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ABSTRACT 

The purpose of this thesis is to present new observations of thermo!­

infrared radiation from asteroids. Stellar photometry was performed to provide 

standards for comparison with the asteroid data. The details of the photometry 

and the data reduction are discussed in Part 1. A system of standard stars is 

derived for wavelengths of 8.5, 10.5 and 11.6 ~m and a new calibra-

tion is adopted. Sources of error are evaluated and comparisons are made 

with the data of other observers. 

The observations and analysis of the thermal-emission observations of 

asteroids are presented in Part 2. Thermal-emission lightcurve and phase effect 

data are considered. Special color diagrams are introduced to display the 

observational data. These diagrams are free of any model-dependent assumptions 

and show that asteroids differ in their surface properties. 

On the basis of photometric models, (4) Vesta is thought to have a bolo-

metric Bond albedo of about 0.1, an emissivity greater than 0.7 and a true radius 

that is close to the model value of 300~~ km. Model albedos and model radii 

are given for asteroids 1, 2, 4, 5, 6, 7, 15, 19, 20, 27, 39, 44, 68, 80,324 

and 674. The asteroid (324) Bamberga is extremely dark with a model (---bolo­

metric Bond) albedo in the 0.01 - 0.02 range, which is thought to be the lowest 

albedo yet measured for any solar-system body. The crucial question about such 

low-albedo asteroids is their number and the distribution of their orbits. 
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PART 1. ASTRONOMICAL PHOTOMETRY AT WAVELENGTHS 
OF 8.5, 10.5 and 11.6 1-1m 

I. INTRODUCTION 

The first half of this thesis develops the stellar photometry system which 

is used later, in Part 2, to measure radiation from asteroids. Here the obser-

vations of five stars (a. Boo, 1-1 Cep, a. Her, a. Tau and a. Ori) are reduced to form 

a set of standards. The methods of data reduction are discussed in detail and a 

new calibration is introduced. Finally, this part concludes with an 

account of how sources of unknown irradiance are measured with respect to the 

standards. 

Other narrow band photometry in the 8-14 \.lm region for these same stars 

is already available in the literature (Gehrz and Woolf 1971, Gillett~ c:! 1971). 

The bandpasses used here differ slightly from those of the above authors and, in 

principle, the standards must be determined anew because some of these stars have 

spectra I features at wave lengths of 8-14 \.lm. 

In the following Beer's Law is found to adequately describe the terrestria I 

atmospheric extinction. The relative irradiances assigned to the standards are 

consistent at about the ten to twenty percent level with the results obtained by 

other observers. A new calibration is introduced. It is independent of, but m 

good agreement with, the commonly used value which was worked out by 

Johnson ( 1965). 
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II. OBSERVATIONAL METHOD 

The observations were made with the Hale Observatories' 60-inch telescope 

on Mt. Wilson. A double-beam (sky subtraction) photometer was mounted at the 

telescope's f/16 cassegrain focus. The photometer beams defined two fields of 

view which were separated on the plane of the sky by one minute of arc. One 

beam was fixed to be always directly north of the other and each beam subtended 

a field of view 16 seconds of arc in diameter. In the photometer an optical chopper 

allowed the detector to alternately receive light from the two beams. 

The band passes of the photometer are centered at 8. 5, 10.5 and 11 . 6 urn 

and have widths at fifty percent transmission of 0.5, 0 .5 and l.OIJ.m respectively. 

The detector is a mercury doped germanium photoconductor which is operated at a 

temperature of ,...,. 20° K. For photons with more than a certain threshold energy, the 

conductivity of the detector varies directly with the number of light quanta incident 

upon it. The chopping between the two fields of view, induces an alternating 

conductivity of an amplitude proportional to the difference in the photon flux. 

Appendix II describes how this signal is electronically amplified and processed. 

The end product is a direct current voltage signal which, within instrumental error, 

is directly proportional to the difference between the number of photons reaching 

the detector from the two beams. The output is monitored on a strip-chart recorder 

and is a lso fed to a voltage-to-pulse frequency converter. The pulses from this 

converter are counted electronically for fixed intervals of time in order to measure 

the integrated, or average vo It age. Ten seconds is the length of the i nterva I used 
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for all of the observations and at the end of each interval the total number of 

counts is printed on a paper tape. 

