
Structure, Chemistry, and Energetics of Organic and Inorganic 

Adsorbates on Ga-Rich GaAs and GaP(001) Surfaces 

 

Thesis by 

Seokmin Jeon 

 

In Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

 

 

 

 

 

 

 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

Pasadena, California 

2014 

(Defended September 30, 2013)



 ii
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2014 

Seokmin Jeon 

All Rights Reserved 



 iii
 

 

 

 “No Pain, No Gain.” 

  



 iv
ACKNOWLEDGEMENTS 

I remember my wonderful mood when I first visited Caltech as a prospective student. Just 

before I came to Caltech, I visited the Columbia University, New York for the same purpose. I 

found everything in Pasadena including weather and people’s attitudes was attractive to me in 

contrast to what I found in New York. Living and studying in this beautiful place has been my best 

pleasure. Many individuals have supported, helped, and encouraged me to complete my Ph.D. 

course at Caltech, so it is my great pleasure to acknowledge them. 

I would like to thank my advisor, Professor Harry Atwater for his guidance and support. 

Especially, I appreciate him for providing me a great deal of freedom and independence on my 

thesis research. He has also shown me the wisdom, leadership, and enthusiasm that a leading 

scientist owns. My thesis committee, Professors Bill Goddard, Nate Lewis, and Jack Beauchamp 

are also my role models. It was my pleasure and honor to be advised by such great scientists. 

Many people in the Atwater group have contributed to the successful completion of my 

thesis research. Particularly, I would like to thank Jeff Bosco, Victor Brar, Seyoon Kim, Samantha 

Wilson, Min Jang, Jim Fakonas, Dan Tuner-Evans, Chris Chen, Yulia Tolstova, Hal Emmer, John 

Lloyd, Carissa Eisler, Siying Peng, Sunita Darbe, Amanda Shing, Imogen Pryce, Michael 

Kelzenberg, Jonathan Grandidier, Marina Leite, Gerald Miller, Vivian Ferry, Stanley Burgos, Ryan 

Briggs, Andrew Leenheer, Greg Kimball, Adele Tamboli, Deidre O’Caroll, Domenico Pacifici, 

Davis Darvish, Morgan Putnam, and Matt Sheldon for sharing their knowledge and skills, having 

time to discuss about research and science, and being good friends. Many thanks also go to the 

other group members‒Cristofer Flowers, Ruzan Sokhoyan, Ana Brown, Raymond Weitekamp, 

Anna Beck, Howard Lee, Dennis Callahan, Emily Warmann, Naomi Coronel, Emily Kosten, 

Prineha Narang, Kelsey Whitesell, Sondra Hellstrom, Kate Fountaine, Koray Aydin, Michael 

Deceglie, Kenneth Diest, Jennifer Dionne, Eyal Feigenbaum, Krista Lageland, and Jeremy Munday. 

Every single person in the Atwater group is always nice, friendly, and helpful to me.  

I have also benefited from several scientists outside the Atwater group. These scientists not 

only provided skills and scientific advice, but also friendship. I would like to thank Dr. Ungdon 

Ham and Sangyeob Lee for sharing skills about UHV-STM instrumentation, Dr. Hyungjun Kim for 

instructing me DFT calculations, Joseph for training XPS, Jean for training HREELS and AES, and 

Matt Roberts of Omicron Nanotechnology for kind and quick answers for a number of my 

questions. 



 v
I also would like to appreciate the Caltech Korean Graduate Society. From the first day I 

arrived at LAX to now, they have been friends and family. They have also shared with me plenty of 

invaluable knowledge about living and family life, which has saved me much time and effort and 

helped me enjoy this area. Thanks go to Sanghee Park, Young Hyun Kim, Hyojong Lee, Ji hun 

Kim, Wonhee Lee, Jina Choi, Young Shik Shin, Hanseuk Lee, Junho Suh, In Ho Cho, Jungwook 

Park, Hoyong Chung, Sungwook Woo, Shinchul Yeom, Taeshik Oh, Min Jung Kang, Chang Ho 

Sohn, Jaewon Song, Changsoon Park, Daegyeoum Kim, Sang-Mok Lee, Giwook Hwang, 

Chanyeon Park, Hyungjun Ahn, Seyoon Kim, Hee-jung Chung, Haekong Kim, Minseok Jang, 

Jeesoon Choi, and Mooseok Jang. Without this society, living in Pasadena would not be as exciting 

and pleasing as it is. I also would like to thank Su Young Ryu, Son Jong Hwang, and Yun-Geun 

Kim for much advising and mentoring. 

I would like to thank my former adviser Professor Sehun Kim for being a constant source 

of advice and support. He has been the first professor that I contact when I need help. I really 

appreciate his help. I also thank Professor Hangil Lee for support and encouragement. 

I am thankful for the funding support from Kwanjeong Educational Foundation which has 

supported my tuition and stipend for four years without any cost to me. 

Special thanks to my old friends‒Bongsu Kim, Gyu Nam Lee, Jae Chul Lee, Ju Han Song, 

Kwon Ho, Tae Hun Kim, Sung Hoon Choi, and Nicola’s for continuous encouragement. I am also 

thankful to Wooram Lee for unexpected encouraging messages. 

I am grateful for support from my parents and elder sister. I owe not just my PhD, but my 

entire career, to their support and encouragement. I also thank my parents-in-law for encouraging 

and praying for me. 

Lastly, I acknowledge my wife Soojeong, son Yoonwoo, and prospective daughter Tori. 

Soojeong is amazingly supportive and persistently encourage me for the last four and half years. 

She also brought me adorable children who are the most significant and precious parts in my life. I 

sincerely thank her for loving, encouraging, and supporting me. I also thank Yoonwoo and Tory for 

growing well without serious sickness. Yoonwoo has given me big smiles and warm hugs whenever 

I come back home after hard work, which cures my tired body. I really thank him.  

 



 vi
ABSTRACT 

The work described in this dissertation includes fundamental investigations into three 

surface processes, namely inorganic film growth, water-induced oxidation, and organic 

functionalization/passivation, on the GaP and GaAs(001) surfaces. The techniques used to carry out 

this work include scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), 

and density functional theory (DFT) calculations. Atomic structure, electronic structure, reaction 

mechanisms, and energetics related to these surface processes are discussed at atomic or molecular 

levels. 

First, we investigate epitaxial Zn3P2 films grown on the Ga-rich GaAs(001)(6×6) surface. 

The film growth mechanism, electronic properties, and atomic structure of the Zn3P2/GaAs(001) 

system are discussed based on experimental and theoretical observations. We discover that a P-rich 

amorphous layer covers the crystalline Zn3P2 film during and after growth. We also propose more 

accurate picture of the GaP interfacial layer between Zn3P2 and GaAs, based on the atomic 

structure, chemical bonding, band diagram, and P-replacement energetics, than was previously 

anticipated.  

Second, DFT calculations are carried out in order to understand water-induced oxidation 

mechanisms on the Ga-rich GaP(001)(2×4) surface. Structural and energetic information of every 

step in the gaseous water-induced GaP oxidation reactions are elucidated at the atomic level in great 

detail. We explore all reasonable ground states involved in most of the possible adsorption and 

decomposition pathways. We also investigate structures and energies of the transition states in the 

first hydrogen dissociation of a water molecule on the (2×4) surface.  

Finally, adsorption structures and thermal decomposition reactions of 1-propanethiol on the 

Ga-rich GaP(001)(2×4) surface are investigated using high resolution STM, XPS, and DFT 

simulations. We elucidate adsorption locations and their associated atomic structures of a single 1-

propanethiol molecule on the (2×4) surface as a function of annealing temperature. DFT 

calculations are carried out to optimize ground state structures and search transition states. XPS is 

used to investigate variations of the chemical bonding nature and coverage of the adsorbate species.  
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C h a p t e r  1  

Introduction 

1.1 Surfaces of III-V semiconductors 

Group III-V compound semiconductors and their alloys are very intriguing and useful 

materials such that they have been drawing much attention from scientists and engineers for the last 

few decades. A variety of compound semiconductors can be synthesized by alloying group III (B, 

Al, Ga, In) and group V (N, P, As, Sb) atoms, and the resultant semiconductors have a variety of 

chemical, electrical, and optical properties which are useful for applications such as transistors, 

light-emitting diodes (LED), photovoltaic devices, photoelectrochemical devices, light sensors, 

chemical sensors, etc. 

Gallium arsenide (GaAs) has desirable electronic and optical properties of significant 

industrial/research interest. The direct band gap, 1.42 eV, is close to the ideal for a single-junction 

photovoltaic device with which one expects to achieve theoretically maximum power conversion 

efficiency. Strong light absorption from a direct band gap allows all the light with energy greater 

than the band gap to be completely absorbed within 1 μm of the surface. The high electron mobility 

of up to ~ 8500 cm2/V·s can be utilized in high performance transistors which need a good channel 

material.[1] A variety of alloy materials based on GaAs support many applications which need 

tunable optoelectronic properties. The current state-of-the-art GaAs photovoltaic cell achieves 28.2 

% efficiency, which is the highest value among the single junction solar cells introduced to date. [2]  

GaP is also a very intriguing emerging material especially in renewable energy research 

fields. Its favorable properties, which create a lot of potential applications, include control of 

electronic properties by forming InGaP alloys [3] and epitaxial film growth on a silicon substrate 

due to small lattice mismatch (0.36%). [4, 5] In addition, H2 production or CO2 reduction can be 

achieved in aqueous photoelectrochemical systems based on a single crystal GaP, making it of great 

interest for renewable energy research. [6-8] 
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Studying the surfaces of the GaAs and GaP is significant since both materials suffer from 

degradation of electronic properties due to a high density of surface states.[9, 10] This is one of the 

largest barriers to the widespread use of compound semiconductors instead of Si, despite their 

superior optoelectronic properties. Therefore, the need to develop a method to protect and passivate 

the surfaces has driven the surface science research of these materials.  

Furthermore, chemical functionalization is also a significant factor in motivating the 

surface study of these materials. Chemical attachment on inorganic semiconductor surfaces enables 

new functionalities. First, building new nanoscale architectures are feasible using a variety of 

organic and polymer synthesis methods. Second, the electronic properties of the semiconductor are 

changed due to the donation or depletion of electrons by the chemical adsorbates. Third, it can 

change the local chemical properties of the surface, such as hydrophobicity. We can modify the 

surface of an inorganic material, which is less reactive and has a limited variety of chemical 

availabilities, creating a hybrid organic-inorganic surface which is more reactive and has a variety 

of chemical functionalities. 

1.2 Major surface study tools used in this dissertation 

Scanning tunneling microscopy (STM) 

STM uses a very sharp metallic tip to probe the local structural and electronic properties of 

a conducting surface. The signal from the STM always contains two information such as 

topography and electronic structure because the tunneling current (I) has an exponential relationship 

with the tip-sample distance (z) and tunneling decay constant (κ) which reflects the electronic 

structures of the tip and sample: 

ܫ ൌ  ݁ିଶ௭,                                                        (1.1)ܫ

ߢ ൌ ඥଶሺథିሻ


, 

where m, I0, ϕ, e, and V are electron mass, tunneling current at z = 0, average work function, 

elementary charge, and sample bias voltage, respectively. 
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There are two common modes of operation; constant current mode and constant height 

mode. In the constant current mode, the tunneling current is maintained with an electronic feedback 

circuit to generate Z variation while scanning the X-Y plane. Alternatively, in the constant height 

mode, the tip-to-sample distance is fixed, and the current signal is recorded. Since the constant 

height mode does not require a feedback control at each X-Y scanning point, faster scan rates are 

achievable. However, there is a risk of crashing the tip on rougher surfaces; thus, the mode is 

appropriate for applications which need fast scanning on flat surfaces, normally over a small scan 

area.  

Figure 1.1 shows STM images, dimer adatom stacking-fault (DAS) model structure, and 

tunneling spectra of a clean Si(111)(7×7) surface.[11] In the DAS model (Figure 1.1c), the left half 

of the (7×7) rhombus marked in a magenta triangle is a stacking fault region. In the STM image 

obtained at a sample bias voltage of + 1.7 V in Figure 1.1a, there is no difference in STM images of 

the two half cells. However, in Figure 1.1b, the stacking faulted and unfaulted regions look 

different. This is a clear example of how STM images contain not only geometric information but 

also electronic structure information.  

Lastly, tunneling spectroscopy gives local electronic structure information as shown in 

equation (1.2) which is derived based on the Bardeen’s theory, 

ܫ ൌ
ସగ


 ிܧ௧ሺߩ െ ܸ݁  ிܧ௦ሺߩሻߝ  ߝଶ݀|ܯ|ሻߝ

 ,                          (1.2) 

where ρ, EF, V, and M are density of state, Fermi level energy, the sample bias voltage, and 

tunneling matrix element.[12] Tunneling conductance (dI/dV) measured at a certain location of a 

sample surface is proportional to the local electron density of state at the location. Figure 1.1d 

shows a tunneling conductance versus sample bias voltage curve. The spectrum is an average of the 

spectra obtained from random locations on the Si(111) (7×7) surface. The peaks represent the 

electronic states near the Fermi level and their locations agree relatively well with the previously 

reported peak locations (red arrows).[13] 
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Figure 1.1 a), b) Constant current STM images of a Si(111) (7×7) surface at different sample bias 
voltages; a) Vs = + 1.7 V and b) Vs = ‒ 1.7 V. c) The top and side views of the DAS model of the 
Si(111) (7×7) surface. Red, green, and blue dots represent adatoms, rest atoms, and dimers, 
respectively. The region in the magenta triangle represents the stacking fault region. The picture is 
adopted from reference.[11] d) Normalized tunneling conductance versus sample bias voltage 
spectrum which was averaged over a number of spectra obtained at random locations of the surface. 
Red arrows show the peak positions of the same surface in reference.[14] 
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X-ray photoelectron spectroscopy (XPS) 

XPS uses X-ray photons produced by exciting Al or Mg source materials with high energy 

electrons. The generated X-ray photons are either used directly or filtered through a monochromator 

for better energy resolution. The core-level electrons of a sample are excited by the X-ray photons, 

ejected from the sample, and then collected by an electron analyzer. A hemispherical electron 

analyzer is typically used for this purpose. The kinetic energy (KE) and momentum of the 

photoelectron are analyzed in the analyzer to determine the binding energy (BE) according to 

equation (1.3):  

ܧܭ ൌ ߥ݄ െ ܧܤ െ ߶,                                                           (1.3) 

where hν and ϕ are the incident photon energy and instrument work function, respectively. In 

addition, simultaneous measurement of the momentum of the photoelectron generates the E(k) 

versus k values to map out the electronic band structure of the sample. 

For surface chemistry analysis, the parameters of interest typically include the degree of 

shift and area of a core-level XPS peak. The existence of a particular peak verifies the existence of a 

particular element in the detection area of the sample. The core-level peak shift is due to the 

chemical environment of the element of interest. In addition, the area of the peak is used to obtain 

quantitative information such as composition, thickness, and coverage. 

XPS is a surface sensitive technique since the photoelectron escape depth in a solid material 

is relatively short, on the order of a few nanometers, while a photon escape depth is on the order of 

microns. Using an Al X-ray source, the escape depth of a photoelectron is smaller than 20 ~ 30 Å, 

which implies that ~ 10 monolayers of atoms from the surface are sampled with this method [15].  
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Figure 1.2 a) XPS survey scans (Al Kα source, pass energy of 80 eV) of a clean GaAs(110) surface 
(black) and 21 L Zn3P2 epitaxial film grown on GaAs(001) at 180 °C. Significant peaks are labeled. 
b) High-resolution XPS (Al Kα source, pass energy of 20 eV) in P 2p region with varying coverage 
of Zn3P2 epitaxial films grown on GaAs(001) at 180 °C. 1 Langmuir (L) = 1 × 10-6 Torr ˑ sec. 

 

Figure 1.2 displays low- and high-resolution XPS spectra of clean GaAs(110) and 

Zn3P2/GaAs(001) surfaces. By assigning the core-level binding energies of constituent elements, the 

composition of the sample can be verified, as shown in Figure 1.2a. In addition, high resolution 

spectra allow for resolution of the different oxidation states and chemical bonds of the constituent 

elements with their neighboring atoms, based on relative shifts in binding energy. For instance, the 

P 2p region in Figure 1.2b is composed of three components with different core-level binding 

energy shifts which stem from dissimilar chemical environment of each component. 

Density Functional Theory (DFT) calculations 

DFT is a method of solving the Schrödinger equation (SE) of a multi-electron system to 

obtain the ground state energy and electron density. Equation (1.4) is the time-independent non-

relativistic Schrödinger equation for a multiple-electron and nucleus system, 
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ቂെ
మ

ଶ
∑ 

ଶே
ୀଵ  ∑ ܸሺ࢘ሻ

ே
ୀଵ  ∑ ∑ ܷ൫࢘, ൯ழ࢘

ே
ୀଵ ቃ߰ ൌ  (1.4)                    .߰ܧ

The SE contains 3N variables representing the coordinates of N electrons. Thus, solving 

this equation and obtaining the wave functions of the electrons is a formidable task. Hohenberg and 

Kohn proposed that the ground state energy of the SE has a one-to-one correspondence with an 

electron density function. Using this theorem, the equation (1.4) is modified to the Kohn-Sham 

equation: 

ቂെ
మ

ଶ
ଶ  ܸሺ࢘ሻ  ுܸሺ࢘ሻ  ௫ܸሺ࢘ሻቃ߰ሺ࢘ሻ ൌ ሺ݅					ሻ࢘߰ሺߝ ൌ 1, 2,… ,ܰሻ,             (1.5) 

where V and VH are the known potentials which stem from electron-nucleus and electron-electron 

interactions, respectively. Vxc is the potential stemming from the exchange-correlation of a single 

electron.  

The first three terms are due to the electron kinetic energy, electron-nuclei Coulomb 

interaction, and electron-electron Coulomb interaction. These three are known from the original SE. 

The fourth term explains all left-over undefined contributions. This is the exchange correlation 

term, and its form is the largest ambiguity in this theorem. However, many approximation methods 

have been introduced; for example, the local density approximation (LDA), generalized gradient 

approximation (GGA), etc. Finally, in practice, this Kohn-Sham equation (1.5) is solved with an 

initial guessed electron density function using the self-consistent method. 

In DFT calculations, there are two widely-used approaches to simulate a solid surface. One 

approach uses a non-periodic cluster structure and localized wave functions (Figure 1.3a). This 

approach has been developed to simulate isolated molecules or atoms, but it can be used to simulate 

a surface as well. The other approach uses a periodic structure and plane-wave functions (Figure 

1.3b). This method provides a more accurate representation of the structure of the solid surface. 

However, it does not provide a good answer when searching for transition states in comparison to 

the former method, especially within a reasonable computation time. Thus, in this dissertation, we 

use both models to calculate the structures and energies of ground and transition states. 
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Figure 1.3 a) A cluster and b) periodic model structures of a water molecule adsorbed on the 
GaP(001)(2×4) mixed-dimer surface. The unit cell structure enclosed in the black line boundaries in 
b) build a periodic boundary condition in an actual simulation. Purple, brown, red, and white 
spheres/rods represent P, Ga, O, and H atoms, respectively. 

1.3 Summary 

As the size regime of interest in semiconductor research decreases, molecular level 

understanding of the structure, chemistry, electronics, and energetics of adsorbates on III-V 

semiconductor surfaces becomes very important. The combination of STM, XPS, and DFT enables 

one to study the molecule/III-V semiconductor system in great detail. 

