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Abstract

This thesis presents a new approach for the numerical solution of three-dimensional

problems in elastodynamics. The new methodology, which is based on a recently

introduced Fourier continuation (FC) algorithm for the solution of Partial Differential

Equations on the basis of accurate Fourier expansions of possibly non-periodic functions,

enables fast, high-order solutions of the time-dependent elastic wave equation in a

nearly dispersionless manner, and it requires use of CFL constraints that scale only

linearly with spatial discretizations. A new FC operator is introduced to treat Neumann

and traction boundary conditions, and a block-decomposed (sub-patch) overset strategy

is presented for implementation of general, complex geometries in distributed-memory

parallel computing environments. Our treatment of the elastic wave equation, which

is formulated as a complex system of variable-coefficient PDEs that includes possibly

heterogeneous and spatially varying material constants, represents the first fully-

realized three-dimensional extension of FC-based solvers to date. Challenges for

three-dimensional elastodynamics simulations such as treatment of corners and edges

in three-dimensional geometries, the existence of variable coefficients arising from

physical configurations and/or use of curvilinear coordinate systems and treatment

of boundary conditions, are all addressed. The broad applicability of our new FC

elasticity solver is demonstrated through application to realistic problems concerning

seismic wave motion on three-dimensional topographies as well as applications to

non-destructive evaluation where, for the first time, we present three-dimensional

simulations for comparison to experimental studies of guided-wave scattering by

through-thickness holes in thin plates.
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Chapter 1. Introduction 1

Chapter 1

Introduction

I’m pickin’ up good vibrations... she’s giving
me excitations...

- Brian Wilson and
the Beach Boys

The energy introduced by a disturbance in a medium propagates, as traveling waves,

in a phenomenon that is familiar from everyday life, from seismic tremors in the earth

to ripples in a pond, and even the stylus that follows the spiral groove in a vinyl music

record—picking up these waves in the form of vibrations that travel along a metal

band at the end of the tone arm and that eventually convert to electrical signals that

are carried to an amplifier. The particular characteristics and information carried by

wave propagation—which may vary from medium to medium—can be quite complex,

having long been part of a great area of interest to theoreticians and experimentalists

alike, and having led to numerous mathematical models for propagation and scattering

of waves through gases, liquids, solids and free space [81, 26, 36, 39, 42, 61, 76].

Mechanical waves through a solid medium and, in particular, an elastic medium,

are the specific concern of this thesis and cover many interesting propagation phe-

nomena ranging in application from railroad rails to the seismic waves induced by

earthquakes which, for example, can travel thousands of miles all the while reflecting

and refracting through variations in the Earth’s surface and its underground disconti-

nuities. Consequently, the subsequent tools that have been developed from extensive
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studies of elastic wave motion vary widely in applicability to many academic and

industrial problems, including the field of ultrasonics, which involves the introduction

of low energy, high-frequency wave packets into a material to determine fundamental

properties (such as elastic constants) or to detect particular defects (such as cracks or

holes)—all by measuring and analyzing the propagation, reflection and attenuation of

these pulses [53, 67, 11, 12, 70, 34]. (Further details will be provided in the context

of the specific material science problems considered in Chapter 4.) An excellent pair

of historical sketches and surveys of a great many other applications of elastic wave

propagation can be found in [3] and the classic text of [39].

1.1 Numerical PDE solvers for elastodynamics

The aforementioned elastic problems and associated wave motion, which are governed

by the equations reviewed in Chapter 2, present a host of challenges and difficulties

from a computational standpoint: the accurate, stable and dispersionless modeling and

computation of numerically stiff three-dimensional physical elastic systems—including

the treatment of curved stress-free surfaces, geometric singularities from corners and

edges, complex geometries and manifold other intricacies—is certainly considered

to be a highly challenging problem in computational science. These complexities

have motivated the development of a plethora of numerical models ranging widely in

accuracy and stability. Some well-established methods, such as discontinuous Galerkin

methods [46, 29, 47, 27] (developed for homogeneous materials where Lamé material

parameters λ(x, y, z) = λ0 and µ(x, y, z) = µ0 are constant) and the (pseudo)spectral-

element methods [32, 49], have been applied to the equations of elasticity with

arbitrary accuracy and with a sufficient treatment of complex geometries through

the use of unstructured grids. These methods, however, can have very restrictive

spectral radii—the timestep can scale quadratically or cubically with the spatial

mesh sizes. Additionally, to retain high-order approximations, the construction of

computational domains must be treated with great care in possibly labor intensive
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and un-automated manners. Alternative methods, such as extant finite difference

or finite element methods, both of which have been invoked to solve problems in

elasticity [7, 50, 72, 59] while still carrying CFL conditions that scale linearly, have

been well-known for a long time [60] to suffer from high numerical dispersion: errors

in the phase of a solution can accumulate over subsequent periods of the propagating

wave-train, demanding ever increasing numbers of points per wavelength to resolve,

within a given accuracy, increasingly larger problem sizes.

The Fourier-continuation based solvers considered in this work, which form the

foundation of the new numerical methodology we introduce in Chapter 3 for elastody-

namics problems, address all of these issues by extending Fourier series-based methods

to general, non-periodic domains—allowing for a less restrictive CFL condition as well

as a computation of derivatives in domain interiors that is spectrally accurate and

enables the method to be nearly dispersionless. As will also be demonstrated, this class

of solvers can be applied to arbitrary geometries and spatially varying (heterogeneous)

media while retaining high-order accuracy. Additionally, the advent and accessibility

of computing clusters makes possible a parallel implementation through use of Message

Passing Interfaces (MPI) by sharing the work and memory of solving problems in

large domains across many processors in a distributed computing environment—the

Fourier continuation framework herein lends itself naturally to implementation in such

computer hardware.

1.2 The elasticity solver developed in this thesis

This thesis represents a significant extension of the work by [4, 20, 54, 30, 21, 15, 17]

which, in the brief history of Fourier-continuation (FC) differentiation algorithms for

solution of Partial Differential Equations, introduces for the first time a full-fledged

three-dimensional solver that can be applied to arbitrary geometries for a complex

system of PDEs. In an effort to realize the potential of the Fourier continuation method

promised by prior successful tests for both linear and non-linear problems, this work
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details our development and parallel computing implementation for a three-dimensional

model of a variable coefficient elastic wave equation including possibly heterogeneous

materials (that is, arbitrarily varying material parameters). The challenges of the

elastic Cauchy-Navier equation formulation we consider in this work—notably among

them the treatment of complex geometries including corners and edges, the enforcement

of physical surface boundary conditions by means of a modified FC operator introduced

in Section 3.1.2, and a number of stability concerns—are all addressed as part of this

work and are summarized within the general overview in what follows:

Chapter 2 reviews the physics and governing mathematics of elasticity theory, the

displacement formulation of the elastic wave equation, and relevant physical

boundary conditions. Guided wave theory, where wave motion is directed by

what is known as a traction-free boundary condition, will also be discussed briefly

to provide some context for the material science and seismology applications

considered in Chapter 4. A scalar model for the out-of-plane displacement in

some of the non-destructive evaluation problems considered is also presented.

This work, which is based on use of the high-order integral equation solver

described in Appendix B, was published in [53] and is summarized briefly in

Section 4.2.

Chapter 3 extends the Fourier continuation methodology to general, arbitrary over-

lapping curvilinear geometries in order to accommodate the geometric com-

plexities that include engineering detail (e.g. the real experimental setups

of defects in 3D plates modeled in Section 4.2.3) while retaining the spatial

high-order accuracy and stability of FC, and to enable implementation in a

fully parallel computational infrastructure. A description of the accelerated,

FC(Gram) method is presented in full detail, and it is extended to introduce, in

Section 3.1.2, a modified FC(Gram) operator suitable for Neumann and traction

boundary conditions as part of the general treatment prescribed in Section 3.3.3

for traction boundary conditions. In Section 3.2, a variable coefficient, general
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coordinate version of the elasticity equations and traction boundary conditions,

which contain 189 and 21 spatial derivative terms, respectively, is formulated

in such a way as to enable treatment of general geometries by means of overset

patches—allowing for explicit interpolation of high-order of accuracy among

possibly hundreds of curvilinear sub-patches. These sub-patches are subsequently

assigned to computing processors by a simple load balancing algorithm, presented

in Section 3.2.3.3, for efficient implementation in distributed-memory parallel

environments. Stability issues and treatments of absorbing boundary conditions

(to enable approximation of unbounded domains) are additionally addressed in

this chapter.

Chapter 4 demonstrates the new solver in a variety of scientific and engineering

contexts relevant to problems in materials science and seismology. In Section 4.2,

we will present, for the first time, a thorough comparison between experimental

scattering patterns of guided ultrasonic quasi-Rayleigh waves in plates with

through-thickness defects and fully three-dimensional elastodynamics numerical

simulations. Special consideration will be given to the geometry construction of

the respective experimental setups and, in particular, corners and edges will be

treated by means of a transfinite interpolation (Appendix A) and the overset

strategy (Section 3.2.3).
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Chapter 2

The mathematical and physical
framework

The mathematics of continuum mechanics concerns the description of the mechanical

behavior of materials (e.g. solids, fluids, gases) under the action of forces and a

fundamental assumption that the respective material is modeled as a continuum. For

a solid material, external forces result in an internal restoring force (stress) given by

the (symmetric) stress tensor

σ =


σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 . (2.1)

The motion of a point in a material sitting at (x, y, z)T for a certain initial time t = t0

can be described by its displacement to a new position (x̃(x, y, z, t0 + ∆t), ỹ(x, y, z, t0 +

∆t, z̃(x, y, z, t0 + ∆t))T by means of the displacement vector (u, v, w)T :


x̃

ỹ

z̃

 =


x

y

z

+


u(x, y, z, t)

v(x, y, z, t)

w(x, y, z, t)

 . (2.2)
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Using the notation fx = ∂f/∂x, fxx = ∂2f/∂x2 for derivatives, the gradient tensor

∇u of the displacement vector u = (u, v, w)T is given by

∇u =


ux uy uz

vx vy vz

wx wy wx

 . (2.3)

The relative deformation induced by stresses given by the tensor (2.1) can be described

using the Green-Lagrange strain tensor E, which is related to the displacement

gradient (2.3) by the expression

E =
1

2
[∇u + (∇u)T +∇u · (∇u)T ]. (2.4)

Materials elastic in nature, that is, that return to their original shape after deformation,

are generally governed by a non-linear constitutive law describing the relationship

between the stress σ given in (2.1) and the strain tensor E given in (2.4). (Other

formulations, such as for hyperelastic materials, derive the stress-strain relationship

from an energy density function.)

2.1 Linear elasticity

This thesis is concerned with linear elasticity: small elastic deformations that can be

accurately described under linearization of the general non-linear laws that govern

elastic bodies. Under such assumptions the third term in the strain tensor (2.4) can be

neglected and an approximate deformation can be defined by the infinitesimal strain

tensor ε given by
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ε =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 =


ux

1

2

(
uy + vx

) 1

2
(uz + wx)

1

2

(
vx + uy

)
vy

1

2

(
vz + wy

)
1

2
(wx + uz)

1

2

(
wy + vz

)
wz

 . (2.5)

Linear elasticity further provides a linear relationship, known as Hooke’s law,

between the stress σ and the infinitesimal strain tensor ε. For a linear isotropic

material in the framework of this theory, there is no preferred direction in Hooke’s

law and the components of σ are linearly related to components of ε through certain

material constants λ and µ (known as Lamé parameters); in such cases Hooke’s law

takes the form

σij = λδijεkk + 2µεij, (2.6)

where δij is the Kronecker delta given by a value of δij = 1 when i = j and δij = 0

when i 6= j.

2.1.1 The Cauchy-Navier equations for displacement

For an isotropic linear elastic solid contained in a domain Ω, the momentum-balance

equation in Cartesian coordinates, together with (2.6), becomes the system of Partial

Differential Equations given by [79]

ρutt =
[
(λ+ 2µ)ux + λ(vy + wz)

]
x

+
[
µ(vx + uy)

]
y

+
[
µ(wx + uy)

]
z

+ f1,

ρvtt =
[
(λ+ 2µ)vy + λ(ux + wz)

]
y

+
[
µ(vx + uy)

]
x

+
[
µ(vz + wy)

]
z

+ f2,

ρwtt =
[
(λ+ 2µ)wz + λ(ux + vy)

]
z

+
[
µ(wx + uz)

]
x

+
[
µ(wy + vz)

]
y

+ f3,

(2.7)

where f = f(x, y, z, t) is a vector of body forces. The material properties are given

by the Lamé parameters µ = µ(x, y, z), λ = λ(x, y, z) and the density ρ = ρ(x, y, z),

which are real-valued positive functions of space. For a homogeneous solid, where
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λ(x, y, z) = λ and µ(x, y, z) = µ are constant, Equation (2.7) can be written as

ρü = µ∇2u + (λ+ µ)∇∇ · u + f , (x, y, z) ∈ Ω, (2.8)

where u = (u, v, w)T .

The initial displacement and velocities at an initial time t = t0 must be prescribed:

u(x, y, z, t0) = a1(x, y, z), ut(x, y, z, t0) = b1(x, y, z),

v(x, y, z, t0) = a2(x, y, z), vt(x, y, z, t0) = b2(x, y, z),

w(x, y, z, t0) = a3(x, y, z), wt(x, y, z, t0) = b3(x, y, z).

(2.9)

Boundary conditions must also be given, as discussed in the following section.

2.1.2 Boundary conditions

On the boundary ∂Ω of a solid geometry, different forms of data can be imposed for

the elastic wave equation to model physical configurations. The traction boundary

condition, which prescribes the normal stresses on the solid boundary, is given by
σ11 σ21 σ31

σ12 σ22 σ32

σ13 σ23 σ33



n1

n2

n3

 =


d1(x, y, z, t)

d2(x, y, z, t)

d3(x, y, z, t)

 on ∂Ω, (2.10)

where [n1, n2, n3]T is the inward unit normal on the surface and d1, d2, d3 are functions

of the spatial coordinates and time. In terms of displacements, the traction boundary

conditions can be made to read(
(2µ+ λ)ux + λ(vy + wz)

)
n1 + µ

(
vx + uy

)
n2 + µ

(
wx + uz

)
n3 = d1(x, y, z, t),

µ
(
vx + uy

)
n1 +

(
(2µ+ λ)vy + λ(ux + wz)

)
n2 + µ

(
wy + vz

)
n3 = d2(x, y, z, t),

µ
(
wx + uz

)
n1 + µ

(
wy + vz

)
n2 +

(
(2µ+ λ)wz + λ(ux + vy)

)
n3 = d3(x, y, z, t).

(2.11)
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Many applications—and in particular, those in this work—involve traction-free (or free-

surface) boundary conditions. These are characterized by vanishing normal stresses

on the surface of the domain, i.e. d1(x, y, z, t), d2(x, y, z, t), d3(x, y, z, t) ≡ 0.

A Dirichlet boundary condition can also be imposed as data on the displacements

u, v, w at a boundary as

u = c1(x, y, z, t), v = c2(x, y, z, t), w = c3(x, y, z, t) on ∂Ω. (2.12)

It is often necessary to additionally utilize techniques that enable simulation of an

actually infinite medium by means of a bounded computational domain. In this thesis

this is accomplished by resorting to use of certain sponge regions (absorbing layers)

surrounding the actual physical domain. In the sponge layers we employ, both the

computational domain is stretched outside the region of interest and a corresponding

numerical dissipation term is added to the system of PDEs to dampen the amplitude

of the displacements. Details regarding these are provided in Section 3.3.4.

2.2 Longitudinal and transverse waves

A Helmholtz decomposition of the displacement vector (u, v, w)T into a scalar potential

φ(x, y, z, t) and a vector potential ψ(x, y, z, t) in the form

(u, v, w)T = ∇φ+∇×ψ (2.13)

yields from Equation (2.8), for constant material parameters λ(x, y, z) = λ0 and

µ(x, y, z) = µ0, the expression given by

ρ
∂2

∂t2
[∇φ+∇×ψ] = [µ∇2[∇φ+∇×ψ] + (λ+ µ)∇∇ · [∇φ+∇×ψ] + f . (2.14)
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Noting the fact that ∇ · ∇φ = ∇2φ and ∇ · ∇ × ψ = 0 and in absence of the body

forces, a rearrangement of this equation yields

∇[(λ+ 2µ)∇2φ− ρφtt] +∇× [µ∇2ψ − ρψtt] = 0. (2.15)

Clearly, this equation is satisfied provided a corresponding pair of wave equations,

namely, the scalar wave equation

φtt = c2
L∇2φ, (2.16)

with the longitudinal wave speed

cL =

√
λ+ 2µ

ρ
, (2.17)

and the vector wave equation

ψtt = c2
T∇2ψ, (2.18)

with the transverse (shear) wave speed

cT =

√
µ

ρ
(2.19)

are satisfied. The wave speeds (2.17) and (2.19) (which only depend on the material

parameters ρ, λ and µ) satisfy the relation

cL
cT

=

√
2(1− ν)

1− 2ν
, (2.20)

where ν =
λ

2(λ+ µ)
denotes the material’s Poisson’s ratio.

The solutions φ to the scalar wave equation (2.16) are known as P -waves (or

pressure waves, or longitudinal waves): they involve wave motion of particles in the

direction of wave propagation, perpendicular to the wavefront. Solutions ψ to the
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vector wave equation (2.18) are commonly known as S -waves (or shear waves, or

transverse waves) whose motion is contained in any direction of a plane normal to

the direction of propagation. Motion of S-waves can be horizontally (SH -waves) or

vertically (SV -waves) polarized; for example, in the aluminum plates considered in

this thesis, an SH -wave travels within the plane of the plate and an SV -wave travels

through its thickness. For a more extensive review of the many sorts of waves, we

refer to the textbooks [3, 42, 39, 36, 76].

2.3 Guided-wave theory

The bulk waves that travel through the interior of a solid are characteristically non-

dispersive, that is, cL and cT are functions of ρ, λ and µ, only: they do not depend on

frequency. However, mechanical waves can also propagate along an interface between

media of different acoustic impedances: these are known as surface waves. When one

of the two media is a vacuum, surface waves are simply guided by vanishing stress

(traction-free) boundary conditions. Unlike bulk waves, these waves are dispersive in

nature (wave speed is a function of frequency) and exhibit an infinite number of wave

modes.

In seismology, surface waves are commonly categorized as either Love waves or

Rayleigh waves. Love waves, which were predicted mathematically by A. E. H. Love,

are SH -waves guided by an elastic layer (an elastic half space bordered by a vacuum)

and decay within the depth of the layer. These waves cause the horizontal shifting

observed during an earthquake and travel, for typical homogeneous elastic media, at a

speed that is around 90% of the transverse wave speed cT .

Rayleigh waves, which were predicted by Lord Rayleigh in 1885, carry both a

longitudinal and transverse motion along the surface of a semi-infinite elastic solid

and are slightly slower than Love waves. Ever-present in earthquakes, these waves

can also be produced by piezo-electric transduction or by a localized impact, and

they are therefore used to detect material defects in a non-destructive manner. When
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Figure 2.1: A thin plate.

neither material on each side of an interface is a vacuum, Rayleigh waves are also

called Stoneley waves (if the two materials are solids) or Scholte waves (if one is

a liquid and the other a solid). When guided in layers, Rayleigh waves are called

generalized Rayleigh waves or Lamb waves—they travel through the body and along

both traction-free surfaces of a thin plate or shell.