Measurements or deflections are taken by first placing the source to be 

measured in one beam and counting for ten seconds. After the end of the interval 

the telescope is moved, and the source is placed in the other field and another 

ten-second integration interval is started. The difference between the two count 

totals, 1 and 2, is the measurement. The telescope is then returned to its initial 

position and the second measurement is obtained from count print-outs, 2 and 3. 

If the polarity of the first measurement is defined to be positive then the second 

measurement is negative and must be multiplied by minus one. The telescope is 

repositioned and the counting sequence 1-2-1-2-1 ..•• is continued unti I anywhere 

from twelve to thirty measurements have been made. 

In the far-infrared great care must be taken in making these measurements 

in order to be sure that the background radiation from the sky and the telescope 

is separated from the signal. On occasion faint sources are found to have negative 

irradiance. This is probably due to the inclusion of small uncompensated amounts 

of background radiation in the measurements. Thus there are non-photometric 

conditions under which spurious signals can be obtained, as well as the classical 

non-photometric conditions under which the correct extinction corrections cannot 

be applied (e.g. clouds). 

The matter of rejecting J'anomalous" data is a subject of concern because 

ot the risk ot introducing bias. Of course, those measurements that are spurious 
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due to some specific and identifiable cause can be and are discarded. Perhaps 

the process should stop with that. However, there are things that happen to cause 

bad measurements, such as objects (e.g. birds), passing through the fields of view, 

electrical transients and other things. Although the cause cannot be identified in 

each instance, it is desirable to mitigate the effect of the large errors so as not 

to completely upset the observations during which they occur. Concomitantly, it 

is realized that rejection of outlying values is at the expense of some good data. 

The adopted criterion is first to reject deflections more than three standard 

deviations from the mean and then to re-compute the mean and discard those at a 

distance of more than two standard deviations. The resu It is that from a toto I of 

16,230 deflections, 63 are discarded by the first step and 654 ore removed by the 

second. In all, 4.42% are rejected and, by way of comparison, a two-standard­

deviation criterion applied to a gaussian distribution would reject 4.54%. It 

would seem that the number of data rejected is not excessive. For a typical 

observation of twenty deflections this means that slightly less than one deflection 

is thrown away. 
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Ill. STANDARD STARS 

Now observations of a. Tau, a. Ori, a. Boo, J..l Cep and a. Her are to be 

reduced to &mastandard star system. The problems of atmospheric extinction 

and of the accuracy of the standards wi II be discussed. 

A. Atmospheric Extinction 

The correction of observations for the effects of extinction by the Earth 1s 

atmosphere is a very complicated and difficult problem, inasmuch as several 

different effects occur simultaneously. The vast amount of observational and 

theoretical studies in the literature are reviewed by Plass and Yates (1965) and 

the reader is referred to that reference for discussion. Here the problem of 

correcting data for extinction is treated empiricalfy. 

On the best photometric nights the dependence of extinction upon airmass 

is obvious. Some of the best data are shown in Fig. 1. Beer 1s Law is: 

E = E exp(-kx) 
0 

(1) 

E = observed irradiance 
E = irradiance above the Earth 1S atmosphere 
.~ . • ff. . 
K = extmctron coe rcrent 
x =path length in airmass units 

It adequately describes the data in Fig. 1 to an accuracy of better than one 

percent. In making nominal corrections of the observations, values of k = 0.25, 

0.10 and 0.04 are used for the bandpasses at 8.5, 10.5 and 11.6 urn respectively. 

These values are used because it is thought that they are typical for average nights. 

The error introduced by any difference, 6k, between the true and the adopted 

values of k can easily be estimated. Accordingly, for the ratio of two extra-

terrestrial irradiances, one obtains from Eqn. 1: 
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Fig. 1. Comparison of some of the best data with Beer's Law. The ordinate 

is in counts which correspond to the instrumental response. The curves are 

fit to the data by the method of least squares. All observations except one 

are within one percent of the curves. The "spurious observation" was re­

jected because of its large internal standard deviation which was taken as 

an indication of lack of good agreement among the measurements compris­

ing the observation. Since several causes for such erroneous data are known 

there is no special reason to regard this observation as an improbable statis­

tical event. The values observed fork on these nights do not necessarily 

correspond to values that are typical for an average night. 
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E' E' 
0 

Eo - -E- exp (k(x'-x)) 

. ~ k. 

