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Abstract

This thesis presents two different forms of the Born approximations for acoustic
and elastic wavefields and discusses their application to the inversion of seismic data.
The Born approximation is valid for small amplitude heterogeneities superimposed
over a slowly varying background. The first method is related to frequency-
wavenumber migration methods. It is shown to properly recover two independent
acoustic parameters within the bandpass of the source time function of the experi-
ment for contrasts of about 5 percent from data generated using an exact theory for
flat interfaces. The independent determination of two parameters is shown to depend
on the angle coverage of the medium. For surface data, the impedance profile is well

recovered.

The second method explored is mathematically similar to iterative tomographic
methods recently introduced in the geophysical literature. Its basis is an integral rela-
tion between the scattered wavefield and the medium parameters obtained after
applying a far-field approximation to the first-order Born approximation. The
Davidon-Fletcher-Powell algorithm is used since it converges faster than the steepest
descent method. It consists essentially of successive backprojections of the recorded
wavefield, with angular and propagation weighing coeflicients for density and bulk
modulus. After each backprojection, the forward problem is computed and the resid-
ual evaluated. Each backprojection is similar to a before-stack Kirchhoff migration
and is therefore readily applicable to seismic data. Several examples of reconstruction
for simple point scatterer models are performed. Recovery of the amplitudes of the
anomalies are improved with successive iterations. Iterations also improve the sharp-

ness of the images.
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The elastic Born approximation, with the addition of a far-field approximation is
shown to correspond physically to a sum of WKBJ-asymptotic scattered rays. Four
types of scattered rays enter in the sum, corresponding to P-P, P-S, S-P and S-S pairs
of incident-scattered rays. Incident rays propagate in the background medium,
interacting only once with the scatterers. Scattered rays propagate as if in the back-
ground medium, with no interaction with the scatterers. An example of P-wave
impedance inversion is performed on a VSP data set consisting of three offsets

recorded in two wells.
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Introduction

The standard processing techniques for analyzing seismic reflection profiles
mostly aim at locating “reflectors” in the earth that can be identified as boundaries
between geological units. The reflections arise from contrasts in elastic parameters
and density between different media in the Earth. The standard processing methods
take advantage of the offset information to do a velocity analysis using for example
semblance methods (Taner and Koehler,1969) and the traces are then stacked accord-
ing to the move-out velocity determined by the velocity spectrum. In so doing, the
variation of the amplitude with offset is lost. This variation contains important infor-
mation, since it is a function of the variation of the reflection coefficient with the
angle of incidence, the transmission losses, the anelastic attenuation, and the radia-
tion pattern of the source. Some of these effects can be accounted for. For instance,
the radiation pattern of the source used can be estimated. The anelastic attenuation
effect on a reflected wave is a function of the difference in paths’ length for different
offsets. For a simple Q model, this can also be accounted for. The transmission losses
at strong impedance contrasts are more delicate to take into account; however, if the
medium doesn’t present such contrasts, they can be neglected. If an acoustic model is
chosen to simulate the experiment, the reflection coeflicient depends upon the con-
trast in any two independent physical variables, density, bulk modulus, impedance
and velocity. It is a function of the Lamé ’s parameters and density in an elastic

model. Usually, the stacked midpoint gathers are assumed to represent zero-offset



reflections, the amplitudes of which are proportional to the impedance contrast. In
recent years methods to infer the nature of reflectors through the impedance contrast
giving rise to the reflections have been presented in the literature (Oldenburg et
al. 1983, Carrion and Patton,1983). Those methods are referred to as inversions as
opposed to the more commonly used migrations, since they aim at estimating the

medium parameters rather than at getting the image of a reflector.

The Born approximation for scattered wavefield was first introduced in physics
to study particle and wave interactions and is intensively used in that field (e.g.,
Schiff, 1968). The basic assumption behind the approximation is that the incident
wave is not very perturbed by the interaction, or that the scattered wave has a much
smaller amplitude than the incident wave. This type of approximation to a wavefield
has also been used in geophysics. Tanimoto (1984a, 1984b) used the Born approxima-
tion to calculate long period surface waves in a slightly heterogeneous earth. In
seismic reflection several authors, working on the problem of seismic data inversion
have used the approximation. Bleistein and Cohen (1982) consider the acoustic wave
equation for a uniform medium and introduce a velocity perturbation into the
differential equation. They deduce an integral relation between the perturbation and
the scattered wavefield. They apply this method on stacked common midpoint data
and therefore loose the offset information. Raz (1981) pointed out that it is necessary
to have data for several offsets to be able to separate bulk modulus from density vari-
ations. Knowing both the density and the bulk modulus could prove to be a powerful
way of better identifying the materials composing the underlying medium (Gardner et
al,, 1974). An exploitation of the variation of the amplitude of seismic data with

offset to deduce rheology properties has been proposed by Gassaway and Richgels



(1983). Ostrander (1984) shows that the variations of the amplitude of a reflected
wave with offset yields precious information about the Poisson’s ratio of anomalously
high amplitude reflections (bright spot). He applies this on data recorded in an oil
field and is able to discriminate convincingly between a gas saturated rock layer and

a basalt layer from their Poisson’s ratio.

Clayton and Stolt (1981) proposed a method that fully exploits the offset infor-
mation contained in standard data. It is based on a Born model for the reflected field.
They use the exact equation in a two dimensionally varying medium and introduce
perturbations in both density and bulk modulus. Their approach is an attempt to
retrieve more information and separate these two variables. For a multi-offset survey
it becomes theoretically possible to invert the data for the relative variations of these
two variables with depth and distance along the recording line or midpoint.
Their approach to the inversion problem is in the frequency-wavenumber domain.
They show that the wavefield under the Born approximation can be expressed as a
linear combination of the acoustic parameters, density and bulk modulus. This rela-
tionship is obtained in the midpoint-offset and depth wavenumber space. The method

is presented in more detail in the first part of Chapter 1.

Examples of applications of the frequency-wavenumber method are performed on
synthetic seismograms and discussed in the second chapter of this dissertation. Both
one dimensionally varying models and two dimensionally varying models are

presented and discussed.
Using the same linear approximation as Clayton and Stolt (1981)(Born approxi-
mation) to the acoustic wavefield, we further simplify its expression. A far-field

approximation is applied. This is presented in the second part of Chapter 1. Using



this far-field approximation, an expression for the scattered wavefield under the Born
approximation is obtained in the space-time domain. The seismograms may be com-

puted as a linear integral operator over the model space.

Since the problem is reduced to a linear one, the theory of linear inversion can
now be applied. However, the very large size of the seismic reflection typical data sets
makes a classical least-square inversion impractical. Instead, we use a different
approach, similar to Nercessian et al. (1984). The idea behind the method, like in any
inversion method, is to reach the minimum of an objective function (L, norm of the
residuals). The minimum of the function is approached in an iterative manner. This
falls into the class of optimization problems (Fletcher, 1980). Among several methods
available to solve such problems, the Davidon-Fletcher-Powell is one of the more
powerful and presents several advantages. For a quadratic function, it converges in a
finite number of iterations and provides us with an estimate of the model’s variance.
Each step of the Davidon-Fletcher-Powell method is essentially a backprojection of
the residuals obtained from the previous iterations and resembles tomographic
methods applied to travel time residuals (e.g., Humphreys et al., 1984) with the added
advantage of allowing us to know the resolution matrix at the convergence point.
The term of backprojection is used here in a generalized sense since the projection is
not along straight lines as is the case in tomographic imaging used in the medical pro-
fession. Clayton and Comer (1985) have used a similar type of backprojection to
invert travel time data for slownesses in a whole earth model. In their case, the data
(travel times) are projected along curved rays. In our case, the wavefield is projected
along constant time trajectories. When the background velocity is constant these tra-

jectories are ellipses but they are arbitrary when the background velocity is a more



general function of space.

The basic iteration step is therefore very similar to a before-stack Kirchhoff
migration of the residuals. The only difference is that angular coeflicients are applied
to obtain two different sections representing the density variations and the bulk

modulus variations, respectively.

Several applications of the tomographic-like method are presented in Chapter 3.
The data used are generated using a direct Born approximation approach in some of
the examples and a finite-difference formulation for one of the models. All examples

discussed in that part present two-dimensional variations.

Chapter 4 develops the elastic counterpart of the acoustic theory presented in
the previous chapters. A comparison of the exact reflection coeflicient for an elastic
interface with the coeflicients derived under the Born approximation is presented and
discussed. The equivalent of the method developed in Chapter 3 for an acoustic model
is adapted to the elastic model. The same types of approximations (Born, WKBJ,
far-field) are developed, following the formulation introduced by Clayton (1981). The
iterative backprojection method can then be applied to obtain three images represent-
ing the relative variations of the two Lamé ’s constants and density. The formulation
of the method is more difficult for the elastic model, since we have to deal simultane-
ously with displacements, which are the recorded data and potentials (compressional
and shear). Potentials are used since they can be expressed and propagated in a

simpler way than displacements.

The elastic model is, of course, more accurate to describe seismic waves and the
amplitudes should be interpreted in terms of the elastic model. This is especially true

in cases where dips are substantial or when the incidence angle on reflectors is far



from normal, because of the more efficient shear-wave conversions. Also, in the case
of a Vertical Seismic Profile experiment, incidence angles may vary a lot and give rise
to heavy conversions to shear waves. The backprojection method is particularly suit-
able in the case of a VSP experiment since it is adaptable to any source-receivers

geometries.

Chapter 5 presents an application of the Born inversion by backprojection on a

VSP data set.



Chapter 1

Presentation of a Born Approximation and Far-field
Approximation for a Scattered Acoustic Wavefield

Abstract

The Born approximation to an acoustic wavefield is introduced in the case of an
acoustic medium that can be considered as the sum of a medium with slowly varying
acoustic parameters and superimposed small amplitude density and bulk-modulus
anomalies. The simple case of a layer over a half-space is discussed and illustrates the
limitations of the Born approximation: inaccuracy close to the critical angle and
beyond, and inaccuracy for large differences in the media parameters. A further, far-
field approximation is introduced in the expression for the scattered wavefield. The

wavefield can then be expressed as a sum of scattered asymptotic rays.

Introduction

The general topic of this thesis is the use of the Born approximation in the
analysis of seismic reflection data. The Born approximation can be derived from a
perturbation analysis on the acoustic wave equation supposing small variations of the
acoustic parameters. Clayton and Stolt (1981) have used this approximation and
derived an expression for the scattered wavefield in the frequency-wavenumber space.

From this expression, a method was devised to invert seismic data by identifying



them to the expression obtained under the approximation. The wavefield is found to
be a linear combination of the functions describing the variations of density and
bulk-modulus in the midpoint-wavenumber and depth-wavenumber space. Thus, a
simple linear inversion may be applied to retrieve these two functions from the
transformed data. An outline of the calculations leading to the expression of the
wavefield as a function of wavenumbers is presented in the first part of this chapter.
In the very simple case of one interface between two half-spaces, the Born approxima-
tion is shown to correspond to a simple linearization of the Cagniard-de Hoop
reflection coefficient. A comparison of the exact reflected wave with the wave com-

puted under the approximation is presented and discussed.

From Clayton and Stolt’s (1981) expression for the scattered wavefield, we intro-
duce a far-field approximation. Using the stationary phase method on the expression
for the wavefield we get an expression in the time-space domain. The expression
obtained can be analyzed term by term. It is simple to interpret it intuitively. It con-
sists of a time delay term obtainable from elementary ray theory, a geometrical
spreading factor that can also be obtained from ray theory in the absence of caustics
and a reflection coefficient factor, which contains the information about the scattering
properties of the medium. Using this simplified expression of the scattered wavefield,
we can construct synthetic seismograms. A comparison between these synthetic
seismograms generated using the Born and far-field approximations and synthetic

seismograms generated using a finite difference method is presented.



Born approximation in the frequency-wavenumber domain

First, we present a short outline of the theory developed by Clayton and Stolt

(1981) and a rapid review of the theory.

