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Chapter 7

Rupture complexity of the Great
1994 Bolivia and 2013 Sea of
Okhotsk deep earthquakes

7.1 Abstract

The physical mechanism of deep earthquakes (depth>300km) remains enigmatic

(Green and Houston, 1995; Houston, 2007; Kirby et al., 1996), partly because their

rupture dimensions are difficult to estimate due to their low aftershock productivity

(Frohlich, 1989) and absence of geodetic or surface rupture observations. The two

largest deep earthquakes, the recent Great 2013 Sea of Okhotsk earthquake (M8.3)

and the Great 1994 Bolivia earthquake (M8.3) (Kanamori et al., 1998; Kikuchi and

Kanamori, 1994), together provide a unique opportunity to compare their rupture

patterns in detail. Here we extend a travel-time sub-event location method (Duputel

et al., 2012; Kikuchi and Kanamori, 1991; Tsai et al., 2005) to perform full tele-

seismic P-waveform inversion. This new method allows us to explain the observed

broadband records with a set of sub-events whose model parameters are robustly con-

strained without smoothing. We find that while the Okhotsk event is mostly unilat-

eral, rupturing 90km along strike with a velocity over 4km/s, the Bolivia earthquake

ruptured about half this distance at a slow velocity (about 1.5 km/s) and displayed
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a major change in rupture direction. We explain the observed differences between

the two earthquakes as resulting from two fundamentally different faulting mecha-

nisms in slabs with different thermal states. Phase transformational faulting (Green

II and Burnley, 1989; Kirby et al., 1991) is inferred to occur inside the metastable

olivine wedge within cold slab cores whereas shear melting (Griggs and Baker, 1969;

Kanamori et al., 1998; Karato et al., 2001; Ogawa, 1987) occurs inside warm slabs

once triggered.

7.2 Introduction

Several mechanisms for deep earthquakes have been proposed, including thermal shear

instability (Griggs and Baker, 1969; Kanamori et al., 1998; Karato et al., 2001; Ogawa,

1987), dehydration embrittlement of pre-existing faults (Meade and Jeanloz, 1991; Sil-

ver et al., 1995), and transformational faulting associated with a metastable olivine

wedge in cold subducting slabs (Green and Houston, 1995; Green II and Burnley,

1989; Kirby et al., 1991; Kirby et al., 1996). These mechanisms have been previously

evaluated using deep earthquake rupture properties (e.g., duration, rupture dimen-

sion, rupture speed, stress drop, and radiation efficiency) (Suzuki and Yagi, 2011;

Tibi et al., 2003; Wiens, 2001), aftershock statistics (Houston, 2007; Wiens, 2001),

and their depth dependence (Persh and Houston, 2004a, b; Tocheport et al., 2007).

Among these mechanisms, phase transformational faulting and thermal shear insta-

bility, possibly involving melting, have so far garnered the most evidence (Houston,

2007; Wiens, 2001). It has also been suggested that deep earthquake mechanisms may

depend on the thermal state of the subducting slab (Houston, 2007; Tibi et al., 2003;

Wiens, 2001; Wiens and Gilbert, 1996; Wiens and McGuire, 1995), but evidence has

been inconclusive (Suzuki and Yagi, 2011).

The 1994 Bolivia earthquake was the largest deep earthquake until the recent



7.2: Introduction 146

GAC

KURK

QIZ
JOHN

Sea of Okhotsk 
2013/05/24, Mw8.3

PAB

PMSA

RPN

HRV

Bolivia
1994/06/09, Mw8.3

a b

Figure 7.1: Teleseismic stations used to study (a) the 2013/05/24 Mw 8.3 Okhotsk
earthquake, and (b) the 1994/06/09 Mw 8.3 Bolivia earthquake.

