of Eq. (6.116), (6.121), (6.122) and (6.128), we conclude that for large enough

R satisfying diamU + r < R < ∞, and any a, b satisfying |a− b| > R,

∣∣∣L(r)(a− b)
∣∣∣ ≤ C

|x|4 ∈ L1(R3/B(R),R). (6.129)

That is, ∃ g2(|x|) ∈ L1(R3/B(R),R), such that

∣∣∣L(r)(a− b)
∣∣∣ ≤ g2(|x|). (6.130)

This completes Step (ii).

We complete the proof by combining Step (i) and Step (ii).

Lemma 10. Let x1(y) defined as corner map in Eq. (6.101), then

|(x1(a)− x2(b))− (a− b)| ≤ 2 diamU, ∀ a,b ∈ R3. (6.131)

Proof. From Fig. 6.3, we can see

−→
AB +

−→
BC =

−→
AD +

−→
DC
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Figure 6.3: Corner map.

which implies

(b− x1(b)) + (a− b) = (x1(a)− x1(b)) + (a− x1(a)),

or

(x1(a)− x1(b))− (a− b) = (b− x1(b))− (a− x1(a)).

Therefore,

|(x1(a)− x1(b))− (a− b)| = |(b− x1(b))− (a− x1(a))|

≤ |(b− x1(b))|+ |(a− x1(a))|

≤ 2 diamU.

Lemma 11. Let L(r) be defined by Eq. (6.62), then

∫

R3

L(r)(x,y) dy =
∫

R3

L(r)(0,y) dy, ∀ x ∈ R3. (6.132)

Proof. This proof follows James and Müller (1994) page 312-313.
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Chapter 7

Conclusion

Being non-polar (paraelectric) above their Curie temperature but spontaneously polarized

(ferroelectric) below it, ferroelectric perovskites offer a tantalizing potential for applications:

large actuation through domain switching and memory storage via switchable electric po-

larization. Oxygen vacancies, commonly present and mobile at high temperature, are the

primary defects and thus play a central role in these applications. In this thesis, we have

systematically investigated the role of oxygen vacancies in determining the properties and

domain patterns of ferroelectric perovskites by developing a model that combines the fer-

roelectric and semiconducting nature of ferroelectric perovskites together. The key step –

and departure from prior work – is to treat ferroelectric perovskites as polarizable semicon-

ducting solids rather than polarizable dielectrics, with oxygen vacancies acting as n-type

dopants.

The continuum theory developed in Chapter 3 provides a unified treatment of the ferro-

electric and semiconducting nature of ferroelectric perovskites. This theory treats the po-

larization density, space charge density, dopant density and deformation as state variables,

and derives their evolution/equilibrium laws consistent with second law of thermodynamics.

This theory recovers the traditional theories of insulating ferroelectrics and nonpolarizable

semiconductors in separate limits, but more importantly fully accounts for the interaction

between these two aspects. It shows that the diffusion of oxygen vacancies depends on the

domain pattern, the concentration as well as the choice of electrodes.

This theory is then used to study ferroelectric-electrode interface and domain walls

through two-dimensional and one-dimensional simulations. It shows the formation of de-

pletion layers – regions of enhanced space charges – at ferroelectric-electrode interfaces and

the formation of space charge double layers at 90o domain walls. These space charge dis-
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tributions are accompanied by complicated internal electric fields which drive the diffusion

of oxygen vacancies. The simulation results also show that the 180o domain walls have

no significant electronic interaction. All of these provide important insight into various

experimental observations concerning fatigue and domain wall pinning.

The formation of depletion layers at ferroelectric-electrode interfaces is shown in Fig. 5.7

and elaborated in Section 5.2. These layers and thus the propensity for failure depend on

the choice of electrodes. This is consistent with the experimental observations (Burcsu,

2001; Scott, 2000). Further, it depends on dopant concentration. Greater the concentration,

narrower the layers and higher the propensity for failure. Furthermore, at high temperature

which may be present during deposition, the vacancies are mobile and tend to accumulate

close to the electrodes (See Fig. 5.12 and Fig. 5.13). This promotes failure. Note that

this persists even when the total oxygen vacancies are conserved. This has important

consequences. Nuffer et al. (2001) studies the amount of oxygen released as a means of

evaluating the role of oxygen vacancies in fatigue. Our results show that such an experiment

would not probe an important aspect of fatigue.

We find that 180o domain walls are essentially uncharged, and have no electronic inter-

action with oxygen vacancies (See Figs. 5.7, 5.14, and Sections 5.1.2, 5.3.2.1 and 5.3.3 for

detail). This is consistent with the low fatigue of SBT which has only 180o domain walls

(Harnagea, 2001).

In contrast, 90o domain walls have a close interaction with space charges and oxygen

vacancies. In a perfect crystal, a 90o domain wall has a voltage drop across it as shown

in Figs. 5.6, 5.15 and 5.16. This drives the formation of a space charge double layer in

a doped crystal (Fig. 5.7). In other words, 90o domain walls promote electronic charge

injection and trapping. In turn, this can drive the diffusion of oxygen vacancies at high

temperatures (See Figs. 5.17-5.22). This rearrangement gives a concrete mechanism for the

domain memory observed by Ren (2004) and provides a potentially new mechanism for

large electrostriction. Further, the formation of the space charge double layers means that

90o domain walls promote charge injection into the ferroelectric, and thus promote fatigue.

Furthermore, the redistribution of oxygen vacancies near 90o domain walls may likely pin

the domain walls and thus also promotes fatigue. Finally, all of these show that the two

mechanisms – electronic charge injection and ionic charge trapping through oxygen vacancy

diffusion – believed to be independent and the subject of some controversy (Scott, 2000;
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Damjanovic, 1998; Shaw et al., 2000; Tagantsev et al., 2001) are in fact related.

Fig. 5.7 shows that the electronic and oxygen vacancies profile of 90o domain walls is

not symmetric (with respect to p to −p). This implies that the transient conduction and

capacitance across these domain walls is not symmetric. It would be interesting to verify

this experimentally.

In the thesis, we have also extended the Lorentz calculation∗ of the energy due to a

lattice of dipoles to a bi-lattice of charges. We find an interesting difference in the short

range contribution: it does not vanish for a cubic lattice, instead a contribution reflecting

the dipole is retained. This contribution is consistent with the symmetry of the bi-lattice.

However, the long range contribution is identical in both situation.

This thesis also motivates various questions for the future. First, it motivates a system-

atic exploration of the transient conduction and evolution of leakage current under cyclic

loading. The formation of depletion layers near electrodes and charge layers at 90o do-

main walls shows that this is a nontrivial problem. Studying this problem will provide a

better understanding of the evolution of fatigue. Second, it motivates experiments on the

capacitance of domain walls and on aging at high temperatures. Finally, it motivates a de-

tailed theoretical investigation of the definition of polarization and issues related to surface

charges.

∗This calculation was made rigorous by James (2002)
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