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Abstract

Many engineering applications face the problem of bounding the expected value of a quantity

of interest (performance, risk, cost, etc.) that depends on stochastic uncertainties whose

probability distribution is not known exactly. Optimal uncertainty quantification (OUQ)

is a framework that aims at obtaining the best bound in these situations by explicitly

incorporating available information about the distribution. Unfortunately, this often leads

to non-convex optimization problems that are numerically expensive to solve.

This thesis emphasizes on efficient numerical algorithms for OUQ problems. It begins

by investigating several classes of OUQ problems that can be reformulated as convex opti-

mization problems. Conditions on the objective function and information constraints under

which a convex formulation exists are presented. Since the size of the optimization problem

can become quite large, solutions for scaling up are also discussed. Finally, the capabil-

ity of analyzing a practical system through such convex formulations is demonstrated by a

numerical example of energy storage placement in power grids.

When an equivalent convex formulation is unavailable, it is possible to find a convex

problem that provides a meaningful bound for the original problem, also known as a convex

relaxation. As an example, the thesis investigates the setting used in Hoeffding’s inequality.

The naive formulation requires solving a collection of non-convex polynomial optimization

problems whose number grows doubly exponentially. After structures such as symmetry

are exploited, it is shown that both the number and the size of the polynomial optimiza-

tion problems can be reduced significantly. Each polynomial optimization problem is then

bounded by its convex relaxation using sums-of-squares. These bounds are found to be

tight in all the numerical examples tested in the thesis and are significantly better than

Hoeffding’s bounds.



vii

Contents

Acknowledgments iv

Abstract vi

1 Introduction 1

2 OUQ via Convex Optimization: Theory 5

2.1 Optimal uncertainty quantification and finite reduction . . . . . . . . . . . . . 5

2.2 Convex reformulation via primal form . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Convex reformulation via dual form . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 A simple example on the Gaussian distribution . . . . . . . . . . . . . . . . . 23

2.5 Piecewise affine objective with first and second moment constraints . . . . . . 25

2.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 OUQ via Convex Optimization: Computational Issues and Applications 32

3.1 Iterative methods for polytopic canonical form . . . . . . . . . . . . . . . . . . 32

3.1.1 The polytopic canonical form (PCF): Motivation and definition . . . . 33

3.1.2 Exact iterative method method for PCF . . . . . . . . . . . . . . . . . 35

3.1.3 Approximate iterative method for PCF . . . . . . . . . . . . . . . . . . 37

3.2 Parallel solution via alternating direction method of multipliers (ADMM) . . 41

3.2.1 The alternating direction method of multipliers (ADMM) . . . . . . . 41

3.2.2 ADMM on the convex optimal uncertainty quantification problem . . 43

3.3 Application: Energy storage placement evaluation in power grids . . . . . . . 47

3.3.1 A simple power grid model with energy storage . . . . . . . . . . . . . 48

3.3.2 Conversion into PCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



viii

3.3.3 Numerical results: 1-bus and 2-bus networks . . . . . . . . . . . . . . . 52

3.3.4 Results: IEEE 14-bus network with renewable generation . . . . . . . 54

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 OUQ via Convex Relaxation: An Example on Hoeffding’s Inequality 58

4.1 Hoeffding’s inequality and its related OUQ problem . . . . . . . . . . . . . . . 59

4.2 Finite reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Removal of redundant enumerations . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Additional computational issues . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Generating the enumerations . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.2 Solving the polynomial optimization problem . . . . . . . . . . . . . . 77

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Concluding Remarks 85

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Bibliography 89



1

Chapter 1

Introduction

Stochastic factors are prevalent in modern engineering systems, and often need to be ac-

counted for explicitly during system design. For example, when designing a data center,

how should the servers be scheduled optimally when the user demands can be random over

time? When designing a bridge, how to assess the probability of collapse under random am-

bient disturbances such as vibrations and temperature changes? When designing a power

grid, how to guarantee that the random generation from the renewable will not disrupt the

operation of the system?

Before answering any of these questions, one first needs to face the question of how to

choose the corresponding probabilistic model. As said by George E. P. Box, “all models are

wrong, but some are useful”. One common practice is to choose some simple distribution,

and hope it will capture the stochasticities well. Fortunately, blessed by the central limit

theorem, many stochastic phenomena can be well modeled by the universal and all-mighty

Gaussian distribution. This has led to a myriad of simple yet powerful algorithms, including

the method of least squares [12] and the Kalman filter [37] as two of the most well known

examples. Even when Gaussian distributions fail, there are cases where other simple dis-

tributions would model the complex stochastic phenomena relatively well. One important

generalization of the Gaussian distribution is the exponential family, which includes not only

the Gaussian distribution, but also other useful distributions, such as the exponential, Pois-

son, beta, and Dirichlet distributions. Distributions in the exponential family have various

properties that are amenable to numerical computation. In particular, composition of mul-

tiple distributions in the exponential family can lead to more sophisticated yet still tractable

models. These are known as probabilistic graphical models, which are used extensively in

machine learning [6, 13, 38].
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On the flip side, the consequence of the mismatch between any of these a priori models

and actual stochasticities is usually difficult to characterize without extensive test of the

system in practice. This can become problematic for most critical applications where the

design needs to be certified before deployment of the system. Perhaps one of the most famous

example is the Space Shuttle Columbia disaster in 2003. After investigation of the disaster

has been carried out, several memos and email communications were revealed (Fig. 1.1).

As a matter of fact, on the day before reentry, Bob Doremus and David Paternostro, two

managers in mission operations at the Johnson Space Center, “expressed some skepticism”

during a discussion with two engineers about a simulation, which showed that the landing

would be survivable with two flat tires. Nevertheless, no one expected the worst case to

happen and assumed a safe entry. While there were many factors that contributed to the

loss of Columbia, this shows how overly optimistic treatment of uncertainties in the model

can potentially become disastrous.

Written summary provided by Bob Doremus regarding a conversation held on Jan. 31 between
Carlisle Campbell, Robert Doremus and David Paternostro about STS-107:

Carlisle Campbell phoned DF52/Bob Doremus. DF53/David Paternostro was also in the
office. Carlisle brought in Bob Daugherty and the 4 discussed the possibility of landing
with 2 flat tires. Carlisle said that Howard Law had done an entry sim at Ames (the sim
was evidently done on Friday) and that sim showed that the landing with 2 flat tires was
survivable. Bob Doremus and David Paternostro expressed some skepticism as to the
accuracy of the Ames sim in light of other data (Convair 990 testing), but appreciated the
information. All four agreed at the end of the discussion that we were doing a "what-if"
discussion and that we all expected a safe entry on Saturday.

Figure 1.1: An excerpt of email during the last mission of Space Shuttle Columbia regarding a
simulation of landing. (Source: NASA [2])

Analysis on the effects of uncertainties is highly dependent on the information available

on the underlying distribution. In one extreme regime, where the amount of data is suffi-

cient to sample the underlying distribution, the problem becomes conceptually easy, since

traditional statistical estimation methods such as bootstrapping is expected to work well.

Aside from computational challenges, however, this approach usually does not apply for

more complex systems, where sampled data are often difficult or expensive to obtain so that

construction of the actual distribution is often beyond reach.

Still, there is hope for analyzing the effect of uncertainty in the model at least to a

certain level, since it is often possible to obtain partial knowledge about the underlying

distribution. In the scheduling of queueing systems, for example, certain types of analysis
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on the system performance can be made by only knowing whether the distribution of job

sizes is heavy-tailed or light-tailed, despite the fact that the actual distribution is unknown

(cf. [47]). Another case is when certain functionals (e.g., mean, variance, or any moments) of

the underlying distribution are known. These functionals will be referred to as information

constraints. Since the information constraints imposed by these functionals can be satisfied

by multiple distributions, one popular approach is to choose the distribution by adopting

the principle of maximum entropy [35, 36]. The idea of this principle is to incorporate as

little prior knowledge as possible into the distribution. Although the principle of maximum

entropy has been proved in many cases as a good guideline for choosing the distribution,

one should keep in mind that the ultimate objective in many engineering applications is to

obtain a good estimate of some quantity of interest (e.g, performance or cost) other than the

distribution itself. From this viewpoint, the principle of maximum entropy uses the entropy

as the “quantity of interest”, which can be meaningless for most engineering systems.

In particular, one useful quantity is the upper and lower bounds of the expected per-

formance, which can serve as certificates of the design. Formally, this can be obtained

by solving an infinite-dimensional optimization problem that maximizes or minimizes the

expected performance over all probability distributions that satisfy the information con-

straints. Study of these kinds of problems has become a research direction named optimal

uncertainty quantification (OUQ), which was originally formulated in [53]. Despite the fact

that the optimization problem to be solved is infinite-dimensional, it has been shown that

the problem can be reduced to a finite-dimensional yet equivalent one, for which numerical

solutions are available. OUQ has been applied in various engineering problems, include

seismic safety assessment of structures and transport in porous media [53].

Organization of the thesis

This thesis emphasizes on developing efficient computational methods for solving a num-

ber of problems within the OUQ framework. As R. Rockafellar pointed out in 1993, “the

great watershed in optimization isn’t between linearity and nonlinearity, but convexity and

nonconvexity” [60]. By virtue of this, Chapter 2 seeks cases for which an equivalent convex

formulation exists. Specially, it proceeds by viewing the OUQ problem from two different

perspectives: the primal form and dual form of the corresponding optimization problem.

Conditions on the objective function and information constraints under which a convex for-



4

mulation exists are presented. Compared to previous results, the new cases presented in

this chapter allow more freedom in incorporating knowledge about the unknown probability

distribution and can potentially provide better quantification, as demonstrated in a simple

example using the Gaussian distribution.

As a case study, Chapter 3 applies the results in Chapter 2 to a problem that arises in

power systems: evaluating the effect of placing energy storage in power grids when renew-

able generation is present. Despite the existence of an equivalent convex formulation, the

corresponding convex optimization problem becomes challenging to solve numerically due to

the size of the system. Two approaches are presented to address the scaling issues. Although

these approaches are developed specifically for the problem of energy storage placement, the

form of the problem (derived in Section 2.5) is general enough so that they can be applied

to other examples as well. One approach focuses on solving a number of smaller problems

in order to obtain the solution iteratively. This is made possible by exploiting the special

form of the objective function in the optimization problem named polytopic canonical form.

Another approach focuses on solving the large original problem through massive paralleliza-

tion. After manipulation, the optimization problem can be converted to the standard form

solvable using the alternating direction method of multipliers, which is a parallelizable first-

order method. In the end, these approaches are demonstrated through numerical examples

using standard test cases used in power systems research.

When a convex formulation in unavailable, the next best option is to find a convex

problem that gives a meaningful numerical bound for the original problem. This procedure

is commonly referred to as convex relaxation. Relaxation fits naturally in the context of

OUQ since it is aligned with the original purpose of obtaining bounds for some quantity

of interest. In Chapter 4, we study a setting that is used in Hoeffding’s inequality. In

this setting, one is interested in obtaining a bound for the probability that the sum of

independent random variables deviates from its expected sum. Hoeffding’s inequality gives

a bound in simple expressions, but this bound is not tight. As it turns out, this problem

falls into the OUQ framework and a tight bound can be obtained by solving a series of

non-convex polynomial optimization problems.
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Chapter 2

OUQ via Convex Optimization:
Theory

The purpose of this chapter is to introduce the optimal uncertainty quantification (OUQ)

problem and several special cases in which the problem can be solved efficiently using con-

vex optimization. The chapter begins with the formulation of the OUQ problem as an

infinite-dimensional optimization problem and its equivalent finite-dimensional formulation.

In general, the finite-dimensional problem is non-convex and can still be difficult to solve.

The chapter attempts to derive convex formulation for several cases from two different

perspectives: the primal form and dual form of the optimization problem. Compared to

previous results, the new cases presented in this chapter allow more freedom in incorpo-

rating knowledge about the unknown probability distribution and can potentially provide

better quantification, which is demonstrated in a simple example.

2.1 Optimal uncertainty quantification and finite reduction

The optimal uncertainty quantification problem is an optimization problem in the form:

maximize
D

Eθ∼D [f(θ)] (2.1)

subject to Eθ∼D[g(θ)] � 0 (2.2)

Eθ∼D[h(θ)] = 0 (2.3)

θ ∈ Θ almost surely, (2.4)
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where θ is a random variable defined on Rd whose probability distribution is D, and f, g, h
are measurable functions defined on Rd. The distribution is constrained to have support on

a given set Θ ⊆ Rd. The inequality in (2.2) denotes generalized inequality with respect to

a certain cone: in the simplest case, if the cone is the positive orthant, then the generalized

inequality becomes entry-wise inequality. Note that the condition that D is a probability

distribution automatically implies that

Eθ∼D[1] = 1, D ≥ 0.

The functions g and h are used to incorporate the available information of D. One im-

portant class of g and h is powers of θ, which are used to represent information on the

moments of θ. The use of inequality constraints arises when, for example, one does not have

perfect estimates and would rather use a confidence interval. For example, we can choose

to incorporate bounds on the mean of θ:

µ̂lb � E[θ] � µ̂ub.

In the following, we give a few examples of optimal uncertainty quantification problems.

Example 2.1 (Support constraints). Suppose the random variable θ ∈ Rd and let f be an

arbitrary function and Θ ⊆ Rd. Then the problem with constraint on the support of θ

maximize
D

Eθ∼D [f(θ)] (2.5)

subject to θ ∈ Θ almost surely

is an optimal uncertainty quantification problem with only the support constraint. In fact,

problem (2.5) can be reduced to an optimization problem over a finite-dimensional decision

variable in this case:

maximize
θ

f(θ)

subject to θ ∈ Θ.

This equivalence has appeared in many applications, including moment-based relaxations
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of polynomial optimization problems [39] and the concept of least favorable prior [77]. To

show this, note that

max
D

Eθ∼D[f(θ)] ≤ max
θ∈Θ

f(θ),

since the average can never exceed the maximum regardless of the distribution D. On the

other hand,

max
D

Eθ∼D[f(θ)] ≥ max
θ∈Θ

f(θ),

since the right-hand side can be achieved by a Dirac-delta distribution concentrated at

θ∗ = arg maxθ∈Θ f(θ).

Example 2.2 (Probability with moment constraints). Suppose we only have access to the

mean and covariance of a certain random variable θ defined on Rd, but we are interested

in P(θ ∈ Θ) for some set Θ ⊆ Rd. In many cases, the set Θ may correspond to some

undesired event and we would like to quantify its worst-case probability by solving the

following problem:

maximize
D

P(θ ∈ Θ)

subject to Eθ∼D[θ] = µ̂, cov[θ] = Σ̂,

where µ̂ and Σ̂ are the mean and covariance of θ, respectively. The problem can be converted

into an optimal uncertainty quantification problem by defining f and h as follows:

f(θ) = I(θ ∈ Θ) =


1 θ ∈ Θ

0 θ /∈ Θ,

and

h(θ) =

 θ − µ̂
vec(θθT − Σ̂− µ̂µ̂T )

 ,
where vec denotes the vectorization of a matrix.

Example 2.3 (Probability on disjoint sets). In this more advanced example, similar to
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Example 2.2, we want to compute the maximum of

P

[
d∨
i=1

(θi ≥ ai)
]

for some given constant a ∈ Rd where the distribution of θ is subject to the same moment

constraints as in Example 2.2. Here, θi and ai denote the i-th element of θ and a, respec-

tively. The problem can be converted into an optimal uncertainty quantification problem

by defining f as follows:

f(θ) = max
{
I1
−∞(θ1 ≥ a1), . . . , I1

−∞(θd ≥ ad), 0
}
,

where

I1
−∞(A) =


1 A is true

−∞ A is false

is the −∞-1 indicator function for a given set A. The definition of h is the same as in

Example 2.2.

An optimal uncertainty quantification problem is an optimization problem over the

infinite-dimensional space of probability distributions with objective functions and con-

straints linear in the distribution D. Since the space of probability distributions is con-

vex and the constraints are also convex, the optimization problem is convex. However,

the fact that an optimization problem is convex does not immediately imply that it is

numerically tractable. In fact, any non-convex optimization problem can always be rewrit-

ten as a convex problem either with an infinite number of constraints or over an infinite-

dimensional space [39]. The perhaps surprising fact, as shown previously by other researchers

(cf. [65, 53]), is that any optimal uncertainty quantification problem can always be reduced to

an equivalent finite-dimensional optimization problem in the sense that the reduced problem

yields the same optimal value.

Theorem 2.4 (Finite reduction property). The (finite-dimensional) problem

maximize
{pi,θi}ni=1

n∑
i=1

pif(θi) (2.6)
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subject to
n∑
i=1

pi = 1, p � 0

n∑
i=1

pig(θi) � 0

n∑
i=1

pih(θi) = 0

achieves the same optimal value as problem (2.1). Here, n equals 1 plus the total number of

independent scalar equalities encoded in g and h.

Example 2.5 (“Seesaw”). Consider the following uncertainty quantification problem for a

scalar random variable θ:

maximize
D

P(θ ≥ γ)

subject to Eθ∼D[θ] = 0, a ≤ θ ≤ b,

where a, b, and γ are constants satisfying a < 0 ≤ γ < b. In order to maximize P(θ ≥ γ), we

would want to assign as much probability as possible on the right side of γ. However, the

condition Eθ∼D[θ] = 0 requires that the probability on both sides must be balanced around

0. This is analogous to a seesaw pivoted at 0 with two end points at a and b, respectively

(Fig. 2.1). It is not difficult to see that the best assignment is to put all the probability

on the right side at γ (for least leverage) and all the probability on the left side at a (for

most leverage). This implies that the optimal distribution can be achieved with a discrete

distribution consisting of two Dirac masses at a and γ, respectively. Indeed, since there is

only one scalar constraint, we have n = 1 and the total number of Dirac masses predicted

by Theorem 2.6 is n+ 1 = 2.

Example 2.6 (Probability with moment constraints, revisited). Consider again Exam-

ple 2.2. Suppose θ ∈ Rd, then the constraint (θ − µ̂) will give d equality constraints, and

vec(θθT − Σ̂− µ̂µ̂T ) will give d(d+ 1)/2 independent equality constraints (rather than d2,

since Σ̂ is symmetric). Therefore, n = d+ d(d+ 1)/2 in this example.

Note that problem (2.1) can also be written in a form without the equality constraints

Eθ∼D[h(θ)] = 0
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as possible

as much

Eθ∼d[θ] = 0

as little

as possible

bγ0a

Figure 2.1: “Seesaw” analogy in Example 2.5

by introducing inequality constraints

Eθ∼D[h(θ)] � 0, Eθ∼D[−h(θ)] � 0.

However, we will still use the form as in (2.1) to distinguish pure equalities from pure

inequalities in order to define n properly.