Lamb wave theory [42, 52, 64, 55, 56, 57]—also known as “plate theory”—was

pioneered by its namesake Sir Horace Lamb at the turn of the 20th century [52] and

is of great practical interest to the non-destructive techniques introduced in the next

section and modeled in Chapter 4. It considers a plate, illustrated in Figure 2.1, of

infinite extent in the x and z coordinate directions. The plate has a finite thickness of

2h in the y coordinate direction and is under conditions of plain-strain: traction-free

surfaces at y = ±h. In light of the rectangular geometry, the corresponding boundary

condition (2.11) reduces to the system given by

σ21 = 0 = µ(vx + uy),

σ22 = 0 = (2µ+ λ)vy + λ(ux + wz),

σ23 = 0 = µ(wy + vz).

(2.21)

Solutions to this problem can be expressed in terms of two sets of modes: 1) symmetric

modes, where displacement in the x-direction is symmetric to the midplane of the plate;

and, 2) antisymmetric modes, where displacement in the x-direction is anti-symmetric

to the midplane of the plate (and vice versa for the y-direction). By considering the
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general solutions

φ = Φ(y) exp(ikx− ωt),

ψ = Ψ(y) exp(ikx− ωt),
(2.22)

of the uncoupled wave equations (2.16) and (2.18), where ω is the angular frequency and

k its corresponding wave number, the displacement solutions for both the symmetric

and anti-symmetric cases are of the form [2, 39]

u = i(Bξ cos(αy) + Cβ cos(βy))ei(x−ωt),

v = (−Bα sin(αy) + Cξ sin(βy))ei(x−ωt),
(2.23)

and, respectively,

u = i(ξA sin(αy)−Dβ sin(βy))ei(x−ωt),

v = (Aα cos(αy) +Dξ cos(βy))ei(x−ωt),
(2.24)

where α2 = ω2/c2
L−k2 and β2 = ω2/c2

T−k2. An application of the boundary conditions

given by (2.21) yields the well-known dispersion relation between the angular frequency

ω and the corresponding wavenumber k given by

tan(βh)

tan(αh)
= −

(
4αβk2

(k2 − β2)2

)±1

,


+1 symmetric

−1 antisymmetric

, (2.25)

and known as the Rayleigh-Lamb frequency equations for a thin plate. Solutions

to the highly non-linear equations of (2.25) were once considered intractable, but

computers have enabled calculations of the full frequency spectrum in a reasonable

amount of computational time, as we have done in Figure (2.2) via a simple application

of Newton’s Method [62]. For the non-destructive applications considered in later

chapters, the region of excitation for the incident fields induced in the experimental

samples of sufficiently thick plates is located at the upper end of the zeroth symmetric

and anti-symmetric modes of the spectrum displayed in Figure 2.2; in this region—

where the corresponding wave numbers are nearly identical in both modes—the waves
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can also be described as quasi-Rayleigh waves [67, 78]: the phase and group velocities

are close to the phase velocity of the Rayleigh wave and the distribution through the

upper and lower halves of the plate mimic that of a Rayleigh wave as well.
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Figure 2.2: Non-dimensionalized frequency spectrum, computed by
Newton’s Method, showing the first 10 symmetric (solid lines) and
antisymmetric (dashed lines) Lamb modes for a stress-free plate with
Poisson’s ratio of ν = .33 corresponding to aluminum. This spectrum
identifies the corresponding Lamb modes that could be excited by
the temporal frequency ω. qR identifies the region of the spectrum
corresponding to the quasi-Rayleigh waves that are considered in the
numerical applications of Section 4.2.3.

2.3.1 Scalar model

As discussed above, Lamb modes are described using scalar and vector potentials in

(2.22), but an alternative decomposition introduced by [2, 3] can be used to describe

the modes with one scalar potential φ superposed with carrier waves (one-dimensional

functions V (y) and W (y) in the thickness of the plate) that act as “membrane-like

waves over the guiding plane” [3]. The decomposition results in displacement solutions
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to (2.8) for each mode of the form

u(x, y, z, t) =
1

k
V (y)eiωt

∂

∂x
φ(x, z),

v(x, y, z, t) = W (y)eiωtφ(x, z),

w(x, y, z, t) =
1

k
V (y)eiωt

∂

∂z
φ(x, z),

(2.26)

where V (y) and W (y) are smooth functions in the thickness dimension of the plate

that characterize transversal shapes for a given mode. The function φ(x, z) satisfies

the two-dimensional Helmholtz equation

∇2φ+ k2φ = 0 (2.27)

in the plane given by x and z. For a given mode n, then, it follows that at y = constant,

the out-of-plane displacement v(x, y, z, t) satisfies the equation

∇2v + k2v = 0 (2.28)

for the wave number k which, for plates, is given by the Rayleigh-Lamb frequency

equation (2.25). The decomposition given by (2.26) prompted the work [53], in which

a two-dimensional scalar potential was used to approximately model through-thickness

defects using the time-harmonic acoustic equation—the geometry depends only on the

(x, z) coordinates and in a sense is two-dimensional. Scattering that was produced

under conditions where only one propagating mode contributed to v enabled the use

of (2.28), supplemented by a Neumann boundary condition, as a first approximation

(see Appendix B). The validity of this model was justified in [53] “a posteriori on the

basis of comparison of model results with experimental data,” but, as demonstrated in

Chapter 4, this approximation, while in fairly good agreement, does not fully capture

important physical quantities and behavior.
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Chapter 3

A new methodology for solving the
elastic wave equation

This chapter presents a high-performance numerical methodology for the solution of

elastodynamics problems. Based on a certain “Fourier continuation” (FC) approach

for accurate Fourier expansion of possibly non-periodic functions [20], the proposed

methodology possesses a number of appealing properties: it yields essentially disper-

sionless results, it gives rise to CFL constraints that scale only linearly with the spatial

mesh size h, it runs at a cost that scales linearly with the discretization sizes, and it

lends itself easily to parallelization in distributed-memory computing clusters. The new

FC algorithm, which applies to a great many problems in elastodynamics, including

general geometries and possibly heterogeneous and spatially varying elastic constants,

is demonstrated in this thesis via a number of applications to problems concerning ma-

terials science and, more specifically, non-destructive evaluation. Our FC treatment of

the elastic (Cauchy-Navier) equations is based on the high-order-accurate FC method;

other extant FC-based PDE solvers include solvers for the classical wave and diffusion

equations [20, 54, 21, 30] as well as the compressible Navier-Stokes equations [4].

The development described in this thesis of FC solvers for elastic wave-propagation

problems represents an important extension of the FC methodology: the equations

pose a number of significant challenges concerning stability, enforcement of boundary

conditions, and geometry treatment, all of which are treated as part of this work.
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3.1 The treatment of spatial derivatives

In view of their simplicity, classical differentiation methods such as those based on use of

finite differences or finite elements are often used as part of PDE discretization schemes.

As is well known, however, Finite Difference (FD) and Finite Element Methods (FEM)

for PDEs governing wave-like phenomena do give rise to high numerical dispersion:

phase errors accumulate over subsequent periods of a wave field, and thus FD and FEM

solvers require increasing numbers of discretization points per wavelength to resolve

the solution within a given accuracy tolerance as the size of the problem grows. As is

well known, methods based on use of Fourier series do not suffer from this problem:

a fixed number of discretization points per wavelength suffices to produce wave-like

solutions with a fixed accuracy in domains containing arbitrarily large numbers of

waves (up to the wavenumber associated with the finest resolution).

Unfortunately, however, classical Fourier methods are only applicable to periodic

functions—since Fourier expansion of a non-periodic functions gives rise to the well-

known “ringing effect” (the Gibb’s phenomenon [38]): the jump that results in the

periodic extension of an inherently non-periodic function leads to an “overshoot” in

the Fourier representation at points of discontinuity of the periodic continuation of

the given function. This inaccuracy does not subside as more terms are added and, in

fact, it results in extremely slow pointwise convergence throughout the interior of the

computational domain—in addition to the unmitigated error at domain boundaries.

A goal to extend the applicability of Fourier methods (together with its inherent

excellent qualities, most notably dispersionless-ness and high-order accuracy) to general

non-periodic configurations has lead to the development of the FC methods that play

a central role in this thesis. The Fourier continuation (FC) method produces a rapidly-

convergent interpolating Fourier series representation of a given function on a region

larger than the given physical domain. This is accomplished by relying on a “periodic

extension” of the given function, that closely approximates the given function values

in the original domain, but which is periodic (albeit in a slightly enlarged domain)
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and thus suitable for Fourier approximation. In detail, given a function f which is

defined, without loss of generality, on the unit interval as

f(x) : [0, 1] ⊂ R→ R,

the FC method produces a periodic function f c defined on an extended interval,

f c(x) : [0, b] ⊂ R→ R, b > 1

which closely approximates f(x) on the original interval [0, 1].

Fully discrete Fourier continuation algorithms generally proceed as follows: letting

N be the number of discretization points over the unit interval (yielding a uniform

grid xi = ih, i = 0, . . . , N − 1, h = 1/(N − 1)) together with point values f(xi)

of the function of interest, the Fourier continuation method produces a b-periodic

trigonometric polynomial f c of the form

f c(x) =
M∑

k=−M

ake
2πikx
b , (3.1)

that matches the given discrete values of f : f c(xi) = f(xi), i = 0, ..., N−1. Derivatives

of the function can then be easily computed through term-by-term differentiation, e.g.

fx(x) = f cx(x) =
M∑

k=−M

(
2πik

b

)
ake

2πikx
b ,

fxx(x) = f cxx(x) = −
M∑

k=−M

(
2πk2

b2

)
ake

2πikx
b ,

...

(3.2)

In the simplest treatment [18, 15, 17], the coefficients ak of (3.1) are found by

invoking the Singular Value Decomposition to solve the least squares system

min
ak

N−1∑
i=0

∣∣f c(xi)− f(xi)
∣∣ . (3.3)
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Although straightforward, repeated applications of the SVD for time-dependent func-

tion values on each line of a three-dimensional mesh in a PDE is, in general, unac-

ceptably costly. To circumvent this difficulty, an accelerated method was proposed in

[20, 54] which allows for Fourier continuation of functions on the basis of a number of

d = d`, dr end function values at the left and right intervals and a projection onto a

Gram polynomial basis whose FC extensions are precomputed via a high-precision

SVD. In effect, this procedure produces a “basis” of continuation functions that can

be utilized by a PDE solver. The technique was modified in [4] into a “biased-order”

algorithm appropriate for high-performance computing including domain decomposi-

tion. The latter “FC(Gram)” method is described in Section 3.1.1 and extended in

Section 3.1.2 to a form suitable for our elasticity solver.

3.1.1 Accelerated Fourier continuation: FC(Gram)

Given a column vector f = (f0, . . . , fN−1)
T containing N values of a given function

f in its domain [0, 1], fi = f(xi) (0 = x0 < x1 < · · · < xN−1 = 1), the accelerated

FC(Gram) method [20, 54, 4] uses a subset of the given function values on small

numbers d` and dr of matching points {x0, .., xd`−1} and {xN−d, ..., xN−1} contained

in small subintervals on the left and right ends of the interval [0, 1] (of lengths

δ` = (d` − 1)h and δr = (dr − 1)h) to produce, at first, a discrete periodic extension.

Using such data, the FC(Gram) algorithm thus appends a number C of continuation

function values for the periodic extension in [1, b] to transition smoothly from fN−1

back to f0; see Figure 3.1. The resulting vector f c can be viewed as a discrete set of

values of a smooth and periodic function which is suitable for high-order approximation

by means of the FFT algorithm in an interval of length (N + C)∆x.

In order to evaluate the C necessary extension values mentioned above, the

accelerated FC(Gram) method uses the given function f defined in the interval [0, 1]

together with a translation of it by a distance b. Defining the sets D` = {b+ x0, b+

x1, ..., b+xd`−1} and Dr = {xN−d` , xN−d+1, ..., xN−1}, the additional C needed values in
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the interval [1, b] are obtained as point values of an auxiliary trigonometric polynomial

of periodicity interval [1− δr, 2b− (1− δr)] (with appropriately selected bandwidth)

which closely approximate the function values on Dr ∪ D`. This approximating

trigonometric polynomial is obtained as the result of a two-step process, namely 1)

projection onto bases of orthogonal polynomials, and 2) continuation through use of a

precomputed set of continuations-to-zero of each Gram polynomial, as explained in

what follows.

The polynomial projection mentioned in step 1) above for the function values on

Dr ∪D` relies on use of two Gram (orthonormal) bases, Br and B`, of the respective

spaces of polynomials of degree < d`, dr on the intervals [1− δr, 1] and [b, b+ δ`] with

respect to the natural discrete scalar product defined by the discretization points Dr

and D` [20, 54] (see Equation (3.9) below). The algorithm also utilizes precomputed

extensions, one for each polynomial pr ∈ Br, into a smooth function defined for

x ≥ 1 − δr, which approximates pr closely in the matching interval [1 − δr, 1], and

which blends smoothly to zero for x ≥ b. Such rightward extension is obtained by

means of appropriately oversampled least squares approximations by Fourier series of

periodicity interval [1− δr, b− (1− δr)], as described in [20, 54]. Similarly, the scheme

obtains, for each polynomial p` ∈ B`, a smooth blending function that agrees with p`

in the matching interval [b, b+ δ`] and which vanishes for x ≤ 1.

In presence of such smooth blending, step 2) proceeds: an FC extension is pro-

duced, for the given function, from its values at the set of points Dr ∪D`—since the

interpolating polynomials of degree dr− 1 on Dr and d`− 1 on D` can be expressed as

linear combinations of the polynomials in the bases B` and Br, with coefficients that

can be obtained rapidly by means of scalar products. With the extension in hand,

an application of the discrete Fourier transform on the interval [0, b] to the vector

of function values f augmented by the C “continuation” values yields the desired

trigonometric polynomial (3.1). An example of the blending procedure is depicted in

Figure 3.1.
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dr = 5
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C = 25

Figure 3.1: Fourier continuation of the non-periodic function given
by f(x) = esin(5.4πx−2.7π)−cos(2πx). Red triangles/squares and blue
circles represent d` = dr = 5 matching points and C = 25 continuation
points, respectively.

The resulting continuation operation can be expressed in a block matrix form as

f c =

I
A

 f =

 f

Af

 , (3.4)

where f c is a vector of the N + C continued function values, I is the N ×N identity

matrix and A is the matrix containing the blend-to-zero continuation information.

Defining the vector of matching points for the left and right as

f` =


f0

f1

...

fd`−1


, fr =


fN−dr

fN−dr+1

...

fN−1


, (3.5)

gives an Af of the form

Af = A`Q
T
` f` + ArQ

T
r fr, (3.6)

where the columns of Q` and Qr contain the d`, dr point values of each element of the
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corresponding Gram polynomial basis, and where the columns of A` and Ar contain

the corresponding C values that blend the left and the right bases to zero. For d` = dr

the matrices A` and Ar (resp. Q` and Qr) differ only by row-ordering (resp. only by

column ordering). The matrices Q = Q` and Q = Qr for given numbers d = d` and

d = dr of matching points may be obtained by orthogonalizing the d×d Vandermonde

matrix

P =


1 x0 (x0)2 ... (x0)d−1

1 x1 (x1)2 ... (x1)d−1

...
...

...
...

...

1 xd−1 (xd−1)2 ... (xd−1)d−1


, (3.7)

of point values of the monomials xj (j = 1, . . . , d−1) at the discrete points x0, x1, ..., xd−1.

(A substitution of x by (x− 1) must be used for the right matching problem.) This is

performed by applying a Gram-Schmidt orthogonalization process

P = QR (3.8)

with respect to the inner product

(g, h)r =
∑
xi∈Dr

g(xi)h(xi), (3.9)

and a similar inner product for (g, h)`, where the jth column of Q in (3.8) contains the

d point values of the jth Gram basis polynomial. To ensure a good agreement with

the constraints described by the least squares problem introduced in what follows, we

additionally oversample the monomial basis by a factor of nover = 20, which leads to

a Vandermonde matrix P over similar to (3.7) but of size (nover(d− 1) + 1)× d. The

corresponding matrix whose columns are the Gram basis polynomials evaluated on a

grid nover times finer can be reconstructed by

Qover = P overR−1, (3.10)
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where R is the upper triangular matrix in the orthogonalization of the coarse P

in (3.8).

Remark 1. The ill-conditioning of the full continuation problem is concentrated here

at the orthogonalization of the poorly conditioned Vandermonde matrix (3.7); such a

decomposition is well known to possibly suffer from a numerical loss of orthogonality.

This difficulty is addressed by relying on high-precision (using 256 digits) and symbolic

arithmetic throughout the process of evaluation of precomputed continuations for the

polynomial basis elements. This is an operation that needs to be performed only once

and stored in file for use each time the Fourier continuation is invoked. Technical

details concerning the implementation of this high-precision precomputation procedure

can be found in Appendix D.

Letting Z be the number of zero points used for the blending and letting E be a

certain number of additional points that are used to allow for continuation regions of

user-prescribed lengths, we define the intervals

Imatch = [0, (d− 1)∆x],

Iblend = [(d− 1)∆x, (d+ C − 1)∆x],

Izero = [(d+ C − 1)∆x, (d+ C + Z − 1)∆x],

Iextra = [(d+ C + Z − 1)∆x, (d+ C + Z + E − 1)∆x]

(3.11)

which contain d, C, Z and E discretization points, respectively. The function that

blends the discrete values of a given Gram polynomial on Imatch to the zero function

values in Izero is obtained as a band-limited trigonometric polynomial

f(x) =
M∑

k=−M

ake
2πikx

(d+C+Z+E−1)∆x (3.12)

that matches closely (in a least-squares sense) the Gram polynomials and an interval

of vanishing function values, and where M = (d + C + Z + E)/2. The coefficients
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a = (a−M , ..., aM)T are found by solving the minimization problem (posed on the

oversampled Gram basis Qover with columns qoverk in (3.10)) given by

min
a=(a−M ,...,aM )T

∥∥∥∥∥∥∥∥B
overa−

qoverj

0


∥∥∥∥∥∥∥∥

2

, (3.13)

where Bover is a matrix formed from values of the function (3.12) at the ∆x/nover

discretizations of Imatch and Izero, and where 0 is the zero vector of length (Z −

1)nover + 1. The minimizing Fourier coefficients a = (a−M , ..., aM )T in (3.13) are then

found by a Singular Value Decomposition and, once determined, the corresponding

columns of A`, Ar are constructed by evaluating (3.12) on the coarse discretization

∆x of the full continuation interval [0, (d+ C + Z + E − 1)∆x].

Remark 2. For all computations in this thesis, the parameters C = 25, Z = 12, E = 25

and nover = 20 were used to construct continuations for various integer values of d =

d`, dr. These choices were made in accordance with previous FC-based algorithms [4,

30], and were determined empirically to provide an appropriate trade-off between

computational cost in a PDE solver and stability of the operator constructed by the

above procedure.

3.1.2 A modified accelerated FC operator for Neumann bound-

ary conditions

In order to treat Neumann boundary conditions (and, ultimately, traction boundary

conditions), a modified version of the accelerated (biased-order) algorithm described in

Section 3.1.1 is needed to construct an operator appropriate to match the values of the

derivative of a function f at the end point xd−1 in addition to values of f at x0, ..., xd−2.