Consider an acoustic medium characterized by its bulk modulus « and density p.
Both of these parameters are space variables. We consider that each is a sum of two
functions. One of these functions is slowly varying. We note them with the subscript
0 (ko and pp). Superimposed on that background medium is a rapidly varying (high
spatial frequency) medium. We note them Ax and Ap. The magnitude of the super-
imposed medium is supposed to be much smaller than the background medium. Let
P be the pressure field. It satisfies the wave equation in a two-dimensional space:

o? 1
[T + V-?V]P = §(z-7)b(2-20)S (w), (1.1)
where z3 and z, are the coordinates of the location of the source and S(w) the
Fourier transform of the source-time function, w being the frequency. We can write

this differential equation as the action of a linear operator L over the pressure field P

LP = §(z-z9)8(z—20)S(t). (1.2)

The solution to this equation is a Green’s function that can be formally written as the

inverse of the L operator:
G =-L (1.3)

This Green’s function cannot be obtained analytically in the general case of a
laterally varying medium. However, it is possible to calculate it for a background

medium with constant acoustic parameters or acoustic parameters that vary slowly
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with depth (using the WKBJ approximation in this last case). The Green’s function
for the background medium is noted Gy The Green’s function for the general
medium can be expressed in terms of the Green’s function for the slowly varying

medium as :
G = Gy+ GL-Ly)G. (1.4)

This is an exact equation, called the Lippman-Schwinger equation. The first-
order Born approximation arises when G on the right-hand side of the equation is
replaced with G. This is physically justified when the scattered field is small com-
pared to the incident wavefield G, Therefore, under the Born approximation, the

Green’s functions for the general medium is expressed as :

The scattering potential V is a linear operator. It is expressed explicitly as :

v =wz[L i - [L _-I_]V. L)
K Ky P Po

K
It is convenient to define the two variables a; and a, as a; = —21 and
K

Gy = %—1. The scattering potential is then :

a; as
V = w*— +vV.— v L7
Ko Po k1)

The reflection data can be identified as the recorded wavefield minus the direct
arrival. The direct arrivals can be approximated by GyS(w) (in the frequency

domain) where S(w) is the Fourier transform of the source-time function. Using the
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Born approximation, the scattered data can then be identified as :
D (z; 2, w)=Go(7,,0;2,2)V(2,2)G(z,2;2,,0)S (w), (1.8)

where z, is the abscissa of the geophone location, z, the abscissa of the source

’
location, both at the surface(z=0). The variables z and z are repeated, meaning an
integration over their domain. This relation between the scattered data field and the

scattering potential is a linear relation. We can take advantage of this to invert the

data for the parameters defining the rapid variations of the acoustic medium.

Constant background velocity

In the case of a constant background medium (py and kg constant), the relation

can be reduced to a very simple one in the frequency-wavenumber domain :

—p 2
D (k, :ka 1“’) = 4q, :, [vw_oz a l(ky _ka r_Qg _QI) + (qg ds _kg k. ) a’.’(ky _k. :—qg —q, ) S(w)

where k, and k, are the horizontal wavenumbers associated with the source and

geophone coordinates, respectively. ¢, and g, are defined as:

1/2
i == 2 _voks’ ] (1.9)
z o o .
where the subscript z is either s or g.
Introducing the variable k, defined as kK, = —¢;—¢, and transforming to the

midpoint-offset notation, the wavefield can be expressed as :

4
D (km ,kh ,w) == To [A l(kz rkm rkb ) a l(km ,k, )+A 2(kz ’km »kh ) a2(km rkz )] S(w)-
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where :

(k.>—ks%) (k4K pm)
kz4_km2 kh2

(k. 2+ k) (k,24+-k,2)

Al(kz)kmxkh)z k4k2k2
z “"mWh

and A2k, kn k) =

where k, =k, -k, and ky =k, +k, are, respectively, the midpoint and half-offset

wavenumbers.

This equation is the basis for the construction of an inverse algorithm to esti-
mate the variations of a, and a,. The basic steps of this algorithm can be easily
deduced from it. The algorithm is explicitly explained in Chapter 2, and inversions

tested in simple cases.

Before using the inversion algorithm, however, we want to test the validity of

the Born approximation on a few examples.

Validity of the Born approximation in the single interface case

To assess the validity of the Born approximation, we compared the Born
approximation reflection coefficient with the exact reflection coeflicient in the case of a
very simple model. The model consists of two adjacent acoustic half-spaces. It was
found that the Born approximation in this case is equivalent to linearizing the exact

Cagniard-de Hoop reflection coeflicient with respect to the relative variations in den-

sity and velocity (—Aﬂ and ﬁ) This is shown in Appendix A. Summarizing the
p ¢

calculations conducted in that Appendix, the Cagniard-de Hoop reflection coefficient

can be approximated as :

R(p )w% [a+h—_£7] (1.10)
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where:

= p is the slowness
c p
when the two half-spaces are sufficiently close to each other in terms of their

acoustic parameters.

The reflected waves can then be expressed in the following way, using the

Cagniard-de Hoop method :

g (z,0,8 )____F;(s_)_ I {Lnooe_o(pnzmzo)%ﬂmldp}, (1.11)
s 1

F(s) is the Laplace transform of the source time function, Im denotes the imaginary
parts, R(p) is the reflection coefficient . Index 1 refers to the half-space containing
the source and index 2 to the other one p is the density, ¢ the velocity and p the hor-

izontal slowness and 5 the horizontal slowness.

The path of integration can be continuously deformed such that the quantity
pz +21n,2 is real and can be readily identified to time. The reflected waves computed
using the approximation are very comparable to the waves computed using the exact
reflection coefficient. To illustrate this, we present Figure 1.1. It shows a comparison
of synthetic seismograms computed with the Cagniard-de Hoop method both with
and without approximation. The bottom record-section in each figure is the exact
theoretical reflected wave for a line source situated in the upper half-space, at two
kilometers above the reflector. The record-section at the top of each figure is the
reflected wave computed using the Born approximation (or equivalently the linearized
Cagniard-de Hoop reflection coeflicient). The densities and velocities of the two half-

spaces are indicated on the figures.
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It is apparent, as expected, that the more different the media are, the more the
approximation diverges from the exact expression for the reflected wave. It is, how-
ever, good as long as the step variation of the acoustic parameters is small. It also

appears that the approximation does better for near-normal incidence angles.

The two examples presented on Figure 1.1 show two different kinds of contrasts
between the two half-spaces. The sections to the left are for a 2.5% contrast in veloc-
ity and no density contrast. In that case, the amplitude of the reflected wave
increases with offset. The amplitudes are very reasonably accurate in the Born
approximation section, within 3% of the exact value for the largest offset shown
which corresponds to an incidence angle slightly larger than 45° on the interface. The
sections on the right are for a contrast of 2.5% in density and no velocity contrast.
The amplitudes can be seen to decrease with offset in this case. The approximated
section is not distinguishable from the exact section for this case of a model with only

density contrast.

The method of inversion described in Clayton and Stolt (1981) should therefore
do a good job in retrieving the relative variations in density and velocity, or bulk
modulus from the amplitude variation of the reflected waves with offset. The limita-
tions of the method may come from several causes. The transmission losses can
modify the amplitude of the reflected wave so that the true relative density and
velocity contrasts are not recovered properly. Also the refraction of rays at the inter-
face is not included in the theory. This modifies the true incidence angle and the

interpretation of the amplitude of the reflected wave at that angle.

Figure 1.2 presents an illustration of these approximations. It shows record sec-

tions for two flat layer models. Synthetic seismograms are computed both exactly and
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Approximate Cagniard-de Hoop.

x=4.5 max=1.80 x=4.5 A mox=0.82

x=4.0 mox=1.64 x=4,0 n max=0.84

x=3.5 Ii mox=1.50 x=3.5 n max=0.87

x=3.0 !\F mox=1.37 x=3.0 i max=0.30

x=2.5 f\' mox=1.26 x=2.5 [\ max=0.92

— —
x=2.0 max=1.17 x=2.0 ﬁ mox=C,35
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\— J\
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\—
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Figure 1.1 - Synthetic acoustic seismograms computed with the exact reflection
coeflicient (Bottom) and the approximate Born reflection coeflicient (Top), for a model with
one layer over a half-space. The contrast is only in velocity for the examples to the left and in
density for the example to the right.



under the Born approximation using the Cagniard-de Hoop method. The two models

are given in the following table :
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Table 1.1

Model 1

Model 2

velocity (km/s)

density (g/cm®)

velocity (km/s)

density (g/cm®)

Layer 1 4.0 1.0 4.0 1.0
Layer 2 45 1.1 4.1 1.0
Half-space 5.0 1.2 4.2 1.1

.

The two models are different in the sense that Model 1 has a much higher varia-
tion from a background of v—=4.0 km/s and p = 1.0 km/cms. The figure shows that,
as expected, the approximation does better for Model 2 . However, even for this
model, with variations of 20% maximum from the background density and 5% from
the background velocity, the amplitude at normal incidence from the second reflector
is not very well approximated. The variations with offset, however, are fairly accu-
rately reproduced with the Born approximation. For Model 1, the Born model is not
accurate. In that case, the critical angle is 62° for the first interface and this
corresponds to about 3.9 kms of offset. At that distance, the reflected wave reaches a

maximum on the exact section. This is, of course, not well reproduced on the approxi-

mate section.
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The arrival time effect is small and hardly visible on the figure at that scale, but
is nevertheless present. It will introduce an error in the location of the second inter-

face.

Far-field approximation

At the beginning of this chapter, the Born approximation was introduced for the

scattered wavefield. The general expression for the wavefield was found to be :
D =G, VG,S(w) (1.12)

where G, notes the Green’s function for a slowly varying background velocity. V is
the scattering potential assumed to be small for the approximation to be valid. S(w)

is the Fourier transform of the source time function.

The Green’s function G, has an analytic expression under the WKBJ (e.g., Aki
and Richards, 1980) approximation. In Appendix B, a derivation of a far-field approx-
imation in addition to the Born and WKBJ approximations is performed. The far-
field approximation is justified since, in the geometries considered for seismic explora-
tion, the distances traveled by reflected waves vary from a few wavelengths to tens of
wavelengths. The result of applying this additional approximation leads to express

the wavefield in terms of a sum of geometrical rays.
D(z,,z,,t) = J;,zdﬂ A(z,,z)A(z,7;) [a (z) + ayz) cosB]S(t—t 1—t9).(1.13)

where {2 is the domain of integration of z.

Figure 1.4 illustrates the meaning of each of the terms in the integrand. The

first two factors A (z,,r) and A (z,z, ) represent the geometric spreading attenuation
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Figure 1.2 - Synthetic acoustic seismograms computed using a Cagniard-de Hoop
method. The parameters for these two models are given in Table 1.1.
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factors. They can be calculated from ray geometrical considerations. The third factor
a, + agcosf is an angle dependent scattering coefficient. This provides the informa-
tion on the nature of the scatterers in the medium. Figure 1.5 shows the variations of
this factor as a function of the angle between an incident and scattered ray for
different types of scatterers. It illustrates the uniform radiation pattern for a bulk
modulus scatterer and the two-lobed pattern for a density scatterer. This translates
into a scattering pattern dominant in the backward direction for an impedance
scatterer and in the forward direction for a velocity scatterer. Finally, S"(t—t 1-tg) is
the derivative of the source time function of the source, shifted in time by t,+%,. ¢,
is the travel time (computed from the smoothly varying velocity model) between z,

and z , and £, the travel time between z and the receiver z,. 6 is the angle between

the two rays at the scattering point.

Equation (1.13) provides a simple way of computing the scattered wavefield for a
smoothly varying background. It is used intensively in Chapter 3 as the basis for an
iterative inversion method . The inversion method involves computing the forward
problem. This is done in practice in the following way, for seismic reflection

geometries :

1 - Given the smoothly varying background velocity, a set of travel times is
computed for rays joining the origin point (0,0) to all points in an array (z,y).

2 - The ray parameters p are computed at each of the point of the array.

3 - From the knowledge of the ray parameter variations, the geometrical spread-

ing factor is obtained.

Figure 1.6 displays the travel times, the sine of the angle of the ray with the

vertical, the cosine of the same angle , and the geometrical spreading factor for the
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Figure 1.3 - Comparison of synthetic seismograms computed using the Born and far-field
approximation and a finite difference method. The section to the right is the approximate cal-
culation. The sections are midpoint gathers computed for the model shown in the lower part of
the figure. The position of the midpoint is indicated by a star, the positions of the source and
receiver by a dot for the largest offset.
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Figure 1.5 - The scattering coeflicients as a function of the angle # between incident and
scattered rays for a bulk modulus x, density p, impedance I and velocity v inhomogeneity.
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Figure 1.6 - Functions representing the travel-time, sine of the ray, cosine of the ray and
geometrical spreading factor as a function of depth and distance along strike for a linear veloc-
ity increase with depth.



