
Optimal Scaling in Ductile Fracture

Thesis by

Landry Fokoua Djodom

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2014

(Submitted October 16, 2013)



ii

c© 2014

Landry Fokoua Djodom

All Rights Reserved



iii

To my family.



iv

Acknowledgments

I would like to express my profound gratitude and appreciation to Professor Michael Ortiz for his

supervision and guidance throughout my stay at Caltech. I am deeply grateful for his support, his

motivation and his patience. He has provided me with a multidisciplinary research experience from

which I have learned a lot and his constant encouragement for innovative and challenging ideas has

contributed to an exciting PhD work.

I would like to specially acknowledge Professor Sergio Conti from the Hausdorff Research Insti-

tute of Mathematics, University of Bonn (Germany), for his collaboration throughout this thesis

work. I gratefully acknowledge support provided by the Hausdorff Trimester Program “mathemati-

cal challenges of materials science and condensed matter physics: From quantum mechanics through

statistical mechanics to nonlinear PDEs”, Hausdorff Research Institute for Mathematics (HIM),

University of Bonn, Germany.

I also gratefully acknowledge the support of the Department of Energy National Nuclear Security

Administration through Caltech’s ASC/PSAAP Center for the Predictive Modeling and Simulation

of High Energy Density Dynamic Response of Materials.

I am particularly thankful to Professor Ravichandran, Professor Bhattacharya and Professor

Weinberg for serving on my thesis committee. I would like to thank Professor Andrade and Professor

Kochmann for serving on my candidacy exam and for their useful suggestions and comments. I

am grateful to Professor Ravichandran for providing insights about my work, for supporting me

throughout my stay at GALCIT, and for being a good resource for career aspirations. I thank

Professor Weinberg for her feedback, help and useful discussions on my research.

During summer 2011, I had the opportunity to spend ten weeks at the Lawrence Livermore



v

National Laboratory. Very warms thanks are addressed to Sylvie Aubry, Tom Arsenlis and Jaime

Marian for welcoming me to the lab and exposing me to the exciting field of dislocation dynamics

and computational material science.

I owe special gratitude to Lydia who has always been available for me, I deeply appreciate her

attention and her care which have made my life enjoyable in the office. She has been and will remain

a life mentor to me. Special thanks also go to Marta for her availability and help with computer

issues. I would also like to acknowledge Cheryl Gause, Dimity Nelson, and Christine Ramirez who

have facilitated my insertion into the GALCIT community. I thank the members of my lab group

with whom I have had several instructive discussions: Jonathan, Panos, Stephanie, Anie, Gwen,

Brandon, Sarah, Jeff, Cindy.

My life at Caltech and in the Los Angeles area wouldn’t have been pleasant without the presence

of my friends. I owe a sincere acknowledgement to Stephanie, Adam, Ignacio, Jen, Sid, Jomela, Xin,

Philipp, Jocelyn, Adrian, Juan, Vicki, Andy, Kristen, Ryan, Cheikh, Gloria, Eleni. I would like to

specially acknowledge Terry with whom I have shared many exciting adventures at Caltech and who

will remain a close friend. I am deeply grateful to Namiko who has provided me with her presence

and attention, and whose friendship will remain precious. I am also thankful to my friends from

Santa Barbara, especially Maxime and Kai. Special thanks also to Professor Frédéric Gibou for

his support and encouragement since my research internship at the University of California, Santa

Barbara. I would like to express my very deep gratitude to Alan and his family who have welcomed

me in their lives and I cherish the time that I have spent with them in Pasadena.

I am profoundly indebted to Cabral and Ange-Thérèse who I have known during my undergrad-
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Abstract

This work is concerned with the derivation of optimal scaling laws, in the sense of matching lower

and upper bounds on the energy, for a solid undergoing ductile fracture. The specific problem

considered concerns a material sample in the form of an infinite slab of finite thickness subjected

to prescribed opening displacements on its two surfaces. The solid is assumed to obey deformation-

theory of plasticity and, in order to further simplify the analysis, we assume isotropic rigid-plastic

deformations with zero plastic spin. When hardening exponents are given values consistent with

observation, the energy is found to exhibit sublinear growth. We regularize the energy through the

addition of nonlocal energy terms of the strain-gradient plasticity type. This nonlocal regularization

has the effect of introducing an intrinsic length scale into the energy. We also put forth a physical

argument that identifies the intrinsic length and suggests a linear growth of the nonlocal energy.

Under these assumptions, ductile fracture emerges as the net result of two competing effects: whereas

the sublinear growth of the local energy promotes localization of deformation to failure planes,

the nonlocal regularization stabilizes this process, thus resulting in an orderly progression towards

failure and a well-defined specific fracture energy. The optimal scaling laws derived here show

that ductile fracture results from localization of deformations to void sheets, and that it requires

a well-defined energy per unit fracture area. In particular, fractal modes of fracture are ruled out

under the assumptions of the analysis. The optimal scaling laws additionally show that ductile

fracture is cohesive in nature, i.e., it obeys a well-defined relation between tractions and opening

displacements. Finally, the scaling laws supply a link between micromechanical properties and

macroscopic fracture properties. In particular, they reveal the relative roles that surface energy and

microplasticity play as contributors to the specific fracture energy of the material. Next, we present
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an experimental assessment of the optimal scaling laws. We show that when the specific fracture

energy is renormalized in a manner suggested by the optimal scaling laws, the data falls within the

bounds predicted by the analysis and, moreover, they ostensibly collapse—with allowances made

for experimental scatter—on a master curve dependent on the hardening exponent, but otherwise

material independent.
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Chapter 1

Introduction

1.1 General overview

1.1.1 Experimental observations

Ductile fracture is a fundamental failure mode of metals that results from a concatenation of micro-

scopic mechanisms of deformation including void nucleation, growth, coalescence and, ultimately,

localization into fracture planes, cf. Figure 1.1, cf. also [31], [127] and references therein. In struc-

tural materials, the voids nucleate mainly at inclusions and second phase particles, by decohesion of

the particle-matrix interface or by particle cracking (Goods and Brown 1979 [44], Puttick 1959 [94]),

and subsequent void growth is driven by the plastic flow around the surrounding matrix. Unlike

brittle materials, ductile materials undergo extensive plastic deformation before reaching the final

stage of fracture. Tensile experiments on rounds bars often reveal that the failure is preceded by

an important flow localization process characteristic of necking. Indeed, it is a common observation

that necking comes with a substantial reduction in the cross sectional area, and further plastic de-

formation requires less applied stress. As a consequence, typical engineering stress-strain curves go

through a maximum, sometimes identified as the Ultimate Tensile Strength (UTS) or onset of neck-

ing, a process which is followed by a geometrical softening until final separation of the specimen.

As a result, the total work of fracture is ostensibly much larger in ductile materials than brittle

materials, the excess being attributed to the plastic dissipation.

The evidence that void growth and coalescence represents the major failure mechanism in most
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16

Lawrence Livermore National Laboratory

Metal Fracture S&TR July/August 2002

Belak and physicist John Kinney

take the target pieces containing

incipient spall to the Stanford

Synchrotron Radiation Laboratory to

obtain three-dimensional (3D) x-ray

tomographs in 700 orientations. The

images, which have a resolution of

about 5 micrometers, are combined to

compute the 3D size and space

distribution of the voids that have been

created during spallation fracture. The

data are essential input to spallation

models. After the tomographic data

are taken, the samples are sectioned 

to make detailed comparisons with

traditional two-dimensional

microscopy.

“The synchrotron imagery that Jim is

obtaining is quite a breakthrough,” says

Chandler. “We obtain data of the 3D void

distribution just from the images and

without having to take thin slices of the

material and count the number of voids

in each slice.”

Belak and physicists Robert Rudd

and Eira Seppälä are also performing

3D simulations at the atomic level that

track how voids grow and link. The

simulations feature 1 to 10 million

atoms representing the crystal structure

of aluminum or copper. When tensile

forces are applied in different

directions, the simulations reveal the

dislocation mechanism by which

microscopic voids grow. The spall

recovery experiments using single-

crystal copper and aluminum will

enable direct validation of these

dislocation mechanisms.

Closing Up Voids
In some cases, layers of a spalled

material can collide as the pressure

from the high explosive continues to

drive one of the surfaces. The result

can be recompression of the spalled

material, which closes the voids created

by the original shock. Under these

conditions, the damaged material

could jet out from pores, continue

deforming, have localized heating,

and even melt.

This photomicrograph of a copper disk used in a gas-gun experiment shows the formation of voids in the spall layer.

In this simulation of a gas-gun experiment, 
(a) is the initial configuration of aluminum 
striking a copper target, and (b) shows formation 
of spall. The green area on the left is the aluminum plate 
that strikes a 5-millimeter-thick cylindrical disk target. The target’s two spall rings can
be seen on the disk. The formation of voids (red) is seen in the center of the disk.

(a)

(b)

Figure 1.1: Photomicrograph of a copper disk tested in a gas-gun experiment showing the formation
of voids and their coalescence into a fracture plane [49].

Figure 1.2: Fracture surface in SA333 steel at room temperature and strain rate 3×10−3s−1. Taken
from Kamat et al [60]

structural materials comes from fractography studies using Transmission Electron Microscopy. These

studies reveal that the fracture surfaces contain spherical dimples, which represent microvoids,

cf. Figure 1.2. This is in stark contrast to the sharp specular cracks that result from brittle

fracture.

Ductile fracture is of particular importance for industrial applications (oil and gas pipelines,

nuclear powerplants, etc.) and the determination of fracture properties of ductile materials has been

the focus of numerous investigations. In particular, a certain number of testing standards have been

put forth, that, in turn, provide the basis for experimental design of materials. Among these testing

standards, two require specific attention: J-testing and Impact testing.
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1.1.2 J -integral testing

J -testing, which has been widely used in fracture mechanics, expresses the fracture criterion as a

critical value of the J -integral. The standard JIc Test Method, E 813, has been issued by ASTM

for determining the plane strain value of J at initiation of crack growth, namely JIc. The value of

JIc obtained by this method may be used to characterize the toughness of materials at the onset of

crack extension. The method originates from the observation of Begley and Landes [11] that J can

be experimentally determined by the energy released rate according to the relation

J = − 1

B
(
∂U

∂a
)∆ (1.1.1)

where U is the strain energy and B is the thickness of the specimen. For a given value of ∆, one

can use multiple specimens with different crack lengths a to compute the load-displacement curve.

The area under this curve therefore represents the total strain energy, which can then be plotted

as a function of the crack length. The value of J is retrieved from taking the negative slope of

the strain energy versus crack length curve. The procedure could be repeated for different values

of ∆ to obtain a curve J versus ∆. Evidently, this method requires the use of multiple specimens

and therefore has been improved in order to estimate J from a single measure load-displacement

curve, as proposed by Rice et al [99]. More specifically, the standard JIc testing procedure, which

uses a three point bend specimen and a compact specimen, requires the measurement of applied

load and load-point displacement to obtain the total work done on the specimen. The load versus

displacement is recorded automatically by an X-Y recorder and the extensions of the crack length

are measured after breaking up the specimen upon deforming the specimen to desired values. The

values of J are plotted against the crack growth to obtain an R-resistance curve which is fitted

through a linear regression line. The critical JIc is then determined by the intersection between this

line and the blunting line defined by

J = 2σy∆ap (1.1.2)
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where σy represents the yield stress and ∆ap the physical crack extension. The use of the blunting

line in equation (1.1.2) refers to the crack growth due to crack-tip blunting. It bears noting that this

testing procedure additionally assumes specific validity conditions on the geometry of the specimen,

as explained in the comprehensive study of fracture mechanics presented in Kanninen and Popelar

[61]. Further details about the procedure have been skipped in this overview, but the reader can find

a more extensive review of the method in [61]. This standard testing approach has found important

applications in the characterization of a wide range of ductile engineering materials.

1.1.3 Impact testing

Impact testing measures the energy required to break a material sample. On the contrary of J -

testing, the fracture energy obtained cannot be formally put into an equation. The most standard

impact test is the Charpy V notch impact test which consists of a specimen containing a 2mm

deep notch with radius 0.25mm. The specimen, treated at a desired temperature, is placed into a

holder and then struck with a hammer. The hammer is mounted at the end of a pendulum which

is adjusted so that its kinetic energy is 240ft − lb when it hits the specimen. Upon breaking of

the bar, the hammer reaches a final height, and the difference between the initial height and the

final height translates into the energy absorbed by the material sample during the breaking. This

energy is measured as the fracture energy of the material. This method has been extensively used

to characterize fracture properties of materials at diverse temperatures and it has been observed

that the specific fracture energy increases as a function of the temperature, which in turn, suggests

that different fracture mechanisms occur at low temperatures and high temperatures. Figure 1.3

shows a typical Charpy curve obtained from a French A508(16MND5) steel broken at various

temperatures and strain rates. This picture illustrates a complex dependence of the fracture energy

on temperature and reveals that at high temperatures, A508 steels fail by microvoid coalescence,

characteristic of ductile failure whereas at low temperatures, they undergo cleavage fracture. This

leads to the existence of a transition temperature at which the material behavior goes from brittle to

ductile, and such temperature often receives the name of Ductile to Brittle Transition Temperature
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(DBTT). In general, the temperature and strain rate dependence of fracture properties of materials

has been the subject of scientific investigation, see for instance Kamat et al [60], Tvergaard and

Needleman [128], Shin et al [106], Shetty et al [105], Armstrong and Walley [3], Wang et al [130],

and references therein.

1.1.4 Surface energies

We summarize here two major mechanisms responsible for the surface energies in ductile fracture:

the coalescence of cavities by internal necking and the cleavage crack growth in presence of plastic

deformation.

In Thomason 1970 [120], an estimate of the surface energy for the coalescence of cavities was

derived. The results suggested that internal microscopic necking of ligaments between cavities

contributes to the total surface energy and that the corresponding surface energy is a function of the

mean-free-path between cavities or second phase particles. The model used a coalescence criterion

derived in Thomason 1968 [119] to compute the plastic work per unit area of subsequent fracture

surface during necking down, i.e. when the the cross sectional area of the ligaments is further

reduced after a uniform extension. The theoretical values of the coalescence energy obtained were
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found to be about an order of magnitude less than experimental estimates of the total surface energy

for ductile crack propagation. In reality, experimental measurements include a contribution from

pre-coalescence straining ahead of the advancing crack which strongly depends on the extent of the

plastic zone ahead of the crack.

Plastic dissipation around a crack tip supplies a considerable contribution to the fracture energy

in ductile materials. The surface energy associated with crack growth is related to the microscopic

mechanisms of cleavage in the presence of plastic flow. A wealth of experimental evidence exhibited

the phenomenon of crack propagation in the presence of pre-existing dislocations. For example, it

was found in Lipkin et al, [71] that a sharp crack can propagate along a gold-sapphire interface,

nevertheless the gold deforms plastically, indicating the motion of vast quantities of dislocations and

the measured fracture energy was found to be orders of magnitude larger than the surface energy.

When fracture occurs by atomic separation, the length scale of the fracture process is typically

smaller than the dislocation spacing or the elastic cell size within the dislocation structure, which is

the length scale of the plastic deformation. Thus, in a small region near the tip, the stress fields are

more like those at a linear elastic crack tip singularity. Because of the large disparity between relevant

length scales involved in plastic flow processes around cracks in metals and metal-ceramic interfaces

[110], Suo et al, [110] have proposed the use of a long dislocation free strip of elastic material inside

which the crack propagates. These lengths typically consist of the Burgers vector, b ∼ 10−10m which

is relevant for fracture by atomic separation; the nominal dislocation spacing, around 10−7−10−6m,

characteristic of plastic flow; and the overall plastic zone size. A similar approach using an elastic

strip was further used by Beltz et al, [12] to develop a self-consistent model for cleavage. Basically,

the idea is to postulate that the crack tip does not emit any dislocation and there exists a core elastic

region (i.e. free of dislocations) near the tip surrounded by the plastic zone. Using finite element

calculations, it was found that, in order for a steady-state crack growth to occur, the applied energy

release rate must generally be several orders of magnitude larger than Griffith energy at the crack

tip (i.e. inside the elastic strip). This result is well in agreement with experimental observations, e.g.

Tetelman [116], which suggest that the fracture energy is expected to be up to 4 orders of magnitude
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larger than surface energies.

1.2 Previous work on ductile fracture

The first micromechanical studies of ductile fracture go back to the pioneer works of McClintock 1968

[77] and Rice and Tracey 1969 [98] who studied the growth of a single void in an infinite elastic-

plastic solid, and showed that fracture by void coalescence is promoted by a high level of stress

triaxiality. This was confirmed by numerous triaxial tension test experiments on tensile specimens

(Hanckok and Mackenzie 1976 [48], Hancock and Brown 1983 [47]). Gurson 1977 [45] developed the

most widely known porous ductile material model based on averaging techniques. His void growth

model was given in terms of a macroscopic yield condition as a function of one microstructural

parameter, namely the void volume fraction. A number of extension models have been attempted in

order to account for void nucleation (Chu and Needleman 1980 [16]), void shape effects (Gologanu,

Leblond and Devaux [37], [39], [41], [43]), strain hardening effects (Leblond et al 1995 [70]), kinematic

hardening (Mear and Hutchinson 1985 [79]). Also, computational models have been put forth to

investigate the void growth and coalescence mechanism. Such micromechanical models, sometimes

referred to as cell model studies, have been the focus of numerous authors such Tvergaard [121], [124],

[126],[125], Hutchinson and Tvergaard 1987 [58], Needleman and Tvergaard 1984 [88]. Coalescence

models also include the studies of Gologanu [38], [40], [42] or Thomason [119], [117], [118]. During

the deformation of ductile solids, it is observed that a smooth deformation can develop into a highly

concentrated deformation pattern, which corresponds to the localization of the plastic flow into shear

bands. Analysis of the bifurcation into shear bands has been the subject of the works of Hill 1962

[52], Rice 1977 [96], and Rudnicki and Rice 1975 [100]. A wealth of computational description of

plastic localization is contained in the works of Tvergaard [121], [124], [126],[125]. Those treatments,

which complement the initial void model of Gurson, mainly revealed the presence of voids as main

catalysts of localization and derived critical coalescence conditions.