A proof of Theorem 2.4 can be found in, e.g., [53]. Here we would like to present an

informal proof to give some intuition. We start by approximating the probability distribu-

tion D in the original problem (2.1) using a discrete distribution in which the masses are

located at {θi}Mi=1 with weights {qi}Mi=1, where M is potentially a very large number. Under

such approximation, problem (2.1) becomes

maximize
{qi,θi}Mi=1

M∑
i=1

qif(θi) (2.7)

subject to
M∑
i=1

qi = 1, q � 0 (2.8)

M∑
i=1

qig(θi) � 0

M∑
i=1

qih(θi) = 0.

Note that this problem is similar to problem (2.6) in Theorem 2.4, except that the number

of Dirac masses is M . Suppose the optimal solution of problem (2.7) is {q∗i , θ∗i }Mi=1, and



11

define the set

I = {i : q∗i 6= 0} ⊆ {1, 2, . . . ,M}.

Since {q∗i }Mi=1 satisfies equation (2.8), it implies that

M∑
i=1

q∗i g(θ∗i ) ∈ conv{g(θ∗i )}i∈I ,
M∑
i=1

q∗i h(θ∗i ) ∈ conv{h(θ∗i )}i∈I ,

or, written in vector form,

 ∑M
i=1 q

∗
i g(θ∗i )∑M

i=1 q
∗
i h(θ∗i )

 ∈ conv


 g(θ∗i )

h(θ∗i )


i∈I

,

where conv(P ) denotes the convex hull of a given set P . We will then make use of

Carathéodory’s theorem (cf. pp. 126, [67]) from convex geometry, which is stated below:

Theorem 2.7 (Carathéodory). If a point x ∈ Rn lies in the convex hull of a set P ⊆ Rn,

then there is a subset P ′ ⊆ P consisting of n + 1 or fewer points such that x lies in the

convex hull of P ′.

From Carathéodory’s theorem, we know that there exists a subset A ⊆ I whose size is

at most 1 plus the total number of independent components of g and h such that

 ∑M
i=1 q

∗
i g(θ∗i )∑M

i=1 q
∗
i h(θ∗i )

 ∈ conv


 g(θ∗i )

h(θ∗i )


i∈A

,

i.e., there exists nonnegative {p∗i }i∈A satisfying
∑

i∈A p
∗
i = 1 such that

M∑
i=1

q∗i g(θ∗i ) =
∑
i∈A

p∗i g(θ∗i ),
M∑
i=1

q∗i h(θ∗i ) =
∑
i∈A

p∗ih(θ∗i ).

On the other hand, from the Lagrangian of problem (2.7),

L =
M∑
i=1

qif(θi)− λT
M∑
i=1

qig(θi) + νT
M∑
i=1

qih(θi) +
M∑
i=1

µiqi + µ0

(
1−

M∑
i=1

qi

)
,

where λ, ν, {µi}Mi=0 are the dual variables, and the Karush-Kuhn-Tucker condition, we know
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that
∂L

∂qi
= 0

at the optimum, i.e.,

f(θ∗i )− λ∗T g(θ∗i ) + ν∗Th(θ∗i ) + µ∗i − µ∗0 = 0, i = 1, 2, . . . ,M

for dual optimal λ∗, ν∗, {µ∗i }Mi=0. Thereore, we have

∑
i∈A

p∗i f(θ∗i ) =
∑
i∈A

p∗i
[
λ∗T g(θ∗i )− ν∗Th(θ∗i )− µ∗i + µ∗0

]
= λ∗T

∑
i∈A

p∗i g(θ∗i )− ν∗T
∑
i∈A

p∗ih(θ∗i )−
∑
i∈A

p∗iµ
∗
i + µ∗0.

On the other hand, from complementary slackness, we know that

µ∗i q
∗
i = 0, i = 1, 2, . . . ,M,

which implies that µ∗i = 0 for all i ∈ I (hence for all i ∈ A). Therefore, we have

∑
i∈A

p∗i f(θ∗i ) = λ∗T
M∑
i=1

q∗i g(θ∗i )− ν∗T
M∑
i=1

q∗i h(θ∗i ) + µ∗0

= λ∗T
M∑
i=1

q∗i g(θ∗i )− ν∗T
M∑
i=1

q∗i h(θ∗i )−
M∑
i=1

µ∗i q
∗
i + µ∗0

=
M∑
i=1

q∗i
[
λ∗T g(θ∗i )− ν∗Th(θ∗i )− µ∗i + µ∗0

]
=

M∑
i=1

q∗i f(θ∗i ),

which is the optimal value of problem (2.7). Note that {p∗i , θ∗i }i∈A is a feasible solution to

the reduced problem

maximize
{pi,θi}i∈A

∑
i∈A

pif(θi) (2.9)

subject to
∑
i∈A

pi = 1, pi ≥ 0, i ∈ A
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i∈A

pig(θi) � 0

∑
i∈A

pih(θi) = 0,

and hence the optimal value of problem (2.7) is no larger than the optimal value of prob-

lem (2.9). On the other hand, it is easy to verify that the optimal value of problem (2.9)

cannot be larger than that of problem (2.7) due to the fact that the former has fewer de-

cision variables. Therefore, both problem (2.7) and the reduced problem (2.9) achieve the

same optimal value. It is worth pointing out that the proof is incomplete, since it starts by

approximating the distribution using a discrete distribution. Therefore, it remains unclear

how the results will extend as M → ∞, i.e., when the discrete distribution approaches the

continuous distribution D. This issue has been ignored in this informal proof.

2.2 Convex reformulation via primal form

Although the optimal uncertainty quantification problem adopts a finite reduction, it is still

unclear whether it can be solved efficiently, i.e., in polynomial time. In this section, we will

show that this is true if both of the following conditions hold:

1. The function f that appears in the objective is piecewise concave, i.e., it can be written

as

f(θ) = max
k=1,2,...,K

f (k)(θ), (2.10)

where each function f (k) is concave.

2. The function h that appears in the constraints is affine:

h(θ) = AT θ + b. (2.11)

3. The function g, which needs to be defined from Rd to Rp, is entry-wise piecewise

convex, i.e., each entry gi (i = 1, 2, . . . , p) can be written as

gi(θ) = min
li=1,2,...,Li

g
(li)
i (θ), (2.12)

where each function g(li)
i is convex.
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(a) (b)

Figure 2.2: (a) Piecewise concave and (b) piecewise convex functions in one dimension.

Fig. 2.2 illustrates how piecewise concave and piecewise convex functions would look like in

one dimension. In general, these functions are neither concave nor convex. Nevertheless, we

list in the following several cases that can be expressed in piecewise concave/convex form.

We begin by the examples where the function f appearing in the objective is piecewise

concave:

Example 2.8 (Concave functions). The function f itself is concave. In this case, K = 1

and f = f (1) is concave.

Example 2.9 (Piecewise affine and convex). The function f is piecewise affine and convex.

In this case, f (k) is affine (hence concave) for each k. This case will be discussed later in

greater detail.

Example 2.10 (Tail probability). The random variable θ is univariate and the function f

is the 0-1 indicator function:

f(θ) = I(θ ≥ a) =


1 θ ≥ a

0 θ < a

for some constant a ∈ R. In this case, the function f can be written as

f(θ) = max{0, I1
−∞(θ ≥ a)}.

It can be readily verified that both 0 and I1
−∞(θ ≥ a) are concave.
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Next we list several cases where the function g appearing in the constraints is piecewise

convex.

Example 2.11 (Even-order moments). The random variable θ is univariate and gi(θ) = θ2q

for some positive integer q. This is a special case in which the function gi itself is convex.

Example 2.12 (Tail probability). This is similar to Example 2.10 in that we define g(θ) =

I(θ ≥ a) for some constant a ∈ R. In this case, the function g can be written in a different

way as

g(θ) = min{1, I∞0 (θ ≥ a)}.

Again, it can be verified that both functions inside are convex.

We will now show that under such conditions on f , g, and h (i.e., conditions (2.10)–

(2.12)) the optimal uncertainty quantification problem can be reformulated as a (finite-

dimensional) convex optimization problem. For notational simplicity, we will first present

the case in which g is defined from Rd to R (i.e., p = 1):

g(θ) = min
l=1,2,...,L

g(l)(θ), g(l) is convex. (2.13)

This can be easily generalized to the case of p > 1. From the finite reduction property,

we know that it suffices to use a finite number of Dirac masses to represent the optimal

distribution. In this case, due to the special form of the objective function and constraints,

these Dirac masses satisfy a useful property as given in the following lemma:

Lemma 2.13. If the functions f and g can be expressed as

f(θ) = max
k=1,2,...,K

f (k)(θ), g(θ) = min
l=1,2,...,L

g(l)(θ)

where f (k) (k = 1, 2, . . . ,K) is concave and g(l) (l = 1, 2, . . . , L) is convex, and h is affine,

then the optimal distribution can be achieved by a discrete distribution that contains at

most K ·L Dirac masses located at {θkl} (k = 1, 2, . . . ,K; l = 1, 2, . . . , L). In addition, each

θkl satisfies

f(θkl) = f (k)(θkl), g(θkl) = g(l)(θkl),

i.e., it achieves maximum at f (k) and minimum at g(l).
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Proof. Suppose for certain k and l, the optimal distribution contains two Dirac masses

located at φ1 and φ2 with probabilities q1 and q2, respectively, whereas both φ1 and φ2

achieve maximum at f (k) and minimum at g(l), i.e.,

f(φ1) = f (k)(φ1), f(φ2)= f (k)(φ2),

g(φ1) = g(l)(φ1), g(φ2) = g(l)(φ2).

Consider a new Dirac mass whose probability q and location φ are given by

q = q1 + q2, φ =
q1φ1 + q2φ2

q1 + q2
.

It can be verified that replacing the two previous Dirac masses (q1, φ1) and (q2, φ2) with

this new Dirac mass (q, φ) will still yield a valid probability distribution. Moreover, the new

distribution will give an objective E[f(θ)] that is no smaller than the previous one, since

qf(φ) ≥ qf (k)(φ) ≥ q1f
(k)(φ1) + q2f

(k)(φ2) = q1f(φ1) + q2f(φ2), (2.14)

where the second inequality is an application of Jensen’s inequality and last equality uses the

fact that φ1 and φ2 achieves maximum at f (k). On the other hand, the new distribution will

remain as a feasible solution. The equality constraint on E[h(θ)] remains feasible, because

qh(φ) = q(ATφ+ b) = AT (q1 + q2)φ+ b(q1 + q2)

= AT (q1φ1 + q2φ2) + b(q1 + q2) = q1h(φ1) + q2h(φ2).

The feasibility of the inequality constraint on E[g(θ)] can be proved by using a similar

argument as in (2.14) by observing that E[g(θ)] evaluated at the new distribution will be no

larger than that at the original distribution, because

qg(φ) ≤ qg(l)(φ) ≤ q1g
(l)(φ1) + q2g

(l)(φ2) = q1g(φ1) + q2g(φ2).

Therefore, the two old Dirac masses can be replaced by the new single one without affecting

optimality, from which the uniqueness of θkl follows.
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The number of Dirac masses given by Lemma 2.13 is independent from the one given

by the finite reduction property. From Lemma 2.13, we can obtain the equivalent convex

optimization problem for the original problem:

Theorem 2.14. The (convex) optimization problem

maximize
{pkl,γkl}k,l

∑
k,l

pklf
(k)(γkl/pkl)

subject to
∑
k,l

pkl = 1 (2.15)

pkl ≥ 0, ∀k, l (2.16)

∑
k,l

pklh(γkl/pkl) = AT

∑
k,l

γkl

+ b = 0

∑
k,l

pklg
(l)(γkl/pkl) ≤ 0

achieves the same optimal value as problem (2.1) if the functions f , g, and h satisfy (2.10),

(2.13), and (2.11), respectively.

Proof. According to Lemma 2.13, we can optimize over a new set of Dirac masses whose

probability weights and locations are {pkl, θkl}. The requirement that the set of Dirac masses

forms a valid probability distribution imposes the constraints (2.15) and (2.16). Under the

new set of Dirac masses, the objective function can be rewritten as

E [f(θ)] =
∑
k,l

pklf(θkl) =
∑
k,l

pklf
(k)(θkl),

where the second equality uses the fact that θkl achieves maximum at f (k). As will be shown

later, this step is critical since f is generally not concave, but
∑

k,l pklf
(k)(θkl) is concave.

Similarly, the constraint can be rewritten as

E[g(θ)] =
∑
k,l

pklg(θkl) =
∑
k,l

pklg
(l)(θkl).

The final form can be obtained by introducing new variables γkl = pklθkl for all k, l and

choosing to optimize over {pkl, γkl} instead of {pkl, θkl}. Each term in the sum in the
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objective function ∑
k,l

pklf
(k)(γkl/pkl)

is a perspective transform of f (k) and hence is concave since f (k) is concave. Therefore, the

objective function is concave because it is a sum of concave functions. Likewise, the term

∑
k,l

pklg
(l)(γkl/pkl)

is convex and resulting constraint is also convex. The rest of the constraints does not

affect convexity since they are affine inequality or equality constraints. In conclusion, the

final optimization problem is a (finite-dimensional) convex problem and is equivalent to the

original problem (2.1) due to Lemma 2.13.

In addition, there are a couple of straightforward extensions to this formulation.

Multiple inequality constraints The formulation above corresponds to the case of p =

1. In the case of p > 1, the number of Dirac masses in the new set needs to be expanded to

K ·∏i=1,2,...,p Li. Among these, there is at most one Dirac mass θ∗ that achieves maximum

at f (k) and minimum at g(l1)
1 , g

(l2)
2 , . . . , g

(lp)
p for any given k, {li}pi=1, i.e., the location θ∗

satisfies

f(θ∗) = f (k)(θ∗), g1(θ∗) = g
(l1)
1 (θ∗), . . . , gp(θ∗) = g

(lp)
p (θ∗).

The corresponding convex optimization problem can then be formed by following a similar

procedure given in the proof of Theorem 2.14.

Polytopic support constraints It is also possible to impose certain types of constraints

on the support of distribution without affecting convexity. Specifically, the support of dis-

tribution can be constrained to be a polytope Pθ, i.e,

θ ∈ Pθ almost surely. (2.17)

It is known that any polytope can always be represented as the intersection of several affine

halfspaces, i.e., Pθ = {θ : Aθ � b} for some given constants A and b (cf. [11]). After finite

reduction using the Dirac masses {θkl, pkl}, the support constraint (2.17) becomes K · L
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separate constraints, each of which corresponds to a certain Dirac mass θkl:

Aθkl � b. (2.18)

Substitute γkl = pklθkl into (2.18) so that it becomes an affine inequality constraint in

(γkl, pkl):

Aγkl � pklb. (2.19)

The final optimization problem will optimize over {pkl, γkl} with the extra constraints (2.19).

Because (2.19) is affine, the resulting optimization problem remains convex.

2.3 Convex reformulation via dual form

Another convex formulation of optimal uncertainty quantification problems can be derived

from the Lagrange dual problem of (2.1). In this section, it is assumed that the gener-

alized inequality present in (2.2) is entry-wise inequality. In this case, the Lagrangian of

problem (2.1) can be written as

L =
∫
f(θ)D(θ) dθ − λT

∫
g(θ)D(θ) dθ − νT

∫
h(θ)D(θ) dθ

+
∫
λp(θ)D(θ) dθ + µ

(
1−

∫
D(θ) dθ

)
.

The latter two terms are due to fact that D is a probability distribution and hence D ≥ 0

and

E[1] =
∫
D(θ) dθ = 1.

The Lagrange dual can be derived as

sup
D
L =


µ f(θ)− λT g(θ)− νTh(θ) + λp(θ)− µ = 0 for all θ

∞ otherwise.

Combining the conditions on the Lagrange multipliers, i.e.,

λ � 0, λp(θ) ≥ 0, ∀θ,
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we can obtain the the dual problem as follows:

minimize
λ,ν,µ

µ (2.20)

subject to f(θ)− λT g(θ)− νTh(θ)− µ ≤ 0, ∀θ (2.21)

λ � 0,

which is a linear program with an infinite number of constraints (also known as a semi-infinite

program). The inequality constraint (2.21) implies that the optimal solution (λ∗, ν∗, µ∗)

must satisfy

µ∗ = max
θ

[
f(θ)− λ∗T g(θ)− ν∗Th(θ)

]
,

so that problem (2.20) can be rewritten by eliminating the inequality constraint (2.21) as

minimize
λ,ν

max
θ

[
f(θ)− λT g(θ)− νTh(θ)

]
(2.22)

subject to λ � 0.

It turns out that Theorem 2.14 can also be proved from the dual form (2.22). Similar to

Section 2.2, we will only prove for the case of p = 1 for notational convenience. Before

proceeding to the proof, we present the following lemma that will be used later.

Lemma 2.15. Given a set of real-valued functions {f (k)}Kk=1, the optimal value of the op-

timization problem

maximize
{pk,θk}Kk=1

K∑
k=1

pkf
(k)(θk) (2.23)

subject to
K∑
k=1

pk = 1, pk ≥ 0, k = 1, 2, . . . ,K

is maxθ maxk=1,2,...,K{f (k)(θ)}.

Proof. Denote the optimal value of problem (2.23) as OPT and

θ∗ = arg max
θ

max
k=1,2,...,K

{f (k)(θ)}, k∗ = arg max
k=1,2,...,K

{f (k)(θ∗)}.
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Then we have OPT ≥ f (k∗)(θ∗) = maxθ maxk=1,2,...,K{f (k)(θ)}, since

pk =


1 k = k∗

0 otherwise,
θk = θ∗, ∀k

is a feasible solution of problem (2.23), and its corresponding objective value is f (k∗)(θ∗).

On the other hand, suppose {p∗k, θ∗k}Kk=1 is the optimal solution of problem (2.23). Then we

have

OPT =
K∑
k=1

p∗kf
(k)(θ∗k)

≤
K∑
k=1

[
p∗k max

k=1,2,...,K

{
f (k)(θ∗k)

}]

=

(
K∑
k=1

p∗k

)
· max
k=1,2,...,K

{
f (k)(θ∗k)

}
= max

k=1,2,...,K

{
f (k)(θ∗k)

}
≤ max

k=1,2,...,K

{
max
θ
f (k)(θ)

}
= max

θ
max

k=1,2,...,K

{
f (k)(θ)

}
.

Therefore, we have OPT = maxθ maxk=1,2,...,K{f (k)(θ)}.

We are now ready to prove Theorem 2.14 from the dual form.

Proof. (Theorem 2.14) For convenience, we define the objective function in (2.22) as

L(λ, ν) = max
θ

[
f(θ)− λg(θ)− νTh(θ)

]
,

where λ is now reduced to a scalar because p = 1. Recall that

f(θ) = max
k=1,2,...K

f (k)(θ), g(θ) = min
l=1,2,...L

g(l)(θ).