-4 -

ray joining the origin to the (x,y) point. From the knowledge of these functions, the
expression for the scattered wavefield can be computed using Equation (1.13). These
examples were computed for a laterally homogeneous model presenting a linear

increase with depth : v(z) = 2.5 + 0.343z.

Figure 1.3 shows a comparison of synthetic seismograms computed using a
finite-difference method and the Born and far-field approximations. The background

medium in this case was constant, with a velocity of 2km/s and a density of 1g/cm?®.

Conclusion

We presented the Born approximation to a scattered wavefield and developed a
further ray-asymptotic approximation on the propagation Green’s functions. These
developments will be used in the following chapters to devise inversion methods and

test them on synthetic and actual data.
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Chapter 2

Tests of a Frequency-Wavenumber Born Inversion
Algorithm on Exact Synthetic Data

Abstract

From the expression of the Born approximation in the frequency-wavenumber
domain, a simple two parameters inversion algorithm is devised. The algorithm is
tested for one-dimensional media on synthetic seismograms generated using a
Cagniard-de Hoop method, and for two-dimensional media on synthetic finite-
difference seismograms. Profiles of density and bulk-modulus are recovered within the
frequency bandpass of the source time function used to generate the synthetics. The
limit in offset is shown to influence the ability of the algorithm to resolve between the
two acoustic parameters. When the data are too limited in offset, a good reconstruc-

tion of the impedance is still obtainable.

Introduction

In the first chapter, an expression for the scattered wavefield under the Born
approximation was given in the frequency- offset wavenumber and midpoint
wavenumber domain. That expression can be used as the basis for an inversion algo-

rithm of the scattered wavefield for the acoustic parameters of the underlying
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medium as has been proposed by Clayton and Stolt (1981). The scattered wavefield
was expressed as a linear combination with known coefficients of the bulk-modulus

and density as functions of the depth wavenumber and midpoint wavenumber:
D (ks ) = 3% [A 10k s ) 1l k) + A 2k b ) 0ol ) ]S )

Clearly, the functions @, and a, can be estimated over each point in k, ,k, by doing
a simple least-squares fitting over the k; .

The algorithm proposed by Clayton and Stolt (1981) to obtain the variations a,
and a, can be summarized in the following simple procedures :

(1) - Three dimensional Fourier transform of the midpoint gather of the data

over time, midpoint and offset.
(2) - Deconvolution of the source-time function.
(3) - Transformation of the wavefield into the k,, ,k; ,k, space.
(4) - Inversion for a(k,, ,k;) and ay(ky, ,k; ).
(5) - Inverse Fourier transform to get a,(m,z) and ao(m,z).

In this chapter, several examples of application of the above method are
presented. Both one dimensionally varying media and two dimensionally varying
media are considered. The data were generated using synthetic techniques which
take into account loss of energy at interfaces, multiple reflections, refractions and
other phenomena not included in the first Born approximation: It is therefore a good

test of the validity of the proposed method to be applied to actual data.

The essential advantage of implementing this inversion technique is the rapidity

with which Fourier transforms are performed on computers. The first step of the



- W =

procedure involves a three-dimensional Fourier transform. The dimension of the cube
of data sets the speed of execution for this part of the processing, which is the most
time-consuming. If the spectrum of the source time function is band limited, the
storage space for the cube of data in the wavenumber-frequency space can be greatly

reduced by keeping only the information contained into that bandwidth.

Transforming the field into the depth wavenumber domain involves an interpo-
lation to be done on the data set. This is also true for the F-K migration method. It
is a delicate step. To avoid introducing artifacts due to the interpolation, the time
traces lengths should be long enough. The functions in the frequency domain will

then be smoothed to allow interpolation.

The plane interface case

The method of inversion was tested on very simple models consisting of two
interfaces and a line source . The Green’s functions for the waves reflected off the
medium were computed using the exact Cagniard-de Hoop method. Only the primary
reflection rays were included in the synthetically generated data. The amplitudes of

the multiply reflected rays are of much smaller amplitude for the models considered.

The reflected waves were computed for 128 offset distances. A source time func-
tion consisting of a sine wave over the length of its period (0.16 seconds) was con-
volved with the Green’s functions. The record section thus obtained (e.g., Figure 2.2)

is then Fourler transformed over time and offset. The source function introduced into
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the data is deconvolved over a limited bandwidth. This limits the amount of informa-
tion to be recovered from the data in the wavenumber space. The function obtained

wZ

012

then depends on frequency and offset wavenumber. Using the relation k,*+k,’=4

which is the wavenumber-frequency form of the wave equation for a uniform velocity
medium, the wavefield is then expressed as a function of depth and offset
wavenumbers. This last step corresponds to an F-K migration (Stolt, 1978). The

function thus obtained is identifiable to the left-hand side of Equation A.2 in Appen-

dix A. It is then possible to invert Equation A.2 for -A—'Candé‘cl

as a function of k, .
K P

An inverse Fourier transform then gives these two parameters as a function of depth.

Synthetic seismograms for the models listed in Table 2.1 have been computed

and inverted using the method described above.

Table 2.1
Model 1 (Figure 2.1) Model 2 (Figure 2.2) Model 3 (Figure 2.3)
velocity density velocity density velocity density
km/s g/cm® km/s g/cm® km/s g/cm®
Layer 1 4.0 1.0 40 1.0 4.0 1.0
Layer 2 4.0 1.05 4.1 1.0 4.1 1.0
Half-space 4.1 1.05 4.1 1.05 4.1 0.95

The seismograms and the results of the inversions are shown on Figures 2.1 to 2.3 .
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The source function convolved in the seismograms is limited in frequency so that the
variations of the parameters with depth can be resolved only in a certain bandwidth.
This limits the depth resolution of the method. In the case of these sharp interface
synthetic models, the effect is to make the discontinuity appear as a broad smooth
signal. The zero-frequency part is not resolvable by the method, due to the nature of
the source. It might be possible to try to reconstruct it using some signal processing
methods. For instance, after deconvolving the source, the spectrum could be
extended towards the high frequencies using a Burg’s algorithm technique as proposed
by Oldenburg et al. (1983). This would improve the sharpness of the variation of den-

sity and velocity with depth, giving a better space resolution.

Spurious signals are observed at a depth dependent on the maximum
offset(between 2.5 and 3 kms in our cases).Their peculiarities are that they are
present on both traces (relative bulk modulus and density variations) at the same
depth. The artifact on the reconstructed density function is a mirror image of the one
on the bulk modulus section. On the impedance function, which is the sum of the
density and bulk modulus traces, the artifact disappears. We can show that it is
related to the offset cutoff of the data since changing the largest offset modifies the
depth and character of the artifact. There is however apparently no very simple rela-

tion between the largest offset used and the depth at which the artifact appears.

The impedance profile is well reconstructed. The artifact mentioned in the previ-
ous paragraph is absent from the impedance trace. This is expected, as most of the
information contained into the near-normal incidence angles pertains to the
impedance contrast. This can be appreciated from Figure 1.5 which shows the ampli-

tude of a scattered wave as a function of the angle between incident and scattered
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wave for different values of the scatterer. For an angle of zero (normal incidence back-

scattering) the impedance contrast dominates.

Each of the Figures 2.1 to 2.3 presents the synthetic seismograms section on the
top, computed from the model shown at the lower left. The result of the inversion is
shown at the lower right of the figures. The model and the inversion results show the
variations of the bulk modulus, the density and the impedance. Different impedance
contrasts have been tested. On Figure 2.1, the shallower interface has no density
contrast. This is quite well reconstructed on the inversion. The model shown on Fig-
ure 2.2 has a second interface with no density contrast and both interfaces have a
bulk modulus increase through them. Figure 2.3 shows an example with a decrease of
the density at the second interface. The sign of the inverted trace is well recon-
structed. For all these examples, the synthetic seismograms were computed exactly,
including refraction and loss of amplitude at the transmission through the first inter-
face. The theory used to invert the sections does not take these phenomena into
account. In these simple cases with small variations, its usefulness is demonstrated
since the two independent variables are reconstructed and the relative amplitude of
the two discontinuities as well as their depth is correctly estimated within the

bandpass of the source time function.

The depth of the second interface, however, is slightly underestimated due to
the discrepancy between the background velocity (4 km/s) and the velocity of the
second layer. This problem is expected to be minimal when the background velocity is
known within a few percent. In Chapter 3, we will investigate further the problems

associated with the use of a wrong background velocity model.
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Limitation of the method with depth

To assess the extend of validity of the method with depth, several sections were
computed using a single reflecting interface at different depths. The interface was
placed at depths varying from 1 km to 4 km. The accuracy of the inversion breaks
down with increasing depth. For an interface at 1 or 2 kms, the variables are
correctly reconstructed. However, for larger depth, there is a tendency for the inver-
sion to place the energy into the density trace and it breaks down for depths larger
than 3 kms. This is simply explained by the progressive decrease with depth of the
aperture angle on the scatterers. Figure 2.4 illustrates this reduction of the resolution

between two variables as a function of depth.

Laterally varying models

In the case of laterally homogeneous media there is no advantage in using a
wavenumber-frequency method. In the case of a one dimensionally varying medium,
simply using the amplitude information in the time-offset section would provide us
with the same information on the reflection coeflicients and thus on the physical
characteristics of the scatterers. The implementation of such a method is very
straightforward since it does not involve any transformation of the data into fre-
quency and wavenumber spaces. Furthermore, the same guidelines as for a semblance
analysis can be used. The amplitudes of the waves along the optimum hyperbola
could be inverted directly for density and bulk modulus. If the medium has lateral
variations, however, the wavefield can be expressed in a simple way as a function of
the two wavenumbers involved (midpoint and offset wavenumber) as shown by Clay-

ton and Stolt (1981).
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The three panels from top to bottom are for different characteristics of the reflectors, and the
depth of the reflector varies from right to left.
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In order to test the method, we computed synthetic data using a finite difference
code for two simple models. 192 shot gathers were computed, 128 of which have a full
offset coverage from O to 6 kms. The direct arrivals are removed from the sections.
There is no free surface at the source-receiver level. All four boundaries of the box
containing the model have absorbing boundary conditions. A source-time function
(sine wave over 0.16 s. period) is convolved with the result of the finite-difference cal-

culations.

Figure 2.5 shows the first model used and the result of the inversion. The model
on the lower part of the figure consists in a step-like boundary between two media
presenting a density contrast of 5% . After processing using the method described
above , the two depth sections at the top of the figure were obtained. The two sec-
tions represent respectively the bulk modulus and density relative variations between
the midpoints marked m, and m ;. They are plotted at the same absolute scale.
Since there is no velocity contrast between the two media the relative density and
bulk modulus variations should be equal across the boundary and the two figures

should be identical. Indeed the sections are similar.

The shallower reflector is very well reconstructed in position and amplitude. The
amplitude of the relative variation in density is about the same as the one in bulk
modulus, which is to be expected, and the signals are in phase. The arc-shaped signal
to the left of both reconstructed sections at the same depth as the interface is an

artifact of the F-K migration method used.

The deeper reflector is correctly located by the reconstruction; however, the
phase is not correct and seems about opposite on the two sections for this reflector.

This is probably due to an artifact of the same nature as the one mentioned for one-
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Figure 2.5 - The bottom of the figure shows a model used to compute finite difference
synthetic seismograms. There is no velocity variation across the interface for this model. The

top of the figure presents the results of the inversion method for the two parameters: density
and bulk modulus.
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dimensional media.

Note that the sections are reconstructed only within a limited bandpass due to
the convolution by the source time function. Hence, low and high frequencies of the
actual variations of the density and bulk modulus are lost in the process. Figure 2.6
presents the second model with lateral variations. This time, there is no contrast in
density between the two media. The result of the inversion should show the struc-
ture only on the bulk modulus section and the density section should be blank. This
is nearly true for the first shallower interface which hardly appears on the density sec-
tion. The deeper interface (bottom of the ‘“ditch”) is not as well reconstructed as was
the case in the previous model. The interface is correctly located, however the density
section shows some residual energy at its depth and the amplitude of the bulk

modulus is not as well reconstructed as it is on the shallower interface.