Recently, efforts have been made to relate macroscopic properties to the structure and material

behavior at the microscale. For instance, Pardoen and Hutchinson 2002 [93] developed relations
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between fracture toughness and microstructural details for ductile materials based on a generalized

Gurson model that accounts for both growth and coalescence. The microstructural parameters were

the initial porosity, the void shape and spacing, as well as the void spacing anisotropy. In the works

of Tvergaard ([126],[122], [123],[89]) and Nielsen and Tvergaard [89], an emphasis has been on the

interaction between voids with two size length scales, the smaller size voids appearing as defects in

the ligaments, i.e. spacing between primary voids.

1.3 Motivation

So far, the existing experimental data at best provide partial coverage of ductile fracture prop-

erties over a limited range of temperatures, strain rates and other relevant operating conditions,

and may be entirely lacking under off-normal or extreme conditions and for new materials. The

existing micromechanical models, which strongly rely on conventional plasticity theories, partially

explain the complex dependence of the fracture properties on temperature and strain rate. More-

over, models that accurately quantify surface energies and rigorously predict their contribution to

the total work of fracture are still almost non existent. Finally, the classical models (mostly empiri-

cal or computational) rely strongly on heuristics and intuition and often do not lend themselves to a

mathematically rigorous analysis of ductile fracture. The goal of this thesis is to present a rigorous

mathematically tractable model that unifies plasticity, surface energy and fracture. An emphasis

will be put on the complex relationship between macroscopic quantities and microscopic properties,

along with their temperature dependence, within a multiscale framework. In this way, the present

work describes ductile fracture as a multiscale phenomenon, and therefore falls naturally within a

multiscale hierarchy.

The multiplicity of length scales involved in ductile fracture strongly suggests the use of methods

of multiscale analysis from the calculus of variations. Indeed, despite the irreversible and path-

dependent character of plasticity, under monotonic and proportional loading conditions plasticity

problems may be recast as energy minimization problems by recourse to deformation-theory of

plasticity (e. g., [75] and references therein). Throughout this work, we therefore assume deformation
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theory of plasticity and by effective energy we specifically mean a deformation-theoretical energy

that jointly accounts for both free energy and plastic dissipation.

Two main features render the resulting ductile-fracture problem non-standard and lend it mathe-

matical interest, namely, sublinear energy growth and strain-gradient hardening. The physical basis

underlying these fundamental properties may be understood as follows. For large material samples

undergoing slowly-varying deformations in their interior, the effective energy of metals is observed

to ostensibly exhibit conventional volume scaling, i.e., it scales with the volume of the sample when

all lengths, including displacements, are scaled uniformly. Energies that possess volume scaling are

referred to as local, since they can be written as the integral of an energy density which depends

on the local deformation gradient. Such local energies can be characterized by means of conven-

tional constitutive testing, such as uniaxial tension tests, tension-torsion tests, and other similar

means. However, when observed through constitutive tests on large samples, the local limit of the

effective energy of metals is invariably found to exhibit sublinear growth at large deformations (cf.

section 2.1.1). Such sublinear growth is a reflection of the work hardening characteristics of large

metallic specimens and gives rise to well-known geometric instabilities such as the necking of bars,

sheet necking, and others (cf., e. g., [76]). From the viewpoint of the calculus of variations, energies

with sublinear growth relax to zero for every deformation and thus fail to supply useful information

regarding the fracture properties of metals. Physically, the relaxation process corresponds to the

concentration of deformation to small volumes such as shear bands. The deformation is then pro-

portional to 1/δ in a volume of size δ → 0, and since the energy density has sublinear growth its

contribution to the total energy is negligible in the limit. Similar instabilities are present in many

local problems characterized by nonconvex energy densities.

In metals undergoing ductile fracture this inherently unstable behavior is held in check by a

second fundamental property of metals, namely, the strain-gradient hardening [27, 30, 28, 29]. This

property of metals has been extensively investigated and demonstrated by means of torsion tests in

wires [30], nanoindentation [90, 132, 54], and by other means. Specifically, for fixed local deformation,

the effective energy density of metals is observed to be an increasing function of the local strain
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gradient, or the second deformation gradient. This property results in deviations from volume

scaling, i.e., in nonlocal behavior and size dependency, in sufficiently small material samples. Under

these conditions, we show in the present work that ductile fracture emerges as the net result of

two competing effects: whereas the sublinear growth of the energy in the large-body limit promotes

localization of deformation in large samples to failure planes, the size-dependence of metal plasticity

stabilizes this process of localization in its advanced stages, thus resulting in an orderly progression

towards failure and a well-defined specific fracture energy.

1.4 Outline of the thesis

The plan of the thesis is as follows:

The last section of this introductory chapter is devoted to some mathematical preliminaries. We

present basic concepts from topology and functional analysis, and define notations that will be used

throughout the thesis.

In Chapter 2, we show that homogenization fails for ductile fracture. More precisely, we show

explicitly, by means of a simple construction, later referred to as a necking construction, that the

sublinear growth of the energy density is responsible for the localization of deformations. The strain

energy then relaxes to zero, which evidently provides no useful information on fracture properties.

This motivates the addition of a stabilizing non-local component to the strain energy density that

accounts for size effects using strain gradient plasticity. As a consequence, a characteristic length

scale is introduced, in the same spirit of previous strain gradient plasticity models in the literature,

which will briefly be discussed as well in this chapter. We present a simple deformation theory of

plasticity model that accounts for both local and non-local effects.

The aim of Chapter 3 is to present a rigorous analysis of some qualitative properties of ductile

fracture. The key strategy consists of the derivation of optimal scaling laws—as opposed to searching

for exact minimizers—for energies exhibiting both sublinear growth in the local limit and strain-

gradient hardening. The main result is that optimal scaling is achieved by a void sheet construction

and the fracture energy obeys a well- defined relationship with respect to other material parameters,
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namely the imposed displacement, the length scale and the hardening exponent.

Physical interpretation and experimental validation are the core of Chapter 4. On the one hand,

we derive a physical explanation of the optimal scaling laws of Chapter 3. On the other hand, we

assess the validity of the scaling relations based on experimental data. We show that the test data

collapse remarkably within the bounds predicted by the analysis.

We present our concluding remarks and future directions as part of Chapter 5. We particularly

evoke some aspects of the numerical implementation using finite elements.

1.5 Mathematical Preliminaries

We present some basic concepts of functional analysis and topologies associated with function spaces.

Throughout this work, the notation “D” will be used to denote the gradient. We start with the

definition of the classical Lebesgue spaces Lp.

Definition 1.5.1 (Lebesgue spaces)

(i) Let Ω ⊂ Rn be an open set and 1 ≤ p ≤ ∞. For u : Ω→ R, we set:

‖u‖Lp := (

∫
Ω

|u|pdx)1/p if 1 ≤ p <∞

‖u‖L∞ := inf{C ∈ [0,∞] : |u(x)| ≤ C for a.e. x ∈ Ω}

We say that u ∈ Lp(Ω) if ‖u‖Lp(Ω) < ∞. The set Lp(Ω) is a Banach space and ‖.‖Lp is a

norm on that space.

(ii) Let un, u ∈ Lp(Ω). We say that un → u strongly in Lp if ‖un − u‖Lp → 0 as n→∞.

As illustrated in Definition 1.5.1, the definition of the Lebesgue space does not involve first or higher

order derivatives. Derivatives are accounted for by extending the concept of norm Lp to u and its

derivatives, which gives rise to Sobolev spaces.

Definition 1.5.2 (Sobolev spaces) Let Ω ⊂ Rn be an open set and 1 ≤ p ≤ ∞. We define the

Sobolev space W 1,p(Ω) by the set of functions u : Ω→ R, u ∈ Lp(Ω), whose weak partial derivatives
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∂u
∂xi
∈ Lp(Ω) for every i = 1, .., n. We endow this space with the following norm

‖u‖W 1,p := (‖u‖pLp + ‖Du‖pLp)1/p if 1 ≤ p <∞

‖u‖W 1,∞ := max{‖u‖L∞ , ‖Du‖L∞} if p =∞

Strong connections between Lebesgue spaces, Sobolev spaces and their topologies are reflected

through the Sobolev embedding theorem and Sobolev inequalities, whose statements and complete

proof can be found in [26]. Here we simply recall the classical Sobolev inequalities, also referred to

as Poincaré inequalities.

Theorem 1.5.1 Let Ω ⊂ Rn be a bounded open set with a Lipschitz boundary.

(i) Case 1. If 1 ≤ p < n, then W 1,p(Ω) ⊂ Lq(Ω) for every q ∈ [1, p∗], where p∗ is the Sobolev

exponent defined by

1

p∗
=

1

p
− 1

n
, i.e. p∗ =

np

n− p
(1.5.1)

More precisely, for every q ∈ [1, p∗] there exists c = c(Ω, p, q) such that

‖u‖Lq ≤ c‖u‖W 1,p (1.5.2)

(ii) Case 2. If p = n, then W 1,n(Ω) ⊂ Lq(Ω) for every q ∈ [1,∞). More precisely, for every

q ∈ [1,∞) there exists c = c(Ω, p, q) such that

‖u‖Lq ≤ c‖u‖W 1,n (1.5.3)

For more details concerning Sobolev spaces, we refer to Adams [1], Brezis [13], Dacorogna [21],

Dacorogna-Marcellini [22], Ekeland-Temam [25], Evans [26], Gilbarg and Trudinger [35], Giusti [36],

Kufner-John-Fucik [65], Ladyzhenshaya-Uraltseva [69] or Morrey [84].

We finish this section with a brief overview of functions of bounded variation. Functions of

bounded variations (BV functions) have an important application for problems in the calculus of
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variations. This class of functions has been the natural tool to study problems characterized by free

discontinuities, for example image segmentation theory or fracture mechanics. BV functions have

two main characteristics: they are functions with a measure distributional derivative or function

which are L1 limits of of bounded sequences in W 1,1. In what follows, we present some of the basic

definitions and results, taken from the book of Ambrosio, Fusco and Pallara [2]. We refer the reader

to this book for a thorough description of BV spaces.

Definition 1.5.3 Let u ∈ L1(Ω); we say that u is a function of bounded variation in Ω if the

distributional derivative of u is representable by a finite Radon measure in Ω, i.e. if

∫
Ω

u
∂φ

∂xi
dx = −

∫
Ω

φ dDiu ∀φ ∈ C∞c (Ω), i = 1, ..., N (1.5.4)

for some RN -valued measure Du = (D1u, ...,DNu) in Ω. The vector space of all functions of bounded

variation in Ω is denoted by BV (Ω)

An equivalent representation of the formulae in 1.5.3 is:

∫
Ω

u divφdx = −
N∑
i=1

∫
Ω

φi dDiu ∀ φ ∈ [C1
c (Ω)]N (1.5.5)

An important observation is that the Sobolev space W 1,1(Ω) is contained in BV (Ω), because its

directional derivative is absolutely continuous with the standard Lebesgue measure of RN , with a

Radon-Nikodym derivative corresponding to the (approximate) gradient of u, see [2]. An advantage

of BV spaces is that, unlike Sobolev spaces, they include characteristic functions of sufficient regular

sets, and more generally piecewise smooth functions. Now, we proceed to the definition of the

variation of BV functions, which provides an equivalent characterization of BV spaces.

Definition 1.5.4 (i) Let u ∈ [L1
loc(Ω)]m (locally integrable). The variation V (u,Ω) is defined by

V (u,Ω) := sup{
N∑
i=1

∫
Ω

uαdivφαdx : φ ∈ [C1
c (Ω)]n×N , ‖φ‖∞ ≤ 1} (1.5.6)

For u continuously differentiable, then V (u,Ω) =
∫

Ω
|Du|dx.
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(ii) Let u ∈ [L1(Ω)]m. Then u belongs to [BV (Ω)]m if and only if V (u,Ω) < ∞. In addition,

V (u,Ω) = |Du|(Ω) for u ∈ [BV (Ω)]m, here |Du|(Ω) represents the total variation of the

measure Du.

(iii) The space [BV (Ω)]m endowed with the norm

‖u‖BV :=

∫
Ω

|u|dx+ |Du|(Ω) (1.5.7)

is a Banach space.

Now we introduce the so-called weak* convergence in BV (Ω), which is weaker than the norm con-

vergence.

Definition 1.5.5 (Weak* convergence) Let u, un ∈ [BV (Ω)]m. We say that (un) weakly* converges

in [BV (Ω)]m to u if (un) converges to u in [L1(Ω)]m and (Dun) weakly* converges to Du in measure

in Ω, i.e.

lim
n→∞

∫
Ω

φ dDun =

∫
Ω

φ dDu ∀ φ ∈ C0(Ω) (1.5.8)

A simple criterion for weak* convergence is given by the following proposition (see [2], Proposition

3.13)

Proposition 1.5.1.1 Let (un) ⊂ [BV (Ω)]m. Then (un) converges weakly* to u in [BV (Ω)]m if and

only if (un) is bounded in [BV (Ω)]m and converges to u in [L1(Ω)]m.

The concepts above mentioned are useful for the analysis presented in Chapter 2 and Chapter 3 of

this thesis.
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Chapter 2

From Necking Instability to Strain
Gradient Plasticity

In this chapter, we wish to argue that conventional plasticity models do not suffice to understand

ductile fracture, and thus, one has to introduce non-local effects, which naturally suggests the exis-

tence of a characteristic length scale. The key point to this observation is that, from the standpoint

of the calculus of variations, the energy densities are concave due to their sublinear growth (see sec-

tion 2.1.1), and thus their corresponding energy functionals relax to zero. We illustrate this concept

by means of a simple example, which mainly serves as a motivation for formulating a strain gradient

plasticity model. The relaxation is achieved by a localization technique suitable for non-convex

problems.

2.1 A localization construction

In conventional theories of plasticity, large material samples exhibit energies that have a volume

scaling, i.e. energies scale as the volume of the sample when all lengths, including the displacements,

are scaled uniformly. Such energies are referred to as local and are appropriate to describe plasticity

for bulk materials. Local theories derive mostly from conventional constitutive testing, e.g. uniaxial

tension experiments, which provide the basis for constitutive laws, which in turn, can be recast

in the form of energy functionals by recourse to the deformation theory of plasticity. For large

deformations, the energies possess a sublinear growth that is a reflection of the work hardening
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characteristic of large metallic specimen and gives rise to geometric instabilities such as necking.

In this section, we present an analytical description of necking and how it relates to localization of

plastic deformation which usually precedes fracture in ductile materials.

2.1.1 Uniaxial tension test

Let Ω ∈ R3 be a bounded domain undergoing a transformation u : Ω → R3. Within the context

of deformation theory of plasticity, the bulk energy density of crystalline materials results from the

contribution of both an elastic energy and a plastic stored energy according to the relation:

W (F, Fp) = W e(FF−1
p ) +W p(Fp) (2.1.1)

where F = Du and Fp represents the plastic transformation. We have used the the multiplicative

decomposition F = FeFp. The incompressibility of the plastic transformation yields the additional

constraint

detFp = 1 (2.1.2)

Consider the uniform uniaxial tension (along the x3 direction) of a rigid-plastic bar for which the

deformation gradient is homogeneous and given by F = Du = diag( 1√
λ
, 1√

λ
, λ). We further assume

that the material undergoes a fully plastic deformation, in which case Du = Fp. The energy density

then reads:

W (F ) = W p(F ) (2.1.3)

We have assumed the material to be rigid plastic, i.e W e vanishes in SO(3). The incompressibility

condition further reduces to

detF = 1 (2.1.4)

For crystalline materials, stress-strain curves exhibit a power-law relationship between the true stress

and the engineering strain in the form σ = K(λ − 1)n where K is the strength coefficient and n is

the hardening exponent, with 0 < n < 1 for metals. Then the Piola-Kirchhoff stress P , which is
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equal to the axial force applied to the rod divided by the undeformed cross-sectional area, is given

by:

P = ∂λW = K(λ− 1)nλ−1 (2.1.5)

which for large λ scales as

∂λW ∼ Kλn−1 (2.1.6)

Therefore, in the same range the energy density scales as

W ∼ K

n
λn (2.1.7)

Now let us denote for the rest of the sequel

A =
K

n
(2.1.8)

We take the previous assumptions as grounds for defining a bulk energy functional of the form:

Ebulk(u) = A

∫
Ω

(|Du|n − 3n/2)dx (2.1.9)

The term 3n/2 guarantees that the stored energy is zero when Du = I, where I is the identity matrix.