This dissertation is composed of three original pieces of research which deal with three 

example systems, including organic and inorganic materials adsorbed on clean GaAs and GaP(001) 

surfaces. We investigated the structure, chemistry, energetics, and electronics of the example 

systems using scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density 

functional theory calculation.  

Chapter 2 is a study of the Zn3P2 epitaxial film grown on the Ga-rich GaAs(001)(6×6) 

surface. The purpose of this study is to thoroughly understand the film growth mechanism and the 

electronic and geometric properties of the Zn3P2/GaAs(001) system. We discovered that a P-rich 
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amorphous layer covers the crystalline Zn3P2 film during and after growth. We also describe an 

accurate picture of the structural and electronic properties of the GaP interface between Zn3P2 and 

GaAs.  

Chapter 3 is a DFT study of water-induced oxidation of the Ga-rich GaP(001)(2×4) surface. 

This chapter elucidates structural and energetic information of every step in the gaseous water-

induced GaP oxidation reactions, at the atomic level, in great detail. We explored all reasonable 

ground states involved in most of the possible adsorption and decomposition pathways using DFT 

simulations.  

Chapter 4 comprises high resolution STM, XPS, and DFT studies of adsorption structures 

and thermal decomposition pathways of 1-propanethiol on the Ga-rich GaP(001)(2×4) surface. We 

elucidated adsorption locations and structures of a single molecule on the surface as a function of 

annealing temperature. We also used DFT calculations to determine the energetics of ground states 

and to find relevant transition states. The chemical bonding nature and coverage variation of the 

system was studied with XPS.  



 

 

10

C h a p t e r  2  

Growth Mechanism and Electronic Structure of 

Zn3P2 on a Ga-Rich GaAs(001) Surface 

2.1 Introduction 

Zinc phosphide (Zn3P2) is a novel photovoltaic (PV) material with a direct band gap of 

1.50 eV, a long minority-carrier diffusion length, and strong light absorption in the visible 

region.[16-18] In addition, the terrestrial abundance of its constituent elements attracts additional 

attention due to the recent interest in developing high-efficiency PV devices using earth-abundant 

materials.[19] The superior absorption and other advanced optoelectronic properties of Zn3P2 

make it an appropriate light absorber for earth-abundant solar applications.  

The growth of high-quality, thin-film Zn3P2 for PV applications has been attempted using 

a variety of growth techniques such as vacuum deposition, ionized-cluster beam deposition, vapor 

phase deposition, and hot wall deposition.[20-24] However, these techniques typically produced 

polycrystalline Zn3P2 films without the necessary electronic material quality for efficient 

photovoltaic application.  

In order to enhance the material quality of Zn3P2 thin films, other growth techniques have 

been reported, including metal organic vapor phase epitaxy (MOCVD) [25, 26] and molecular-

beam epitaxy (MBE).[27] Epitaxial Zn3P2 films were also grown using a compound-source MBE 

technique, [28] which is possible because Zn3P2 sublimes congruently as follows: [29] 

ܼ݊ଷ ଶܲሺsሻ → 3ܼ݊ሺ݃ሻ 
ଵ

ଶ ସܲሺ݃). 

The compound source MBE technique was not only simpler due to the reduced number 

of sources required, but produced films with excellent crystalline quality. However, the detailed 
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chemistry, mechanism, and geometric/electronic structures of this growth process have yet to 

be thoroughly explored. Understanding the surface and interface properties of a Zn3P2 epilayer 

has important implications on device fabrication and performance. Knowledge of the atomic 

structure of the epitaxial Zn3P2 surface plays a significant role in additional processing steps; for 

example, the growth of additional epilayers, design of surface passivation/window layers, and 

functionalization/modification of the surface with chemical species. In addition, understanding 

the reaction chemistry and electronic properties at the interface between Zn3P2 and the GaAs 

substrate significantly contributes to developing functional heterojunction devices.  

In this chapter, we report the detailed chemical, structural, and electronic properties of the 

surface and interface of pseudomorphic Zn3P2 epilayers grown on the GaAs(001) surface. 

Scanning tunneling microscopy (STM) and high-resolution x-ray photoelectron spectroscopy 

(XPS) were employed to elucidate the geometric and electronic structure of the Zn3P2 films at the 

initial growth stages under various conditions. Additionally, high-resolution x-ray diffraction 

(HRXRD) and transmission electron microscopy (TEM) were used to verify the crystallinity and 

orientation of the as-grown films. The energy-band alignment of the Zn3P2 epilayer with respect 

to the GaAs substrate was determined based on thickness-dependent XPS measurements. Finally, 

the formation of a thin GaP layer at the interface between Zn3P2 and GaAs was corroborated by 

scanning tunneling spectroscopy (STS), XPS, and TEM data, as well as density functional theory 

(DFT) simulations. The impact of the observed morphological and electronic properties of the 

Zn3P2/GaAs interface on the construction of Zn3P2 solar cells is discussed. 

2.2. Experimental and computational details 

The growth of Zn3P2 epilayers on the Ga-rich GaAs(001) substrate was carried out in an 

ultra-high vacuum (UHV) molecular beam epitaxy (MBE) chamber (base pressure, < 1 × 10-10 Torr). 

We used n-type GaAs(001) single crystal wafers (carrier concentration ~ 1 × 1018 cm-2, AXT Inc.) 

as epiready substrates. The surface of the substrate was cleaned by several cycles of Ne+ ion 

bombardment (500 eV) and annealing (530 ˚C) in the UHV chamber. A Ga-rich GaAs(001)-(6×6) 

surface reconstruction was reliably obtained, which was verified by STM.[30-32]. The well-defined 

surface structure at the atomic level keeps the surface structure and stoichiometry constant for all 

Zn3P2 growth. In addition, the (6×6) surface does not contain excess Ga droplets, which results in an 

increase of the surface Ga/As ratio compared with the mathematically obtained Ga/As ratio of the 
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(6×6) reconstruction. Zn3P2 epilayers were grown on the clean well-defined (6×6) surface at 

normal growth temperature (180 ˚C) and various high temperatures (≥ 300 ˚C) using the compound 

source MBE technique.[28] The Zn3P2 flux was maintained by applying a constant power on the 

Zn3P2-loaded effusion cell, which gave an effusion cell temperature of 420 ˚C and a chamber 

background pressure of around 1 × 10-9 Torr. We expect the pressure of the source beam to be 

around two orders of magnitude higher than the measured pressure due to the position of the nude 

ion gauge. Every Zn3P2/GaAs(001) sample was prepared by one-time deposition, and the amount of 

deposition was only controlled by time. This procedure prevents intermittence in the deposition, 

which potentially generates chemical inhomogeneity inside the epilayer. The amount of Zn3P2 

deposition is expressed in Langmuir (1 Langmuir (L) = 1 × 10-6 Torr · 1 sec). Based on TEM 

images of Zn3P2/GaAs(001) samples grown by the procedure above, the growth rate was estimated 

to be less than 0.1 nm per minute.  

The scanning tunneling microscopy (STM) and tunneling spectroscopy characterizations 

were carried out in a separate UHV chamber (base pressure, < 3 × 10-11 Torr) which was 

connected to the MBE chamber; thus, the as-grown sample was transferred from the MBE 

chamber to the STM chamber under UHV. The analysis of the surface topography was carried out 

using a commercial STM (VT-STM XA, Omicron Nanotechnology). The filled-state STM 

images were obtained in the constant current mode with a sample bias voltage between – 2.5 V 

and – 3.0 V, and set-point current of 100 pA. The tunneling spectra (tunneling current versus 

sample bias voltage curve; I-V curve) were acquired from a given feature on the STM images at a 

fixed sample-to-tip distance, which was defined by fixing the bias voltage at – 2.5 V and set-point 

current at 100 pA. A number of I-V curves from the same feature are averaged, and the dI/dV 

curves were obtained by differentiating the I-V curves. All STM and tunneling spectroscopy data 

were taken at room temperature after cooling down the as-grown Zn3P2/GaAs(001) films in the 

STM chamber. 

X-ray photoelectron spectroscopy (XPS) measurements were carried out in a separate 

UHV chamber (base pressure, < 3 × 10-9 Torr) where a Kratos Ultra DLD spectrometer and 

monochromatic Al Kα radiation (hν = 1486.58 eV) were installed. The Zn3P2/GaAs(001) samples 

were transferred from the MBE chamber to the XPS chamber in a portable stainless steel chamber 

filled with anhydrous nitrogen gas. Thus, the sample was not exposed to ambient gas during 

transportation. High-resolution spectra were collected at a fixed analyzer pass energy of 20 eV. 
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The spectra were collected at 0˚ with respect to the surface normal direction. The binding 

energy was referenced to the instrument Fermi level which was calibrated using the Au 4f7/2 level 

(84.00 eV) of a clean gold surface. The XPS data were analyzed with commercial software, 

CasaXPS (version 2.3.16). The individual peaks were fitted by a Gaussian/Lorenzian function 

after Shirley type background subtraction. Spin-orbit splittings and branching ratios were held 

constant; 865 meV and 0.5 for P 2p core level and 701 meV and 0.666 for As 3d core level, 

respectively.  

Density functional theory (DFT) calculations were carried out using the flavor of Perdew-

Burke-Ernzerhof (PBE) exchange-correlation functional. These calculations replaced the Ar core 

of Ga, the Ne core of P, and the He core of O with projected augmented-wave (PAW) potentials 

optimized for the PBE functionals. Thus Ga is described with three valence electrons, P with five, 

and O with six. All calculations were performed using the Vienna Ab-initio Simulation Package 

(VASP). The electronic wave functions were expanded in a plane-wave basis set using a cutoff 

energy of 380 eV, and the reciprocal space was sampled using k points generated by 4×2×1 

Monkhorst-Pack scheme. The convergence criteria for electronic and ionic optimization were set 

to 1×10-4 and 1×10-3 eV, respectively. 

The lattice parameters for the slab calculation were determined from the separate 

calculation of bulk GaAs, for which the cubic lattice constant is optimized as 5.75 Å. The Ga-rich 

GaAs(001)-β2(2×4) surface was modeled using a periodic slab geometry composing of eight Ga 

and nine As layers with a vacuum region equivalent to eight Ga and As layers, resulting in the 

composition of the simulation cell being 30 Ga and 35 As atoms. All atomic positions were 

optimized except the bottom two Ga and As layers, which were fixed. The bottom As layer was 

passivated with 0.75e- pseudo-hydrogen atoms to avoid any possible artificial electrostatic force 

due to spurious charge separation.[33] 

Energetics of the anion replacement reactions are discussed in this report. In order to 

compare the stabilities of the alloy systems, which contain different numbers of constituent atoms, 

we calculate the surface formation energy, [34] 

௦௨ܧ ൌ
ଵ


ሾܧሺ݈݉݊ሻ െ ሻܽܩሺߤ݉ െ ሻݏܣሺߤ݊ െ  ሺܲሻሿ.                             (2.1)ߤ݈
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A is area of the surface model of interest (for our (2 × 4) superstructure model, A = 8). 

m, n, and l represent the number of Ga, As, and P atoms in a surface model, respectively. E(mnl) 

is the calculated total energy of the surface model at 0 K using the method descibed above. μ(X) 

is the chemical potential of element X in the alloy. The chemical potentials of P and As atoms are 

restricted by the following eqations: 

ሺܲሻߤ∆ ൌ ሺܲሻߤ െ ,൫ܲ௨൯ߤ 	ሺ∆ܪሺܲܽܩሻ  ሺܲሻߤ∆  0ሻ,                        (2.2) 

ሻݏܣሺߤ∆ ൌ ሻݏܣሺߤ െ ,௨൯ݏܣ൫ߤ ሺ∆ܪሺݏܣܽܩሻ  ሻݏܣሺߤ∆  0ሻ.                    (2.3) 

We are interested in the relative stability of a certain surface model with respect to the 

reference surface model, which is set to the GaAs(001)-β2(2 × 4) reconstruction in this report. 

Thus, the equation (2.1) is modified to obtain the relative surface formation energy (ΔEsurf) as 

follows: 

௦௨ܧ∆ ൌ
ଵ


ሺ݈݉݊ሻܧൣ െ ݈ᇱ൯	݊ᇱ	൫݉ᇱܧ  ′ሻሺ݉ܽܩሺߤ െ ݉ሻ  ′ሻሺ݊ݏܣሺߤ െ ݊ሻ  ′ሺܲሻሺ݈ߤ െ ݈ሻ൧, 

(2.4) 

where m‘, n‘, l‘ represent the number of Ga, As, and P atoms in the reference surface model. In 

Equation (2.4), the number of the Ga atoms for the anion replacement reaction is fixed (m‘ ‒ m = 

0). In the anion replacement reaction where As is replaced by P, the total number of As plus P is 

maintained (n + l = n‘ + l‘). These limiting conditions are applied to Equation (2.4), and then we 

obtain,  

௦௨ܧ∆ ൌ 	
1
ܣ
ሼܧሺ݈݉݊ሻ െ ݈ᇱሻ	݊ᇱ	ሺ݉ᇱܧ  

ሺ݈ᇱ െ ݈ሻൣߤ൫ܲ௨൯ െ ௨൯ݏܣ൫ߤ  ሺܲሻߤ∆ െ  ሻ൧ሽ.                           (2.5)ݏܣሺߤ∆

The bulk chemical potentials of P and As are caluclated using the black P and crystalline As bulk 

structures with the same DFT methods described above; (μ(Pbulk) = ‒ 5.27575 eV and μ(Asbulk) = 

‒ 4.25974 eV).[35, 36] 
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2.3. Scanning tunneling microscopy 

Figure 2.1 shows STM images of the Zn3P2 epilayers grown on the Ga-rich GaAs(001)-

(6×6) surface with various Zn3P2 coverages maintaining the substrate temperature at 180 ˚C. The 

inset in Figure 2.1a (also refer to Figure 2.4a) shows a high resolution STM image of the 

GaAs(001)-(6×6) reconstruction. Each red protrusion at high topographic location along the 

surface normal direction is attributed to the As atom of the first atomic layer Ga-As or As-As 

dimer. The As atom of the Ga-As dimer has one dangling bond which protrudes out of the surface 

and is seen as a single bright dot in the STM image, and the two neighboring As atoms on the As-

As dimer are seen as a peanut-shaped feature. The array of these Ga-As or As-As dimers along 

the [‒110] direction forms a Ga-As or As-As dimer row on the first atomic layer. The atoms in 

the blue area between the red dimer rows are located in the second and third atomic layers from 

the top. There are zig-zag features in light blue which are associated with As atoms of the Ga-As 

dimers on the layer. The Ga-As or As-As dimer rows in the first layer and the zig-zag features in 

the second and third layer are signatures of the (6×6) reconstruction in an STM image.[30, 31] 

The grey STM image in Figure 2.1a shows not only the large-scale picture of atomic steps and 

terraces but also the small-scale Ga-As or As-As dimer rows running along the [‒110] direction. 

The density and distribution of the steps and terraces are typical of the GaAs surface after inert-

ion sputter cleaning procedures. 

Upon exposure of the clean (6×6) surface to a small quantity of Zn3P2 (≤ 0.2 L; 1 

Langmuir (L) = 1 × 10-6 Torr · 1 sec), the surface showed bright protrusions at random locations 

in addition to the clean (6×6) features (Figure 2.1b and c). The size and density of the protrusions 

increased with increasing deposition amount and were therefore assumed to be Zn3P2 nucleation 

points, or seeds. For epitaxy on the (001) face following the island growth mechanism,[37] the 

islands are usually seen as square or rectangular shapes at the initial growth stage due to the 

continuity of bond symmetry between the epilayer and substrate. [30, 38] The shapes and sizes of 

the seeds or islands in our Zn3P2 film are irregular and featureless. In addition, STM images 

collected at higher Zn3P2 exposures (Figures 2.1d and 1e) show that the islands do not grow to 

form bigger islands or films, but instead the number density of the islands increases. The height 

of the islands had a wide distribution and did not exhibit discrete multiples of an atomic step size 

of Zn3P2. 
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Figure 2.1 STM topography images of a) clean GaAs(001)-(6×6) and Zn3P2/GaAs(001) with 
various amounts of deposition; b) 0.05 L, c) 0.2 L, d) 0.63 L, e) 0.95 L, and f) 3.4 L at the same 
substrate temperature of 180 ˚C. The image size of the inset of a) is 8 nm2.  

 
In order to check whether the Zn3P2 epilayer was crystalline, HRXRD patterns and TEM 

images of the Zn3P2/GaAs samples were collected as shown in Figures 2.2 and 2.3. Surprisingly, 

the HRXRD and TEM data clearly demonstrated that the Zn3P2 films were crystalline and 

pseudomorphic in nature with growth occurring along the (001) direction of the tetragonal Zn3P2 

lattice. This indicates that the Zn3P2 film must have a crystalline phase directly beneath the 

irregularly-shaped overlayer observed in the STM images. Figure 2.1f displays the STM image of 

a thick (a few nanometers) Zn3P2 layer. We note that the irregular-shaped surface features 

observed in the STM images are not associated with artifacts due to a blunt or molecule-coated 

tip. Clear, single-atom-sized protrusions were clearly observed in high-magnification STM 

images of the irregular surface, but atomic lattice features could not be identified. Such a 

featureless topography even in high resolution STM images is very similar to those observed for 

an amorphous phase. [39]  
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Figure 2.2 Symmetric HRXRD scans of the Zn3P2/GaAs(001) with Zn3P2 deposition amounts of 0, 
6.1, 12, 21, and 37 L. Vertical dashed lines indicate the diffraction peak positions of pseudomorphic 
epitaxy Zn3P2 (008), crystalline Zn3P2 (008), and crystalline GaAs(004), respectively. 

 

Figure 2.3 a), c) TEM images of the Zn3P2/GaAs(001) with the Zn3P2 deposition amount of 37L. b) 
SAED image of the Zn3P2/GaAs(001). 
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Figure 2.4 shows high-resolution STM images (top), cross-sectional line profiles 

(center), and proposed structure models (bottom) of a clean GaAs(001)-(6×6) surface and sub-

monolayer Zn3P2 layers grown on the clean (6×6) surface at high temperatures (300, 490, and 560 

˚C). XPS data showed that the films grown at temperature higher than 400 ˚C did not contain Zn, 

which is supported by previous reports where Zn desorption occurs below 323 ˚C, depending on 

the coverage and surface properties.[40, 41] Thus, we expect that the films grown at high 

temperatures are effectively the same as those formed using only an elemental P4 source. Figure 

2.4a displays the clean GaAs(001)-(6×6) surface reconstruction. The cross-sectional line profile 

shows the lateral distance along [110] direction between two neighboring Ga-As or As-As dimer 

rows is six times larger than the dimension of the surface unit cell. In the structure model, the 

first-layer Ga-As or As-As dimer sits on top of the (1×2) Ga rectangle composed of the six, 

second-layer Ga atoms shown in the blue rectangle in Figure 2.4a. On the (1×2) Ga rectangle, 

there are two locations on which a Ga-As or As-As dimer can occupy. Sometimes, both of 

locations are occupied with Ga-As or As-As dimers – seen as a double peanut-shaped feature (red 

arrow in Figure 2.4a). However, in most cases, only one of the two locations is occupied by a Ga-

As or As-As dimer.  