Conclusion

We tested the frequency-wavenumber inversion technique introduced by Clayton
and Stolt (1981) on exact synthetic seismogram sections, both varying one dimension-
ally and two dimensionally. The results were quite encouraging for the reconstruction
of the impedance profiles in one dimension. However, the multiparameter inversion is
more problematic. It necessitates a large angle coverage of the subsurface to be able
to retrieve the two parameters independently, and we observe an artifact probably

related to the cutoff in offset in the data.

For two-dimensional models, the technique was tried on two simple models, one
with a density contrast, the other with a velocity contrast. The technique proved to

be effective in differentiating between these two types of contrasts; however, the
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reconstructions presented unexplained phase shifts, and in both cases the lower inter-

faces were not satisfactorily recovered.
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Chapter 3

A Tomographic Inversion of the Acoustic Back-scattered
Wavefield

Abstract

The application of the Born approximation on the scattered wavefield followed
by a WKBJ and far-field approximation on the propagation Green’s function for a
slowly varying background medium leads to a simple integral relation between the
density and bulk-modulus anomalies superimposed on the background medium and
the scattered wavefield. We develop an iterative inversion scheme based on successive
backprojections to reconstruct the two acoustic parameters. The scheme is applied on
data generated using the direct integral relation and shows that the variations of the
parameters can be reconstructed using such a scheme. The procedure is readily appli-
cable to actual data, since every iterative step is essentially a before-stack Kirchhoff

migration followed by the application of the direct Born and far-field operator.

Introduction

In the previous chapters, the theory of the Born approximation has been
developed. In essence, we related the physical parameters defining the medium : den-
sity and bulk modulus to the seismic reflection data. Under the approximation, the

relationship between the parameters and the data becomes linear, unlike in the full
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theory. The linear inverse theory can then be applied to the problem. However, the
large dimensions of the matrices involved in the application of the inverse theory in
the case of seismic data is an incentive to try to derive different algorithms, that do
not imply the inversion of a very large matrix. A typical problem in seismic reflection
is the imaging of a region having dimensions of a few kilometers to a few tens of
kilometers in length and a few hundred meters to a few kilometers in depth, depend-
ing on the specific aim of the survey. In order to apply the inverse theory, the
medium has to be discretized. The smallest period present in the seismograms will
determine the discretization step in space, if we want to take full advantage of the
data. Usually this gives a discretization step of 20 to 50 meters, and this gives us a
dimension of at least 10*. The dimension of the data space is even larger. If we con-
sider a survey, or a portion of a survey consisting of 100 shots recorded on 24
receivers for a duration of 4 seconds and a discretization of 0.004 seconds, the dimen-
sion of the data space is 2.4 10%. Clearly, with such large dimensions for both model

and data spaces, a classical least squares method is impractical.

These considerations lead to using other techniques to search for the solution
that is optimum in some sense. A similar problem of large dimensions of data and
model space was encountered by workers in geophysical tomography. The general
problem in that field consists in estimating a velocity model from the knowledge of
travel time residuals of seismic waves through the model, assuming a known travel
path. (This last approximation can be likened to our assumption of knowing the
background velocity.) Geophysical tomography has been applied to different data sets,
including the whole Earth (Clayton and Comer, 1985), the regional crustal and Moho

structures of Southern California (Hearn, 1985), the structure of the Mantle under
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Southern California (Humphreys et al., 1984) and a local structure in France (Nerces-
sian et al., 1984; Tarantola and Nercessian, 1984). Closer to our application, Taran-
tola (1984a, 1984b) has introduced the concept of tomography for whole wavefield
inversion of seismic data. All these authors use an iterative process based on back-
projection to approximate the inverse. The backprojection operation consists in
applying the transposed operator, or a modified version of it to the residuals, or data.
The result is added to the previous model estimation to obtain an update of that esti-
mation. From the current model, the next set of residuals is calculated, and another
iteration can be performed if desired. The iterative process allows large size problems
to be handled by relatively small size computers, since they can be treated sequen-
tially, without requiring a very large memory space corresponding to large matrices.

Furthermore, no matrix inversion is necessary, with its inherent instabilities.

One drawback for all the methods cited above is that the resolution and vari-
ance of the models obtained are difficult to estimate other than empirically, for exam-
ple, by doing synthetic tests to estimate point spread functions. In the next para-
graph, we will introduce several methods of optimization of a function, in this case
the quadratic function Ly-norm of the residuals, and will show how to apply algo-
rithms which have been developed in the field of optimization (Fletcher, 1980) to our

specific problem.

Optimization of the Ly-norm of the residuals

Let us introduce the notations used throughout this chapter. We defined earlier

a Born operator as a linear operator on a model space whose vector is the space-

Ap(z) 'AK(Z)
p

variable function ¢ =

], respectively, the relative density and bulk
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modulus variations. The operator applied on the model gives the Born approximation
wavefield. The direct Born operator is noted G'. The objective we pursue is to mini-
mize the Lo-norm of the residual vector defined as u —Gc¢ where ¢ is the model vector
and u the data vector. The Ly-norm is a quadratic function of the vector ¢, and it

can be optimized by techniques such as descent methods and quasi-Newton methods

among others (e.g., Rao 1977; Fletcher, 1980).

The descent methods establish a line of search for a minimizing point along the
direction of the gradient of a function, in our case the Lo-norm of the residuals. This
makes sense intuitively, because we know that the function is going to be smaller
along the gradient than at the starting point in its neighborhood if the starting point
is not a stationary point. The gradient needs to be easily obtainable for these
methods to be applied. For our problem, the gradient is the expression
-G T(u —Gc ). To calculate it, it is necessary to compute the forward Born problem at
the point where we estimate the gradient and then compute the transposed Born
problem over the residual. The algorithm for the search of a minimum is then the

following :
- Choose an initial model ¢ g, usually 0.
Subsequently, for the k™ iteration:

- Compute the quantity s;_.;—0a; GT (u—-Gc;). where o, is a scalar computed

to optimize the Lo-norm along the line defined by the gradient.
- Add s, to the previous model c; .

Descent methods present disadvantages. They may have a slow rate of conver-

gence and may converge asymptotically. Newton’s method is a second-order method
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and requires the knowledge of the Hessian of the function to minimize. The increment
s, in this case is not simply proportional to the gradient, but to the gradient
transformed by the inverse of the Hessian. In the case of a quadratic function, as
here, Newton’s method is the classical least-square method. I already discarded it
because of the large dimensions involved. Quasi-Newton methods require only the
knowledge of the first derivatives, which are easily computed in our case by backpro-
jection of the residuals. The inverse of the Hessian is approximated by a positive
definite matrix which is updated at each iteration. This presents the advantage that
there is no matrix inversion since we try to estimate the inverse of the Hessian

directly.

One such quasi-Newton method is the Davidon-Fletcher-Powell (DFP) method

(Fletcher, 1980; Rao, 1977), that is presented in more detail in the next paragraph.

The Davidon-Fletcher-Powell method

Quasi-Newton methods can be viewed as modifications of descent methods.
Using the same notations as were introduced in the last paragraph, the k** iteration
of a quasi-Newton method can be defined as follows:

- set s, ——Hj gx where g,—GT (u-Gc;) and H; is a positive definite matrix,
defined in the next paragraph.

- update Hy, giving H ;.

- add 6, =a; s; to the previous model ¢;. a; is a scalar computed so as to

minimize the Ly-norm along the line defined by s ;.
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The matrix Hy is definite positive. In the case of the DFP method, it is updated

at each iteration following the relation :

b 6,7 _ (Heme N Heve)T
58y e Hy i

Hy v=H, +

where Ve =09k +1-9k is the difference between the gradients at two consecutive itera-
tion points.
The initial H, can be taken, for instance, as the identity matrix or as the diago-

nal matrix whose elements are the inverse of the diagonal elements of G7 G .

From the form of the equation updating the H matrix, we can see that we need
only store vectors of model-space dimension (two per iteration) to have a complete

representation of H.

The DFP method has important properties, especially when it is used to mini-
mize quadratic functions, which is the case in our problem. For these, it terminates
in, at most, m iterations where m is the size of the model space. Furthermore, and
most important for our purpose, H approximates the inverse of the Hessian matrix at
the point of convergence. In our case, the Hessian matrix is GT G . This provides a
convenient way of estimating the variance matrix at the convergence point using the

relation :
<AcAcT>=d4GTG)},

where we have supposed that the variance matrix of the data is represented by the

identity matrix times o>.

The size of the problem involved in seismic reflection applications will not make

very many iterations possible, as the dimension of the model space can be very large.
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With respect to this difficulty, it is important that the method of optimization has a
rapid initial convergence rate, with rapid decrease in the rms for the first few itera-

tions.

Application of the Davidon-Fletcher-Powell to inversion of seismic data

In Chapter 1, we derived the expression for a scattered field in a two-

dimensional medium under the Born Approximation and a far-field approximation:
D(I. ng:t) = Ga’(zxy)) (3'1)

where :

a(z,y) = [“i(z,y)]_

ay(z,y)

In an explicit form :
D(zy2,,t) = [ d0A (z, ) A (2 ,3,) [al(:r)+ aoz )coso] S(t-ty-ty). (32)

The notations are the same as in Chapter 1. This equation defines the forward Born
far-field problem. The scattered wavefield is computed from a knowledge of the dis-
tribution of density and bulk modulus. To apply our optimization method, we need
to define the corresponding transposed operator. To do so, we need a scalar product
over our model and data spaces. This is conventionally done by using the following

definition for the scalar product of two vectors u and v :

<u,v> = L!dﬂ uv.

The transposed operator of G is then fully defined by :



- 48 -

<u,GV> = <GTu,V>,
where v belongs to the model space and u to the data space.

Using this definition of G, and of the scalar product :

[ dz, [ dz, [dt D (z0,2,,t) [ d QA (2, ,z)A(z,x,)[a1+a-..coso]s'(t~t1-t2)
= <D .G,

The order of integrations can be rearranged and :

fndﬂfdz,fd:, fA (z,,2) A(z,z,) [al+ azcosﬂ]S’(t—tl—tz)D (7, .7, .,t)
=<GTDa>.

Hence, the transposed operator acting on the data set u(z,,z,,t) is defined by :
i,=[dz, [dr, [dt A(z,,5)A(z,2,)S(t-t,~t3) D (3, 7, ,t). (3.3)

&Ffdz, f_d:z, fdt A(z,,5)A(z,z, )S (¢ ~ty—tg)cosb D (z, ,z,,t).

In practice, the procedure followed to obtain the transposed data is to crosscorrelate
the derivative of the source function with the seismograms with a delay time
corresponding to the travel time between source, current point and receiver. The
crosscorrelation is then added to the array representing the parameter at the current
point of the model space and multiplied by the appropriate coefficient, namely, the
amplitude factor of geometrical spreading and the angular factor cosf for a,. Hence,
this procedure is very similar to a before-stack Kirchhoff migration (Jain and Wren,
1980). In fact, the only difference is that we multiply the crosscorrelation with a
different coeflicient and that the process is iterated on after computing the direct

problem and the residuals.
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Application to synthetic data

The method given above was tested on synthetically generated data. In the first
step, the data were generated using a direct Born formulation. This allows us to con-

centrate on the performance of the inversion algorithm itself.

The models used for generating the synthetics are very simple. They consist of
an array of 30 by 20 cells. Each cell is 0.05 km square. The top of the imaged area
(e.g., Figure 3.1) is at a depth of 0.2 km. The data were generated using a sampling
interval of 0.004 seconds. The background velocity represents a linear increase with
depth v(z) = 2.5 4+ 0.343z . Synthetic seismograms are computed at 16 midpoints
and 24 offsets for each midpoint. The midpoints were placed at an interval of two
cells (0.1 km) and the increment between successive offsets is 4 cell sizes (0.2 km).
This gives us a maximum offset of 4.6 km. The first midpoint is directly above the
top left corner of the area to be imaged. The source function used for the examples

presented in Figures 3.1 to 3.8 is one cycle of a sine function.