2013 Okhotsk earthquake of similar magnitude (Figure 7.1), and has provided criti-

cal information about deep earthquake mechanisms. The earthquake was previously

characterized by low rupture speed (~1.5km/s), high static stress drop, and low radi-

ation efficiency (Ihmlé, 1998; Kikuchi and Kanamori, 1994; Silver et al., 1995). The

earthquake’s rupture dimension (~30kmx40km) is small for its size, yet significantly

larger than the predicted width of the metastable olivine wedge (Tibi et al., 2003),

unless significant thickening of the slab occurs due to plate bending (Kirby et al.,

1995). Kanamori et al. suggest instead that shear melting could have promoted ex-

tensive sliding with high energy dissipation which resulted in large slip, high stress

drop and slow rupture speed (Kanamori et al., 1998).

The 2013 Okhotsk deep earthquake was of similar size as the Bolivia earthquake,

but occurred in a different tectonic setting. The subducted Pacific plate in which

the Okhotsk earthquake occurred is significantly older and hence colder than the

subducted Nazca plate in which the Bolivia earthquake occurred (Wiens and Gilbert,

1996). A thorough comparison of these two earthquakes’ rupture properties thus
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provides important constraints on the faulting mechanism of deep earthquakes and

its temperature dependence.

7.3 Directivity analysis

Earthquake source dimension and rupture directivity directly affect the azimuth and

distance dependence of waveforms. This directivity effect is easily quantified for an

earthquake that consists of a few sub-events. For the n-th sub-event at time Tn with

distance Ln from the hypocenter, the timing of the observed displacement pulse at

any station i can be written as

T in = Tn −
Ln
ciP

cos(θi − θnr ),

where θi is the station azimuth, θnr is the rupture direction, andciP is the phase ve-

locity of teleseismic P waves (which depends on station distance). Defining a directiv-

ity parameter following Ammon et al. (2005), xi = − cos(θi−θn
r )

ci
P

, then T in = Tn+Ln �xi.

Therefore, arranging teleseismic P waves by directivity parameter xi(θnr ), different

sub-events can be identified as different straight lines with slopes of Ln and zero-

crossing points at Tn. The choice of rupture direction θnr is based on trial and error,

and could be different for different sub-events.

Figure 7.1 shows the teleseismic stations that we use for analysis of the 1994 Bo-

livia earthquake and the 2013 Okhotsk earthquake. We choose stations based on data

quality and azimuthal coverage, and remove near-nodal stations to avoid complicated

waveforms due to 3D structure. The qualitative rupture properties of a seismic event

can be inferred by making the directivity plots (Silver et al., 1995). As mentioned

above, arrivals from different earthquake sub-events will be aligned with different lin-

ear moveouts if the sub-events occur in the assumed rupture direction. Teleseismic
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P waveforms for the Okhotsk earthquake (Figure 7.2a) show strong directivity to the

NNW and SSE (N165°E), with a few major sub-events clearly visible in the directivity

plot. Unlike for the Okhotsk earthquake, waveforms of the Bolivia earthquake cannot

be aligned well with a single rupture direction, and require two rupture stages (Figure

7.2b, c). In stage 1, the Bolivia earthquake ruptured to the east with a series of small

sub-events, whereas in stage 2 the rupture grew rapidly and the last sub-event arrival

is better fit with rupture to the NE.

7.4 Subevent modeling

While the essential features of both the Okhotsk and Bolivia earthquakes are easily

visualized in the directivity plots of Figure 7.2, quantitative details regarding the

precise locations and timings of the sub-events cannot be determined from visual

inspection. We therefore introduce a new sub-event algorithm to simultaneously

invert broadband P waveforms for multiple sub-events’ centroid locations, centroid

times and moments. As with other sub-event methods (Duputel et al., 2012; Kikuchi

and Kanamori, 1991; Tsai et al., 2005), we use only a small number of sub-events with

a correspondingly small number of free parameters; yet our method can explain the

observed broadband data with sufficient detail and estimate the moment distribution.