When 0.14 L of Zn3P2 was deposited on the clean (6×6) surface at 300 ˚C, the number of 

double peanut-shaped features increased on the first-layer dimer rows (Figure 2.4b). Since the 

peanut-shaped feature was also observed on the films grown at higher temperature than the Zn 

desorption temperature, Zn was not associated with this feature. In addition, since Zn and Ga are 

electron-deficient species in Zn3P2 and GaAs, the atoms in the STM images recorded at the 

negative sample voltage were expected to be darker than the group-V anion. Finally, upon 

exposure of the clean (6×6) surface to a P source, any additional feature whose number density 

increases as the amount of P exposure increases was associated with P atoms. Thus, the double 

peanut-shaped feature was attributed to As-As, As-P, or P-P dimers. In Figure 2.4b, there is a 

slight contrast difference within a dimer or between dimers. This may have resulted from the 

difference in atomic radii of As and P. However, it was difficult to discretely assign As and P 

positions based on the STM images since the contrast difference may also have resulted from 

dimer buckling or a geometric and/or electronic effect caused by the replacement of Ga or Zn 

atoms by As or P atoms underneath the dimer.     
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Figure 2.4 STM topography images (size 10 nm2), cross section line profiles, and proposed 
structure models of Zn3P2/GaAs(001) grown at different conditions; a) clean GaAs(001)-(6×6), b) 
0.14 L at 300 ˚C, c) 3.7 L at 490 ˚C, and d) 3 L at 560 ˚C. The red arrow and blue rectangle in 
column a) indicate double As-As dimers in the first layer and a (1×2) Ga rectangle in the second 
layer, respectively. 

 
Figure 2.4c displays the GaAs surface where 3.7 L of Zn3P2 was deposited at 490 ˚C. 

Interestingly, the inter-dimer row distance along the [110] direction was decreased from ×6 to ×4 

while maintaining the double peanut-shaped feature. The growth temperature of 490 ˚C is the 

temperature at which desorption of As from GaAs(001)-(2×4) [42] and formation of the 

GaP(001)-β2(2×4) surface reconstruction was observed.[43] Thus, persistence of the double 

peanut-shaped feature is attributed to replacement of As by P to form P-P dimer rows on the 

GaP(001)-β2(2×4) reconstruction. Among the stable GaP(001) surface reconstructions, the 

symmetry and shape of the double peanut-shaped P-P dimer rows with (2×4) symmetry is 

characteristics of the GaP(001)-β2(2×4) reconstruction. [44] 

Finally, we exposed the GaAs(001) surface to Zn3P2 flux at 560 ˚C (Figure 2.4d). Most of 

the dimer rows are composed of single peanut-shaped features in a (2×4) unit cell. The line 
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profile shows the inter-dimer row distance has ×4 symmetry. Among the GaP(001)-(2×4) 

reconstructions, which are both theoretically stable and experimentally observable, [45] the single 

peanut-shaped feature with the (2×4) symmetry is associated with GaP(001)-δ(2×4). The 

transition from β2 to δ phase under group-V overpressure at high temperature has been also 

observed by STM in a similar system. [46] 

2.4. Scanning tunneling spectroscopy 

The three curves in Figure 2.5a are tunneling spectra (tunneling current versus sample 

bias voltage curves; I-V curves) obtained from the (i) first-layer Ga-As or As-As dimer on the 

clean GaAs(001)-(6×6) surface (black), (ii) the first-layer P-P, P-As, or As-As dimer on the 3.7 L 

Zn3P2/GaAs(001) epilayer grown at 490 ˚C (red), and (iii) an arbitrary feature on the 13 L 

Zn3P2/GaAs(001) epilayer grown at 180 ˚C (blue), respectively. For the last sample, there is no 

periodic feature on the surface as shown in Figure 2.1f. Therefore, the tunneling spectra were 

collected from arbitrary locations on the surface. A substantial number of I-V curves were 

collected from each surface, averaged, and then derived to produce dI/dV curves. The dI/dV from 

tunneling spectroscopy is proportional to the local density of states at the surface.[47] The 

positions of the valence-band maximum and conduction-band minimum for each surface were 

determined by linear extrapolation of the leading edges of the dI/dV curve. The apparent band 

gaps, which were calculated as the difference between valence-band and conduction-band edges, 

are also displayed in Figure 2.5b-d. 

The apparent band gap of 1.38 eV collected for the clean GaAs(001)-(6×6) surface is in 

excellent agreement with the known GaAs bulk band gap of 1.42 eV (Figure 2.5b). In addition, 

since the Fermi level (Vsample = 0) is located in the middle of the band gap in spite of high n-

doping level (Nd ~1 × 1018 /cm2), the (6×6) surface prepared by the inert-ion sputtering annealing 

method in this study demonstrated Fermi level pinning. Based on the literature, Fermi level 

pinning is strongly dependent on the surface structure and defects which are influenced by the 

surface preparation method, the type of reconstruction, the type and density of defects, etc. 

Therefore, there are often contradictory results among different studies in which the Fermi level 

is observed to be pinned and unpinned for a given surface reconstruction.[48, 49] In addition, the 

electron counting model itself cannot explain Fermi level pinning on the (6×6) surface because 
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there are a number of variations in the type and location of the first-layer Ga and As atoms.[50] 

For instance, the electron counting model works when the first-layer atoms consist of three 

dimers with four As and two Ga in the (6×6) surface; however, the surface structures observed in 

STM images deviate a great deal from this fixed composition.  

 

Figure 2.5 a) Tunneling current versus sample voltage (I-V) spectra obtained from clean 
GaAs(001)-(6×6) [black], 3.7 L Zn3P2/GaAs(001) at 490 ˚C [red], and 13 L Zn3P2/GaAs(001) at 
180 ˚C [blue]. b)-d) The dI/dV versus V curve of each I-V spectrum in a). The black lines in b)-d) 
indicate the linear extrapolation curves of the leading edges of the dI/dV versus V curves. The 
number displayed above the dI/dV curve is the apparent band gap. 

 
Exposure of the clean surface to Zn3P2 flux caused substantial changes in the observed 

tunneling spectra. The dI/dV obtained from Zn3P2/GaAs(001) grown at 490 ˚C displayed an 

apparent band gap of 2.15 eV and evidence of Fermi level pinning at the mid gap (Figure 2.5c). 

The band gap is significantly different from the known crystalline Zn3P2 band gap of 1.5 eV.[16, 

28] Instead, the large band gap on this surface is close to the known band gap of GaP of 2.26 eV. 
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Therefore, tunneling spectroscopy supports the formation of the GaP layer on the surface of the 

GaAs(001) when exposed to Zn3P2 at high temperatures. 

Finally, the tunneling spectra obtained from Zn3P2/GaAs(001) grown at 180 ˚C (Figure 

2.5d) demonstrated an apparent band gap of 2.30 eV which is again significantly larger than the 

Zn3P2 band gap. The larger apparent band gap is attributed to the surface overlayer phase 

composed of amorphous zinc phosphide (a-ZnPx) and elemental P. The band gap of ZnP2 of 1.44 

~ 2.60 eV [51] indicates that an increased P/Zn atomic ratio of ZnxPy is one of sources of the band 

gap increase. Thus, our STS data supports that the overlayer is composed of P-rich amorphous 

ZnPx and/or elemental P. However, the position of the Fermi level close to the valence-band edge 

indicates p-type doping, which is consistent with previous reports.[28] 

2.5. X-ray photoelectron spectroscopy 

Figure 2.6 shows the fitted X-ray photoelectron spectra of the P 2p core level collected on 

Zn3P2 epilayers grown at various surface coverages and temperatures. The Zn3P2 epilayers in 

Figure 2.6a and b are grown at 180 °C (normal growth temperature). The P 2p region is fitted 

with three discrete bonding states: (1) a crystalline Zn3P2 state (c-Zn3P2), (2) a P-rich a-ZnPx state, 

(x > 1; + 0.55 eV versus c-Zn3P2), and (3) an elemental P state (+ 1.4 eV versus c-Zn3P2). The a-

ZnPx state exists throughout all Zn3P2 coverages as shown in the coverage dependent XPS data in 

Figure 2.7a. We note that the full width at half maximum (FWHM) of the a-ZnPx peak at ≤ 1.1 L 

is 30% larger than ones at ≥ 2.1 L. This is due to the existence of a GaP bonding state (+ 0.7 eV 

versus c-Zn3P2) at ≤ 1.1 L with a slightly higher binding energy shift than the a-ZnPx phase. We 

will discuss the GaP bonding state later. The core-level binding energy shift of + 0.55 eV in the a-

ZnPx phase is likely due to disordered bonding which includes P-P and Zn-Zn bonds. The 

existence of the disordered bonding (around 25 %) has been demonstrated in the amorphous III-V 

system.[52]  The P atom in the crystalline Zn3P2 has four or six bonds with the neighboring Zn 

atoms. Since Zn has a lower electronegativity than P, the formation of P-P rather than P-Zn on P 

in the a-ZnPx overlayer shifts the P 2p core-level binding energy to a higher value. The STM and 

tunneling spectroscopy data also support the existence of the P-rich a-ZnPx overlayer which has 

featureless surface morphology and larger apparent band gap than c-Zn3P2. 



 

 

23

 

Figure 2.6 P 2p core-level X-ray photoelectron spectra of the Zn3P2 film grown at various 
depositions and substrate temperatures. a) 21 L and b) 0.6 L Zn3P2 grown on the Ga-rich 
GaAs(001)-(6×6) at 180 °C. c) 18 L Zn3P2 grown on the Ga-rich GaAs(001)-(6×6) at 400 °C. d) 
2.3 L Zn3P2 grown on the Ga-rich GaP(001)(2×4) at 180 °C. Gray circles, black curves, and 
colorful curves represent raw data, sum of the fitted components, and each displayed component, 
respectively. 

 
The third component with the highest binding energy shift of + 1.4 eV is due to an 

elemental P layer. The existence of the phase and the binding energy shift of the elemental P are 

evidenced from previous reports.[53, 54] Figure 2.6c shows the fitted photoelectron spectrum in 

the P 2p region of the 11 L Zn3P2 grown on GaAs(001) at 500 °C. The P 2p region is fitted with 

two discrete components; a GaP state (+ 0.7 eV versus c-Zn3P2) and a GaP surface state (+ 1.3 eV 

versus c-Zn3P2). The assignment of the GaP bonding state is based on the P 2p core-level binding 

energy of bulk GaP in literature.[55] The GaP surface state is associated with the P-P and As-P 
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dimers on the surface. The substrate in this experiment has a well-defined surface structure; 

that is, GaAs(001)-(6×6). The formation of a GaP interfacial layer is likely due to either the 

reaction of P with the Ga adatoms on the Ga-rich surface or anion replacement of subsurface As 

with P atoms prior to or during film growth. The coverage of the GaP layer in the Zn3P2 grown on 

GaAs(001) over 300 °C does not exceed 1 ML (monolayer) based on our quantitative analysis of 

the XPS data, in spite of Zn3P2 exposures as high as 18 L, which agrees with previous results. [56] 

In order to verify the binding energy shift of the GaP phase with respect to the c-Zn3P2 

phase, photoelectron spectra were collected on Zn3P2 films grown directly on a single crystal 

GaP(001) substrate. The surface of GaP(001) was prepared by inert-gas ion sputtering and 

annealing methods which produce a Ga-rich GaP(001)(2×4) surface. Figure 2.6d shows fitted 

photoelectron spectra of a P 2p region from a Zn3P2 film grown on the Ga-rich GaP(001) at 

180 °C. There are three components in this region: a crystalline Zn3P2 state (c-Zn3P2), a GaP state 

(+ 0.5 eV versus c-Zn3P2), and an elemental P state (+ 1.3 eV versus c-Zn3P2). The binding 

energy of the GaP state in the Zn3P2/GaP(001) system is consistent with that of the GaP layer in 

the Zn3P2 grown on GaAs(001) at 500 ˚C in Figure 2.6c. Thus, existence of the GaP state for 

interfaces grown at high temperatures is supported by both internal and external evidence. On the 

other hand, existence of the GaP interface at the normal growth temperature (180 ˚C) was 

difficult to substantiate with XPS data alone. This is because 1) the amount of P in the GaP layer 

was very small (≤ 1 ML) especially on the film grown at normal growth temperatures, and 

therefore difficult to observe and 2) the GaP binding energy shift of + 0.7 eV is too close to 

separate from the B.E. shift of + 0.55 eV of the a-ZnPx state. However, in the STM experiment, 

we observed P atoms adsorbed on top of the second-layer Ga atoms to form P-P or P-As dimers at 

initial coverages for both normal growth and high temperatures. In addition, the binding energy 

shift of the GaP layer in the Zn3P2/GaAs grown at high temperature is exactly matched by the 

known GaP binding energy. Thus, a thin GaP layer exists at the interfacial region between the 

Zn3P2 epilayer and the GaAs(001) substrate. It is surprising that the GaP layer permits the growth 

of Zn3P2 films that are pseudomorphic, indicating the GaP is itself strained to the in-plane GaAs 

native lattice constant. 
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Figure 2.7 Fitted X-ray photoelectron spectra of the a) P 2p core level, b) As 3d core level, and c) 
valence band region measured on Zn3P2/GaAs(001) heterojuction interfaces with increasing 
overlayer thickness. d) The energy-band alignment for an Zn3P2/GaP/GaAs(001) heterostructure. 

 
XPS of the P 2p core level, As 3d core level, and valence-band region of 

Zn3P2(001)/GaAs(001) interfaces of increasing epilayer thickness are presented in Figure 2.7a-c. 

From the XPS data, the Zn3P2/GaAs valence-band discontinuity (ΔEV) for the 

Zn3P2/GaP/GaAs(001) heterostructure was estimated using the method proposed by Kraut et 

al.[57] This procedure was previously used to determine the valence-band offsets for a series of 

epitaxial II-VI/Zn3P2 heterojunctions.[58, 59] The offset calculation was supplemented by XPS 

measurements of Zn3P2 epilayers grown directly on the GaP(001) surface under identical 

conditions. The measured band offsets for the system are displayed in Figure 2.7d. A value of 

ΔEV = 1.00 eV was found for the Zn3P2/GaAs system. The GaP/GaAs ΔEV of ~0.5 eV was 

previously obtained from optical measurements on GaP-GaAs quantum well structures.[60] 

Therefore, assuming the transitivity of band discontinuities is valid for this material system 

results in a Zn3P2/GaP ΔEV of ~1.5 eV. 
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2.6. Density functional theory calculations 

Our STM measurements indicated that exposure of the GaAs(001)-(6×6) to a Zn3P2 

overpressure caused the formation of a GaP(001)-β2(2×4) surface reconstruction at 490 ˚C. 

Tunneling spectroscopy and XPS data on the (2×4) surface showed the formation of a GaP layer 

with the P surface coverage limited to < 1 ML and with no Zn adsorption. Since there is no Zn, 

the transition from a (6×6) to a (2×4) symmetry is attributed to P adsorption which leads to the 

formation of one additional P-P or P-As dimer row per (6×6) surface unit cell. However, the 

additional P atoms can also incorporate into the subsurface layers in addition to surface 

adsorption. High growths temperatures of over 490 ˚C likely create favorable conditions to 

overcome the energy barrier of the subsurface anion replacement reaction.  

To understand the energetics for the anion replacement of As by P on the surface and at 

the subsurface in the (2×4) reconstruction, we used density functional theory (DFT) calculations. 

A periodic supercell model was built and optimized to describe the GaAs(001)-β2(2×4) 

reconstruction, whose energy was set as the reference. We then studied the thermodynamics of 

the anion replacement reaction. Although it is helpful to simulate P adsorption and replacement 

reactions on all observed surface reconstructions, such as the (6×6), β2(2×4), and δ(2×4), the 

surface reconstruction was fixed to the β2(2×4) in this study.  

In order to compare energies between the clean GaAs(001)-β2(2×4) and the P-replaced 

β2(2×4) structures and their dependence on the number of substitutions,  the surface formation 

energy was calculated as a function of the P and As chemical potentials. Up to three As atoms 

were replaced by P atoms according to the following procedure. First, each As atom on the 

surface or in the subsurface (up to the 7th layer from the top) was replaced by a P atom followed 

by geometry optimization. Among the 28 possible cases for the P-replaced structures, P-

replacement in the third-layer As atom under the center of the As dimer block in the first layer 

(Figure 2.8d) had the lowest energy. Substitution of the first- or third-layer As atom, which is 

exposed to the vacuum, for a P atom gave an energetically less favorable structure whose energy 

is 331 ~ 341 meV higher than the most stable P-replacement structure in the subsurface layer. 

The structure in Figure 2.8a shows the most stable surface P replacement among the six structures 

in which the surface As atoms in the first- or third-layer were replaced by P atoms. On the other 

hand, replacement of the third-layer As atom below the first-layer As dimer block is preferred 
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over that of the fifth-layer As atom by 95 ~ 153 meV. Thus, replacement of the third-layer As 

atom under the As dimer block is favored over that of either the surface or deep (below third layer) 

As atoms. After fixing the first P-replacement location, we searched for the second P-replacement 

position. The most stable structure including two P replacements is shown in Figure 2.8e. For the 

surface replacement, formation of a P-P dimer (Figure 2.8b) was energetically more favorable 

than two As-P dimers on the first-layer by 37 ~ 45 meV. Finally, after fixing the locations of the 

two P atoms, we replaced every As atom located up to the fifth-layer by a P atom, followed by 

geometry optimization. The result showed that formation of a Ga-P-Ga-P chain in the third-layer 

on the plane which bisects the surface As dimer block is most energetically favorable (Figure 

2.8f).  

 

Figure 2.8 DFT optimized geometries for a), d) one, b), e) two, and c), f) three As replacements 
by P in the GaAs(001)-β2(2×4) model. The most stable geometries are shown among a) ~ c) 
surface and d) ~ f) subsurface P replacements at given numbers of P and As atoms in the (2×4) 
cell. Purple, orange, and green spheres represent As, Ga, and P atoms, respectively. g) Relative 
surface formation energy versus the number of P atoms in the GaAs(001)-β2(2×4) cell at three As 
chemical potentials (∆μ(As) = γ·∆Hf(GaAs); γ = 0, 0.5, and 1). The chemical potential of P is 
fixed (∆μ(P)=0). 

 
A relative surface formation energy diagram, demonstrating the dependence on the 

number of P-replacements and the P chemical potential, is displayed in Figure 2.8g. In our 

experiments, we exposed the β2(2×4) surface to P flux, which is assumed to be an extremely P-
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rich condition, ∆μ(P) = 0. On the other hand, the lack of As supply in our experimental 

condition yields the chemical potential of As (∆μ(As)) to be lower than 0. Figure 2.8g shows 

three conditions; extremely As-rich (γ = 0), intermediate (γ = 0.5), and As-poor (γ = 1.0).  

The following results are motivated from our DFT simulations. First, at any given As 

chemical potential, the red points are below the blue points, meaning that replacement of As for P 

in the subsurface region is energetically more favorable than that on the surface. Second, at the 

experimental conditions reported herein, for example at a low As chemical potential, which is 

assumed to be γ = 0.5 and 1, replacement of subsurface As by P is exothermic. On the other hand, 

replacement of surface As for P is exothermic when the As chemical potential is sufficiently 

lower (e.g., γ ≤ 0.5). Third, the anion replacement is initiated from the third layer that is under the 

surface As dimer block, followed by the second replacement in the fifth layer under the As-As 

dimer which is at the trough. Further anion replacement forms a (Ga-P)n chain structure at the 

subsurface. Finally, anion replacement occurring at a location deeper than the third layer is 

energetically less favorable than that on the third layer. 