Because λ ≥ 0, we have

L(λ, ν) = max
θ

max
k,l

{
f (k)(θ)− λg(l)(θ)− νTh(θ)

}
,
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and, by Lemma 2.15,

L(λ, ν) = max
{pkl,θkl}k,l

∑
k,l

pkl

[
f (k)(θkl)− λg(l)(θkl)− νTh(θkl)

]
,

where {pkl} need to satisfy
∑

k,l pkl = 1 and pkl ≥ 0 for all k and l. Similar to the previous

proof in Section 2.2, we introduce new variables γkl = pklθkl, so that

L(λ, ν) = max
{pkl,γkl}k,l

∑
k,l

[
pklf

(k)(γkl/pkl)− λpklg(l)(γkl/pkl)− νT pklh(γkl/pkl)
]
.

Next, because f (k) is concave and g(l) is convex for all k and l, and h is affine, if problem (2.22)

is feasible, then the optimal solution is a saddle point of

∑
k,l

[
pklf

(k)(γkl/pkl)− λpklg(l)(γkl/pkl)− νT pklh(γkl/pkl)
]
.

Therefore, problem (2.22) achieves the same optimal value as the following problem obtained

by exchanging the order of maximizing and minimizing:

maximize
{pkl,γkl}

min
λ≥0,ν

∑
k,l

[
pklf

(k)(γkl/pkl)− λpklg(l)(γkl/pkl)− νT pklh(γkl/pkl)
]

(2.24)

subject to
∑
k,l

pkl = 1, pkl ≥ 0, ∀k, l.

Using the fact that

min
λ≥0,ν

∑
k,l

[
pklf

(k)(γkl/pkl)− λpklg(l)(γkl/pkl)− νT pklh(γkl/pkl)
]

=


∑

k,l pklf
(k)(γkl/pkl)

∑
k,l pklg

(l)(γkl/pkl) ≤ 0 and
∑

k,l pklh(γkl/pkl) = 0

−∞ otherwise,

we can further rewrite problem (2.24) as the problem in Theorem 2.14.

From the semi-infinite dual form (2.20), it is also straightforward to discover another

case that permits a convex reformulation. This happens when θ ∈ R, and the reformulated

problem corresponds to a sum-of-squares (SOS) optimization problem. More details on SOS

optimization can be found in, e.g, [54].
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Theorem 2.16. If θ ∈ R, both g and h are polynomials in θ, and f = maxk=1,2,...,K f
(k)(θ)

where each f (k) is a polynomial in θ, then the problem

minimize
λ,ν,µ

µ (2.25)

subject to − f (k)(θ) + λT g(θ) + νTh(θ) + µ is SOS in θ, k = 1, 2, . . . ,K (2.26)

λ � 0

achieves the same optimal value as problem (2.20).

Proof. Use the fact that a univariate polynomial is nonnegative if and only if it can be

written as a sum of squares (cf. [14]).

The new problem (2.25) is an SOS optimization problem, which can be converted into a

semidefinite program (hence convex).

2.4 A simple example on the Gaussian distribution

The theory presented in the previous sections only requires that the function g in the con-

straint should be piecewise convex. Due to its greater flexibility in incorporating knowledge

about the distribution, the new formulation is expected to provide better quantification re-

sults than previous approaches that only incorporates information on the moments, e.g., by

Bertsimas and Popescu [10]. It is difficult to quantify exactly the improvement given by the

new formulation since the answer will depend on the objective f , the constraint g, and the

true (but unknown) probability distribution. In this section, we will present a case-specific

comparison using a simple example.

In the moment-based formulation, the constraint g is a vector consisting of powers of

the random variable θ, i.e.,

g(θ) =
[
θp1 θp2 . . . θpm

]
(2.27)

for certain integers p1, p2, . . . , pm. In our new formulation, we are allowed to use any piece-

wise concave functions. Therefore, one way to compare the two formulations is to add our

piecewise concave function of choice, denoted as gpwc, into g, so that the the function in
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the inequality constraint becomes [ g(θ) gpwc(θ) ], and ask how much improvement can be

obtained on the optimal value of the optimal uncertainty quantification problem (2.1) for

some objective f . However, we may lose convexity when solving the new optimal uncertainty

quantification problem because not all power functions are (piecewise) convex.

Instead, the approach used in this section is as follows. First choose a probability dis-

tribution D∗ from which the information constraints will be generated and revealed to the

optimal uncertainty quantification algorithm. Second, choose a single function that is piece-

wise affine and convex (therefore it is both piecewise convex and piecewise concave) and

compute Eθ∼D∗ [gpwc(θ)]. Finally, solve the optimization problem over the probability dis-

tribution D

maximize
D

Eθ∼D[gpwc(θ)] (2.28)

subject to Eθ∼D[g(θ)] = ĝ,

where g only incorporates moment information (i.e., in the form (2.27)). Note that the

notation used here is slightly different than that in the original optimal uncertainty quan-

tification (2.1) in that g is used in the equality constraints. If the optimal value of prob-

lem (2.28) is very close to the true value Eθ∼D∗ [gpwc(θ)], then it implies that gpwc will not

provide much additional information over g when used as an information constraint for any

optimal uncertainty quantification problem.

In our example, the distribution is the standard Gaussian distribution N (0, 1) and the

piecewise affine function is gpwc(θ) = |θ|. These choices are rather arbitrary and the sole

purpose is to show that there is indeed a noticeable difference between the new formulation

and previous ones. First we compute the true value Eθ∼D∗ [gpwc(θ)]. In this case, it can be

computed analytically as

Eθ∼D∗ [gpwc(θ)] = 2 · 1√
2π

∫ ∞
0

θe−
θ2

2 dθ =

√
2
π
≈ 0.799.

The odd-order moments of N (0, 1) are all zero and several even-order moments of N (0, 1)

are listed below:

p 1 2 3 4 5

E[θ2p] 1 3 15 105 945
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m 2 4 6 8 10 12
Optimal E[gpwc(θ)] 1.0000 1.0000 0.8881 0.8881 0.8561 0.8561

Table 2.1: Optimal value of problem (2.28) for different m with g(θ) =
[
θ θ2 · · · θm

]
.

For comparison, the true value of E[gpwc(θ)] =
√

2
π ≈ 0.799.

The optimal value of problem (2.28) can be obtained via convex optimization by making

use of Theorem 2.16. In this case, the objective function gpwc(θ) = |θ| = max{−θ, θ} and

the corresponding optimization problem is

minimize
ν,µ

µ

subject to θ + (g(θ)− ĝ)T ν + µ is SOS in θ

− θ + (g(θ)− ĝ)T ν + µ is SOS in θ.

From the above optimization problem, we can see that odd-order moments do not affect

the optimal value and therefore we can restrict the highest order in g(θ) to be even in

problem (2.28). In particular, we let

g(θ) =
[
θ θ2 · · · θm

]
and compute the optimal value for different choices of m. It can be seen from Table 2.1

that, even with the information of up to the 12th moment incorporated, the optimal bound

is still somewhat far away from the true value Eθ∼D∗ [gpwc(θ)]. Therefore, we can expect

that incorporating constraint such as gpwc(θ) = |θ| and, more generally, any piecewise con-

vex functions will provide additional benefits over solely moment constraints when solving

optimal uncertainty quantification problems.

2.5 Piecewise affine objective with first and second moment

constraints

In this section, we will focus on an important class of OUQ problems that fall into the

form appeared in Theorem 2.14. In particular, we require that: (1) the function f should

be piecewise affine and convex; (2) the constraints should only consist of first and second
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moments, i.e., the problem has the form:

maximize
D

Eθ∼D [f(θ)] (2.29)

subject to Eθ∼D[θ] = µ̂, covθ∼D[θ] � Σ̂,

where f(θ) = maxk=1,2,...,K(aTk θ+bk) for some ak, bk ∈ Rn (k = 1, 2, . . . ,K). The inequality

in the constraint is the usual partial ordering on matrices: for any A,B ∈ Rn×n, we have

A � B if and only if B −A is positive semidefinite. By introducing the function

gv(θ) = vT (θθT − µ̂T µ̂− Σ̂)v,

where v is any given vector in Rn, we are able to convert the constraint covθ∼D[θ] � Σ̂ to

an infinite number of constraints parameterized by v, so that problem (2.29) becomes

maximize
D

Eθ∼D [f(θ)] (2.30)

subject to Eθ∼D[θ] = µ̂,

Eθ[gv(θ)] ≤ 0, v ∈ Rn.

Since gv(θ) is convex (hence piecewise convex) in θ, problem (2.30) satisfies the requirements

in Theorem 2.14. Therefore, we can derive the corresponding convex optimization problem

by making use of Theorem 2.14. It should be mentioned that this form has also been

extensively studied by, e.g., Delage and Ye [19], but is derived in a different way as given by

Theorem 2.14.

From the definition of f , we know that the total number of Dirac masses is at most K

and therefore problem (2.29) can be reformulated as:

maximize
{pk,γk}

K∑
k=1

(aTk γk + bkpk)

subject to
K∑
k=1

pk = 1, pk ≥ 0, k = 1, 2, . . . ,K

K∑
k=1

γk = µ̂
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K∑
k=1

pkgv(γk/pk) ≤ 0, v ∈ Rn.

The last constraint, which is equivalent to

vT

[
K∑
k=1

γkγ
T
k /pk − (µ̂µ̂T + Σ̂)

]
v ≤ 0, v ∈ Rn,

can be rewritten back using matrix inequalities as

K∑
k=1

γkγ
T
k /pk � µ̂µ̂T + Σ̂. (2.31)

Finally, we introduce slack variables Γk and rewrite (2.31) as two constraints

K∑
k=1

Γk = µ̂µ̂T + Σ̂,

 Γk γk

γTk pk

 � 0, k = 1, 2, . . . ,K.

To summarize, problem (2.29) achieves the same optimal value as the problem

maximize
{pk,γk,Γk}

K∑
k=1

(aTk γk + bkpk) (2.32)

subject to
K∑
k=1

pk = 1, pk ≥ 0, k = 1, 2, . . . ,K

K∑
k=1

γk = µ̂,
K∑
k=1

Γk = µ̂µ̂T + Σ̂ Γk γk

γTk pk

 � 0, k = 1, 2, . . . ,K.

It can be verified that this is a convex optimization problem and, in fact, a semidefinite

program. As will be seen later, it is sometimes useful to solve instead the Lagrange dual

problem of (2.32), which can be derived by following the standard procedure. Since the

semidefinite cone is self-dual, the dual problem is also a semidefinite program:

minimize
Q,q,r

tr((Σ̂ + µ̂µ̂T )Q) + µ̂T q + r (2.33)
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subject to

 Q (q − ak)/2
(q − ak)T /2 r − bk

 � 0, k = 1, 2, . . . ,K, (2.34)

where Q is a n× n symmetric matrix, qk ∈ Rn, and r ∈ R. In fact, the matrix

 Q (q − ak)/2
(q − ak)T /2 r − bk


is the Lagrange multiplier of  Γk γk

γTk pk


in the primal problem (2.32).

For notational convenience, we introduce a index set K and rewrite the dual prob-

lem (2.33) as

minimize
Q,q,r

tr((Σ̂ + µ̂µ̂T )Q) + µ̂T q + r (2.35)

subject to

 Q (q − ak)/2
(q − ak)T /2 r − bk

 � 0, k ∈ K. (2.36)

For any given index set K and C = {(ak, bk)}k∈K, we denote the optimization problem (2.35)

as COUQ(K, C) and its optimal value as COUQ∗(K, C). The dependence of the problem on

µ̂ and Σ̂ is omitted. This notation also applies to any subset A ⊂ K. That is, COUQ(A, C)
denotes the optimization problem

minimize
Q,q,r

tr((Σ̂ + µ̂µ̂T )Q) + µ̂T q + r

subject to

 Q (q − ak)/2
(q − ak)T /2 r − bk

 � 0, k ∈ A.

2.6 Related work

The earliest origin of OUQ, or similar problems under different names, can be traced back

to the work on generalization of Chebyshev-type inequalities in the 1950s and 1960s by

Isii [32, 33, 34], Mulholland and Rogers [46], Godwin [25], Marshall and Olkin [45], and

Olkin and Pratt [51], among others. Aside from the formulation mentioned in the previous
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sections, there exist a few other cases for which convex optimization can be applied, as

recently shown by other researchers, including Bertsimas and Popescu [10], Popescu [55],

Lasserre [40], and Vandenberghe et al. [74]. In the following, we list two most representative

formulations.

Polynomial objective with moment constraints [16] (pp. 170) In this formulation,

the random variable θ ∈ R is univariate, the objective function f is a polynomial of even

order in θ, i.e., f(θ) =
∑2p

i=1 ciθ
i for some integer p, and the constraints are bounds on the

moments of θ:

mi ≤ E[θi] ≤ mi, i = 1, 2, . . . , 2p.

In this case, problem (2.1) becomes

maximize
D

Eθ∼D

[
2p∑
i=1

ciθ
i

]
(2.37)

subject to mi ≤ Eθ∼D[θi] ≤ mi, i = 1, 2, . . . , 2p.

Let xi = E[θi] (i = 0, 1, 2, . . . , 2p) be the moments and define a (2p + 1) × (2p + 1) Hankel

matrix H(x0, x1, . . . , x2p) such that Hij = xi+j−2. It can be shown that {xi}2pi=1 corresponds

to the moments of some distribution (or the limit of a sequence of distributions) if and

only if x0 = 1 and the Hankel matrix H(x0, x1, . . . , x2p) � 0. Therefore, the optimization

problem (2.37) can be cast as a semidefinite program

maximize
{xi}2pi=1

2p∑
i=1

cixi

subject to mi ≤ xi ≤ mi, i = 1, 2, . . . , 2p

H(1, x1, . . . , x2p) � 0.

Probability bound with moment constraints [10] In this formulation, the random

variable θ ∈ R, the objective function f = I(θ ≥ a) is the 0-1 indicator function for some

constant a, and the constraints are hard constraints on the moments of θ:

E[θi] = mi, i = 1, 2, . . . , p.
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In this case, problem (2.1) becomes

maximize
D

Eθ∼D [I(θ ≥ a)] = P(θ ≥ a) (2.38)

subject to Eθ∼D[θi] = mi, i = 1, 2, . . . , p.

Bertsimas and Popescu have shown that the optimal value of problem (2.38) can be obtained

from the following semidefinite program over y = {yr}pr=0 and X,Z ∈ Sp+1
+ :

minimize
y,X,Z

p∑
r=0

mryr

subject to (y0 − 1) +
p∑
r=1

aryr = x00∑
i,j : i+j=2l−1

xij = 0, l = 1, 2, . . . , p

∑
i,j : i+j=2l−1

zij = 0, l = 1, 2, . . . , p

(−1)l
p∑
r=l

yr

(
r

l

)
ar−l =

∑
i,j : i+j=2l

xij , l = 0, 1, . . . , p

l∑
r=0

yr

(
p− r
l − r

)
ar =

∑
i,j : i+j=2l

zij , l = 0, 1, . . . , p

X,Z � 0.

Other variants of this, e.g., when f = I(a ≤ θ ≤ b) (for some constants a, b) and/or θ ∈ R+,

can also be found in [10].

2.7 Conclusions

The chapter begins by introducing the formulation of the OUQ problem as an optimization

problem. Although the OUQ problem is infinite-dimensional and not immediately amenable

to numerical solution, previous work has shown that it is possible to solve instead an equiv-

alent finite-dimensional formulation that will yield the same optimal value. The main focus

of this chapter is to investigate cases in which the equivalent finite-dimensional problem is

not only solvable numerically, but can also be solved efficiently.

In particular, we show that convex formulation exists for several cases using two different
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approaches: from the primal form and dual form of the optimization problem. From both the

primal and the dual form, we show that the OUQ problem adopts a convex formulation if:

(1) the objective is piecewise concave, (2) the inequality constraint is piecewise convex, and

(3) the equality constraint is affine (Theorem 2.14). Support constraints can be incorporated

as well if the support is constrained to be a certain polytope. In the univariate case, we also

show from the dual form that the OUQ problem adopts a convex formulation if: (1) the

objective is piecewise polynomial and (2) the constraints are polynomial (Theorem 2.16).

A simple example using Gaussian distributions shows that the new cases presented in

this chapter allow more freedom in incorporating knowledge about the unknown probability

distribution and can potentially provide better quantification. In the end, we apply the

theoretical results to a very useful case of piecewise affine objective with first and second

moment constraints, whose computational aspect and applications will be discussed in detail

in the next chapter.
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Chapter 3

OUQ via Convex Optimization:
Computational Issues and
Applications

Despite the fact that there exists a class of optimal uncertainty quantification problems

where convex optimization can be applied, as seen from the previous chapter, there can still

be computational issues when the scale of the given problem becomes large. This chap-

ter addresses some of these computational issues. We restrict our discussion to problems

with piecewise affine objective and first and second moment constraints (introduced in Sec-

tion 2.5). There are two important measures on the scale of the problem: the number of

required Dirac masses and the dimension of the random variable. In the following, two

different ways of addressing the issues of scaling will be presented. One focuses on solving

many smaller problems to obtain the solution iteratively; another focuses on solving the large

original problem through massive parallelization. In the end, these efforts are demonstrated

by an application of energy storage placement evaluation in power grids.

Material from Section 3.1 and 3.3 has also been published in [29].

3.1 Iterative methods for polytopic canonical form

In this section, we generalize the piecewise affine objective function in the OUQ problem

from Section 2.5 to what will later be called the polytopic canonical form, which is equiva-

lent to piecewise affine functions except that the number of affine functions can potentially

be extremely large. Exact methods for solving problems in this form can be prohibitively

expensive. In order to partially alleviate this difficulty, we propose an iterative approximate
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method that only requires solving smaller problems at each iteration. The method is guar-

anteed to converge, and it often converges close to the true optimum for problems we have

tested.

3.1.1 The polytopic canonical form (PCF): Motivation and definition

In many applications, the objective function f in the OUQ problem is defined as the op-

timal value of another optimization problem. This can happen, for example, in two-stage

stochastic programming problems, where there exist two decisions made at different time

instances. Formally, a two-stage stochastic programming problem is the one that can be

expressed in the following form for some cost function J :

minimize
u1∈U1

Eθ[ min
u2∈U2(θ)

J(u1, u2, θ)].

For example, in the energy storage placement problem presented later in this chapter, we

need to deal with the problem of deciding the assignment of the amount of energy storage

at different nodes in a power grid. However, the corresponding objective function, in this

case the total savings of generation, will also depend on the particular choice of power flow

during the day after the assignment of storage is chosen. In this example, the assignment

of energy storage corresponds to u1, the decision that happens earlier in time, whereas the

choice of power flow corresponds to u2, the decision that happens later. The decision u2 is

sometimes called the recourse action and such problems are also referred to as stochastic

programming problems with recourse [66].

Throughout this chapter, we will not attempt to solve the two-stage stochastic program-

ming problem, but will rather focus on quantifying

Eθ[ min
u2∈U2(θ)

J(u1, u2, θ)]

for given u1, i.e., the objective function f in the OUQ problem is defined as

f(θ) = min
u2∈U2(θ)

J(u1, u2, θ).