A simple extension of the algorithm presented above can be made to achieve this goal.

Indeed it suffices to use a polynomial interpolant that, in particular, matches the

derivative value f ′(xd−1) at the endpoint xd−1. This is achieved by orthogonalizing
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the modified Vandermonde matrix

Pder =


1 x0 (x0)2 ... (x0)d−1

...
...

...
...

...

1 xd−2 (xd−1)2 ... (xd−2)d−1

0 1 2xd−1 ... (d− 1)(xd−1)d−2


(3.14)

instead of (3.7) by means of the (high-precision) QR-decomposition

Pder = QderRder. (3.15)

The modified Fourier continuation blend-to-zero information can be obtained in

two ways, both of which in practice have been found to give the same results: 1) by

proceeding to form a new continuation basis in a manner analogous to Section 3.1.1,

replacing Q with Qder and the appropriate Bover with a corresponding Bover
der in the

least squares formulation; or, 2) by reconstructing the coefficients in the original

Gram polynomial basis and simply replacing the operator Q (= Q`, Qr) in (3.6)

with a new operator Q̃ (= Q̃`, Q̃r) for which the same pre-constructed blend-to-zero

Dirichlet operators A`, Ar obtained in the previous section can be employed. The

latter method—which is used in this work and introduced in what follows—carries the

advantage that the Gram polynomials blending-to-zero data computed in the previous

section, which was produced in the context of Dirichlet boundary conditions, may be

re-used for treatment of Neumann and traction boundary conditions as well.
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The construction of Q̃ is obtained by solving the system

Pder



c0

c1

...

cd−1

cd−1


=



f0

f1

...

fd−2

f ′(xd−1)


. (3.16)

for the coefficients in (3.16) via the decomposition (3.15) as



c0

c2

...

cd−2

cd−1


= R−1

derQ
T
der



f0

f1

...

fd−2

f ′(xd−1)


. (3.17)

Recalling the Vandermonde matrix P and its QR-decomposition in (3.8), substitution

of these coefficients into

P



c0

c2

...

cd−2

cd−1


= QR



c0

c2

...

cd−2

cd−1


=



f0

f1

...

fd−2

fd−1


(3.18)

yields the expressions
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QRR−1
derQ

T
der



f0

f1

...

fd−2

f ′(xd−1)


=



f0

f1

...

fd−2

fd−1


⇐⇒ Q̃T



f0

f1

...

fd−2

f ′(xd−1)


= QT



f0

f1

...

fd−2

fd−1


(3.19)

for Q̃ = (RR−1
derQ

T
der)

T . Hence the continuation procedure constructed in the previous

section and embodied in the formula

Af = A`Q
T
` f` + ArQ

T
r fr (3.20)

is modified by substitution of (3.19) into (3.20) to yield

Af = A`Q̃
T
` f̃` + ArQ̃

T
r f̃r, (3.21)

where f̃` = (f0, ..., fd`−2, f
′(xd`−1))T , f̃r = (fN−dr , ..., fN−2, f

′(xN−1))T and where A`, Ar

are the same blend-to-zero operators. Note that if, for example, one requires the

continuation to approximate the value f(x0) and the derivative f ′(xN−1) (as is often

necessary as a result of the domain decomposition strategy that we introduce later in

this thesis), one needs only to form the corresponding biased continuation using the

appropriate projections on the left and the right as

Af = A`Q
T
` f` + ArQ̃

T
r f̃r, (3.22)

and similarly to approximate f ′(x0) and f(xN−1).
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3.1.3 A simple preliminary 1D example with Dirichlet and

Neumann boundaries

As a simple example to verify the character of the FC methodology for both Dirichlet

and Neumann problems, consider a 1D wave propagation problem with initial values

given by a Gaussian profile: 
utt(x, t) = uxx(x, t),

u(x, 0) = e−300(x+.5)2

.

(3.23)

In order to facilitate evaluation of errors in our Dirichlet and Neumann test cases, we

set up Dirichlet and Neumann boundary conditions at x = 0 and x = 1 in such a way

that the exact solution is given by the traveling wave function

u(x) = e−300(x−ct+.5)2

, 0 ≤ x ≤ 1, (3.24)

which is depicted in Figure 3.2.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

u

Figure 3.2: Numerical solution to the one-dimensional wave equa-
tion (3.23) at times t = 0.5, 0.6, 0.7, 0.8, 0.9s based on use of Fourier
continuation (d` = dr = 5, C = 25,∆x = 1/100) and explicit time
marching (∆t = ∆x/32).

Using the FC method for evaluation of spatial derivatives, and utilizing the explicit

fourth-order Adams-Bashforth method to evolve the resulting set of ODEs, we obtain

a PDE solver for the wave equation (3.23). Using a small time-step enables us to

demonstrate the accuracy of the FC based spatial discretization method for various
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mesh sizes. Table 3.1 displays, for both the Dirichlet and Neumann problems, the

maximum error over all spatial points x ∈ [0, 1] and for all times between 0 and T ,

where T is taken to be large enough that the wave has passed through both interval

endpoints. As expected, a 4th-order Gram polynomial basis (using 5 matching points)

results in essentially 5th-order convergence; since the derivatives of the continued

function are spectrally accurate, the error should be dominated by the polynomial

approximation used to project the end function values onto a Fourier continuation

basis.

1/∆x L∞ error (Dirichlet) O(L∞) L∞ error (Neumann) O(L∞)

50 3.60e-2 — 6.15e-2 —
100 1.05e-3 5.10 1.44e-3 5.41
200 3.69e-5 4.83 3.21e-5 5.49
300 4.93e-6 4.96 4.20e-6 5.02
400 1.16e-6 5.03 1.00e-6 4.99

Table 3.1: Convergence results for the maximum error over all space
and time of the solution to the 1D wave equation (3.23).

Even though the order of the error is the same as that given by a finite-difference

solver of the same order, the FC methodology provides a significant advantage: it is

essentially dispersionless. As mentioned earlier, wave propagation by means of finite

difference schemes leads to an accumulation of errors that compound over the length of

the domain. The errors that accumulate over each wave demand a significant increase

in the number of points per wavelength (PPW) to resolve the solution for a given

accuracy. This behavior is also found in Finite Element Methods and usually discussed

in the context of “pollution errors” [8]. Figure 3.3 and Figure 3.4 demonstrate these

characteristics for Dirichlet and Neumann boundary conditions using both a second-

order-in-space FD scheme and the FC scheme to advance a sinusoidal solution given

by

u = sin(2πn(x− t)) (3.25)

over one period (t = 0 to t = 1) for varying wavenumbers n and discretized by fixed
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numbers 10, 15, 20 PPW for FC and 75, 150 PPW for FD. All errors are taken over

all time and space, with a time-step again chosen small enough in all cases so that

the errors are dominated by the spatial discretization. It is pertinent to note that

even though the given solution is periodic, the FC methodology does not exploit

this property—since it still extends the domain and creates a new periodic extension.

Clearly the PPW required to support the demand of a longer wave-train remains fixed

for FC but certainly not for FD, placing a prohibitive requirement on the number of

points required to resolve large-scale problems—especially in a full three-dimensional

volume—in the latter case. Additionally, Figures 3.3 and 3.4 also display errors over

many temporal cycles of a ten-wavelength solution to demonstrate the long-term

stability of the FC method as has been described in [20].
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Figure 3.3: Left: Maximum numerical errors over space and time for
solutions of the wave equation Dirichlet problem resulting from use of
FC and FD solvers over one full temporal cycle of a sinusoidal solution
with increasing number of wavelengths. Right: Maximum numerical
errors resulting from use of the FC solver over many temporal cycles
for a five-wavelength traveling solution.

Similar comparisons of FC algorithms and FD methods have been obtained for

fourth- and eighth-order finite-differences, as well as the “spectral-like” high-order

Padé schemes [4, 30, 54]. In each of these respective studies, the behavior of the FC

algorithms showed significant advantages over the previous—either, in view of their

favorable dispersion characteristics over those arising from low-order methods, or as
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Figure 3.4: Same as Figure 3.3 but for the Neumann problem instead
of the Dirichlet problem.

a result of the reduced time-steps required compared to other high-order methods,

or both. The ability of FC to maintain accuracy over long distances by accurately

approximating the dispersion characteristics of the corresponding continuous problem

at an O(N logN) computational cost makes it a competitive approach for solution of

general Partial Differential Equations in the time domain.

3.2 Complex geometries

3.2.1 Curvilinear coordinate systems

One of the main advantages of the FC method lies in its use of uniform meshes—for

which, as demonstrated in [4], the FC differentiation operator has optimal spectral

radius, and for which, therefore, the CFL constraints scale linearly with the size of

spatial discretizations (and not quadratically, as do certain other spectral algorithms

such as those based on the use of Chebyshev polynomials). Cartesian meshes in

physical space cannot capture the geometry of an object of interest with high-order

accuracy, however, unless the object has particularly simple shapes: any curvature

on an object boundary precludes the use of Cartesian meshes in physical space if

high-order accuracy is required. In order to enable applicability to general domains
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the FC methods rely on use of local curvilinear grids, which are themselves mapped

via a domain mapping

M : [0, 1]3 → Ωi (3.26)

from the Cartesian domain [0, 1]3 into a portion Ωi of the physical domain (which are

called “patches” in what follows). In explicit coordinates the mapping M is given by

three scalar functions (x, y, z) of three independent variables (q, r, s):

M(q, r, s) = (x(q, r, s), y(q, r, s), z(q, r, s)) : [0, 1]3 → Ω. (3.27)

A two dimensional example of such a mapping is provided in Figure 3.5.

(0
,r
,s

) (1
,r,s)

(q, 1, s)

(q, 0, s)

Parameter space

x(q, r, s), y(q, r, s), z(q, r, s)
−−−−−−−−−−−−−−−−−−−−−−→

∂Ω1 ∂Ω3

∂Ω4

∂Ω2

Physical Space

Figure 3.5: An example of a curvilinear mapping.

These boundary-conforming patches can be constructed either analytically (for

simple geometries), algebraically (on the basis of transfinite interpolation [31]), on the

basis of PDE solves (as is the case in elliptic mesh generation [33]), or via combinations

thereof [73]. Such patches are endowed with Cartesian-like discretizations: the

coordinate lines in a given patch are images of Cartesian coordinate lines in parameter

space. Each map is locally invertible with a positive, non-singular Jacobian of

transformation that preserves the mathematical type of the PDE [48]. The full domain

of interest can then be viewed as a union Ω = ∪Ωi of separate but overset patches Ωi.

(In order to maintain consistency—continuity and differentiability—of the solution
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across patches, an interpolation strategy is used, as detailed in Section 3.2.3.)

3.2.2 The governing equations in curvilinear coordinates

Adopting again the shorthand ux = ∂u/∂x for derivatives, the chain rule gives on

each patch the expressions

uq = xqux + yquy + zquz, ux = qxuq + rxur + sxus,

ur = xrux + yruy + zruz, uy = qyuq + ryur + syus,

us = xsux + ysuy + zsuz, uz = qzuq + rzur + szus.

(3.28)

To express the elasticity equations in a curvilinear patch, one seeks expressions for

ux, uy, uz (and similarly for v and w) in terms of the derivatives in parameter space

uq, ur, us, . . . via the chain rules (3.28). The functions qx, qy, qz, ... (also known as

metrics) can be found provided the corresponding Jacobian

J =

∣∣∣∣∣∣∣∣∣∣
xq xr xs

yq yr ys

zq zr zs

∣∣∣∣∣∣∣∣∣∣
=
xqyrzs + yqzrxs + zqxrys
− xqzrys − yqxrzs − zqyrxs

(3.29)

does not vanish. In this case, taking into account the right set of equations in (3.28),

we obtain
ux

uy

uz

 =
1

J


−yszr + yrzs yszq − yqzs −yrzq + yqzr

xszr − xrzs −xszq + xqzs xrzq − xqzr
−xsyr + xrys xsyq − xqys −xryq + xqyr



uq

ur

us



=


qx rx sx

qy ry sy

qz rz sz



uq

ur

us

 .

(3.30)
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The derivatives xq, xr, xs, ... and the corresponding metrics can be computed from the

mapping (3.27) either numerically (e.g. via an application of the Fourier continuation

method) or analytically.

The curvilinear form of the Cauchy-Navier equations follows from (3.30): denoting

by

ũ(q, r, s) = u
(
x(q, r, s), y(q, r, s), z(q, r, s)

)
,

ṽ(q, r, s) = v
(
x(q, r, s), y(q, r, s), z(q, r, s)

)
,

w̃(q, r, s) = w
(
x(q, r, s), y(q, r, s), z(q, r, s)

)
,

(3.31)

the displacements as functions of the parameters (q, r, s), and defining

D̃x[ũ] = qxũq + rxũr + sxũs,

D̃y[ũ] = qyũq + ryũr + syũs,

D̃z[ũ] = qzũq + rzũr + szũs,

(3.32)

the elastic wave equation (2.7) becomes [48]

Jρũtt =

[
Jqx

(
(λ+ 2µ)D̃x[ũ] + λD̃y[ṽ] + λD̃z[w̃]

)
+ Jqy

(
µD̃x[ṽ] + µD̃y[ũ]

)
+ Jqz

(
µD̃x[w̃] + µD̃z[ũ]

)]
q

+

[
Jrx

(
(λ+ 2µ)D̃x[ũ] + λD̃y[ṽ] + λD̃z[w̃]

)
+ Jry

(
µD̃x[ṽ] + µD̃y[ũ]

)
+ Jrz

(
µD̃x[w̃] + µD̃z[ũ]

)]
r

+

[
Jsx

(
(λ+ 2µ)D̃x[ũ] + λD̃y[ṽ] + λD̃z[w̃]

)
+ Jsy

(
µD̃x[ṽ] + µD̃y[ũ]

)
+ Jsz

(
µD̃x[w̃] + µD̃z[ũ]

)]
s

+ f1(x(q, r, s), y(q, r, s), z(q, r, s), t),

Jρṽtt =

[
Jqy

(
(λ+ 2µ)D̃y[ṽ] + λD̃x[ũ] + λD̃z[w̃]

)
+ Jqx

(
µD̃x[ṽ] + µD̃y[ũ]

)
+ Jqz

(
µD̃z[ṽ] + µD̃y[w̃]

)]
q

+

[
Jry

(
(λ+ 2µ)D̃y[ṽ] + λD̃x[ũ] + λD̃z[w̃]

)
+ Jrx

(
µD̃x[ṽ] + µD̃y[ũ]

)
+ Jrz

(
µD̃z[ṽ] + µD̃y[w̃]

)]
r

+

[
Jsy

(
(λ+ 2µ)D̃y[ṽ] + λD̃x[ũ] + λD̃z[w̃]

)
+ Jsx

(
µD̃x[ṽ] + µD̃y[ũ]

)
+ Jsz

(
µD̃z[ṽ] + µD̃y[w̃]

)]
s

+ f2(x(q, r, s), y(q, r, s), z(q, r, s), t),

Jρw̃tt =

[
Jqz

(
(λ+ 2µ)D̃z[w̃] + λD̃x[ũ] + λD̃y[ṽ]

)
+ Jqx

(
µD̃x[w̃] + µD̃z[ũ]

)
+ Jqy

(
µD̃y[w̃] + µD̃z[ṽ]

)]
q

+

[
Jrz

(
(λ+ 2µ)D̃z[w̃] + λD̃x[ũ] + λD̃y[ṽ]

)
+ Jrx

(
µD̃x[w̃] + µD̃z[ũ]

)
+ Jry

(
µD̃y[w̃] + µD̃z[ṽ]

)]
r
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+

[
Jsz

(
(λ+ 2µ)D̃z[w̃] + λD̃x[ũ] + λD̃y[ṽ]

)
+ Jsx

(
µD̃x[w̃] + µD̃z[ũ]

)
+ Jsy

(
µD̃y[w̃] + µD̃z[ṽ]

)]
s

+ f3(x(q, r, s), y(q, r, s), z(q, r, s), t),

(3.33)

with the initial data

ũ(q, r, s, t0) = ã1(q, r, s), ũt(q, r, s, t0) = b̃1(q, r, s),

ṽ(q, r, s, t0) = ã2(q, r, s), ṽt(q, r, s, t0) = b̃2(q, r, s),

w̃(q, r, s, t0) = ã3(q, r, s), w̃t(q, r, s, t0) = b̃3(q, r, s).

(3.34)

The q, r, s derivatives in this formulation can be discretized on the basis of the Fourier

continuation method (see Section 3.2.2.1).

The boundary conditions of the problem can be applied easily in the (q, r, s)

coordinates. For instance, on the plane corresponding to q = 0 (and similarly for the

other faces), the Dirichlet boundary condition (2.12) becomes

ũ(0, r, s, t) = c̃1(r, s, t),

ṽ(0, r, s, t) = c̃2(r, s, t),

w̃(0, r, s, t) = c̃3(r, s, t),

(3.35)

where c̃j(r, s, t) = cj(x(q, r, s), y(q, r, s), z(q, r, s), t). Similarly, the traction boundary



Chapter 3. A new methodology for solving the elastic wave equation 37

conditions (2.11) are expressed in the form

d̃1(0, r, s, t) = J
(

(2µ+ λ)D̃x[ũ] + λD̃y[ṽ] + λD̃z[w̃]
)
n1

+ J
(
µD̃x[ṽ] + µD̃y[ũ]

)
n2

+ J
(
µD̃x[w̃] + µD̃z[ũ]

)
n3,

d̃2(0, r, s, t) = J
(
µD̃x[ṽ] + µD̃y[ũ]

)
n1

+ J
(

(2µ+ λ)D̃y[ṽ] + λD̃x[ũ] + λD̃z[w̃]
)
n2

+ J
(
µD̃y[w̃] + µD̃z[ṽ]

)
n3,

d̃3(0, r, s, t) = J
(
µD̃x[w̃] + µD̃z[ũ]

)
n1

+ J
(
µD̃y[w̃] + µD̃z[ṽ]

)
n2

+ J
(

(2µ+ λ)D̃z[w̃] + λD̃x[ũ] + λD̃y[ṽ]
)
n3.

(3.36)

The (unit) normal vector used in (3.36) is given by the expression

(n1, n2, n3)T =
(qx, qy, qz)

T√
q2
x + q2

y + q2
z

(3.37)

evaluated at (0, r, s) for (s, r) ∈ [0, 1]2. The numerical treatment and application of

boundary conditions in the form of (3.36) is detailed in Section 3.3.3.