= (x'-x)£ exp (k(x'-x)) • ~k. 
E 

The estimated error is 

Extinction error "' 

or "'5% 

E' 
0 

E 
0 

= (x'-x) • ~ k 

when one uses values of (x'-x) = 0.5 and b.k = 0. 1. 

(2) 

(3) 

(4) 

(5) 

(6) 

The results of the application of this type of nominal extinction 

correction on several typical nights are shown in Figs. 2 and 3. 

B. lrradiance Ratios 

For each night's data, the mean and the standard deviation are cal cu fated 

from the extinction-corrected observations of each star. The irradiance ratios 

between the various stars are formed using the mean values. The errors for these 

ratios are taken as the larger of either the formal error or five percent of the ratio 

itself. The arbitrary five percent is used because it is believed that this is the limit 

for accuracy on typical nights. If a star is observed only once, then the mean and 
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Fig. 2. Data for April 3, 1970 after the nominal corrections have been made 

for extinction. The ordinate is the instrumental response measured in thousands 

of counts. 
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Fig. 3. Data for July 26, 1970 after the nominal corrections have been made 

for extinction. The ordinate is the instrumental response measured in thousands 

of counts. 
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the standard deviation of the mean, as formally computed from the deflections of 

the observation, are used. On the whole, the ratios are found to repeat from 

night-to-night to roughly ten percent precision. The ratios and the assigned errors 

are listed in Tab les 1-3. 

The adopted values for the ratios are the averages of the nightly values 

with double weight assigned to the data from nights on which both stars of a ratio 

are observed more than once. The final standard deviations are set to be the larger 

value of either the formally propagated standard deviation or ten percent of the 

ratio. The ten percent lower limit for the standard deviation is chosen because 

this is approximately the precision to which the most frequently (and therefore best) 

observed ratios repeat. 

One way to test the adopted irradiance ratios is to compute products of 

the form: 

Star A • 
Star B 

Star B 
Star C 

Star C 
Star A = 1. (7) 

All of the ratios can be obtained directly from the dato ond the closeness to unity 

of Eqn 7 is a measure of the internal consistency. Tobie 4 tobulotes the appropri-

ate three stor products. With two exceptions, products with the ratios involving 

0' Boo and p. Cep vary five percent or less from unity. Other ratios easily approach 

to within ten percent of unity. 

A second test involves comparison of the adopted ratios with the photometry 

of Gillett et ~ (1971) and Gehrz and Woolf(l971). The published magnitudes for 
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TABLE I. 11.6 #J.m IRRAD IANCE RATIOS 

Date 
f.L Cep aOri O'Tau rv Her --
0' Boo tY. Boo tY. Boo 0' Boo 

(1969) 

Aug. 23 I. 93± 0. 10 1. 91 ±0. 18 

24 

25 

26 

Sept. 17 

18 

Oct. II 

Nov. 30 

Dec. 3 

(1970) 

Jan. 12 

Feb. 6 7. 95±0.40* 0. 893± 0. 045 * 2.18± 0.17* 

7 9.81±0.49 0. 846±0. 054* 

Apr. 10. 4±1.2 2.32±0.32* 

2 2.31 ± 0. 28 8.63±1.04* 0. 951 ±0.117 2.18±0. 27* 

3 8. 05±0.46 

4 2.75±0.14 2. 29±0.11 

Jul. 24 2.13± 0.20 0. 988±0. 07 4 

25 2. 21 ±0.11* 

26 2.18±0.19* 

27 

ACCEPTED 
VALUES 2. 24± 0.24 8.78±1. 01 0. 903 ±0. 09 2. 23±0. 22 

* Double weight 
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TABLE 2. 10.5 ~m IRRADIANCE RATIOS 

Date g Cep a Ori a Tau CY Her 
a Boo a Boo a Boo o·Boo 

(1969) 

Aug. 23 2.63±0.16 2. 09 ± 0.11 

24 2.77± 0.23 2.06 ±0.15 

25 

26 

Sept. 17 

18 

Oct. II 

Nov. 30 

Dec. 3 

(1970) 

Jan. 12 

Feb. 6 

7 

Apr. 