Sometimes the dependence of u1 in J (and consequently in f) is dropped when it is clear

from the context. In particular, we will consider the case where the minimization of J over u2
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corresponds to a linear program. This implies that J is linear in u2 and the constraint set U2

is a polytope. In particular, we restrict the linear program to the following form:

minimize
u2

cTu2

subject to Au2 +Bθ = d

u2 � 0.

This is the same as the canonical form for a linear program, except that the equality con-

straint depends also on θ. Its Lagrange dual problem is

maximize
ν

νTd− νTBθ

subject to AT ν � c.

If the primal problem is feasible, then strong duality holds [16], which implies that f can

also be defined by the optimal value of the dual problem:

f(θ) = max
ν : AT ν�c

(νTd− νTBθ).

Note that the function inside the maximum is affine in θ and the coefficients belong to a

certain polytope. This motivates a more general definition for this type of f called the

polytopic canonical form.

Definition 3.1 (Polytopic canonical form). A function f : Rn → R is said to be in the

polytopic canonical form (PCF) if it can be written as

f(θ) = max
(a,b)∈P

{aT θ + b}, a ∈ Rn, b ∈ R (3.1)

for some polytope P of dimension (n+ 1).

Under such definition, f can be regarded as the optimal value of a family of linear

programs (LP) parameterized by θ:

maximize
a,b

aT θ + b subject to (a, b) ∈ P. (3.2)
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The PCF (3.1) subsumes the piecewise affine form

f(θ) = max
(ak,bk)∈C

{aTk θ + bk} for some C = {(ak, bk)}k∈K. (3.3)

For any f in the form (3.3) with C = {(ak, bk)}k∈K, we can choose P to be the convex hull

of C. This implies C ⊂ P, and hence

f(θ) = max
(ak,bk)∈C

{aTk θ + bk} ≤ max
(a,b)∈P

{aT θ + b}. (3.4)

The last inequality is always an equality, which can be shown by using a basic property of

linear programs as follows. Denote the vertices (extreme points) of P as V. We have V ⊆ C,
hence

max
(ak,bk)∈V

{aTk θ + bk} ≤ max
(ak,bk)∈C

{aTk θ + bk}. (3.5)

From the optimality of the extreme points, we know that any optimum for the linear pro-

gram (3.2) can always be attained at some (ak, bk) ∈ V, no matter how θ is chosen (cf. [11]),

i.e.,

max
(a,b)∈P

{aT θ + b} = max
(ak,bk)∈V

{aTk θ + bk}. (3.6)

Therefore, from (3.4)–(3.6), the equality

max
(a,b)∈P

{aT θ + b} = max
(ak,bk)∈C

{aTk θ + bk}

must hold and f(θ) = max(a,b)∈P{aT θ + b}, i.e., any f in the form (3.3) can be rewritten

in PCF. On the other hand, given any function f in PCF, we can also rewrite it in the

form (3.3) by setting C as the vertices of P. The benefit of using PCF is its flexibility. In

PCF, P can be defined either by its vertices, in which case it reduces to the form (3.3), or by

the intersection of half-spaces. The latter representation can sometimes be more compact,

e.g., for the storage placement problem in Section 3.3.

3.1.2 Exact iterative method method for PCF

For any OUQ problems in which f is in PCF, there is at least one practical issue in directly

solving the corresponding convex optimization problem (2.32) or its dual problem (2.33) after

rewriting f in the form (3.3). Obtaining the vertices V, usually through vertex enumeration
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algorithms (e.g. [8]), can be computationally demanding when the dimension of P is high or

the number of its composing constraints is large. In general, the cardinality of V, denoted
as |V|, grows exponentially with the dimension of P. This becomes prohibitively expensive

even for a moderate dimension and a moderate number of constraints. Even if V could be

obtained, solving the SDP (2.35) would also be expensive when |V| (hence |K|) is large.
To this end, we seek iterative methods that solve a smaller problem at each itera-

tion. Recall the definition of COUQ(K,V) for a certain index set K and coefficients V =

{(ak, bk)}k∈K:

minimize
Q,q,r

tr((Σ̂ + µ̂µ̂T )Q) + µ̂T q + r

subject to

 Q (q − ak)/2
(q − ak)T /2 r − bk

 � 0, k ∈ K.

In general, if we choose an arbitrary subset A ⊂ K and solve the problem COUQ(A,V)

to obtain its optimal value COUQ∗(A,V), we are only guaranteed to obtain a lower bound

for the optimal value of the original problem, i.e., we have COUQ∗(A,V) ≤ COUQ∗(K,V)

since the constraints corresponding to k ∈ K\A have been ignored. The inequality is tight

if and only if the optimal solution (Q∗, q∗, r∗) for COUQ(A,V) also satisfies the constraints

for k ∈ K\A, i.e.,

 Q∗ (q∗ − ak)/2
(q∗ − ak)T /2 r∗ − bk

 � 0, ∀k ∈ K\A. (3.7)

Based on this fact, one can use the following procedure to obtain COUQ∗(K,V), without

including all the constraints in K in the optimization problem at first. When the procedure

finishes, the optimal solution satisfies condition (3.7) and hence the corresponding optimal

value is COUQ∗(K,V).

1. Start with an initial index set A ⊂ K.

2. Obtain (Q∗, q∗, r∗) for the problem COUQ(A,V).

3. If (Q∗, q∗, r∗) satisfies (3.7), report (Q∗, q∗, r∗) as the solution to COUQ(K,V) and

terminate. Otherwise, there must exist a set B ⊂ K\A such that the condition (3.7)

is violated for k ∈ B. Set A := A ∪ B and repeat steps 2–3.
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3.1.3 Approximate iterative method for PCF

There are two issues with the procedure presented in the previous section. One issue is

that checking the condition (3.7) can be difficult, because the number of constraints to be

checked is |K|− |A| and is usually extremely large (on the same order as |K| assuming |A| is
small). The other issue is that, in the worst case, the index set A may continue to grow until

A = K so that the final problem to solve has the same complexity as the original problem.

Fortunately, when f can be expressed in PCF, we have a theorem that finds a violating

constraint in step 3 without exhaustively checking all the constraints in K\A. Moreover,

Corollary 3.5 will show that, once such a constraint is found, it can replace an existing con-

straint in A without affecting convergence of the method. This prevents A from growing and

avoids the possibility of solving a problem as large asA = K. This method of finding a violat-

ing constraint uses an important property of the solution to the problem COUQ(A,V). Re-

call from Section 2.5 that, when we obtain the optimal solution (Q∗, q∗, r∗) to COUQ(A,V),

we will also automatically obtain the corresponding optimal solution {p∗k, γ∗k}k∈A to the

primal problem, from which the optimal (discrete) probability distribution D∗ of the OUQ

problem can be computed: for every (p∗k, γ
∗
k), there is a Dirac mass located at θ∗k = γ∗k/p

∗
k

with probability p∗k.

Remark 3.2. Recall from the finite reduction property (Theorem 2.4) that the number of

Dirac masses required for realizing D∗ is at most the number of independent scalar equalities

in the constraint plus 1. In the case of problem (2.29), the number of independent scalar

equalities is N = n + n(n + 1)/2 (the factor 1/2 is due to the symmetry of Σ̂). Therefore,

we know the maximum number of required Dirac masses is min(|K|, N + 1). In practice,

depending on the problem, the actual number of nonzero Dirac masses can be even smaller

than min(|K|, N + 1).

The primal problem gives us another way to compute COUQ∗(A,V), i.e.,

COUQ∗(A,V) =
∑
k∈A

p∗k(a
T
k θ
∗
k + bk).

By using this alternative expression, Theorem 3.3 shows that the locations of the Dirac

masses {θ∗k}k∈A corresponding to a suboptimal solution (Q∗, q∗, r∗) can be used for finding

a violating constraint in K\A.
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Theorem 3.3. For a given set A, suppose (Q∗, q∗, r∗) is the optimal solution for COUQ(A,V)

and the set of Dirac masses of the optimal distribution is {θ∗k}k∈A. If for any u ∈ A, there
exists some v ∈ K such that

aTv θ
∗
u + bv > aTu θ

∗
u + bu, (3.8)

then the constraint  Q∗ (q∗ − av)/2
(q∗ − av)T /2 r∗ − bv

 � 0 (3.9)

is violated.

Proof. We prove the theorem by contradiction. Consider the problem COUQ(A ∪ {v},V).

Suppose the condition (3.9) is not violated, then (Q∗, q∗, r∗) would also be the optimal

solution for COUQ(A ∪ {v},V), which implies that COUQ∗(A ∪ {v},V) is

∑
k∈A

p∗k(a
T
k θ
∗
k + bk), (3.10)

for f(θ) = maxk∈A∪{v}{aTk θ + bk}. On the other hand, COUQ∗(A ∪ {v},V) should be at

least

p∗u(aTv θ
∗
u + bv) +

∑
k∈A\{u}

p∗k(a
T
k θ
∗
k + bk), (3.11)

which is attained under the same discrete distribution consisting of {(θ∗k, p∗k)}k∈A. The

quantity (3.11) will always be greater than (3.10), hence a contradiction.

Remark 3.4. Condition (3.8) is only sufficient. Hence, it is not guaranteed to find all the

violating constraints.

If f is in PCF, such (av, bv) for any given θu can be found by solving the LP

maximize
a,b

aT θu + b subject to (a, b) ∈ P.

If the optimal solution (a∗, b∗) for this LP satisfies

(a∗)T θu + b∗ > aTu θu + bu,

then we have successfully found (av, bv) = (a∗, b∗). Otherwise, no such (av, bv) exists.

Another useful by-product of this new way of finding a violating constraint is that the
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constraint corresponding to u can be removed fromA in the next iteration while still ensuring

that COUQ∗(A,V) is increasing.

Corollary 3.5. For A, V, u and v defined in Theorem 3.3, let A′(u, v) = (A\{u}) ∪ {v}.
Then

COUQ∗(A′(u, v),V) > COUQ∗(A,V).

Proof. For {θk}k∈A in the proof of Theorem 3.3,

COUQ∗(A′(u, v),V) ≥ pu(aTv θu + bv)

+
∑

k∈A\{u}

pk(aTk θk + bk).

The proof of Theorem 3.3 has shown that the right hand side is strictly greater than

∑
k∈A

pk(aTk θk + bk) = COUQ∗(A,V),

which completes the proof.

Due to Corollary 3.5, we can use a modified iterative method than the one proposed at

the beginning of this section. In particular, Step 3 can be changed to:

3’) Obtain {θk}k∈A and check if for any u ∈ A, there exists v ∈ K such that (av, bv)

satisfies (3.8). If not, then report (Q∗, q∗, r∗) as the optimal solution to the prob-

lem COUQ(K,V) and terminate. Otherwise, for every (u, v) satisfying (3.8), set A :=

A′(u, v) and repeat steps 2 and 3’.

This approximate method is guaranteed to converge. At each iteration, the new index set

A will give a non-decreasing optimal value for the corresponding optimization problem.

Therefore, this sequence of optimal values is monotone and, at the same time, must be

bounded by COUQ∗(K,V). By the monotone convergence theorem [18], this sequence,

consisting of real numbers, must have a limit, i.e., the method converges. This method is

not, in general, guaranteed to converge to the true optimum since there may still be violating

constraints when the algorithm exits (see Remark 3.4). However, the result will always be

a lower bound of the true optimal value, since some constraints in K have been removed

from the minimization problem COUQ(K,V). Therefore, we can run the same optimization



40

problem multiple times with different initial assignments of A and choose the highest among

all the results to get an improved approximation.

Choosing the size of A can be potentially important for this method to work properly,

since |A| remains constant over iterations. If its size is too small, A may not be capable

of including all the Dirac masses necessary for realizing the optimal distribution. One

possible choice of |A| is the maximum number of necessary Dirac masses, although this can

be conservative for a particular problem (see Remark 3.2). It remains an open question

whether knowing such conservatism a priori can help speed up the optimization procedure.

We now use a simple example to test this approximate method on small problems. In

these examples, we arbitrarily generate µ̂ ∈ Rn, Σ̂ ∈ Sn+, and choose P as the (n + 1)-

dimensional hypercube

{(a, b) : 0 � a � 1, 0 ≤ b ≤ 1},

where 1 and 0 denote vectors in Rn containing all ones and all zeros, respectively. For each n,

we compare the relative error between the exact solution from (2.35) and the approximate

solution. When computing the approximate solution, we choose |A| to be the maximum

number of necessary Dirac masses. Fig. 3.1 shows the results for n from 1 to 16. The choice

of n is limited by the computational time of the exact method (for n = 16, it takes about 18.6

hours on an Intel Xeon 3.00 GHz workstation). To obtain statistics about the approximate

method, we perform 100 trials for each n, and compute the 10% and 90% quantile of the

errors. It can been seen that most of the errors are within 5%.
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Figure 3.1: Relative errors of the approximate method. Blue crosses: relative errors. Red bars:
10% and 90% quantiles of the relative errors.
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3.2 Parallel solution via alternating direction method of mul-

tipliers (ADMM)

This section continues the effort on scaling up the optimization problem (2.32) and/or (2.33)

for the optimal uncertainty quantification problem presented in Section 2.5. Rather than

exploiting the structure in the cost function (i.e, polytopic canonical form), this section will

focus on the structure in the optimization problem itself and attempts to devise algorithms

that are inherently parallelizable in order to mitigate the scaling issues.

Aside from the issue of having a large number of Dirac masses (e.g., large K), the

dimension of the random variable can also be problematic as it becomes large. As mentioned

earlier, both the optimization problem (2.32) and its dual (2.33) are semidefinite programs.

Many optimization solvers, both commercial and free (e.g., SeDuMi [70] and SDPT3 [71, 73]),

use second-order methods such as Newton’s method or its variants and their complexity for

each iteration grows as O(n6) if no structure in the problem is exploited, where n is the

dimension of the semidefinite matrix. This complexity has to do with the fact that an n×n
matrix has O(n2) variables and the complexity of an iteration in Newton’s method is cubic

in the number of variables since it requires solving a system of linear equations in order to

obtain the descent direction [50]. Moreover, there can potentially be insufficient memory as

the number of variable grows if the linear equations are stored in a naive form (as done by

many optimization solvers).

To this end, this section investigates how first-order methods can be applied in this case.

First-order methods, despite their slower convergence rate, are less expensive per iteration

and can be parallelized more easily than second-order methods. In particular, the alternating

direction method of multipliers (ADMM) is chosen due to its mild requirement on the cost

function and better convergence guarantees.

3.2.1 The alternating direction method of multipliers (ADMM)

The alternating direction method of multipliers (ADMM), or similar methods under different

names, can be traced back to the 1970s [21], or even as early as the 1950s. It has been recently

revived due to the demand in solving problems in machine learning and statistics with large

data sets. Interested readers can refer to Boyd et al. [15] for a recent comprehensive review

on ADMM.
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ADMM solves optimization problems with equality constraints in the form

minimize
x,z

f(x) + g(z) (3.12)

subject to Ax+Bz = c.

We require that both f and g should be convex functions so that the optimization prob-

lem (3.12) is convex. ADMM uses the augmented Lagrangian of problem (3.12) as given

below:

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2) ‖Ax+Bz − c‖2

where y is the dual variable corresponding to the equality constraints and ρ > 0 is the penalty

parameter. The augmented Lagrangian Lρ can be viewed as the (regular) Lagrangian of a

modified optimization problem with a slightly different objective function:

minimize
x,z

f(x) + g(z) + (ρ/2) ‖Ax+Bz − c‖2 (3.13)

subject to Ax+Bz = c.

The term (ρ/2) ‖Ax+Bz − c‖2 vanishes when the equality constraint is satisfied. Therefore,

problem (3.13) achieves the same optimum as the original problem (3.12). This implies

that we can find the optimal solution to problem (3.12) by working with the augmented

Lagrangian. This has several numerical benefits including better convergence guarantees

(see [15] for details).

From optimization theory, we know that problem (3.13) (and hence problem (3.12)) can

be solved by solving the unconstrained problem that minimizes Lρ(x, z, y) when the value of

the dual variable y is chosen as y∗, the optimal value of the dual problem. ADMM proceeds

by searching for y∗ iteratively using dual ascent: At iteration t + 1, the primal variables x

and z are first updated by minimizing Lρ(x, z, y) for the current value of yt. In particular,

ADMM updates x and z separately (hence the name alternating direction) by solving two

sequential unconstrained optimization problems:

xt+1 := arg min
x
Lρ(x, zt, yt), (3.14)

zt+1 := arg min
z
Lρ(xt+1, z, yt). (3.15)
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After the primal variables x and z are updated, ADMM updates the dual variable y by using

dual ascent:

yt+1 := yt + ρ(Axt+1 +Bzt+1 − c).

Note that the step size is the same as the penalty parameter ρ.

Partitioning the primal variables into two groups x and z gives flexibility in exploiting

structures in the optimization problem. For many applications, the x-update (3.14) and/or

the z-update (3.15) can be often be parallelized if the primal variables are grouped prop-

erly. In certain cases, these updates can even be computed in closed form (e.g., when the

minimizations in (3.14) and/or (3.15) are least-squares). Readers can refer to [15] for exam-

ples on partitioning techniques. In general, the way of partitioning is problem dependent

and usually requires careful thoughts. In many cases, the given problem is not even in

the form (3.12) and additional steps, such as introducing slack variables, are needed before

applying ADMM.

3.2.2 ADMM on the convex optimal uncertainty quantification problem

In the optimal uncertainty quantification problem presented in Section 2.5, we are given the

estimated mean µ̂ and covariance Σ̂, and cost function

f(θ) = max
k∈K
{aTk θ + bk},

and the task is to solve the optimization problem (2.33), which is rewritten below in a more

compact notation:

minimize
P

tr(Σ̃P ) (3.16)

subject to P − Sk � 0, k ∈ K, (3.17)

where

Σ̃ =

 Σ̂ + µ̂µ̂T µ̂

µ̂ 1

 , Sk =

 0 ak/2

aTk /2 bk

 .
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In order to apply ADMM, we introduce slack variables {Qk}k∈K and rewrite problem (3.16)

as a problem with equality constraints:

minimize
P,{Qk}

tr(Σ̃P ) +
∑
k

I(Qk, Sk)

subject to Qk = P, k ∈ K,

where

I(Qk, Sk) =


0 Qk − Sk � 0,

∞ otherwise

is the indicator function for incorporating the inequality constraints (3.17). We group the

variables such that x = {Qk}k∈K and z = P . In this case, the augmented Lagrangian of

this problem becomes

Lρ({Qk}, P, {Zk}) = tr(Σ̃P ) +
∑
k∈K

I(Qk, Sk) +
∑
k∈K

tr(Zk(Qk − P )) + (ρ/2)
∑
k∈K
‖Qk − P‖2 ,

where {Zk}k∈K are the dual variables. For every iteration of ADMM, the update steps are:

x-update During the x-update, the variables P = P t and {Ztk} are fixed and {Qt+1
k } is

obtained by solving the minimization problem

{Qt+1
k } := arg min

{Qk}
Lρ({Qk}, P t, {Ztk}). (3.18)

In this case, the augmented Lagrangian decomposes over {Qk}:

Lρ({Qk}, P t, {Ztk}) =
∑
k∈K

Lρ,k(Qk, P t, Ztk) + r(P t, {Ztk}),

where

Lρ,k(Qk, P t, Ztk) = I(Qk, Sk) + tr(ZtkQk) + (ρ/2)
∥∥Qk − P t∥∥2

,

r(P t, {Ztk}) = tr(Σ̃P t)−
∑
k∈K

tr(ZtkP
t).



