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I found Sherlock Holmes alone, however, half asleep, with his long, thin form 
curled up in the recesses of his armchair. A formidable array of bottles and 
test-tubes, with the pungent cleanly smell of hydrochloric acid, told me that he 
had spent his day in the chemical work which was so dear to him. 

"Well, have you solved it?" I asked as I entered. 

"Yes. It was the bisulphate of baryta." 

"No, no, the mystery!" I cried. 

- The Adventures of Sherlock Holmes: A Case of Identity  
           by Sir Arthur Conan Doyle 
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Abstract 

A long-standing challenge in transition metal catalysis is selective C–C 

bond coupling of simple feedstocks, such as carbon monoxide, ethylene or 

propylene, to yield value-added products. This work describes efforts toward 

selective C–C bond formation using early- and late-transition metals, which may 

have important implications for the production of fuels and plastics, as well as 

many other commodity chemicals.  

The industrial Fischer-Tropsch (F-T) process converts synthesis gas 

(syngas, a mixture of CO + H2) into a complex mixture of hydrocarbons and 

oxygenates. Well-defined homogeneous catalysts for F-T may provide greater 

product selectivity for fuel-range liquid hydrocarbons compared to traditional 

heterogeneous catalysts. The first part of this work involved the preparation of 

late-transition metal complexes for use in syngas conversion. We investigated C–

C bond forming reactions via carbene coupling using bis(carbene)platinum(II) 

compounds, which are models for putative metal–carbene intermediates in F-T 

chemistry. It was found that C–C bond formation could be induced by either (1) 

chemical reduction of or (2) exogenous phosphine coordination to the platinum(II) 

starting complexes. These two mild methods afforded different products, 

constitutional isomers, suggesting that at least two different mechanisms are 

possible for C–C bond formation from carbene intermediates. These results are 

encouraging for the development of a multicomponent homogeneous catalysis 

system for the generation of higher hydrocarbons. 
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A second avenue of research focused on the design and synthesis of 

post-metallocene catalysts for olefin polymerization. The polymerization 

chemistry of a new class of group 4 complexes supported by asymmetric 

anilide(pyridine)phenolate (NNO) pincer ligands was explored. Unlike typical 

early transition metal polymerization catalysts, NNO-ligated catalysts produce 

nearly regiorandom polypropylene, with as many as 30–40 mol % of insertions 

being 2,1-inserted (versus 1,2-inserted), compared to <1 mol % in most 

metallocene systems. A survey of model Ti polymerization catalysts suggests 

that catalyst modification pathways that could affect regioselectivity, such as C–H 

activation of the anilide ring, cleavage of the amine R-group, or monomer 

insertion into metal–ligand bonds are unlikely. A parallel investigation of a Ti–

amido(pyridine)phenolate polymerization catalyst, which features a five- rather 

than a six-membered Ti–N chelate ring, but maintained a dianionic NNO motif, 

revealed that simply maintaining this motif was not enough to produce 

regioirregular polypropylene; in fact, these experiments seem to indicate that only 

an intact anilide(pyridine)phenolate ligated-complex will lead to regioirregular 

polypropylene. As yet, the underlying causes for the unique regioselectivity of 

anilide(pyridine)phenolate polymerization catalysts remains unknown. Further 

exploration of NNO-ligated polymerization catalysts could lead to the controlled 

synthesis of new types of polymer architectures. 

Finally, we investigated the reactivity of a known Ti–phenoxy(imine) (Ti-FI) 

catalyst that has been shown to be very active for ethylene homotrimerization in 
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an effort to upgrade simple feedstocks to liquid hydrocarbon fuels through co-

oligomerization of heavy and light olefins. We demonstrated that the Ti-FI 

catalyst can homo-oligomerize 1-hexene to C12 and C18 alkenes through olefin 

dimerization and trimerization, respectively. Future work will include kinetic 

studies to determine monomer selectivity by investigating the relative rates of 

insertion of light olefins (e.g., ethylene) vs. higher α-olefins, as well as a more 

detailed mechanistic study of olefin trimerization. Our ultimate goal is to exploit 

this catalyst in a multi-catalyst system for conversion of simple alkenes into 

hydrocarbon fuels. 
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