Due to the small number of parameters estimated, our sub-event inversion does not

require damping, smoothing or constraints on rupture velocity. Our method also

uses global broadband data, rather than the regional high-frequency data of back-

projection methods (Ishii et al., 2005), and therefore resolves the broadband slip

distribution.
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Figure 7.2: Rupture Directivity. Directivity plots for the broadband teleseismic P
waves from the Okhotsk and Bolivia earthquakes. Since we do not invert for focal
mechanisms here, we flip the P-wave polarities to be positive only, while keeping
the true amplitudes. (a) Teleseismic P waves from the Okhotsk earthquake arranged
by directivity parameter, assuming rupture direction towards S15°E and aligned by
hand-picked first arrivals. We identify four major sub-events (E1, E2, E3 and E4)
and the approximate end (END) marked by the red dashed lines, whose slopes are
controlled by their distances from the epicenter. The times of the dashed lines at
directivity parameter 0.00 identify the times of the sub-events from the earthquake
origin time. The inset shows the approximate relative locations of E1, E2, E3 and E4.
(b) Similar to (a) but for the Bolivia earthquake stage 1, assuming rupture direction
to the East. Due to the non-emergent first arrivals, the waveforms are aligned by the
first sub-event E1. Sub-event E4 denotes the sharp rise of P wave amplitudes, is well
aligned, and its time from E1 is denoted as T14. The blue inverted triangles show
that arrivals from the last major sub-event E9 are not well aligned by directivity to
the east. (c) Similar to (b) but for the Bolivia earthquake stage 2, assuming rupture
to the North-East. The P waveforms are aligned by sub-event E4. The last major
sub-event E9 is delayed by T49 relative to E4, and is marked by a red dashed line.
For comparison, the Okhotsk sub-event E4 from panel (a) is shown as a blue dashed
line. The similar timing but steeper slope of the Bolivia E9 compared to the Okhotsk
E4 suggests that the Bolivia earthquake has smaller rupture dimension and lower
average speed than the Okhotsk earthquake.
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7.4.1 Methods

This new algorithm is based on previous travel-time sub-event modeling (Duputel et

al., 2012; Kikuchi and Kanamori, 1991; Tsai et al., 2005), but does not require the

subjective hand picking of coherent arrivals. Given a set of sub-event locations and

times, we first predict the sub-event arrival times for each station. We then assume

Gaussian-shaped source-time-functions centered at the predicted arrival times and

invert the waveform data for the best fitting durations and amplitudes for each station

independently to accommodate radiation patterns, path and site effects. Sub-event

amplitudes and durations are assumed to be the average of the individual station

amplitudes and durations, respectively. We use an iterative nonlinear least squares

algorithm similar to Tsai et al. (2005) (Tsai et al., 2005) to iteratively update the

sub-event locations and times by minimizing waveform misfit. The procedure requires

initial guesses for sub-event model parameters, and we use our visually-determined

results for both the Okhotsk and Bolivia earthquakes (plus published results for the

Bolivia earthquake (Ihmlé, 1998; Kikuchi and Kanamori, 1994; Silver et al., 1995)),

so that convergence is reached within 20 iterations. The choice of starting points and

the number of sub-events can be adjusted based on waveform misfit and directivity

analysis. Note that in this paper we assume that all sub-events occurred at the same

depth. However, possibly different depths of sub-events will only bias the timing

of the sub-events, but not the sub-event locations because of different azimuthal

dependences.

7.4.2 Results

Figure 7.3a, 7.3b and Table 7.1a, 7.1b describe the final sub-event models for the

Okhotsk and Bolivia earthquakes, respectively, where sub-event moments are assumed

to be proportional to the average observed P-wave amplitudes. Waveforms are gener-
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ally well fit (Figure 7.3c, 7.3d and Figure 7.4) and the sub-event models confirm the

first-order features revealed by the directivity analysis. The Okhotsk earthquake first

ruptured sub-event E1 slightly to the NE of the epicenter at about 8s, then proceeded

to the south and ruptured its biggest sub-event E2. Perhaps due to the large slip, the

rupture reset to propagate both north and south, generating E3 back near the epi-

center (between E1 and E2) and E4 to the south. Finally, the rupture ended towards