2.7. Conclusion 

The schematic diagram in Figure 2.9 displays the proposed film growth mechanism of 

Zn3P2 on the Ga-rich GaAs(001). P bonds to the surface Ga atoms on the Ga-rich surface to form 

GaP interfacial layers. At initial coverages, STM observations indicated that the P atoms 

preferentially adsorb on the second layer Ga to form P-P or P-As dimer rows. This process was 

followed by the formation of featureless islands with random locations on the surface. The 

thickness of the GaP interface layer is dependent on both the initial Ga coverage and roughness of 

the clean substrate surface as well as the film growth temperature. Under further Zn and P flux, 

an epitaxial Zn3P2 film grows, which was confirmed by XPS, XRD, and TEM. However, the 

surface of the Zn3P2 epilayer remains covered by an elemental P and amorphous zinc phosphide 

overlayer with a total thickness of ~1 nm. Formation of the P abundant overlayer is likely due to 

the low sticking coefficient of Zn as compared to P, especially at low Zn3P2 coverage. Thus, the 

film growth is expected to be limited by Zn adsorption.  

At higher temperatures, (> 490 ˚C) Zn does not adsorb on the GaAs surface, but P does, 

to transform the GaAs(001)-(6×6) surface to the GaP(001)-δ(2×4) surface reconstruction with an 
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intermediate GaP(001)-β2(2×4) reconstruction occurring. DFT simulations elucidate that when 

appropriate activation energy is supplied, the anion replacement of As by P in both surface and 

subsurface is exothermic under P rich and As poor conditions. In addition, As atoms in the third 

layer are preferentially replaced by P atoms by forming the (Ga-P)n chain. This simulation result 

is consistent with XPS observations where a GaP interfacial layer forms, but is limited to <1 ML 

even at temperatures as high as 560 ˚C and Zn3P2 exposures as high as 18 L.  

The compound source MBE is a simple and reliable technique for growing an Zn3P2 

epilayer on Ga-rich GaAs(001). The top P-rich overlayer may be used as a protecting layer for 

further application. Alternatively, it may need appropriate processes to remove the amorphous 

layer for further chemical functionalization or additional film growth. The thin interface GaP 

layer also can play a role in a hole barrier for electronic application.    

 

Figure 2.9 Schematic pictures of the film growth mechanism of Zn3P2/GaAs(001). 
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C h a p t e r  3  

DFT Study of Water Adsorption and 

Decomposition on a Ga-Rich GaP(001)(2ൈ4) 

Surface1 

3.1 Introduction 

The III-V compound semiconductor surfaces and interfaces lead to outstanding optical and 

electronic properties [61]. In particular while facilitating controllable electronic properties by 

forming III-V alloys [3, 62-65], epitaxy film growth on a silicon substrate due to small lattice 

mismatches (0.36%) [4] and selectivity for aqueous CO2 reduction in photoelectrochemical systems 

[8-10] create a lot of potential applications.  

We are interested in photoelectrodes of GaP and GaInP alloys since H2 production or CO2 

reduction can be achieved in aqueous photoelectrochemical systems, making them of great interest 

for renewable energy research [8, 66]. In these photoelectrochemical systems, it is essential to 

understand how solvent interactions with semiconductor surfaces affect the reaction mechanisms at 

the semiconductor/electrolyte interfaces. Since water is a common precursor for the ALD process 

and wet oxidation, the preparation of stable surface oxides from water is likely to be involved in 

GaP-based device fabrications. Accordingly, it is important to determine the adsorption and 

decomposition reactions of water on the GaP surface. 

                                                 
1 Reproduced with permission from Seokmin Jeon, Hyungjun Kim, William A. Goddard, III, and Harry A. Atwater, “DFT 

Study of Water Adsorption and Decomposition on a Ga-rich GaP(001)(2×4) Surface” J. Phys. Chem. C, 2012, 116 (33), 
17604-17612. Copyright 2012 American Chemical Society 
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Despite the wealth of quantum mechanical studies for adsorption, dissociation, or 

decomposition reactions of water on the (001) surfaces of elemental semiconductors such as silicon 

and germanium [67-70], there are few studies on any surface of III-V zinc blend semiconductors 

such as GaAs, GaP, and InP [66]. In addition, little molecular-level information has been reported 

on the adsorption and decomposition mechanisms of water on the GaP(001) surface.  

The surface structure of GaP(001) is complex due to the presence of several surface 

reconstruction structures [44, 45, 61, 71, 72]. Of particular interest is the Ga-rich surface 

reconstruction structure since, 

1) During the material growth processes [61] the desorption rate of a P atom is higher than that of 

a Ga atom under annealing conditions, 

2) During the sputter-annealing process to remove the native oxide layer from GaP, P desorbs 

more easily than Ga [73].  

Two likely Ga-rich reconstruction structures have been suggested from previous theoretical 

studies [17-20]; (2ൈ4) Ga-P mixed dimer surface reconstruction and (2ൈ4) Ga-Ga dimer surface 

reconstruction. Experimental studies, however, argued that the Ga-P mixed dimer was more stable 

than the Ga-Ga dimer in the commonly attainable Ga-rich conditions [44, 45, 61, 72]. Thus, we 

chose the Ga-rich GaP(001)(2ൈ4) mixed dimer surface reconstruction structure as the clean surface 

structure in this study.  

In this article, we report DFT studies of the adsorption and decomposition of a water 

molecule on the GaP(001)(2ൈ4) surface. Here we considered a molecular coverage of 0.125 ML, 

and optimized the ground state energy to obtain the structures for both molecular adsorption and 

decomposition states. This provides the fundamental thermodynamics for the initial adsorption 

and decomposition processes of water molecules on the GaP(001)(2ൈ4) surface. 

3.2. Computational details 

We carried out density functional theory (DFT) calculations using the exchange-correlation 

functional of Perdew-Burke-Ernzerhof (PBE). These calculations replaced the Ar core of Ga, the 

Ne core of P, and the He core of O with projected augmented-wave (PAW) potentials optimized for 
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PBE functionals. Thus Ga is described with three valence electrons, P with five, and O with six. 

All calculations used the Vienna Ab-initio Simulation Package (VASP). The electronic wave 

functions were expanded in a plane-wave basis set using a cutoff energy of 350 eV. The electron 

density was obtained from four k points generated by 4ൈ2ൈ1 Monkhorst-Pack scheme. The 

convergence criteria for electronic and ionic optimization were set to 1ൈ10-4 and 1ൈ10-3 eV, 

respectively. With this description we calculated a cubic lattice constant of 5.52 Å for bulk GaP 

(experimental value 5.45 Å [74]). Thus in the slab calculations we used this value for the periodic 

cell parameters in the x and y directions. All energies are for ground state structures at 0 K.   

The Ga-rich GaP(001)(2ൈ4) mixed dimer surface was modeled using a periodic slab 

geometry composing of six Ga and P layers with a vacuum region equivalent to ten Ga and P layers 

(Figure 1.3b). This cell has 25 Ga and 25 P atoms. The bottom two Ga and P layers (eight Ga and 

eight P) were fixed with all remaining atoms fully relaxed. The bottom P layer was passivated with 

0.75e- pseudo-hydrogen atoms to prevent charge separation, which exerts an artificial electrostatic 

force [33].  

We calculated the adsorption energies of molecular and decomposed water on the 

GaP(001)(2ൈ4). The adsorption energy Eads is obtained by subtracting the sum of the energies of 

water and bare GaP(001)(2ൈ4) from the total energy of water-adsorbed GaP(001)(2ൈ4):  

ௗ௦ሺܸ݁ሻܧ ൌ ሻܲܽܩ	݊	ܾ݀݁ݎݏ݀ܽ	ଶܱܪ௧௧ሺܧ	 െ ሻܲܽܩሺܧ െ  .ଶܱሻܪሺܧ

To obtain the ground state energy of a gas phase water molecule, the water molecule was 

modeled using a periodic cubic cell with a cell length of 15 Å.  
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Figure 3.1 Top and side views of the optimized geometry of the bare Ga-rich GaP(001)(2ൈ4) 
mixed dimer model. 1P and 2G atoms are located on the 1st layer (top-most layer) with 1P bonded 
to 2G, 5G, and 5G’ atoms and 2G bonded to 1P, 6G, and 6G’ atoms. 3G, 3G’, 4G, and 4G’ atoms 
are located on the 2nd layer but each with just two bonds to P and one bond to Ga. 5G, 5G’, 6G, and 
6G’ are located on the 2nd layer with four bonds (three P atoms and one Ga atom for 5G and 5G’; 
two P atoms and two Ga atoms for 6G and 6G’). 7P, 8P, and 9P atoms are located on the 3rd layer. 

3.3 Result and discussion 

3.3.1 The reconstructed GaP(001)(2ൈ4) surface 

A top view of the GaP(001)(2ൈ4) surface reconstruction model is displayed in Figure 3.1, 

with important structure parameters listed and compared with previous studies in Table 3.1 [61, 

74, 75]. The main structural parameters, including dimer lengths and bucklings, are in good 

agreement with other calculation results. The buckling in the table is defined as the difference of 

the Z coordinates of two atoms consisting of a dimer. Small discrepancies in bond lengths and 

bucklings may arise from differences in the bulk lattice parameters. Throughout this report, for 

the reader’s convenience, the surface Ga and P atoms of interest in the (2ൈ4) unit cell are named 

1P, 2 ~ 6G, 3 ~ 6G’, 7 ~ 9P as shown in Figure 3.1.  
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Method 
Lattice 

constant 

d
Ga-P* 

1st  layer 

Ga-P 

buckling** 

1st layer 

d
Ga-Ga* 

2nd layer 

Ga-Ga 

buckling** 

2nd layer 

P-P 

buckling** 

3rd layer 

PBE model 

(this work) 
5.502 2.402 0.403 

2.58 ~ 

2.74 
0.431 0.337 

LDA model [61] 5.42 2.36 0.39 
2.47 ~ 

2.62 
  

PW91 model [75] 5.50 2.403 0.385 
2.58 ~ 

2.73 
0.43 0.31 

experiment [74] 5.45      

Table 3.1 Structural parameters of the bare Ga-rich GaP(001)(2ൈ4) mixed dimer models (Unit: Å). 
* The total bond distance in the first or second layer. ** The difference of Z coordinates of buckled 
pairs of atoms in the first, second, or third layer. 

 
3.3.2. Premise and scope of the simulations 

The (2ൈ4) mixed dimer structure has several sites at which a single water molecule might 

bind, leading to a number of possible adsorption and decomposition states to consider. We 

consider here four binding states for H2O each of which may be involved in several adsorption 

and dissociation reaction pathways. 

1. Molecular adsorption state; Section 3.3.3 considers that a water molecule binds to an empty 

orbital on the surface Ga. We examined atop, bridge, and hollow sites around the surface Ga 

atoms in the (2ൈ4) unit to determine the energetically favorable adsorption geometries for the 

molecular adsorbate.  

2. HO/H decomposition state; in Session 3.3.4 we examine preferred adsorption geometries for 

the two decomposition adsorbates. 

3. O/2H decomposition state; in Session 3.3.5 we consider that the H atom of the HO adsorbate 

from the HO/H adsorption state could further decompose to create the O/2H decomposition state.  

4. Surface oxide state (O/H2 state); Session 3.3.6 discusses energetics of the surface oxide states. 

   In this report, we do not consider the transition states between sequential ground states. Instead, 

we focus on exploring every possible intermediate state (local minimum) which might be 
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involved in the possible adsorption and decomposition reaction pathways in the 0.125 ML 

water/GaP(001)(2ൈ4) system.  

 

Figure 3.2 The first column displays optimized geometries (top view) and corresponding 
adsorption energies of the molecular adsorption states. The second column displays the angles 
between surface normal (black dashed line) and O-Ga bond (red dashed line).   
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3.3.3. Molecular adsorption state 

A water molecule with two lone pairs (LP) of electrons can bind as a Lewis base (LB) to 

the five surface Lewis acid (LA) sites in the (2ൈ4) surface unit cell: 2G, 3G, 3G’, 4G, and 4G’, 

each of which makes three covalent bonds to its nearest neighbors, leaving an empty hybrid p-

orbital to accept LP electrons of water (Figure 3.1). We expect no barrier in forming such LA-LB 

additions [76-81]. To obtain accurate adsorption ground states geometries, we optimized the 

geometries as follows. Since the (2ൈ4) surface unit cell is symmetric with respect to the mirror 

plane that includes the [001] and [‒110] vectors and bisects the surface unit cell, we considered 

only sites in the right half of the (2ൈ4) unit cell (Figure 3.1). We started with 16 initial structures 

classified into three groups;  

1. atop structures with the water molecule positioned at the top site: 1P, 2G, 3G, 4G, 5G, and 6G 

atoms,  

2. bridge structures with the water molecule positioned at the bridge position of a pair of surface 

atoms: 1P-2G, 1P-5G, 2G-6G, 3G-5G, 4G-6G, 3G-7P, 3G-8P, 4G-8P, and 4G-9P,  

3. a hollow structure with the water molecule positioned at the center of the trapezoid consisting 

of 3G, 4G, 5G, and 6G atoms.  

For all 16 initial structures, a water LP was pointed toward nearby surface Ga atoms. After 

geometry optimization we found just four distinct local minimum structures from the 16 initial 

structures as shown in Figure 3.2 and Table 3.2.  

Adsorption state Eads (eV) dGa-O (Å) dO-H1 (Å) dO-H2 (Å) 
ƟH-O-H 

(°) 

Water*   0.972 0.973 104.0 

H2O-2G-SB ‒ 0.410 2.308 0.976 0.983 106.4 

H2O-2G-WB ‒ 0.385 2.311 0.978 0.978 104.8 

H2O-4G ‒ 0.392 2.297 0.979 0.979 105.2 

H2O-3G ‒ 0.357 2.345 0.979 0.980 104.6 

Table 3.2 Adsorption energies and structural parameters for the molecular adsorption states. * 
Values are obtained from the current calculation.  
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The adsorption energies calculated for these four states (‒ 0.357 to ‒ 0.410 eV) are 

slightly larger than the adsorption energy in the H2O/Ge(001) system (‒ 0.33 eV) but smaller than 

those in the H2O/Si(001) system (‒ 0.51 eV to ‒ 0.57 eV) [67-69]. For the water adsorbed on the 2G 

atoms, we found there are two stable adsorption geometries; strong bound state (H2O-2G-SB, 

Figure 3.2a) and weak bound state (H2O-2G-WB, Figure 3.2b). The adsorption energy for the 

H2O-2G-SB state is 0.025 eV greater than the H2O-2G-WB state. More importantly, the two H-O 

bond lengths in the H2O-2G-SB state differ from each other. The H-O bond parallel to the [‒ 110] 

direction is longer than the other by 0.007 Å. This occurs because the LP on 1P atom interacts with 

the H atom of the H2O adsorbate leading to stronger binding. On the other hand, for the molecular 

adsorption states on the G3 and G4 atoms (Figure 3.2c and d), the bonding is weak (‒ 8.2 ~ ‒ 9.1 

kcal/mol), since no neighboring site provides an LP electron. For the weakly bound states (Figure 

3.2b, c, and d), the geometry of the H2O changes little upon bonding, leading to little change in the 

water LP, and we consider the bonding to be physisorption [82, 83]. Given the entropy of a free 

water of S = 45.1 cal/mol·K = 1.96ൈ10-3 eV/atom·K, [84] we expect desorption of water for the 

four molecular adsorption states at T > ΔH/ΔS = 209 K. Finally, since the adsorption energies differ 

by only 0.05 eV, we expect them to have similar occupation over the three sites (2G, 3G, and 4G). 

3.3.4 HO/H decomposition state 

We predicted the stable adsorption geometries for the two adsorbates, HO and H, on the 

GaP(001)(2ൈ4).  

3.3.4a 1P-2G site One can think of the bonding here as adding the proton to the P LP pointed 

away from the surface to form a covalent P-H bond (1.425 Å, Table 3.3), which pulls the covalent 

1P-2G bond pair toward the P (increasing it by 0.140 Å from 2.419 Å to 2.559 Å) to form a LA-

LB bond while a LP on the OH- binds to what was originally an empty p orbital on 2G to form a 

covalent Ga-O bond (1.838 Å, Table 3.3). Thus, we started with the initial position of the H 

adsorbate on atop site of the 1P atom. The mechanism for forming this site might start with the 

2G site of molecularly bound H2O (Figure 3.2a), with the reaction coordinate involving the H 

moving toward to 1P lone pair. This mechanism is compatible with the known decomposition 

mechanism of water on GaAs(110) and GaAs(001) surfaces [76, 77, 85].  

3.3.4b 1P-3G and 1P-4G sites Given the proton bonding to the P LP, we can expect that besides 

2G, the OH- binds to the other good sites at the four other sites with Ga empty p orbitals: 3G, 4G 

and the equivalent 3G’, 4G’. However we built all 13 initial structures in which the H is at 1P 
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while the HO adsorbate is located at atop site of the 2, 3, and 4G atoms, bridge site of the 1P-

2G, 1P-5G, 2G-6G, 3G-5G, 4G-6G, 3G-7P, 3G-8P, 4G-8P, and 4G-9P atoms, and hollow site of 

the 3G-4G-6G-5G trapezoid. After geometry optimization, of the thirteen tested structures, three 

ground states have the most stable structures; HO-2G_H-1P (considered above), HO-3G_H-1P, 

and HO-4G_H-1P; shown in Figure 3.3 with adsorption energies and structural parameters 

tabulated in Table 3.3.  

 

Figure 3.3 Top view of the optimized geometries of HO/H decomposition states. 

 

Adsorption state E
ads 

(eV) d
Ga-O 

(Å) d
O-H 

(Å) d
P-H 

(Å) Ɵ
Ga-O-H

(°ሻ 

HO-3G_H-1P ‒ 0.647 1.842 0.974 1.427 109.3 

HO-2G_H-1P ‒ 0.637 1.838 0.976 1.425 110.9 

HO-4G_H-1P ‒ 0.615 1.842 0.972 1.431 109.4 

Table 3.3 Adsorption energies and structural parameters of HO/H decomposition states.  

 
The final chemisorption energies of the three HO-XG_H-1P (X=2, 3, and 4) states are 

within 5%, but the kinetic barriers to going from water to these states may be significantly 

different. Thus, we expect that the dissociation mechanism from the H2O-2G state to the HO-

2G_H-1P state is preferred, since H needs to move along by 2~3 Å in migrating from the O to the 

P. H must move by 4~5 Å in the HO-3G_H-1P structure and 5~6 Å in the HO-4G_H-1P structure, 

which would lead to a substantial barrier if only one H2O were available. In the presence of more 

water molecules in the unit cell, lower-barrier hydrogen relay mechanisms would likely lead to 
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lower barriers to form HO-3G_H-1P or HO-4G_H-1P. This may require surface water 

coverage exceeding 0.125 ML. 

 

Figure 3.4 Top view of the optimized geometries of O/2H decomposition states. 