3.2.2.1 The discrete curvilinear formulation

A discretization of each patch is obtained, simply, by using a Cartesian parameter-space

mesh

qi = i∆q, 0 ≤ i ≤ Nq − 1,

rj = j∆r, 0 ≤ j ≤ Nr − 1,

sk = k∆s, 0 ≤ k ≤ Ns − 1,

(3.38)

containing Nq ·Nr ·Ns discretization points in [0, 1]3—so that the resulting uniform

parameter-space mesh-sizes equal ∆q = 1/(Nq − 1),∆r = 1/(Nr − 1) and ∆s =
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1/(Ns − 1), respectively. The mapping defined by (3.27) carries curvilinear mesh

points (qi, rj, sk) to physical space mesh points

xijk = x(qi, rj, sk), 0 ≤ i ≤ Nq − 1, 0 ≤ j ≤ Nr − 1, 0 ≤ k ≤ Ns − 1,

yijk = y(qi, rj, sk), 0 ≤ i ≤ Nq − 1, 0 ≤ j ≤ Nr − 1, 0 ≤ k ≤ Ns − 1,

zijk = y(qi, rj, sk), 0 ≤ i ≤ Nq − 1, 0 ≤ j ≤ Nr − 1, 0 ≤ k ≤ Ns − 1,

(3.39)

and solutions in curvilinear coordinates ũijk = ũ(qi, rj, sk), ṽijk = ṽ(qi, rj, sk), w̃ijk =

w̃(qi, rj, sk) to physical space solutions

uijk = u(x(qi, rj, sk), y(qr, rj, sk), z(qi, rj, sk))

= ũ(qi, rj, sk)

= ũijk, 0 ≤ i ≤ Nq − 1, 0 ≤ j ≤ Nr − 1, 0 ≤ k ≤ Ns − 1,

vijk = ṽijk, 0 ≤ i ≤ Nq − 1, 0 ≤ j ≤ Nr − 1, 0 ≤ k ≤ Ns − 1,

wijk = w̃ijk, 0 ≤ i ≤ Nq − 1, 0 ≤ j ≤ Nr − 1, 0 ≤ k ≤ Ns − 1.

(3.40)

The discrete Fourier continuation detailed in Section 3.1 can be applied to compute

spatial first and second derivatives of ũ, ṽ, w̃ with respect to the curvilinear coordinates

q, r and s via a Fast Fourier Transform on the above uniform discretization.

From (3.39) we see that the boundary discretization points at the left, right,

bottom, top, backward, and forward faces of the parameter cube (where boundary

conditions are enforced) are characterized by the indices

i = 0 or i = Nq − 1, with 0 ≤ j ≤ Nr − 1, 0 ≤ k ≤ Ns − 1,

j = 0 or j = Nr − 1, with 0 ≤ i ≤ Nq − 1, 0 ≤ k ≤ Ns − 1,

k = 0 or k = Ns − 1, with 0 ≤ i ≤ Nq − 1, 0 ≤ j ≤ Nr − 1,

(3.41)

respectively. As intended, in view of the boundary-conforming curvilinear trans-

formation, boundary conditions are applied—with high-order accuracy and for an

arbitrarily complex surface—at either the first or last index in each dimension in the
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corresponding data structure.

3.2.3 A block decomposed, overlapping grid strategy

For a full physical domain, the final discretization strategy adopted by our elasticity

solver (see Figure 3.6) consists of two key components [4, 5, 16, 43]: 1) a decomposition

of the domain Ω into a collection of overlapping curvilinear patches Ω1,Ω2, ..Ωn

(introduced in Section 3.2.1) whose solutions are communicated across overlapping

patch boundaries by means of a high-order polynomial interpolation (Section 3.2.3.1);

and 2) a further decomposition of each curvilinear patch Ωi into mutually disjoint

“sub-patches” that are then extended by a shared region of subsets of neighboring

sub-patches to communicate information within a patch for use in distributed parallel

computing environments (Section 3.2.3.2). To facilitate an efficient implementation

of element 2), in Section 3.2.3.3 we additionally put forth a simple load-balancing

algorithm which, as demonstrated in Section 3.4.3, gives rise to excellent parallel

scaling.

Figure 3.6: Left: A portion of a physical domain covered by two
patches where the bold dots indicate the layers of interpolation points.
Right: One such curvilinear patch decomposed into four sub-patches.

3.2.3.1 Overset meshes and artificial “inter-patch” boundaries

As discussed earlier, a general geometry can be represented by a finite number of

overlapping curvilinear patches within each one of which the PDE (3.33) is evolved—
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while accounting for smooth matching of solution values between neighboring patches

around patch boundaries. In this method, commonly known as the overset [16] grid

method, a patch Ωi ⊂ Ω in the PDE domain exchanges information with adjacent

patches Ωj ⊂ Ω by means of a suitable interpolation scheme. Figure 3.6 (left) shows

an example of part of a computational domain that is covered by two curvilinear

patches, with interpolation points shown as bold dots.

By construction, subsets of a patch boundary ∂Ωi that do not coincide with a

physical boundary of the computational domain Ω will overlap one or more of the

other patches composing a geometry. Along these boundaries, unknown values from

neighboring patches are interpolated by means of tensor-product polynomial. In

this thesis we employ stencils of size 7× 7× 7 points (that is, 6th order polynomial

interpolation in each dimension) and interpolate to a layer of width 3 points on the

overlapping boundary. The overlapping regions between patches are chosen sufficiently

large enough so that interpolation stencils are contained sufficiently far away from the

respective donor patch boundary. Patches are constructed to sufficiently overlap each

other so that only interpolation from points at a distance from the boundary of the

subsequent “donor” patch is performed. That is, given a point (x0, y0, z0) ∈ Ωi, an

adjacent donor patch Ωj is found that contains (x0, y0, z0) at its most interior and a

corresponding seven-point stencil is located (stored by its lower left-hand corner index)

in patch Ωj to have the boundary point of patch Ωi as close to its center as possible.

Interpolation is then performed in the corresponding (q, r, s) parameter space of the

patch Ωj via a straightforward application of Neville’s algorithm [62]. Further details

in these regards are provided in Appendix D.

3.2.3.2 Parallel decomposition and artificial “intra-patch” boundaries

A parallel implementation of the FC solver described in this thesis can be produced by

means of a decomposition of each curvilinear patch into a union of disjoint sub-patches

within each one of which the PDE (3.33) is evolved. At each time-step, solution values
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in the sub-patches are used in conjunction with a certain number of fringe discretization

points of neighboring sub-patches to produce the spatial derivatives necessary during

time marching. This concept is illustrated by a simple one-dimensional example in

Figure 3.7: in this simplified example the center sub-domain (sub-patch) has (only)

two shared points (which, following [4] we call “fringe points”) on either side; the left

and right boundary sub-domains contain fringe points on one side only. In our actual

algorithm implementation a total of four fringe points in each dimension are used for

each interior boundary.

Figure 3.7: One dimensional line segmentation analogous to the
multidimensional parallel decomposition of a patch.

Remark 3. To maintain the excellent dispersion characteristics of the FC differenti-

ation scheme, the FC algorithm is set up to use d`, dr = 12 discretization points in

the Gram polynomial projection interval at interior boundaries; all other (physical)

boundaries employ d`, dr = 5 Gram projection points.

The multidimensional version of the shared (fringe) region strategy is demonstrated

in Figure 3.8: the continuations needed to apply the differentiation algorithm along a

vertical or horizontal line in a sub-patch is obtained by applying FC to the combination

of discrete values at the light-gray fringe points and the black sub-patch points. As

additionally illustrated in the figure, the fringe discretization region associated with a

sub-patch may extend not only into the six neighbors with which the sub-patch shares

a face in three-dimensions but also into corner-adjacent neighboring sub-patches, for

up to twenty-six neighbors. The potential additional communication required for
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all neighbors can be circumvented by communicating the fringe information in one

coordinate direction at a time (as demonstrated for a two-dimensional case in the

right-hand figure), so that information with corner-adjacent sub-patches is indirectly

passed along, thus reducing the overall communication load: this allows the full

exchange of information to be carried out by only six send-and-receive calls from a

sub-patch with its (up to six) face-sharing neighbors.

Figure 3.8: Left: A two-dimensional example of a square patch de-
composed into four disjoint sub-patches. Right: The four sub-patches
augmented by fringe regions and an example of the transmission of
data to corner patches.

For a parallel implementation in which a processor is responsible for advancing the

solution of a single sub-patch, the solution values for the assigned sub-patch are stored

together with the values in the fringe discretization regions. The fringe regions are

subsequently updated at each time-step to allow for transmission of information across

component sub-patches to take place via neighbor-to-neighbor parallel communication.

This procedure is akin to the one used in connection with the “artificial” interpolating

inter-patch boundaries considered in Section 3.2.3.1, but here no interpolation is

necessary—since neighboring sub-patches share the same discretization grid of the

underlying patch. For all simulations in this work, we have employed a number of
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Figure 3.9: One dimensional line segmentation for periodic boundary
conditions.

four points in the fringe intervals in each dimension.

Remark 4. Periodic boundary conditions on curvilinear patches such as annuli can

be applied by the decomposition described above using fringe points on each end of

a periodic interval and a communication strategy analogous to the one described

above—as demonstrated in Figure 3.9.

3.2.3.3 Load balancing

An efficient parallel decomposition strategy should give rise to minimal communication

between processors, on one hand, and to a balanced overall workload, on the other.

In our approach, one processor is assigned to each sub-patch. In order to determine

the number of sub-patches (processors) to be used along each dimension of a given

patch the algorithm proceeds in two steps: the number of total processors assigned to

a problem are distributed evenly to each of the curvilinear patches; each patch is then

subdivided into a number sub-patches that are balanced in an effort to optimize the

execution of FFTs.

Given a number of patches Ω1, ..,ΩM that cover the computational domain, and a

number ptotal of processors assigned to the solver, then each patch Ωi is assigned at

least

pi =

 N i
qN

i
rN

i
s∑M

k=1N
k
qN

k
rN

k
s

ptotal

, i = 1, 2, ..,M

processors, where N i
q, N

i
r, N

i
s are the number of discretization points along each side of

the computational domain of Ωi, and where b·c is the floor function. The remainder
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ptotal −
M∑
i=1

pi remains un-utilized or is redistributed over all sub-domains on the basis

of some adequate ad-hoc criterion.

The number of processors now assigned to a curvilinear patch Ωi can be factored

as pi = piqp
i
rp
i
s for where piq, p

i
r, p

i
s ≥ 1 denote the number of processors assigned in

the q, r, s directions, respectively. The sizes of the blocks used in each dimension

should be balanced so as to achieve good parallel scaling; this can be accomplished by

minimizing the quantity

min
pqprps=N i

procs

∣∣∣∣∣N i
q

piq
− N i

r

pir

∣∣∣∣∣+

∣∣∣∣∣N i
r

pir
− N i

s

pis

∣∣∣∣∣+

∣∣∣∣∣N i
q

piq
− N i

s

pis

∣∣∣∣∣ ; (3.42)

this procedure results in patches that contain approximately the same number of

discretization points in each one of the Cartesian directions q, r and s: e.g. N i
q/p

i
q ≈

N i
r/p

i
r ≈ N i

s/p
i
s. In addition to load balancing the parallel code, this strategy results in

meshes of approximately equal sizes, which provides the added advantage that FFTs

of fixed sizes can be used, as discussed in Appendix D.3—giving rise to additional

run-time efficiency.

3.3 Implementation details

This section completes the full description of our FC-based linear elasticity solver

for general domains. An explicit treatment of temporal derivatives (a choice made

for easy implementation and rapid performance per iteration) will be described in

Section 3.3.1 for time marching and, subsequently, a filter will be introduced in

Section 3.3.2 to prevent an undesirable growth in time of high-frequency errors that

may in some cases result from the FFT approximation in space. Treatment of the

traction boundary conditions, which are applied by solving for the relevant out-of-plane

directional derivatives in terms of approximate in-plane derivatives, will be discussed

in Section 3.3.3 along with a formulation in Section 3.3.4 of “absorbing” boundary
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patches used to approximate infinite geometries in an overset strategy for a bounded

computational domain.

3.3.1 Explicit treatment of temporal derivatives

A high-order discrete temporal formulation is employed for time integration of the

elasticity PDEs; explicit fourth-order Runge-Kutta (RK4) and Adams-Bashforth (AB4)

methods are straightforward and provide adequate regions of absolute stability [10, 41].

While the RK4 method requires initialization of only the first step, each subsequent

time-step demands four evaluations of the right-hand-side, and the proper enforcement

of boundary conditions at intermediate steps may be problematic, particularly for

time-dependent boundary conditions [1, 23]. On the other hand, the AB4 method—

which is employed everywhere in this thesis—requires only one evaluation of the

right-hand-side and a more straightforward application of boundary conditions, but

necessitates an initialization of the first three steps. The latter point, however, is moot

in most relevant contexts, in which sources ramp up from zero (carrying zero initial

displacement), rendering the initial steps identically equal to zero.

Recalling the second-order-in-time elastic wave equation in the form

ũtt = F̃1(ũ, ũq, ũr, ũs, ṽ, ṽq, ṽr, ṽs, w̃q, w̃r, w̃s, t),

ṽtt = F̃2(ũ, ũq, ũr, ũs, ṽ, ṽq, ṽr, ṽs, w̃q, w̃r, w̃s, t),

w̃tt = F̃3(ũ, ũq, ũr, ũs, ṽ, ṽq, ṽr, ṽs, w̃q, w̃r, w̃s, t),

(3.43)

and the transformation

g̃1 = ũt, g̃2 = ṽt, g̃3 = w̃t,
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the PDE formulation can be recast to a first-order-in-time system as

ũt = g̃1, g̃1,t = F̃1(ũ, ũq, ũr, ũs, ṽ, ṽq, ṽr, ṽs, w̃q, w̃r, w̃s, t),

ṽt = g̃2, g̃2,t = F̃2(ũ, ũq, ũr, ũs, ṽ, ṽq, ṽr, ṽs, w̃q, w̃r, w̃s, t),

w̃t = g̃3, g̃3,t = F̃3(ũ, ũq, ũr, ũs, ṽ, ṽq, ṽr, ṽs, w̃q, w̃r, w̃s, t),

(3.44)

for unknowns ũ, ṽ, w̃, g̃1, g̃2, g̃3. For integration in time using a temporal step size

∆t, the fourth-order explicit Adams-Bashforth discretization yields the fully discrete

equations as

g̃1(t+ ∆t) = g̃1(t) +
∆t

24

(
55F̃1(t)− 59F̃1(t−∆t) + 37F̃1(t− 2∆t)− 9F̃1(t− 3∆t)

)
,

g̃2(t+ ∆t) = g̃2(t) +
∆t

24

(
55F̃2(t)− 59F̃2(t−∆t) + 37F̃2(t− 2∆t)− 9F̃2(t− 3∆t)

)
,

g̃3(t+ ∆t) = g̃3(t) +
∆t

24

(
55F̃3(t)− 59F̃3(t−∆t) + 37F̃3(t− 2∆t)− 9F̃3(t− 3∆t)

)
,

ũ(t+ ∆t) = ũ(t) +
∆t

24

(
55g̃1(t)− 59g̃1(t−∆t) + 37g̃1(t− 2∆t)− 9g̃1(t− 3∆t)

)
,

ṽ(t+ ∆t) = ṽ(t) +
∆t

24

(
55g̃2(t)− 59g̃2(t−∆t) + 37g̃2(t− 2∆t)− 9g̃2(t− 3∆t)

)
,

w̃(t+ ∆t) = w̃(t) +
∆t

24

(
55g̃3(t)− 59g̃3(t−∆t) + 37g̃3(t− 2∆t)− 9g̃3(t− 3∆t)

)
.

(3.45)

Dirichlet conditions are imposed by enforcing their values on the given boundary

at the end of each time-step of (3.45), whereas time-dependent traction boundary

conditions are applied at the beginning of each time-step by the evaluation of the

FC-Neumann operator used in the right hand sides F̃1, F̃2, F̃3. That is, one time-step

of the solver will first compute the requisite traction boundary derivatives at tn; then

update the solution via (3.45) to tn+1; and finally prescribe the Dirichlet boundaries

at tn+1. A summary of the full algorithm is provided in Section 3.3.5.
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3.3.2 Frequency space filters

In an explicit time formulation, numerical errors may give rise to instability. Since

the FC derivatives are evaluated in the frequency domain, Fourier domain filters can

be efficiently applied to effectively eliminate undesirable high-frequency error. The

spectral filter used in the differentiation procedure employed in this thesis is given by

σ

(
2k

N

)
= exp

(
−α
(

2k

N

)2p
)
, (3.46)

and applied to a function u(x) with Fourier coefficients ûn via the operation

N
2∑

k=−N
2

ûk exp(ikx) −→
N
2∑

k=−N
2

σ
(
2k/N)

)
ûk exp(ikx). (3.47)

The positive integer p controls the rate of decay of the filter coefficients, and the real

parameter α determines the level of suppression: the highest-frequency modes are

multiplied by e−α.
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Figure 3.10: Depictions of the exponential filter with parame-
ter values given by (p, α) = (3N/5, 16 log(10)) (left) and (p, α) =
(4,−cL∆t/hmin ln(10−2)) (right).

The filter with parameters (p, α) = (3N/5, 16 log(10)) used in [4] (for the viscous

Navier-Stokes equations) which is plotted in Figure 3.10, an absence of viscosity
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has been found to create a large discontinuity in neighboring sub-patches in our

parallel implementation and, as a result, to give rise to instability—as the Fourier

series expansions in segments from different overlapping patches may be made overly

inconsistent by the filtering procedure, and, thus, give rise to instability. This behavior,

which is also cited in [30], is demonstrated in the left portion of Figure 3.11.

A milder choice of parameters (in the sense that the highest frequency terms aren’t

entirely discarded) is used in this thesis, namely

(p, α) = (4,−cL∆t/hmin ln(10−2)), (3.48)

where cL =
√

(λ+ 2µ)/ρ is the maximum (longitudinal) wave speed in the material,

and hmin is the finest spatial step size throughout the computational domain. This

particular choice of parameters, inspired by a similar choice in [30], was employed

to incorporate the CFL condition in such a way that the filter approaches unity as

∆t → 0 for a fixed ∆x. As seen in the right graph of Figure 3.10, this filter does

not eliminate the highest modes completely but more smoothly forces the decay of

the Fourier coefficients. This is the choice of filter that is adopted for all subsequent

simulations in this work since it retains numerical stability. This is illustrated in

the right portion of Figure 3.11: after 5,000 time-steps the left image shows some

significant errors at interface boundaries. By 10,000 time-steps, the magnitude of these

errors is orders of magnitude higher. With the parameters used to produce the right

portion of the figure the errors remain as shown in the figure for 10,000 time-steps

and, indeed, as far as we have checked, for arbitrarily long times thereafter—at least

up to 500,000 time-steps.
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Figure 3.11: Numerical errors along the x-axis after 5000 time-
steps for plane waves in a thin plate of dimensions 70mm× 10mm×
25mm decomposed onto four sub-patches. Left: Errors for parameters
values (p, α) = (3N/5, 16 ln(10)). Right: Errors for parameters values
(p, α) = (4,−cL∆t/hmin ln(10−2)).