E4 at about 30s (see Figure 7.3a and 7.2a). The overall rupture was about 90km

long, and was aligned roughly with the N-axis of the Okhotsk earthquake’s GCMT

focal mechanism (Ekström et al., 2012) as well as being fairly close to the slab strike

from Slab 1.0 (Hayes et al., 2012) (dashed lines in Figure 7.3a) considering the un-

certainties in Slab 1.0. The Bolivia earthquake started with a 10s-long weak but fast

(3.5km/s) eastward rupture and generated three small sub-events (E1, E2 and E3)

and a large sub-event E4 (stage 1). In stage 1, the rupture was approximately aligned

with the N-axis of the Bolivia earthquake’s GCMT focal mechanism (Ekström et al.,

2012) and the slab strike from Slab 1.0 (Hayes et al., 2012) (dashed lines in Figure

7.3b). Similar to what happened after E2 of the Okhotsk earthquake, after E4, the

Bolivia rupture also reset and changed rupture direction. However, rather than con-

tinuing along the slab strike, the rupture went to the North and NNW with E5, E6,

E7, E8 and to the NE with E9. This stage is when most of the slip occurred. This

main rupture area was about 30km×40km, and lasted about 22s, characterizing a

slow rupture speed of about 1.5km/s. In short, although the Bolivia earthquake and

the Okhotsk earthquake have similar depths and moments, they have significantly

different rupture processes and geometries. We find that the Okhotsk earthquake is

twice as long and has rupture speed twice as high as the Bolivia earthquake. This

implies that the Okhotsk earthquake has significantly lower static stress drop and

higher radiation efficiency than the Bolivia earthquake. The two earthquakes’ major

ruptures also have different orientations with respect to the N-axes of the focal mech-
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Table 7.1: Sub-event models

(a) Sub-event model of the 2013 Okhotsk earthquake

Times (s) Longitude (°) Latitude (°) Mw
I1 1.33 153.278 54.877 7.10
E1 8.94 153.347 54.898 7.95
E2 15.30 153.507 54.475 8.13
E3 22.95 153.471 54.823 7.88
E4 24.23 153.653 54.160 7.95
E4 32.27 153.656 54.135 7.42

(b) Sub-event model of the 1994 Bolivia earthquake

Times (s) Longitude (°) Latitude (°) Mw
E1 0.04 -67.561 -13.845 7.18
E2 3.34 -67.425 -13.880 7.14
E3 6.55 -67.416 -13.849 7.24
E4 11.77 -67.227 -13.884 7.71
E5 15.96 -67.208 -13.840 7.81
E6 20.67 -67.406 -13.729 7.71
E7 26.11 -67.322 -13.697 7.91
E8 35.04 -67.241 -13.764 7.51
E9 32.55 -67.003 -13.682 7.61

anisms and the local slab strikes. Additionally, both earthquakes show well-resolved

dynamic rupture processes strongly affected by sub-events with large slip.

7.5 Discussion and conclusions

The new rupture models obtained here have significant implications for the mechan-

ics of deep earthquakes. Previous studies (Tibi et al., 2003; Wiens, 2001), using sets

of large deep earthquakes (M>7), have observed slow rupture velocities for events

in warm subduction zones, such as the South American subduction zone, and fast

rupture velocities in cold subduction zones like Tonga. Although speculative, it has

been suggested that two fundamentally different faulting mechanisms might operate

for deep earthquakes (Houston, 2007). For the two largest deep earthquakes studied
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Figure 7.3: Sub-event models of the Okhotsk earthquake in (a) and of the Bolivia
earthquake in (b). The red stars are the USGS NEIC epicenters, used as the reference
starting points. Circles represent the earthquake sub-events with moments denoted
by the sizes of the circles, and colors indicating sub-event centroid times. The black
arrows illustrate the approximate rupture sequences. The slab depth contours from
the Slab 1.0 model30 are shown as dashed lines. The N-axes of the Global CMT
solutions of both earthquakes are approximately aligned with their respective slab
strikes. (c) and (d) show example waveform fits for the sub-event models, for the
Bolivia and Okhotsk earthquakes, respectively, with observed waveforms in black and
predicted waveforms in red. The stations shown here are highlighted in Figure 7.1, and
are representative of different azimuths. On the first example for each earthquake, the
predicted arrival times of sub-events are marked by thin vertical lines. The complete
waveform fits can be found in the supplementary material.
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in this paper, the Bolivia earthquake occurred in the relatively warm South Ameri-