 
3.3.5 O/2H decomposition state 

Next, we investigate complete decomposition of the water adsorbate with one oxygen and 

two hydrogens, where each reacts at sites on the GaP(001)(2ൈ4) surface unit cell. To identify 

stable adsorption geometries for the oxygen adsorbate, we positioned an oxygen atom at several 

high symmetry positions (atop, bridge, and hollow sites) of the (2ൈ4) unit cell and carried out 

geometry optimization. We find that the bridge positions are more favored than the other tested 

positions for the oxygen adsorption, which agrees well with a previous result [66]. For the H 

adsorbates, the atop positions are stable as we already mentioned in Session 3.3.4.  
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Adsorption state E
ads 

(eV) d
Ga-O 

(Å) d
A*-O 

(Å) Ɵ
Ga-O-A* 

(°ሻ d
P-H 

(Å) d
Ga-H 

(Å) 

3G-O-5G_H-1P_H-2G ‒ 0.994 1.791 1.871 117.4 1.427 1.570 

2G-O-6G_H-1P_H-3G’ ‒ 0.769 1.827 1.812 117.3 1.429 1.577 

4G-O-6G_H-1P_H-3G’ ‒ 0.751 1.793 1.860 119.0 1.428 1.574 

1P-O-5G_H-1P_H-3G ‒ 0.631 1.969 1.586 128.0 1.433 1.571 

1P-O-2G_H-1P_H-4G ‒ 0.580 1.945 1.583 130.0 1.434 1.569 

3G-O-7P_H-1P_H-2G ‒ 0.066 1.897 1.463 110.5 1.425 1.571 

4G-O-9P_H-1P_H-2G ‒ 0.030 1.907 1.458 109.1 1.427 1.568 

3G-O-8P_H-1P_H-2G ‒ 0.022 1.894 1.457 109.1 1.425 1.572 

4G-O-8P_H-1P_H-2G + 0.007 1.905 1.516 111.6 1.426 1.570 

Table 3.4 Adsorption energies and structural parameters of O/2H decomposition states. * A = Ga or 
P 

 
There are a total of 17 Ga-Ga or Ga-P bridge sites for an oxygen atom to sit on in the 

(2ൈ4) unit cell, but eight of them are redundant due to mirror symmetry. Thus, we considered the 

nine bridge oxide structures; 1P-O-2G, 1P-O-5G, 2G-O-6G, 3G-O-5G, 4G-O-6G, 3G-O-7P, 3G-

O-8P, 4G-O-8P, and 4G-O-9P. For each of these nine cases (except for the 1P-O-2G structure), 

there are six available atop positions for the H. This leads to 6ൈ5/2=15 possible cases for two H 

to sit on. As discussed in Session 3.3.4, hydrogen prefers to bond with the 1P atom rather than the 

Ga; hence, we assumed that one of the hydrogen atoms is located on top of 1P (H-1P), leading to 

five possibilities for the other hydrogen adsorption sites (H-XG, where XG=2G, 3G, 3G’, 4G and 

4G’) per bridge oxide configuration. The 1P-O-2G structure, however, has only three different 

initial structures due to mirror symmetry. Then we carried out geometry optimizations for all the 

43 structures. [86] 

We sorted these 43 into nine groups; each containing five structures with the same 

oxygen site and the same first hydrogen site to be atop 1P, but varying the site for the second 

hydrogen atom to be atop 2G, 3G, 3G’, 4G, or 4G’ (in the group containing the 1P-O-2G 

configuration, there are only three sites for the second H due to mirror symmetry; 2G, 3G, and 
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4G). We find that within a given group, the adsorption energies of the five different structures 

vary by just 0.15 eV. Of these five structures, one is particularly less stable than the other four. 

That is, when the second hydrogen atom is bound to the Ga atom which is a member of a bridge 

Ga-O-Ga configuration, the adsorption energy is the least of the five structures. This is because 

the Ga-O-Ga configuration leads to the best energetics of the O/2H ground states. When a 

hydrogen atom bonds with one of Ga atoms of this Ga-O-Ga, the bonds around the H-bound Ga 

atom change from sp2 to sp3 hybrid character. The significant change of the ideal bond angle 

(120° to 109.5°) induced by the change of hybridization builds up geometrical strains around the 

H-bound Ga atom, resulting in a smaller adsorption energy. On the other hand, for the other four 

states where the second hydrogen bonds with an sp2 Ga atom not involved in the Ga-O-Ga, the 

change of hybridization of the bonds around the H-bound Ga atoms does not destabilize the 

adsorption structure as significantly as for the Ga-O-Ga-H configuration. Figure 3.4 and Table 3.4 

show the geometries, adsorption energies, and structural parameters of nine representatives of the 

43 optimized structures. Each representative structure has the most stable adsorption energy 

among the three (in 1P-O-2G group) or five (in eight other groups) other structures in each group. 

3.3.6 Surface oxide state (O/H2 state) 

The remaining adsorption state for water adsorption and decomposition reactions is the 

surface oxide state with both H adsorbates leaving as an H2 molecule. Surface oxide formation 

after desorption of H2 has been observed experimentally in temperature programmed desorption 

(TPD) experiments on water/GaAs(001) [76, 77]. Sloan et al. observed the D2 TPD peak at 400 ~ 

600 K from the GaAs(100) surface which had been covered with D2O dissociative adsorbates. 

Chung et al. also obtained the D2 desorption spectrum at 600 ~ 700K from the D2O adsorbed 

GaAs(001)(4ൈ2) surface. They suggested a D2 regeneration mechanism in which the D2 gas is 

produced from two hydroxyl adsorbates when the surface is annealed. To provide insights about 

the energetics of this mechanism while keeping the simulation cell size (surface water coverage 

of 0.125 ML) fixed, we calculated the final ground states where the oxide is left on the GaP 

surface after the desorption of a H2 molecule.  
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Figure 3.5 Top view of optimized geometries of surface oxide states. 

 
We built the initial structures for the oxygen adsorbates whose coordinates referred to 

those of the oxygen adsorbates in the optimized structures of the O/2H state in Session 3.3.5. 

Figure 3.5 and Table 3.5 show the final structures and their energies in the surface oxide state. 

The two hydrogen atoms in the surface oxide state are combined to a hydrogen molecule in the 

vacuum. Since we want to describe a desorbed hydrogen molecule, we selected the initial 

coordinates of the hydrogen molecule to be as far as possible from either top or bottom surface. 

During the geometry optimization the coordinates of the hydrogen atoms in vacuum are fully 

relaxed, but the coordinates of the hydrogen molecule remain little changed in the final structures 

(less than 0.1%) implying negligible interactions between the hydrogen molecule and the two 

surfaces. To verify that the presence of an H2 in the vacuum of the simulation unit cell does not 

affect on energetics of the surface oxide, we compared the coordinates of the surface atoms and 

the adsorption energies for the surface oxide structure with and without a hydrogen molecule in 
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vacuum.[86] For all simulated oxide structures, differences of the coordinates of surface atoms 

and the adsorption energies for the two structures are less than 2 % and 0.4 %, respectively. More 

importantly, there was no correlation between the variation on the hydrogen-to-surface distance 

and the variation on the adsorption energy. That is, the small energy difference (0.4%) might arise 

only from slight differences in the convergence levels in the structures during the geometry 

optimization. Therefore, our O/H2 state models are appropriately constructed to represent the 

surface oxide state where hydrogen adsorbates are completely desorbed from the surface. 

From the simulation results of the surface oxide state summarized in Table 3.5, we 

conclude that thermodynamically stable oxide structures after the hydrogen molecule is desorbed 

are Ga-O-Ga surface bridge structures. The net enthalpy changes for forming the surface Ga-O-

Ga bridge oxides are negative (thermodynamically favored) compared to the reference state of 

water plus clean GaP surface. In contrast the surface oxide states involving the Ga-O-P bridge 

structures, are less stable than this reference. 

Adsorption state E
ads 

(eV) d
Ga-O 

(Å) d
A*-O 

(Å) 
Ɵ

Ga-O-A* 

(°ሻ 
d

H-H 
(Å) 

d
H2-4G`** 

(Å) 

3G-O-5G_H2 ‒ 0.443 1.887 1.781 119.3 0.748 8.223 

4G-O-6G_H2 ‒ 0.322 1.857 1.790 120.3 0.749 8.233 

2G-O-6G_H2 ‒ 0.282 1.820 1.818 116.4 0.747 8.232 

1P-O-5G_H2 + 0.207 1.881 1.628 132.5 0.752 8.239 

1P-O-2G_H2 + 0.239 1.883 1.621 138.8 0.748 8.213 

3G-O-7P_H2 + 0.388 1.913 1.458 112.7 0.752 8.221 

3G-O-8P_H2 + 0.446 1.909 1.423 111.3 0.751 8.221 

4G-O-9P_H2 + 0.454 1.892 1.468 107.3 0.751 8.221 

4G-O-8P_H2 + 0.499 1.888 1.500 108.7 0.749 8.222 

Table 3.5 Adsorption energies and structural parameters of surface oxide states. * A = Ga or P. ** 
Distance between the center of two H atoms and the nearest Ga or P atom located on the surface. 
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Figure 3.6 Adsorption energies versus reaction coordinates of entire adsorption states.  

Black lines indicate the mechanism for H2O-2G-WB, H2O-2G-SB  HO-2G_H-1P  2G-O-
6G_H-1P_H-XG  2G-O-6G_H2 (XG=2G, 3G, 3G’, 4G and 4G’). In the 3rd and 4th steps, we use 
gray for 1P-O-2G_H-1P_H-XG and 1P-O-2G_H2 states. 

Red lines indicate the mechanism for H2O-3G  HO-3G_H-1P  3G-O-5G_H-1P_H-XG  
3G-O-5G_H2 (XG=2G, 3G, 3G’, 4G and 4G’). In the 3rd and 4th steps, we use dark red for 3G-O-
7P_H-1P_H-XG and 3Ga-O-7P_H2 states, and light red for 3G-O-8P_H-1P_H-XG and 3G-O-
8P_H2 states. 

Blue lines indicate the mechanism for H2O-4G  HO-4G_H-1P  4G-O-6G_H-1P_H-XG  
4G-O-6G_H2 (XG=2G, 3G, 3G’, 4G and 4G’). In the 3rd and 4th steps, we use dark blue for 4G-O-
9P_H-1P_H-XG and 4G-O-9P_H2 states, and light blue for 4G-O-8P_H-1P_H-XG and 4G-O-
8P_H2 states. 
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3.3.7 Overall reaction mechanism 

Sessions 3.3.3 ~ 3.3.6 explored all ground states potentially involved in the adsorption 

and decomposition mechanisms of a single water molecule on the Ga-rich GaP(001)(2ൈ4) mixed-

dimer surface. Although we did not calculate the transition states for the reactions forming these 

states from H2O, we suggest some possible reaction pathways in Session 3.3.7. Figure 3.6 

indicates the adsorption energies of all the ground states introduced above. Ground states with the 

same color indicate adsorption species that we assume are involved in the same reaction pathway. 

For instance, the black lines along the reaction coordinates indicate the ground states in the 

decomposition mechanism of the water molecule adsorbed on the 2G site.  

Black mechanisms 

In Figure 3.6, the black lines in each step indicate the adsorption energies for the 

mechanism; H2O-2G-WB, H2O-2G-SB  HO-2G_H-1P  2G-O-6G_H-1P_H-XG  2G-O-

6G_H2 (XG=2G, 3G, 3G’, 4G and 4G’). Here Gray lines indicate the adsorption energies for 1P-

O-2G_H-1P_H-XG (XG=2G, 3G, 3G’, 4G and 4G’) states in the third step and the 1P-O-2G_H2 

state in the fourth step. We see that adsorption of a water molecule onto the 2G atom is 

thermodynamically favored (the first step to the second step in Figure 3.6). Then the molecular 

water adsorbate on 2G decomposes to form the HO-2G_H-1P state with a small transition energy, 

because such hydrogen dissociation-and-transportation within one dimer is frequently observed in 

surface decomposition reactions [67-70, 79-81]. When energy is further supplied to the HO-

2G_H-1P state, two competitive decomposition pathways are followed (black and gray in the 

third step, Figure 3.6). The hydroxyl group (HO-2G) may transform to either 2G-O-6G bridge 

states (black lines in the third step, Figure 3.6) or 1P-O-2G bridge states (grey lines in the third 

step, Figure 3.6). Of the two surface oxide states, the 2G-O-6G bridge state has lower adsorption 

energy and will be more favored than its counter pathway. 

Red mechanisms 

Red lines represent the adsorption energies for the mechanism; H2O-3G  HO-3G_H-

1P  3G-O-5G_H-1P_H-XG  3G-O-5G_H2 (XG=2G, 3G, 3G’, 4G and 4G’). Here dark red 

lines display the adsorption energies of the 3G-O-7P_H-1P_H-XG (XG=2G, 3G, 3G’, 4G and 

4G’) state in the third step and the 3Ga-O-7P_H2 state in the fourth step. The light red lines 
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represent the adsorption energies of 3G-O-8P_H-1P_H-XG (XG=2G, 3G, 3G’, 4G and 4G’) 

states in the third step and the 3G-O-8P_H2 state in the fourth step. We expect that the 

decomposition reaction pathway from the H2O-3G state to the HO-3G_H-1P state will require a 

high activation energy due to the long H transportation distance. However, with additional waters 

or dissociated water species to help H transfer, there may exist other low barrier pathways for this 

reaction (requiring higher water coverage than 0.125 ML). Otherwise, decomposition proceeds 

from the H2O-3G state to the 3G-O-5G_H-1P_XGa state through another HO/H decomposition 

state whose adsorption energy is not, however, lower than that of the HO-3G_H-1P state. 

Blue mechanisms 

The blue lines represent the adsorption energies for the mechanism, H2O-4G  HO-

4G_H-1P  4G-O-6G_H-1P_H-XG  4G-O-6G_H2 (XG=2G, 3G, 3G’, 4G and 4G’). The dark 

blue lines represent the adsorption energies of the 4G-O-9P_H-1P_H-XG (XG=2G, 3G, 3G’, 4G 

and 4G’) states in the third step and the 4G-O-9P_H2 state in the fourth step. The light blue lines 

represent the adsorption energies of the 4G-O-8P_H-1P_H-XG (XG=2G, 3G, 3G’, 4G and 4G’) 

states in the third step and the 4G-O-8P_H2 state in the fourth step. The decomposition pathway 

from H2O-4G to HO-4G_H-1P would have a high activation barrier just as in the H2O-3G 

decomposition. Since the hydrogen transportation distance is even longer than in either the H2O-

2G or H2O-3G cases, it is unlikely for H2O-4Ga to be directly transformed to 4G-O-6G_H-

1P_H-XG unless a second water or decomposed water species is involved. 

Comparison of black, red, and blue mechanisms 

All three adsorption pathways are exothermic from the zeroth step to the first step. In the 

first step, the energy variations for the three adsorption states (H2O-2, 3, and 4G) are small. 

Similarly, the H decomposition reactions from the first step to the second step are exothermic for 

all three cases. In addition, since the three HO decomposition states have comparable adsorption 

energies, there is no preference over the three decomposition pathways in terms of 

thermodynamics. However, considering kinetics of the decomposition reactions (first step to 

second step), we anticipate that the HO-2G_H-1P state is favored, since the H transportation 

distance, which is related to barrier height, is much shorter than for the other structures.  

In the third step, noticeable differences are observed for the adsorption energies of eight 

surface bridge oxide groups (black, grey, red, light red, dark red, blue, light blue, and dark blue).  
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  First, the Ga-O-Ga bridge oxide configurations are more stable than the Ga-O-P bridge oxide 

configurations.  

  Second, the bridge oxides consisting of second layer Ga atoms and third layer P atoms (light 

red, dark red, light blue, and dark blue), whose adsorption energies are larger than the zeroth step 

energy, 0 eV, are very unstable.  

  Third, when comparing with the energies of three groups of Ga-O-Ga bridge oxides such as 

2G-O-6G_H-1P_H-XG (black) (XG=2G, 3G, 3G’, 4G and 4G’), 3G-O-5G_H-1P_H-XG (red), 

and 4G-O-6G_H-1P_H-XG (blue), the 3G-O-5G_H-1P_H-XG group is the most stable.  

The three decomposition pathways connecting the black, red, and blue lines between the second 

step and the third step are thermodynamically favorable. Of the three pathways, the pathway to 

form the 3G-O-5G configuration is the most favorable. However, since we have not verified the 

transportation mechanism of the second hydrogen atom from the HO configuration to the H-Ga 

configuration, we cannot conclude which pathway is preferred.  

In the fourth step, after desorption of hydrogen adsorbates, we suggest the Ga-O-Ga 

bridged oxide to be the most stable adsorption configuration. The adsorption energy for the 

bridge oxide state is lower than the initial state. Thus, decomposition of water to form surface 

oxide on the Ga-rich GaP(001)(2x4) mixed dimer surface is thermodynamically favorable. 

Ref. [77] suggested that surface oxides are formed after regeneration and desorption of 

water or hydrogen gases from two HO adsorbates rather than from two hydrogen adsorbate, 

ܽܩ2 െ 	ܦܱ → ଶሺ݃ሻܦ 	 	2GaO, 

ܽܩ2 െ 	ܦܱ → 	ܱܽܩ  ଶܱሺ݃ሻܦ	 		Ga. 

This hydrogen regeneration was verified using TPD, HREELS, and XPS experiments. 

Since we restricted ourselves to one H2O per cell, we could not examine this mechanism, which we 

consider reasonable. However we do describe the final GaO formed.  

Foord et al. [87] observed regeneration of hydrogen gas from hydrogen adsorbates on the 

GaAs(100) surface and suggested a hydrogen regeneration mechanism in the H2S/GaAs(100) 

system which proceeds through 

ሻݏሺܽ݀ܪ2 →  .ଶሺ݃ሻܪ
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It seems to us that an intermediate mechanism in which a weaker surface H starts to 

break and then forms H2 from an adjacent OH might be reasonable. However this last step of H2 

formation will require detailed reaction pathways starting with the species we have enumerated. 

Caveats 

In this chapter, we discuss extensively the thermodynamics of all possible stable ground 

states, but we do not suggest full decomposition and desorption mechanisms to clarify how 

surface oxide and gaseous hydrogen are formed from HO and H adsorbates. Therefore, one 

should use care when interpreting the reaction pathways in Figure 3.6; especially, the pathways 

from the second step to the fourth step. 

Since the pathways do not include transition state energies, there could be additional 

barriers and local minima between neighboring ground states. In addition, we have kept the water 

coverage at 0.125 ML for each (2ൈ4) unit cell. However, it could be that some cells would locally 

have more than one water molecule even though the average coverage is 0.125 ML. For instance, 

there might be two neighboring HO adsorbates in one (2ൈ4) unit cell, which could lead to a lower 

barrier pathway to produce the final surface oxide state similar to that observed in the water/Ga-

rich GaAs(001)(2ൈ4) system [77].  

3.4 Conclusion 

We report here, the adsorption and decomposition thermodynamics of 0.125 ML water on 

a Ga-rich GaP(001)(2ൈ 4) surface predicted using ab-initio DFT simulation. This surface 

reconstruction is complicated, leading to a number of potential decomposition reaction pathways. 

This study is the first to exhaustively consider the various possible reaction intermediates 

involved in mechanisms of water-induced transformations on GaP(001)(2ൈ4). Here we explore 

all reasonable ground states involved in most possible adsorption and decomposition pathways, 

but we have not provided the full reaction mechanism, which would require searching transition 

states and quantifying barrier heights.  