3.3.3 Treatment of traction boundaries in curvilinear coordi-

nates

Numerically, traction boundary conditions can be applied by solving for the relevant

coordinate derivatives in terms of tangential derivatives in the surface plane during

the computation of the right hand side, and applying the Neumann FC operator

introduced in Section 3.1.2. For example, the traction boundary condition on the face

corresponding to (0, r, s) and given by (3.36) can be solved for the out-plane-derivatives

ũq, ṽq and w̃q, which yields
ũq(0, r, s)

ṽq(0, r, s)

w̃q(o, r, s)

 =
1

κ


Bw̃qCṽq −BṽqCw̃q AṽqCw̃q −Aw̃qCṽq Aw̃qBṽq −AṽqBw̃q
BũqCw̃q −Bw̃qCũq Aw̃qCũq − Ãq

Cw̃q AũqBw̃q −Aw̃qBũq
BṽqCũq −BũqCṽq AũqCṽq −AṽqCũq AṽqBũq −AũqBṽq



D1

D2

D3


(3.49)

where A, B, C, D and κ families of quantities are given by

Aũq
= (2µ+ λ)Jnxqx + µJnyqy + µJnzqz, Aṽq = λJnxqy + µJnyqx, Aw̃q

= λJnxqz + µJnzqx,

Aũr
= (2µ+ λ)Jnxrx + µJnyry + µJnzrz, Aṽr = λJnxry + µJnyrx, Aw̃r

= λJnxrz + µJnzrx,
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Aũs
= (2µ+ λ)Jnxsx + µJnysy + µJnzsz, Aṽs = λJnxsy + µJnysx, Aw̃s

= λJnxsz + µJnzsx,

Bũq
= µJnxqy + λJnyqx, Bṽq = µJnxqx + (2µ+ λ)Jnyqy + µJnzqz, Bw̃q

= λJnyqz + µJnzqy,

Bũr
= µJnxry + λJnyrx, Bṽr = µJnxrx + (2µ+ λ)Jnyry + µJnzrz, Bw̃r

= λJnyrz + µJnzry,

Bũs
= µJnxsy + λJnysx, Bṽs = µJnxsx + (2µ+ λ)Jnysy + µJnzsz, Bw̃s

= λJnysz + µJnzsy,

Cũq
= µJnxqz + λJnzqx, Cṽq = µJnyqz + λJnzqy, Cw̃q

= µJnxqx + µJnyqy + (2µ+ λ)Jnzqz,

Cũr
= µJnxrz + λJnzrx, Cṽr = µJnyrz + λJnzry, Cw̃r

= µJnxrx + µJnyry + (2µ+ λ)Jnzrz,

Cũs
= µJnxsz + λJnzsx, Cṽs = µJnysz + λJnzsy, Cw̃s

= µJnxsx + µJnysy + (2µ+ λ)Jnzsz,

D1 = d̃1(0, r, s, t)− (Aũr
ũr +Aṽr ṽr +Aw̃r

w̃r +Aũs
ũs +Aṽs ṽs +Aw̃s

w̃s),

D2 = d̃2(0, r, s, t)− (Bũr
ũr +Bṽr ṽr +Bw̃r

w̃r +Bũs
ũs +Bṽs ṽs +Bw̃s

w̃s),

D3 = d̃3(0, r, s, t)− (Cũr
ũr + Cṽr ṽr + Cw̃r

w̃r + Cũs
ũs + Cṽs ṽs + Cw̃s

w̃s),

and

κ = Aw̃q
BṽqCũq

−AṽqBw̃q
Cũq
−Aw̃q

Bũq
Cṽq +Aũq

Bw̃q
Cṽq +AṽqBũq

Cw̃q
−Aũq

BṽqCw̃q
.

(3.50)

The out-of-plane derivatives ũq(0, r, s), ṽq(0, r, s) and w̃q(0, r, s) can be obtained

from (3.36) in terms of the in-plane derivatives ũr, ũs, ṽr, ṽs, w̃r and w̃s at tn. Once

they have been determined, every invocation of the FC algorithm for the relevant first

derivatives in the right hand side of (3.33) at each time-step, i.e. in the computation

of ũq(q, r, s), ṽq(q, r, s) and w̃q(q, r, s) throughout the domain, employs the Neumann
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operator of Section 3.1.2 using, for example, the d matching points given by

ũ(qd, r, s)

ũ(qd−1, r, s)
...

ũ(q1, r, s)

ũq(0, r, s)


, (3.51)

where ũq(0, r, s) is found from above by (3.49). This portion of the algorithm is placed

in the context of the overall FC methodology in the algorithm pseudo-code presented

in Section 3.49.

Remark 5. The use of the filtering procedure described in the previous section is

restricted in our algorithm to the evaluation of the right hand side of the elastic wave

equation (3.33), and it is not used in the computation of the in-plane derivatives in

the right hand side of (3.49).The latter filtering procedure, which is not necessary,

makes the traction boundary conditions more inconsistent with solution values in the

interior volume of a computational domain, and gives rise to larger errors near the

traction boundaries than can otherwise be obtained.

3.3.4 Absorbing boundary conditions

Elastodynamics problems may require a patch that can effectively simulate the semi-

infinite or infinite extent of a geometry without giving rise to pollution resulting

from scattering from computational boundaries. (The physical experiments presented

in Chapter 4 accomplish this in the laboratory by way of acoustic absorbers made

of plasticine [53, 67]. This procedure allows one to isolate patterns that arise from

various holes or cracks from boundary effects.)

An infinite sponge layer that absorbs outgoing waves and minimizes reflections

from a physical boundary has been included as part of our overset algorithm. An
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absorbing mesh inspired by the formulation [6] contains two key elements: a stretched

component to slow down the advance of outgoing waves (effectively preventing them

from reaching the farthest edge of the computational domain); and a damping term

(or artificial dissipation) to compensate for the spurious reflections that may result

from such a stretch. In a one-dimensional case, for example, one might consider a

domain Ω = [x0, x1] parametrized by

x(q) = x0 + (x1 − x0)q q ∈ [0, 1]. (3.52)

and discretized by N points. A new mapping can be constructed to preserve the

discretization on a subset of the domain [0, q1] and stretch it on [q1, q]. This is

accomplished by first defining a partition of unity P (q) [58] that smoothly ramps up

from P = 0 to P = 1 as shown in Figure 3.12 and given by

P (q) = P (q, q1,∆q) =


0, q ≤ q1

1− exp

(
2e−1/τ

τ − 1

)
, q1 + ∆q ≤ q, τ =

q − q1

1− q1

.
(3.53)

0

1

Figure 3.12: An example of a stretching function P (q).
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The absorbing patch is subsequently produced by the mapping given by

X(q) =


x(q), q ≤ q1

x(q)

γ0 + (1− γ0)(1− P (q))
, q1 ≤ q ≤ 1,

(3.54)

where γ0 ∈ (0, 1) is a so-called stretching constant and chosen in practice to be smaller

than one. (Note that (3.54) can also be used to stretch for variable resolution or

better-fitting overset arrangements.) For a fixed γ0, the amount of physical stretch

in our formulation (parameterized by [q1, 1] and determined by the slope of τ) varies

by the selected number of points N in the absorbing layer. An example of a radially

absorbing patch placed around a square plate is shown in Figure 3.13.

Figure 3.13: An example of a square mesh overset by a radially
absorbing patch; γ0 = 0.10.

While the stretching described above in effect “slows down” outgoing waves, small

errors in the form of reflected waves may result from the large metric derivatives

and coarsened resolution in the stretched regions [6]. These are easily suppressed by

damping the amplitude through the introduction of an artificial damping term of the
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form

ũt = g̃1 − β̃(q)ũ, g̃1t = F̃1(ũ, ũq, ũr, ũs, ṽ, ṽq, ṽr, ṽs, w̃q, w̃r, w̃s, t),

ṽt = g̃2 − β̃(q)̃b, g̃2t = F̃2(ũ, ũq, ũr, ũs, ṽ, ṽq, ṽr, ṽs, w̃q, w̃r, w̃s, t),

w̃t = g̃3 − β̃(q)w̃, g̃3t = F̃3(ũ, ũq, ũr, ũs, ṽ, ṽq, ṽr, ṽs, w̃q, w̃r, w̃s, t),

(3.55)

where the corresponding damping function β̃(q) with strength β0 is given by

β̃(q) = β0 − β0(γ0 + (1− γ0)(1− P (q))) (3.56)

and scales with (3.54). By the time waves arrive at the edge of a sponge layer,

their amplitudes should be damped enough to enable a zero displacement boundary

condition (u = v = w = 0) at the farthest boundary line. The properties of the

sponge layer methodology discussed above are illustrated in Figure 3.14 by means

of an experiment concerning a radially absorbing patch placed around an aluminum

square plate (λ ≈ 1.997× 107N/m2, µ ≈ 1.024× 107N/m2). In practice, we have found

that use of the parameters N = 100, γ0 = 0.075 and β0 = 2 gives rise to a performance

similar to the one obtained for this experiment.
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Figure 3.14: A numerical simulation of the out-of-plane displace-
ment resulting from right-going waves traveling into an absorbing
layer of aluminum (Nsponge = 100, γ0 = 0.075, β0 = 2) whose bound-
ary is demarcated by the vertical line. The right-hand column of
figures represents the corresponding amplitude along the horizontal at
z = 0.

3.3.5 Overall algorithm pseudo-code

The previous sections in this chapter have presented the methodologies for the solution

of the elastic wave equation in three-dimensional domains. The brief pseudo-code

below (Algorithm 1) summarizes our solver.

3.4 Performance studies

Our complete solver for the fully three-dimensional variable coefficient elastic wave

equation has been presented in Sections 3.1 through 3.3. In this section we present

a variety of numerical experiments that demonstrate the qualities of the algorithm,
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1: for Each time-step n do

2: for All patches Ωi do

3: for All sub-patches ωj ∈ Ωi, each assigned to a processor do

4: Evaluate the directional derivatives needed to enable enforcement

of the traction boundary conditions via (3.49) (if they exist in a

given problem) at time t = tn

5: Advance the solution throughout the domain ωj and its boundary

∂ωj to time tn+1 via Equations (3.45). (Traction conditions are

enforced by using the directional derivatives with the FC Neumann

operator in the computation of the right hand sides F1, F2, F3.)

6: Update physical Dirichlet boundary values at tn+1 (enforced by

direct injection of the given Dirichlet boundary values.)

7: if ωj has neighboring sub-patches {ωk} ∈ Ωm, m = i then

8: Exchange fringe points solution values with {ωk} via MPI

9: end if

10: if ωj has neighboring (sub)patches {ωk} ∈ Ωm, m 6= i then

11: Interpolate and exchange values with {ωk} via MPI

12: end if

13: end for

14: end for

15: end for

Algorithm 1: Summary of the full FC-based numerical PDE solver
for the elastic wave equation.
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including its convergence and dispersion properties, its stability and its parallel

performance.

3.4.1 Convergence and code verification experiments

A verification of the correctness of the numerical scheme and its C++ implementation

(which accounts for the full complexity inherent in equations (3.33) and (3.36)), can be

performed by the method of manufactured solutions (MMS). This procedure allows us

to confirm, in particular, that the algorithm achieves the theoretical order of accuracy

(in our case, 5th-order)—similar verification procedures have been used extensively;

see e.g. [66, 69, 77]. The method postulates a smooth solution and substitutes it into

the governing equations and boundary conditions to determine the external forcing

and boundary conditions that yield the desired solution. For our example we consider

the solution

u = sin(2πf1(x− c1t)) sin(2πf2(y − c1t)) sin(2πf3(z − c1t)),

v = sin(2πf1(x− c2t)) sin(2πf2(y − c2t)) sin(2πf3(z − c2t)),

w = sin(2πf1(x− c3t)) sin(2πf2(y − c3t)) sin(2πf3(z − c3t)),

(3.57)

with parameters f1 = f2 = f3 = 12Hz and c1 = c2 = c3 =
√

5m/s on a cylinder

of radius r = 10cm and length of 30cm filled with a solid of material constants

ρ = 1, λ = 1 and µ = 2. For the numerical computations the cylindrical domain

is viewed as the union of two overlapping patches ω1 (the rectangular box) and ω2

(the cylinder)—as indicated in Figure 3.15, which also contains a snapshot of the v

coordinate, v = v(x, y, z, t), of the solution (u, v, w). Considering integer multiples of

the coarsest spatial discretization used, which contains a total of N = 30× 30× 30

points in ω1 and N = 30× 30× 80 points in ω2, we advance the simulation on up to

512 processors for five thousand time-steps at a step size of ∆t = 0.1µs, employing

both Dirichlet and traction boundary conditions. The maximum absolute errors

among all components of the vector solution (u, v, w) for all time-steps are displayed in
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Table 3.2—where the fifth-order accuracy of the algorithm can easily be appreciated.

Figure 3.15: Numerical values of the vertical displacement produced
by the right-hand-side source (3.57). The bold dots indicate the layers
of interpolation points used.

N (patch ω1) N (patch ω2) L∞err Dirichlet O(L∞) L∞err Traction O(L∞)

30× 30× 30 30× 30× 80 2.34e-03 — 2.82e-03 —
60× 60× 60 60× 60× 160 7.89e-05 4.89 8.29e-05 5.09
90× 90× 90 90× 90× 240 9.41e-06 5.24 9.37e-06 5.38

120× 120× 120 120× 120× 320 2.00e-06 5.38 2.00e-06 5.37
150× 150× 150 150× 150× 400 6.51e-07 5.03 6.51e-07 5.03

Table 3.2: Maximum error in the elastic displacement over 5000
time-steps. A fine temporal discretization is used so that the overall
error is dominated by errors arising from the spatial discretization.

3.4.2 Dispersion and stability experiments

In Section 3.1 we highlighted two of the great strengths of the FC methodology: its

nearly dispersionless character and its stability. In order to quantify these properties
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Figure 3.16: From left to right: The numerical solution of equa-
tion (3.58) at time t = 0.1s for configurations involving n = 3, 12
and 48 wavelengths along a thin aluminum plate.

in the 3D block-decomposed methodology, it is useful to consider, as we did in the

1D wave equation example, numerical solutions to the elasticity equations for waves

that propagate over long distances. Considering a 3D aluminum plate of dimensions

400mm× 10mm× 100mm and a Poisson’s ratio of ν = .35 (corresponding to material

parameters λ = 6.049× 1010N/m2 and µ = 2.593× 1010N/m2) using both Dirichlet

and traction boundary conditions, our method is applied to advance the solution given

by

u(x, y, z, t) = 0, v(x, y, z, t) = sin(2πn(x− cLt)), w(x, y, z, t) = 0, (3.58)

over one period (t = 0 to t = 1) for various wavenumbers n discretized by fixed numbers

15 and 20 of points per wavelength, and where cL =
√
λ+ 2µ is the longitudinal

wave speed in meters-per-second. An illustration of the computational domain and

the corresponding solution can be seen in Figure 3.16 for wavenumbers n = 3, 12

and 48; similar results can be obtained for much larger wavenumbers. As shown in

what follows (and as is the case for all cases we have ever considered in this regard,

including cases involving much larger wavenumbers), the FC numerical errors are

virtually independent of frequency as long as the numbers of points-per-wavelength

are kept constant.
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Figure 3.17: Maximum numerical errors over all space and over
one full temporal cycle of a plane wave solution with increasing num-
ber of wavelengths for Dirichlet (left) and traction (right) boundary
conditions.

The numerical results presented in this section, which result from simulations

conducted using up to 512 processors for the highest wavenumbers n, were obtained

by means of the domain decomposition and parallel implementation described in

Section 3.2.3.2. The use of a block decomposition represents a key difference between

the present implementation and that associated with the 1D example discussed earlier:

for a number of ptotal parallel processes, waves that travel along each dimension’s line

segmentation can cross Gram polynomial matching regions as many as O(p
1/3
total) times—

as opposed to the O(1) crossings in the 1D example. Consideration of Figures 3.17

and 3.18, which resulted from a run involving 600, 000 time-steps, suggests that the

use of large numbers of sub-domains and interior sub-patches does not give rise to

significant dispersion or stability degradation.

3.4.3 Parallelization experiments

The load-balancing methodologies introduced in Sections 3.2.3.2 and 3.2.3.3, respec-

tively, enable an efficient parallel implementation of the FC solver by means of a

workload distribution based on an overset decomposition of the computational domain
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Figure 3.18: Numerical errors over many temporal cycles for a
plate ten-wavelengths in length demonstrating long-time stability for
Dirichlet and Traction boundary conditions (left and right images,
respectively).

into a collection of curvilinear patches and sub-patches. By augmenting each sub-patch

with a fringe region and assigning it to a single processor, our proposed methodol-

ogy maintains accuracy throughout the full computational domain and additionally

enables rapid computations of the needed Fourier transforms using fixed FFT sizes

(see Appendix D.3). To demonstrate the parallel scalability, we conducted tests on a

computing cluster (Appendix D.4) using 16 cores per node for up to 480 processing

cores. The elasticity solver was advanced for 1,000 time-steps and each processor

recorded the maximum absolute error in the solution in the corresponding sub-patch as

well as the time spent in local computation—including the time spent in interpolation

and communication but excluding the (extremely small) start-up and initialization

times.

To analyze the scalability of the solver we first consider a thin-plate test problem

with traction boundary conditions, and we record the number S of CPU-seconds

required for the solver to advance a million spatial unknowns for one time-step; it is

easy to check that S is given by the expression

S =
(# of processors)× (total computation time)

3×
[
(# of spat. discret. pts.) + (# of traction bdry. pts.)

]
/106

, (3.59)
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where the factor of 3 stems from the total number of unknowns at each point, i.e. the

displacements u, v and w.

Clearly, perfect scaling arises whenever S remains (essentially) constant as the

discretization is refined and the number of assigned processors is increased. The S

values for an experiment concerning the aforementioned thin plate containing a single

patch are given in Table 3.3; these results illustrate the perfect scalability of our solver

up to at least 480 processors/sub-patches, while maintaining fixed accuracy, for a

single patch configuration (see Table 3.4 for corresponding results in a multi-patch

setup).

Remark 6. For typical applications of the FC elasticity solver, the expected com-

putational load on each processor outweighs the communication load of the fringe

regions, and hence it is not necessary to explicitly consider this factor in processor

allocation—it is indirectly accounted for by the relatively equal block sizes enforced by

the algorithm we put forth in Section 3.2.3.3.

A second test was conducted to determine the scalability properties of our FC

elasticity solver for configurations containing multiple patches—for which an addi-

tional computational cost associated with inter-patch interpolation occurs. Use of

an appropriate inter-patch interpolation strategy increases the computing cost per

million unknowns per processor by a fixed amount, that is, by an amount that is

independent of the number of patches used. This useful property results from the

fact that each donor and receiving sub-patch contains a number of interpolation

points that does not grow with the overall discretization (as long as the sub-patch

discretization sizes remain fixed, which is the recommended strategy for our solver),

and, therefore, the total time spent by each processor in interpolation procedures is

independent of the number of processors used. Furthermore, to mitigate the possible

imbalance that may arise from the additional load incurred by sub-patches that require

interpolation versus those that don’t, all interpolation weights are precomputed on the

donor patch during initialization so that all interpolations can be performed locally.
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This additionally ensures that no stencils are communicated: each boundary sub-patch

simply receives, at each time-step, the interpolated u, v and w values directly from

each donor sub-patch and replaces those values in its solution. The corresponding

results of an experiment conducted on a plate with a circular through-hole, whose

geometry is composed of the six different curvilinear patches detailed in Chapter 4.2,

is displayed in Table 3.4. Clearly, our methodology maintains the excellent parallel

scaling and consistent accuracy observed in Table 3.3 for the single patch configuration,

and only a small additional amount of computing time is required by the necessary

inter-patch interpolation.
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# grid pts # processors L∞ error O(L∞) S

799,200 120 2.83e-3 — 1.20 sec
2,589,408 360 3.00e-4 5.54 1.23 sec
4,111,884 480 1.38e-4 5.04 1.30 sec

# grid pts # processors L∞ error S

4,111,884 120 2.90e-4 1.34 sec
— 360 3.00e-4 1.23 sec
— 480 3.06e-4 1.28 sec

Table 3.3: CPU-seconds per million unknowns and errors for a
domain consisting of a single curvilinear patch (no interpolation), in-
dicating excellent scalability up to at least 480 processors. Upper table:
weak convergence test, for which both the number of discretization
points and the numbers of processors are increased simultaneously.
Lower table: strong convergence test, wherein for a fixed number of
grid points, the number of processors used is increased. Clearly, es-
sentially perfect parallel efficiency is obtained under weak and strong
convergence tests.