A simple dimensional analysis shows that the quantity A is in the unit of a pressure (Pascal) which

corresponds to an energy per unit volume. Conformably to (2.1.9), the strain energy density satisfies

W (F ) ∼ |F |n (2.1.10)

with 0 < n < 1. Because the exponent n < 1, the strain energy density W is said to have a sublinear

growth. For the homogeneous deformation considered in this section, the bulk energy reads:

Ebulk(λ) = A|Ω|((λ2 +
2

λ
)n/2 − 3n/2) (2.1.11)
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where |Ω| represents the volume of the domain Ω. The Piola stress then reads:

P (λ) =
∂W

∂λ
= An(λ− 1

λ2
)(λ2 +

2

λ
)
n
2−1 (2.1.12)

Figure 2.1 illustrates the dependence of the force P as function of the elongation for different values of

n. It is clear from the plot that for n ≥ 1, the force increases continually with the elongation, but this

behavior is different when n < 1, the range for most metals. Indeed, the curve shows an increase of

the force versus elongation up to a maximum value, and subsequent elongation requires less applied

force. This decrease of the force with respect to the elongation for sufficient large elongations is

characteristic of geometrical softening, a fundamental property of ductile materials. Such behavior

is mainly tied to the sublinear growth of the energy density and confirms the Considère prediction

[17] that necking is more likely to occur for materials whose force-elongation curves go through a

maximum.
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Figure 2.1: Force-elongation curve for different values of n.
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2.1.2 Necking construction

In this section, we provide an analytical, but simple characterization of plastic localization, by means

of a simple example. We consider here a bar with square cross-sectional area, clamped at its bottom

and subject to a prescribed displacement on its top. Within the assumptions of section 2.1.1, we

wish to minimize the quantity (2.1.9). More precisely, we consider the minimum problem:

inf{Ebulk(u) = A

∫
Ω

(|Du|n − 3n/2)dx : detDu = 1} (2.1.13)

The infimum value for (2.1.13) is zero and is achieved by a minimizing sequence that exhibits

concentration on the mid-plane, as stated in the following proposition:

Proposition 2.1.0.2 Let Ω = {(x1, x2, x3),−a2 ≤ x1 ≤ a
2 ,−

a
2 ≤ x2 ≤ a

2 ,−L ≤ x3 ≤ L}. The bar

is subject to uniaxial axial tension along the x3 axis and the boundary conditions are expressed as

follows: 
u3(x1, x2,−L) = −L

u3(x1, x2, L) = L+ δ

(2.1.14)

Let Φ : [−L,L]→ R continuous and compactly supported on [−L,L] defined by:

Φ(x3) =


δ
L (x3

L + 1), if − L ≤ x3 ≤ 0

δ
L (−x3

L + 1), if 0 ≤ x3 ≤ L
(2.1.15)

Now consider the following sequence un of deformations:



u1n = x1√
ϕ′n(x3)

u2n = x2√
ϕ′n(x3)

u3n = ϕn(x3)

(2.1.16)

where ϕn : [−L,L]→ R is a sequence of continuous functions such that

ϕ′n(x3) = λn(x3) = 1 + nΦ(nx3) (2.1.17)



20

Then the following holds:

(i) lim
n→∞

Ebulk(un) = 0

(ii) un converges weakly* to u in BV (Ω,R3) where


u1 = x1

u2 = x2

u3 = ϕ(x3)

(2.1.18)

with

ϕ(x3) =


x3, −L ≤ x3 ≤ 0

x3 + δ, 0 ≤ x3 ≤ L,
(2.1.19)

proof 2.1.1 (i) We prove part (i). In order to avoid confusion of notation, the growth exponent

is denoted p instead of n which will be used to label any given sequence. Denoting ϕ′n(x3) =

λn(x3), the deformation gradient is given by :

Dun =


λ
−1/2
n (x3) 0 − 1

2λ
−3/2
n (x3)λ′n(x3)x1

0 λ
−1/2
n (x3) − 1

2λ
−3/2
n (x3)λ′n(x3)x2

0 0 λn(x3)

 , (2.1.20)

The sequence λn such defined is compactly supported in [−L/n,L/n] and the resulting sequence

of maps exhibits a concentration effect on the plane x3 = 0. More precisely, the sequence λn

is defined by:

λn(x3) =



1, −L ≤ x3 ≤ −L/n

1 + n δL (nx3

L + 1), −L/n ≤ x3 ≤ 0

1 + n δL (−nx3

L + 1), 0 ≤ x3 ≤ L/n

1, L/n ≤ x3 ≤ L,

(2.1.21)
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It follows that the corresponding sequence of maps can be expressed in the following form:



un1 = x1√
ϕ′n(x3)

un2 = x2√
ϕ′n(x3)

un3 = ϕn(x3)

(2.1.22)

where

ϕn(x3) =



x3, −L ≤ x3 ≤ −L/n

x3 + n δL (n
x2
3

2L + x3) + δ
2 , −L/n ≤ x3 ≤ 0

x3 + n δL (−n x
2
3

2L + x3) + δ
2 , 0 ≤ x3 ≤ L/n

x3 + δ, L/n ≤ x3 ≤ L,

(2.1.23)

In what follows we wish to compute the following quantity

Ê = lim
n→∞

Ebulk(un) (2.1.24)

A straightforward computation shows that:

|Dun| = [λ2
n +

2

λn
+
x2

1 + x2
2

4

λ′2n
λ3
n

]1/2 (2.1.25)

The bulk energy is given by:

Ebulk(un) =

∫ a
2

− a2

∫ a
2

− a2

∫ L

−L

(
[λ2
n +

2

λn
+
x2

1 + x2
2

4

λ′2n
λ3
n

]p/2
− 3p/2)dx1dx2dx3 (2.1.26)

We can write that:

∫ L

−L
(λ2
n +

2

λn
+
r2

4

λ′2n
λ3
n

)p/2dx3 = 2

∫ −L/n
−L

3p/2dx3

+

∫ 0

−L/n
(λ2
n +

2

λn
+
x2

1 + x2
2

4

λ′2n
λ3
n

)p/2dx3

+

∫ L/n

0

(λ2
n +

2

λn
+
x2

1 + x2
2

4

λ′2n
λ3
n

)p/2dx3
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Now let

I1 =

∫ 0

−L/n
(λ2
n +

2

λn
+
x2

1 + x2
2

4

λ′2n
λ3
n

)p/2dx3 (2.1.27)

And similarly let

I2 =

∫ L/n

0

(λ2
n +

2

λn
+
x2

1 + x2
2

4

λ′2n
λ3
n

)p/2dx3 (2.1.28)

Using the inequality (a+ b)p/2 ≤ ap/2 + bp/2 for a, b > 0, p/2 < 1 we can write:

I1 ≤
∫ 0

−L/n
λpndx3 + 2p/2

∫ 0

−L/n
λ−p/2n dx3 + (

x2
1 + x2

2

4
)p/2

∫ 0

−L/n

|λ′n|p

λ
3p/2
n

dx3 (2.1.29)

By a change of variable u = δ
L (nx3

L + 1) we have the following equalities:

∫ 0

−L/n
λpndx3 =

∫ 0

−L/n
(1 + n

δ

L
(n
x3

L
+ 1))pdx3

=
L2

nδ

1

n

∫ δ
L

0

n(1 + nu)pdu

=
L2

δn2
[
(1 + nu)p+1

p+ 1
]
δ
L
0

=
L2

δ(p+ 1)

1

n2
((1 + n

δ

L
)p+1 − 1)

=
L2

δ(p+ 1)
(
(1 + n δL )p+1

n2
− 1

n2
)→ 0 as n→∞ for p < 1.

(2.1.30)

Similarly,

∫ 0

−L/n
λ−p/2n dx3 =

L2

nδ

1

n

∫ δ
L

0

n

(1 + nu)p/2
du

=
L

δn2

1
p
2 − 1

[
−1

(1 + nu)
p
2−1

]
δ
L
0

=
L2

δ(p2 − 1)

1

n2
(1− 1

(1 + n δL )
p
2−1

)→ 0 as n→∞.

(2.1.31)
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Finally

∫ 0

−L/n

|λ′n|p

λ
3p/2
n

dx3 =
δp

L2p

L2

δn

∫ δ
L

0

n2p

(1 + nu)3p/2
du

=
δp

L2p
n2(p−1) L2

δ( 3p
2 − 1)

[
−1

(1 + nu)3p/2−1
]
δ
L
0

=
δp

L2p

L2

δ( 3p
2 − 1)

(n2(p−1) − n2(p−1)

(1 + n δL )
3p
2 −1

)

→ 0 as n→∞ when p < 1 and p 6= 2/3.

(2.1.32)

For p = 2/3, the previous calculation resumes to evaluating

n2p−2

∫ δ
L

0

n

1 + nu
dx = n2p−2[log(1 + nu)]

δ
L
0

→ 0 as n→∞

(2.1.33)

It follows that I1 → 0 as n → ∞. A similar calculation also shows that I2 → 0. Finally, we

have shown that:

lim
n→∞

Ebulk(un) = 0 (2.1.34)

(ii) Now we turn to part (ii). In virtue of proposition 1.5.1.1, it is enough to show that un → u in

L1 and
∫

Ω
|Dun|dx bounded. We have:

∫ L

−L
|ϕn(x3)− ϕ(x3)|dx3

=

∫ 0

−L/n
|n δ
L

(n
x2

3

2L
+ x3) +

δ

2
|dx3 +

∫ L/n

0

|n δ
L

(−n x
2
3

2L
+ x3)− δ

2
|dx3

=
δ

2

∫ 0

−L/n
|nx

2
3

L2
+ 2n

x3

L
+ 1|dx3 +

δ

2

∫ L/n

0

| − nx2
3

L2
+ 2n

x3

L
− 1|dx3

=
δ

2

∫ 0

−L/n
(n
x3

L
+ 1)2dx3 +

δ

2

∫ L/n

0

(−nx3

L
+ 1)2dx3

=
L

δn

∫ 1

0

v2dv → 0 as n→∞

(2.1.35)

In the last equality, we have used the change of variables v = nx
L + 1 and v = −nxL + 1
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respectively. It follows then that:

ϕn → ϕ strongly in L1[−L,L]. (2.1.36)

Besides, using appropriate change of variable,

∫ L

−L
|λ−1/2
n − 1|dx3 =

2L2

δn

∫ δ
L

0

|(1 + nv)−1/2 − 1|dv

=
2L2

δn
[v − 2

n
(1 + nv)1/2]

δ
L
0 → 0 as n→∞

(2.1.37)

i.e.

λ−1/2
n → 1 strongly in L1[−L,L] (2.1.38)

From (2.1.36) and (2.1.38) it follows easily that

‖un − u‖L1 → 0 as n→∞ (2.1.39)

i.e.

un → u strongly in L1(Ω,R3) (2.1.40)

Finally, the boundedness of
∫

Ω
|Dun|dx comes naturally from the same calculations as in the

proof of part (i) with p = 1, in which case the boundedness of I1 (and thus I2) strictly follows

from (2.1.30), (2.1.31), and (2.1.32). This concludes the proof. �

The construction defined by the sequence un can be intuitively understood as follows. We assume the

minimizers to belong to a class of deformation mappings of the form given by (2.1.16), which evidently

satisfy the conservation of volume constraint and the boundary conditions. The deformation inside

the bar is homogeneous everywhere, except in a layer of size ε, see Figure 2.3, in which the plastic

deformation is concentrated. The size of the layer, which depends on the sequence label n, is chosen

such as to decrease to zero when n goes to infinity. At the same time, the cross sectional area

inside the layer undergoes a drastic decrease, as the deformation in the x1 and x2 directions are
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divided by
√
λn (see the expressions of u1n and u2n in (2.1.16)). To make things more explicit, the

sequence of stretches λn is defined by λn(x3) = 1 + nΦ(nx3), where Φ is compactly supported in

[−L,L]. In this way, λn is supported on the set [−Ln ,
L
n ], i.e. the size ε of the layer undergoing large

amounts of deformation. The multiplicative factor n contributes to increase the intensity of the

deformation in the localized region, thereby decreasing the cross-sectional area, which in the limit

becomes restricted to a point. We illustrate this concentration mechanism in Figure 2.3. Intuitively,

the construction should converge to a discontinuous map with a crack amplitude at the mid plane

equal to the imposed displacement. This discontinuous map u is characteristic of fracture of the

material and part (ii) of proposition 2.1.0.2 states that the proposed construction indeed converges

to a crack as expected. More importantly, the analytical construction reveals that the infimum

energy is equal to zero.

-L L x3 

δ/L 

0 

Figure 2.2: Plot of the function Φ used in the localization construction.

In order to glean insight into the choice of the function Φ(x3), we reason as follows. We seek to

construct a sequence of smooth deformations whose strains (λn(x3) − 1) concentrate at the origin.

This is achieved by a simple piecewise linear function vanishing exactly at x3 = −L and x3 = L as

depicted in Figure 2.2. The slope of each linear portion is then determined by making the sequence

of strains (λn(x3) − 1) localize at the origin and converge to singular measure (dirac delta) with

a jump equal to the amplitude δ. Recall that λn = ϕ
′

n, therefore if λn is proved to converge to a
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singular measure, the corresponding limit of ϕn will be discontinuous. More precisely, the limit of

ϕn belongs to SBV , the Special function of Bounded Variation, see [2]. To be more precise, let

φ ∈ C0[−L,L]. It is clear that

∫ L

−L
λn(x3)φ(x3)dx3 =

∫ L

−L
φ(x3)dx3 +

∫ L/n

−L/n
nΦ(nx3)φ(x3)dx3 (2.1.41)

Then

∫ L/n

−L/n
nΦ(nx3)φx3)dx3 =

∫ L

−L
Φ(v)φ(

v

n
)dv →

∫ L

−L
Φ(v)φ(0)dv =

∫ L

−L
Φ(v)dv < δ0, φ > . (2.1.42)

i.e.

λn
∗
⇀ 1 L1 + (

∫ L

−L
Φ(v)dv)δ0 weakly ∗ in measure. (2.1.43)

Note that L1 represents the one dimensional Lebesgue measure and δ0 represents the delta Dirac

measure at the origin. Now remark that, due to the discontinuity of ϕ(x3) see (2.1.19), its derivative

is a measure, i.e.

Dϕ = 1 L1 + δ δ0 (2.1.44)

Equating
∫ L
−L Φ(v)dv and δ identifies the amplitude of the discontinuity at the origin to the imposed

displacement δ. This is achieved for Φ(0) = δ
L , and thus makes the choice of Φ more concise and given

by (2.1.15), see Figure 2.2. The convergence of un to u follows naturally from this construction.

For reasons of simplicity, we have chosen the weak* convergence in BV as the main topology of

convergence.

The physical meaning of the results of proposition 2.1.0.2 is thus clear. On the one hand, the

optimization problem (2.1.13) is ill-posed, as it relaxes to zero and provides no information about

fracture properties. The infimum is obtained by means of a construction that features localization

of plastic deformation. This localization of plastic flow is mainly attributed to the sublinear growth

of the energy density and characteristic of necking. On the other hand, the necking construction

converges to a discontinuous map, see Figure 2.3, which strongly implies fracture at zero cost. This
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δ 

ε→0 
2L 

Localization zone 

Figure 2.3: Necking construction exhibiting localization on the central plane. The construction
converges to fracture

contradiction is often referred to as the necking instability . From the viewpoint of the calculus of

variations, the instability results from the lack of convexity (or quasi-convexity more precisely) of

the integrand in the energy functional, and therefore minimizing sequences have to develop either

oscillations or concentrations.

In light of the analysis presented so far, local theories solely are insufficient to describe ductile

fracture in metals. Although they can predict localization, necking and explain geometrical softening,

they fail to provide useful and complete characterization of ductile materials. However, in metals

undergoing ductile fracture, this inherent unstable behavior of large material samples is held in check

by a second fundamental property of metals, namely, the strain gradient hardening. In section 2.2,

we introduce a non-local model which will be the grounds for the explanation of size effects and

surface energies, and yield a new multiscale model for ductile fracture.

2.1.3 Some remarks

In concluding this section, we make some additional remarks concerning the type of energy func-

tionals given by (2.1.13). Such a model is analogous to energy minimization problems in finite

deformation elasticity. The subject of existence of minimizers in non-linear elasticity has been the
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focus of tremendous research in the calculus of variations, starting with the pioneering work of John

Ball, [7]. The problem under investigation is the minimization of the elastic energy

I(u) =

∫
Ω

W (Du)dx (2.1.45)

for the special class of stored-energy functions W that can be expressed as convex functions of

the determinant and all the minors of the deformation gradient, functions which are referred to

as polyconvex. From a physical point of view, this class of functions satisfy not only the material

frame indifference, but also the condition that it takes an infinite amount of energy to compress the

material to zero, requirements that are proper to finite elasticity. From a mathematical standpoint,

this class of functions facilitates the use of the direct methods in the calculus of variations to prove

existence of minimizers. More precisely, the problem reduces to proving the weak continuity of the

determinant and other minors of the deformation gradient. Ball was able to show the existence of

minimizers when W satisfies suitable growth conditions such as:

(i) W (F ) ≥ c|F |p, for some c > 0 and p > 3;

(ii) W (F ) ≥ c(|F |p + |cofF |q), for some c > 0, with p ≥ 2 and q > p/p− 1 or;

(iii) W (F ) ≥ c(|F |p + |cofF |q + |detF |r), for some c > 0, p ≥ 2 and q ≥ p/p− 1 and r > 1.

Many refinements of Ball’s results exist in the literature and we refer the reader to Ball and Murat[8],

Giaquinta, Modica and Soucek [73], Muller, Tang and Yan [104]. The structure of the energy

functional used in (2.1.13) is identical to (2.1.45), but evidently the energy density does not satisfy

the growth conditions above stated, which makes the direct methods fail for plasticity problems,

especially due to the sublinear growth. Instead, one has to perform a relaxation procedure and this

was the core of section 2.1.2.

The extension of Ball’s results to finite plasticity has been less studied, i.e. finite elastoplasticity

problems of the form

Ebulk(u, Fp) =

∫
Ω

[W e(DuF−1
p ) +W p(Fp)]dx (2.1.46)
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In previous sections, we had made additional assumptions, such as Du = Fp for the purpose of

illustration. The main difficulty here arises from the multiplicative elastic-plastic decomposition

Du = FeFp. This problem was first attempted by Mielke and Muller [82] who showed the exis-

tence of minimizers for sufficient mild growth conditions on the energy densities, at the expense of

adding a stabilizing energy term that comes from dislocations. The use of the direct methods in

this context strongly relied on the div-curl lemma, the cornerstone of the theory of compensated

compactness, see [86],[87],[114],[113],[115], [24],[103], for the statement and many of its refinements.

Without the addition of a dislocation energy, the minimum problem does not admit a solution

and minimizing sequences develop microstructures or concentrations and we refer the reader to

[102],[46],[74],[80],[81],[91] for more details about relaxation and microstructures.