We consider a sequence of the ground states involving four adsorption states:  
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  The molecular water adsorption state, where we find that the molecular adsorption geometry 

is most stable when H2O is adsorbed on top of the surface sp2 Ga atom of either Ga-P mixed 

dimer or Ga-Ga dimers. 

  The HO/H decomposition state, where we find that the HO group bonds with a surface sp2 Ga 

atom, and H binds to with the first layer P atom, with both HO and H groups having the atop 

configurations. 

  The O/2H decomposition state, where the thermodynamically favorable adsorption structure for 

the O atom is the bridged Ga-O-Ga structure. Here the one hydrogen adsorbate prefers to be 

located on top of the first layer P atom while the other prefers a surface of sp2 Ga atoms. 

  The surface oxide state, where the O atom forms the Ga-O-Ga bridge oxide configuration after 

desorption of H2. The oxide formation process is exothermic when referenced to the initial state 

energy. 
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C h a p t e r  4  

Investigation of Adsorption Geometries and 

Thermal Decomposition Reactions of 

Alkanethiol Molecules on a Ga-Rich 

GaP(001)(2×4) Surface 

4.1 Introduction 

Organic thin film technologies using alkanethiols are widely used to chemically modify and 

physically/electronically protect a variety of metal and semiconductor surfaces [88-90]. Among 

many systems, the alkanethiol-bound gold surface has been most frequently and thoroughly 

researched. The usefulness of the Au-S bond stems from the appropriate strength of the bond. That 

is, long alkanethiol molecules form a self-assembled monolayer (SAM) on the surface when 

intermolecular interaction is stronger than the Au-S bond.[88] On the other hand, in some 

applications the strong character of the Au-S covalent bond is used to attach organic or bio 

molecules to the surfaces of planar Au films and Au particles.[91, 92]  

The scope of research on alkanethiol-based thin films formation has been extended to III-V 

semiconductors. Due to the applications of III-V semiconductor materials in advanced electronics 

and optoelectronics, much research has been performed on alkanethiol/III-V semiconductor systems. 

[93-96] In addition to the existing merits of the depositing alkanethiol films on inert metal surfaces 

for use as chemical functionalization and protection, binding sulfur onto the III-V semiconductor 

surfaces adds additional benefits to the electronic properties of the III-V semiconductors. Sulfur has 

been reported to be one of the best reagents for passivation of trap states on various semiconductor 



 

 

51
surfaces, these surface trap states being one of the main sources of degradation in the electronic 

properties of the semiconductor devices.[97] 

The covalent bonding between S and the III-V semiconductor surface atoms can be used to 

graft molecules to the surfaces.[98] This strong grafting is necessary in modifying and 

functionalizing the semiconductor surface with organic molecules. Thus, it is important to 

understand the adsorption geometries and energetics of alkanethiol molecules on such surfaces. In 

spite of its significance, fundamental research on the adsorbate structures and corresponding 

energetics on the III-V semiconductor surfaces has not yet been thoroughly conducted. In addition, 

most surface studies of alkanethiol molecules adsorbed on the III-V semiconductors have been 

dependent on spectroscopic techniques such as X-ray photoelectron spectroscopy (XPS) and 

thermal desorption spectroscopy (TDS). These are powerful tools for exploring reaction chemistry 

but do not provide information for investigating the detailed molecular structure of the adsorbate.  

In this chapter, we use high-resolution scanning tunneling spectroscopy (STM) and density 

functional theory (DFT) calculations to elucidate the geometry and energetics of alkanethiol 

molecules adsorbed to the Ga-rich GaP(001)(2×4) mixed-dimer surface. We also investigate the 

effect of annealing on the adsorption geometry and bonding characteristics using X-ray 

photoelectron spectroscopy (XPS) as well as the previous two techniques.  

4.2 Experimental and computational details 

A GaP(001) sample (n-type, carrier concentration 1.7 × 1018 cm-3, EL-CAT Inc.) was 

cleaved and mounted to a tantalum sample plate using two tantalum foils, and then loaded into 

the ultra-high vacuum (UHV) sample preparation chamber (base pressure < 1 × 10-10 Torr). The 

GaP(001) sample surface was cleaned by several cycles of sputtering with 500 eV Ne+ ions for 7 

min at 250 ˚C and annealing at 500 ˚C for 10 min in the preparation chamber. A type-K 

thermocouple and infrared optical pyrometer were used to measure the temperature of the 

GaP(001) sample while preparing the clean surface as well as during annealing of molecule-

dosed GaP surfaces.  

After preparing a sample in the preparation chamber, it was transferred under vacuum to 

the STM chamber (base pressure < 3 × 10-11 Torr). A large domain composed of a single surface 
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reconstruction structure which was the Ga-rich GaP(001)-(2×4) mixed-dimer reconstruction 

[44, 71] was reliably observed by scanning tunneling microscopy (STM), with images matching 

those previously reported. [61, 99]  

1-propanethiol (99 %, Aldrich), 1-octanethiol (98.5 %, Aldrich), 1,2-ethandithiol (98 %, 

Fluka), and dipropyl disulfide (98 %, Aldrich) were purchased and further purified by several 

freeze-pump-thaw cycles to remove dissolved gases prior to exposure to the sample. The source 

chemicals were inserted into the STM chamber using a variable leak valve at room temperature 

(RT). The temperature of the sample surface during dosing varied from 130 K to RT. The 

temperature was measured using a Si diode temperature sensor embedded in the commercial 

STM system.  

The scanning tunneling microscopy (STM) characterization of the surface topography 

was carried out using a commercial STM (VT-STM XA 50/500, Omicron Nanotechnology). The 

filled-state STM images were obtained in a constant current mode with the sample bias voltage 

varied from – 3.5 V ~ – 4.5 V and set-point current of 100 ~ 200 pA. All STM experiments were 

collected using a commercial tungsten tip (Bruker Corp) which was fabricated using the 

electrochemical etching method. 

X-ray photoelectron spectroscopy (XPS) measurements were carried out in a separate 

UHV chamber (base pressure, < 3 × 10-9 Torr) which was located in Beckman Institute, 

California Institute of Technology, Pasadena, USA. The system is equipped with a Kratos Ultra 

DLD spectrometer and monochromatic Al Kα radiation (hν = 1486.58 eV) source. The 

alkanethiol/GaP(001) samples were transferred from the STM prep chamber to the XPS chamber 

in a portable stainless steel chamber filled with anhydrous nitrogen gas. Thus, exposure to 

ambient gas during transportation was minimized. Low-resolution survey and high-resolution 

spectra were collected at fixed analyzer pass energies of 80 and 10 eV, respectively. The spectra 

were collected at 45˚ with respect to the surface normal direction. The binding energies of the 

spectra were referenced to the clean Au 4f7/2 core level spectrum with a fixed binding energy of 

84.0 eV. The XPS data were analyzed with commercial software, CasaXPS (version 2.3.16). The 

individual peaks were fitted with a Gaussian/Lorenzian product function after a Shirley-type 

background subtraction. Spin-orbit splittings and branching ratios were held constant; 1.1 eV and 
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0.51 for S 2p core level, 0.86 eV and 0.52 for P 2p core level, and  0.44 eV and 0.69 for Ga 3d 

core level, respectively.[55] 

The substrate-overlayer model [100] was used to calculate the coverage of surface-

adsorbed molecules and sulfur atoms from the XPS core-level spectroscopic data.  
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In Equation (4.1), Iov and Isub indicate integrated peak areas of the element of interest in the 

overlayer and substrate, respectively. SFov and SFsub are the instrument sensitivity factors (0.2780 

for C 1s, 0.4453 for S 2p, and 0.2634 for Ga 3d). ρov and ρsub are the molar densities of the atoms 

in the overlayer and the substrate, respectively. The molar densities of C and S atoms in the 

overlayer were estimated from the density of adventitious hydrocarbon (3.3 × 10-10 mol/cm3)[101] 

and molten liquid sulfur (1.819 g/cm3), respectively. The molar density of Ga atoms in the 

substrate was calculated from the crystalline GaP density (4.14 g/cm3). dov is the thickness of the 

overlayer. λov and λsub indicate escape depths of photoelectrons originating from the orbitals of the 

atoms of interest located in the overlayer and substrate, respectively. Finally, θ is the take-off 

angle between the photoelectron detector and the sample surface (fixed at 45˚ in the current 

report).  

The escape depths of photoelectrons through the molecular overlayers were approximated 

by an attenuation length (λ) which is calculated using the following empirical equation: [100] 

ߣ ൌ 0.4ܽଵ.ହܧ.ହ,                                                         (4.2) 

where E is the kinetic energy of the photoelectron in eV and a is the diameter of the atoms in the 

monolayer in nm. The diameter of the atom in Equation (4.2) was calculated using Equation (4.3), 

ܽ ൌ ቀ


ଵேೌೡఘ
ቁ
భ
య,                                                          (4.3) 

where A is atomic weight in g/mol, Nav is Avogadro’s number in number/mol, and ρ is the density 

of the atom of interest in g/cm3. From the densities introduced above, the diameters of C, S, and 

Ga were calculated to be 0.256 nm, 0.308 nm, and 0.343 nm. Using these values, the escape 
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depths of Ga 3d photoelectrons through 1-propanethiol overlayers were calculated to be 2.688 

nm in S and 2.035 in C, respectively. The escape depths of the S 2p and C 1s photoelectrons 

through the 1-propanethiol overlayer were calculated to be 2.551 and 1.841 nm, respectively. 

 

Figure 4.1 a) Front and b) top view of the optimized Ga-rich GaP(001)(2×4) cluster model. 

 
All density functional theory (DFT) calculations for the geometry optimization, the 

adsorption energy calculation, and the transition state search were performed by employing the 

JAGUAR 7.8 software package using the hybrid DFT method, including the Becke’s three-

parameter nonlocal-exchange functional with the correlation functional of Lee-Yang-Parr 

(B3LYP).[102] We constructed a Ga18P19H27 cluster model to describe the GaP(001)(2×4) mixed-

dimer surface reconstruction as shown in Figure 4.1. In the structure model, there is one Ga-P 

dimer in the first layer and four Ga-Ga dimers in the second layer. [44, 71] The Ga and P atoms 

below the second level were constructed to maintain four covalent networks on each atom using 

H atoms and lone pairs of electrons. The number of the H atoms was carefully chosen to satisfy 

the electron counting model[50]. Thereby, the P atom in the first layer has one completely filled 

dangling bond (two electrons in the orbital), and each of the five sp2 Ga atoms on the first and 

second layers has an empty dangling bond (no electron in the orbital).  

All calculations were carried out at the B3LYP/LACVP** level of theory. The 

LACVP** basis set is a mixed basis set that uses the LACVP basis set for the Ga atom and the 6-
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31G basis set for the remaining atoms.[103] All structures were fully optimized without 

geometrical constraints on any atom in the cluster model. The optimized ground state and 

transition state structures were verified through frequency calculations. The ground states had no 

imaginary frequency and the transition states had one imaginary frequency. The adsorption 

energy (Eads) of a molecule of interest adsorbed on the GaP(001)(2×4) surface was calculated by 

subtracting the sum of the energies of the molecule and the bare GaP(001)(2×4) cluster from the 

energy of the molecule-adsorbed GaP cluster, 

ௗ௦ሺܸ݁ሻܧ ൌ ሻܲܽܩ	݊	ܾ݀݁ݎݏ݀ܽ	݈݁ݑ݈ܿ݁ሺ݉ܧ	 െ ሻܲܽܩሺܧ െ  .ሻ݈݁ݑ݈ܿ݁ሺ݉ܧ

Simulated STM images were produced by using the software such as Vienna ab-initio 

simulation package (VASP) and p4vasp 5.5.2. The Ga-rich GaP(001)(2×4) mixed-dimer 

reconstruction model was constructed with reference to the method described in previous literature 

[104]. Simulated STM images were produced using the Tersoff-Hamman approach [105] which 

was implemented in VASP. The simulated STM images were finally visualized in the p4vasp 5.2.2 

software. 

4.3 Results and discussion 

4.3.1 Scanning tunneling microscopy (STM) 

Figure 4.2 displays constant current STM images of a clean Ga-rich GaP(001)(2×4) 

surface at sample bias voltage of ‒ 4 V and set point current of 200 pA. In the large scale image 

in Figure 4.2a, the terrace is composed of a number of bright and dark rows which run along the 

[‒110] direction, called the dimer row and vacancy row, respectively. The dimer row is composed 

of bright protrusions attributed to the P atom of the first layer Ga-P dimer in the (2×4) unit cell. 

The inter-protrusion distance along [‒110] is not constant due to the irregularity of the directions 

of the Ga-P dimers with respect to their neighboring Ga-P dimers. That is, the STM image of Ga-

P/Ga-P is dissimilar to those of Ga-P/P-Ga and P-Ga/Ga-P.  

In the STM image of a clean surface, we also observe two kinds of structural defects 

compared to a perfect Ga-rich GaP(001)(2×4) mixed-dimer reconstruction; one is a point defect 

and the other is a line defect based on many measurements, these defects are different from the 

defect features which probably stem from adsorptions and incorporations of alien molecules such 
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as background water and hydrocarbon in the UHV chamber. The two defects are shown in the 

magnified images in Figure 4.2a. When more than two first layer Ga-P dimers exist in a (2×4) 

unit cell, a point defect is formed as shown in the left inset of Figure 4.2a. The line defect is 

called a domain boundary (DB) which is created when two dimer rows which come from the 

north (blue arrow) and the south (red arrow) meet on the different surface unit cell as shown in 

the right inset of Figure 4.2a. These two defects satisfy the electron counting model in spite of 

structural disorder; thus, they do not create charge accumulation or depletion. However, the 

defects could play a role in physical barriers that block the molecular diffusion motion along the 

[‒110] direction if we assume that the transport mechanism happens along the dimer or vacancy 

row. 

 

Figure 4.2 a) Constant current STM images (Vs = ‒ 4 V, It = 200 pA) of a clean GaP(001)(2×4) 
surface. (Insets represent high resolution STM images of two kinds of common defects (point 
defect and domain boundary “DB”, respectively). b), c) STM images obtained at ‒ 4.5 V, 200 pA 
and ‒ 2.5 V, 200 pA, respectively (image size 15 nm × 15 nm).  Insets in b) and c) are zoom-in 
(left) and simulated (right) STM images. The sample bias voltages in the simulated STM images 
are b) – 2.3 V and c) – 0.5 V. 
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Figure 4.2b and c demonstrate the influence of the sample bias voltage on the STM 

images obtained from the same location. At constant set point current (It), increasing the sample 

bias voltage (Vs) by one volt varies the tip-sample distance by around 1 Å.[12] At a sample bias 

voltage of ‒ 4.5 V in Figure 4.2b, the dangling bond in the 1st layer P is dominantly observed on 

both experimental and simulated STM images. The feature is also consistent with the electronic 

structure of the (2×4) reconstruction, since the highest occupied molecular orbital (HOMO) level 

is spatially localized at the dangling bond of the first layer P atom.[71] On the other hand, at ‒ 2.5 

V in Figure 4.2c, two less-bright protrusions are observed in addition to the strongest P-induced 

protrusion. These two less-bright protrusions are overlapped with the positions where the two 

back bonds of the first layer Ga atom are located. The second feature is also supported by the 

GaP(001)(2×4) electronic structure. The second highest occupied molecular orbital occurs at the 

same location as the two less-bright protrusions.[71]    

Figure 4.3 displays constant current STM images of 1-propanethiol/GaP(001)(2×4) 

surfaces which are formed at various coverages and temperatures. At 130 K, 1-propanethiol 

molecules adsorb to the vacancy rows. In the high-resolution STM image in Figure 4.4a, the 

protrusion is not located in the center of the vacancy row but closer to one dimer row than the 

other. Another interesting point in the low temperature STM image is that the spatial distribution 

of the adsorption sites of the molecules is large; that is, the molecules adsorb to a random location 

of the surface.  

 The STM image in Figure 4.3b is obtained at RT. The shape and size of the STM feature 

at RT is significantly different from those of the feature observed at 130 K. The bright protrusion 

is larger than the low-temperature adsorbate, but the adsorption location on the (2×4) unit cell is 

almost the same as those shown in Figures 4.4b and c. Moreover, the adsorbates are not randomly 

distributed over the surface at RT, but instead form aggregated areas. In addition, the adsorbate 

density is higher around the step edge and DB.  

Two new STM features are observed on the sample which was annealed at 300 ˚C 

(Figure 4.3c). One is a bright protrusion located on top of the dimer row (C in Figure 4.4d). The 

brightness of the other protrusion (feature D in Figure 4.4d) is not as strong as the feature C but 

similar to the first layer intact P atom. Lastly, there are two new features in the sample which was 

annealed at 500 ˚C, as shown in Figure 4.3d and 4.5a. One is the feature with (1×1) symmetry 

(feature E in the red square, Figure 4.5) which is less bright than the first layer P atom, and the 

other is an aggregation of bright protrusions (feature F in Figure 4.5). The STM image of the 

aggregated feature is different from the aggregated molecules in Figure 4.3b since we can 
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discriminate one molecule from the other molecule due to the clear boundary of feature B. 

However, for feature F, we cannot resolve one atom or molecule from another.  

 

Figure 4.3 Constant current STM images (Vs = ‒ 4 V, It = 100 pA). a) A clean GaP(001)(2×4) is 
exposed to 0.005 L 1-propanethiol at 130 K. b) A clean GaP(001)(2×4) is exposed to 0.02 L 1-
propanethiol at 130 K followed by annealing at RT. c) The sample in b) is annealed at c) 300 ˚C and 
d) 500 ˚C for 30minutes, respectively. a) is measured at 130 K. b) to d) are measured at RT.  
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Figure 4.4 shows constant current STM images, cross-section line profiles, and high-

magnification images on which the (1×1) unit cell grids and clean surface structural models are 

overlapped. The apparent height of feature A in Figure 4.4a is 28 pm lower than the first layer P 

atom. In addition, the adsorption location of the feature A overlaps with location of the edge sp2 

Ga atoms (refer to Figure 4.1) in the (2×4) unit cell as marked with a yellow circle in Figure 4.4a.  

The feature A’ in Figure 4.4b is observed in the same sample at the same temperature 

where Figure 4.4a was obtained. Based on the number and coverage of the features, we find that 

feature A’ stems from the same adsorbate as feature A in Figure 4.4a. We also observe the tip-

induced transition from feature A to A’ in successive images (not shown here). However, the 

adsorption location and apparent height of the protrusion of feature A’ is slightly different from 

those of feature A. The apparent height of feature A’ is 31 pm higher than the 1st layer P atom 

while that of feature A is lower than the first layer P atom. In addition, the adsorption location is 

slightly closer to the center line of the dimer row than feature A.  
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Figure 4.4 (1st column) Constant current STM image (Vs = ‒ 4.5 V, It = 100 pA, 10 nm × 10 nm), 
(2nd column) cross-section line profile along the red arrow on the left image, and (3rd column) 
schematic model on the high magnification STM image of the protrusion A in the 1st column 
image. a), b) A clean GaP(001)(2 × 4) surface is exposed to 0.005 L 1-propanethiol at 130 K. The 
images are obtained at 130 K. 0.02 L 1-propanethiol is dosed on a clean GaP(001)(2 × 4) surface 
followed by annealing at c) RT and d) 300 ˚C. The peak-to-peak height differences marked as 
blue arrows in the 2nd column are 28, 31, 95, and 78 pm, respectively. The yellow circle helps 
determine the center locations of the bright protrusions with respect to the grids. Green and 
orange spheres represent P and Ga atoms, respectively. 