# grid pts # processors L∞ error O(L∞) S

377,460 120 1.70e-1 — 1.61 sec
3,033,360 360 7.98e-3 4.41 1.54 sec
10,252,980 480 1.04e-3 5.03 1.65 sec

# grid pts # processors L∞ error S

3,033,360 240 7.89e-3 1.51 sec
— 360 7.98e-3 1.55 sec
— 480 8.32e-3 1.45 sec

Table 3.4: CPU-seconds per million unknowns and errors for a
domain of a plate with a circular-through hole consisting of six dif-
ferent curvilinear meshes which interpolate from each other (see Sec-
tion 4.2.3). Upper table: weak convergence test, for which both the
number of discretization points and the numbers of processors are in-
creased simultaneously. Lower table: strong convergence test, wherein
for a fixed number of grid points, the number of processors used is
increased. Clearly, essentially perfect parallel efficiency is obtained
under weak and strong convergence tests.
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Chapter 4

Numerical examples and
applications

The introduction section in Chapter 1 presents an assortment of motivating scientific

and engineering applications for problems in elastodynamics, chief among them

the propagation of seismic waves induced by earthquakes and techniques related to

ultrasonic non-destructive evaluation in, e.g., airplane wings. In order to demonstrate

the broad applicability and high resolution capabilities of our FC-based solver for

complex elastic-wave propagation problems, this chapter presents in Section 4.1

examples of shear wave propagation and subsequent ground motion in simulated 3D

geological structures; and in Section 4.2 a first-time comparison between experimental

studies and the corresponding 3D numerical simulations for the scattering of guided

ultrasonic waves in thin aluminum plates with defects.

4.1 Seismic response in 3D topographies

The first investigations of the effect on seismic wave motion by irregular topography

were conducted a half-century ago (e.g. the studies of [37, 75]) and were spurred by

artifacts found in seismograms recorded near rough patches of the Earth—which were

later identified and confirmed both experimentally and semi-analytically [9, 13, 14] as

scattered waves consisting mostly of Rayleigh surface waves. An additional observation
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concerned high amplification of ground acceleration at topographic ridges, which was

found near epicenters of strong earthquakes, and which manifested itself as intense

shaking in elevated areas of the surface. (The 1994 Northridge, California earthquake,

for example, recorded at the top of a hill one of the highest accelerations ever ob-

served [71]). A full understanding of these observations, which can enable predictions

as to the locations of the strongest expected ground motion, necessitates a fast solver

that can resolve responses to seismic waves in large and complicated computational

domains within a short computation time. In what follows we present results of

applications of our elastic wave equation solver with its overset grid methodology to

3D geological structures impacted by incident shear waves. In particular, we will study

wave amplification by a 180m hill, a situation proposed by [14] and treated previously

by a variety of numerical methods [7, 45, 49]; this will serve both as a physical verifica-

tion of our implementation of traction boundary conditions as well as an example of a

problem of great practical interest. As noted in Section 4.1.1, in particular, the present

solver produces high-definition solutions in short runs using 384 cores of a present-day

computer by means of significantly coarser spatial discretizations than those used by

other solvers. In Section 4.1.2 a significantly more complex extended version of this

topography is presented, which is treated by our solver with no additional effort.

4.1.1 A gently-sloped mountain

The effect of three-dimensional topography has been repeatedly studied via considera-

tion of a Gaussian hill of height 180m whose profile is parameterized by

y = y(x, z) = 1050 + 180 exp

[
−x− 1040

2 · 2502
− z − 1040

2 · 1502

]
m (4.1)

for (x, z) ∈ [0km, 2.08km], and whose computational domain extends to a depth of

1.05km. (The bottom of the lowermost computational patch lies on the plane y = 0.)

For our treatment, this computational domain is covered by two overlapping patches

as depicted in Figure 4.1, which contain N = 400, 000 discretization points each: the

patch containing the hill extends from a minimum height of y = 550m to the top



Chapter 4. Numerical examples and applications 67

Figure 4.1: Left: Computational domain corresponding to a 180
meter hill composed of two overset patches. Right: A two-dimensional
close-up cut of the geometry and its discretization.

of the hill at y = 1230m and spans the lateral dimensions of the domain given by

(x, z) ∈ [0, 2080]× [0, 2080]m, and the second patch covers the cubic domain given by

(x, y, z) ∈ [0, 2080]× [0, 900]× [0, 2080]. A homogeneous ground medium is assumed,

with a P -wave velocity of 3.2km/s, an S-wave velocity of 1.8475km/s and a density

of 2200kg/m3. A vertically incident S-wave (shear wave) of fundamental wavelength

λ = 180m polarized along the short axis of the hill is considered; the time-dependent

source is a Ricker wavelet at y = 0 that is described by the Dirichlet boundary

conditions

u(x, 0, z, t) = 0,

v(x, 0, z, t) = 0,

w(x, 0, z, t) = .5[2π2f 2
0 (t− t0)2 − 1]e−π

2f2
0 (t−t0)2

,

(4.2)

centered at time t0 = .5s with a frequency f0 = 10.2Hz [14, 49]. Traction-free boundary

conditions were imposed on the top surface of Figure 4.1 and periodic conditions were

assumed along the lateral edges. The simulation was evolved up to time t = 1.4s at a

step size of ∆t = 2.0× 10−4s.

The time responses (e.g., seismograms) for the various displacements measured

at receivers along the minor axis of the hill are given in Figure 4.2, where we have
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indicated the incident S-wave as well as the diffracted P - and Rayleigh waves. A strong

amplification of the ground motion at and near the top of the hill is clearly observed,

and the diffracted waves away from the topography are composed of a combination

of a P -wave and a Rayleigh wave, both of which carry similar amplitudes in the

vicinity of the hill but decay at different rates as functions of the distance from the

hill. Snapshots of the solution for the in-plane ground displacement w(x, y, z, t) over

the entire surface are additionally presented in Figure 4.3, where, following previous

contributions, it can be further observed that most of the waves diffracted away from

the hill are generated in the summit. The amplification factor within the hill itself

appears to exhibit a strong variability: the maximal amplitudes occur in small areas

around the summit or at mid-slope when a de-amplification is exhibited in the peak.

A strong directivity by the shape of the hill is also seen: most of the energy propagates

in the direction along the minor axis of the hill, with a much less significant amount

in the direction of the major axis. This is further confirmed in the bottom image of

Figure 4.2, where results of the ground motion produced along the x−profile that

runs along the major axis show that there is almost no diffracted wave field radiated

in this direction.

The results of this simulation are in excellent agreement with solutions produced

previously by means of the time-domain boundary element method in [45] (which,

as noted in the conclusion section of that paper, becomes very costly for problems

requiring large discretizations); with solutions found by the high-order spectral element

method in [49], which employed a total of N = 4, 935, 953 discretization points for a

time-step that scales with at least 1/∆x2; and, finally, with solutions found by the

stable FD method in [7] which employed a total of N = 109, 808, 412 discretization

points. For comparison, the diffracted P - and Rayleigh waves were accurately evaluated

in our simulations using a total of N = 800, 000 discretization points for a run-time of

approximately 5.9 minutes on 384 processors.
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Figure 4.2: Time responses of various displacement components on
the surface for receivers placed along the z-axis (the minor axis of
the mountain) and x-axis (the major axis). The incident S-wave is
polarized along the minor (z-) axis of the 180m mountain.
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Figure 4.3: Horizontal displacement w(x, y, z, t) at various snap-
shots in time, where the z-coordinate direction contains the minor
axis of the hill. An intense field concentration at the summit is clearly
visible, as is the preferential propagation direction of the diffracted
waves (in the direction of the short axis of the mountain) it generates.
The time slider is given underneath each snapshot.
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Figure 4.4: Computational domain for a four steeply-sloped moun-
tain system, and corresponding overset patches.

4.1.2 A cluster of steeply-sloped mountains

To demonstrate the capabilities of our solver we extend the previous example by

considering four sharp symmetric 180m tall mountains, each given by the respective

parameterizations

yi(x, z) = 1050 + 180 exp

[
−x− x

i
0

2 · 502
− z − zi0

2 · 502

]
m, i = 1, 2, 3, 4 (4.3)

centered at (xi0, z
i
0) = (1240, 1040), (800, 1040), (1040, 1240),(1040, 800) meters, respec-

tively; once again, the full computational domain extends to a depth of 1.05km covered

by two overlapping patches (Figure 4.4): the patch with the hills of size N = 1, 600, 000

points and the Cartesian patch underneath of size N = 400, 000. We considered again

an incident S-wave polarized along the z-axis with a source given by (4.2), and we

ran the simulation up to a time of t = 1.4s at a step size of ∆t = 7× 10−5s for a total

computation time of just under 26 minutes on 384 processors.

The seismograms corresponding to receivers which, as in the previous example,

were placed along the central z- and x-axes, are displayed in Figure 4.5. These images

indicate how the wave structure that occurs in this case is significantly different from

the one obtained for the single-hill problem. Although the largest amplifications can

still be observed near each one of the hill summits, the diffracted waves do not have



Chapter 4. Numerical examples and applications 72

a preferential propagation direction. This is likely due to the biaxial symmetry of

the configuration: one observes similar ground motion in both displacements u and

w in the cardinal directions of the surface plane. The overall energy in this case is

diffracted into a much more complex wave pattern, and, unlike the observation in the

single hill case, shaking in the neighborhood of the hills continues to exist well after

impact. Snapshots of the solution for the in-plane ground displacement w(x, y, z, t)

over the entire surface are additionally presented in Figure 4.4, where it is similarly

observed that the maximal amplitude occurs in small areas around the hill summits

and within the general vicinity of the hill cluster. In this case, however, the diffracted

energy continuously bounces between the free surfaces of the four sharp hills, exciting

a long wake of low amplitude wavefronts radiating outward from the overall cluster so

that displacement and ground motion remain elevated over much of the entire surface

long after it does for the gentle hill considered in the previous section.
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Figure 4.5: Time responses of various displacement components
on the surface for receivers placed along the z-axis and x-axis for a
topography consisting of a cluster of four sharp mountains.
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Figure 4.6: Horizontal displacement w(x, y, z, t) at various snap-
shots in time. Much of the diffracted energy remains concentrated
within the cluster of hills long after impact.
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4.2 The scattering of waveguides in plates with de-

fects

The concept of non-destructive evaluation (NDE) of materials through propagation

of specifically excited elastic modes was first introduced in the 1960s [80, 22, 65, 78].

The propagation characteristics of ultrasonic wave guides (frequencies of f ≈ 1

MHz to f ≈ 10 MHz) in particular are directly related to the micro-structure and

mechanical properties of a material, and have hence amassed increased attention and

wide use in the field of characterization and testing of structures—including plates

and beams—in an effort to detect defects by the properties of the scattered waves (see

e.g. [34, 28, 51, 63, 40, 68] as well as the two excellent reviews [24, 74] on guided-wave

NDE). The ultrasonic techniques in use in laboratories today have matured into a

powerful tool to study the integrity of a variety of plate-like structures arising in

industry, spanning from aircraft wings to oil pipelines to bridges. Ultrasonic waves

induced on an effectively infinite plate interact with the top and bottom plate surfaces

in the manner described in Chapter 2 of this thesis: sufficiently far from the source

the elastic field amounts to a superposition of guided Lamb and/or Rayleigh wave

modes. The specific nature and number of modes produced, the propagation of each

one of which is governed by the plate dispersion equations (2.25), is determined by

the details of the physical configuration. Exciting a certain combination of P - and

S-wave modes by carefully selected temporal and spatial frequencies (which, in the

work [53] is achieved through use of a sophisticated wedge-like structure to mediate

the wave-transfer), for example, can enable the propagation of a single guided wave

mode.

4.2.1 Generation of mechanical waves by surface tractions

In experimental applications, mechanical waves in solid structures are excited ei-

ther through contact—employing, e.g., piezoelectric transducers—or through non-
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Figure 4.7: Model of an aluminum plate overset with a sponge layer.

contact methods such as electromagnetic acoustic transducers, air coupled devices and

lasers [34]. The specific laboratory experiments considered in the next sections employ

a classical contact method known as the wedge method (or prismatic coupling block

method) which enables the launch of directional, nearly planar waves with very good

efficiency and very good control of the acoustic wave temporal profile. The specific

nature of the excitation technique is based on a well-known methodology for conversion

of longitudinal waves into Rayleigh or Lamb modes. This is accomplished by elastically

coupling a plastic prism or wedge atop whose sloping surface a piezo-electric transducer

is placed which produces a plane longitudinal wave that impinges at an angle θ to the

boundary between the structure of interest and the wedge [78]. This results in the

creation of a periodic perturbation between the boundary of the solid and the wedge

with a spatial period equal to the corresponding Rayleigh wavelength in the material

sample. The perturbation thus excites a Rayleigh wave that propagates along the

surface of the material.

4.2.2 Elastic wave propagation on a three-dimensional plate:

preliminary example

Before considering the specific experimental setup described in the previous sec-

tion, here we present results of a preliminary case study concerning generation of

guided waves at ultrasonic frequencies under a simpler mathematical setup. As

a preliminary study we thus consider a rectangular aluminum plate of dimensions

300mm×10mm×150mm and material parameters λ = 2.24 × 106 N/m2 and µ =
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Figure 4.8: An example of the windowing function S (black) given
by (3.53) and the resulting sinusoidal waveform (blue) for the incident
source. The center of the vertical axis represents zero amplitude.

9.600× 106 N/m2, discretized by a number N = 140× 33× 100 of points and overset

with a sponge layer of size Nsponge = 100, γ0 = 0.075 and β0 = 2 (with 250 points in

the radial dimension)—as illustrated in Figure 4.7.

A simple surface-wave source was produced by means of a sinusoidal-in-time

traction boundary condition which is smoothly ramped-up in time and space over a

small area A = LxLz on the surface y = h = .005mm, where Lx is the width in x

and Lz the width in z (the choice Lz > Lx simulates a sort of “thick” line source).

Mathematically the non-zero traction boundary condition of the form
σ11 σ21 σ31

σ12 σ22 σ32

σ13 σ23 σ33



nx

ny

nz

 =


0

h

0

, (4.4)

was applied on the top surface of the plate, where

h = S(x− x0, cx, Lx)S(z − z0, cz, Lz)S
(
t− Lt/2, ct, Lt

)
sin (2πft) , (4.5)

and where S is the smoothly varying windowing function constructed on the basis of

the function (3.53). The time window of the source is given by Lt = ncyclesf , where f

is the frequency and ncycles is the number of cycles for which the source is activated.

An example of the time-evolution for a periodic force activated for a few cycles is

given in Figure 4.8.

By choosing an excitation frequency of f = 1MHz in the ultrasound regime
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activated for 250 cycles, we applied the force to the left edge of the plate and evolved

our simulation at a time-step of ∆t = 1 ns for 200, 000 time-steps and employed a

filter of parameters (p, α) = (4,− log
(

10−2
)

). Figure 4.9 displays snapshots in time

of the magnitude of the resulting out-of-plane displacement solution v(x, .005, z, t),

where the higher-frequency P -waves can be observed as well as the surface waves

that follow. Figure 4.10 additionally illustrates an initial wave-train excited by two

different point source frequencies, f = 1.8MHz and f = .9MHz, corresponding to the

different wavelengths that are observed. The experiments in this section demonstrate

the dispersion relations contained in the Rayleigh-Lamb frequency equations and a

first physically-motivated experiment employing the sponge layer.

4.2.3 Applications to ultrasonic non-destructive evaluation

The thin-plate scattering applications considered in this section are motivated by a

collaboration with our co-authors in [53]; corresponding laboratory experiments were

performed by these colleagues at the University of Vigo in Spain. The contribution [53]

presents a quantitative characterization of defects in aluminum plates by comparison

between experimental and simulated (numerical) scattering patterns of narrow-band

guided waves with circular and rectangular holes—albeit with a simplified mathematical

model based on use of scalar waves on a two-dimensional domain. A suggestion that

two-dimensional scalar models could be used in this context, which predates our

contribution, is not justified by detailed consideration of physical processes but, rather,

by analogy. The two-dimensional mathematical model and numerical methodology

used in that contribution are presented in Sections 2.3.1 and Appendix B, respectively.

A comparison between the experimental and the two-dimensional numerical results

presented in [53] shows approximate structural agreement, but, in fact, significant

quantitative differences between experiment and theory in important quantities such

as the reflection coefficient, which in some cases amount to departures of as much as

100%, have been observed. The corresponding three-dimensional study, conducted
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Figure 4.9: The amplitude of the numerical displacement v as a
response to a periodic source near the left edge of the displayed region.

by means of our elasticity solver and presented below, addresses this deficiency by

considering the full complexity of the elastic wave propagation in three-dimensional

space. An example of the experimentally measured scattering by a source activated

for 99 cycles is given in Figure 4.11.

In the present section we revisit this problem, but we tackle the numerical simulation

problem by means of our full three-dimensional elastic wave solver. The incident

waves in these laboratory experiments were generated by means of the wedge method

described in Section 4.2.1: the longitudinal wave emitted by a piezoelectric transducer

was coupled to the surface of a thin plate through a prismatic coupling block of angle
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Figure 4.10: A snapshot of the P -wave-train displacement field
arising from a normally incident source at frequencies f = 1.8 MHz
(left) and f = 0.9 (right).

Figure 4.11: Experimental values for the modulus of the complex
out-of-plane displacement as depicted in [53] for the scattering of thin
waveguides in plates with through-hole defects.

θw = 65 degrees, as depicted in the full experimental setup presented in Figure 4.12.

In the experiments under consideration, the piezoelectric source was excited in such

a way that the guided wave trains had a frequency of f = 1 MHz and were quasi-

monochromatic with wavelength λ = 2.96mm, yielding a Rayleigh phase velocity

c = λf = 2960 m/s. The instantaneous out-of-plane displacement field v(x, y, z, t)

due to the propagation of the guided wave-train were obtained by means of a novel

double-pulsed TV holography system—details can be found in [53, 67, 34]. The

resulting processed optical data rendered an optical phase-change map Φ(x, z, t) that

is proportional to the instantaneous out-of-plane displacement v(x, y, z, t).
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FIG. 4. Experimental set-up.

λR and the phase velocity cR of the Rayleigh wave at the frequency f . The wavelength

of the produced quasi-monochromatic Rayleigh wave λR was measured with the procedure

described in reference23, resulting λR = 2.96 mm, so that the Rayleigh phase velocity is

given by cR = λRf , resulting cR = 2960 m/s.

On the other hand, the instantaneous out-of-plane acoustic field u3 (r, t) at the plate

surface due to the propagation of the Rayleigh wavetrain is measured with a self-developed

double-pulsed TV holography system5, which has been successfully employed to measure

quasi-monochromatic guided waves in plates with non-specular finish (a discussion of ad-

vantages of TV holography compared to other whole-field and pointwise techniques to probe

ultrasound can be found in reference 4). As is common in TV holography techniques24 we

employ a configuration of image hologram, sensitive to the out-of-plane component of the

displacement of the surface points, with the image sensor of a video camera as recording

medium. There is not optical reconstruction of the recorded holograms but instead their

intensity distribution is electronically processed to render the optical phase-difference map,

9

Figure 4.12: Experimental setup as depicted in [53] for generation
and recording of surface waves in a thin plate.