45

Therefore, the minimization step (3.18) can be computed separately for each Qt+1
k as

Qt+1
k := arg min

Qk
Lρ,k(Qk, P t, Ztk).

This is equivalent to solving the constrained least-squares problem

minimize
Qk

tr(ZtkQk) + (ρ/2)
∥∥Qk − P t∥∥2

subject to Qk − Sk � 0.

Its solution Qt+1
k can be obtained by projecting the solution Q̃t+1

k of the unconstrained

least-squares problem

minimize
Qk

tr(ZtkQk) + (ρ/2)
∥∥Qk − P t∥∥2

onto the constraint set {Qk : Qk − Sk � 0}, i.e.,

Qt+1
k = Sk + ΠSn+1

+
(Q̃t+1

k − Sk),

whereas solution of the unconstrained least-squares problem can obtained in closed form as

Q̃t+1
k = P t − Ztk/ρ.

By combining the results, we have

Qt+1
k = Sk + ΠSn+1

+
(P t − Ztk/ρ− Sk)

as the rule for x-update.

z-update During the z-update, P t+1 is obtained by solving the minimization problem

P t+1 := arg min
P
Lρ({Qt+1

k }, P, {Ztk})

= arg min
P

[
tr(Σ̃P )−

∑
k∈K

tr(ZtkP ) + (ρ/2)
∑
k∈K

∥∥Qt+1
k − P

∥∥2

]
.
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This is an unconstrained least-squares problem over P and its solution can be computed in

closed form as

P t+1 =
1
|K|

[∑
k∈K

Qt+1
k +

(∑
k∈K

Ztk − Σ̃
)
/ρ

]
,

Dual ascent Finally, the dual ascent update for the dual variables {Zk}k∈K can also be

carried out separately for each Zk:

Zt+1
k := Ztk + ρ(Qt+1

k − P t+1).

The step that dominates computational complexity is the projection onto Sn+1
+ when

updating {Qk}. It requires a total number of |K| eigenvalue decompositions of an (n + 1)-

dimensional matrix, each of which has the complexity of O(n3) [72]. However, note that the

updates on {Qk} are independent for different k and hence can be carried out in parallel,

which would give potential speed improvement when parallel computing is available.

Table 3.1 compares the computational time of SeDuMi (interfaced via YALMIP [43]) and

ADMM for solving problem (3.16). The computation is done in MATLAB on a personal

laptop equipped with an Intel Core 2 Duo 2.4 GHz processor and 4 GB of memory. In the

case of ADMM, no parallelization is implemented. All data, including the coefficients of

the cost function {ak, bk}k∈K, mean µ̂, and covariance Σ̂ are chosen arbitrarily. Note that

when the problem size is extremely small, e.g., when n = 2 and |K| = 3 , the CPU time

measurements may not reflect the true time complexity of the optimization algorithm due to

other overhead involved in computation. It can be seen from the comparison that, for small

to medium sized problems, SeDuMi outperforms ADMM in computational time due to the

fact that it is a second-order method and requires fewer iterations to converge. However,

as problem size grows, ADMM becomes more favorable, especially for cases where |K| is
small, but n is large. In the case of n = 150, SeDuMi even failed to compute the optimal

solution due to insufficient memory. It should also be noted that, in the extremely case of

unlimited number of computational units, a factor of 1/|K| reduction in computational time

of ADMM can be expected if parallelization is implemented.
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n |K| SeDuMi CPU time (s) ADMM CPU time (s)
2 3 0.38 0.08
20 30 2.96 5.56
50 100 318.9 318.2
100 2 304.9 0.45
150 2 out of memory 1.26

Table 3.1: Computational time of SeDuMi vs. ADMM for solving convex optimal uncertainty
quantification problems with first and second moment constraints.

Figure 3.2: Time traces of wind generation on five different days. (Source: AESO)

3.3 Application: Energy storage placement evaluation in power

grids

In this section, we introduce the storage placement evaluation problem in power grids as

one application of OUQ. One of the major efforts in power systems research is to increase

the penetration level of renewable energy in power grids. Unlike conventional generation,

renewable energy sources (e.g., wind, see Fig. 3.2) tend to suffer from random fluctuations

over time and can lead to reliability issues. Placing storage devices in power grids (Fig. 3.3)

is considered a promising solution to mitigating the effect of random fluctuations in the

renewables [59], and related problems were recently studied in, e.g., [24, 68]. In this context,

it is important to evaluate the ramifications of a given storage placement plan [31]. It is

shown that this evaluation problem can be converted into PCF using Lagrange duality and

solved within the framework of convex OUQ. Later in this section, numerical results for the

storage placement problem are presented, where a total of three scenarios are considered.

For the first two scenarios, we use simple network configurations, in particular, 1-bus and 2-

bus networks with synthetic renewable generation data. The purpose of these examples is to

show some insight into the differences between deterministic analysis and the OUQ analysis.

For the third scenario, we use the IEEE 14-bus test case as a more practical configuration
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conventional 
power plant

wind power

+

storage devices

+

Figure 3.3: Integration of wind generation into power grids. Adding storage devices is considered
as a promising solution to mitigating the random fluctuation of wind generation.

and data from real renewable generation. Through this example, we aim to demonstrate

that the method is capable of analyzing a practical system.

3.3.1 A simple power grid model with energy storage

We model a power grid as a discrete-time dynamical system on a finite graph (N , E) with

time indices T = {1, 2, . . . , T}, which is illustrated in Fig. 3.4. The vertices N are also called

buses. For simplicity, we use the shorthand notation x to denote the vectorization of any set

of variables {xi(t)}i∈N ,t∈T . At time t, we refer to gi(t), di(t), and ri(t) as power generation

from renewables, user consumption, and charge rate of storage devices at bus i. As a

convention, if the storage devices are being charged, then ri(t) > 0. Under this convention,

the total local net power consumption becomes

di(t)− gi(t) + ri(t).

Due to physical constraints, the storage level at bus i must stay between 0 and the maximum

capacity Ei, i.e.,

0 ≤
t∑

τ=0

ri(τ) ≤ Ei, ∀i ∈ N , t ∈ T ∪ {0}.

In an abuse of notation, we use ri(0) to denote the initial level of storage at bus i. Aside

from local generation and consumption, power can also flow between adjacent buses. For
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Figure 3.4: Model of power grid with energy storage. At any time t and for each bus (node) i,
there is an associated net demand δi(t), and the storage device can be charged/discharged with
rate ri(t). Between any two buses i and j, the power flow is proportional to the difference in
their voltage angles [αi(t)− αj(t)].

any neighboring buses i and j (i.e., (i, j) ∈ E), the power flow from i to j is given by

Bij(αi(t)− αj(t)),

where Bij is the susceptance of the transmission line between i and j, and αi(t) is the

voltage angle of bus i. Here we use a DC power flow model for simplicity (cf. [56] for its

applicability). A transmission line can only support a limited amount power flow Qij ≥ 0,

which imposes the constraint

|Bij [αi(t)− αj(t)]| ≤ Qij , ∀(i, j) ∈ E , t ∈ T .

In summary, the total net power consumption at bus i is

Pi(t) = δi(t) + ri(t) +
∑

(i,j)∈E

Bij [αi(t)− αj(t)],

where δi(t) , di(t) − gi(t). If Pi(t) ≤ 0, the consumption is covered by all the sources,

including local sources and and power flow from adjacent buses. However, if Pi(t) > 0, the

unmet portion must be matched by additional power sources, usually from the so-called

spinning reserves in the form of conventional generation.

For simplicity, we assume that the operating cost only depends on the amount of power

drawn from spinning reserves. All the other factors, including renewable usage, charg-

ing/discharging, and power transmission are assumed to incur no cost. This simplification

can potentially be crude. For example, storage devices such as chemical batteries often have



50

a finite number of charging cycles, so charging/discharging cannot be treated as entirely

free. These potential refinements will be left for future work. Under this assumption, at

time t, the cost for bus i can be modeled as a hinge cost

Ji(t) = [Pi(t)]+ , max{Pi(t), 0},

and the operating cost for the entire grid over time is

J =
∑
i∈N

T∑
t=1

Ji(t).

Suppose δi(t) is known, for a given placement of storage {Ei}i∈N , one can choose how to

operate the storage devices and transmit power over the network to minimize the operating

cost by solving the problem

minimize
r,α

J(δ, r, α) (3.19)

subject to |Bij [αi(t)− αj(t)]| ≤ Qij , ∀(i, j) ∈ E , t ∈ T

0 ≤
t∑

τ=0

ri(τ) ≤ Ei, i ∈ N , t ∈ T ∪ {0}

T∑
τ=1

ri(τ) ≥ 0, i ∈ N .

The last constraint is added in order to prevent one from minimizing the operating cost by

setting a large initial level of charge (which in practice will incur cost). This optimization

problem is always feasible, since r = 0 and α = 0 will satisfy all the constraints.

We would like to quantify the worst-case operating cost under a given placement of

storage {Ei}. We treat δi(t) as the uncertainties for capturing the stochasticity in both

renewable generation and user demand. There are two candidate formulations due to the

extra freedom in optimizing the power flow by choosing r and α.

• maxδ∼d Eδ[minr,α J(δ, r, α)]: This is the “clairvoyant” worst-case analysis. It assumes

that power flow optimization will have full knowledge about the actual instantiation

of δ.

• minr,α[maxδ∼d Eδ[J(δ, r, α)]]: This is the “conservative” worst-case analysis. It assumes
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a fixed plan for power flow, independent of the actual instantiation of δ.

In this work, we choose the first formulation because the time horizon under consideration

will be 24 hours, and one normally has good knowledge about δ within this horizon (into

the future) from forecast, which has been a common practice for many system operators.

The second formulation seems too conservative by abandoning any real-time control on the

power flow. Formally, the OUQ problem becomes

maximize
d

Eδ∼d [G(δ)]

subject to Eδ∼d[δ] = µ̂, covδ∼d[δ] � Σ̂,

where G(δ) is the optimal value of the optimization problem (3.19) for a given δ.

3.3.2 Conversion into PCF

Unfortunately, the function G is not in PCF. However, it is possible to convert G into PCF

through Lagrange duality. By introducing slack variables, the optimization problem (3.19)

can be rewritten as a linear program, i.e.,

minimize
r,α,Ji(t)

∑
i∈N

T∑
t=1

Ji(t)

subject to Bij [αi(t)− αj(t)] ≤ Qij , ∀(i, j) ∈ E , t ∈ T

Bij [αi(t)− αj(t)] ≥ −Qij , ∀(i, j) ∈ E , t ∈ T

0 ≤
t∑

τ=0

ri(τ) ≤ Ei, i ∈ N , t ∈ T ∪ {0}

T∑
τ=1

ri(τ) ≥ 0, i ∈ N

Ji(t) ≥ 0

Ji(t) ≥ δi(t) + ri(t) +
∑
j∈N(i)

Bij [θi(t)− θj(t)],

whose Lagrange dual problem

maximize
λ,ν

∑
i∈N

T∑
t=1

λ
(1)
i (t)δi(t)−

∑
i∈N

T∑
t=0

λ
(2)
i (t)Ei −

θmax

2

∑
(i,j)∈E

T∑
t=1

(λ(3)
ij (t) + λ

(3)
ji (t))
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− 1
2

∑
(i,j)∈E

T∑
t=1

Qij(λ
(4)
ij (t) + λ

(4)
ji (t)) (3.20)

subject to 0 ≤ λ(1)
i (t) ≤ 1, λ

(2)
i (t) ≥ 0, i ∈ N , t ∈ T (3.21)

λ
(3)
ij (t), λ(4)

ij (t) ≥ 0, (i, j) ∈ E , t ∈ T (3.22)

λ
(2)
i (t) ≥ λ(1)

i (t+ 1)− λ(1)
i (t) i ∈ N , t ∈ T \{T} (3.23)

λ
(2)
i (T ) ≥ −λ(1)

i (T )− ν, i ∈ N (3.24)

λ
(2)
i (0) ≥ λ(1)

i (1) + ν, i ∈ N (3.25)∑
(i,j)∈E

[
Bij(λ

(1)
i (t)− λ(1)

j (t)− λ(4)
ij (t) + λ

(4)
ji (t))

− λ(3)
ij (t) + λ

(3)
ji (t)

]
= 0, i ∈ N , t ∈ T . (3.26)

is also a linear program. It can be seen that the dual (3.20) has the form (3.2) for a = λ(1),

b = −
∑
i∈N

T∑
t=0

λ
(2)
i (t)Ei −

θmax

2

∑
(i,j)∈E

T∑
t=1

(λ(3)
ij (t) + λ

(3)
ji (t))

− 1
2

∑
(i,j)∈E

T∑
t=1

Qij(λ
(4)
ij (t) + λ

(4)
ji (t)),

and the polytope P defined by constraints (3.21)-(3.26). Since the primal problem is a

linear program and always feasible, we know that strong duality holds, which implies that

the dual problem gives the same optimal value as the primal problem. In other words, G

can be redefined by the dual problem and hence can be rewritten in PCF.

3.3.3 Numerical results: 1-bus and 2-bus networks

First we consider a network consisting of one isolated bus, i.e., |N | = 1. This setting has

the benefit of isolating any influence by power transmission. We will fix µ̂ and focus on the

effect of Σ̂. The number of time slices is chosen as 5 so that the exact method can be used.

Fig. 3.5a compares the results from (1) deterministic analysis, which assumes that δ follows

µ̂ deterministically, (2) OUQ analysis with Σ̂ = (0.1)2I (I is the identity matrix), and (3)

OUQ analysis with Σ̂ = (0.4)2I. All the curves follow the law of diminishing returns, i.e.,

adding storage will become less helpful in reducing the operating cost if some storage has

already been in place. The differences are in the slope of the curves. For the deterministic
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analysis, there is a hard threshold after which adding storage will have zero reduction on

the cost, whereas the same hard threshold does not appear for the OUQ analysis. This

trend is not difficult to understand for the deterministic case: the operating cost cannot

be made lower than the cumulative net demand over the entire time horizon, since adding

storage does not contribute to power generation. For the results from the OUQ analysis,

lower variance will cause a steeper slope. This can be understood by treating the case with

lower variance as closer to the deterministic case, which has the steepest slope among all

the curves.

The cost-storage curve is not only affected by the variance (diagonal entries of Σ̂), but

also by the (time) correlation (off-diagonal entries of Σ̂). Fig. 3.5b compares the results

of no correlation and positive correlation, where Σ̂ is generated from a Laplace covariance

function (also known as covariance kernel): Σ̂ij = exp(|i− j|/τ) for some constant τ . It can

be seen that the presence of positive correlation leads to a slower decrease in the cost. This

is expected, since the cost is dominated by the “bad event” during which the net demand

at all time instances becomes higher than normal simultaneously, and this is more likely to

happen with positive time correlation.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

Storage

E
xp

ec
te

d 
co

st

 

 

deterministic

var = 0.12

var = 0.42

(a)

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

Storage

E
xp

ec
te

d 
co

st

 

 

no corr.
postive corr.

(b)

Figure 3.5: Results for 1-bus network. (a) Effect of variance. (b) Effect of (positive) time
correlation.

The purpose of the 2-bus example is to examine the effect of power flow, which can

potentially make the operating cost less sensitive to the locations of storage. In the extreme

case, if an infinite amount of power is allowed to flow across a fully connected network, then

any storage placement will give the same operating cost. For a 2-bus network, there can be
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Figure 3.6: Results for 2-bus network. (a) Effect of transmission capacity Qmax. (b) Effect of
total storage Etot.

only one transmission path, and we study how the maximum power flow Qmax of this path

affects the operating cost. The two buses are set to be identical, except for their covariance

matrix: Σ̂1 = (0.1)2I and Σ̂2 = (0.4)2I. Fig. 3.6a compares the results for three power flow

limits: Qmax = 0 (the two buses are isolated), 0.1, and 0.2. In the simulation, the total

storage Etot is fixed, and the operating cost is plotted against E1, the storage assigned to

bus 1. As expected, as Qmax becomes larger, the distribution of storage between the two

buses becomes less important.

We also study the effect of total storage Etot on the distribution between the two buses.

Fig. 3.5b shows the operating cost as a function of E1/Etot, the relative portion of storage

for bus 1. As Etot increases, assigning more portion to bus 2 becomes more beneficial. This

can be understood from the diminishing return curves in Fig. 3.5a. Recall that bus 1, whose

local demand has a lower variance, enters the diminishing return regime more quickly than

bus 2. Therefore, when there has already been enough storage for bus 1, i.e., Etot is large

enough, it starts to become more helpful to assign more storage to bus 2, which has not yet

entered the diminishing return regime.

3.3.4 Results: IEEE 14-bus network with renewable generation

In this more practical example, we choose the IEEE 14-bus test case [1] as the network

model. The IEEE 14-bus system, which is shown in Fig. , can be viewed as an abstraction

of a portion of the Midwestern US transmission grid. It consists of 5 generator buses and 9
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Figure 3.7: The IEEE 14-bus power systems test case. It consists of 5 generator buses and 9
load-only buses.

load-only buses. Daily load and generation profiles are created using the data set from [68].

For simplicity, we treat user demand as deterministic and assume that uncertainty only

comes from generation, since uncertainty in generation often dominates that in user demand.

The time horizon is set to be 24 hours and divided into 8 time slices, which gives 40 random

variables in total. The sample mean µ̂ is also obtained from the data set in [68], whereas

the sample covariance Σ̂ is computed from the historical data provided by the Alberta

Electric System Operator (AESO) [3], since the number of samples in the former data set

is insufficient to compute Σ̂. For compatibility, the generation data from AESO is scaled

accordingly to match the data from [68].

Given µ̂, we can solve for the optimal storage placement strategy when there is no

random fluctuation in generation, i.e., the generation profile always follows µ̂. This particular

placement is then evaluated using the OUQ analysis. Due to the size of the problem, the

approximate method in Section 3.1.2 is used. Similar to the 1-bus and 2-bus examples,

correlation affects the result in the 14-bus example as well. Fig. 3.8a shows the results

for (1) deterministic analysis assuming no random fluctuation, (2) OUQ analysis, and (3)

sample average approximation (with 2σ error bars). Since the strategy under evaluation is

the optimal placement in the absense of random fluctuation, the deterministic analysis gives

the most optimistic prediction, i.e., a lower bound for the expected cost. The OUQ analysis,

despite the fact that it considers the worst-case distribution, is surprisingly close to the
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sample average. Although the OUQ analysis should in principle give an upper bound for the

expected cost, its curves does not always stay above the sample averge, especially for large

total storage. This is presumerably due to two reasons. First, the OUQ analysis is performed

using the approximate method, which does not guarantee to yield an upper bound. This is

a major weakness of the approximate method, and needs further investigation in the future.