 
In Figure 4.4c, a new feature (feature B) is observed in the STM image which was 

obtained from the 0.005 L 1-propanethiol/GaP(001)(2×4) sample at RT. The adsorption location 

of the feature B is similar to that of the feature A’ in Figure 4.4b. However, the apparent height 

and size are significantly different from those of feature A’. The apparent peak height of feature 

B is 95 pm which is three times larger than that of feature A’. The diameter of feature B is 2.1 ~ 

2.9 times larger than that of the surface (1×1) unit cell. The molecular length of 1-propanethiol 

from the center of the S atom to the center of C3 atom is 4.18 Å [106]. Thus, the diameter of the 

feature B is around 2.3 times the S-C3 length of the 1-propanethiol molecule. We propose the 

increased size of feature B compared with feature A’ can be attributed to conformation change of 

the adsorbate due to temperature. Although the conformation change produces larger STM 
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feature in Figure 4.4c, locations of the centers of both features (A’ and B) are almost same, 

which is the edge sp2 Ga atom. 

In Figure 4.4d, two new features (C and D) are discovered on the 0.02 L 1-

propanethiol/GaP(001)(2×4) sample which is annealed at 300 ˚C. Feature C has a similar 

apparent size as feature B; however, the apparent height is slightly smaller than that of feature B. 

The critical difference between features B and C is the adsorption location. The center of feature 

C is located nearly on top of the center line of the dimer row, but the center of feature B is located 

on top of the edge sp2 Ga atom. Feature D is the least clear feature observed in our STM images, 

appearing only with very sharp STM tips. In the STM image, the location of feature D is 

overlapped with that of the edge sp2 Ga atoms, although boundary of the protrusion is not so 

clear.  

Figure 4.5 shows an STM image of the 0.02 L 1-propanethiol/GaP(001)(2×4) followed 

by annealing at 500 ˚C for 30 min. Two new features (E and F) are observed. Feature E is 

composed of small protrusions which form (1×1) symmetry as marked with a red square in Figure 

4.5a. We also observed (2×1) symmetry of the feature with the same apparent height and size on 

similarly prepared samples (not shown here). In contrast to feature E, the shape of feature F is 

irregular with no periodicity and ~ 50 pm higher than the first layer P atom in terms of their 

apparent heights.  

To better understand the STM images of 1-propanethiol adsorbates, we investigated 

adsorption structures of other organosulfur molecules including 1-octanethiol, 1-pentanethiol, 

dipropyl disulfide, and 1,2-ethanedithiol (red arrows in Figure 4.6). Each molecule is dosed at 

120 ~ 130 K on the clean GaP(001)(2×4) surfaces, which are prepared in the same way, followed 

by STM measurements at the dosing temperatures. The molecules are selected to determine the 

effects of 1) the alkyl chain length, 2) the number of the SH groups, and 3) the H atom of the SH 

group on the chemistry and adsorption geometries of organosulfur molecules on the surface. 

Figure 4.6 shows STM images of various organosulfur molecules adsorbed on the GaP(001)(2×4) 

surfaces at different coverages and temperatures. Surprisingly, at this cryogenic temperature, the 

STM features of each chemical are very similar to each other in spite of large variations in the 

length of the molecules and number/position of the S atoms. Moreover, the sizes of protrusions 

are not correlated with the alkyl chain lengths of various probe molecules. This implies that the 

features detected in STM images at these temperatures are associated with the S atoms of the 

molecules rather than alkyl chains.  This assignment is also consistent with the spatial distribution 
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of HOMO and LUMO levels in an alkanethiol molecule, which are located on the S atom of 

alkanethiol; hence, the S atom is appeared brighter than alkyl chain in STM images.[107]  

 

Figure 4.5 a) Constant current STM image (Vs = ‒ 4.5 V, It = 100 pA, 12.5 nm × 12.5 nm) of the 
GaP(001)(2 × 4) surface which is exposed to 0.02 L 1-propanethiol at 130 K followed by 
annealing at 400 ˚C for 30 minutes. The image is obtained at RT. b) Schematic model 
representing S-induced (1 × 1) reconstruction in the 3rd layer (marked by red square). Green, 
orange, and yellow spheres represent P, Ga, and S atoms, respectively. 

 

We compare the STM images of three different thiol molecules such as 1-propanethiol, 1-

pentanethiol, and 1-octanethiol as shown in Figure 4.4a and Figures 4.6a and b, respectively. We 

find that the alkyl chains are not detected as bright features in the current STM images, in contrast 

to the STM images of flat-lying physisorbed alkanethiols on a gold surface where the thiol group 

and hydrocarbon chain look like a bright sphere and a less bright zig-zag chain (or rod), 

respectively.[107] The imaging condition in that report was a sample bias voltage of 2 V and a set 

point current of 200 pA, which allow the tip-sample distance to be more than 2 Å closer than the 

current imaging condition, based on simple calculation.[12] Unfortunately, achieving an STM 

image on the GaP surface at the cryogenic temperature requires lower than ‒ 4 V of the sample 

bias voltage. Therefore, this greater tip-sample distance is likely to be the main reason why the 

hydrocarbon chain is not detected in the current STM images. However, we find the trace of the 

alkyl chain in the STM image obtained from the 1-octanethiol/GaP(001) surface. The alkyl-chain-

induced feature looks dark (but not as dark as the vacancy row) and is located next to a bright 

protrusion as indicated by the blue arrow in Figure 4.6b. 
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Figure 4.6 Constant current STM images of various organosulfur molecules exposed to clean 
GaP(001)(2 × 4) surfaces at various temperatures with various coverages. a) 0.001L pentanethiol 
at 130 K (Vs = ‒ 4 V, It = 80 pA), b) 0.01L 1-octanethiol at 130 K (Vs = ‒ 4 V, It = 150 pA), c) 
0.012L 1,2-ethanedithiol at 130 K (Vs = ‒ 4.8 V, It = 150 pA), and d) 0.003L 1-
dipropanedidulfide at 121 K (Vs = ‒ 5.2 V, It = 100 pA). Images are obtained at the same 
temperatures as those at which each molecule is dosed. The size of each image is 10 nm × 10 nm. 

 

This dark feature results from suppression of electron density on the first layer P atom 

rather than the missing first layer P atom since 1) the apparent height of the dark feature is higher 

than the missing atom defect site and 2) the number of dark features is much higher than the 
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average number of missing atom defect sites which are created by the sputtering-annealing 

procedure. Darkening of the STM image could occur if an H atom bonds with P to produce a P-H 

bond.[108-110] If true, the dark feature would be observed on the 1-propanethiol and 1-

pentanethiol/GaP surfaces because the H-S dissociation is expected to be higher in shorter alkyl 

chain thiols. However, we did not observe as many dark features in the former two cases as in the 

1-octanethiol/GaP case despite the similar number of bright protrusions. That is, there is no 

correlation between the number of bright protrusions and that of dark sites in 1-propanethiol and 

1-pentanethiol/GaP(001). Thus, the dark feature is not associated with the P-H bond. Instead, we 

propose that the dark feature stems from the interruption of electron tunneling by the long 

hydrocarbon chain which is located on top of the first layer P atom. This hydrocarbon chain is 

likely to play a role in the insulating layer which increases the potential barrier for the tunneling 

electrons. 

The 1,2-ethandithiol molecule contains two S atoms separated by 4.5 Å in a fully relaxed 

model[106]. However, we could not obtain an STM image resolving the two S atoms of one 

molecule with the current imaging condition as shown in Figure 4.6c. Therefore, we assume that 

the STM features of the two S atoms are merged together to appear as one single protrusion. This 

assumption is made after excluding the upright adsorption geometry, where one of thiol groups 

interacts with the surface Ga atom and the other thiol group does not. In the upright adsorption 

geometry, the apparent height in the STM image is expected to be higher than the first layer P 

atom due to the height of the molecule, and this has not been observed in the STM images. Thus, 

the molecule has a flat-lying geometry. 

We have discovered another intriguing characteristic of the 1,2-ethanedithiol molecule on 

the GaP(001) surface from low temperature STM images, where the molecule has higher 

diffusivity and diffusion anisotropy on the GaP(001)(2×4) surface than other organosulfur 

molecules (marked as an orange arrow in Figure 4.6c). The ghost image on the vacancy dimer 

row is proposed to result from high mobility of the molecule along the [‒110] direction, and is not 

observed in the 1-propanethiol/GaP system in spite of its lower molecular weight compared to 

1,2-ethanedithiol. Thus we interpret high diffusivity as a property of molecules with two thiol 

groups. The two thiol groups play the role of legs, such that the molecule is able to move along 

the edge sp2 Ga atoms as if by walking. A similar mechanism was discovered in the 

catechol/rutile TiO2(110) surface.[111] The catechol molecule contains two hydroxyl groups 

which are located on the neighboring C atoms of the benzene ring. These two hydroxyl groups act 

as legs of the molecule to enhance diffusion along 5-fold Ti binding sites. However, there are 
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significant differences between the catechol/TiO2 and 1,2-ethanedithiol/GaP systems. The HO 

groups of the catechol molecule on the TiO2 surface dissociates when it is bound to the surface, 

which is facilitated by two-fold O adatoms at the neighboring location. This O adatom plays the 

role of a Lewis base on the surface. On the other hand, the thiol group of the 1, 2-ethanedithiol 

molecule on the GaP surface does not dissociate since the activation barrier of the dissociation 

mechanism is too high due to lack of a Lewis base at the neighboring location. We will discuss 

the energetics of thiol dissociation in the DFT chapter later. 

The dipropyl disulfide molecule also has two S atoms which are separated by 2.1 Å as 

shown in Figure 4.6d [106]. As in the case of 1,2-ethanedithiol/GaP(001), the two S atoms in the 

dipropyl disulfide molecule are not resolved in the current STM condition. The one bright 

protrusion in Figure 4.6d is attributed to either a molecular dipropyl disulfide or dissociated 

propyl thiolate. We propose this protrusion is attributed to a molecular dipropyl disulfide bound 

to the edge sp2 Ga atom because we observe a different STM feature on the dipropyl 

disulfide/GaP(001) sample at a higher temperature  (130 K), which is proposed to be a 

propanethiolate adsorbate. Thus, the dissociation temperature of the disulfide bond is between 

121 K and 130 K. Dissociation of the disulfide bond of dimethyl disulfide on the Ga-rich 

GaAs(001) surface is observed at 105 K in XPS and TPD experiment. [112] However, in dipropyl 

disulfide/GaP(001), the increase in dissociation temperature is likely due to the increased 

hydrocarbon chain length.  

4.3.2 X-ray photoelectron spectroscopy (XPS) 

Figure 4.7 and Table 4.1 show fitted S 2p core-level spectra and Ga 3d, S 2p, and C 1s XPS 

data of the GaP(001)(2×4) surface which is exposed to 1 × 104 L 1-propnathiol at RT followed by 

annealing at the displayed temperatures. In previous chapter, we dosed 1-propanethiol on the GaP 

surface at cryogenic temperature followed by annealing to RT to obtain the RT STM images. 

However, for the XPS experiments, we dosed 1-propanethiol on the surface at RT. We verified that 

the XPS spectrum of the sample prepared with the latter method was always same as that of one 

prepared with the former method. We need to expose the sample exposed to the source at RT to a 

several-fold greater dosage than its counterpart due to the low sticking coefficient of the molecule 

on the surface at RT.  
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We first confirm that no P 2p core-level binding energy shift is detected in the 1-

propanthiol/GaP(001)(2×4) samples at various coverages up to the saturation coverage (not shown 

here). Annealing temperature effect is also checked on the P 2p region, but there is no meaningful 

variation on the shape of spectra from the samples annealed from RT to 500 ˚C with 100 ˚C 

intervals. This is consistent with previous reports where the S atom in thiol and H2S molecules do 

not directly bond to the P atom but to the metal atom on the metal-rich III-phosphide (001) 

surfaces.[98, 113] 

 

Figure 4.7 Fitted X-ray photoelectron spectra of S 2p and C 1s regions. The Ga 3s peak (160.2 
eV) of the clean GaP(001)(2×4) is subtracted from the displayed spectra to show only the S 2p 
core level. A clean GaP(001)(2×4) surface is exposed to 1×104 L 1-propanethiol, followed by 
annealing at displayed temperatures for 30 minutes. Data are obtained at RT after cooling the 
annealed samples. Blue, magenta, and green components are attributed to states B, D, and E in 
the S 2p region. 
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Figure 4.7 presents the fitted XP spectra of the S 2p region of 1-propanethiol/GaP(001) 

annealed at different temperatures. The spectra in Figure 4.7 are produced by subtracting the Ga 3s 

peak of the clean GaP(001)(2×4) surface from the S 2p/Ga 3s regions of the 1-

propanethiol/GaP(001)(2×4) samples to show only S 2p core-level spectra. This is because there is 

a very strong Ga 3s core-level peak with a binding energy of around 160.2 eV close to the S 2p 

region in all 1-propanethiol/GaP(001) samples. Since the coverage of 1-propanethiol on the GaP 

surface is significantly low even at its saturation coverage (0.07 L in Table 4.1), we need this 

subtraction process to more clearly display the variation in the S 2p region.  

 
Ga 3d5/2 S 2p3/2 (B) S 2p3/2 (D) S 2p3/2 (E) C 1s Coverage 

 position 

(eV) 

area* 

(count) 

position 

(eV) 

area* 

(count) 

position 

(eV) 

area* 

(count) 

position 

(eV) 

area* 

(count) 

position 

(eV) 

area* 

(count) 

Sulfur Carbon 

(a) 19.51 2548 163.4 162.0     285.6 946 0.07 0.32 

(b) 19.46 2582 163.2 23.1 161.6 125.9   285.2 578 0.06 0.19 

(c) 19.37 2870   161.4 86.9 162.1 61.1 284.6 237 0.06 0.07 

Table 4.1 XPS data of a) GaP(001)(2×4) exposed to 1 × 104 L 1-propanethiol at RT followed by 
annealing at b) 300 ˚C and c) at 500 ˚C for 30 minutes, respectively. * Integrated peak area is first 
subtracted by using Shirley background, and then scaled by background photoelectron count. 

 
The S 2p region is fitted with three discrete components throughout the measured annealing 

temperatures, as shown in Figure 4.7. This fitting is also verified by comparing the peak position of 

each component at various coverages (not shown here). The S 2p core-level spectrum obtained at 

RT is fitted with only one component (B) as shown in Figure 4.7a. This component has the highest 

binding energy of the three components. Since the electronegativity of S (2.6) is higher than Ga 

(1.8), the S 2p binding energy decrease as the strength and/or number of bonds between Ga and S is 

increased. Thus component B has the lowest interaction with surface Ga atoms among the three 

components. 

The binding energy of the component D in Figure 4.7b has the lowest core-level binding 

energy of the three components (‒ 1.6 eV vs. B). The S 2p binding energy of component D is the 

lowest because the state has the strongest interaction with the surface Ga atoms. Interestingly, the S 

coverage at 300 ˚C is similar to that at RT as shown in Table 4.1. On the other hand, the carbon 
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coverage is decreased significantly as the temperature of the 1-propanethiol/GaP surface is 

increased. Thus, the dominant process from RT to 300 ˚C is expected to be the dissociation of the S-

C bond followed by desorption of hydrocarbon species, leaving S on the surface.  

In the sample annealed at 500 ˚C, another component (E) is detected as well as component 

D. This new component E has a binding energy higher than component D (+ 0.7 eV) but lower than 

component B. We previously showed a featureless bright protrusion and a (1×1) reconstruction in 

STM images of the 1-propanethiol/GaP(001) sample which was annealed at 400 and 500 ˚C. Thus 

the two features are associated with the component E. There are many STM and low-energy 

electron diffraction (LEED) reports where formation of (1×1) and/or (1×2) reconstructions on the S-

treated III-V semiconductor surfaces is followed by annealing. [99, 114, 115] In addition, previous 

XPS studies have shown two bonding states in the S 2p region from the S-treated III-V surfaces at 

similarly annealed samples.[114-117] The reported binding energy difference between the two 

components is 0.4 ~ 1.0 eV, which is consistent with our data where the difference is 0.7 eV. 

The temperature dependent XPS study demonstrates that component D is dominant at 300 

˚C, but the higher binding energy component (E) is dominant at 500 ˚C. Table 4.1 shows the total S 

coverage is maintained when annealing from 300 ˚C to 500 ˚C. Thus, part of component D is 

transferred to E as annealing. Typically, annealing contributes an increase in interaction between S 

atoms and surface metal atoms by processes including alloying, incorporation, and so forth, which 

likely result in a red shift of S 2p core-level. However, several reports observed blue shifts from the 

S/III-V semiconductor surfaces when annealing. [114-117] In spite of common observations such as 

the blue shift as annealing, the interpretation is controversial, which therefore does not supply clear 

atomic structure models for the (1×1) and (2×1) reconstructions. However, analyzing the 

reconstructions is outside the scope of this report, so we do not propose accurate atomic models for 

those reconstructions. Instead, we note that our observations of the blue shift in S 2p core-level 

spectra and the (1×1) reconstruction in STM images agree with previous reports where the surface 

Ga-S-Ga bond is transferred to the S-incorporation as annealing.  

In Table 4.1, we also observe significant loss of carbon coverage (0.07 ML) when 

annealing the sample from 300 ˚C to 500 ˚C. The carbon coverage at 500 ˚C is at a similar level to 

that of a clean GaP(110) sample which is cleaved in the UHV chamber (base pressure < 3 × 10-9 

Torr). Thus, the detected carbon in the sample annealed at 500 ˚C does not necessarily imply the 
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adsorbed 1-propanethiol is completely decomposed to form carbide, for example. The carbon 

peak could result from adsorption of adventitious carbon contaminants from the UHV chamber.  

 

Figure 4.8 Ground and transition state structures for 1-propanethiol adsorption on the top sp2 Ga 
atom a)-c) and edge sp2 Ga atom d)-f). a), d) Dative bonding state. b), e) Transition state for the 
H dissociation reaction. c), f) Ga-thiolate after H dissociation. The numbers in Å indicate the 
corresponding bond distances. The numbers below the models represent adsorption energies in 
units of eV. Green, orange, yellow, black, and white spheres represent P, Ga, S, C, and H atoms, 
respectively.  