2 

3 8.06± 0.62 

4 2.66±0.37 

July 24 2.43± 0.25* 0. 817 ±0. 07 4 

25 2.62± 0.13* 

26 2.35±0.12 

27 

ACCEPTED 
VALUES 2.56± 0.26 8.06±0.81 0. 817 ± 0. 082 2.07±0.21 

* Double Weight 
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TABLE 3. 8.51Jm IRRADIANCE RATIOS 

Date ~ Cep rx Ori rx Tau rx Her 
rx Boo rx Boo (!!Boo C1 Boo 

(1969) 

Aug. 23 0.871±0.044 1.69±0.08 

24 

25 

26 

Sept. 17 

18 

Oct. II 

Nov. 30 

Dec. 3 

(1970) 

Jan. 12 4.80±0.24* 

Feb. 6 

7 

Apr. 

2 0. 837 ± 0. 042 4.57 ±0. 29 0. 810± 0. 040 1.64±0. 08 

3 5.07± 0.25 

4 0. 910± 0.046 

July 24 0. 851 ± 0. 043* 0.794±0.040 

25 0. 880 ± 0. 044 

26 0.777± 0.047* 

27 

ACCEPTED 
VALUES 0. 844±0. 084 4.81±0.48 0. 801 ±0. 080 1.66±0.16 

* Double Weight 
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TABLE 4. LOOP SUMMARY 

Bandpass 
Product 

II. 6 J.Lm 8.5J.Lm 10.5 J.Lm 

l:! Cep • a Ori • a Boo 0.97 0. 96 0.97 
a Boo .u. Cep a Ori 

l:! Cep o:Tau a Boo 
1.08 1.00 0. 98 

a Boo J.t Cep a Tau 

1!:. Cep a Her a Boo 
0.96 0.99 0. 96 

(Y. Boo u Cep (Y. Her 

a Ori a Tau a Boo 1.05 1.06 0.87 a Boo o:Ori o:Tau 

aOri a Her cr Boo 1.03 1.04 0.92 a Boo ~J Ori a Her 

o:Ori o:Tau f.L Cep 0.94 1.02 0.86 
o:Ori 

. 
f.L Cep o:Tau 

a Ori a Her I:! Cep 1.04 1.01 0.94 
J.L Cep CY. Ori Cl.. Her 

a Tau o: Her a Boo 
0.96 1.03 0.98 a Boo a Tau o:Her 

a Tau a Her tL Cep 1.08 1.04 I. 01 
f.L Cep a Tau a Her 

ry Tau a Her aOri 
0.98 1.05 0.93 a Ori ry Tau "-' Her 
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these stars are listed in Table 5 along with the magnitudes for the present obser­

vations. The differences between the reported magnitudes are generally in the 

range of 10 to 20 percent. Upon inspection of this table, however, it is obvious 

that errors in the irradiance reported for an unknown source could differ between 

observers by as much as 30 percent if these stars are used as standards (e.g. ~ Cep 

at 8.5 ~m). The differences between the magnitudes assigned to two different 

stars can also be large. Some of these differences with respect to a Boo are shown 

in Fig. 4. This general level of agreement is not good compared with the (8-14j.J.m) 

N-photometry. For these same stars, the Arizona and CIT N-bandpass photome­

tries agree to within a few percent (Low 1970, Neugebauer and Becklin, private 

communication). Similar precision should be achievable through the narrower 

bandpasses; presumably this is just a matter of collecting a statistically significant 

number of observations. In the meantime measurements of unknown sources will 

suffer from more scatter than is necessary. 
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Fig. 4. Comparison between observers. The abscissa is the ratio between 

each star and a Boo as used in this thesis. The ordinates are the differences 

between these ratios and those used by other authors. Bandpasses differ 

slightly between observers and the wavelengths at the right margin are for 

this work. The 10.5 and 11.6 ~m data are compared with 11.0 ~m obser­

vations from other observers. The 8-14 ~m data that are not plotted fall 

off scale. The N photometry is from Low (1970). 



21 
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IV CALIBRATION 

The absolute irradiance of a Boo will now be derived. This derived 

calibration is based upon absolute, visible-wavelength measurements of a lyr 

from Oke and Schild (1970), the model for Vega by Schild et £!. (1971), the N-

magnitude of (~ Lyr-a Boo) from low {1970) and an assumed spectrum for a Boo. 