For our numerical experiments we use analytical representations provided by our

collaborators for the experimentally observed Dirichlet boundary condition on the left

edge of the computational domain. These representations are provided in the form

given by

u(0, y, z) =

(
λ0
8π

) (−(2− ξ2)ekr
√

1−ξ2(y−h) + 2ekR
√

1−α2ξ2(y−h)
)(

i
√

1− ξ2kR
)

(
−(2− ξ2) + 2

√
1− ξ2

√
1− α2ξ2

)(√
(2e1z + e2)2 + (kR)2

) Φ(z, t),

v(0, y, z) =

(
λ0
8π

)
−(2− ξ2)ekr

√
1−ξ2(y−h) + 2

√
1− ξ2

√
1− α2ξ2ekR

√
1−α2ξ2(y−h)

−(2− ξ2) + 2
√

1− ξ2
√

1− α2ξ2
Φ(z, t),

w(0, y, z) =

(
λ0
8π

) (−(2− ξ2)ekr
√

1−ξ2(y−h) + 2ekR
√

1−α2ξ2(y−h)
)(

i
√

1− ξ2(2e1z + e2)
)

(
−(2− ξ2) + 2

√
1− ξ2

√
1− α2ξ2

)(√
(2e1z + e2)2 + (kR)2

) Φ(z, t),

(4.6)

where α =
cT
cL
, ξ =

cR
cT
, cR = λRf, kR =

2π

λR
, and where λ0 = 5.32×10−8m is the

wavelength of the optical laser used for measurements in the TV holography system.

The function Φ that appears in these expressions is the so-called complex optical
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phase-change field and is analytically given by a least squares fit of experimental data

(at the left boundary x = x0) to the function given by

Φ(z, t) = Φ(x0, z, t) = Aeiφg(t)h(z)B1(t)B2(z) (4.7)

where the component functions are given by

B1(t) = b1e
−
(
t−b2
b3

)2

ei(c1t+c2),

B2(z) =

(
p1

z2 + q1z + q2

)
ei(e1z

2+e2z+e3),

g(t) = P (t, t1, t2, δt),

h(z) = P (z, z1, z2, δz),

P (ξ, ξ1, ξ2, δ) =



0 −∞ < ξ < ξ1 −
δ

2
,

cos2

(
π

2

(
ξ − ξ1

δ
− 1

2

))
ξ1 −

δ

2
≤ ξ ≤ ξ1 +

δ

2
,

1 ξ1 +
δ

2
< ξ < ξ2 −

δ

2
,

1− cos2

(
π

2

(
ξ − ξ2

δ
− 1

2

))
ξ2 −

δ

2
≤ ξ ≤ ξ2 +

δ

2
,

0 ξ2 +
δ

2
< ξ <∞,

(4.8)

and where the corresponding parameters for each experimental case considered are

given in Appendix C. The corresponding Dirichlet conditions on the displacements u, v

and w in terms of the measured optical phase-change field Φ, given in Equation (4.6),

assumes a quasi-Rayleigh wave-like dependence in the thickness mode that decays

to the bottom of the plate—a feature characterized by the incident source applied

only to the top surface and the relative thickness of the plate (2h = 10mm) against

the induced wavelength (λR = 2.96mm). As will be seen, this formulation for our

elasticity solver results in simulations that are in very close quantitative agreement

with experiments, but a Lamb wave formulation for the thickness, as mentioned in

Section 2.3, may also capture the behavior of the experimental fields: the excited waves

can be described by the zeroth symmetric and anti-symmetric Lamb modes displayed
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Figure 4.13: Photographs of experimental samples including holes
of circular (left) and slot (right) shapes.

in Figure 2.2 and governed by the Rayleigh-Lamb frequency equations (2.25).

4.2.4 Three-dimensional computational simulations

Our computational simulations concern experiments performed at the University of

Vigo for small wave-trains incident on circular holes of diameters 4, 6, 8 and 12mm

centered in plates of thickness 2h = 10mm; additional experiments are currently

ongoing for geometries containing slot-shaped holes as well as half-through holes.

We have constructed the corresponding computational geometries, to the physical

specifications of the experimental regions of interest shown in Figure 4.13, by means

of our overlapping grid strategy—the corresponding computational domains including

an illustration of the overset patches is given in Figure 4.14.

As discussed in Chapter 3 and evidenced by Figure 4.14, the edges of the hole

boundaries require particular care in modeling—they must be smooth to avoid singu-

larities in our high-order numerical method, but they must be sufficiently sharp so

as to provide an adequate approximation of the experimental sample. We perform

a rounding of such edges by means of a treatment that has been briefly mentioned

earlier and that is presented in detail in Appendix A—where we make use of transfinite

interpolation coupled with a parametric representation of a superellipse to construct

two-dimensional slices of the holes that are subsequently rotated to produce the
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Figure 4.14: Computational models corresponding to the experimen-
tal geometries presented in Figure 4.13. The models are composed of
six overlapping patches (bottom row).

corresponding three-dimensional geometries. We have found that use of the rounding

parameter η = 20 in equation (A.1) provides adequate approximations—the solver

produces solutions in very good agreement with the experimentally measured fields,

as will be demonstrated later in this section. Examples of the corresponding rounded

geometries—both for the circularly shaped through-holes and the rectangularly shaped

through-hole—are illustrated in Figure 4.15.

4.2.5 Numerical results and comparison to experiments

A total of N = 5, 933, 561 discretization points were used for the six sub-patches

describing the 12mm hole case, and similar numbers were used for the 4, 6 and 8mm

holes. Traction boundary conditions were enforced at the top and bottom of the
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Figure 4.15: Meshes for a rounded circular and rectangular scatterer
that are constructed by revolving two-dimensional grids produced by
means of the transfinite interpolation described in Appendix A.

plate as well as the hole boundaries, and the solution was advanced at a time-step

of ∆t = 0.5ns for a total number of 50, 000 steps. Simulations were carried out on a

computing cluster using 464 processors and using a number of four fringe points in

each dimension for the subsequent sub-patches for a total run-time of just under two

hours each.

A depiction of the solution values for the scattering by a 12mm hole is given

in Figures 4.16 and 4.17 as snapshots of the out-of-plane displacement solution v

for both the experiments and our numerical simulations. The images displayed

demonstrate very good agreement between measured field values and the three-

dimensional simulation employing the approximate Dirichlet boundary condition given

by the expressions (4.6)—a mutual validation of our numerical methodology as well as

the cutting-edge measurement techniques employed by our collaborators. Figure 4.18

additionally illustrates profiles of the out-of-plane displacement v along the centered

vertical and horizontal lines that overlay Figure 4.16 and Figure 4.17 to the left of the

hole. The agreement between the experimental and numerical profiles further supports

the assumption of the approximate incident field given by (4.6). (The oscillations in

the experimental curves are attributed to experimental error: cf. the second row of

images in Figure 4.16 which indeed seems to suggest existence of experimental error
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of relatively high frequency.)

Figure 4.16: Experimental (left) and simulated (right) snapshots of
the incident waves for the 12mm diameter circular hole. Top: real part
of the out-of-plane displacement v(x, y, z, t). Bottom: corresponding
complex amplitude.

In order to provide an additional quantitative comparison in the present context, we

evaluate the “backscattering reflection coefficient” from the fields measured along the

horizontal line given in Figure 4.16 and compare it to the corresponding experimental

quantity as provided by our collaborators. The right plot of Figure 4.19 displays the

x coordinate of the location of the peak modulus vmax of the complex out-of-field

displacement as a function of time along this line, where three distinct temporal

intervals we call Zones 1, 2 and 3 are demarcated by the dashed lines. In Zone 1,
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Figure 4.17: Experimental (left) and simulated (right) snapshots of
the scattered waves for the 12mm diameter circular hole. Top: The
real part of the out-of-plane displacement v(x, y, z, t). Bottom: The
corresponding complex amplitude.
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Figure 4.18: Horizontal and vertical cross-sections of the fields
displayed in Figure 4.16.

the peak of the pulse has fully developed. In the next interval, the waves interact

with the hole and the maximum is produced by a superposition of the incident and

backscattered fields and is located close the hole border. In the final Zone 3, the

maximum of the pulse is produced only by the backscattered field and travels back

towards the left. In order to characterize the attenuation observed in the propagation

of both the incident and backscattered fields (the left image of Figure 4.19), we analyze

the maximum in Zone 1 as a function of its distance to the virtual point source x0

associated with the incident field and the maximum in Zone 3 as a function of its

distance to the virtual point source associated with the backscattered field—given by

the center of the hole xh. (The associated locations of both sources are given in the

tables of Appendix C.) A nonlinear least squares curve fitting procedure is applied

in each zone to the corresponding maxima vmax as a function of their respective

distances to the incident and scattered source centers, employing a power law given by

gj(x) = ajx
bj for both zones j = 1 and j = 3. This enables us to estimate the value of

the incident field at the hole border–that is, at a distance r from the center of the

hole—by the expression given by

g1(r) = a1(|xh − r − xo|)b1 (4.9)
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Figure 4.19: Left: Peak modulus value of the v component of the
backscattered field at point x using time as a parameter. Time ad-
vances right to left. Right: Location of the peak modulus as a function
of time including the incident (Zone 1) and backscattered (Zone 3)
fields.

and the value of the backscattered field at the hole border by the expression given by

g3(r) = a3r
b3 . (4.10)

The resulting reflection coefficient, which we will denote R, can then be defined as

the ratio of the incident field contribution at the hole border to the scattered field

contribution at the hole border. It is simply given by the expression

R =
g3(r)

g1(r)
. (4.11)

The values of R calculated from the corresponding laboratory experiments, from the

time-dependent FEM scalar model employed in [67], and from the solutions found by

our solver, are given in Table 4.1 for each of the 4, 6, 8 and 12mm hole cases.

As can be observed, the coefficients of the fully three-dimensional elastic wave

simulation are in much closer agreement to the experimentally measured values than

the corresponding two-dimensional scalar wave equation produced by means of a finite

element method (whose R values can deviate by more than 100%). The inability
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Scalar FEM Experimental Our solver

4mm 0.914 0.383 0.310
6mm 0.950 0.466 0.435
8mm 0.931 0.443 0.418
12mm 0.984 0.458 0.470

Table 4.1: Reflection coefficients R for each hole diameter.

of the scalar model to capture the true behavior of the backscattered fields can be

explained by the neglect in the two-dimensional scalar approximation of the modal

conversion that occurs between the various displacement components. Our solver,

which solves the full elastic wave equation, does not make this approximation and

hence better captures the full elastodynamics of the problem. Corresponding temporal

snapshots of each displacement solution for the 12mm hole case are provided in

Figure 4.20 where, as can be expected, the modal conversion is quite clear in both the

horizontal components u and w. In particular, the energy conversion into diffracted

waves traveling through the thickness of the plate, which is not accounted for by the

scalar approximation, is also evident from the observed waves propagating downwards

over the lateral sides of the hole—which we further observe in our simulations to

reflect at the bottom of the surface and propagate back upwards. The corresponding

solution snapshots for the 4, 6 and 8mm circular hole cases are additionally provided

in Figure 4.21.

Experimental measurements and subsequent processing for other hole geometries

are currently being pursued by our collaborators, and we thus considered for a

preliminary numerical experiment the geometry of a corresponding experimental

case, namely, a rounded-rectangular hole. The computational domain, illustrated in

Figure 4.14, contains a hole of lengths 24mm and 4mm along the major and minor axes,

respectively; the rounded rectangular geometry was constructed by the prescription

provided in Appendix A. Snapshots of the corresponding numerical values of the three

displacement components are depicted in Figure 4.22, where much less significant

mode conversion to the w component (displacement in the major axis of the hole) is
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Figure 4.20: Close-up of the 12mm diameter circular hole boundary
for each displacement component u, v and w (from left to right,
respectively)—clearly visible are the waves flowing from the top surface
to the bottom along the hole thickness and the mode conversion between
the in-plane components u and w.
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Figure 4.21: Scattering results for the 4, 6 and 8mm diameter circu-
lar hole configurations (from top to bottom, resp.) for the displacement
components u, v and w.
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Figure 4.22: Snapshots of wave scattering by a 24mm long rectan-
gular slot.

observed in the rightmost figure when compared with the circular hole geometries.



Chapter 5. Conclusions and future work 94

Chapter 5

Conclusions and future work

In this thesis we have introduced a new high-order methodology, based on a Fourier

continuation approach, for the solution of elastodynamics problems in complex three-

dimensional geometries. The methodology represents a first realization of a general

three-dimensional FC-based solver for a variable-coefficient system of Partial Dif-

ferential Equations. Through a combination of several key elements, including a

new modified FC operator for the treatment of elastic boundary conditions and an

overset strategy for the treatment of general three-dimensional geometries including

unbounded media, the solver developed in this work effectively resolves linear elastic

wave propagation problems in physically-relevant three-dimensional computational

domains. Our new solver provides fast, accurate solutions that are nearly disper-

sionless, have significantly less restrictive CFL conditions than certain competing

numerical techniques, and that are implemented on distributed-memory computing

clusters by means of a parallelization strategy that has excellent scalability properties.

The versatility of the techniques presented herein was demonstrated through a variety

of realistic applications in seismology and non-destructive evaluation of materials with

defects.

As with any newly-developed numerical methodology, the algorithms we have pre-

sented invite a number of interesting possible objectives for future work. For example,

the explicit time-marching treatment we considered as part of our methodology—while

carrying CFL conditions that scale only linearly with spatial discretization sizes—is
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burdened by the stiff material properties inherent to most real-world elastic solids

and manifests itself as a restrictive CFL constant. A method of temporal subcycling

(based on polynomial temporal interpolation, which we have implemented successfully

but have not employed for the numerical examples considered in this work), can

be used to enable local time-stepping (e.g. for the finely discretized scatterers in

Section 4.2.3) and faster overall computational times. Additionally, our solver could

benefit from hybridization with other solvers that would afford localized implicit

temporal formulations in regions of the computational domain wherein fine meshes

need to be used. Our proposed framework for the treatment of complex geometries,

finally, could be further supplemented by a proper hole-cutting algorithm that allows

flexibility in the selection of the minimum segmented sizes for inclusion in an FC

algorithm, as well as the ability to perform implicit inter-patch interpolation (where

a point in a corresponding stencil could itself be an interpolation point for a patch).

This would further enable simpler (and possibly coarser) constructions of patches for

use in an overset strategy.

Other interesting applications also suggest themselves from the solver we have

presented in this work:

• An extension of our solver could further permit treatment of material interfaces,

including layered solid media, such as the models used for earthquakes or the

coupling of the prismatic block used for non-destructive evaluation. This would

entail two possible challenges: the numerical representation of such interfaces

and the subsequent implementation of their corresponding physical boundary

conditions. For example, fault lines in earthquakes can be described by the

sliding of two layers of differing material properties —it would be of great

interest to investigate the application of friction laws on a fault or a complex

system of faults. The overset methodology we present here may enable high-

order representations of any interface topology by the inclusion of boundary

conforming curvilinear grids.
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• The high-order and stable numerical method we have developed in this work has

been thus far applied to acoustic wave-type problems. Our numerical scheme

could also be coupled with shock-capturing methods for the investigation of phys-

ical problems that involve supersonic waves as well as the fine acoustic signature

of the mechanical fields away from the shocks. Applications include supershear

earthquakes, where the nucleation and propagation of rupture fronts along fault

lines carry speeds in excess of the shear wave velocity, and underground damage

generated by point blast explosions.

• Other PDE formulations, including the thermoelastic equations (for, e.g., the

modeling of laser ablation used to excite modes for non-destructive evaluation)

and viscoelastic equations (for, e.g., solid-fluid interactions), may also benefit

from the strategies we have proposed in this work.
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Appendix A

Algebraic mesh generation for
holes with sharp edges

Solution singularities occur at points where sharp corners or edges of a geometry exist.

Such singularities require special treatment; in our case such treatment is provided

in the form of a smooth but sharp approximation of edges and corners for numerical

treatment which is used in conjunction with a correspondingly fine computational

mesh. A particularly simple procedure to produce useful geometries in our context

is based on use of a superellipse—that is, the set of points satisfying the implicit

equation (
x

a

)η
+

(
y

b

)η
= 1, (A.1)

where η is any real number. It is easy to check that this curve tends to a rectangle

as η → ∞); a, b are the respective sizes of the major and minor super-ellipse axes.

This is a particular case of the superquadric class of shapes that are often used in

geometric modeling; they create—in rather clean, parametric forms—a wide variety

of geometries with rounded edges and corners [44]. Used in conjunction with other

(open or closed) curves and shapes to construct volumes that are structurally similar

to cubes, the corresponding coordinate lines for the curvilinear mappings can be

forged numerically (hyperbolic grid generators, elliptic grid generators) or algebraically

(transfinite interpolation, Swan grids) [31, 33, 73].

An aluminum plate with a through-hole serves as a motivating example for de-
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η = 4 η = 8 η = 16

Figure A.1: Left to right: examples of rounded edges constructed via
transfinite interpolation between two lines, a quadratic Bézier curve,
and a polar parameterization of the superellipse (A.1).

scribing the transfinite interpolation (TFI) used for rounded mesh generation: the

four particular curves of the rounded configuration illustrated in Figure A.1 are used

extensively in Chapter 4.2 and are parameterized at the top (a superellipse) by

xt(q) =
−r0 cos(θ(q))

(cos(θ(q))η + sin(θ(q))η)1/η
, 0 ≤ q ≤ 1, θ(q) = (9π/8)q − 9π/16,

yt(q) =
r0 sin(θ(q))

(cos(θ(q))η + sin(θ(q))η)1/η
, 0 ≤ q ≤ 1, θ(q) = (9π/8)q − 9π/16,

(A.2)

at the bottom (a quadratic Bézier curve) by

xb(q) = (1− q)2x0 + 2(1− q)qx1 + q2x2, 0 ≤ q ≤ 1,

yb(q) = (1− q)2y0 + 2(1− q)qy1 + q2y2, 0 ≤ q ≤ 1,
(A.3)

at the left by

x`(r) = xb(0) + (xt(0)− xb(0))r, 0 ≤ r ≤ 1,

y`(r) = yb(0) + (yt(0)− yb(0))r, 0 ≤ r ≤ 1,
(A.4)

and at the right by

xr(r) = xb(1) + (xt(1)− xb(1))r, 0 ≤ r ≤ 1,

yr(r) = yb(1) + (yt(1)− yb(1))r, 0 ≤ r ≤ 1,
(A.5)
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so that the curves meet at the corners xb(0) = xl(0), xb(1) = xr(0), xr(1) = xt(1), xl(1) =

xt(0) and a grid can be constructed by a linear interpolation

x(q, r) = (1− r)xb(q) + rxt(q) + (1− q)xl(r) + qxr(r)

−
[
qrxt(1) + q(1− r)xb(1) + r(1− q)xt(0) + (1− q)(q − r)xb(0)

]
,

y(q, r) = (1− r)yb(q) + ryt(q) + (1− q)yl(r) + qyr(r)

−
[
qryt(1) + q(1− r)yb(1) + r(1− q)yt(0) + (1− q)(q − r)yb(0)

]
,

(A.6)

on the rectangular space [q, r] ∈ [0, 1]2. Of immediate note in Figure A.1 is the non-

orthogonality of the coordinate lines with the surface; this behavior (or lack thereof)

may be undesirable for some computational schemes but can be corrected numerically

via a hyperbolic or elliptic grid generator. The curvilinear formulations of the elastic

wave equation we employ does not require coordinate lines that are orthogonal to the

surface.