Second, the sample average can deviate from the true expected value due to finite samples.

Since results from the OUQ analysis still fall within the confidence interval of the sample

averge, it is believed that the OUQ analysis may still be close to the true upper bound of

the expected cost. On the other hand, Fig. 3.8b compares the results with the deterministic

worst-case analysis, which computes the cost under the worst single deterministic event

by ignoring all the moment constraints. For this example, the worst case corresponds to

constant zero renewable generation, since generation must stay nonnegative. The OUQ

results are considerably less conservative than the deterministic worst-case analysis, which

gives a constant cost of 48.13.
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Figure 3.8: Cost evaluation using different models of uncertainty for the IEEE 14-bus case with
real wind generation.

3.4 Conclusions

This chapter addresses some computational issues in solving optimal uncertainty quantifi-

cation problems with piecewise affine objective and first and second moment constraints,

which were introduced in Section 2.5. For analyzing practical systems, the scale of the
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problem may become large: either the number of required Dirac masses or the dimension of

the random variable. Two different approaches to the scaling issues are presented. One fo-

cuses on the case where the objective function can be expressed in polytopic canonical form

(PCF), where the number of Dirac masses becomes exponentially large. This corresponds to

solving a semidefinite program with exponentially many constraints. Since a majority of the

constraints are inactive, our method is to search (locally) for the inactive constraints itera-

tively with the purpose of solving a much smaller problem with only the active constraints.

Although updating the candidate set for the inactive constraints is generally difficult, it has

been shown that this procedure only requires solving a linear program when the objective

function is in PCF. Another focus is on solving the large original problem through mas-

sive parallelization. In particular, we investigate the application of the alternating direction

method of multipliers (ADMM), which is a parallelizable first-order method. It has been

shown that ADMM outperforms popular second-order optimization solvers such as SeDuMi

when the problem size becomes large. In the end, we illustrate the application of these

numerical methods in an example of energy storage placement evaluation in power grids.

It shows that optimal uncertainty quantification can be readily applied to medium-sized

practical systems using convex optimization with proper numerical implementations.
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Chapter 4

OUQ via Convex Relaxation: An
Example on Hoeffding’s Inequality

This chapter applies the optimal uncertainty quantification framework to a setting that is

usually presented along with Hoeffding’s inequality [30], which is an important concentration

inequality used in many areas. In this setting, the task is to obtain a tight bound for

the probability that the sum of independent random variables deviates from the sum of

their means. Although a tight bound is often nontrivial to obtain, Hoeffding’s inequality

is capable of giving a loose bound using a simple expression. In certain cases, however,

especially when the number of samples is small, it is often desirable to obtain a tight bound

to make the best use of the limited samples. This problem falls into the optimal uncertainty

quantification framework and can be converted into an equivalent finite-dimensional problem

through reduction. Unlike the problems presented in previous chapters, the corresponding

optimization problem is equivalent to a number of non-convex polynomial optimization

problems, for which there are no efficient numerical algorithms. However, using convex

relaxation techniques such as sums-of-squares, it is still possible to obtain a valid bound

that may be better than what is given by Hoeffding’s inequality. In fact, numerical results

show that the bound obtained from convex relaxation is tight in many cases. Another

difficulty is that the number of polynomial optimization problems is usually quite large. By

carefully exploiting structures in the problem such as symmetry, we show that it is possible

to greatly reduce the number of polynomial optimization problems.
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4.1 Hoeffding’s inequality and its related OUQ problem

Consider a collection of n bounded independent random variables X1, X2, . . . , Xn. Without

loss of generality, we assume that each Xi ∈ [0, 1] almost surely. We are interested in

obtaining an upper bound for

P

(
n∑
i=1

Xi ≥
n∑
i=1

EXi + t

)
. (4.1)

Such quantity can be used to obtain an upper limit of the confidence interval of the sample

mean
∑n

i=1Xi/n, which widely used in many areas such as adaptive stochastic optimiza-

tion [7, 17]. One such upper bound can be obtained through Hoeffding’s inequality as

P

(
n∑
i=1

Xi ≥
n∑
i=1

EXi + t

)
≤ exp(−2t2/n) = exp(−2nt̄ 2), t̄ = t/n. (4.2)

If X1, X2, . . . , Xn are not only independent, but also identically distributed, then as n→∞,

we know from the central limit theorem that the random variable

1√
n

(
n∑
i=1

Xi −
n∑
i=1

EXi

)

converges in distribution to the normal distribution N (0, σ2), where σ2 is the variance of Xi

(for any i). In other words, we have

lim
n→∞

P

(
1√
n

(
n∑
i=1

Xi −
n∑
i=1

EXi

)
≥ z
)

= 1− Φ(z/σ),

where Φ is the cumulative probability distribution of the standard normal distribution

N (0, 1). Letting z =
√
nt̄, we have

lim
n→∞

P

(
1
n

(
n∑
i=1

Xi −
n∑
i=1

EXi

)
≥ t̄
)

= 1− Φ(
√
nt̄/σ).

Using the asymptotic approximation of (1− Φ) [5]:

lim
x→∞

[1− Φ(x)] =
1√
2πx

exp(−x2/2),
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we have

lim
n→∞

P

(
1
n

(
n∑
i=1

Xi −
n∑
i=1

EXi

)
≥ t̄
)

=
σ

t̄
√

2πn
exp(−nt̄ 2/2σ2).

The right-hand side increases with σ. For Xi ∈ [0, 1], the maximum achievable variance is

σ2 = 1/4, which leads to the following asymptotic upper bound

lim
n→∞

P

(
1
n

(
n∑
i=1

Xi −
n∑
i=1

EXi

)
≥ t̄
)
≤ 1

2t̄
√

2πn
exp(−2nt̄ 2). (4.3)

We can see that the bound (4.2) given by Hoeffding’s inequality is similar to the asymptotic

bound (4.3) from the central limit theorem as n → ∞, except for the factor 1/2t̄
√

2πn,

which decreases much more slowly than exp(−2nt̄ 2) as n grows. However, the bound is not

tight in general for any finite n, and can be quite loose in particular for small n. For certain

applications where samples are expensive to obtain (e.g., in stochastic simulation of complex

systems), it can be of great interest to obtain the best bound possible in order to fully use

the limited samples. Formally, the procedure of seeking the best bound can be cast as the

following optimization problem over probability distributions

maximize
ν,{νi}ni=1

Pν

(
n∑
i=1

Xi ≥
n∑
i=1

Eνi [Xi] + t

)
(4.4)

subject to ν = ν1 ⊗ ν2 ⊗ · · · ⊗ νn.

Each νi is a probability measure on [0, 1]. The measure ν, defined on [0, 1]n, is the joint

probability measure of the random vector (X1, X2, . . . , Xn) and the operation ⊗ denotes the

product measure. This particular form of ν written as the product measure of individual

measures {νi}ni=1 encodes independence among the random variables {Xi}ni=1. For clarity,

we indicate the dependence of Pν and Eνi on their corresponding probability measures in the

subscripts. After the introduction of slack variables µi = EXi (i = 1, 2, . . . , n), problem (4.4)

can be rewritten as

maximize
ν,{νi,µi}ni=1

Pν

(
n∑
i=1

Xi ≥
n∑
i=1

µi + t

)
(4.5)

subject to ν = ν1 ⊗ ν2 ⊗ · · · ⊗ νn (4.6)

Eνi [Xi] = µi, i = 1, 2, . . . , n. (4.7)
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Both the objective function and constraint (4.7) are linear in the distributions ν and νi,

respectively. If we ignore the independence constraint (4.6), problem (4.5) is an optimal

uncertainty quantification problem with constraints on the first moment of each νi. In fact,

as will be shown in the next section, the inclusion of the independence constraint (4.6) does

not affect the application of finite reduction, and therefore problem (4.5) can be considered

as a generalized optimal uncertainty quantification problem.

Analytical expression for the optimal solution of problem (4.5) is generally unavailable

except for a few cases. In the case of n = 2 and n = 3, analytical expressions are given by

Owhadi et al. [53]:

n = 2: max
ν

Pν

(
2∑
i=1

Xi ≥
2∑
i=1

EXi + t

)
= (1− t/2)2,

n = 3: max
ν

Pν

(
3∑
i=1

Xi ≥
3∑
i=1

EXi + t

)
= (1− t/3)3.

If the upper bound for Xi is removed, i.e., Xi ∈ [0,∞) almost surely, but the mean EXi is

fixed, then an analytical expression is conjectured by Samuels [61]. Therefore, in order to

obtain a tight bound of (4.1) for arbitrary n, we need to solve problem (4.5) numerically.

4.2 Finite reduction

Recall from Section 2.1 that the infinite-dimensional problem (4.5) can be reduced to a finite-

dimensional one whose optimal value remain unchanged, since the optimal distribution ν∗

can always be achieved by a certain discrete distribution. The independence constraint (4.6)

implies that each compositing ν∗i can also be achieved by a discrete distribution whose

number of compositing Dirac masses is determined by its own information constraint [53].

In this case, the only information constraint for νi is its mean, which implies that the

optimal distribution ν∗i contains at most two Dirac masses. In the following, we will denote

the locations and weights of the two Dirac masses in each νi as (xi,0, xi,1) and (pi, 1 − pi),
respectively. After finite reduction, the reformulated optimization problem over the locations

and weights of all the Dirac masses becomes

maximize
{pi,xi,0,xi,1}ni=1,µ

p1p2 . . . pnI (x1,0 + x2,0 + · · ·+ xn,0 ≥ µ+ t)
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+ (1− p1)p2 . . . pnI (x1,1 + x2,0 + · · ·+ xn,0 ≥ µ+ t)

+ . . .

+ (1− p1)(1− p2) . . . (1− pn)I (x1,1 + x2,1 + · · ·+ xn,1 ≥ µ+ t)

subject to 0 ≤ pi ≤ 1, 0 ≤ xi,0 ≤ xi,1 ≤ 1, i = 1, 2, . . . , n

µ =
n∑
i=1

(pixi,0 + (1− pi)xi,1) ,

where I denotes the 0-1 indicator function. The constraint xi,0 ≤ xi,1 is added for con-

venience and will not affect the optimal solution due to symmetry in the problem. By

introducing new variables δi , xi,1 − xi,0, we can rewrite the problem as

maximize
{pi,δi}ni=1

p1p2 . . . pnI ((p1 − 1)δ1 + (p2 − 1)δ2 + · · ·+ (pn − 1)δn ≥ t)

+ (1− p1)p2 . . . pnI (p1δ1 + (p2 − 1)δ2 + · · ·+ (pn − 1)δn ≥ t)

+ . . .

+ (1− p1)(1− p2) . . . (1− pn)I (p1δ1 + p2δ2 + · · ·+ pnδn ≥ t)

subject to 0 ≤ pi ≤ 1, 0 ≤ δi ≤ 1, i = 1, 2, . . . , n.

To simplify notation, we define

f(p, α) ,
n∏
i=1

p1−αi
i (1− pi)αi ,

g(p, α, δ) ,
n∑
i=1

(pi − 1)1−αipαii δi =
n∑
i=1

(pi − 1 + αi)δi = (p− 1 + α)T δ, (4.8)

where p = (p1, p2, . . . , pn) ∈ [0, 1]n , α = (α1, α2, . . . , αn) ∈ {0, 1}n, and δ = (δ1, δ2, . . . , δn) ∈
[0, 1]n. In this way, we are able to rewrite the problem as

maximize
p,δ

∑
α∈{0,1}n

f(p, α)I (g(p, α, δ) ≥ t) (4.9)

subject to 0 � p � 1, 0 � δ � 1,

where � represents entry-wise inequality: for any a, b ∈ Rn, we write a � b if and only

if ai ≤ bi for all i = 1, 2, . . . , n. By introducing a new decision variable A ⊆ {0, 1}n that
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denotes which indicator functions are active, we can move the indicator functions in the

objective into the constraints and rewrite problem (4.9) as

maximize
p,δ,A

∑
α∈A

f(p, α) (4.10)

subject to 0 � p � 1, 0 � δ � 1, A ⊆ {0, 1}n

g(p, α, δ) ≥ t, α ∈ A

g(p, α, δ) < t, α /∈ A.

If A is given, then problem (4.10) becomes

maximize
p,δ

∑
α∈A

f(p, α) (4.11)

subject to 0 � p � 1, 0 � δ � 1

g(p, α, δ) ≥ t, α ∈ A

g(p, α, δ) < t, α /∈ A,

which is a polynomial optimization problem since both f(p, α) and g(p, α, δ) are polynomials

in p and δ. Therefore, the optimal value of problem (4.10) can be obtained by enumerating all

possible choices of A and solving the corresponding polynomial optimization problem (4.11)

for each A. The issue with this approach, however, is that the number of choices of A is

22n , and thus computationally intractable even for small n.

4.3 Removal of redundant enumerations

Although the doubly exponentially many enumerations may seem daunting at first glance,

many of them can be eliminated in the first place without affecting the optimality. For

instance, some choices of A will render problem (4.11) infeasible: if we take n = 2 and

A = {(0, 0)}, then part of the constraints in problem (4.11) will become

(p− 1)T δ ≥ t for α = (0, 0) ∈ A,

pT δ < t for α = (1, 1) /∈ A,
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which is infeasible since δ � 0. In this section, we investigate further along this direction

and show that the number of enumerations can be reduced to something much less than 22n

by exploiting various structures in the optimization problem (4.10).

We first show that the last constraint in problem (4.10) can be removed without affecting

the optimal value of problem (4.10) in the following lemma:

Lemma 4.1. The following optimization problem

maximize
p,δ,A

∑
α∈A

f(p, α) (4.12)

subject to 0 � p � 1, 0 � δ � 1, A ⊆ {0, 1}n

g(p, α, δ) ≥ t, α ∈ A.

achieves the same optimal value as problem (4.10).

Proof. Denote the optimal value of problem (4.10) as OPT1 and that of problem (4.12) as

OPT2. We have OPT1 ≤ OPT2 since problem (4.12) has a larger constraint set. To show

that OPT1 ≥ OPT2, we first denote the optimal solution of problem (4.12) as (p∗, δ∗, A∗)

and define

Ã∗ , {α ∈ {0, 1}n : g(p∗, α, δ∗) ≥ t}.

It is not difficult to verify that A∗ ⊆ Ã∗, which also implies that

∑
α∈ eA∗

f(p∗, α) ≥
∑
α∈A∗

f(p∗, α) = OPT2. (4.13)

On the other hand, we have

OPT1 ≥
∑
α∈ eA∗

f(p∗, α) (4.14)

since (p∗, δ∗, Ã∗) is a feasible solution to problem (4.10). By combining (4.13) and (4.14)

together, we have OPT1 ≥ OPT2 and the lemma is proved.

Next, we will show that the optimal solution δ∗ to problem (4.10) can be chosen from

a finite set instead of the original set {δ : 0 � δ � 1} appeared in the constraint. This will

not only cut down the number of variables in the corresponding polynomial optimization
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problem (4.11) by removing δ from (4.11), but, perhaps surprisingly, also the number of

enumerations.

Lemma 4.2. Let ∆(A) be a set such that δ ∈ ∆(A) if and only if (δ, γ) is a vertex of the

polytope defined by the inequalities

0 � δ � 1, αT δ − γ ≥ 0, α ∈ A.

Then the following optimization problem

maximize
p,δ,A

∑
α∈A

f(p, α) (4.15)

subject to 0 � p � 1, δ ∈ ∆(A), A ⊆ {0, 1}n

g(p, α, δ) ≥ t, α ∈ A (4.16)

achieves the same optimal value as problem (4.12).

Proof. Denote the optimal value of problem (4.12) as OPT2 and that of problem (4.15) as

OPT3. We have OPT2 ≥ OPT3 since ∆(A) ⊂ {δ : 0 � δ � 1}. To show that OPT2 ≤ OPT3

also holds, we denote the optimal solution to problem (4.12) as (p∗, δ∗, A∗). It then follows

that

g(p∗, α, δ∗) ≥ t, α ∈ A∗. (4.17)

Using the definition of g in (4.8), we can rewrite (4.17) as

(p∗ − 1 + α)T δ∗ ≥ t, α ∈ A∗,

or

(p∗ − 1)T δ∗ + min
α∈A∗

αT δ∗ ≥ t.

In other words, the optimal value of the optimization problem (with given p∗ and A∗)

maximize
δ

(p∗ − 1)T δ + min
α∈A∗

αT δ

subject to 0 � δ � 1
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must be greater than t since δ = δ∗ is a feasible solution to this problem. By introducing a

slack variable

γ = min
α∈A∗

αT δ,

we can rewrite the problem as a linear program:

maximize
δ,γ

(p∗ − 1)T δ + γ

subject to 0 � δ � 1,

αT δ − γ ≥ 0, α ∈ A∗. (4.18)

For convenience, we also define γ∗ = minα∈A∗ αT δ∗. It is not difficult to check that ∆(A∗)

is the projection of the set of vertices of the constraint polytope

0 � δ � 1, αT δ − γ ≥ 0, α ∈ A∗

onto the coordinate δ. Recall that the optimal value of a linear program can always be

achieved at a vertex of the constraint polytope (cf. [11]). Denote the δ and γ this vertex

as δ̃∗ and γ̃∗, respectively. We have δ̃∗ ∈ ∆(A∗) and

(p∗ − 1)T δ̃∗ + γ̃∗ = (p∗ − 1)T δ∗ + γ∗.

Since δ̃∗ and γ̃∗ satisfy the constraint (4.18), we have minα∈A∗ αT δ̃∗ ≥ γ̃∗ and hence

(p∗ − 1)T δ̃∗ + min
α∈A∗

αT δ̃∗ ≥ (p∗ − 1)T δ̃∗ + γ̃∗

= (p∗ − 1)T δ∗ + γ∗

= (p∗ − 1)T δ∗ + min
α∈A∗

αT δ∗ ≥ t.

As a result, we know that (p∗, δ̃∗, A∗) is a feasible solution to problem (4.15), which implies

that

OPT3 ≥
∑
α∈A∗

f(p∗, α) = OPT2.

Here we have used the fact that the objective function of problem (4.15) does not depend

on δ.



67

The optimization problem (4.15) in Lemma 4.2 contains the constraint δ ∈ ∆(A), which

is a joint constraint on both δ and A. As will be seen later, decoupling this constraint

between δ and A will lead to a simpler problem. One such way of decoupling is to replace

∆(A) in the constraint with
⋃
A⊆{0,1}n ∆(A). This does not affect the optimal value of the

problem, since ∆(A) ⊆ ⋃A⊆{0,1}n ∆(A) ⊆ {δ : 0 � δ � 1}.

Corollary 4.3. The following optimization problem

maximize
p,δ,A

∑
α∈A

f(p, α) (4.19)

subject to 0 � p � 1, δ ∈
⋃

A⊆{0,1}n
∆(A), A ⊆ {0, 1}n

g(p, α, δ) ≥ t, α ∈ A (4.20)

achieves the same optimal value as problem (4.12).