Oke and Schild (1970) report their absolute spectrophotometric obser-

vations of Vega with respect to two blackbodies and a standard lamp. They give 

the 5480 A spectra I irradiance of a Lyr above the Earth 1s atmosphere as 3.53 x 

-20 -1 -2 -1 -9 -1 -2 o-1 
10 erg sec em Hz (or3.52x 10 ergsec em A )andestimate 

that the accuracy of this value is 2 percent. In comparing their results at 

A = 5556 ~ with older determinations, they find that their result is six percent 

lower than that of Wi llstrop (1965) and nine percent less than that adopted by 

Code (1960). 

Another recent absolute calibration has been made by Hayes (1970). The 

differences between Hayes {1970), and Oke and Schild (1970) have been studied 

by Hayes, Oke and Schild (1970). They 11 
••• conclude that the two calibrations 

are essentially identical. 11 ~cit p362) 

The spectrum of a Lyr is assumed to be as predicted by the mode I of Schild 

et ~ (1971). For their model, Schild et al find that the continum flux at 12~m 

is formed at essentially the same optical depth as A A.= 1 A from the core of the 

Ha line. Upon the expectation that the uncertainty in the extrapolated flux may 

be of the same order as the discrepancy between the observed and computed Ha 
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profiles, they estimate the uncertainty in the emergent model flux at 12 um to be 

"'7 percent. 

The 8-14 \liTl spectrum of a Boo assumed to have the shape of a 4000°K 

b Ia ckbody. Errors in the chosen temperature are not cri t i co I . Furthermore, I ow 

resolution spectral observations from )._ = 7.5 to 13 IJ.m by Gillett et ~ (1968) show 

no significant departure of the data from this assumed shape. This is true to about 

the 10 or 15 percent level which is the amount of their observational scatter. 

For wavelengths at 8-14 \liTl let the shape of the alyr spectrum be 

represented by a 10,000° K blackbody and take the difference between a Boo and 

Vega as -3.22 magnitudes as observed by Low (1970) in the N bandpass. This is 

in excellent agreement with -3.2 mag observed by Neugebauer and Becklin 

(private communication). Let E(A.) represent the spectral irradiance above the 

atmosphere at wavelength A.; B(A. , T) be the spectral radiant emittance at wave-

length A. of a blackbody of temperature T; and let C be a constant whose value is 

to be determined. The prime notation denotes the quantity referring to a Lyr. 

The observed ratio, r, is then: 

!.13.~ ) 
B \,\,4000 d,\ 

c 8 (8) 

[

135 

8 
B ( ,\,10000) d ,\ 



c r 

24 

!.13.5 

8 
s(A, 10000 )d A 

/.
13.5 ) 

B (A, 4000 d A 
8 

(9) 

Equation 9 is evaluated numerically using steps of!:::./..= 0.1 ~m from 8.0 to 13.5,..tm. 

This equation is a reasonable approximation because the two spectra are very 

similar. The ratio B("A, 10000)/B(/..,4000) varies by~ percent between the two 

limits. If the spectra were grossly dissimilar then Eqn. 9 would have to include 

the spectral sensitivity of the equipment and the atmospheric transmission. 

The difference of -3.22 magnitudes corresponds to r = 19.4 and evaluation 

of Eqn. 9 yie Ids C = 54.6. Now, the spectra I irradiance of the two stars are 

related by: 

E (/..) = E' (/..) C _B~("-...:..'~40~0~0)~ 
B(A, 10000) 

(10) 

The resulting spectral irradiances, E ("A), for a. Boo are 4.06, 1.81 and 1.24 

-15 -2 -1 
x 10 W em IJm for 8.5, 10.5 and 11.6 ~m respectively. 

Now these values are to be compared with data that are ova i lab le from 

other workers. Their magnitudes and ca I ibrat ions are used to compute the 

absolute irradiance that they assign to 0! Boo. 

The ca I ibrat ion of the N-photometry system is dis cussed by Johnson 

(1965). He bases his calibration upon absolute measurements for the Sun 

from Saiedy (1960) and C. W. Allen (1963); upon stellar magnitudes from Code 

(1960) and Stebbins and Kron (1964). As the effective wavelengths for his 
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bandpasses, Johnson uses, 

A= fo A cp (A)dA 

0 !.. cp(A)dA 
0 

( 11) 

where cp (A) is the instrumental response. Johnson obtains the color of the sun by 

interpolation among the availab le data. Using V = -26.74 as the solar magnitude, 

he reduces the solar data to V = 0~0, yielding the irradiance of a solar-type 

star with V = o.rroo. Correction for the solar color of V-N = +1 ~46 produces 

-16 -2 -1 
1.23 x 10 W em 11m as the absolute calibration for zero N-magnitude. 