Point scatterers

Synthetics were generated for point scatterers simulated by placing a cell with
an anomaly either in density or in bulk modulus at the center of the area to be
imaged. In both cases, the amplitude of the anomaly is a relative increase of 0.01 of
the variable at the point scatterer. Figures 3.1 to 3.4 show the results of the first and
third iterations for synthetic data generated from a density point scatterer. The
intensity scale at the bottom was chosen so that the maximum amplitudes on the sec-

tions are slightly saturated. The first set of Figures (3.1 and 3.2) shows the direct
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output of the inversion program. The two following Figures (3.3 and 3.4) are a
smoothed version of them. The sections were smoothed by averaging over a disk
with a radius of 2 cells (0.1 km). Figures 3.5 to 3.8 are for a bulk modulus point
scatterer and also present the direct results of the first iteration and third iteration
backprojections (Figures 3.5 and 3.6) along with smoothed versions (Figures 3.7 and

3.8).

These two examples illustrate some of the characteristics of this kind of inver-
sion. Its artifacts are similar to the artifacts of a Kirchhoff migration, as can be
expected. This is best illustrated by the figures showing the first iteration of the
inversion for the two different models. There is a streaking of the anomalies in the
horizontal direction, which can be thought of as the effect of superimposing the equal
travel time arcs. They do not interfere destructively due to the absence of arcs cross-

ing vertically. This is very much improved with successive iterations.

Another feature of this iterative method is the buildup of the amplitude of the
anomalies with successive iterations. This is illustrated by the difference in the ampli-
tude scales on the figures between the first and third iteration, reflecting the
difference in the maximum amplitudes on the sections. This amplitude buildup is like
the one observed by workers in tomographic inversion of travel time data. Several

problems were examined relative to this inversion method and are presented below.

To illustrate the ability of such an inversion technique to be useful in
differentiating between different rheologies, we computed synthetics generated for a
model with four point scatterers. Each of the points has different characteristics. The
model is presented in Figure 3.9. Two sets of reconstructions have been made for this

model, first, with a maximum offset of 2.3 km and then with a maximum of 4.6 km.
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Figures 3.10 to 3.13 show the reconstructions for the small maximum offset of 2.3 km,
and Figures 3.14 to 3.17 show the reconstructions for a maximum offset of 4.6 km.
The bulk modulus model was made up of three scatterers with equal weights. The
density section has three scatterers with weights of 0.01, 0.02 and -0.01. Note that in
both cases of small and large maximum offsets the anomalies are well reconstructed
with their appropriate weighting except for the lower right corner anomaly which is
poorly recovered, although better so on the large offset experiment (Figure 3.17). This
1s explainable since the anomaly has no impedance contrast with the background and
therefore will not radiate any direct backscattered energy. The surface data, being
mostly backscattered, will not see it, unless the offset coverage becomes such that the
scattered waves will be forwardly scattered, at least in part. In all cases, the

impedance anomalies are well reconstructed.

Noise analysis

An empirical noise analysis was conducted by adding white noise to a signal gen-
erated with a density point scatterer model. The results are very encouraging. The
effect of adding white noise even in very large amounts does not affect the backpro-
jected images very much. This is due to the ability of the method to cancel random
noise by adding it destructively along equal travel time paths. Figure 3.18 shows
representative midpoint gathers for the one point density scatterer, with signal over
noise ratios of co, 10 and 0.05. Figure 3.19 is the direct result of the first iteration for
the signal-over-noise ratio of 10 and Figure 3.20 the result of the third iteration. Fil-
tered versions of these figures are given, respectively, in Figure 3.21 and 3.22. These

can be compared to Figures 3.1 to 3.5 which are the noiseless reconstructions. Figures
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Figure 3.14 - Same as Figure 3.10 for a maximum offset of 4.6 km.



- 66 -

Modulus

5

0

00e-02

-

1

Figure 3.15 - Same as Figure 3.11 for a maximum offset of 4.6 km.
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3.23 to 3.26 show the results of the first and third iterations both unfiltered and
filtered. The effect of the noise is more readily apparent in this case but it shows that
even in extreme cases, with very low signal over noise ratios, the method is robust
with respect to the presence of random noise. This is due to the cancellation of noise

along the equal travel time paths.

Disk-shaped anomaly

The examples presented so far have been point scatterers. Since the Born
approximation leads to a linear relationship between the medium parameters and the
synthetic seismograms, one can think of more complex models as linear superpositions
of such point scatterers. Scattered waves then combine and interfere constructively to
give rise to reflections and diffractions on objects of diverse shapes. An example of
reconstruction for a disk-shaped object presenting a density anomaly of magnitude 1
is shown on Figure 3.27. The background medium is the same as for the previous
point scatterers examples (linear increase with depth). The original disk has a diame-
ter of 10 cells (0.5 km). Figure 3.27 shows iterations 1, 3, 5 and 7 of the inversion.
The sections are all plotted at the same scale and the buildup in amplitude with
iterations is more easily observed on this example. Note also the improvement in the
streaking. The reduction in the rms was, respectively, 58%, 69%, 80% and 88% for

these iterations.
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Figure 3.24 - Third iteration for a signal over noise ratio of 0.05.
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Conclusion

A method has been presented to invert seismic data for the acoustic parameters
of the subsurface. It is based on a Born approximation for the acoustic wavefield and
a further far-field approximation. It is applicable when the background acoustic
parameters are slowly varying functions of space. The Green’s functions can then be
computed using a WKBJ approximation. The method is iterative, and each of its
steps resembles a before-stack Kirchhoff migration. The difference with a before-stack
Kirchhoff migration is that coefficients multiply the backprojected field. These
coefficients depend upon the geometrical spreading and the angle between incident
and scattered wave. The method was tested on synthetically generated data and it
was shown that a good image of the impedance can be obtained even after a few
iterations. When the data contain large offsets, a differentiation is possible between
two independent acoustic parameters. The method has many similarities with tomo-
graphic reconstruction methods. They are based on the same mathematics, both of
them using a gradient method to minimize the norm of the residuals. The iterations
are based on the application of the transposed linear operator on the residuals and
then the direct operator on the model thus derived. An amplitude buildup with suc-

cessive iterations is observed, as with tomography.

We demonstrated the applicability of this method on actual data, with a noise
analysis and examples which involved data sets comparable in size to actual surveys.
We neglected in this chapter to analyze several factors influencing the amplitude of
seismic data. These are, among others, the radiation pattern of the source, in which

the effect of the free surface can be taken into account, the receiver array
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attenuation, which is a function of the incident angle on the array of receivers and,
perhaps most important, the anelastic attenuation of the medium. The source radia-
tion pattern problem can be easily tackled with the high frequency approximation
approach used here. In the next chapter, the radiation pattern due to a point force

over a free surface is presented, for elastic waves.



Chapter 4

Inversion of Seismic Data for the Elastic Parameters

Abstract

The Born approximation for the two-dimensional elastic wave equation is intro-
duced. A WKBJ and far-field approximation further lead to an expression for the
scattered wavefield as a sum of scattered rays. The displacement field can be written
as a sum of rays corresponding to the four basic types of scattered rays (P-P, P-S, S-
P, S-S). Similarly to the acoustic case, an inversion algorithm is proposed to invert
the seismic data. This method is suitable when the acoustic equation is not adequate
to describe the wavefield, namely, at large offsets for surface data, or for large offset

VSP data, where converted waves become an important part of the wavefield.

Introduction

In the previous chapters of this thesis, the seismic data have been identified as
the result of the interaction of the underlying medium with propagating acoustic
waves. The effect of the acoustic parameters of the medium on the amplitudes of the
seismic waves was investigated using the first-order Born approximation model. It
was shown that the data can be inverted for the acoustic parameters of the subsur-
face for a seismic reflection geometrical configuration provided that the medium does

not include large amplitude heterogeneities. In addition, it was found that the
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information sought after, namely, the separation of two parameters from the data
(e.g., density and bulk modulus, or velocity and impedance) can be obtained if the
angular coverage is sufficiently large (meaning large offsets for the usual reflection line
experiment). In the seismic reflection configuration, the backscattered energy consists
mostly of compressional waves for a medium that does not present steeply dipping
interfaces. The P to S reflection coefficient is small compared to the P to P reflection
coefficient for near-normal incidence. Kennet (1979) showed that the converted
shear-wave energy is significant at large offsets for surface reflection data. In the
offset-VSP geometry, prominent converted waves are observed (Gal'perin, 1974) for
wide offsets. They contain additional information about the medium, namely the
shear modulus variations of the medium. In this chapter, we develop an extension of
the previously investigated backprojection method, in which the effect of the elastic
propagation is taken into account, including converted phases. Since the amplitude of
the data plays a major role in determining the physical parameters, it is desirable to
describe the wavefield as well as possible. In particular, the elastic reflection
coefficients derived from the use of the Born approximation on the elastic equation

should be used instead of the acoustic coefficients.

Elastic Born approximation

The homogeneous (no source terms) two-dimensional elastic displacement equa-

tion for an isotropic medium can be derived from the stress-strain relations:

oij =>\A6,] +2[.l.6"j
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where:  o;;: stress tensor  ¢;;: strain tensor X and pu: Lamé’ s parameters
and the fundamental equation of motion:
Tij.i = Pﬁi where u is the displacement vector.

If X and p are not constant as a function of the space variables, we obtain the follow-

ing linear equation for u:

A [azA 3z+82363+3,BT3,+3,Caz+pw2l]u=0 (4.1)
where
B 0 0 u]
A:[0x+2,u] B=[xo
I)H—Q,u 0] [1 o]
— L 0 u I'=10 1}

It is convenient for our purpose to rewrite the operator L in the form (Clayton,

1981):

E =v[g 2]vT+2H[2 g]HT-szT [2 g]H+pw21 (4.2)
where
d, -9, 0 4,
Vz[az 6,) HZ[B, 0]
are symbolic operator matrices and y=X\+2u. note that :

viv=vwv! =(8,,49.,)]

and
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TlO 1] [O 1] - [0 1]
H™ |y o)l =H || o) =0:0: {1 o)

In Clayton and Stolt (1981) the Born approximation to the Lippmann-Schwinger
equation was introduced and stated to be : G = Gy+G VG, where G is the
Green’s operator for the equation, formally defined as G = -L™' and Gy is the
Green’s operator for the wave equation with slowly varying Lamé ’s parameters and
density and V is the scattering potential (V = L-L, ).

In the elastic case, G is a matrix operator instead of a scalar operator as in the
acoustic case. The Green’s function G for the slowly varying background satisfies

the equation :

% O 0 u 0 u
p0<u200+vlo MO)VTGO+2H [‘u 0] HY &y—2 B [# 0) H Gy = §x—=x,)S (w).
The scattering potential is :

% O

0 u 0 u
1% =(p-p0)w21+vl 0 ‘u_m)]\-ﬂ"+2h([‘u O]HT—QHT[" O]H. (4.3)

Defining the dimensionless parameters

V' can be expressed as :

o’a, 0

0 62G3

0 ag

0 as
V =p|awtl+v vT+2ﬁ2Hla3 O]HT—2ﬁ2HT[as 0]H(4.4)

where o and 3 are the background P and S velocities :

sy fE o
o Po
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Introducing a point source and a time function S(w), the observed reflected waves can

be related to the scattering potential by :
D (z,,7,,w) = GoVGFS(w) (4.5)

where F is a two-component vector including the radiation pattern of the source
being used in the experiment. We later discuss this term in our application on VSP

data, for a surface point load.

Background elastic Green’s functions and the WKBJ approximation

For some background media, the expressions for the background Green’s func-
tions can be computed analytically. This is the case for a slowly varying medium.

The Green’s function G for the slowly varying background satisfies the equation :

7% O 0 u 0 u
p0w26'0+v[0 MO)VTGO-WH [ﬂ 0] H* G2 BT [u 0] HG
= §(x—x,)S (w). (4.6)

The last two terms of the R.H.S of the equation can be shown to be negligible in

the case of a slowly variable medium :

If Gy= (u,v) where u is the radial component of displacement and v the verti-

cal component of displacement, then :

- [0 ,u] (I“Jz):]

p 0) = (nu,),

and :
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- [u Ol B [(uvz);]'

0 u (nu,),

The difference between these two terms involves only the spatial derivatives of u and

hence can be neglected for our slowly varying medium. The Green’s function has

thus to satisfy the equation :

% O
pe"Go + v [0 ”0] vl Go=8x—x,)S (). (4.7)

The potentials of the displacement vector provide a working similarity with the
way the acoustic theory was developed. They satisfy the wave equation for the back-

ground medium and propagate much the same way as the acoustic potential.