In the same spirit, we need to formulate a stabilizing energy, which will relate to size effects and

non-local plasticity. This is the focus of the next section.

2.2 Strain gradient plasticity

A large body of literature has emerged on non-local theories of plasticity to explain size effects ob-

served in the macroscopic response of materials as a function of microstructural sizes. For instance,

a widely known result is the Hall-Petch effect which states that the yield stress is inversely propor-

tional to the square root of the grain size in nanocrystalline materials. Size effects can be attributed

to the presence of strain gradients, see [27], [30], [28], [29], which make conventional plasticity mod-

els break down for phenomena that involve a characteristic length scale. It is well known that

plasticity is driven by the motion of dislocations which multiply and entangle to cause strain hard-

ening, a process in which continued plastic deformation increases the crystal’s strength. The storage

of dislocations comes from two sources: (1) dislocations accumulate by random trapping to form

statistically stored dislocations; (2) because of the geometry of the solid or the material inhomogene-

ity, gradients in the plastic strain result in the formation of geometrically necessary dislocations , see

[30] and Figure 2.4. Direct evidence for the notion that geometrically necessary dislocations lead to

enhanced hardening comes from the compression tests of Russell and Ashby [101], Brown and Stobbs
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[14], and other authors. This strain gradient hardening property of metals has also been extensively

investigated and demonstrated by means of torsion tests in wires [30], nanoindentation [90], [132],

[54], and by other means. In general, strain gradients are inversely proportional to the length scale

at which deformation occurs. When the length scale associated with the deformation field is large,

strain gradients are very small and hardening is caused by statistically stored dislocations. In this

case, conventional theories of plasticity apply and there is no internal length scale. On the other

hand, when the deformations are small enough, it becomes a necessity to introduce strain gradient

effects in the constitutive laws.

Figure 2.4: Plastic strain gradients are caused by the geometry of deformation(a,b), by local bound-
ary conditions (c,d) or by the microstructure itself (e,f). Source:[30]
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2.2.1 Overview of strain gradient phenomena and previous models

Numerous phenomena in plasticity that depend on strain gradients have been presented in [28].

These phenomena include, but are not limited to, torsion of thin wires, grain size effect on poly-

cristalline yield strength, void growth and softening, cavitation instabilities, etc. Torsion experiments

Figure 2.5, see [28], [30] revealed a systematic increase of torsional hardening with decreasing wire

diameter which implied the existence of a characteristic length scale in the constitutive laws. A can-

didate for strain gradient plasticity law was proposed by Fleck and Hutchinson in which size effect

enters the constitutive law through the postulate that stress depends on strain and strain gradient.

The formulation is presented within the context of deformation theory of plasticity, which assumes

no important path-dependant behavior and monotone loading. In their approach to develop a strain

gradient law, Fleck and Hutchinson [28] postulated that the strain density energy is a function of

the overall effective strain which is defined by :

E =
√
ε2e + `2χ2

e (2.2.1)

where εe is the second invariant of strain εe =
√

2
3εijεij , and an analogous definition for the curvature

χe =
√

2
3χijχij . The length parameter ` is introduced for dimensional consistency. A power-law

dependance of the strain energy density w on the effective strain E has the form

w =
n

n+ 1
Σ0(
E
E0

)
n+1
n (2.2.2)

where Σ0, E0 and the strain hardening exponent n are material constants. Then the uniaxial stress

σ is related to the uniaxial strain via the relation

σ = Σ0(
E
E0

)1/n (2.2.3)

Fleck et al [28] were able to calibrate and validate their coupled stress version of strain gradient

plasticity to the experimental results on copper wires (Figure 2.5) and found that values of ` between
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2µm and 4µm matched experimental data.

Figure 2.5: Torsional response of copper wires of diameter 2a in the range 12-170 µm. If the
constitutive law were independent of strain gradients, the plots of normalized torque Q/a3 vs κa
would all lie on the same curve. Source:[30]

Bassani [9] proposed a strain gradient model based on the postulate that the non-local tangent

modulus, which accounts for strain hardening in addition to the conventional strain hardening, can

be defined by the relation:

Et =
E

n
(
εpe
ε0

)
1
n−1[1 +

`2α2

(ε0 + κεep)
2

]1/2 (2.2.4)

ε0 represents the yield strain in uniaxial tension, n is the hardening exponent and εep is the effective

plastic strain. The material length parameter ` has been introduced again for dimensional consis-

tency. The parameter α represents the maximum derivative of the plastic strain, through which

non-local effects enter the model and κ is a dimensionless constant. By choosing appropriate values

for the parameters appearing in equation 2.2.4, a good agreement was found between the model and

the experimental results on copper wires by Fleck et al (1994). This approach of strain gradient

plasticity has been used in the computational works of Tvergaard and Niordson, see [129], to account
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for the presence of a length scale in the interaction between voids.

Nanoindentation experiments, see [90] also exhibit the importance of size effects due to strain

gradients. The increase of hardness when the indentation size decreases, especially in the sub-

micrometer depth regime, is attributed to large strain gradients inherent in small indentations that

lead to the formation of geometrically necessary dislocations. First developed by Stelmashenko et al

[109], [108], and De Guzman et al [23], the model of geometrically necessary dislocations was used by

Nix-Gao to describe the depth-dependance of the hardness of crystalline materials. Specifically, they

considered the indentation by a rigid cone (see Figure 2.6). Geometrically necessary dislocations

develop in order to accommodate the indentation and the permanent shape change at the surface.

Denoting θ0 the angle between the indenter and the surface, a the contact radius, h the depth of

the indentation and s the spacing between slip steps at the surface, the contact angle θ0 can be

evaluated by

tanθ0 =
h

a
=
b

s
(2.2.5)

If we assume that the dislocations remain inside a half sphere of volume V = 2
3πa

3, it can be shown

([90]) that the density of geometrically dislocations, which is the total length of dislocation loops

divided by the volume, becomes

ρG =
3

2bh
tan2θ0 (2.2.6)

Using the Taylor relation for the shear stress τ = αµb
√
ρG (statistically stored dislocations are

negligible in the indentation problem) and the Tabor’s factor to convert the flow stress into hardness

we have

σ =
√

3τ, H = 3σ (2.2.7)

Using the previous relations, the following characteristic form for the depth dependence of the

hardness was then derived:

H

H0
=

√
1 +

h∗

h
(2.2.8)

where H is the hardness for a given depth of indentation, h,H0, is the hardness in the limit of
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infinite depth and h∗ is a characteristic length that depends on the shape of the indenter, the shear

modulus and H0, see Figure 2.7 for comparison with experimental data from McElhaney et al [78].

Such a model can be used to derive a strain gradient plasticity law. Indeed, a measure of strain

gradient in this problem is

χ =
tanθ0

a
(2.2.9)

in which case the depth dependence of the hardness can be rewritten as

(
σ

σ0
)2 ≈ 1 + b(

µ

σ0
)2 (2.2.10)

where σ and σ0 represent the flow stress in presence of strain gradient and the flow stress without

strain gradient respectively. For power law hardening of the form σ0 = σref ε
n, this can be recast

into a new strain gradient plasticity law of the form

(
σ

σ0
)2 = ε2n + `χ (2.2.11)

with the strain independent length scale ` given by

` = b(
µ

σref
)2 (2.2.12)

The length parameter ` is a function of the Burger’s vector b and other material constants, χ is

the effective strain gradient. This model derived by Nix and Gao resembles the phenomenological

law of Fleck and Hutchinson, with their length scale interpreted this time in function of material

parameters.

2.2.2 Problem formulation

In this work, we propose a new formulation that takes into account strain gradient effects. The idea

will be to postulate an additive decomposition of the energy density into two components: a first

component depending on the first deformation gradient (as in section 2.1.1), and a second that is
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uniaxial tension, the SSD density rS is determined from Eqs. (2.1)–(2.3) as
rS ¼ sref f ðepÞ=ðMambÞ

� �2
. The flow stress then becomes

sflow ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sref f ðepÞ½ �

2
þ ðMambÞ2rG

q
. (2.4)

2.2. GND density underneath the indenter

Fig. 3 shows a schematic diagram of GNDs underneath the indenter (Nix and Gao,
1998). For simplicity the indenter is assumed to be a cone, and the indentation is
accommodated by circular loops of GNDs with Burgers vector normal to the plane of the
surface. Such an axisymmetric model neglects crystalline symmetries. It does not account
for the indenter pile-up or sink-in either, though such effect is considered in the finite
element analysis in Sections 3 and 4. As the indenter is forced into the surface of a single
crystal, GNDs are required to account for the permanent shape change at the surface. Let
y0 denote the angle between the surfaces of the plane and conical indenter, a the contact
radius and h the indentation depth. It is easy to show that

tan y0 ¼
h

a
¼

b

s
, (2.5)

where b is the Burgers vector and s is the spacing between individual slip steps on the
indentation surface. The length dl of injected dislocation loops with radii between r and
rþ dr is given by (Nix and Gao, 1998):

dl ¼ 2pr
dr

s
¼ 2pr

h

ba
dr. (2.6)

The total length of injected dislocation loops is obtained by integrating Eq. (2.6) as
l ¼ pha=b. The average GND density can be obtained from rG ¼ l=V , where V ¼

2=3
� �

pa3 is the volume of the hemisphere (Nix and Gao, 1998). This gives
rG ¼ ð3 tan

2y0Þ=2bh, which becomes very large at small indentation depth h (as in nano-
indentation).
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Fig. 3. Schematic diagram of geometrically necessary dislocations underneath the indenter (Nix and Gao, 1998).

Y. Huang et al. / J. Mech. Phys. Solids 54 (2006) 1668–16861672

Figure 2.6: Schematic diagram of geometrically necessary dislocations underneath the indenter (Nix
and Gao 1998,[90])
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Depth Dependence of Hardness 
10.0 - (111) single crystal Cu 

Ho = 0.581 GPa 
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Fig. 3. Depth dependence of the hardness of (111) single crystal copper, taken from Fig. 1, plotted according 
to eqn (8). 
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Depth Dependence of Hardness 
cold worked polycrystalline Cu 

Ho = 0.834 GPa 

h’ = 0.464 pm 
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Fig. 4. Depth dependence of the hardness of cold worked polycrystalline copper, taken from Fig. 1, plotted 
according to eqn (8). 

the data can be displayed as a plot of (H/HJ2 vs l/h, as shown for the (111) single 
crystal copper in Fig. 3 and for the cold worked polycrystalline copper in Fig. 4. 
Hardness data for indentation depths less than about 0.1 pm have been excluded from 
Fig. 1 and Figs 334 both because the shape of the indenter is not self similar at small 
indentation depths, as assumed in the model, and because uncertainties in the contact 
area arise at small depths of indentation. We observe excellent agreement with the 
predictions of the model. 

Figure 2.7: Depth dependence of the hardness of (111) single crystal copper. Source:[90]

a regularization term that entails strain gradients. In the following, we provide the mathematical

framework that will be the basis for our formulation of strain gradient plasticity within the context

of deformation theory.
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2.2.3 Rate problems and deformation theory

Suppose that the states of the body are defined by elements u of some appropriate configuration

space X, to be specified. In order to describe the dissipation and kinetics attendant to plastic

deformation, we consider time evolutions of u over a time interval [0, T ], or trajectories, and assume

that the evolution of the system is governed by rate problem

v(t) ∈ argminG(·, u(t), t), (2.2.13a)

u(t) = u0 +

∫ t

0

v(t′) dt′ (2.2.13b)

where G(v, u, t) is a rate functional, which we allow to depend explicitly on time in order to account

for external forcing, e. g., in the form of prescribed boundary displacements imparted by a rigid

loading device. The Euler-Lagrange equations of the rate problem (2.2.13a), when defined, express

a balance between dissipative and energetic forces, which in turn results in irreversible and hysteretic

behavior for arbitrary loading histories.

The rate problem (2.2.13) can be recast as a minimum problem for trajectories by recourse to

the corresponding energy-dissipation functional [83]

Fε(u) =

∫ T

0

e−t/εG(u̇(t), u(t), t) dt, (2.2.14)

where ε is a small parameter and Fε is defined over entire trajectories u : [0, T ] → X in some

appropriate space X of trajectories. As noted in [83], the Euler-Lagrange equations of Fε differ from

those of the rate problem (2.2.13) by terms that vanish in the limit of ε → 0, which establishes a

formal connection between the differential inclusion problem and the minimizing trajectories of Fε

over X. Specifically, we identify the trajectories of interest as the limits of sequences uε of minimizing

trajectories of Fε as ε→ 0.

A further simplification, which effectively replaces the evolution problem by a time-wise sequence

of minimization problems, is furnished by deformation theory, originally developed in the context of
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rate-independent plasticity (e. g., [75] and references therein). Thus, suppose that there is a subspace

Y of X of trajectories along which the rate functional G
(
u̇(t), u(t), t

)
is a perfect differential, i.e.,

there exists a function E : X × [0, T ]→ R̄, known as the deformation-theoretical energy, such that

G
(
u̇(t), u(t), t

)
=

d

dt
E
(
u(t), t

)
, (2.2.15)

provided that u ∈ Y. In particular, G(v, u, t) is homogeneous of degree one in v, denoting rate-

independent behavior. Then, when restricted to Y, (2.2.14) specializes to

Fε(u) =

∫ T

0

e−t/ε
d

dt
E
(
u(t), t

)
dt, (2.2.16)

and an integration by parts gives

Fε(u) =

∫ T

0

1

ε
e−t/εE

(
u(t), t

)
dt+

[
e−t/εE

(
u(t), t

)]T
0
, (2.2.17)

on Y. Evidently, (2.2.17) is minimized for any ε > 0 if

u(t) ∈ argmin{E(·, t)}, (2.2.18)

which corresponds to minimizing the deformation-theoretical energy functional pointwise in time.

Evidently, the deformation-theoretical energy functional E combines both energy and dissipation.

The advantage of deformation theory is that, when applicable, it reduces the problem to a sequence

of classical energy-minimization problems parameterized by time. This reduction, in turn opens the

way to the application of methods of the calculus of variations. However, it should be carefully noted

that the deformation-theoretical solutions u given by (2.2.18) are solutions of the original problem

only if it may be verified a posteriori that u ∈ Y. Specifically, if u belongs to the interior of Y, then

(2.2.14) and (2.2.17) coincide in a neighborhood of u and, therefore, the Euler-Lagrange equation

(2.2.13) is satisfied.
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2.2.4 Deformation theory of plasticity

Next, we proceed to formulate a simple deformation theory for isotropic, rigid-plastic, strain-gradient

Mises plasticity. We recall that von Mises theory of plasticity is intended to supply a simple descrip-

tion of the behavior of polycrystalline metals (e. g., [72]). We consider a plastic solid occupying a

domain Ω ⊂ Rd and undergoing large deformations described by a deformation mapping ϕ : Ω→ Rd.

The solid is assumed to obey multiplicative elastic-plastic kinematics of the form

Dϕ ≡ F = FelFpl (2.2.19)

where Fel and Fpl are the elastic and plastic components of the deformation gradient Dϕ, respec-

tively. We assume that plastic deformation is volume preserving, i. e.,

det(Fpl) = 1. (2.2.20)

We additionally postulate a free-energy functional of the general form

E(u, t) =


∫

Ω
A
(
DϕF−1

pl , εpl, Dεpl
)
dx, if ϕ|∂Ω = g(t),

+∞, otherwise.

(2.2.21)

where A(Fel, εpl, Dεpl) is the free-energy density, εpl is an effective (scalar) plastic strain, g(t) is

the prescribed value of the deformation mapping over ∂Ω at time t, and we write u = {ϕ, Fpl, εpl}.

Throughout this work, we consider isothermal processes and omit the dependence of the free energy

on temperature for simplicity of notation. The additional dependence of the free-energy density on

the effective plastic strain gradient is intended to introduce and internal lengthscale in the spirit of

strain-gradient plasticity theories. We additionally introduce the Mises kinetic potential

Ψ(u̇) =


0, if

√
3/2 |ėpl| = ε̇pl,

+∞, otherwise,

(2.2.22)
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where

epl = logUpl (2.2.23)

is the logarithmic plastic strain and

Fpl = RplUpl (2.2.24)

is the polar decomposition of Fpl. The kinetic potential (2.2.22) effectively enforces the von Mises

flow rule, which places non-holonomic constraints on the plastic deformation. The corresponding

rate functional now follows as

G(v, u, t) = Ψ(v) + 〈DE(u, t), v〉, (2.2.25)

and the energy-dissipation functional as (2.2.14). Suppose that epl(x, t) is proportional and mono-

tonic in Ω, i. e.,

ėpl(x, t) = ε̇pl(x, t)m(x), (2.2.26)

with √
3/2 |m(x)| = 1, (2.2.27)

and εpl(x, t) monotonic. Then

∫ T

0

e−t/εΨ(u̇) dt =


0, if

√
3/2 |epl(x, t)| = εpl(x, t),

+∞, otherwise.

(2.2.28)

For these paths, the energy-dissipation functional reduces to the form (2.2.18), with deformation-

theoretical energy E(u, t) given by (2.2.21) with εpl set to |epl|. In particular, by this restriction the

deformation-theoretical energy depends on u = {ϕ, Fpl} only.