His effective wavelength, A = 10.211m, and (a Lyr-a Boo} = -3~2 mag as 
0 

observed by Low, yield the position of Johnson's calibration in Fig. 5. 

All other previously existing calibrations either depend directly upon these 

resu Its of Johnson (1965} or use the same methods and/or data that he used. 

Table 6 lists the other data used in Fig. 5. The details of the methods by which 

these values are derived are not discussed in the I iterature. Both Gehrz and Woolf 

(1971} and Gillett et al (1971) use the same calibration (Gehrz 1971, 

private communication}. Their calibration was obtained by extrapolating the 

spectral shape of A-type stars to the longer wavelengths on the basis of their UBV 

colors. The absolute calibration of UBV was taken from Johnson (1965} and they 

place the accuracy of their calibration at 10 percent. The data that are tabulated 

and pI otted for D. A. A II en are the ca I ibrat ions and the magnitudes that he used for 

his observations of Vesta (D.A. Allen 1971, private communication}. 
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TABLE 6. CALIBRATION DATA FOR FlGURE 5 

A A 
-1 

E(A) for Zero Mag. 

(u.m) {!..tm -1) (W em 
-2 -1 

~m ) 

8.4 0. 119 2.45 X 10-16 

8.5 0. 118 2.5 X lQ-16 

8.5 2.13 X J0-16 

10.2* 0.098 1.23 X 10-16 

10.5 0.095 9.25 X 10-17 

11.0 0.091 8.6 X 10-17 

11. 5* 0.087 7.2 X 10-17 

11.6 0.086 6.24 X 10-17 

*Effective Wave length 
**Adopted but not observed 

a. Boo 

Magnitude 

-3.32 

-3.20 

-3.20** 

-3.22 

-3.23** 

-3.24 

-3.22 

-3.24** 

Reference 

Gillett et al 1971 

Allen (1971, private 
communication) 

Present Work 

Johnson 1965 

Low 1970 

Present Work 

Gillett et al 1971 

Allen (1971, private 
communication) 

Present Work 
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Fig. 5. Nomina l values for the absolute spectral irradiance of a. Boo above 

the Earth 1S atmosphere. The plotted points show the irradiances currently 

used for this star. The curve has the shape of a 4,000°K blackbody and is 

inc luded for reference only. It is set to pass through the points of the 

present calibration and does not involve the angular diameter of a. Boo. 
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T ob le 6 and Fig. 5 show the vo lues that ore currently in use. However, 

the real differences between the infrared calibrations ore less than these data 

suggest. This is because of a ten percent discrepancy in the absolute co librotions 

for the V filter. For zero V magnitude, Oke and Schild {1970) obtain 3.64 

-12 -2 -1 -12 -2 -1 
x 10 W em 1-1m whereas Johnson's {1965) value is 3.92 x 10 W em 1-1m. 

So, if all observers use the same V calibration, then the differences in Fig. 5 

between the Johnson-dependent calibrations and the present calibration would be 

reduced to about ten percent or less. 

All of the preceding calibrations are monochromatic and o classical problem 

is to relate these calibrations to the responses of instruments with finite bondposses. 

For example, because of the absorption lines and other spectral features of the light 

that is measured, the absolute calibration of wide-band photometry cannot be 

expected to yield absolute fluxes that ore identical with those obtained from 

spectrophotometry or even narrow-bond photometry for the same objects. Stated 

another way, one wishes to measure 

r 14 
}g E (A.) d A. (12) 

above the atmosphere but the instrumental deflection, d, is given by 

r 14 
d = }g E (A) Q (A.) cp (A.) d A. (13) 

where Q {A. ) is the atmospheric transmission and cp (A.) is the instrumental response 

or the sensitivity. The problem is now demonstrated by letting E {A. ) be a delta 
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function with, of course, unit irradiance. The value of (12) is always unity for 

8 urn< A.< 141J.lll, whereas the instrumental deflection, d, is variable depending 

upon the wave length. The advantages of uniform instrument response, cp (A. ) = 

constant, and clear atmospheric windows, Q (A.),..., constant, are obvious. 