In two dimensions, the elastic potentials are defined by the following relations :
u=¢, + %. v=-9¢, + %.

They can be shown to satisfy the following wave equations if the partial deriva-

tives of u with respect to the space variables are neglected :

2
w

¢'zz +¢zz +‘_2¢:O
o

2
Vg + V¥ +—6=0

x

where a and 3 are the P-wave and S-wave velocities, respectively. Throughout this
chapter, we consider that they are slowly varying functions of the depth z only. The
WKBJ theory can be applied to get the solution of these two differential equations
(e.g., Aki and Richards, 1980). The WKBJ P-wave potential for a source at 0, z and

a receiver at r,z is given by the expression :



-88-

. e"f,:Pd" ¢(v) €OS [fz:duq(u ))

¢’D(kz )% ;O;ZO;M) - 1/2
27poa’ 2i [a()a(z0) |

where the function ¢ (z) is defined by :

2 1/2
q (z) = l_g_kz2]
(63

A turning point zp is defined by ¢(zp) = 0.

The SV potential is :

i ‘Pdu r(u cos zdur(u)
il Dy kg o7 102Uy 2 0)

—
2mpef” 214 [r(z)r (zo)]”2

where r(z)is:

1/2

|&

4

r{z}= [ o‘kzzl

W,

(4.8)

(4.9)

The turning point for S waves is defined in a similar way as for the P waves :

r(zp) = 0.

Far-field approximation expression for the elastic WKBJ-Born displace-

ments

Similarly to the acoustic theory developed in Chapter 3 , we now investigate the

further approximation that can be introduced for far-field data. The elastic displace-

ment has been expressed in the form :
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D (z,,7, ) :j;zdnjdk,fdk,e"‘s“f“’ Golk, 2 w)

V(z,z)e™ ™) Gk, 2 w)F S(w) (4.10)

The Green’s function G for the displacements is obtained from the Green’s functions

for the potentials ¢ and vy, Gog = V.Ho where :

at 62 éo
V= 3, d, and Hy,= %l;

¢o and 1y are the WKBJ potentials. Their expression has been given in the previous
paragraph. The scattering potential is a differential operator acting on the Green’s
functions for the displacements Gy. The derivatives of the potentials with respect to

the space variables are :
o . ik, z
a—%(f;Z}O,O;W) = ik, fdk, e * dolk,,z W),
T
and when the spatial derivative terms of velocity are neglected :
d » ik, z
a_¢'0(1' 2 ;0,0;&)) = g, (Z )jdka e’ é()(ku % 1“")'
4

For most experimental configurations for seismic data (surface source and receiver in
seismic reflection, and surface source in VSP) the source is at the surface of a half-
space. This introduces some complications in the wavefield due mostly to the critical
pS wave converted at the surface of the half-space. The P-wave radiation pattern is
not very modified; however, the S-wave radiation pattern reflects the importance of
the presence of the shear head-wave. This modification of the radiation pattern is
included in the source term F. The source term can be evaluated for different types of

sources (e.g., in our application, we are going to evaluate it for a vertical surface line
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load). Using the relation between displacements and potentials in plane strain, the

wavefield can be expressed as :

—oa®
k, O 2 a4, -0
ik, (z,-z) 7 * w z z
D (Ig 1Ts ’w) - fﬂdnfdky k o [—az lkg ] 0 —1/),82 [az az ]
w?
. ik, O, é 0
Viz,z) fdl'c, e %o (277 [_az i, ) 0 1/}] F S(w). (4.11)

Ignoring the spatial derivative terms of the background medium parameters, and
integrating by parts, supposing that the integrals in k, and k, vanish at the limits of

the domain (2, we obtain the following expression:

-¢a2
, tk, 1q w? tk, —1iq
1k9(zl-z)[ g g ] l g ] ]
- dk g i 5 .
D (z, ,z, W) fﬂd Qfdkyf L _ig, ik, . g | lig, ik,
o
ik (2— ) t.kl iqﬂ ¢ 0
V(ks,qs kg q) e’ —iq, ik, ] 0 ¢]F S (w). (4.12)

F is the source term for potentials. It is discussed in a later section in the case of a
vertical force over a half-space. The expressions for the scattering potential
V (ks .95k, ,9,) as a function of the horizontal and vertical wavenumbers for the

source and receivers are obtained in Appendix C.

At this point, we make a further approximation on the wavefield following the
same guidelines as in the acoustic problem (see Appendix B). It is a far-field approxi-
mation and corresponds to considering the wavefield as a superposition of rays. The

integrals over the source wavenumber k, and the receiver wavenumber k, are
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approximated by their asymptotic expressions for large ka where k is the
wavenumber and a a characteristic distance. We should comment at this point on
the effect of the Born approximation on the phenomenon of critical refraction. In the
full wave theories, branch cuts in the complex p plane are associated with the pres-
ence of head waves. In the case of the Born approximation, however, these branch
cuts do not contribute to the integrals, since the stationary points of the integrals (or
equivalently saddle points through which the integration contours are passing) are
away from them and they represent the major contribution for the integral. We will

show this in the following paragraph.

The branch points are associated with the zeroes of v,, v, 5,, 7,. The scatter-
ing coeflicients derived for the four types of scattered waves are given in Appendix C.

For each ray, the branch points of the integral corresponding to the ray are for

1
v (0)

P ———:t—-l—-— and p==+ where v(z) is the P or S velocity depending on the ray.

v(z)

The scattering potential does not introduce any more branch cut, since for each
scattering coefficient the only square roots in the expression are the horizontal slow-
ness for the incident and scattered rays. Therefore, there won’t be any critical point
phenomenon. If we consider a background medium such that there always exists a ray
joining the source and the scatterer and the scatterer and the receiver for both P and
S waves, there will be a saddle point with the major contribution to the integral,
away from the branch cut. This is illustrated by Figure 4.1. The saddle point is on

the real p axis, at the value pg corresponding to the slowness of the ray.

As shown in Appendix C the scattering potential is made up of four terms. Each
term corresponds to a pair of incident and scattered wave : P-P, P-S, S-P and S-S.

Consequently, the expression for the wavefield is the sum of the four terms.



Cagniard path

|/V branchc¢

Re(p)

Figure 4.1: Schematic illustration showing the position of the saddle-point pg, the branch

point 2. and the Cagniard path in the complex p plane.
v
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The first part of the wavefield to be studied is the P to P scattered field :

DPP (zﬂ Ty ,W) =
" P 2
fyeo e (e, 2) AR (24T (2,2, Rop (025 F (2,.2) S(0)
(83

The P to S scattered field :

DP¥(z, 2, w) =

% 2
%m ¢ )5 2) AP (,,2)A5 (2,2, ) Rps (e);"—ﬁz FP(z,,2) S(w).

The S to P scattered field :

D (2, iz, 00) =
. 2
Vg)dﬂ g 15)2(1:, z) A% (z,,2)AP (2 12, )JRsp (H)Zw%- F¥(z,,2) S(w).

The S to S scattered field :

D% (zg Sy 0 =

- 2
>g}dﬂ A+ ‘g)):(:cg 2} A% (2,8 A5 (2 2, )RSS(B)C?F F®(z,,z) S(w).

The I factors stem from the first matrices in the integrand of Equation (4.12).

They simply correspond to the projection of the potentials on the surface. They are

rotation matrices for the angle of incidence on the surface and therefore depend on

the positions of the scatterer and geophone. They can also be thought of as the opera-

tor transforming potentials into displacements.

tf,tf,t7, t3 are the travel times of P and S waves joining the source and the

scatterer for subscript 1 and the scatterer and the receiver for subscript 2.
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The A factors are amplitude factors related to the geometrical spreading of the

rays. Their expressions have been evaluated in Appendix B :

Alz,z5,)= [iv—”—]/

cosf,

where p is the slowness field for the background velocity, and | p | notes the mag-
nitude of the gradient of the slowness at the scatterer, and cosf, is the take-off angle
at the source. The scattering coefficients Rpp ,Rps, Rsp, Rgs are computed in
Appendix C. They depend on the angle of aperture between the incident ray and the

scattered ray :

Rpp = a,cosf — ay + 2-5—2 a3sin’g (4.17)
Rps = a,sinf —g a3 sin2f (4.18)
Rsp = —a,sinf +§ a3sin26 (4.19)
Rgs = a, cosf + a5 cos26. (4.20)

Wu and Aki (1985) gave expressions for the amplitude of Rayleigh scattering on
small size inclusions in an elastic medium. Their expressions for the scattered poten-
tials agree with our scattering coeflicient terms. Everything then happens as if each
point in the medium acted as a single scatterer. The total elastic scattered field is the
sum of all these scattering points. The wave propagation between the source and the
scatterers and between the scatterers and receivers can be described by rays joining
the source, scatterers and receivers. The rays propagate in the background medium,

ignoring interactions with the other scatterers. A comparison of our scattering
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coefficients with the scattering coeflicients obtained by Wu and Aki (1985) is made in

Appendix D.

Figures 4.2 to 4.4 show comparisons between synthetics computed using an elas-
tic finite difference scheme and the Born approximation synthetics for different values

of a point scatterer.

The geometry for the comparison is shown in Figure 4.2. The waves generated
are forwardly scattered. The figures illustrate the different patterns generated by
different values of the anomaly at the point scatterer. The source is purely compres-

sional and thus only P-P and P-S waves are generated in this configuration.

For an anomaly in P-wave velocity only (or in 5 = X + 2u), the scattered
wavefield is purely compressional. For density and shear modulus anomalies, the shear

waves dominate.

Source radiation pattern: example of a load at a free surface

The problem of a point load at the surface of a half-space is the well-known
Lamb problem, and has been investigated by numerous authors (Knopoff and Gilbert,
1959; Miklowitz, 1978). Figure 4.5 illustrates the different types of waves occurring
for this problem. The wave pattern due to a vertical line load at the free surface of a
half-space is composed of a P wave and an S wave in the region of the half-space such
that take-off angles lie in the range 0 < 6 < B,, where ., is the critical angle for S
8
o

waves refracted at the free surface sing,, = Outside this region, for take-off

angles such as 3, <0 < -g—, the wavefield is more complex, involving a P wave, a

conical wave pS which is an S head wave and a singular S wave with a two-sided
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SOURCE
. SCATTERER 2

0]

Q=2.73 km/s
B= .56 km/s

p =23 g/m®

RECEIVERS

Figure 4.2: Geometry for a one-point scatterer comparison between the Born approxima-
tion and a finite difference calculation. « is the P-wave velocity, § the S wave velocity and p
the density of the background medium. The scatterer differed from these values by 1 percent
in each case presented in Figures 4.3, 4.4 and 4.5.
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Figure 4.3: Comparison between the Born approximation displacements and a finite
difference calculation for a density, p scatterer. u is the radial displacement and v the vertical
displacement. The geometry is shown on Figure 4.2.
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Figure 4.4: Same as Figure 4.3 for a y = \ + 2pu scatterer.
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wavefront. Knopoff and Gilbert (1959) computed the radiation pattern for the first
motion components of vertical displacement for all four types of waves mentioned.
The first motion approximation is a high-frequency approximation and can be used at
distances larger than a few wavelengths. Figure 4.6 illustrates the radiation patterns
of the P wave and the regular S wave in polar diagrams. The pattern for the S wave
beyond critical angle is in effect the magnitude of the singularity of the two-sided
pulse at the time of arrival (see Knopoff and Gilbert, 1959 for further discussion). The

expressions for the radiation patterns are given below :

For the P wave :

2
cosf [-a——QsinQG
g ]

- p) 2 17z
%—QSin“,B + 4sin2fcosd 2 sin20

,62

¢p(0) = [

For the regular S wave (0 < 8 < 3., ) :

" 1/2
cosfsiné [%2——51'11 29]

¢s(0) =

2

: : 172
[I—ZsinQG] + 4sin®fcosf [-g———sinr"ﬂ]
o

For the irregular S wave (6>43,,) :

T
+ [1—25in29]

|

02

2 1/2
4sin’fcosf [siu29——ﬁ—2- -2 [1—2sin20]
. ) 2 (e
$s (6) = sinfcosb [511126’ 52 ] T
[4sin29cosd9 [sin26—ﬂ—
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Wave pattern for o surface load

Figure 4.6: Waves generated by a vertical point force at the surface of a half-space. 3,
is the critical angle for the P to S reflection at the free surface.
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Figure 4.7: Radiation pattern for the P wave and regular S wave for a vertical point
force at the surface of a half-space. 3,, is the critical angle for the P to S reflected wave at
the free surface.
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Inverse problem for the elastic wavefield

The same procedure that was used to invert the acoustic wavefield in the previ-
ous chapter can now be applied to the full elastic problem. The direct problem has
been defined in the previous paragraph, where the expression for the two components
of displacement (radial and vertical) were computed in the far-field using the linear

relation:
u 1
[v)(z, 2, ) = ";IdQM as|(z,z2). (4.21)
a3

M is the matrix representing the linear operator relating the medium parameters to

the displacement vector.