Remark 4.4. The set ∆(A) is a finite set since the number of vertices of a finite-dimensional

polytope is finite.

At this point, we have successfully reduced the constraint set of δ from a continuum to

a finite set. However, the difficulty that the number of choices for A is doubly exponential

still remains unsolved. In the following, we show that once the choice of δ becomes finite,

the corresponding optimal solution A∗ (when δ is given) can be chosen from a set whose size

is much smaller than 22n . From the proof of Lemma 4.2, we know that the constraint (4.16)

can be rewritten as

δT p ≥ t+ 1T δ −min
α∈A

αT δ.

Define j(δ, A) , 1T δ −minα∈A αT δ. It can be verified that j(δ, A1) and j(δ, A2) can be the

same for a given δ even A1 6= A2. In fact, the number of different j(δ, A) (for a given δ)

is much smaller than the number of different choices of A. Therefore, we can choose to

enumerate over all possible values of j(δ, A) instead of A itself, which is the key to the this

reduction. For convenience, we define the set

M(δ) , {j(δ, A) : A ⊆ {0, 1}n} = {1T δ − αT δ : α ∈ {0, 1}n}.

to capture the possible values of j(δ, A), which is a finite set for any given δ (and is much
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smaller than 22n as will be seen later). Computing M(δ) is not numerically expensive for

moderate n since it contains at most 2n elements. Using the newly introduced notations,

we are able to rewrite problem (4.12) as the one given in the following theorem, which is

the main result of this section.

Theorem 4.5. Let Ā(δ,m) , {α ∈ {0, 1}n : 1T δ − αT δ ≤ m}. The optimization problem

maximize
p,δ,m

∑
α∈Ā(δ,m)

f(p, α) (4.21)

subject to 0 � p � 1, δ ∈
⋃

A⊆{0,1}n
∆(A), m ∈M(δ)

δT p ≥ t+m

achieves the same optimal value as problem (4.10).

Proof. According to Lemma 4.1 and Corollary 4.3, it suffices to prove that problem (4.21)

achieves the same optimal value as problem (4.15). We first define an optimization problem

over A as follows:

maximize
A

∑
α∈A

f(p, α) (4.22)

subject to A ⊆ {0, 1}n

δT p ≥ t+ 1T δ −min
α∈A

αT δ,

whose optimal value is denoted as OPTA(p, δ). In this way, problem (4.15) can be rewritten

as

maximize
p,δ

OPTA(p, δ) (4.23)

subject to 0 � p � 1, δ ∈
⋃

A⊆{0,1}n
∆(A).

Using the definition of j(δ, A), we can further rewrite problem (4.22) by introducing a slack

variable m as

maximize
A,m

∑
α∈A

f(p, α) (4.24)
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subject to A ⊆ {0, 1}n, m ∈M(δ)

δT p ≥ t+m, j(δ, A) = m.

Since f(p, α) ≥ 0, the optimal solution of A in problem (4.22) is

Ā(δ,m) , {α ∈ {0, 1}n : 1T δ − αT δ ≤ m},

which is the largest subset for which the constraint j(δ, A) = m holds, i.e., if A satis-

fies j(δ, A) = m for some given δ and m then A ⊆ Ā(δ,m). In other words, the following

problem,

maximize
m

∑
α∈Ā(δ,m)

f(p, α) (4.25)

subject to m ∈M(δ), δT p ≥ t+m,

achieves the same optimal value as problem (4.24). Combining (4.23) and (4.25) completes

the proof.

Remark 4.6. Define the following optimization problem (that depends on δ and m):

maximize
p

∑
α∈Ā(δ,m)

f(p, α) (4.26)

subject to 0 � p � 1

δT p ≥ t+m.

Note that in problem (4.21), both δ and m are chosen from finite sets. Therefore, we

can solve problem (4.21) by enumerating all possible combinations of δ and m and solve

the corresponding subproblem (4.26). Compared to the subproblem (4.11) of the original

problem, the subproblem (4.26) only has n variables (instead of 2n in (4.11)). Moreover, as

we will show later, the number of subproblems (i.e., the number of combinations of δ and

m) is significantly fewer than that generated by (4.10).

We can further reduce the number of enumerations by exploiting symmetry in the prob-

lem. This gives the final form used in our actual numerical implementation. For a set
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S ⊆ Rn, define its sorted set sorted(S) as

sorted(S) , {s : s1 ≥ s2 ≥ · · · ≥ sn, Πs ∈ S for some permutation matrix Π}.

Corollary 4.7. The optimization problem

maximize
p,δ,m

∑
α∈Ā(δ,m)

f(p, α) (4.27)

subject to 0 � p � 1, δ ∈
⋃

A⊆{0,1}n
sorted (∆(A)) , m ∈M(δ)

δT p ≥ t+m.

achieves the same optimal value as problem (4.10).

Proof. Denote the optimal value of problem (4.21) as OPT4 and that of problem (4.27) as

OPT5. To prove that OPT4 ≥ OPT5, it suffices to show that

⋃
A⊆{0,1}n

sorted(∆(A)) ⊆
⋃

A⊆{0,1}n
∆(A). (4.28)

Recall the definition of ∆(A). If δ̄ ∈ sorted(∆(A)) for some A ⊆ {0, 1}n, then there must

exist γ̄ and a permutation matrix Π such that (Πδ̄, γ̄) is a vertex of the polytope defined by

the inequalities (in (δ, γ))

0 � δ � 1, αT δ − γ ≥ 0, α ∈ A.

It is not difficult to verify that (δ̄, γ̄) must be a vertex of the polytope defined by

0 � δ � 1, αT δ − γ ≥ 0, α ∈ ΠTA.

It then follows that δ̄ ∈ ∆(ΠTA) and hence δ̄ ∈ ⋃A⊆{0,1}n ∆(A), which implies (4.28).

On the other hand, suppose the optimal solution to problem (4.21) is (p∗, δ∗,m∗). First of

all, there must exist a permutation matrix Π such that the entries of Πδ∗ are in descending

order. We will show that (Πp∗,Πδ∗,m∗) is a feasible solution to problem (4.27) and its

corresponding objective is the same as OPT4. For checking feasibility, we will only show

that M(Πδ∗) = M(δ∗) and hence m∗ ∈ M(Πδ∗) since other constraints are not difficult to
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verify. From the definition of M(δ), it can be shown that

M(Πδ∗) = {j(Πδ∗, A) : A ⊆ {0, 1}n} = {1TΠδ∗ −min
α∈A

αTΠδ∗ : A ⊆ {0, 1}n}

= {1T δ∗ − min
ᾱ∈ΠTA

ᾱT δ∗ : A ⊆ {0, 1}n} = {1T δ∗ −min
ᾱ∈A

ᾱT δ∗ : A ⊆ {0, 1}n}

= M(δ∗).

It remains to show that (Πp∗,Πδ∗,m∗) yields the same objective as OPT4. Note that

Ā(Πδ∗,m∗) = {α ∈ {0, 1}n : 1TΠδ∗ − αTΠδ∗ ≤ m∗}

= {α ∈ {0, 1}n : 1T δ∗ − (ΠTα)T δ∗ ≤ m∗}

= ΠT Ā(δ∗,m∗).

and f(Πp∗, α) = f(p∗,ΠTα). Here, for any matrix Π ∈ Rn×n and set A ⊆ Rn the notation

ΠA represents the set {Πa : a ∈ A}, i.e., the element-wise action of Π on A. It then follows

that

OPT5 ≥
∑

α∈Ā(Πδ∗,m∗)

f(Πp∗, α) =
∑

α∈ΠĀ(Πδ∗,m∗)

f(p∗,ΠTα) =
∑

ᾱ∈Ā(Πδ∗,m∗)

f(p∗, ᾱ) = OPT4,

which completes the proof.

4.4 Additional computational issues

4.4.1 Generating the enumerations

In order to enumerate over all possible choices of δ and m in problem (4.27), one needs to

compute the set ⋃
A⊆{0,1}n

sorted(∆(A)). (4.29)

One naive method is to enumerate over all 22n subsets of {0, 1}n and perform vertex enu-

meration (required for obtaining ∆(A)) on each subset. However, this can be done more

efficiently by exploiting structures in ∆(A). The first property that can be exploited is
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permutation invariance of sorted(∆(A)), i.e.,

sorted(∆(ΠA)) = sorted(∆(A)) for any permutation Π.

Note that the set of all permutations forms a group (the symmetric group). Ideas of reduction

by exploiting invariance under group actions are abundant, and can be found in many areas

such as polynomial equation solving [78, 22], optimization [23], numerical solution of partial

differential equations [20], geometric mechanics [44], and dynamical systems [28]. According

to this property, if sorted(∆(A)) has already been included in (4.29) for some A, then it will

be redundant to compute sorted(∆(ΠA)) for any permutation Π. Before dealing with this

permutation invariance, we define an equivalence relationship on the power sets of {0, 1}n

as

A ∼ A′ ⇐⇒ A = ΠA′ for some permutation Π.

and the corresponding equivalence class

[A] , {ΠA}.

If we can devise a representation φ that is permutation invariant, i.e., for any equivalent

class [A], there exists a set Ā ∈ [A] named the canonical set such that

φ(A) = Ā, ∀A ∈ [A],

then we can enumerate over all canonical sets {φ(A) : A ⊆ {0, 1}n} and only compute

sorted(∆(φ(A))) to avoid any redundant computation for permuted versions of A, since

⋃
A⊆{0,1}n

sorted(∆(A)) =
⋃

A⊆{0,1}n
sorted(∆(φ(A))).

One such representation can be obtained as follows. First of all, define the matrix represen-

tation of a set A = {αi}ki=1 ⊆ {0, 1}n as

mat(A) ,
[
α1 α2 · · · αk

]
.
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Without loss of generality, we assume that α1, α2, . . . , αk are arranged in lexicographical

order. Later, it will become clear that this particular arrangement does not affect the

resulting permutation invariant representation. The matrix representation of two equivalent

sets satisfies the following property:

A ∼ A′ ⇐⇒ mat(A) = Pmat(A′)Q for some permutation matrices P and Q.

For example, consider two sets

A = {(0, 0, 1), (0, 1, 0), (1, 0, 1)}, A′ = {(0, 0, 1), (0, 1, 1), (1, 0, 0)}.

They are equivalent since

A = ΠA′ for Π =


0 1 0

1 0 0

0 0 1

.

On the other hand, their matrix representations,

mat(A) =


0 0 1

0 1 0

1 0 1

 , mat(A′) =


0 0 1

0 1 0

1 1 0


satisfy

mat(A) = Pmat(A′)QT for P =


0 1 0

1 0 0

0 0 1

 and QT =


1 0 0

0 0 1

0 1 0

 .

A permutation invariant representation of a set A can be obtained from its matrix repre-

sentation mat(A) according to Algorithm 4.1 using singular value decomposition.

To understand Algorithm 4.1, consider two sets A1 and A2 that only differ by a per-

mutation, i.e, mat(A1) = Pmat(A2)QT . The singular value decompositions of their matrix
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Algorithm 4.1 Permutation invariant representation
1. Obtain the singular value decomposition of mat(A) = UΣV T , where the singular

values appearing in Σ are arranged in descending order, i.e., σ1 ≥ σ2 ≥ . . . .

2. Find permutation matrices P andQ such that the columns of PU andQV are arranged
in ascending lexicographical order.

3. Output the set consisting the columns of Pmat(A)QT as the invariant representation
of A.

representations obtained from step 1 of Algorithm 4.1,

mat(A1) = U1Σ1V
T

1 , mat(A2) = U2Σ2V
T

2 ,

must satisfy Σ1 = Σ2, U1 = PU2, and V1 = QV2. This implies that there can be freedom

in choosing U and V in the corresponding singular value decomposition up to permutations

for sets in the same equivalence class. Step 2 in Algorithm 4.1 removes this freedom by

enforcing the ordering of elements in U and V . It is worth noting that the approach will

not guarantee a unique canonical representation in the presence of repeated singular values.

However, in our numerical examples, this non-uniqueness is not found to be a major issue,

and this method has reduced the number of enumerations satisfactorily.

Another property that can be exploited is to only enumerate over the sets in which all

elements are minimal elements, which we will call minimal sets. Recall that an element

α ∈ A is called a minimal element of A if for any α′ ∈ A, we have

α′ ≤ α =⇒ α′ = α.

In other words, if a set A ⊆ {0, 1}n is not minimal, i.e., it contains an element α̃ that is

not a minimal element, then there must exist α ∈ A such that α ≤ α̃. For such set A, the

inequality α̃T δ − γ ≥ 0 is redundant among all the inequalities that define ∆(A), since this

inequality is implied by the fact that αT δ−γ ≥ 0 (by the definition of ∆(A)), and α̃T δ−γ ≥
αT δ − γ for any 0 � δ � 1. Enumeration over such sets can be aided by a directed graph

G = (V,E) constructed as follows.

Definition 4.8. The set of vertices is the power set of {0, 1}n, i.e., V = 2{0,1}
n . For any

A1, A2 ∈ V , we have (A1, A2) ∈ E if and only if A2 is a minimal set and A2 = A1 t {α} for
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some α ∈ {0, 1}n. Here the symbol t denotes disjoint union.

Note that the condition (A1, A2) ∈ E implies thatA1 is also a minimal set, since removing

any element from a minimal set preserves minimality. On the other hand, for any minimal

A1, in order to find all the edges originated from A1, we can enumerate over all elements in

{0, 1}n\A1 and check for each element α whether A2 = A1 t {α} is minimal. Checking this

condition is not difficult, since it is equivalent to checking that α is a minimal element of

A2 and α does not make any element in A1 non-minimal, which can be done by comparing

α with every element in A1.

It is worth noting that the permutation invariance mentioned previously can be naturally

incorporated when constructing the graph. Specifically, the modified directed graph G′ =

(V ′, E′) needs to satisfy:

Definition 4.9. The set of vertices is the power set of {0, 1}n, i.e., V ′ = 2{0,1}
n . For any

A′1, A
′
2 ∈ V ′, we have (A′1, A

′
2) ∈ E′ if any only if A′2 is a minimal set and A′2 = φ(A′1 t{α})

for some α ∈ {0, 1}n.

It can be seen that the only modification is that we now require that A′2 is a canonical

set in addition to being minimal. The following theorem guarantees that all minimal sets,

most of which (modulo the ambiguities caused by repeated singular values) being canonical,

can be found by traversing G′ starting from the empty set ∅.

Theorem 4.10. Let G′ = (V ′, E′) be a graph that satisfies Definition (4.9). Then a set A′

is both minimal and canonical if and only if there exists a path from the empty set ∅ to A′

in G′.

Proof. (⇐= ) Suppose there exists a path from ∅ to A′, then there exists a set B′ such that

(B′, A′) ∈ E′. From Definition (4.9), we know that A′ is minimal and also canonical due to

the action of φ.

( =⇒ ) Suppose A′ is both minimal and canonical. Choose any α ∈ A′ and define

B = A′\{α}. It follows that B is also minimal since A is minimal. On the other hand, we

have A′ = B t {α} and
B t {α} = φ(B t {α}),

since A′ is canonical. Consider the set φ(B) and a permutation P such that φ(B) = PB.
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n naive method (22n) graph traversal
2 16 4
3 256 9
4 65, 536 29
5 4, 294, 967, 296 217
6 ≈ 1.8× 1019 18, 186

Table 4.1: The number of sets involved in computing the union set (4.29) using two different
methods. The actual number of sets needed (i.e., the number of minimal canonical sets) may be
smaller than what is obtained by the graph traversal method, since the canonical representation
obtained from singular value decomposition may be non-unique (see previous discussions for
details).

We then have

A′ = B t {α} = φ(B t {α}) = φ(PB t {Pα}) = φ(φ(B) t {Pα}).

In other words, there exists a canonical set φ(B) whose cardinality is |A′| − 1 such that

(φ(B), A′) ∈ E′.

Repeat the same argument on φ(B) until the cardinality becomes 0, which implies that the

preceding set becomes the empty set ∅. This proves that there exists a path from ∅ to A′.

Table 4.1 shows the number of minimal canonical sets obtained by running a graph

traversal algorithm (cf. [42]) on the graph G′ = (V ′, E′) constructed as per Definition 4.9.

For comparison, the number of sets obtained from the naive method is also listed. It can be

seen that the number of enumerations has been greatly reduced. This shows the effectiveness

of reduction using Corollary 4.7, even not counting the fact that each new subproblem has

fewer variables and is less expensive to solve computationally.

Another thing to note is that the cardinality of the union set (4.29) is actually quite small

even compared to the number of minimal canonical sets, which has already been greatly

reduced from 22n . Table 4.2 lists the cardinality of (4.29) as well as the total number of

enumerations (over δ and m) generated by problem (4.27), the latter of which is also the

number of polynomial optimization problems.

We do not have results for n ≥ 7 in Table 4.1 and 4.2 because the graph G′ becomes too

large to traverse within reasonable time. For n = 7, the graph traversal has not stopped
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n
∣∣∣⋃A⊆{0,1}n sorted(∆(A))

∣∣∣ ∣∣∣{(δ,M(δ) : δ ∈ ⋃A⊆{0,1}n sorted(∆(A))
}∣∣∣

(i.e., number of subproblems)
2 3 3
3 4 6
4 6 15
5 12 57
6 43 420

Table 4.2: Cardinality of the union set (4.29) and the number of enumerations in problem (4.27).

# element
1
2
3
4
5
6

0 0 0 0
1.0000 0 0 0
1.0000 1.0000 0 0
1.0000 1.0000 1.0000 0
1.0000 0.5000 0.5000 0.5000
1.0000 1.0000 1.0000 1.0000

Table 4.3: Contents of the union set (4.29) for n = 4. Each row corresponds to one element in
the set.

after more than one month on an Intel Xeon 3.0 GHz workstation (running on a single core).

However, for n ≤ 6, the union set (4.29) shows interesting patterns where all the entries of

the elements in the set appear to be “simple” fractions up to numerical precision, as can be

seen from Table 4.3, 4.4, and 4.5, in which the cases of n = 4, 5, 6 are listed (for example,

0.3333 can be considered as 1/3, which is a “simple” fraction). Therefore, it is possible that

there might be a simpler method for computing the union set (4.29) if, for example, an

expression underlying such patterns can be found.