It is noted that Eqn. 11 is not the best evaluation of the effective wave-

length because it accounts for neither the atmospheric transmission nor the spectrum 

of the observed radiation above the atmosphere. Hansen (1971, private communi-

cation) has taken these factors into account and uses 10.7 IJ.m as the effective 

wavelength for his bolometric 8-141J.m stellar observations. Fortunately, a Lyr 

and a Boo do not differ greatly in spectral shape so if Johnson (1965) did use a 

poor value for effective wavelength it would not invalidate the comparison in 

Fig. 5. For example, if one takes A. = 10.7\lm, then Johnson would have 
0 

assigned a corresponding lower value to the irradiance ofalyr. 

The wavelengths used in this work correspond to the center of the band-

pass. Effective wavelengths are not employed because the bandpasses are fairly 

narrow and because the effective wave lengths for the stars and the asteroids 

observed in Part 2 (effective temperatures of 170 to 250 o K) are different. 
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TABLE 7. CALIBRATION DATA 

FOR cONVERSION OF OBSERVED MAGNITUDES INTO IRRADIANCE 

8.5 

10.5 

11.6 

E (X) for Zero Magnitude 
(W em -2~-tm-1) 

2.1 X 10- 16 

9.2 X 10-17 

6. 2 x w-17 
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V. PHOTOMETRY OF SOURCES 

OF UNKNOWN IRRADIANCE 

A. Sensitivity · 

At the telescope the observations of sources with unknown irradiances 

are alternated with observations of standard stars in such a way that a standard 

is observed at least once an hour. 

The sensitivity of the photometer and telescope is defined by : 

m = -2.5 logi + m 
s 0 

I =observed number of counts 

m0 = calibration magnitude 

(l4) 

Using the mean data from July 25, 19701 the arbitrary reference levels are set 

to the values in Table 8. 

The sensitivity typically varies by 0.1 mag. on a given night with as much 

as 0.2 mag. variation likely in the event of marginal or poor nights. Systematic 

variations between observing runs (i.e. different equipment set-ups) have a peak-

to-peak range of several tenths of a magnitude. These systematic variations are 

presumably instrumental. 

B. Data Reduction Method for 
Unknown lrradiances 

All of the observations of sources of unknown irradiance are corrected for 

nominal extinction. The sensitivity at the time of observation is obtained by 
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TABLE 8. SENSITIVITY REFERENCE LEVELS 

A. Counts Corresponding to 
(J.Lm) m

0 
= 0.0 for aBoo 

8.5 114,320 

10.5 54,948 

11.6 45,622 
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interpolating linearly between the values calculated from standard star obser-

vctions. The date ere reduced to zero magnitude sensitivity and thence to 

irrcdicnce using the a Boo calibration. That is: 

( 
Unknown\= a Boo lrrcdiance x (counts for) (15) 

lrradiance) a Boo Counts \ Unknown 

The errors for these measured irradicnces ere estimated using the formula : 

(16) 

crstat is the formal standard deviation carried through the data reduction. a100/o 

is ten percent of the measured value. This takes into account the errors in the 

magnitude of the standard stars and in the extinction coefficient. a . h 
ntg t 

accounts for the quality of the night and is the fractional error of the peak-to-

peak variation of the standard star observations, times the measured value of the 

unknown. To some extent this whole procedure is arbitrary. In Pert 2 of this 

thesis where date for (4) Vesta ere examined it is concluded that for 11.6 pm 

Eqn. (16) gives a reasonable error estimate but that for 8.5 Jlm and perhaps 

1 0. 5 J.tm the error bars are too large, thus degrad i ng the data. 
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VI. SUMMARY 

Magnitudes quoted for narrow-band photometry at 8.5, 10.5 and 11.6 l.lJ11 

cannot be expected to have an absolute accuracy of better than twenty percent. 