Based on this linear relation between the medium parameters and the displace-
ment vector, we can devise an inversion procedure similar to the one used for the
acoustic problem. The general method is a Davidon-Fletcher-Powell method involving
the transposed linear operator of the elastic Born approximation. This transposed
operator can be written symbolically as:

u
; (2, 2yt )

¢
asl(z,z) = f MT
[a3] data

where the sum over data corresponds to a summation using all the seismograms we

dispose of.

In practice, each section (a,a5,a3) is computed by summing the crosscorrelation
of the source function and the seismogram with the time delay corresponding to the

travel time of the adequate set of incident and scattered ray (P-P, P-S, S-P, S-S) and



- 104 -

multiplying by the coefficients valid for these rays (including the geometrical ampli-
tude decay, the angular scattering coefficient, the conversion from potential to dis-

placement and the source radiation pattern.)

Conclusion

We expressed the scattered elastic field as a superposition of rays scattered from
each point in the medium considered as an isolated elastic scatterer. The simplified
picture was obtained after using three approximations on the scattered wavefield. The
first approximation is the Born approximation that allows us to describe the scattered
wavefield as the interaction of a background Green’s function with a scattering poten-
tial, giving rise to a scattered wave approximated by Gy + GoVG,, where G is the
background medium Green’s function and V is the scattering potential. The second
approximation is a WKBJ approximation. It describes the propagation in the back-
ground medium under the assumption that the medium parameters are slowly vary-
ing. The third approximation is a far-field approximation on the propagation Green’s
function G . This leads to a ray-asymptotic description of the propagation part G,.
The elastic scattered field is then simply a superposition of scattered rays of different
types (P-P, P-S, S-S, S-P) resulting from the interaction of direct P and S waves
propagating in a background medium with each point of the medium considered as
an isolated scatterer. The general approach that we take to invert the data described
using such a model is the same as the one used in the acoustic case in Chapter 3. In
the case of elastic waves, however, the backprojections involve the four types of scat-

tered waves.
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Chapter 5

Application of Iterative Backprojections to a Vertical
Seismic Profile Data Set

Abstract

A three-offset VSP data set recorded in two wells is processed in order to invert
for the local P-wave impedance structure, using a backprojection method. The data
are reduced to a set of six sections representing the upgoing part of the vertical com-
ponent of displacement. The method proved useful in resolving the lateral extent of a
reservoir layer recognized on the well logs. With more numerous offsets, and the use
of the converted waves, it is expected that this kind of method would also allow a

determination of the nature of the reflectors.

Introduction

A set of three components offset-VSP data was obtained from ARCO Oil and
Gas company. The data are from their test site at Holt Sands, Texas. There is good
control over the amplitudes (essential for an inversion study). The setup of the
experiment in boreholes allows for a large signal-over-noise ratio. The control over the
average background velocity and density model is very good since we disposed of

sonic and density logs. The source is an impactor at the surface and is well controlled
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Figure 5.1: Location of the three shot points (407, 414, 416) and the two wells (306, 307)
used in the VSP experiment. (a) is a map view . (b) is a section.
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by a monitor instrument. The source and receiver are both essentially punctual so
that no amplitude distortions are introduced by source or receiver arrays. The exper-
iment was conducted in parallel in two wells for three different surface offsets. Figure
5.1 shows a cross section and a map of the experimental setup, with the well positions

and shot positions.

The experiment was conducted by pulling up the instrument from the larger
depth of approximately 1700 feet in both wells simultaneously. At each depth and
for each offset, five impacts were shot. The digitization interval was 0.0005 seconds

and the depth interval 15 feet.

Data reduction and backprojections

Preprocessing of the data consisted in removing the 60 Hz noise and its harmon-
ics (120, 180, 240 and 300 Hz) using a notch filter. Each trace was then aligned in
absolute time using the vertical component from a monitor instrument which was
kept at the same position during the length of the experiment. The seismograms
were stacked five by five giving a single trace at each depth. A seismogram was elim-
inated from the stack if its power was beyond 20 percent of the median value of the

power for the five traces corresponding to one depth.

Since the source locations were different for the three offsets, and furthermore
within individual offset, the position was slightly changed (a few feet, negligible com-
pared to the dominant wavelength of about 150 ft); the waveforms changed for the
different shot positions. To take this into account, the data were shape-filtered. This
was done by spectral division of the data trace by the monitor trace in the case of the

vertical components of the near-offset data. Figure 5.2 shows the section for well 307
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(near-offset source) after notch filtering and stacking. Figure 5.3 shows the same sec-
tion after shape filtering. This procedure allows us to take care of any eventual
fluctuation in the absolute amplitude of the source strength and variation in
waveform. For the medium-offset and far-offset data, the amplitude of the monitor
was used to scale the data; however, the waveform was not used since it was very
different from the data waveform. Instead, the waveform used in the spectral division
for the shaper filter was obtained by stacking the data waveform to get an average
wavelet. The reference waveform was obtained from the near-offset monitor vertical
component so as to simulate a uniform wavelet for all the experiments. Since we
want to use the scattered part of the data, we have to isolate it from the direct
wavefield. This is difficult to do for the forward-scattered part of the scattered field,
since it involves subtracting an estimate of the direct waves from the total field, and
this is very model dependent. However, the backscattered part of the wavefield can be
removed by filtering the upgoing wave from the data. This filtering is done in the F-K

domain. Two of the quadrants of the F-K transform are zeroed out ( corresponding

to %>0.). This is illustrated by Figure 5.4 showing the section at well 307 for the

near-offset after upgoing wave filtering. This can be compared to Figure 5.3 showing
the whole recorded wavefield, including downgoing and upgoing waves. There is an
artifact introduced by this filtering in the form of the constant time line for the shal-
lowest depth (bottom of section on the figure). This is due to the cut-off in depth
which makes the direct arrival look as a point including negative and positive com-
ponents of time dip. Figures 5.5, 5.6, 5.7, 5.8, 5.9 and 5.10 present the final sections
of vertical components of the upgoing waves for the three offsets. The near-offset sec-

tions show mainly reflected P waves, according to their moveout. The medium-offset
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and far-offset also show some converted waves, especially the far-offset, where a sub-

stantial part of the energy is in the P to S converted waves.

The three offset experiments were conducted at different sites and there might
be fluctuations in the source strength for these different offsets. To account for this,
we compared the amplitude decay with the depth of the vertical components of the
direct compressional waves against a simple model consisting in a constant velocity
and no anelastic attenuation. This model predicts an amplitude variation due to
geometrical spreading and solurce pattern for the vertical component of the displace-

A cos’d

ment field as , wheré A is a constant, 6, the angle between the incident ray

and the vertical. One of the cosf factors comes from the source radiation pattern
(approximation for a vertical point force), and the other from the projection of the
compressional motion on the vertical direction. R is the geometrical decay expected
in a whole space for constant velocity. Figures 5.11, 5.12 and 5.13 show a least-

2
squares fit of the function ACT?SB to the amplitude variation with the depth of the

downgoing wave. The misfit is systematically in the same way, with the actual
amplitudes decaying more rapidly than predicted by the model. This is probably
mostly due to the loss of energy to anelastic attenuation and transmission. The misfit
for the far-offset sections might be in part explained by a discrepancy between the
model of constant velocity and the actual model which presents an increase with
depth. From this fit, we deduce the coeflicients necessary to calibrate the amplitudes

of the sections for the three different offsets.

One of the limitations of the Born-backprojection methods that have been

developed in this thesis is that they rely on several approximations on the wavefield.
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Figure 5.11: Fit of
for the near-offset sections of wells 306 and 307.
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Figure 5.12: Same as Figure 5.11 for the medium-offset sections.
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Figure 5.13: Same as Figure 5.11 for the far-offset sections.
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The parts of the subsurface to be imaged have to be at least a few wavelengths away
from the receiver as well as the source. This comes from the introduction of the Born
approximation which considers each point of the medium as a source, and therefore
an irregularity. In the VSP geometry, this means that the area directly surrounding
the receiver is not appropriate for a reconstruction using the Born approximation.
We reconstructed a part of the subsurface below a depth of 600 ft using the receivers
situated above that depth, for all three offsets. Figure 5.14 shows the first iteration
for the inversion of impedance. We chose to invert for impedance, since the angular
coverage on the section is not sufficient for a multiparameter inversion and the upgo-
ing energy is mostly due to the impedance contrast because it presents a maximum in
the backscattering direction. The backprojected section is placed at its actual loca-

tion with respect to the wells.

One of the reasons for this VSP experiment is the observation of the presence of
a reservoir layer on the sonic and density logs in well 306, between 1630 and 1670
feet. This layer is not observed on the logs for well 307. The question is to know
whether or not a reflection can be obtained from the VSP experiment, and if it can,
what happens to it between the two wells. From the near-field data, there appears to
be a reflection on the section from well 306 corresponding to a reflector at about the
right depth for it to be interpreted as the reservoir. This reflection is not observed on
the near-offset section for well 307. Figure 5.15 shows the comparison of the two sec-
tions at depths between 1725 and 1425 feet and times between 0.15 and 0.3 second.
The arrow indicates the reflection that we attribute to the reservoir. Note the absence
of a corresponding reflection on the 307 section. Figure 5.15 also shows simple back-

projections of the individual sections and the reconstructed reservoir reflection. The
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Figure 5.15: The top two sections are the time-depth near-offset sections for wells 306
and 307 (portions of the sections shown on Figure 5.5 and 5.6). The arrow points to the
reflection which arises from the reservoir layer. The letter A indicates the position of the very
prominent reflector seen on Figures 5.5 to 5.10. The bottom sections are the single-offset back-
projections for the time-depth sections of the top of the figure. The arrow shows the position
of the imaged reflector. Note its discontinuity on the backprojection from well 307. The
short segments on the top and bottom of the bottom figures indicate the positions of wells 306
and 307.
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backprojections were performed with no weighing for the angular dependence or the
geometric decay, in order to use all of the data in the sections, including the lower
depths. The backprojection for section 306 shows a continuous reflector marked by
the arrow, directly above the very prominent reflector marked A. The backprojection
for section 307 shows the same reflector to be discontinuous, the discontinuity being
compatible with the absence of the reservoir on the logs for well 307. On Figure 5.14,
which is the impedance inversion using only part of the data, the reflector at 1650
feet depth seems to pinch out towards well 307, giving us a possible explanation for

the absence of the reservoir at well 307.

Conclusion

A data set consisting in seismograms recorded in two wells for three different
offsets was processed in order to invert it for the P-wave impedance variations. It
was shown that it is possible to process this good quality data in order to take advan-
tage of the amplitude information it contains. Although the offset coverage is not
sufficient to allow a determination of the reflector characteristics using the backpro-
jection method developed in this thesis, it was shown that the geometry of a reservoir
layer can be inferred from the comparison between the backprojections of the near-

offset sections for the two wells.
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Appendix A. Linearization of the Cagniard-de Hoop
reflection coefficients and equivalence with the Born
reflection coefficient in the case of a single plane interface.

Consider two acoustic half-spaces and a line source situated at a distance z;
from their interface. The Laplace transform of the wave reflected from the interface
at a distance z from the line source and z from the interface can be expressed (e.g.,

Aki and Richards, 1980) as :

100
&y (I 0,5 )=£1(:;)_ o {_’; e—t(P8+2ﬂ1zo)£2_£’L)_dp} . (Al)
1

F(s) is the Laplace transform of the source time function, Im denotes the imaginary

parts, R(p) is the reflection coefficient given explicitly by :

PPy
P2 +pP1M2

1
R ﬂa=(F—P i

where index 1 refers to the half-space containing the source and index 2 to the other

one p is the density, ¢ the velocity and p the horizontal slowness.