4.4.2 Solving the polynomial optimization problem

In general, polynomial optimization problems are NP-hard to solve. However, these problems

can be relaxed as sums-of-squares (SOS) optimization problems, which give a lower (upper)

bound for the original minimization (maximization) problem. We now briefly introduce the

SOS relaxation technique for polynomial optimization problems. More details can be found

in [54, 39, 41, 14]. A polynomial optimization problem is one that has the form

minimize
x

f(x) (4.30)

subject to gi(x) ≥ 0, i = 1, 2, . . . , nin
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# element
1
2
3
4
5
6
7
8
9
10
11
12

0 0 0 0 0
1.0000 0 0 0 0
1.0000 1.0000 0 0 0
1.0000 1.0000 1.0000 0 0
1.0000 0.5000 0.5000 0.5000 0
1.0000 1.0000 1.0000 1.0000 0
1.0000 0.3333 0.3333 0.3333 0.3333
1.0000 0.6667 0.3333 0.3333 0.3333
1.0000 0.6667 0.6667 0.3333 0.3333
1.0000 0.5000 0.5000 0.5000 0.5000
1.0000 1.0000 0.5000 0.5000 0.5000
1.0000 1.0000 1.0000 1.0000 1.0000

Table 4.4: Contents of the union set (4.29) for n = 5. Each row corresponds to one element in
the set.

hi(x) = 0, i = 1, 2, . . . , neq,

where f , {gi}, and {hi} are all polynomials. A polynomial p is called SOS if it can be

written as p(x) =
∑

i p
2
i (x) for certain polynomials {pi}. Equivalently, an SOS polynomial p

of given degree 2d can always be written as the following quadratic form:

p(x) = vT (x)Qv(x), (4.31)

where Q is a positive semidefinite matrix and v(x) is the vector of all the monomials with

degree at most d.

If we are able to find a scalar γ, polynomials {µi}, and SOS polynomials σ0, {σi}nini=1 such

that

f(x)− γ = σ0(x) +
neq∑
i=1

hi(x)µi(x) +
nin∑
i=1

gi(x)σi(x),

then γ is guaranteed to be a lower bound for the optimal value of problem (4.30), since

f(x)−γ ≥ 0 whenever gi(x) ≥ 0 for all i = 1, 2, . . . , nin and hi(x) = 0 for all i = 1, 2, . . . , neq.

The lower bound will continue to approach the actual optimal value as the degrees of σ0,

{σi}, and {µi} grows, although the gap is not guaranteed to become zero at any finite degree.

Under certain conditions (see Putinar’s positivstellenstaz [57]), the gap will shrink down to

zero at some finite degree. Therefore, we can restrict the search for polynomials to some

maximum degree 2d and keep increasing d until the relaxation is exact. For any fixed d,
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# element
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

0 0 0 0 0 0
1.0000 0 0 0 0 0
1.0000 1.0000 0 0 0 0
1.0000 1.0000 1.0000 0 0 0
1.0000 0.5000 0.5000 0.5000 0 0
1.0000 1.0000 1.0000 1.0000 0 0
1.0000 0.3333 0.3333 0.3333 0.3333 0
1.0000 0.6667 0.3333 0.3333 0.3333 0
1.0000 0.6667 0.6667 0.3333 0.3333 0
1.0000 0.5000 0.5000 0.5000 0.5000 0
1.0000 1.0000 0.5000 0.5000 0.5000 0
1.0000 1.0000 1.0000 1.0000 1.0000 0
1.0000 0.8000 0.4000 0.4000 0.2000 0.2000
1.0000 0.8000 0.6000 0.4000 0.2000 0.2000
1.0000 0.4000 0.4000 0.4000 0.2000 0.2000
1.0000 0.6000 0.4000 0.4000 0.2000 0.2000
1.0000 0.6000 0.6000 0.2000 0.2000 0.2000
1.0000 0.8000 0.6000 0.4000 0.4000 0.2000
1.0000 0.6000 0.6000 0.4000 0.2000 0.2000
1.0000 0.4000 0.4000 0.2000 0.2000 0.2000
1.0000 0.6000 0.4000 0.2000 0.2000 0.2000
1.0000 0.7500 0.5000 0.5000 0.2500 0.2500
1.0000 0.5000 0.5000 0.2500 0.2500 0.2500
1.0000 0.7500 0.7500 0.5000 0.5000 0.2500
1.0000 0.7500 0.5000 0.2500 0.2500 0.2500
1.0000 0.7500 0.7500 0.2500 0.2500 0.2500
1.0000 0.2500 0.2500 0.2500 0.2500 0.2500
1.0000 0.5000 0.2500 0.2500 0.2500 0.2500
1.0000 0.7500 0.2500 0.2500 0.2500 0.2500
1.0000 0.7500 0.7500 0.5000 0.2500 0.2500
1.0000 0.6667 0.6667 0.3333 0.3333 0.3333
1.0000 1.0000 0.6667 0.3333 0.3333 0.3333
1.0000 1.0000 0.3333 0.3333 0.3333 0.3333
1.0000 0.6667 0.3333 0.3333 0.3333 0.3333
1.0000 1.0000 0.6667 0.6667 0.3333 0.3333
1.0000 0.3333 0.3333 0.3333 0.3333 0.3333
1.0000 0.6667 0.6667 0.6667 0.3333 0.3333
1.0000 1.0000 0.6667 0.6667 0.6667 0.3333
1.0000 1.0000 0.5000 0.5000 0.5000 0.5000
1.0000 1.0000 1.0000 0.5000 0.5000 0.5000
1.0000 0.5000 0.5000 0.5000 0.5000 0.5000
1.0000 1.0000 0.6667 0.6667 0.6667 0.6667
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4.5: Contents of the union set (4.29) for n = 6. Each row corresponds to one element in
the set.
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we wish to obtain the best possible lower bound γ. Formally, this can be written as the

following optimization problem

maximize
γ

γ (4.32)

subject to f(x)− γ = σ0(x) +
neq∑
i=1

hi(x)µi(x) +
nin∑
i=1

gi(x)σi(x)

σ0, σ1, . . . , σnin are SOS.

Note that the last constraint in problem (4.32) corresponds to a series of positive semidefinite

constraints given by (4.31) and hence this optimization problem is a semidefinite program

(SDP). As a (free) by-product of the relaxation, a solution that achieves the relaxed ob-

jective value can also be obtained. In general, this solution is infeasible since it yields a

smaller (larger) objective value than the optimal value of the corresponding minimization

(maximization) problem. However, if the solution turns out to be feasible, it implies that

the relaxation is exact and the solution is an optimal solution of the original optimization

problem.

In this work, the SOS relaxation is numerically carried out by SparsePOP [75, 76], which

is a free software package that not only forms and solves the SOS relaxation (up to a given

order) of a polynomial optimization problem, but also checks the exactness of the relaxation.

Empirically, we find that it suffices to restrict the order to be bn/2 + 1c in order to obtain

an exact SOS relaxation when solving problem (4.26) for any given n. Recall that the order

in SOS relaxation is defined as the maximum degree of the monomial basis. The number of

monomial basis for n variables with degree at most d is

N =
(
n+ d

d

)
.

We list the number of monomials basis for solving problem (4.26) for different n in Table 4.6.

If no structure in the polynomial optimization problem and its SOS relaxation is exploited,

the size of the corresponding SDP (i.e., dimension of the positive semidefinite matrices) is

determined by the number of monomial basis. In our case, the SOS relaxation becomes quite

expensive to solve starting from n = 7 and prohibitive beyond n = 9. Aside from the quick

growth in problem size, another major reason behind this difficulty in solving larger problems
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n 2 3 4 5 6 7 8 9

N =
(
n+d
d

)
6 10 35 56 210 330 1287 2002

Table 4.6: The number of monomial basis used in the sums-of-squares relaxation of prob-
lem (4.26). The degree d = bn/2 + 1c.

is that the solvers (SeDuMi [70] and SDPT3 [71, 73]) use iterative second-order methods,

where the complexity of each iteration is O(N6) (cubic in the number of variables and the

number of variables is N2). It is possible that first-order methods may partially alleviate

this difficulty by reducing the complexity of each iteration in order to solve problems with

larger n, although it remains unclear since first-order methods often take a lot more steps

to converge.

4.5 Results

We now show some numerical results on the upper bound for the probability of devia-

tion (4.1) obtained by solving the optimization problem (4.9) using the enumeration method

from Section 4.3 and sums-of-squares relaxation from Section 4.4. For all numerical results

presented below, the corresponding SOS relaxations are exact and therefore all numerical

bounds are tight. In addition, recall that any feasible solution of problem (4.15) will yield a

lower bound for (4.1). In particular, if we choose A = {(1, 1, . . . , 1)}, δ = (1, 1, . . . , 1) (it is

not difficult to verify that δ ∈ ∆(A)), and optimize over p, the optimization problem (4.15)

becomes

maximize
p

n∏
i=1

(1− pi) (4.33)

subject to 0 � p � 1,
n∑
i=1

pi ≥ t,

whose optimal value can be determined analytically as (1 − t/n)n from the inequality of

arithmetic and geometric means. Therefore, we have a lower bound given by

P

(
n∑
i=1

Xi ≥
n∑
i=1

EXi + t

)
≥ (1− t/n)n. (4.34)
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Figure 4.1: Comparison of bounds under different t̄ = t/n for n = 5.

In fact, this lower bound has been shown to be tight for n = 2 and n = 3 [53]. Fig. 4.1 and 4.2

compare the bounds obtained using different approaches, including the upper bounds from

OUQ, the upper bounds from Hoeffding’s inequality, the lower bounds given by (4.34), and

another analytical upper bound obtained by Rio [58]:

P

(
1
n

(
n∑
i=1

Xi −
n∑
i=1

EXi

)
≥ t̄
)
≤ (1− t̄)n(2t̄−t̄ 2), (4.35)

which holds for any t̄ ∈ [0, 1]. This bound is obtained using martingale decomposition,

and is tighter than Hoeffding’s inequality. Fig. 4.1 shows how the bounds change under

different (normalized) deviation t̄ = t/n. Since each Xi ∈ [0, 1], we have
∑n

i=1Xi/n ≤ 1

and
∑n

i=1 EXi/n ≥ 0, and hence

P

(
n∑
i=1

Xi ≥
n∑
i=1

EXi + t

)
= 0

for t ≥ n (i.e., t̄ ≥ 1). Therefore, the lower bound (4.34) is tight at t/n = 1, whereas

Hoeffding’s upper bound is nonzero and hence not tight at t/n = 1. Moreover, the numerical

bound matches the lower bound (4.34) surprisingly well for 0 < t/n < 1, although we do

not have an explanation for this at this moment. Fig. 4.2 shows how the bounds change

with the number of samples n. Initially, at least for n = 2 and n = 3, the numerical

bound matches the lower bound (4.34) as expected. Starting from n = 5, the difference
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Figure 4.2: Comparison of bounds under different n for t̄ = t/n = 0.4.

between the numerical bound and the lower bound (4.34) becomes visible. Note that the

logarithms of both Hoeffding’s bound and the lower bound (4.34) vary linearly with n, only

with different slopes (the lower bound curve is steeper). As n grows, from the central limit

theorem, we know that Hoeffding’s bound will eventually give the correct slope (modulo

the slowly varying factor that can be ignored for large n), it is expected that the slope of

the numerical bound will gradually decrease until it is approximately the same as that of

Hoeffding’s bound (i.e., the two curves become approximately parallel). In all cases, OUQ

gives significantly better bounds than either Hoeffding’s inequality or Rio’s formula.

4.6 Conclusions

This chapter applies the optimal uncertainty quantification framework to obtain a bound for

the probability that the sum of independent random variables deviates from the sum of their

means, a setting traditionally presented along with Hoeffding’s inequality. In particular, the

optimal uncertainty quantification framework attempts to obtain a better bound than the

one given by Hoeffding’s inequality. After finite reduction, the corresponding optimization

problem is equivalent to doubly exponentially many non-convex polynomial optimization

problems. Several structures are exploited to cut down the number of problems without

introducing much computational burden. For solving the polynomial optimization problems,

sums-of-squares relaxation techniques are used. Although these relaxation techniques can

only guarantee a upper bound for the optimal value, they are found to give exact solutions in
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all cases we tested and hence tight bounds for the probability of interest. Numerical results

show that the optimal uncertainty quantification framework tend to give significantly better

bound than Hoeffding’s inequality in the regime of small number of independent random

variables.
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Chapter 5

Concluding Remarks

5.1 Summary

This thesis emphasizes on developing efficient computational methods for optimal uncer-

tainty analysis (OUQ) using convex optimization and relaxation. It begins with cases for

which there exists an equivalent convex formulation. By viewing the OUQ problem from

either its primal form or dual form, we are able to derive conditions on the objective function

and information constraints under which a convex formulation exists. It is shown that a

convex formulation exists if the objective function is piecewise convex and the inequality

information constraints are piecewise concave. In addition, from the dual form, it is shown

that a different convex formulation also exists in the univariate case if the objective is piece-

wise polynomial and the information constraints are polynomial. The new results subsume

some of the existing work by others and can potentially provide better quantification results

by allowing more freedom in incorporating knowledge about the distribution.

For the purpose of demonstrating the application of convex optimization in OUQ, the

thesis proceeds by presenting a case study using the example of energy storage placement in

power grids. After reformulation, the problem becomes a semidefinite program with (expo-

nentially) many linear matrix inequality constraints that are mostly inactive. Due its size,

such a convex optimization problem is still difficult to solve numerically. Motivated by this

challenge, the thesis attempts to address the scaling issues by exploiting specific structures in

the problem. We notice that the objective function is defined by the optimal value of a linear

program and can be rewritten in the polytopic canonical form. This special property allows

quick elimination of inactive constraints in the original large problem through iterations. As

a result, the optimal solution may be obtained by solving a sequence of smaller problems,
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each of which only contains the candidate active constraints. We also investigate cheaper

numerical solutions to the semidefinite program when the size of the matrix becomes large,

since second-order methods used by most off-the-shelf solvers are too expensive to apply. By

exploiting the special form of the constraints, we are able to rewrite the problem in a form

that is readily solvable using first-order methods such as the alternating direction method of

multipliers (ADMM). Various numerical experiments show that ADMM can greatly reduce

the running time, particularly when the size of the matrix becomes large.

Lastly, the thesis investigates the application of convex relaxations in OUQ. We choose

Hoeffding’s inequality as the example due to its wide usage in many areas such as adap-

tive stochastic optimization. Relaxation fits naturally in the context of OUQ since it is

aligned with the original purpose of obtaining bounds for some quantity of interest. After

finite reduction, the optimization problem becomes equivalent to doubly exponentially many

non-convex polynomial optimization problems. Before applying convex relaxation to each

polynomial optimization problem, a number of technical steps are also applied in order to

reduce the number of problems for tractability. Bounds for the polynomial optimization

problems are then obtained using sums-of-squares relaxation. Surprisingly, for all the cases

tested, the relaxations are found to be exact and hence tight bounds are actually obtained.

Numerical results show that the OUQ framework tend to give significantly better bound

than Hoeffding’s inequality in the regime of small number of independent random variables.

5.2 Future directions

Optimal uncertainty quantification and, more generally, the field of uncertainty quantifi-

cation is a rich area for research. This section lists a few future directions as immediate

extensions of this thesis.

From analysis to decision making

Aa an extension of OUQ, another related question to consider is how to make the opti-

mal decision under stochastic uncertainties whose probability distribution is only partially

known. Formally, this corresponds to the following optimization problem:

minimize
u

max
D∈∆

Eθ∼D [f(u, θ)] , (5.1)
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where the set ∆ imposes the information constraints on the distribution D such as (2.2)

and (2.3) in the OUQ problem (2.1). Therefore, the OUQ problem can be viewed as the

inner-loop optimization for problem (5.1). In the special case where the underlying stochas-

ticity can be modeled by a (discrete) Markov process whose transition transition probability

is not exactly known, the problem has been studied by Nilim et al. [49] and Xu et al. [79].

Problems in the form of (5.1) are often referred to as distributionally robust stochastic

optimization. It is a generalization of robust optimization: when the set ∆ only imposes

constraints on the support of D, problem (5.1) is reduced to robust optimization. This type

of robust optimization problem was first proposed in the 1950s by Scarf [62] in the context

of inventory optimization, and has recently attracted attention of many researchers [65, 19,

26, 9, 80]. In particular, Delage and Ye [19] have shown that, when the objective function f

is bi-affine in u and θ, and the set ∆ only imposes constraints on the first and second

moments of D, problem (5.1) can be reformulated as a semidefinite program. It remains an

open question whether this can be combined with the computational speed-ups studied in

Chapter 3 of this thesis.

Further acceleration of optimization algorithms

One nice consequence of having a convex formuation of an optimization problem is that

every possible effort trying to speed up the optimization algorithm will never affect the

quality of the solution, since the algorithm will always return the global optimum once it

converges. As mentioned in Section 3.2, despite their savings on computational complexity

for each iteration, first-order methods such as ADMM often suffer from long convergence

time. Normally, these methods converge at the rate of O(1/t), where t is the number of

iterations. Here the convergence rate is defined as the dependence of error on the number

of iterations (as opposed to the relationship between error at the current iteration with the

one at the previous iteration, which is another commonly used concept).

For gradient descent, Nesterov proposed an algorithm that is able to speed up the con-

vergence rate to O(1/t2), which is often referred to as Nesterov’s accelerated gradient de-

scent [48]. Goldstein et al. have applied Nesterov’s accelerated scheme to ADMM and shown

speed improvement for quadratic programs from numerical experiments [27]. However, such

acceleration does not offer strong theoretical convergence guarantees. In fact, based on our

numerical experiments on solving the OUQ problem, this accelerated ADMM often con-
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verges slower than the original ADMM and sometimes fails to converge. This might be due

to the fact that the optimization problem for OUQ is a semidefinite program rather than

a quadratic program. Since semidefinite programs are ubiquitous, applying acceleration to

ADMM should be an iteresting subject for further investigation.

Dealing with identical distributions

Hoeffding’s inequality does not assume that the independent variables {Xi}ni=1 are indenti-

cally distributed. In the case where the random variables are i.i.d., Hoeffding’s inequality

is still often used since it has already been a loose bound even without the assumption of

identical distribution, and the bound expression is simple. Computing a tight bound within

the OUQ framework, however, turns out to be much more difficult if such assumption is in-

coporated. This is because imposing the constraint of identical distribution will destroy the

finite reduction property of OUQ. One workaround is to replace the constraint of identical

distribution with the constraint of identical moments (up to a certain order) [52]. This is

expected to yield a better bound than only imposing the independence constraint. Since

the number of Dirac masses will change as new constraints are added, the whole procedure

of removing the redundant enumerations as presented in Section 4.3 needs to be revisited,

and it is unclear whether the resulting optimization problem is still tractable.

Connection with existing work in information theory

In the 1970s, Smith studied the problem of the information capacity of amplitude- and

variance-constrained scalar Gaussian channels [69]. To determine this, it requires solving

an optimization problem where one tries to maximize the mutual information over all valid

input probability distributions that satisfy the amplitude and variance constraints. Later,

similar problems are also studied, with different assumptions on the channel noise and/or

constraints on the input distribution [64, 4, 63]. For many instances of this type of problem,

it has been shown that the optimal input distribution that achieves the capacity is always

a discrete distribution. Unlike the finite reduction property that is present in OUQ, the

number of Dirac masses in the capacity-achieving distribution cannot be determined directly

from the constraints imposed on the distribution. It remains an interesting topic to search

for a unifying framework that connects these two similar results.
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