Suppose, in addition, that the solid is rigid-plastic, i. e.,

A
(
Fel, εpl, Dεpl

)
= Wel(Fel) +Wpl(εpl, Dεpl), (2.2.29)
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where Wpl(εpl, Dεpl) is a stored energy density and

Wel(Fel) =


0, if Fel ∈ SO(n)

+∞, otherwise,

(2.2.30)

is the elastic energy density. By virtue of this assumption, we can restrict attention to plastic-

deformation fields of the form

Fpl = RTelDϕ, (2.2.31)

with Rel ∈ SO(n). Therefore,

Cpl = DϕTDϕ, (2.2.32)

and

Upl =
√
DϕTDϕ. (2.2.33)

Owing to these identities, the deformation-theoretical energy reduces to the form

E(ϕ, t) =


∫

Ω
W (Dϕ,DDϕ) dx, if ϕ|∂Ω = g(t),

+∞, otherwise,

(2.2.34)

with

W (F,DF ) = Wpl(εpl, Dεpl), (2.2.35)

and

εpl = | log
√
FTF |. (2.2.36)

The final form (2.2.34) of the deformation-theoretical energy falls in the class of non-local or gener-

alized continua, whose energy densities depend on the local deformation gradient and higher-order

derivatives thereof. Generalized continua have been extensively treated in the classical literature

on continuum mechanics, both as part of the development of the fundamental theory as well as in

connection with a broad range of applications [64].
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2.2.5 Energy growth properties

A number of model strain-gradient stored energy functions Wpl of varying complexity are available

in the literature [27, 29, 9, 67, 66, 68]. However, as shown in the sequel, the detailed structure of Wpl

is inconsequential as regards optimal scaling (see Chapter 3). Instead, conveniently, only the growth

properties of the effective strain-energy density W play a role, which adds greatly to the generality

of the analysis. Therefore, it is important to ascertain the growth properties of general materials,

and polycrystalline metals in particular, that are consistent with experimental observations.

In order to glean insight into such properties, we may begin by considering the uniaxial tension

test in the local limit, i. e., for specimens sufficiently large that non-local effects, including boundary

layers, can be neglected. For the reader’s convenience, we may repeat some aspects of the derivations

of section 2.1.1. Specifically, we may consider a rod deforming in uniform uniaxial tension, so that

F = diag{λ, 1/
√
λ, 1/

√
λ}, with λ denoting the axial stretch ratio, and DF = 0. Under monotonic

uniaxial tension, polycrystalline metals undergo hardening that is well-described by a power-law

relation of the type

σ = Kεn (2.2.37)

where σ is the axial Cauchy or true stress, ε = λ − 1 is the engineering strain, n is the hardening

exponent and K is a constant. The corresponding first Piola-Kirchhoff stress, which equals the axial

force applied to the rod divided by the undeformed cross-sectional area, is given by

∂λW = σ/λ = K(λ− 1)n/λ, (2.2.38)

which for large λ scales as

∂λW ∼ Kλn−1. (2.2.39)

Therefore, in the same range the energy density scales as

W ∼ K

n
λn, (2.2.40)
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i. e., it exhibits power-law behavior with exponent set by the hardening characteristics of the mate-

rial.

We may take this observed scaling as grounds for assuming an energy growth of the type

W (F, 0) ∼ A|F |p (2.2.41)

for large F , with p = n and A = K
n . In view of the experimentally observed values of the hardening

exponent, which are in the range 0 < n < 1 (cf., e. g., [5] for a compilation of strain-hardening

exponents for metals), it follows that the local energy has sublinear growth, i. e., p < 1, see 2.1.1.

For definiteness, in the present work we assume a non-local energy growth of the form

W (F,DF ) ∼ A(|F |p + `|DF |), (2.2.42)

i.e. there exists 0 < kL ≤ kU such that

kLA(|F |p + `|DF |) ≤W ≤ kUA(|F |p + `|DF |) (2.2.43)

where ` is an intrinsic or characteristic length. The assumption of linear growth of the deformation-

theoretical energy density with respect to the second deformation gradient is indeed consistent with

a number of strain-gradient plasticity models (e. g., [29]). In addition, linear growth with respect

to the second deformation gradient is characteristic of Γ-limits of microplasticity theories based on

dislocation mechanics [91, 92, 4, 33, 34, 32, 19]. That prediction is in turn born out by a wealth of

experimental observations of dislocation walls (see section 2.2.6), such as low-angle grain boundaries,

which can only occur if the energy exhibits linear growth with respect to the second deformation

gradient. In the present model, we therefore assume that the energy functional has the form

E(u) ∼ A
∫

Ω

(|Du|p − 3p/2)dx+ `A

∫
Ω

|DDu|dx (2.2.44)
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with A as in (2.1.8). The parameter B = `A accounts for the surface energy and is in the unit

of Joule/m2. We consider surface energies to be entirely captured by strain gradients and thus

are mainly tied to non local effects. The link between surface energy and strain gradient follows

for instance from the observation that the presence of strain gradients is a reflection of the large

disparities between the plastic flow induced by local boundary conditions, e.g. appearance of steep

gradients of plastic strain in the plastic zone at the crack tip in an otherwise elastic medium, see

Figure 2.4. It is therefore natural to relate the crack propagation and its corresponding surface

energy to the gradients of the plastic strain. In general, we will assume in the rest of this work that

all surface energy mechanisms enter the model through the constant B.

2.2.6 The intrinsic length `

In the present setting, the intrinsic length ` arises and figures explicitly in the growth assumptions on

the deformation-theoretical energy density. As we shall see, these growth assumptions in turn play

a central role in determining optimal scaling laws for the specific fracture energy. Similar intrinsic

length parameters arise in other formulations of strain-gradient plasticity. For each such formu-

lation, the empirical determination of ` requires the execution of specially-designed experiments

(cf.[30, 10, 90, 132, 54]) or, alternatively, must be related to quantities that are measurable from

standard experiments. The experiments considered to date, such as torsion and indentation experi-

ments, are characterized by highly inhomogeneous deformations, which compound the unambiguous

identification of the intrinsic length parameter. Next we show that, within the present formulation,

the intrinsic length parameter can also be identified from deformation patterns that are uniform on

average, such as lamellar structures. The energetics of lamellar structures also supply justification

for the assumed linear growth of the non-local energy.

The test deformation under consideration occurs at the single-crystal level and has been discussed

by [? ] as an example of a microstructure, known as fence microstructure, generated through

the activation of a single slip system. Fence microstructures are indeed observed during the early

stages of stage II of hardening in FCC crystals [107, 51]. Because the dislocation walls in fence
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Figure 2.8: Schematic of kink formation (reproduced from [? ]). a) Slip strains γ± = ± tan θ; b)
rotations through ± tan θ.

microstructures are normal to the primary slip direction they are sometimes termed kinks, and the

resulting microstructures kink bands [51].

The fence microstructure is a laminate consisting of alternating layers of uniform deformation

separated by interfaces in the form of dislocation walls, Figure 2.8. Let (s,m) be the slip direc-

tion and slip-plane normal defining the active slip system. Choose s as the interface normal, and

impart slip strains γ± = ± tan θ on both sides of the interface, Figure 2.8a, θ ∈ [0, π/2). Restore

compatibility by applying rotations R± around the normal axis s×m through angles ±θ. Since the

planes on both sides of the interface remain unstretched along the s ×m direction and stretch by

the same amount in the m direction, the rotated crystals fit compatibly, Figure 2.8b. The resulting

deformations are

F± = R± (I ± tan θ s ⊗m). (2.2.45)

A straightforward calculation further gives

JF K = 2 sin θm ⊗ s, (2.2.46)

and ∣∣JF K
∣∣ = 2 sin θ (2.2.47)
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Let b be the size of the Burgers vector. Then we have

γ± = ± b
d
, (2.2.48)

where d is the distance between slip planes. Thus, the interfaces in the microstructure are tilt

boundaries consisting of dislocations at distance

D =
d

2 cos θ
=

b

2 sin θ
. (2.2.49)

We now identify the non-local part of the deformation-theoretical energy with the interfacial energy.

A standard theory of tilt boundary energies [53] consists of assuming a dislocation energy T per unit

length of dislocation, resulting in an energy

Γ =
T

D
=

2T sin θ

b
(2.2.50)

per unit area of interface. Energies of the form (2.2.50) have been successfully taken as a basis for

elucidating scaling relations and size effects attendant to dislocation structures in deformed single

crystals [? 92, 4, 20]. Eliminating θ between (2.2.47) and (2.2.50) we obtain

Γ =
T

b

∣∣JF K
∣∣, (2.2.51)

which shows that the non-local energy of the microstructure has indeed linear growth in F , inter-

preted distributionally, with intrinsic length

` =
T

bA
. (2.2.52)

If, for definiteness, we use a conventional representation of the dislocation line energy density T of

the form (cf., e. g., [55])

T = αµb2 (2.2.53)
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where µ is an elastic shear modulus and α is a coefficient of order unity, then (2.2.52) becomes,

explicitly,

` =
αµb

A
, (2.2.54)

which, given α, can be evaluated in terms of fundamental material constants.
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Chapter 3

Optimal Scaling Laws in Ductile
Fracture by Void Sheet Formation

In Chapter 2, we have formulated a simple strain gradient model which led to define a deformation-

theoretical energy functional of the form

E(u) ∼ A
∫

Ω

(|Du|p − 3p/2)dx+ `A

∫
Ω

|DDu|dx (3.0.1)

The goal of this chapter will be to present a rigorous mathematical analysis on the minimization

of the energy functional in eq. (3.0.1). The key point is to find rigorous bounds on the minimum

energy, as opposed to searching for exact minimizers. This approach is known as optimal scaling. In

the analysis presented in this chapter, the energy has been normalized by the factor A.

Suppose that an energy functional E(u, ε1, . . . , εN ), depending onN small parameters (ε1, . . . , εN ),

satisfies matching bounds of the form

CLε
α1
1 . . . εαNN ≤ inf E(·, ε1, . . . , εN ) ≤ CU εα1

1 . . . εαNN , (3.0.2)

where CL > 0 and CU > 0 are constants and the exponents (α1, . . . , αN ) are identical in both the

lower and the upper bounds. Then we say that (3.0.2) defines an optimal scaling law for the energy

E(u, ε1, . . . , εN ) [62, 63, 15]. The methods for establishing the optimal scaling properties of energy

functionals are typically somewhat lax as regards the determination of the constants CL and CU .

By contrast, the exponents (α1, . . . , αN ) are precise and unambiguous and represent an intrinsic
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property of the material.

In this chapter we derive optimal scaling laws for the deformation-theoretical energy functionals

discussed in the foregoing under conditions representing ductile rupture across a plane of failure.

We specifically consider an infinite slab subjected to prescribed uniform opening displacements on

its surfaces and undergoing periodic deformations in the in-plane directions. By an appropriate nor-

malization or, equivalently, by an appropriate choice of units, the in-plane periodic cell can be scaled

to unity and the parameters of the energy functional may be reduced to: i) the prescribed opening

displacement δ across the failure plane; ii) an intrinsic length parameter `; iii) and the slab thickness

H. Under these conditions, we supply an optimal scaling law for the deformation-theoretical energy

in the parameters (δ, `,H). In particular, the constants CL and CU and the optimal exponents are

provided in terms of the local energy density growth exponent p, which, as discussed in Section 2.2.5,

in turn coincides with the hardening exponent of the material. Remarkably, the energy is found to

be independent of H, indicative of fracture-like behavior and a well-defined specific fracture energy

per unit area.

3.0.7 Main result

We consider periodic deformations of a slab of thickness 2H occupying the domain {|x3 ≤ H}

subject to prescribed opening displacements on its surfaces. We identify a periodic unit cell Ω =

[−L,L]2 × (−H,H). The deformation of the slab is described by a map u : Ω → R3 such that

u ∈W 1,1(Ω;R3) and Du ∈ BV (Ω;R3×3) subject to the constraint of volume conservation

detDu = 1, (3.0.3)

a. e. in Ω, and to displacement boundary conditions

u3(x1, x2,−H) = −H − δ, (3.0.4a)

u3(x1, x2, H) = H + δ, (3.0.4b)
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for all (x1, x2) ∈ [−L,L]2 and opening displacement δ. In view of the assumed growth (4.2.1) of the

energy, it suffices to consider the functional

E(u) =

∫
Ω

(|Du|p − 3p/2)dx+ `

∫
Ω

|DDu|dx. (3.0.5)

However, it bears emphasis that the deformation-theoretical energy need not be of the exact form

(3.0.5), but only bounded above and below by it modulo multiplicative constants. The constant 3p/2

in (3.0.5) is chosen so that the minimum of the energy is zero.

We shall show that the optimal scaling of the energy is achieved by maps in which the deformation

is concentrated within a thin layer. In particular, we shall prove (cf. Theorem 3.0.1 and Theorem

3.0.2 below for precise statements) that, for ` sufficiently small,

inf E ∼ `
1−p
2−p δ

1
2−p . (3.0.6)

The origin of this scaling maybe be heuristically understood as follows. Consider a mapping u

reducing to a rigid translation for |x3| ≥ a and Du = diag (1, 1, 1 + δ/a) over a central layer of width

2a. Formally inserting u into (3.0.5) gives an energy

E ∼ δpa1−p + `
δ

a
, (3.0.7)

up to inconsequential multiplicative constants that do not affect scaling. This energy is minimized

for

a ∼ `
1

2−p δ
1−p
2−p , (3.0.8)

whereupon

E ∼ `
1−p
2−p δ

1
2−p . (3.0.9)

Evidently, the mapping u is not admissible since it violates the volume constraint (3.0.3) in the

central layer |x3| ≤ a. The subtle point in the proof of the optimal scaling law (3.0.6) is to show
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Figure 3.1: Sketch of the deformation mapping u employed in the upper bound. The central layer
of thickness 2a stretches to a thickness 2a+ 2δ. A number of voids, shown as dots in the reference
configuration on the left and as shaded regions in the deformed configuration on the right, open in
order to satisfy the volume constraint.

that the same scaling can also be achieved by a means of volume-preserving map. Evidently, this

map cannot be one-dimensional. Instead, it requires the opening of voids, or the formation of a void

sheet, Figure 3.1. This void-sheet construction is related to constructions used in the mathematical

literature of cavitation, cf., e.g., [6, 111, 85, 18, 50] and references therein. Here, we provide an

explicit piecewise-smooth void-sheet construction in order to illustrate the expected geometry of the

failure mechanism as well as to render the estimate of the second gradient term explicit.

In closing this introduction, we additionally remark that the key energetic balance underlying

the optimal scaling is indeed one-dimensional and arises, as in the sketch above, from embedding

W 1,1 (or BV ) into L∞ in the normal direction, cf. eq. (3.0.19) below. The naive higher-dimensional

approach, which would correspond to estimating from below DDu in L1 (orM) by Du in L3/2 from

the classical Poincaré inequalities in Sobolev spaces, would give a different non-optimal exponent.

3.0.8 Lower bound

Theorem 3.0.1 Let Ω = [−L,L]2 × (−H,H), H > 1, ` ∈ (0, 1), p ∈ (0, 1), and

E(u) =

∫
Ω

(|Du|p − 3p/2)dx+ `

∫
Ω

|DDu|dx . (3.0.10)
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Fix δ > 0. For every map u : Ω→ R3 such that

u3(x1, x2,−H) = −H − δ, (3.0.11a)

u3(x1, x2, H) = H + δ, (3.0.11b)

for all (x1, x2) ∈ [−L,L]2 and every ` > 0 sufficiently small we have

E(u) ≥ 4L2C1(p)`
1−p
2−p δ

1
2−p , (3.0.12)

independent of H, where, explicitly,

C1(p) =
1

2

(
1−

(√
3

2

)p)(
(1− p)

1
2−p + (1− p)

p−1
2−p

)
. (3.0.13)

proof 3.0.1 The lower bound follows from one-dimensional considerations in the transverse direc-

tion e3. For fixed (x1, x2) ∈ [−L,L]2, define f : (−H,H)→ R by

f(x3) =

∣∣∣∣ ∂u∂x3
(x1, x2, x3)

∣∣∣∣ . (3.0.14)

Thus, the function f coincides with the magnitude of the third column of the deformation gradient

Du, or transverse deformation. Its average T is at least as large as the average macroscopic strain,

i. e.,

T =
1

2H

∫ H

−H
f(x3)dx3 ≥

1

2H

∫ H

−H

∂u3

∂x3
dx3 = 1 +

δ

H
. (3.0.15)

In order to rewrite the energy in terms of f , we consider the minimal energy that can be attained

with a transverse deformation of magnitude λ and define W : (0,∞)→ R by

W (λ) = min{|F |p − 3p/2, detF = 1, |Fe3| = λ} . (3.0.16)

The function W has a minimum at λ = 1 and has p-growth for large λ (see Lemma 3.0.1.1 and
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Figure 3.2). The strain-gradient term can also be easily estimated in terms of f , since

|DDu| ≥ |D3D3u| ≥ |D3|D3u|| = |Df |. (3.0.17)

The inequality holds pointwise if u is twice differentiable and in the appropriate integral sense under

the assumption Du ∈ BV . Therefore for almost all x′ = (x1, x2) ∈ [−L,L]2 we have

∫ H

−H
(|Du|p − 3p/2 + `|DDu|) dx3 ≥

∫ H

−H
(W (f(x3)) + `|Df(x3)|) dx3. (3.0.18)

Next, we focus on the latter integral, subject to the constraint (3.0.15). The function W has

sublinear growth at infinity, hence
∫
W (f) is minimized by letting f oscillate between a value close

to its minimum and a very large value. In particular, if f = K on a 1/K fraction of the volume, as

K →∞ the contribution to the average of f is 1, but the contribution to the energy is W (K)/K ∼

Kp−1 → 0. This behavior is regularized by the strain gradient term. To make this precise, we

consider the maximum and minimum value of f , namely, M = ess sup f and N = ess inf f . Then

∫ H

−H
|Df |dx3 ≥M −N . (3.0.19)

Moreover, since N ≤ f ≤ M almost everywhere, it follows that N ≤ T ≤ M . The key energetic

balance concerns the competition between the first term, which selects for M large, so that f can be

large on a small part of the volume, and the second term, which penalizes oscillations and favors

small values of M . In order to make this tradeoff precise, we define the function

WM (s) =


W (s), if s ∈ (0,M ],

+∞, otherwise,

(3.0.20)

and consider its convex envelope W ∗∗M (cf. Lemma 3.0.1.2 and Figure 3.2). By Jensen’s inequality
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we have

1

2H

∫ H

−H
W (f(x3)) dx3 ≥W ∗∗M (T ) , (3.0.21)

where T was defined in (3.0.15). Therefore it suffices to find a lower bound for the quantity

G(T ) = HW ∗∗M (T ) + `(M −N), (3.0.22)

subject to N ≤ T ≤M and T ≥ 1 + δ
H > 1.