can subduction zone, whereas the Okhotsk earthquake occurred in the relatively cold

Kuril subduction zone (Wiens and Gilbert, 1996). We find that they have signifi-

cantly different source dimension, rupture speed, and orientation with respect to the

slab strike, consistent with observations for other deep earthquakes (Tibi et al., 2003;

Wiens, 2001), and resulting in different stress drops and radiation efficiencies. How-

ever, our sub-event analysis also shows that the first stage of the Bolivia earthquake,

although weak, actually had a fast rupture speed, similar to the Okhotsk earthquake

and other deep earthquakes in cold slabs. Furthermore, stage 1’s rupture direction

is also sub-parallel to the local strike of the slab, similar to the Okhotsk earthquake.

From this, we infer that the Bolivia earthquake involved two different mechanisms

in its two stages, with its first stage being similar to the Okhotsk earthquake except

consisting of relatively small amplitude slip. Since the shear melting inferred during

the Bolivia earthquake was mostly based on the major rupture parameters dominated

by the area with large slip (Kanamori et al., 1998), it is reasonable to assume that

the mechanism of stage 2 is shear instability caused by shear melting in a relatively

warm slab.

Given our new results, we suggest a conceptual model to explain the different

rupture processes of the Bolivia and Okhotsk earthquakes (Figure 7.5). Due to the

difference in the thermal state of the subducting slabs responsible for the two earth-

quakes, the predicted widths of the metastable olivine wedges are also different. The

Bolivia earthquake nucleated inside the relatively thin cold slab core by the trans-

formational faulting mechanism (Green and Houston, 1995; Green II and Burnley,

1989; Kirby et al., 1991; Kirby et al., 1996), and ruptured inside the core along slab

strike. Due to the small thickness of cold core, the rupture was relatively small but

fast. However, after about 10s, the large sub-event E4 triggered shear melting, allow-

ing the rupture to grow outside the metastable olivine wedge into the warmer slab
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Figure 7.5: Conceptual models of the Okhotsk and Bolivia earthquakes in cross section
(top panels) and map view (bottom panels). Due to differences in the thermal states
of the subducting slabs in which the two earthquake occurred, the widths of the
metastable olivine wedges in the slab core are also different. This causes different
dominant faulting mechanisms for the two largest deep earthquakes. The Okhotsk
earthquake is inferred to have ruptured mostly inside the relatively thick metastable
olivine wedge, whereas the Bolivia earthquake’s major rupture, stage 2, was outside
the relatively thin metastable olivine wedge. See the main text for details.
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material, where the melting point is reached more easily (Ogawa, 1987). The posi-

tive feedback during shear melting caused the slip to grow rapidly to cause a great

earthquake. Due to the substantial energy dissipation involved with shear melting,

the rupture speed in this stage decreased significantly. On the other hand, we pro-

pose that the recent Okhotsk earthquake nucleated and managed to stay inside the

relatively wide metastable olivine wedge in a cold slab. Therefore, the rupture di-

rection stayed close to the slab strike, and the rupture speed stayed relatively high.

Interestingly, after the biggest sub-event E2, the rupture also seems to have reset

and ruptured both northward and southward, similar to the Bolivia earthquake after

its E4. This implies that very dynamic rupture processes occur during great deep

earthquakes, despite inferred differences in the mechanisms. The results shown in

this paper demonstrate the complexity of deep earthquakes, and the methodology

described has the potential to reveal the mechanics of other earthquakes.
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