The above example of an algebraic mesh generation is two-dimensional in nature,

but TFI is easily generalized to three dimensions (where six parametric surfaces are

required, and where each surface itself can be constructed by its own TFI or elliptic

generator). For the framework of plates with through-holes, a two-dimensional slice is

sufficient; the third dimension z is established by revolving each surface by a rotation

matrix tailored to, for example, a circular or rectangular hole (scatterer). One such

operator is derived once again from a superquadric and is given by


x̃

ỹ

z̃

 =

(
1

(cos(θ))α + (sin(θ))α)

)1/α


rx cos(θ) 0 rz sin(θ)

0 1 0

−rx sin(θ) 0 rz cos(θ)



x

y

0

 , (A.7)

where rx and rz are scaling for the x- and z-axis in the rotation, respectively. The

parameter α determines the specific geometry of the boundary curve: a value of α = 2
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represents a circular or elliptic hole (Figure 4.15, left), and a value of α = 12 will

create a rounded rectangle (Figure 4.15, right). The final construction of the full

plate-with-hole geometry is then easily accomplished through the overset strategy

described in Section 3.2.3 by embedding each scatterer in an overset arrangement with

a Cartesian grid, as is described for the specific experiments modeled in Chapter 4.
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Appendix B

Two-dimensional guided wave
motion

This appendix presents a brief overview of the high-performance numerical method

introduced in [19] which we employed to solve the scalar model presented in Chapter

2 that was published with our co-authors in [53].

B.1 Numerical methodology for solving the Helmholtz

equation

If Γ denotes the boundary of the 2D through-thickness defect and v̂ denotes complex

amplitude associated to the out-of-plane component v(x, y = h, z) of the scattered

field, we can model our problem by means of the Partial Differential Equation


∇2v̂ + k2v̂ = 0, outside Γ

∂v̂

∂n

∣∣∣∣
Γ

= g,
(B.1)

where g is a function defined on Γ. Stress-free conditions at the defect boundary imply

conditions on the spatial derivatives of the scattered field as a function of the spatial

derivatives of the incident field. For this reason a Neumann Boundary condition is

used.
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In order to efficiently produce accurate solutions of problem (B.1), we utilize a

modified version of a highly efficient and accurate numerical methodology introduced

recently [19], which we describe briefly in what follows. As it is well known, the

(unique) solution of the Neumann Problem (B.1) can be expressed as a double-layer

potential

v̂(r) =

∫
Γ

∂Gk(r, r
′)

∂n′r
µ(r′)dl′. (B.2)

Here Gk denotes the Hankel function

Gk(r, r
′) = iH1

0 (k|r− r′|) (B.3)

and, letting N denote the hypersingular operator

N(µ)(r) = lim
z→0

∂

∂nr

∫
Γ

∂Gk(r, r
′
znr′)

∂n′r
µ(r′)dl′, (B.4)

the density µ is the unique solution of the first kind integral equation

N(µ) = g. (B.5)

Once the unknown surface density µ has been obtained, the solution v̂ of Equa-

tion (B.1) can be produced at any point outside Γ by applying numerical quadrature

to Equation (B.2).

Our numerical solver produces approximate solutions µ of Equation (B.5) for a

given right- hand side g by seeking a set of values µj ≈ µ(rj) of the unknown µ at a

set of points rj, (j = 1, ..., n) on the curve Γ. The algorithm relies on a highly accurate

approximation of the integral Equation (B.5) which can be obtained by appealing to an

expression of the right-hand side of Equation (B.4) that only uses tangential derivatives,

in conjunction with interpolation of the values µj by trigonometric polynomials and

exact differentiation and integration of trigonometric monomials. In order to resolve
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high curvatures while taking advantage of the excellent properties of trigonometric

interpolation, the method utilizes smooth changes of variables that map an equi-spaced

grid in the interval [0, 2π] to a grid on Γ that contains a high density of discretization

points rj in high curvature portions of Γ. Note, in particular, that as a result of

this discretization strategy, the density of discretization points rj varies smoothly

along Γ. The method then proceeds by constructing a linear system of equations

for the quantities µj, which arises as the discretized version of the left-hand-side in

Equation (B.5) is set to equal the right hand side of that equation at each point

rj, j = 1, ..., n. The algorithm is then completed by solving this linear system by

means of a numerical implementation of the Gaussian elimination method. It was

verified through a variety of numerical experiments, including comparisons with exact

solutions, that the solutions v̂ produced by this methodology are highly accurate,

and that the associated errors decay rapidly as discretizations are refined. Numerical

considerations and experiments relevant to the specific geometries considered for the

through-holes in this thesis follow.

B.2 Geometric considerations

In order to construct the non-circular boundaries such as those of the rectangular hole

geometry (also called a “slot” in [53]), we employ a piecewise parametric geometry

of Figure B.1, where w, h and r denote the slot width, height and corner radius,

respectively. Parameterized as (x(t), y(t)) for t ∈ [0, 2π], this geometry is piecewise

continuous with respect to t. In order to smooth the parameterization, we employ the

C∞ partition of unity P (t, t0) given in (3.53) (introduced in Section 3.3.4) centered at

a piecewise junction point t0. For example, if x1(t) is vertical line segment given by

(1) in Figure (B.1) and x2(t) the circular arc segment given by (2) in Figure (B.1),

then a combined parameterization that is C∞ in the neighborhood of t0 connecting

x1(t) to x2(t) smoothly is constructed simply as
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Figure B.1: The 2D parametric slot geometry for use in the
Helmholtz solver.

x12(t) = x1(t)P1(t, t0) + x2(t)P2(t, t0)

= x1(t)P1(t, t0) + x2(t)(1− P1(t, t0)),
(B.6)

and similarly for all other piecewise junctions (for a total of eight applications of the

functions constructed on the basis of a partition of unity.)

B.3 Physical verification and a convergence study

As a physical verification of the slot geometry and other code modifications, we

consider the behavior of the far field as we thin the height h of the slot and successively

sharpen the corners—the geometry and subsequent solution approaches that of an

open-arc strip. For the Dirichlet problem with an incident plane wave of frequency

k = 2π/λ = 1 in the θ = π/2 direction (measured from the positive x-axis), we

considered geometries of slot width w = 2.0 and decreasing values of h, r and the

numbers N of discretization points used to represent the boundary of the hole. The

results we obtain are given in Figure B.2. Since the strip is not a closed curve and is

hence treated by a completely different algorithm and code than that of the closed

slot, the behavior observed in Figure B.2 is a strong indicator of the correctness of

both the slot simulations and the strip.
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Figure B.2: Results of the far field (right) as the slot height (left)
is reduced and the corners are successively sharpened. The last strip
is that of an open arc.

For a numerical convergence test of the smoothed slot, we also solved a Neumann

problem with specifications w = 25, h = 5, r = 1 and an incident wave of frequency

k = 2π/λ = 2.0 and a direction that is perpendicular to the the base of the slot. The

corresponding solution using N = 2048 discretization points is given in Figure B.3. By

considering the “exact” solution to be a very fine solution with N = 2048 discretization

points solved by using a GMRES tolerance of 10−8, the errors in the surface density

for various grid sizes N are given in Table B.1 and confirm the high-order convergence

expected by [19].
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Figure B.3: Time-harmonic scattering in 2D using the acoustic
scalar equation and Neumann boundary conditions.

N Iterations Surface Density Error O(L∞) Farfield Error O(L∞)
256 31 3.17e-1 – 3.92e-1 –
512 28 1.5e-4 11.04 1.76e-5 14.44
1024 34 3.95e-7 8.56 3.77e-9 12.19

Table B.1: Surface density errors for the slot-through hole in 2D
relative to an“exact” solution using N = 2048 discretization points.
All errors are absolute errors of the normalized solutions (max v(r) =
1.)
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Appendix C

Parameters for the NDE
applications

This section provides the relevant parameters employed both experimentally and

numerically in the ultrasonic NDE study of Section 4.2. They are provided most

generously by our collaborators at the University of Vigo.

The regions of interest, including locations of the centers for the 4, 6, 8 and 12mm

diameter holes and locations of the “virtual point sources” used in the computation

of the reflection coefficients, are given in Table C.1. The parameters for the incident

field boundary condition (applied at the left end of the plate domains) are determined

by least squares fitting to the function in (4.7) from experimentally measured wave

fields—the corresponding parameters are given in Table C.2.
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4mm hole
Hole center (m) Incident center (m) Plate dimensions (m)

x = +0.0352848170783922 x = −0.0920467705004080 x ∈ [+0.003115,+0.144261]
y = +0.0000000000000000 y = +0.0000000000000000 y ∈ [−0.005000,+0.005000]
z = +0.0368944522207174 z = +0.0355228789057980 z ∈ [−0.033679,+0.107468]

6mm hole
Hole center (m) Incident center (m) Plate dimensions (m)

x = +0.0349233069781789 x = −0.0980871739352740 x ∈ [+0.003184,+0.142885]
y = +0.0000000000000000 y = +0.0000000000000000 y ∈ [−0.005000,+0.005000]
z = +0.0367112495679541 z = +0.0368581952699390 z ∈ [−0.033139,+0.106561]

8mm hole
Hole center (m) Incident center (m) Plate dimensions (m)

x = +0.0350530250350388 x = −0.0943896100069270 x ∈ [+0.003109,+0.143321]
y = +0.0000000000000000 y = +0.0000000000000000 y ∈ [−0.005000,+0.005000]
z = +0.0345209925415568 z = +0.0359534882442510 z ∈ [−0.035585,+0.104627]

12mm hole
Hole center (m) Incident center (m) Plate dimensions (m)

x = +0.0316906421926259 x = −0.0911821508197890 x ∈ [+0.003153,+0.138714]
y = +0.0000000000000000 y = +0.0000000000000000 y ∈ [−0.005000,+0.005000]
z = +0.0333739830636900 z = +0.0321707608700040 z ∈ [−0.034407,+0.101155]

Table C.1: Domains for circular hole geometries. The boundary
condition for the incident field is applied to the left end of the interval
for x given in the third column.
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4mm hole
Param Val Units
λ0 5.320000000000000e-7 m
A 2.000000000000000 1/rad
φ -0.799360797413403 rad
b1 0.459412330133725 rad
b2 4.887614084715763e-6 s
b3 2.820497732761213e-6 s
c1 -6.160880183183645e6 rad/s
c2 1.536282143904974 rad
p1 3.492694217354267e-5 rad · m2

q1 -0.072367764107921 m
q2 0.001379307613937 m2

e1 8.748372259554402e3 rad/m2

e2 -6.072331920950221e2 rad/m
e3 -1.281700922092168 rad
z1 0.017136100000000 m
z2 0.055311000000000 m
δz 0.02000000000000 m
t1 9.589705300000000e-7 s
t2 8.805463000000000e-6 s
δt 3.000000000000000e-6 s

6mm hole
Param Val Units
λ0 5.320000000000000e-7 m
A 2.46000000000000 1/rad
φ -2.356194490192345 rad
b1 0.372518544795628 rad
b2 5.101300095547966e-6 s
b3 2.777474091707908e-6 s
c1 -6.164594602460224e6 rad/s
c2 3.143491407154799 rad
p1 3.428715293151852e-5 rad · m2

q1 -0.074630510172381 m
q2 0.001476691328839 m2

e1 8.857125408559656e3 rad/m2

e2 -6.513080868238072e2 rad/m
e3 1.772661853946239 rad
z1 0.017943100000000 m
z2 0.056249900000000 m
δz 0.020000000000000 m
t1 1.228012900000000e-6 s
t2 8.960743800000000e-6 s
δt 3.000000000000000e-6 s

8mm hole
Param Val Units
λ0 5.320000000000000e-7 m
A 4.225000000000000 1/rad
φ -1.958433953662837 rad
b1 0.300505414282102 rad
b2 5.800367091934857e-6 s
b3 2.838108720820895e-6 s
c1 -6.131563983879754e6 rad/s
c2 7.041752163228258 rad
p1 3.349255095589419e-5 rad · m2

q1 -0.073553204209878 m
q2 0.001493681123397 m2

e1 8.882591086403834e3 rad/m2

e2 -6.298101881291292e2 rad/m
e3 0.642415443185962 rad
z1 0.016958100000000 m
z2 0.058668100000000 m
δz 0.02000000000000 m
t1 1.926480500000000e-6 s
t2 9.620282100000000e-6 s
δt 3.000000000000000e-6 s

12mm hole
Param Val Units
λ0 5.320000000000000e-7 m
A 2.55000000000000 1/rad
φ -0.916297857297023 rad
b1 0.388231783246028 rad
b2 4.972084318183897e-6 s
b3 2.703572308541960e-6 s
c1 -6.112965306422946e6 rad/s
c2 1.483813897899920 rad
p1 2.748965532303669e-5 rad · m2

q1 -0.062987375715764 m
q2 0.0010631149558029 m2

e1 8.444680754430321e3 rad/m2

e2 -5.359665196814000e2 rad/m
e3 3.202536087625343 rad
z1 0.010000000000000 m
z2 0.055000000000000 m
δz 0.02000000000000 m
t1 0.000000000000000 s
t2 9.00000000000000e-6 s
δt 3.000000000000000e-6 s

Table C.2: Parameters for (4.7) fitting the experimental incident
fields.
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Appendix D

Technical notes

D.1 On the continuation precomputation:

As described in Section 3.1.1, Fourier continuations are precomputed as extensions of

a Gram polynomial basis for use in an FC-based solver. Although most code for the

numerical experiments of this work is developed in the C++ environment, MATLAB

with its Variable Precision Arithmetic (VPA) library of the Symbolic Toolbox is used

to construct both the Dirichlet and Neumann operators with 256 digits in order to

address the possible numerical loss of orthogonality inherent to ill-conditioned systems.

To avoid pre-constructing Fourier continuation information at the beginning of a

simulation, a library for a wide range of potential discretizations and numbers of

matching points d are created and stored in file to enable a simulation to just load from

file the requisite operators on the basis of the discretization size of the computational

domain.

D.2 On overlapping patches and interpolation:

Given a point (x0, y0, z0) ∈ Ωi, an adjacent donor patch Ωj is found that contains

(x0, y0, z0) at its most interior, and a corresponding ns×ns×ns stencil is located (stored

by its lower left-hand corner index) in patch Ωj to have the corresponding interpolation

point in patch Ωi as close to its center as possible. The interpolation point and its stencil
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Figure D.1: Left: Two-dimensional example of an overlapping patch
in the x-y plane, where the red grid represents the interpolation stencil
in an annular patch and the green dot represents an interpolation
point in the rectangular patch. Right: The stencil and interpolation
point in the corresponding q-r plane of the annular donor patch where
the computation is performed.

in the donor patch is then recast in the local curvilinear coordinates (q, r, s) ∈ [0, 1]3 of

the donor Ωj , where the corresponding coordinates of the interpolation point (x0, y0, z0)

are found in the donor coordinate system via a multidimensional Newton-Raphson

Method [25] applied as


qn+1

rn+1

pn+1

 =


qn

rn

pn

− (Jj(qn, rn, sn)
)−1


x(qn, rn, sn)− x0

y(qn, rn, sn)− y0

z(qn, rn, sn)− z0

 , (D.1)

for coordinates (x, y, z) and the Jacobian Jj corresponding to the curvilinear mapping

of Ωj. Interpolation is then simply performed (locally) in the uniformly discretized

parameter space (q, r, s) of patch Ωj via polynomial interpolation applied dimension-

by-dimension through a Neville’s algorithm [62]. A visual interpretation of this

interpolation scheme in both coordinate systems is given by Figure D.1.

A mask corresponding to every point in the mesh is also output, with a value of 1

symbolizing a solution point, a value of −1 an interpolation point, and value of 0 an
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unused point in the mesh (i.e. if a hole is cut in the grid). The elasticity solver inputs

the mask for each curvilinear grid, and determines the size and starting/ending indices

of each segmented FC block for computation. In practice, a size of 10 to 15 points is

necessary for stability and the lack of control for this parameter that is intrinsic to

most extant hole-cutting algorithms needs to be addressed.

D.3 On the FFT:

The FFTW3 library [35] is called to compute FFTs in code. Although shown to have

relatively good complexity for any length N of the discrete FFT, sizes containing

very small prime factors have been demonstrated to give a (sometimes significant)

improvement on the number of CPU-cycles needed to execute an FFT [4]. Because

the Fourier continuation algorithm of biased-order works by blending the left and

right sides of a continued block (where each side is respectively continued to zero), an

arbitrary number of zeros–with little effort–can be added to the continuation regions

for blending to allow an FFT of arbitrary size. As such, each FFT block (of N + C

points, where N is the number of points used for the original function and C is the

number of continuation points) is padded with enough zeros in the continuation regime

that the overall block size for the FFT respects this optimized requirement. That is,

one can look for two powers p1, p2 such that

min
p1,p2

2p13p2 ≥ N + C

so that each length is padded by

lpad = (N + C)− 2p13p2 .

In general, for most simulations / clusters described in this work, FC blocks tend to be

of size (N+C) < 64 and hence, in general, pad lengths are such that N+C+ lpad = 64.
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Remark 7. Our implementation of the elasticity equations involves the real-valued

displacements given by u, v and w. As such, we have found it convenient to work with

real coefficients and values only in code, and hence we subsequently construct our

FC(Gram) operators on the basis of an alternative form of (3.1) given by

f c(x) =
M∑

k=−M

ak cos(2πkx) + bk sin(2πkx), (D.2)

and compute FFTs of the corresponding continued function by means of the “halfcom-

plex” real-to-real Discrete Fourier Transform (DFT) provided by the FFTW library.

This enables faster and more convenient Fourier transforms by restricting the output of

an FFT call to the non-redundant half of the complex output for a real-input DFT–that

is, the real and imaginary parts of a transform are returned in a real-valued array thus

allowing for derivative computations to be conducted by real-valued coefficients.

D.4 On parallel implementation:

The developed code employs a custom data structure to store displacements (u, v, w)

on a three dimensional mesh that enables contiguous blocks of memory to be accessed

and packaged for communication in both the domain decomposition and interpolation

routines (the latter requires a preprocessing step which we described in Section 3.4.3).

A majority of the numerical experiments for this work were run on a Poweredge

cluster maintained by the group of Prof Oscar Bruno and consisting of 32 compute

nodes, each equipped with two eight-core Intel Xeon 2.4 GHz processors (such that

there are 16 cores per node) and 64 GB of RAM. Intel compilers were used on this

system to take advantage of the architecture; this includes the Intel MPI and the Intel

Math Kernel libraries (for FFTW3).

Other experiments were carried out on the Shared Heterogeneous Cluster (SHC)

at Caltech’s Center of Advanced Computing Research. The (floating) specifications

of the system consist of 300-400 AMD Opteron 2.2 GHz cores for a total of more
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than 700+ GB of RAM. Both this cluster and the one above operate on an Infiniband

networking fabric that provides rapid and efficient communication between nodes.
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[34] Fernández, J., Doval, Á. F., Trillo, C., Deán, J. L., and López, J.
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