In order to proceed further, we distinguish several cases and use the estimates on the convex

envelope given by Lemma 3.0.1.2.

If T ≤ aMp , then from Lemma 3.0.1.2(ii) we obtain

G(T ) ≥ HW ∗∗M (T ) ≥ cpH(T − 1)2 . (3.0.23)

The function W is monotonically increasing on [1,∞), a property which is inherited by W ∗∗M . There-

fore we can extend this estimate to the values of T which are moderately larger than aMp . More

precisely, if aMp ≤ T and (T − 1) ≤ 2(aMp − 1), then

G(T ) ≥ HW ∗∗M (T ) ≥ HW ∗∗M (aMp ) ≥ cpH(aMp − 1)2 ≥ 1

4
cpH(T − 1)2 . (3.0.24)

In the remaining case, T − 1 > 2(aMp − 1), from Lemma 3.0.1.2 (i) we obtain

G(T ) ≥ c′pH
T − aMp
M1−p + `(M − T ) ≥ 1

2
c′pH

T − 1

M1−p + `(M − T ) , (3.0.25)

where the constant c′p is explicitly given by (3.0.42). If M ≥ 2T , then

G(T ) ≥ 1

2
c′pH

T − 1

M1−p +
1

2
`M ≥ 1

2
min{c′p, 1}(

(T − 1)H

M1−p + `M) (3.0.26)
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and, since c′p < 1, explicit minimization with respect to M of the right-hand side gives

G(T ) ≥ 1

2
c′pγ(p)`

1−p
2−p ((T − 1)H)

1
2−p , (3.0.27)

with

γ(p) = [(1− p)
1

2−p + (1− p)
p−1
2−p ]. (3.0.28)

If instead M < 2T , then (3.0.25) gives

G(T ) ≥ 1

22−pHc
′
p

T − 1

T 1−p . (3.0.29)

In summary, we have shown that

G(T ) ≥

min

{
1

2
c′pγ(p)`

1−p
2−p (H(T − 1))

1
2−p ,

1

4
cpH(T − 1)2,

1

22−pHc
′
p

T − 1

T 1−p , cpH(T − 1)2

}
.

(3.0.30)

Integrating in the tangential directions, using T ≥ 1+ δ
H and the fact that each of the four expressions

is nondecreasing as a function of T − 1, we obtain

E(u) ≥

4L2 1

2
min

{
1

2
c′pγ(p)`

1−p
2−p δ

1
2−p ,

1

4
cpH(

δ

H
)2,

1

22−p c
′
pH

δ
H

(1 + δ
H )1−p

, cpH(
δ

H
)2

}
.

(3.0.31)

For sufficiently small ` the first term is smallest, which concludes the proof of the lower bound. �

We now derive the requisite estimates for W and W ∗∗M .

Lemma 3.0.1.1 Let p ∈ (0, 1), and for λ > 0 define

W (λ) = min{|F |p − 3p/2 : F ∈ R3×3, detF = 1, |Fe3| = λ} . (3.0.32)

Then the following holds:
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Figure 3.2: Sketch of the functions W and W ∗∗M for p = 0.2 and M = 8. The marked points
correspond to λ = 1, aMp , λp,M . The upper curve is W , the lower one W ∗∗M .

(i) The function W can be written as

W (λ) =

(
λ2 +

2

λ

)p/2
− 3p/2 . (3.0.33)

(ii) W ≥ 0 everywhere, W (λ) = 0 only for λ = 1.

(iii) The function W is convex on (0, λp) and concave on (λp,∞), where

λp =

(
4− p+ 3

√
2− p

1− p

)1/3

∈ [2,∞) . (3.0.34)

(iv) There is cp > 0 such that

W (λ) ≥ cp(λ− 1)2, for all λ ∈ (0, λp] . (3.0.35)

proof 3.0.2 In order to prove (i), we note that the set over which we minimize in (3.0.32) is closed

and nonempty and any minimizing sequence is bounded. Hence the minimum exists. Let F be a

minimizer. For any Q ∈ SO(3) the matrix F̃ = QF is also a minimizer, since det(QF ) = detF
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and |QF | = |F |. We choose Q so that F̃ is lower triangular,

F̃ =


a11 0 0

a21 a22 0

a31 a32 λ

 . (3.0.36)

All matrices with a11a22λ = 1 are admissible, and we wish to minimize the norm. Therefore all

off-diagonal entries vanish. Further, the minimum of a2
11 + a2

22 subject to a11a22λ = 1 is achieved

when a11 = a22 = ± 1√
λ

. Therefore a minimizer is

F̃ =


λ−1/2 0 0

0 λ−1/2 0

0 0 λ

 (3.0.37)

which yields W (λ) = (λ2 + 2
λ )p/2 − 3p/2. Claim (ii) follows easily from the definition or from the

formula just derived. Claim (iii) follows by differentiating twice, and observing that the sign of the

second derivative is determined by the sign of a quadratic expression on λ3, which has the given

expression as a root and is positive at λ = 2. In order to proof (iv) we define h : (0, λp]→ R as

h(λ) =


W (λ)

(λ−1)2 , if λ 6= 1,

1
2W

′′(1), if λ = 1 .

(3.0.38)

The function h is continuous, since W is twice differentiable at 1, and strictly positive by (ii) and

W ′′(1) > 0. We set

cp = min{h(λ) : λ ∈ (0, λp]} . (3.0.39)

The minimum exists, since h is continuous and lim
λ→0

h(λ) =∞. Since h is strictly positive we obtain

cp > 0. �

Lemma 3.0.1.2 For M > 1, let WM be the restriction of W to (0,M ]. The convex envelope W ∗∗M
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of WM has the following properties:

(i) If aMp < λ ≤M , then

W ∗∗M (λ) ≥ c′p
λ− aMp
M1−p . (3.0.40)

(ii) If λ ≤ min{M,aMp }, then

W ∗∗M (λ) = W (λ) ≥ cp(λ− 1)2 . (3.0.41)

Here,

c′p = 1−

(√
3

2

)p
, (3.0.42)

cp > 0 depends only on p, and aMp > 1 may depend on p and M .

proof 3.0.3 From Lemma 3.0.1.1(iii) and Carathéodory’s theorem it follows that there is aMp ∈

(1,M ] such that

W ∗∗M (λ) =
W (λ), for λ ∈ (0, aMp ] ∩ (0,M ],

W (aMp )
M − λ
M − aMp

+W (M)
λ− aMp
M − aMp

, for λ ∈ (aMp ,M ] .

(3.0.43)

The point aMp cannot lie in the set where W is concave, therefore aMp ≤ λp. For λ ≤ min{M,aMp }

we conclude that W ∗∗M (λ) = W (λ) and hence, from Lemma 3.0.1.1(iv), claim (ii) follows.

Next we turn to part (i). Since in this case aMp < M , the function WM cannot be convex

everywhere and we only need to consider the case M ≥ λp. By Lemma 3.0.1.1(iii) we have λp ≥ 2,

hence M ≥ 2 in particular. From (3.0.43) we estimate, using the formula in Lemma 3.0.1.1(i),

W ∗∗M (λ) ≥W (M)
λ− aMp
M − aMp

≥ (Mp − 3p/2)
λ− aMp
M

. (3.0.44)
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From M ≥ 2 we obtain

Mp − 3p/2 ≥ c′pMp where c′p = 1−

(√
3

2

)p
> 0 , (3.0.45)

and the claim follows. �

3.0.9 Upper bound

Theorem 3.0.2 Let Ω = [−L,L]2 × (−H,H), H > 1, ` ∈ (0, 1), p ∈ (0, 1), and

E(u) =

∫
Ω

(|Du|p − 3p/2)dx+ `

∫
Ω

|DDu|dx . (3.0.46)

Fix δ > 0. For every ` such that 0 < ` < (1− p) min{δ, δp−1L2−p} there is a map u : Ω→ R3 such

that

u3(x1, x2,−H) = −H − δ, (3.0.47a)

u3(x1, x2, H) = H + δ, (3.0.47b)

for all (x1, x2) ∈ [−L,L]2, and

E(u) ≤ 4L2C2(p)`
1−p
2−p δ

1
2−p . (3.0.48)

independent of H, where, explicitly,

C2(p) = c
(

(1− p)
1

2−p + (1− p)
p−1
2−p

)
(3.0.49)

and c > 0 is a universal constant.

proof 3.0.4 The outline of the proof is as follows. In Part 1 of the proof, we begin by constructing

a map u depending on a parameter a ∈ (0, H), with 2a measuring the size of the layer (in the

undeformed configuration) in which voids are nucleated, to be chosen subsequently. In Part 2, we

estimate the energy contribution from the local term, and in Part 2 from the non-local term. In Part
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4, we finally combine the partial estimates and optimize a.

Part 1. Construction of the deformation u.

We proceed to construct a map u that opens voids in the layer ω = [−L,L]2 × (−a, a) ⊂ Ω, with

a < H to be chosen subsequently, and defines a transverse translation elsewhere. Specifically, we set

u(x) = x+ δe3, for x3 ≥ a, and u(x) = x− δe3, for x3 ≤ −a . (3.0.50)

The layer ω is subdivided into (L/a)2 cubes of side length 2a (in Part 4 we choose a ∈ (0, H) such

that L/a is an integer). Each of the cubes is subject to a deformation that opens a cavity at its

center, the boundary undergoing an affine deformation with gradient diag (1, 1, λ), λ = 1 + δ/a ≥ 1.

In particular the cube (−a, a)3 is mapped onto (−a, a)2 × (−λa, λa) = (−a, a)2 × (−a − δ, a + δ),

Figure 3.1.

Next, we focus on a single cube C = (−a, a)3, the others being identical up to translations. The cube

can be decomposed into 6 pyramids: two pyramids at the top and bottom of the cube, transversely,

and four lateral pyramids. By symmetry, it is enough to study the top pyramid

T = {x : max{|x1|, |x2|} < x3 < a} (3.0.51)

and one side pyramid

S = {x : max{|x1|, |x3|} < x2 < a} . (3.0.52)

We begin by analyzing the top pyramid. The key idea is that T is mapped to a part of the stretched

pyramid

Tλ = {x : max{|x1|, |x2|} < λx3 < λa} , (3.0.53)

so that planes parallel to the base, i. e., orthogonal to e3, are mapped affinely onto planes with the

same orientation. The pyramid Tλ has a volume larger than T . We map T to a part of Tλ close to

the base at x3 = λa, thus opening a void close to the vertex, which lies on the center of the cube C.

In order to construct the map uT : T → Tλ in detail, we choose a function h : (0, a) → (0, λa) and
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Top pyramid  
          T 

Top pyramid  
          Tλ 

2a 

2a 

2a 

λ2a 

2a 
2a 

b 
λa 

h(b) 

Top pyramid 
x3 

a 

2a 

a 

k(b) 

Side pyramid 

a 

x2 

b 

Figure 3.3: Void growth within a cube of size 2a. Conservation of volume of the hatched areas is
used to determine the functions h and k, see 3.0.56, 3.0.61.

set

uT3 (x) = h(x3) , (3.0.54)

the other two components are defined so that for any x3 ∈ (0, a) the square (−x3, x3)2 × {x3} is

mapped affinely to the square (−h(x3)/λ, h(x3)/λ)2 × {h(x3)}. In particular, we set

uT1 (x) = x1
h(x3)

λx3
, and uT2 (x) = x2

h(x3)

λx3
. (3.0.55)

Finally, we choose the function h so that h(a) = λa and volume is conserved. To this end, we simply

equate the volume of T ∩ {b < x3 < a} to the volume of its image, which immediately gives, Figure
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3.3,

1

3
(4a3 − 4b3) =

1

3

[
4a2λa− 4

(
h(b)

λ

)2

h(b)

]
(3.0.56)

for all b ∈ (0, a). Therefore

a3

(
1− b3

a3

)
= λa3

[
1− h(b)3

a3λ3

]
(3.0.57)

and

h(x3) = λa

(
1− 1

λ
+

x3
3

λa3

)1/3

. (3.0.58)

Summarizing, the deformation in the top pyramid is given by

uT (x) =


x1h(x3)/(λx3)

x2h(x3)/(λx3)

h(x3)

 . (3.0.59)

The side pyramid is similar, but not identical, since the stretching is now in a tangential direction.

In particular, we seek a function k : (0, a)→ (0, a) such that

u2(x) = k(x2) (3.0.60)

and has similar properties as above. In particular, we map (−b, b)× {b} × (−b, b) to (−k(b), k(b))×

{k(b)} × (−λ k(b), λ k(b)). The same argument based on conservation of volume, Figure 3.3, now

yields

1

3
(4a3 − 4b3) =

1

3

[
4λa3 − 4λk(b)3

]
(3.0.61)

i.e.,

1− b3

a3
= λ

[
1− k(b)3

a3

]
. (3.0.62)

Therefore,

k(x2) = a

(
1− 1

λ
+

x3
2

λa3

)1/3

. (3.0.63)
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and the deformation in the side pyramid is given by

uS(x) =


x1k(x2)/x2

k(x2)

λx3k(x2)/x2

 . (3.0.64)

It is easy to see that uS = uT at the common boundary, x2 = x3, and the same holds for the

remaining symmetry-related pyramids.

In order to estimate the energy, we proceed to compute the deformation gradients. Since h′(x3)h2(x3) =

λ2x2
3,

DuT =


h(x3)
λx3

0 x1

λ ∂3(h(x3)
x3

)

0 h(x3)
λx3

x2

λ ∂3(h(x3)
x3

)

0 0 λ2 x2
3

h(x3)2

 (3.0.65)

and, similarly, using k′(x2)k2(x2) = x2
2/λ we obtain

DuS =


k(x2)
x2

x1∂2
k(x2)
x2

0

0
x2
2

λk(x2)2 0

0 λx3∂2(k(x2)
x2

) λk(x2)
x2

 . (3.0.66)

Part 2. Estimate for the gradient term.

Step 2.1: Top pyramid.

We begin by estimating the quantity
∫
T
|DuT |p dx. We treat each of the remaining 5 non-zero

components of the energy separately.

For the DuT11 component we observe that h(x3) ≤ λa and therefore

|DuT11| =
h(x3)

λx3
≤ a

x3
. (3.0.67)
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This implies that

∫
T

|(DuT )11|p ≤
∫
T

(
a

x3
)p dx =

∫ a

0

4x2
3

ap

xp3
dx3 =

4

3− p
a3 . (3.0.68)

The DuT22 component is identical.

For the DuT33 component we observe that, by (3.0.58),

(
h(x3)

λx3
)3 =

(
1− 1

λ

)
a3

x3
3

+
1

λ
. (3.0.69)

This is a decreasing function of x3, which equals 1 at x3 = a. Therefore h(x3) ≥ λx3 everywhere.

In particular,

|DuT33| =
λ2x2

3

h(x3)2
≤ 1 (3.0.70)

and hence ∫
T

|DuT33|p ≤ |T | =
4

3
a3 . (3.0.71)

We now turn to the DuT13 component and compute

x1

λ

∂

∂x3
(
h(x3)

x3
) =

x1

λ

h′(x3)

x3
− x1

λ

h(x3)

x2
3

. (3.0.72)

Since |x1| ≤ x3 and λ ≥ 1 we have

∣∣∣∣x1

λ

h′(x3)

x3

∣∣∣∣ ≤ |h′(x3)| = |DuT33|, (3.0.73)

which has already been treated. Simultaneously,

∣∣∣∣x1

λ

h(x3)

x2
3

∣∣∣∣ ≤ h(x3)

λx3
= |DuT11|, (3.0.74)



64

which has also been treated. Therefore, we have

∫
T

|DuT13|p ≤
∫
T

|DuT11|p +

∫
T

|DuT33|p ≤
4

3− p
a3 +

4

3
a3 . (3.0.75)

The term DuT23 is identical after exchanging x1 and x2.

Finally, from the preceding estimates we conclude that

∫
T

|DuT |p ≤ (4 +
16

3− p
)a3 (3.0.76)

Step 2.2: Side pyramid.

We now turn to the side pyramid. Since k(x2) ≤ a, we have

k(x2)

x2
≤ a

x2
. (3.0.77)

Therefore the DuS11 term can be treated as DuT11, and we obtain

∫
S

|DuS11|p ≤
4

3− p
a3 . (3.0.78)

Since DuS33 = λDuS11, we also obtain

∫
S

|DuS33|p ≤ λp
4

3− p
a3 . (3.0.79)

In order to treat the DuS22 term we observe that

(
k(x2)

x2
)3 =

(
1− 1

λ

)
a3

x2
2

+
1

λ
(3.0.80)

is decreasing in x2 and equals 1 at x2 = a. Therefore k(x2) ≥ x2, and

|DuS22| =
x2

2

λk(x2)2
≤ 1

λ
≤ 1 . (3.0.81)
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Thus, we conclude that ∫
S

|DuS22|p ≤ |S| =
4

3
a3 . (3.0.82)

The terms DuS12 and DuS32 are similar to the DuT13 treated earlier. We start with DuS32 and compute

λx3
∂

∂x2
(
k(x2)

x2
) = λx3

k′(x2)

x2
− λx3

k(x2)

x2
2

. (3.0.83)

Using |x3| ≤ x2 and (3.0.81) we obtain

|λx3
k′(x2)

x2
| ≤ |λk′(x2)| = x2

2

k(x2)2
≤ 1 . (3.0.84)

Simultaneously, ∣∣∣∣λx3
k(x2)

x2
2

∣∣∣∣ ≤ ∣∣∣∣λk(x2)

x2

∣∣∣∣ = |DuS33| . (3.0.85)

Recalling (3.0.79) and (3.0.82), we obtain

∫
S

|DuS32|p ≤
4

3
a3 + λp

4

3− p
a3 . (3.0.86)

The DuS12 term is similar but yields a smaller contribution, since it misses the factor λ. Therefore,

∫
S

|DuS12|p ≤
4

3
a3 +

4

3− p
a3 . (3.0.87)

Collecting terms we finally obtain

∫
S

|DuS |p ≤ (4 +
16

3− p
)λpa3 (3.0.88)

Step 2.3: Summary.