 
4.3.3 Density functional theory (DFT) calculations 

The adsorption structures and decomposition energetics of 1-propanethiol on the Ga-rich 

GaP(001)(2×4) mixed-dimer surface are investigated using the density functional theory (DFT) 

calculations. When a short alkane chain thiol molecule adsorbs onto a III-V semiconductor 

surface, molecular adsorption via the S-metal atom dative bond or H dissociative adsorption are 

proposed as the first step by several experimental and theoretical reports.[80, 93, 112, 118] 

Depending on the temperature and the H-S dissociation activation energy, the H dissociation by 
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an appropriate neighboring H acceptor is carried out simultaneously (dissociative 

adsorption)[118] or serially.[80]  

We start with two dative bonding states as shown in Figures 4.8a and d followed by the 

most probable H dissociation pathways. In the first pathway (reaction 1; black lines in Figure 4.9), 

the 1-propanethiol bound to the top Ga atom dissociates and forms an H-P and a propanethiolate-

Ga species. Since the P atom, which plays the role of a Lewis base, is located next to the top Ga 

atom, this pathway has relatively a low activation energy. On the other hand, in reaction 2, the H 

atom of the thiol group moves to the neighboring sp3 Ga atom, which finally forms a Ga-H-Ga 

bridge structure (reaction 2; red lines in Figure 4.9). The pathway in reaction 2 requires a higher 

activation energy but produces a lower product energy. Thus, reaction 1 is kinetically favorable, 

and reaction 2 is thermodynamically favorable. Simulation of the adsorption and decomposition 

reactions of 1-propanethiol on the edge sp2 Ga, which is located closer to the top Ga atom than 

the 1st layer P atom (in Figure 4.1), is excluded here since it is similar to reaction 2 except for a 

slight variation in the absolute energy values. That is, the activation and product energies for the 

H dissociation reaction of the 1-propanethiol adsorbed on that Ga atom are + 0.943 and ‒ 1.202, 

respectively.  

 

Figure 4.9 Potential energy versus reaction profile plots for the 1-propanethiol adsorption and 
dissociation pathways on the top (black) and edge (red) sp2 Ga. Numbers in parenthesis refer to 
the adsorption energy of the corresponding structure in eV. 
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This result is supported by previous reports.[80, 119-121] Table 4.2 summarizes the 

energies of the transition and product states of various molecules and surfaces. Although there are 

some variations in the absolute values, the trends are the same throughout all of the systems. That is, 

the activation energy of reaction 2 is larger than that of reaction 1, but the ground state energy of the 

product in reaction 2 is lower than that of reaction 1. Thus, reaction 1 is kinetically more favorable 

but thermodynamically less favorable than reaction 2. 

System Reaction 1 
Ea1/Eads1 

Reaction 2 
Ea2/Eads2 

Tool Reference 

PH3 
In-rich InP(001) 

0.993 / ‒ 0.724 1.36 / ‒ 0.885 Cluster model 
B3LYP/D95** 

[119, 120] 

AsH3 

Ga-rich GaAs(001) 
0.716 / ‒ 0.928 1.03 / ‒ 0.984 Cluster model 

PW91/SD-ECP 
[121] 

1-propanethiol 
Ga-rich GaAs(001) 

0.468 / ‒ 1.24  Cluster model 
B3LYP/LANL2DZ 

[80] 

1-propanethiol 
Ga-rich GaP(001) 

0.497 / ‒ 1.16 0.986 / ‒ 1.31 Cluster model 
B3LYP/LACVP** 

Current 
result 

Table 4.2 Comparison of the simulation details. Ea1 and Ea2 represent the activation energies of 
the H dissociation reactions of the corresponding molecule adsorbed on the sp2 metal atom of the 
group III – group V mixed-dimer and the group III – group III metal-dimer of the corresponding 
surfaces, respectively. Eads1 and Eads2 represent the adsorption energies of the products of the two 
H dissociation reactions. Unit of the displayed energy is eV. 

 
Unfortunately, to the best of my knowledge, STM is not capable of directly observing 

complete H dissociation pathways, including transition states, since the H atom is too light and 

small to detect. We discovered from STM images taken at 130 K that feature A is located above the 

edge sp2 Ga atom in the (2×4) unit cell. Thus, MA1 and HD1 in Figure 4.8 are excluded from 

consideration. Hence, we consider three models, which are MA2, HD2, and HD3 in Figure 4.8, and 

4.10 to represent the feature A in Figure 4.4a. We exclude the HD3 model in spite of its higher 

stability (lowest adsorption energy) since we do not observe an STM image which supports the 

formation of the H-P bond.  

We also cannot detect any STM feature induced by the Ga-H-Ga bond, which is not 

because there is no Ga-H-Ga bond but because H is again very difficult to detect using STM. The 

way researchers typically detect H is somewhat indirect. That is, one detects suppressed contrast in 

STM images after forming an H-surface atom bond where the surface atom originally looked 
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bright.[108-110] However, since the Ga-Ga dimer in the GaP(001)(2×4) surface looks dark in the 

filled-state STM images, adsorption of an H atom on the Ga-Ga dimer is not expected to change the 

STM contrast. A previous temperature programmed desorption spectroscopy (TPD or TDS) study 

proposed that the H atom of the thiol group of short chained alkanethiol molecules dissociates on 

the metal-rich III-V semioconductor surface below 100 K. Thus, it is likely that the observed feature 

A is assigned to the HD2-c3 state.[112] 

A new question then arises; why is reaction 2 preferred over reaction 1 despite the 

significant activation energy? A similar issue was discussed in the PH3/InP(001) by Woo et al.[120] 

They explained this issue with reference to diffusion of PH2 and H species. The H dissociation of 

H-PH2 happens on the P-In dimer in a similar manner to reaction 1; and then the H and PH2 species 

move to the thermodynamically more stable In-In dimer site to form an In-H-In bridge structure and 

an In-PH2 adduct similar to the HD2 state. 

 

Figure 4.10 a)-g) Optimized ground state structures of the 1-propanethiol/GaP(001)(2×4) surface. 
a)-d) H dissociation states. b)-d) Indicate structures with different conformation with the same 
bond configuration. e), f) Bridged S states. g) Propane desorption state. Green, orange, yellow, 
grey, and white spheres represent P, Ga, S, C, and H atoms, respectively. The numbers below the 
models represent the corresponding adsorption energies in eV. 
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We also observed a change in the STM feature from A to A’ when we scanned the 

surface at bias voltages of ‒ 3.5 V ~ ‒ 4.5 V, as shown in Figures 4.4a and b (temperature 

maintained at 130 K). We propose that the change in the STM images is associated with a 

conformation change among the HD2 states. Figures 4.10b, c, and d show three different 

conformations with the same bond configuration. HD2-c2 and HD2-c3 explain features A’ and A in 

the STM images especially well. The energy difference among the three conformations is within 75 

meV, which could be overcome by the tunneling of electrons. In addition, the large protrusion of 

feature B, which maintains its center location as the same as that of feature A’, could be explained 

by switching among the three conformations, such as HD2-c1, 2, and 3, by increased temperature 

and/or tunneling of electrons. The STM aspect of feature B is maintained from RT up to 200 ˚C. 

We have observed that all five organosulfur molecules have similar STM features at liquid 

nitrogen cryogenic temperature (Figure 4.4a and Figure 4.6). Although there is a little variation in 

the size and shape of protrusions which are induced by the number of S atoms, all five molecules 

are proposed to be in a flat-lying geometry and located on top of the edge sp2 Ga atoms. These 

observations are supported by previous STM studies. [122] When an alkanethiol molecule that is 

bonded through the S-surface atom has a flat-lying structure, the S atom displays bright contrast but 

the other alkyl chain is not detected. In addition, the brightness is not as bright as one would expect 

since tunneling electrons flow through only the S-surface atom bond. On the other hand, if a thiol 

molecule is in an upright geometry such as HD2-c1 in Figure 4.10b, tunneling electrons flow along 

the entire molecular backbone such that the molecule appears much brighter than its counterpart in 

the constant current STM image. In addition, the location of feature A is consistent with the S atom 

of structure HD2-c3.  

Now we move our focus from STM feature B (HD2-c3) to features C and D in Figure 4.4d. 

That is, the decomposition process of the thiolate adsorbate (feature B, HD2-c1 through c3) over 

200 ˚C is discussed. At higher temperatures we saw two features from the STM images; an intense 

protrusion on the center line of the (2×4) unit cell (feature C) and a less intense protrusion near the 

edge sp2 Ga atom (feature D) as shown in Figure 4.4d. Feature D is likely attributed to a bridged S 

configuration between the sp3 Ga and edge sp2 Ga atoms (Ga-S-Ga) based on the location and 

height of the protrusion. In addition, observation of the lowest binding energy component (D in 

Figure 4.7b) at 300 ˚C is consistent with the Ga-S-Ga feature.  
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Interpretation of Feature C in Figure 4.4d is somewhat controversial. Since the feature is 

located nearly on the center line of the (2×4) unit cell, it is likely that Feature C could be assigned as 

a propanethiolate or propyl bound to the first layer P (HD1 in Figure 4.8c) or the top Ga (BS1 or 

BS2 in Figure 4.10). However, since we observe 1) the S-dissociation product, such as the Ga-S-Ga 

configuration, and 2) no variation of the P 2p core-level spectrum from RT to 500 ˚C, we propose 

that BS1 in Figure 4.10e is associated with Feature C. However, the adsorption energy based on 

DFT calculations could not completely explain this assignment since the BS1 state is not the most 

stable structure among the structures which are composed of propyl-X, H-X, and Ga-S-Ga (X = Ga 

or P) species. For instance the most stable structure is BS2 in Figure 4.10f. However, this could be 

explained by the possibility that both structures, BS1 and BS2, are not of the appropriate geometry 

for Feature C because the surface H atom desorbs at temperatures lower than 300 ˚C, based on 

previous literature results[87]. Further calculations for the structures excluding H- species are 

underway to explain this inconsistency.   

Finally, we observed an S-induced (1×1) reconstruction (Feature E) in the STM images, as 

shown in Figure 4.5, once the sample was annealed at 500 ˚C. The locations of the bright 

protrusions in the (1×1) reconstruction are exactly matched by those of the third layer P atoms. 

Thus, we propose that these bright protrusions stem from the replacement of the third layer P by S. 

The (1×1) reconstruction areas are formed by removal of the first two layer atoms, such as 9 Ga and 

1 P atoms. This is supported by the relocation or desorption of the Ga and P atoms which may 

accompany hydrocarbon desorption. Thus, the accumulation of featureless protrusions (Feature F) 

in Figure 4.5 can explain the relocation of Ga and P atoms. Lastly, the DES state in Figure 4.10g 

has a low enough energy to drive desorption of the propane molecule, leaving the S atom on the 

surface. Thus, the surface-bridged S (Ga-S-Ga) formation reaction from 1-propanethiol on the 

GaP(001)(2×4) surface is an energetically favorable process. 
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3.4 Conclusion 

In this chapter we studied the adsorption geometry and decomposition energetics of 1-

propanethiol adsorbed on the Ga-rich GaP(001)(2×4) surface at the atomic level using STM, XPS, 

and DFT calculations. The following summarizes what we discovered both experimentally and 

theoretically under various temperature regimes: 

݁ݐ݈݄ܽ݅ݐ݁݊ܽݎܲ െ ሺܽሻ	ௗܽܩ  ܽܩ െ ܪ െ  ,ௗሺܽሻ                  130 K ~ 200 ˚Cܽܩ

݈ݕݎܲ െ ௧ሺܽሻܽܩ  ܽܩ െ ܵ െ  ,ௗሺܽሻ                                           300 ˚Cܽܩ

ܵሺ1 ൈ 1ሻ	ሺܽሻ  ܲ, ,ܽܩ ܵ,  ,ሺܽሻ                                   500 ˚C	݊݅ݐܽ݃݁ݎ݃݃ܽ	ܥ	ݎ/݀݊ܽ

where (a) and (g) imply adsorbate and gaseous states, respectively.  We also investigated the 

adsorption geometries of other organosulfur molecules including 1-octanethiol, 1-pentanethiol, 

dipropyl disulfide, and 1, 2-ethanedithiol on the same surface at liquid nitrogen cryogenic 

temperatures. We discovered all the molecules have a flat-lying geometry, and their S atoms are 

located on the edge sp2 Ga atoms. This study provides the detailed molecular structures of the 

thermal decomposition pathways of such species based on molecule-resolved STM images and 

DFT simulations. We expect this report to be of significant benefit to science and other technologies 

based on sub-molecular level understanding. 
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Summary 

The role of group III-V compound semiconductors in the semiconductor microelectronics 

industry has become significant since conventional group IV semiconductor materials are limited 

in performance in many applications, especially areas that require high power, high speed, and 

advanced optoelectronic properties in smaller device packages. The desirable electronic and 

optoelectronic properties of group III-V semiconductors have been proposed as solution to the 

limitations of group IV semiconductors. However, significant hurdles in applying III-V 

technologies to industrial areas still exist due to several undesirable properties of III-V 

semiconductors. One undesirable feature of many III-V materials is inferior surface passivation 

when compared with that of their group IV semiconductor counterparts. For example, one of the 

best ways to passivate the surface of GaAs to date is by forming epitaxial AlGaAs film on top of 

the GaAs, which is unfavorable in industry due to the relatively high cost of epitaxial processes. 

In addition to the surface passivation issue, there are many ways in which the chemical, electrical, 

and mechanical properties of the surfaces of III-V semiconductors might be developed, since their 

bulk properties are inherently excellent. Hence, major research and development is still required 

before these technologies can be successfully integrated. 

It may be ideal and desirable to understand the relevant science of a material before 

application. At the very least, the author believes that science based on understanding has to be 

carried out in parallel with the development of a technology. Understanding the physics and 

chemistry of a material starts from its constitutional units such as atoms and molecules. Therefore, 

we focus on elucidating the atomic-level surface science of III-V materials in this dissertation. 

Regarding surfaces of III-V semiconductors, three systems have drawn the author’s attention; 

inorganic epitaxial film growth, reaction with water, and organic functionalization/passivation. 

For better understanding of these systems, fundamental studies of interactions between the 

adsorbate molecules/atoms and the surface atoms were focused. We investigated the structures, 

chemistry, mechanisms, energetics, and electronics of such systems using several powerful 

surface analysis techniques such as scanning tunneling microscopy, X-ray photoelectron 

spectroscopy, and density functional theory calculations. The following summarizes the three 

research topics in this dissertation. 



 

 

77
GaP is emerging as an important semiconductor for solid-state optoelectronics and 

photoelectrochemistry. The need to better understand the reaction of water on its surface is very 

significant since water is involved in almost every step of fabrication and processing. In addition, 

photo-induced conversion reactions of abundant and harmful carbon dioxide to valuable methanol 

in an aqueous solution was demonstrated previously,[7] but the water/GaP interface is not 

thoroughly understood. We explored all reasonable ground states involved in most of the possible 

adsorption and decomposition pathways in a single water molecule oxidation on the 

GaP(001)(2×4) surface using density functional theory calculations. Thus, our research elucidates 

structural and energetic information of every step in the water-induced GaP oxidation reactions, 

at the atomic level, in great detail. These results provide guidelines for experiments and theory to 

validate the key steps and to obtain kinetic data for modeling the oxidation processes. 

Organosulfurs are very intriguing and useful molecules in that they have been researched 

significantly, especially with regard to immobilization of bio or chemical molecules or formation 

of self-assembly monolayers on metal and semiconductor surfaces. The organosulfur molecules 

play a role in not only chemical functionalization but also as electrical passivation materials on 

group III-V semiconductor surfaces. As the size of semiconductor-based devices is smaller, and 

nano and sub-nano fabrication technology is becoming significant, understanding the atomic level 

adsorption structure and their energetics are important. We elucidated adsorption geometries of 1-

propanethiol as a function of annealing temperature. We obtained, for the first time, real-space 

single-molecule-resolved STM images of various organosulfur molecules on the Ga-rich 

GaP(001)(2×4) mixed-dimer surface at various temperatures. Adsorption geometries, chemistry, 

and energetics are thoroughly analyzed in collaboration with XPS and DFT calculations. Atomic-

level structural and energetics information with experimental demonstration provides a clearer 

understanding of the organosulfur surface chemistry on the GaP surface. 

Zn3P2 is a promising semiconductor for inexpensive and efficient solar cells made from 

earth-abundant materials. A technology for growing high-quality, crystalline Zn3P2 films using a 

GaAs substrate and the compound-source molecular beam epitaxy technique was demonstrated 

previously.[28] Before these technologies can develop, though, it will be necessary to develop an 

atomic-level understanding of this emerging material. We elucidated the chemistry, structure, and 

electronics of the surface and interface of the Zn3P2/GaAs(001) at the atomic level. We 

discovered that a P-rich amorphous layer covers the crystalline Zn3P2 film during and after 
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growth. We also found that more accurate structural and electronic properties of the GaP 

interface between Zn3P2 and GaAs, which had been anticipated in previous literature but has not 

been thoroughly characterized before. The information that our research provides is important 

and useful for the design of additional fabrication and processing steps in order to apply this 

material to a real device. 

The major tool in this dissertation is a high-resolution, ultra-high vacuum scanning 

tunneling microscope. This tool requires significant commitment and patience to achieve a sub-

molecular level resolution since high-resolution operation depends on the atomic-level sharpness 

of the apex of an STM probe, which cannot be controlled using known technology to date. 

Moreover, scanning the Ga-rich GaP or GaAs surface with large bias voltages often gives rise to 

probe contamination due to the low melting point of Ga (29.8 ˚C). Thus, successful imaging of 

single-molecule features on such surfaces is very challenging. However, STM is a unique and 

powerful tool for obtaining three dimensional and real-space views of a single atom/molecule on 

a solid surface. We expect the structural, chemical, electronic, and energetic information about 

various organic/inorganic adsorbates to be a useful reference for III-V semiconductor surface 

science research.  
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Appendix 

 

Figure A.1 a) SolidWorks drawing and b) picture of the high vacuum (HV) chambers equipped 
with Omicron variable-temperature (VT) scanning tunneling microscope (STM) with a beam-
deflection atomic force microscope (AFM) option in 249 Watson. The system was fabricated by a 
previous Atwater group member, Tao Feng. Picture b) was taken in April, 2008 when Seokmin 
Jeon became maintenance guru of the system. Inset in b) displays base pressure of the system in 
torr. 
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Figure A.2 a) SolidWorks drawing, and b) picture of the ultra-high vacuum (UHV) chambers 
equipped with UHV sample preparation facilities including an Omicron PBN heater (max. 950 
˚C), an RBD ion gun, an Accufiber pyrometer (450 ~ 1200 ˚C), and Omicron VT STM with a 
beam-deflection AFM option in 249 Watson. The system was designed and assembled by 
Seokmin Jeon. Picture b) was taken in November, 2009. 
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Figure A.3 a) SolidWorks drawing, and b) picture of the UHV chambers equipped with Herzan 
active isolators, a Newport custom optical table, two custom effusion cells (Au and Cu loaded), a 
commercial effusion cell (Zn3P2 loaded), a custom atomic hydrogen source, a Micro-Epsilon 
pyrometer (150 ~ 900 ˚C), an Omicron e-beam tip heater, UHV sample preparation facilities 
(details described in Figure A.2 caption), three gas dosers with flushing lines located on the load-
lock, preparation, and analysis chambers (up to three liquid and two pressurized gas sources can 
be loaded), and an Omicron VT STM (version XA purchased in October, 2011) with a Qplus 
AFM option in 223 Watson. The entire system was designed and assembled by Seokmin Jeon. 
Inset in b) displays base pressures of the analysis chamber (top), preparation chambers (center 
and bottom) in torr. Top and bottom pressure were measured by Varian extended-range UHV 
nude ion gauges (UHV-24p). Picture b) was taken in October, 2013. 
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Figure A.4 Peak-to-peak velocity versus frequency plots measured on two different systems; a) 
the system described in Figure A.2 located in 249 Watson and b) the system described in Figure 
A.3 located in 223 Watson. c) rule-of-thumb noise specifications supplied by Omicron. The data 
were collected using PCI accelerometers along the floor normal direction. 

 

 

 

 

 

 

 

 

 