The path of integration can be deformed such that the quantity pz +27,z, is
real and can be readily identified to time. This allows a direct inversion of the Laplace
transform of the reflected wave into the time domain. This is in essence the

Cagniard-de Hoop method.

Clayton and Stolt (1981) showed that the reflected wave can be expressed as :
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k2 ke Ax (k
4k,?

D (kil rkz )— z) 2 App (kz )r (A-2)

with k, =0 (wavenumber associated with the midpoint coordinate) since there is no

variation with midpoint in our case.

A

K

ﬂ(k‘,) are the Fourier transforms of the relative variations in

k,) an

depth of, respectively, bulk modulus and density. k, and k, are, respectively, the

vertical wavenumber and the wavenumber associated with the half-offset h.

If the relative variation of bulk modulus with depth is small enough, the follow-

ing substitution can be made :

Ak Ap Ac

BN _OP 1988
K p c
Then equation (2) becomes :
k*k A 1A
D (ks k)= =k 5 =)

z

Note that the coefficient of épﬂ is not dependent of k, or k;. Raz (1981) followed a

different approach in time-space domain and notes similarly the independence of the
coefficient of the perturbation in density from the incidence angle. He further takes

advantage of this to construct his inversion algorithm for the velocity perturbations.

Consider now that the velocity and density vary as step functions at depth z.

Their Fourler transforms are :

"k,zo 'k Zo0

Ap
P ik ik,

where o and (3 are the magnitudes of the step. Using the relation :
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2 2
w $
kll2+kz2= —0—2-=—4 v2
we get :
—As? .2 .
D (k . ) ﬁ 02 e—(‘l'v—{+k‘2)]‘/2zo - 1 e—(4¥+k‘2)1/220
e T S 2 5
(kh2+4 32)3/2 2 (kh2+4 32)1/2
v v

Transforming back over k; and substituting k; =2isp , we get :

=1 100 fe —2¢ (ph +my2) dis ~2¢ (ph +mz,)
D (h ,3 )=_._.. . o dp
21 Y—i o0 4n, 4n,(1-v%p?)

and, using the Schwarz theorem of reflection (Morse and Feschback, 1953) :

D(h,s )=%Im j;)

100 28 (ph+mzy)
= B ] £ dpl.

a+
2 [ (1-v%p?) 2m

We can now identify the expression in square brackets with a reflection coeflicient

and compare it to the exact reflection coeflicient:

_ Pah—P172

R(p ;
) P +P1M2

Suppose that p,—p; is small compared to p; and that c¢,—c; is small compared to ¢ ;

the exact reflection coeflicient can be expressed as :

B
po—=pi(1+a and No=1; | 1-——5—
2 l( ) 2 1 [ (l—p 2C 12 )
where: cr=£’-’- ﬂ—*éi,
1 ¢

keeping the first order terms in o and 3, we get :
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| B
R(p )NE [a+ p%2) :|
This is exactly the expression we found for the Born approximation. These two
approximations are therefore equivalent in the case of a single plane interface. This
facilitates the interpretation of the Born approximation for this case, as a lineariza-
tion of the reflection coefficient with respect to small variations in the densities and
velocities of the medium. When the medium is more complex, the Born approxima-
tion also involves considering only primary reflections and neglects transmission

losses.
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Appendix B. WKBJ and far-field Approximations.

The expression for the scattered part of the wavefield in a slowly varying

medium, using the WKBJ approximation is given by the following expression :

cos[f dug, (u )——]

2(q(2)q(z,)] V/*

. d Fll
D (z, ,z, ,w)= %dQMfdk '*(-"-’—3) I “fs(“‘*‘

T ,,,,.,,(u}_]
2(q(z)q(z)] V*

[w2 anl %V' - ][p(z P2(: )]!/2fdlc ik, (z—z,) ‘f du g, (u)+

The notation zp, is used for the turning point corresponding to the ray joining
the source point (z,,0) to the current point (z,2). The notation zp, is used for the
turning point of the ray joining the current point to the geophone. The cosine has
been chosen so that the solution to the WKBJ equation decays with depth under the
turning point (e.g., Aki and Richards, 1980). We integrate by parts with respect to

the x and z variables and suppose that :
(G (2, ,0;2,2)V(z,2)G(z,2;2, ,0)] s =0,

where 1) denotes the boundary of the area {2. This condition is achieved if the
anomalies are supposed to be totally contained within the area {2 where we want to
image them. Since the source and geophone are at the surface, the scattered field is

then expressed as :
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(2, 2, @) 4qLz)e(0)
f 4r*

cos[fz:‘du q,(u)-%]

2i (g, (0)g, (2)]"/?

apy n
. _ _ i du g, (u)+i—
[k, [ dr, =), dy sl

cos[fx:!du q,(u)—-}]

21 (g, (0)g, ()]

. 'Ps g
1_’;’ du q,(u)+1T

[ 2Lk by, (2 2)g, ()22

An asymptotic approximation can be applied to the two integrals over

wavenumbers k, and k;. The two integrals are sums of terms of the form :
* iwG (p)
I(w)=[ _dpwpF(p)e

where :

Z 4
wp=k and G(p)=pz +LP7(z)dziLP‘y(z)dz

where :
¢ 1 21/2
’7(2 )_( 1)2 —-P ) s

The main contribution for large frequencies in the integral can be estimated

using the stationary phase method. The stationary points are obtained for o 0.

P

This can be interpreted physically as the Fermat principle for a ray joining the source
and receiver points. It says that the travel time (to which G (p) can be identified ) is
minimum for the ray parameters p, that satisfy the stationary condition. It is possi-
ble for several ray parameters to satisfy this condition for a pair of source and

receiver points. This corresponds physically to multipathing. In some cases, no
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stationary point exists for the integral. This happens in shadow zones. In this calcu-
lation, we suppose there is no multipathing between the two points and no shadow

zone for the background velocity model chosen.

Depending on whether the ray joining the pair of points passes through a turn-
ing point or not, the stationary condition is going to be reached for G (p) in the term
of the sum that has a positive sign in the exponential or a negative sign. The station-
ary phase theorem says that the integral can be approximated by the following

expression for large frequencies :

" 1/2
wF (po) = @
*G
w 2
dp Po

where the + is according to the sign of the second derivative of G with respect to p .

X
iwG (po), Y

Then we note that (e.g., Aki and Richards, 1980):

46 _ [Q_l

aP2 dp Po
The term on the right-hand side of the equation is part of the geometric spreading
term. Applying the formula to both integrals over wavenumbers, we get the following

expression for the high frequency scattered wavefield within the Born approximation :

D (I, X ,w)—+ d ﬂ pl(g)p(i)
"k [’7. (0)7.(")] / [”' O, (2 )]W
al a2
——+——(Pe Py ;) Fw(t1+1
[:c(O) p(Ol)/2 o (i )8 (@) Wt 1412)
Jz oz o
5; ?s 5; Py
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where £1 is the travel time between the source and current point of integration
and £2 the travel time between the current point of integration and the geophone.
p, is the value of p for which the integral over the source wavenumber k, is station-
ary. Similarly, p, is the value of p for which the geophone wavenumber integral is

stationary. <, and 7, are the values of 7 for p = p, and p = p,, respectively.

Thus the expression we derived for the scattered field under the assumptions of
the Born approximation and the far-field, or high frequency approximation consists
simply of a phase term and an amplitude term. The phase term represents the travel
times between the source, scattering point and receiver. The amplitude term is made
of two factors. The first factor is the geometrical spreading of the classical ray theory
and the second factor is the Born reflection coefficient term that depends on the den-

sity and bulk modulus of the medium.

The inverse Fourier transform of the wavefield is trivially computed and the

final result for the wavefield in the time and physical domain is :

D (7,3, 5t )=fndﬂ Afsz,,2,,%) [a l1+a 2cos€] S(t-t1-t2).

where @ is the angle between incident and scattered rays at the scatterer. ¢; and £,
are, respectively, the travel times between the source and scatterer and between the
scatterer and the receiver. A(z,,z,,z) is the amplitude factor due to geometrical

spreading.
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Appendix C. The Born elastic scattering coefficients.

Equation (4.12) in the text gives the expression for the scattered wavefield. It is
made up of propagation terms between the source and scatterers on one hand and the
scatterers and receiver on the other hand, and of a scattering potential term (V). It
can be further separated into four terms. Each of the four terms represents the con-
tribution of one type of scattered wave as discussed in the text. From the first term,

we isolate the following expression :

10 tk, 1y, tky, 1V,)(1 0

[0 0] [-iu, ik, Viks vy | ks ’”')[—:‘y, ik, ] [0 0]
where ¢ has been replaced by v which corresponds to the ray joining the source to
the scatterer for v,, and the scatterer to the receiver for v,. This comes from the

assumption of far-field approximation. Replacing V by its explicit expression

(Appendix E), and going through the algebra the above expression becomes:

10
Ber {0 o

where:
Rpp = ay(k, k,+v,v,)-a 2(k,2+u,2)(k,2+u,2)+2a 3k, vy —v, k, "

In the same way, the three other scattering coeflicients can be computed and we

obtain the following results :



- 138 -

01 00 00
RSPoo:RPslosRSSOI

where :

RSP =6 1(_ky 1, +k, Vg )_2a 352'2' [Vg kg (ktz_’hﬂ) + ka e (ygz—kgz)]

2
RPS =0 1(_71: ka +v, ky )+203% [kl Vg (kg2—7792) + ky Mg (VJ2—kn2)]

2
RSS = @ l(ka ky +1, Ng )+03% [(kc ky +1, Mg )2+(k¢ Ng—Kg Mg )2] »
When the far-field approximation is computed for the integrals over wavenumber, the
expressions for the above scattering coeflicients are simplified. If the following angles
are introduced, where 6, is the angle formed between the vertical and the incident

wave and @, the angle between the vertical and the scattered wave:

: o o ; o a
sinf, = — k,costy = — v, sinfy = — k,cosbly = — v
w : w o w ’ w .

for incident and scattered P waves.

B B B B

sinh; = oy k,cosh; = " 7, SiDhg = - k, coshg = = n,

for incident and scattered S waves.

Using these relations in the expressions for the four scattering coefficients, it
becomes clear that the scattering coeflicients depend only on the angle between

incident and scattered wave that we call :

2 2
Rpp = [al cosf — aq + 2% a;,sin%]%

2
Rps = |aysind -8 aysin20 | <2
PS [ﬂl sin = 03 sin ] aﬁ
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2

Rsp = [—al sinf -i—-[i as sinQB] =t
a af

2
Rgs = [al cost +as cos20] -(1;3
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Appendix D. Comparison of our expressions for the
scattering coefficients with Wu and Aki’s (1985)
expressions.

Wu and Aki (1985) gave expressions for the scatterred wave due to the interac-
tion between an incident plane wave and a spherical inclusion in an elastic medium.
Under the Born approximation, their expressions should compare to ours (Appendix
C), taking into account that they are for a three-dimensional inclusion and that his
coordinate system is slightly different. Setting the azimuthal angle to zero, we get the
expressions for the reflection coefficient part of Wu and Aki’s expressions for an

incident plane P wave :

UFP — 6—pcost9 = 6—)‘ = -‘Sicoszﬂ.
p %5 o

Since by = O\ + 26u

UPP = is-’i’-cosﬂ = ﬁ4—2(‘;—‘“sin20
4 2 & |

6_'0(;050 = -‘-&l+25—”ﬁsin29,

P v p o?

and :

UFS = —éfisinﬁ - Ea—‘usin29.
P a U

These expressions compare with equations (4.17) and (4.18) in the text if we change

the sign of 8, since we used the opposite convention for it.
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For an S incident wave , his expressions are :

i — 2P ing —ﬁé&sin%" d
P o p

and for the S to S scattered wave:

USS = —%cosf)’ + 6—“cos‘.’0’ .
I

In this case, their chose a coordinate system where the zero of the & angle is the

direction of polarization of the incident S wave. This angle relates to our 6 as

¢ = -= and therefore our expressions are equivalent to theirs.