Summing over the six pyramids we obtain

∫
C

|Du|p ≤ 2(4 +
16

3− p
)a3 + 4(4 +

16

3− p
)λpa3 ≤ 72λpa3, . (3.0.89)
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Since there are (La )2 distinct cubes, we get

∫
ω

|Dy|pdx ≤ c1L2aλp, (3.0.90)

with c1 = 72. This immediately gives

∫
Ω

|Du|p − 3p/2 =

∫
ω

|Du|p − 3p/2 ≤ c1L2aλp, (3.0.91)

since on Ω \ ω the deformation gradient Du is the identity matrix.

Part 3. Estimate for the strain gradient term.

Step 3.1: Preliminaries.

We begin by making the following observation. Let Ω be decomposed, up to a null set, into finitely

many polyhedra ω1, . . . , ωN (they will be the 6(L/a)2 pyramids and the two sets where u is affine)

and assume that u = u(n) on ωn. Then, we can separate the contributions of the different sets as

∫
Ω

|DDu| =
N∑
n=1

∫
ωn

|DDu(n)|+
∑
n6=m

∫
∂ωn∩∂ωm

|Du(n) −Du(m)|dH2

≤
N∑
n=1

∫
ωn

|DDu(n)|+
∫
∂ωn

|Du(n)|dH2 .

(3.0.92)

Physically, this decomposition means that the deformation gradient term measures both the smooth

variation of Du inside the sets and the jumps across the boundaries. Since the deformation u is

continuous but the deformation gradient is discontinuous across the boundaries, we need to estimate

both contributions.

Assume that, for some index n and for some choice of i, j, k ∈ {1, 2, 3}, we can show that

DiDju
(n)
k ≥ 0 everywhere in ω(n). Then, by the Gauss-Green theorem we obtain

∫
ω(n)

|DiDju
(n)
k | =

∫
ω

DiDju
(n)
k

=

∫
∂ω(n)

niDju
(n)
k dH2 ≤

∫
∂ω(n)

|Dju
(n)
k |dH

2 .

(3.0.93)
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Evidently, the same conclusion holds if DiDju
(n)
k ≤ 0 everywhere. Therefore, for the components

which have this monotonicity property we only need to estimate the boundary integral. By symmetry,

we only need to consider the top and side pyramid.

Step 3.2: Top pyramid.

As already noted in (3.0.69) that h(x3)/x3 is monotonic in x3 and does not depend on the other

two variables. Hence the D(DuT11) and D(DuT22) terms reduce to boundary integrals. Furthermore,

|DuT11| ≤ a/x3. We compute, by separating the base and the four lateral faces of T ,

∫
∂T

|DuT11| ≤
∫
∂T

a

x3
= 4a2 + 4

∫ a

0

∫ x3

−x3

a

x3

√
2dx2dx3

= 4a2 + 8a2
√

2 .

(3.0.94)

The DuT22 follows likewise. Similarly, DuT33 is monotonic in x3, and does not depend on the other

two variables. From (3.0.70) we find that

∫
∂T

|DuT33| ≤ |∂T | = (4 + 4
√

2)a2 . (3.0.95)

Next, we turn to the off-diagonal terms. We start with 13, and observe that ∂1(x1

λ ∂3(h(x3)
x3

)) =

1
λ∂3(h(x3)

x3
) ≤ 0, hence this term only needs to be considered on the boundary. Finally, we compute

∂(DuT )13

∂x3
=
x1

λ

∂2

∂x2
3

h(x3)

x3
=
x1

λ

∂

∂x3

[
λ2x3

h(x3)2
− h(x3)

x2
3

]
=
x1

λ

[
−2λ4 x3

3

h(x3)5
+

λ2

h(x3)2
+ 2

h(x3)

x3
3

− λ2

h(x3)2

]
=
x1

λ

[
−2λ4 x3

3

h(x3)5
+ 2

h(x3)

x3
3

]
≥ 0,

(3.0.96)

since h(x3) ≥ λx3 and λ ≥ 1. Therefore, the remaining derivative also has a sign. Recalling that

|DuT13| ≤ |DuT11|+ |DuT33| by (3.0.72–3.0.74)), we conclude that

∫
T

|D(DuT )13| ≤ 2

∫
∂T

|(DuT )13|dH2

≤ 2

∫
∂T

|(DuT )11|+ |(DuT )33|dH2 ≤ (16 + 24
√

2)a2 .

(3.0.97)
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The D(DuT )23 term follows likewise.

In summary, we conclude that

∫
T

|DDuT |+
∫
∂T

|DuT |dH2 ≤ (72 + 112
√

2)a2 . (3.0.98)

Step 3.3: Side pyramid.

All monotonicities may be checked as before and we do not repeat the calculations here. One can

also observe that DuS can be obtained from DuT by composing it on both sides with affine maps,

an operation that does not change the sign of the second derivatives. The integrals over the surfaces

are also estimated as above. In particular, DuS11 behaves as DuT11, whereas DuS33 differs by a factor

of λ and gives ∫
∂S

|DuS33| ≤ (4 + 8
√

2)λa2 . (3.0.99)

The DuS22 term is again estimated by (3.0.81), and for the DuS32 term we use |DuS32| ≤ 1 + |DuS33|,

cf. (3.0.83–3.0.85)), which implies

∫
S

|DDuS32| ≤ 2

∫
∂S

|DuS32| ≤ 2((4 + 4
√

2) + λ(4 + 8
√

2))a2 . (3.0.100)

In addition, the DuS12 term obeys |DuS31| ≤ 1 + |DuS11| and thus one has also

∫
S

|DDuS12| ≤ 2

∫
∂S

|DuS12| ≤ 2((4 + 4
√

2) + λ(4 + 8
√

2))a2 . (3.0.101)

In summary, ∫
S

|DDuS |+
∫
∂S

|DuS |dH2 ≤ (72 + 112
√

2)λa2 . (3.0.102)

Step 3.4: Summary.

Adding all terms (6 pyramides per cube) and accounting for the number of cubes L2

a2 we obtain

∫
Ω

|DDy|dx ≤ c2λ L2, . (3.0.103)



69

with

c2 = 6(72 + 112
√

2) ' 1382.4. (3.0.104)

Part 4. Choice of a and conclusion of the proof.

We may now proceed to add the local contribution from (3.0.91) and the non-local contribution from

(3.0.103) to obtain

E(u) =

∫
Ω

(|Du|p − 3p/2)dx+ `

∫
Ω

|DDu| dx ≤ cL2aλp + cL2`λ . (3.0.105)

Here, c is a universal constant, and λ = 1 + δ/a, where δ is the prescribed displacement. More

precisely

c = max{c1, c2} ' 1382.4 (3.0.106)

We thus obtain

E(u) ≤ cL2a

(
1 +

δ

a

)p
+ cL2`

(
1 +

δ

a

)
≤ caL2 + ca1−pδpL2 + c`L2 + c`

δ

a
L2 . (3.0.107)

For small ` and δ large enough, the second and the last terms are dominant. We choose a so that

their sum is minimal. This is achieved for a2−p = δ1−p`
1−p . However, since we need L/a to be an

integer, we define

a∗ = (
δ(1−p)`

1− p
)1/(2−p) (3.0.108)

and a = L/dL/a∗e. For ` ≤ (1 − p)δp−1L2−p, it follows that a∗/2 ≤ a ≤ a∗ ≤ L. Since δ/a∗ =

((1 − p)δ/`)1/(2−p), for ` ≤ (1 − p)δ the first term in (3.0.107) is smaller than the second, and the

third is smaller than the fourth. We thus conclude that, for all ` ≤ min{(1− p)δ, (1− p)δp−1L2−p},

E(u) ≤ 4cL2(a1−p
∗ δp + `

δ

a∗
)

= 4cL2[(1− p)
1

2−p + (1− p)
p−1
2−p ] `(1−p)/(2−p)δ1/(2−p) .

(3.0.109)

This concludes the proof. �
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Chapter 4

Physical Interpretation and
Experimental Validation

4.1 Physical interpretation

Ductile fracture emerges as the net result of two competing effects: whereas the sublinear growth of

the energy in the large-body limit promotes localization of deformation in large samples to failure

planes, the size-dependence of metal plasticity stabilizes this process of localization in its advanced

stages, thus resulting in an orderly progression towards failure and a well-defined specific fracture

energy. The optimal scaling laws confirm that ductile fracture results from the localization of damage

to a plane (void sheet) and that it requires a well- defined fracture energy.

The essential role of the intrinsic length ` in determining the optimal scaling behavior is partic-

ularly noteworthy. Thus, if ` = 0, i. e., if the material is local, then we see from (theorem 3.0.1 and

theorem 3.0.2) that the energy is bounded above and below by zero, since 1−p
2−p > 0, which would

correspond to a void spacing a = 0. The energy then relaxes to zero as a result of localization of

deformations to a negligibly thin band. Thus, in the absence of an internal length scale the fracture

energy degenerates to zero, as expected from the sublinear growth of the energy, and the solid can

fracture spontaneously at no energy cost. This in particular confirms the prediction of 2.1. The

upper bound theorem by itself provides an alternate proof that the energy relaxes to zero when

` = 0.

The fracture properties of materials are characterized by means of standardized tests designed
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to measure specific fracture parameters such as fracture toughness, critical energy-release rate and

specific fracture energy ([61]). Therefore, in order to make contact with test data we proceed to

reinterpret the preceding results in terms of standard fracture concepts.

4.1.1 Cohesive-energy interpretation

We note that the upper and lower energy bounds theorem 3.0.1 and theorem 3.0.2 scale with the

in-plane area 4L2 and are independent of the thickness 2H of the slab. This type of scaling is

characteristic of fracture processes, in which the deformation is concentrated in the neighborhood

of a fracture surface and the energy scales with the area of the surface. In particular, the specific

energy per unit area

Φ =
Emin

4L2
(4.1.1)

is well-defined and independent of the thickness 2H of the slab. We note that, as a corollary, fractal

modes of fracture, characterized by energy scaling intermediate between area and volume scaling,

are ruled out under the assumptions of the analysis.

The bounds (theorem 3.0.1 and theorem 3.0.1) can be recast in terms of this specific energy per

unit area as

C1(p)
K

p
`

1−p
2−p δ

1
2−p ≤ Φ ≤ C2(p)

K

p
`

1−p
2−p δ

1
2−p . (4.1.2)

where

C1(p) =
1

2

(
1−

(√
3

2

)p)(
(1− p)

1
2−p + (1− p)

p−1
2−p

)
. (4.1.3)

and

C2(p) = 1382.4
(

(1− p)
1

2−p + (1− p)
p−1
2−p

)
(4.1.4)

Fix now ` and regard the specific energy per unit area as a function Φ(δ) of the opening displacement.

By the work-energy theorem the corresponding applied normal traction then follows as

σ =
∂Φ

∂δ
= σ(δ). (4.1.5)
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This relation may be regarded as a cohesive law that relates opening displacement δ and traction σ.

The optimal scaling laws (4.1.2) thus imply that ductile fracture is cohesive in nature, i.e., it obeys

a well-defined relation between tractions and opening displacements. This is in contrast to Griffith

models of brittle fracture, which posit a sudden loss of bearing capacity across incipient fracture

planes. It is also interesting to note that the optimal scaling laws (4.1.2) are of the power-law type

and thus consistent with power-law cohesive behavior. Since 0 < p < 1, such power-law cohesive

behavior then expresses a monotonically decreasing relation between applied normal traction and

opening displacement.

4.1.2 Relation to Jc

We recall that the attainment of a critical value Jc of Rice’s J-integral [95] provides a standard

and widely used non-linear fracture criterion with several attractive properties (cf., e.g., [59, 61] for

reviews): i) For linear elastic materials J coincides with G, the elastic energy-release rate; ii) for

power-law small-strain plastic behavior, J determines the strength of the HRR singular field [57, 97]

at the crack tip; and iii) it can be evaluated experimentally in a convenient manner. For a material

obeying a cohesive fracture law, an application of Rice’s J-integral [95] gives the plane-strain value

of J at crack-growth initiation as

Jc =

∫ +∞

0

σ(δ) dδ = Φ(+∞)− Φ(0). (4.1.6)

The stress follows as σ ∼ δ
p−1
2−p but the function δ 7→ δ

p−1
2−p is not integrable on [0,∞). Therefore

we find that the integral necessarily diverges at infinity, i.e., it predicts an infinite Jc. In order to

eliminate this divergence we may introduce a cut-off δc, representing a critical opening displacement

at crack-growth initiation, and write

Jc =

∫ δc

0

σ(δ) dδ = Φ(δc)− Φ(0). (4.1.7)
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Evidently, a mechanistic model for δc requires consideration of additional physics, not accounted

for by either the local or non-local models considered so far, at the point of final separation of

the fracture surface. For instance, the final stages of separation may entail the formation of thin

ligaments which eventually neck to a point, or slough off in shear, or cleave by brittle fracture, or

fail by some other mechanism.

Inserting the bounds (4.1.2) into (4.1.7) we obtain

C1(p)
K

p
`

1−p
2−p δ

1
2−p
c ≤ Jc ≤ C2(p)

K

p
`

1−p
2−p δ

1
2−p
c , (4.1.8)

which supplies bounds for Jc as a function of the internal length `, the critical opening displacement

δc and the hardening constant A = K/n, and the hardening exponent n = p. Moreover, the bounds

can be recast in terms of the surface energy B = `A in the form

C1(p)
K

p
(
B

A
)

1−p
2−p δ

1
2−p
c ≤ Jc ≤ C2(p)

K

p
(
B

A
)

1−p
2−p δ

1
2−p
c , (4.1.9)

The bounds (4.1.8,4.1.9) therefore supply a link between micromechanical properties (such as length

scale, surface energies, etc.) and macroscopic fracture properties (fracture energy), and reveal the

relative roles that surface energy and microplasticity play as contributors to the specific fracture

energy of the material. Moreover, the optimal scaling laws implicitly predict a temperature depen-

dence of the specific fracture energy Jc, as it relates to material parameters such as K and n (which

enter the model through the parameter A), which in turn, may vary as function of temperature.

Hence the scaling laws supply a relation between independently measurable material and fracture

properties, and thus open the theory to experimental validation or invalidation. This experimental

validation is attempted next.
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Figure 4.1: Renormalized specific fracture energy Jc/J0 and bounds shown as a function of the
hardening exponent n for nickel, iron, copper and aluminium alloys at temperature of 300K, 195K,
and 76K (data from [131]). a) Dislocation wall model of `. b) Nix-Gao [90] model of `.

4.2 Comparison with experiment

We now proceed to assess the validity of the optimal bounds (4.1.8) through quantitative comparisons

with experimental data. To this end, we employ an assortment of experimental data from the

monograph of Warren and Reed [131]. The data are derived from tensile tests and impact Charpy

tests and pertain to nickel, iron, copper and aluminium alloys at temperature of 300K, 195K, and

76K. These test data conveniently supply the material parameters required to evaluate (4.1.8),

namely the strength coefficient K, the hardening exponent n, which we take to equal the growth

exponent p, Jc and the critical opening displacement δc. The parameters K and n are obtained by

fitting to the stress-strain curves reported in [131]. The value of Jc is identified with the Charpy

energy per unit fracture area. The critical opening displacement δc is obtained from the reported

tensile strain to failure and the gage length of the specimen. The data set used as a basis for

validation is collected in Table 4.1.

For purposes of comparison to experimental data, suppose that the energy density of the material

is well approximated by

W (F,DF ) = A(|F |p − 3p/2 + `|DF |), (4.2.1)
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in which case the energy of the material corresponds exactly to the energy functional (3.0.1) con-

sidered in this analysis. Then, with the identification p = n, we can define a reference J as

J0 = K`
1−n
2−n δ

1
2−n
c , (4.2.2)

whereupon the optimal scaling law (4.1.8) reduces to

CL(n) ≤ Jc
J0
≤ CU (n), (4.2.3)

where

CL(n) =
1

2n

(
1−

(√
3

2

)n)(
(1− n)

1
2−n + (1− n)

n−1
2−n

)
, (4.2.4)

and

CU (n) =
1382.4

n

(
(1− n)

1
2−n + (1− n)

n−1
2−n

)
(4.2.5)

are functions of the hardening exponent n only.

For purposes of comparison, we present results for two length scale models: the dislocation walls

model for ` presented in section 2.2.6, and the length scale model of Nix and Gao ([90]) derived

from their nanoindentation experiments. The renormalized specific fracture energy Jc/J0 and the

bounds CL(n) and CU (n) are shown in Figure 4.1 for the dislocation wall model (2.2.54) of `,

Figure 4.1a, and the Nix and Gao [90] model ` ∼ b(µ/K)2, Figure 4.1b. As expected, Jc/J0 falls

within the bounds CL(n) and CU (n) in both cases. The plots also suggest that the ratio Jc/J0 is

well-approximated by a universal, or material-independent, function of n, i. e.,

Jc ≈ C(n)J0 = C(n)K`
1−n
2−n δ

1
2−n
c . (4.2.6)

It should be noted that the reduced data exhibits variation commensurate with the level of experi-

mental scatter. However, given the heterogeneity of the experimental data, corresponding to several

disparate materials, the degree of consolidation of the data achieved through renormalization is
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remarkable. A polynomial fit to the reduced data in Figure 4.1a gives

C(n) = exp(0.8142n+ 4.0695), (4.2.7)

whereas a polynomial fit to the reduced data in Figure 4.1b gives

C(n) = exp(3.7878n+ 1.0986). (4.2.8)

Relation (4.2.6) can be used to estimate the value of Jc for metals on the basis of its hardening

characteristics K and n, its critical opening displacement δc and and it intrinsic length `.
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Material K(MPa) n 2δc(m) Jc(J/m2) E(MPA) ν b(m)
Al Sand Cast T6(RT) 436.0417 0.1239 0.0007788 42369 65008 0.33 2.86E-10
Al Sand Cast T6(195K) 470.8574 0.12 0.000708 42369 65008 0.33 2.86-E10
Al 356 Cast T6(RT) 430.657 0.1731 0.0023 33895 42950 0.33 2.86E-10
Al 356 Cast T6(195K) 428.5973 0.1618 0.0021 42369 42950 0.33 2.86E-10
Al 356 Cast T6(76K) 562.303 0.1969 0.0019 42369 42950 0.33 2.86E-10

Al 2020 T6(RT) 730.0321 0.071 0.0018 25421 74507 0.33 2.86E-10
Al 2020 T6(195K) 803.8159 0.0812 0.0012 25421 74507 0.33 2.86E-10
Al 2020 T6(76K) 970.9448 0.1027 0.0009204 25421 74507 0.33 2.86E-10
Ni RENE(RT) 2131.6 0.2044 0.0038 508430 160610 0.31 2.49E-10
Ni RENE(195K) 2294.5 0.2209 0.0043 423690 160610 0.31 2.49E-10
Ni RENE(76K) 2926.3 0.2681 0.0041 355900 160610 0.31 2.49E-10
Ni RENE(20K) 3253.2 0.2996 0.0038 372845 160610 0.31 2.49E-10

Ni S-MONEL(RT) 1307.1 0.1848 0.0012 694850 157320 0.31 2.49E-10
Ni S-MONEL(195K) 1371.5 0.1893 0.0023 737220 157320 0.31 2.49E-10
Ni S-MONEL(76K) 1387.7 0.1647 0.0028 660950 157320 0.31 2.49E-10

Al 1100O(RT) 150.2777 0.2012 0.0081 1559170 68900 0.33 2.86E-10
Al1100O(195K) 181.6292 0.2142 0.0089 1898120 68900 0.33 2.86E-10
Al1100O(76K) 451.2561 0.3898 0.01 2372650 68900 0.33 2.86E-10
Al1100O(20K) 792.6967 0.4942 0.0096 1423590 68900 0.33 2.86E-10
Al6061(RT) 400.5347 0.0814 0.0032 271160 69739 0.33 2.86E-10
Al6061(195K) 448.0616 0.0938 0.0035 271160 69739 0.33 2.86E-10
Al6061(76K) 634.0282 0.1622 0.0043 279630 69739 0.33 2.86E-10

Cu Berylco25Annealed(RT) 958.698 0.4325 0.0111 5558780 127550 0.36 2.55E-10
Cu Berylco25Annealed(195K) 909.375 0.3623 0.0122 5341900 127550 0.36 2.55E-10
Cu Berylco25Annealed(76K) 1434.3 0.4838 0.0124 3127400 127550 0.36 2.55E-10

Cu OFHC(RT) 432.4807 0.3594 0.0095 7117950 137900 0.36 2.55E-10
Cu OFHC(195K) 545.3506 0.4111 0.0094 7728060 137900 0.36 2.55E-10
Cu OFHC(76K) 794.1043 0.5314 0.0106 8880490 137900 0.36 2.55E-10
Cu OFHC(20K) 931.6159 0.5786 0.0122 8609330 137900 0.36 2.55E-10
Fe Nispan(RT) 2071 0.2264 0.0035 488088 149540 0.3 2.48E-10
Fe Nispan(195K) 2286.7 0.2445 0.0039 474530 149540 0.3 2.48E-10
Fe Nispan(76K) 2850.8 0.3091 0.0046 460972 149540 0.3 2.48E-10

Fe UNIMACH(RT) 3692.5 0.17 0.0015 135580 250050 0.3 2.48E-10
Fe UNIMACH(195K) 4479.1 0.194 0.0011 101680 250050 0.3 2.48E-10

Fe 347(RT) 1318.2 0.3349 0.008 1796400 121220 0.3 2.48E-10
Fe 1075(RT) 2122.8 0.228 0.0025 271160 191620 0.3 2.48E-10
Fe 1075(195K) 2231.7 0.219 0.0026 118630 191620 0.3 2.48E-10
Fe 1075(76K) 2169.7 0.1099 0.0018 25421 191620 0.3 2.48E-10
Fe 286(RT) 1823.2 0.197 0.0037 940590 134690 0.3 2.48E-10
Fe 286(195K) 1939.7 0.2009 0.0042 957530 134690 0.3 2.48E-10
Fe 286(76K) 2376.3 0.232 0.0052 881270 134690 0.3 2.48E-10
Fe 303(RT) 1325 0.3498 0.0102 935502 193000 0.3 2.48E-10
Fe 304(RT) 1207.3 0.3176 0.0114 2960200 196500 0.3 2.48E-10
Fe 310(RT) 1103.8 0.4042 0.0085 2389600 200000 0.3 2.48E-10
Fe 310(195K) 1396.9 0.4076 0.0103 2304860 200000 0.3 2.48E-10
Fe 310(76K) 2075 0.3797 0.0097 1762540 200000 0.3 2.48E-10

Ni INCONELX(RT) 2120.6 0.2055 0.0037 677900 146080 0.31 2.49E-10
Ni INCONELX(76K) 2751.3 0.2663 0.0047 593160 146080 0.31 2.49E-10

Ni ”A”(RT) 919.5184 0.45 0.0086 6304470 205000 0.31 2.49E-10
Ni ”A”(195K) 1070.7 0.4926 0.0089 5829940 205000 0.31 2.49E-10
Ni ”A”(76K) 1377.5 0.5383 0.0108 3886600 205000 0.31 2.49E-10
Ni ”A”(20K) 1541.9 0.4559 0.0105 4428900 205000 0.31 2.49E-10

Ni KMONEL(RT) 1982 0.231 0.0039 627060 143850 0.31 2.49E-10
Ni KMOMEL(195K) 2082.3 0.2204 0.0041 576215 143850 0.31 2.49E-10
Ni KMONEL(76K) 2322.5 0.2338 0.0048 525370 143850 0.31 2.49E-10

Table 4.1: Table of experimental data for various materials at various temperatures. RT: room
temperature. The values of K (strength coefficient) and n (hardening exponent, equal to p) were
obtained by fitting the stain strain curves of the corresponding material. Impact toughness is
expressed as the Charpy energy per unit of fracture area. Source: K. A. Warren and R. P. Reed,
Tensile and Impact Properties of Selected Materials from 20 to 300K, Monograph 63, National
Bureau of Standards, June 1963.
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Chapter 5

Conclusion and Future Work

5.1 Summary

The present work has been geared toward the development of a multiscale model for ductile fracture.

The analysis presented strongly relied on tools from the Calculus of Variations, which was possible

by recourse to the deformation theory of plasticity. This indeed allowed to recast plasticity problems

into the minimization of energy functionals.

In Chapter 2, we showed that conventional plasticity fails to provide a full description of ductile

fracture. This is due to the sublinear growth of the strain energy density, an observation that is

experimentally confirmed by standard constitutive tests. Mathematically, such local energies relax to

zero by developing localization or necking, which in the limit leads to fracture of the specimen. This

motivated the addition of a stabilizing energy that is tied to size effects and thus strain gradients. We

developed a strain gradient plasticity model within the context of deformation theory which led to

formulate a strain energy density that depends on both the deformation gradient and the deformation

second gradient through an additive decomposition. Contrary to previous strain gradient models

which include the gradient of plastic strain into the constitutive law, the present model introduced

strain gradients in the energy density. The present study concerned materials which have a sublinear

growth with respect to the deformation gradient and a linear growth with respect to the deformation

second gradient. The linear growth in the non-local part of the energy density is characteristic of

Γ-limits of microplasticity theories based on dislocation mechanics.
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In Chapter 3, we proposed a rigorous analysis of ductile fracture. The problem considered was

an infinite slab with a finite thickness subjected to a prescribed imposed displacement to its two

surfaces. The goal was to derive optimal bounds on the infimum energy as a function of the imposed

displacement and the length scale, as opposed to searching for an exact solution. The upper bound

construction consisted of a deformation mapping opening voids inside a layer and affine outside the

layer. The optimal size of the layer was found to depend on the length scale `. The lower bound,

obtained by means of a direct proof, confirmed that the upper bound was indeed optimal, in the

sense of matching the exponents. This mathematical result, which is the cornerstone of this thesis,

is referred to as the optimal scaling laws in ductile fracture. It revealed that size effects and thus

non local-plasticity stabilize the unstable behavior due to the sublinear growth and lead to a specific

distribution of damage on the fracture plane and a well- defined fracture energy. The result mainly

predicts a power law between the fracture energy and the imposed displacement, which strongly

suggests that ductile fracture is cohesive by nature and not Griffith. Additionally, the laws supply

a relationship between the fracture energy and microscopic properties such as surface energies and

length scale, along with other material parameters such as the hardening exponent and the strength

coefficient. The temperature dependence is implicitly predicted in this model because the material

parameters also depend on temperature.

In Chapter 4, we presented an experimental validation of the scaling laws. The experimental

assessment is based on test data collected from the monograph of Warren and Reed [131] pertaining

to nickel, iron, copper and aluminium alloys over a range of temperatures. Conveniently, these test

data suffice to identify the material constants characterizing the hardening behavior of the materials,

which is ostensibly of the power-law type, and, simultaneously, the elongation at failure and Jc, the

specific fracture energy. As expected, the data falls within the upper and lower bounds. More

remarkably, when Jc is renormalized in a manner suggested by the optimal scaling laws, the data

ostensibly collapses, with allowances made for experimental scatter, on a master curve dependent

on the hardening exponent, but otherwise material independent. This collapse is all the more

remarkable considering the vast heterogeneity of the experimental data, corresponding to several
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different metals.

One possible limitation of the present model is that it requires a rectangular void construction,

a geometry that has not been investigated by previous authors or observed experimentally. As a

consequence, the proposed construction, which is optimal in terms of matching exponents, may not

be optimal with regards to the upper bound constant. However, it should be noted that the shape

of voids would in general affect the constants in the optimal scaling laws, rather than the exponents,

which are intrinsic to the material.

5.2 Future work

The work presented in this thesis mainly covered a mathematical analysis and an experimental

validation of optimal scaling in ductile fracture. A numerical verification of the scaling results would

greatly complement this work. The goal would be twofold. On the one hand, verify the scaling

relations predicted by the theoretical analysis covered in Chapter 3. On the other hand, estimate

the best upper bound constant C(p) in order to solve completely the optimization problem of Chapter

3. The main tool for the numerical implementation would be the finite element method. Within this

framework, two particular features make this problem non-standard: the non-local regularization,

i.e. the deformation second gradient term and the incompressibility constraint. When solving

constrained problems using finite elements, one usually faces the issue of locking, which sometimes

requires the development of special elements that account for incompressibility. In this case, the use

of high order simplicial elements would help address the constraint issue, thereby avoiding the need

for specific mean dilatation elements in finite deformation. The non-local regularization requires a

specific treatment. This is due to second order spatial derivatives, whereas standard finite elements

require only first derivatives. A possible solution strategy, which is briefly described in Appendices A

and B, would consist of formulating the primal optimization problem in its dual form and employing

a mixed finite element method, in the spirit of Hurtardo and Ortiz [56].
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Appendix A

Non-local regularization

In this Appendix, we propose ideas for a possible finite element solution strategy to account for the

non-local term in the energy density. We wish to minimize

E(u) =

∫
Ω

(|Du|p − 3p/2)dx+ `

∫
Ω

|DDu| (A.0.1)

subject to

detDu = 1 (A.0.2)

In order to account for incompressibility, we add a compressible term in the non-local part of the

energy density. More precisely,

W loc = λf(J) + |F |p − 3p/2 (A.0.3)

where λ is a Lagrange multiplier (set to large values to enforce the constraint), J = detF and

F = Du. f is chosen to be a convex function which vanishes at J = 1 and takes infinite values at

J = 0 and J =∞. This evidently requires the uses of at least quadratic shape functions in order to

avoid locking. The non-local term of the energy density is simply

Wnonloc = g(DF ) (A.0.4)

where

g(Q) = |Q| (A.0.5)
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We integrate the total non-local energy and use the Legendre transform

∫
Ω

|DF |dx =

∫
Ω

sup
Q

(Q.DF − g∗(Q))dx (A.0.6)

The convex conjugate of the absolute value function is g∗(Q) = 1{|Q|leq1}. Therefore

∫
Ω

|DF |dx = sup
|Q|≤1

∫
Ω

Q.DFdx (A.0.7)

After integrating by parts and assuming zero boundary conditions, it follows that

∫
Ω

|DF |dx = − sup
|Q|≤1

∫
Ω

DivQ.Fdx = − sup
|Q|≤1

∫
Ω

QiJK,KFiJdx (A.0.8)

In this way, the non-local energy does not depend on the second gradient, albeit at the expense of

introducing an additional field Q which is a third order tensor field to be approximated at every

node. Suppose that the optimal Q∗ has been found, then the (pseudo) energy density reads:

W (F,Q∗) = λf(J) + |F |p − 3p/2 + `DivQ∗.F (A.0.9)

At this point, only the first derivatives of u and Q need to be evaluated. We decompose u and Q in

the same standard finite element basis, i.e.

ui =
n∑
a=1

uaiNa(X) (A.0.10)

where uai are the nodal displacements and Na the shape function at node a. Therefore, the defor-

mation gradient reads:

Duij =
n∑
a=1

uaiNa,J (A.0.11)
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Similarly, the trial tensor Q is decomposed such that

QiJK =
n∑
b=1

QbiJKNb(X) (A.0.12)

The corresponding divergence then reads

QiJK,K =
n∑
b=1

QbiJKNb,K(X) (A.0.13)

The suppremum problem in (A.0.8) turns into a maximization problem for |QbiJK | ≤ 1 for any b.

Therefore, we are led to the problem

− max
|QbiJK |≤1

∫
Ω

QiJK,KFiJdx = − max
|QbiJK |≤1

∫
Ω

(

n∑
a=1

n∑
b=1

Nb,KQ
b
iJKNa,Ju

a
i )dx (A.0.14)

which results into

max
n∑
b=1

n∑
a=1

∫
Ω

Nb,KNa,JdxQ
b
iJK = max

n∑
b=1

AbiJKA
b
iJKQ

b
iJK (A.0.15)

where

AbiJK =
n∑
a=1

∫
Ω

Nb,KNa,Jdx (A.0.16)

subject to |QbiJK | ≤ 1 for any node b. Because the constraints are independent, it is equivalent to

solve a set of independent problems for every node b:

maxAbiJKQ
b
iJK subject to |QbiJK | ≤ 1 (A.0.17)

The solution is obtained from the Kuhn-Tucker optimality conditions and the optimal trial tensor

is achieved by

Qb
∗

iJK =


AbiJK
|AbiJK |

if{s, i}|AbiJK | 6= 0

0 otherwise.

(A.0.18)



84

The optimal tensor field is therefore expressed as:

Q∗iJK =
n∑
b=1

Qb
∗

iJKNb (A.0.19)

and Qb
∗

iJK depends on AbiJK which can be computed by standard numerical quadrature.

At this stage, we can use a staggered scheme for the numerical solution. In this way, we resume

to a local problem to which conventional constitutive updates are applicable. The idea is to consider

a process of incremental deformations where the solution is to be determined at time t0, t1, .., tn. If

at time tn, we know the optimal trial tensor Q∗n, then the deformation gradient Fn+1 at time tn+1

is obtained by minimizing the incremental energy density

W (Fn+1, Q
∗
n) = λf(J) + |Fn+1|p − 3p/2 + `DivQ∗n.Fn+1 (A.0.20)

for a fixed Q∗n. Then Q∗n+1 is updated by the procedure outlined above. Therefore, we solve a local

problem first and a non-local problem on top of it. Solving the local problem is a standard procedure

which is done via dynamic relaxation for instance, which is well suited for non-convex problems.
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Appendix B

Non-local regularization : General
case

In this Appendix, we propose a potential generalization of the finite element strategy to convex

functions g of the second gradient. In what follows, only the non local term is considered.

Non-local energy:

E(u) =

∫
Ω

g(DDu)dx (B.0.1)

Using duality (Legendre transform as in Appendix A)

∫
Ω

|DDu|dx =

∫
Ω

sup
Q

(Q.DDu− g∗(Q))dx (B.0.2)

By integration by parts and zero boundary conditions, it follows

∫
Ω

|DDu|dx = −sup
Q

∫
Ω

[DivQ.Du− g∗(Q)]dx (B.0.3)

Now use a finite element discretization with lumping as before to obtain

E(uh) = −sup
Qh

∑
a

∑
b

AaJbKu
a
iQ

b
iJK +

∑
b

Vbg
∗(Qb) (B.0.4)

with

AaJbK =

∫
Ω

Na,JNb,Kdx (B.0.5)
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and

Vb =

∫
Ω

Nbdx (B.0.6)

We can then rewrite E(u) as

E(uh) =
∑
b

Vbsup
Qh

(− 1

Vb
(
∑
a

AaJbKu
a
i )Qb − g∗(Qb)) (B.0.7)

i.e.

E(uh) =
∑
b

Vbg(−V −1
b

∑
a

AaJbKu
a
i ) (B.0.8)

The expression of the discretized energy (B.0.8) only involves the nodal displacements uai . Therefore,

a standard Newton-Raphson procedure is applicable to solve for uai and it would require the first

derivatives and the second derivatives of uh with respect to uai , which are straightforward from

B.0.8.
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