The agreement of the relative photometry between the different observers for the 

narrow bandpasses is poor when compared with that a I ready achieved in 8-14 1-1m 

(N bandpass) photometry. Presumably closer agreement will result as statistically 

significant numbers of observations are acquired. In most instances, extinction 

errors are estimated to introduce less than five percent scatter. The systematic 

errors in the absolute calibrations are really not known. Nominally the calibra­

tion used here differs from that of Johnson (1965) by"' 16 percent. However, 

if the different values used for the absolute calibration of the V bandpass are 

reconciled then this ca I ibrati on and that of Johnson are found to have a rea I 

difference of less than ten percent. 

The original contributions of this part of the thesis are: (1) a new 

calibration which is the first to be totally independent of the work of both 

Saiedy (1960) and Johnson (1965), (2) a system of standard stars, and 

(3) a discussion of the errors likely in the relative photometry and absolute 

calibration. 
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PART 2. INFRARED OBSERVATIONS OF ASTERO IDS AT WAVELENGTHS 

OF 8.5, 10.5 and 11.6 JJm 

I. INTRODUCTION 

The purpose of Part 2 of this thesis is to report new observations of the 

thermal radiation emitted from asteroids. The reason for doing infrared photom­

etry is that these observations and their subsequent interpretation provide new 

and unique information. The combination of the new infrared data and the 

previously existing visible-wavelength photometry places important constraints 

upon models that are used to represent asteroidal surfaces. Thus, the sizes, the 

albedos and, in some cases, the emissivities can be estimated for real asteroids. 

The key to obtaining this information is conservation of energy; the requirement 

to balance the rera·diation of absorbed (visible) energy and the reflected visible 

light against the tota l solar insolation. The infrared photometry provides a way 

of estimating the amount of energy re-emitted by an asteroid. 

The important result of this effort is to find that by and large the asteroids 

observed in this thesis have lower (visible) albedos than previously believed and 

to 11measure" albedos that span a range of an order of magnitude. 

Optical disk measurements have been published for Ceres, Pallas, Juno 

and Vesta. These measurements are very difficult to perform because of the small 

angles subtended by the asteroida I disks and because of the turbulence ("seeing") 
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of the Earth's atmosphere. The diameters so determined have been criticized 

extensively in the literature. Now, the infrared photometry gives new ground 

upon which to question the accuracy of these disk measurements. 

low (1965) was the first author to publish an infrared measurement of an 

asteroid. He reported 233:1: 10°K as the 8-14 J.lm brightness temperature of 

(1) Ceres. Later he observed (4) Vesta and found its N-magnitude (8-14 J.lm) 

to be -2 {low 1970). D. A. Allen {1970, 1971) was the first author to discuss 

the significance of the infrared data and he proceeded to solve for the 11infrared 

diameters 11 of several objects. Finally, Veverka (1970a, b, 1971) attacked the 

problem of size and albedo through use of visible-wavelength polarimetry. He 

estimated sizes and albedos for {4) Vesta and (8) Flora. 

Allen's {4) Vesta data are particularly important because they were 

obtained during the same opposition as the observations that are presented here 

and through roughly simi far ba ndpasses. 

The next section of this paper presents observations of twenty-six asteroids. 

Some asteroids have been observed only once while others have been observed 

extensively in order to collect phase and lightcurve data. By use of color plots 

for direct comparison of the visible and infrared wave length observations, differ­

ences between individual asteroids can be identified. These differences are not 

dependent upon the assumptions of any model. 

The third section introduces the thermal model which is used for the 

detailed analysis of the (4) Vesta, (7) Iris and (324) Bamberga observations. 
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Mode I ling of the observable parameters is discussed. In section four it is found 

that the model gives about the expected answers for (J3) Ganymede but does 

not explain the observations for (J4) Callisto. The (4) Vesta data are found to be 

satisfied if the bolometric Bond albedo for that body is about ten percent. When 

the data for the other asteroids are examined it is found that (324) Bamberga is 

extremely dark. 

The problems raised by these observations are discussed in section 5. 

The need for, and specific nature of, future work comprises the sixth 

section. An important long range goa I is to determine the distribution of asteroida I 

properties. Such information would then enable comparative studies of asteroids, 

meteorites, comets and the crater populations on planetary surfaces. 
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II OBSERVATIONS 

The infrared observations are presented in this section. Wherever 

possible the observations are compared with analogous visible-wavelength 

photometry. This comparison allows some conclusions to be drawn 

immediately. The discussion of the observational technique for asteroids is 

followed by the infrared lightcurve and phase effect data. Next, specie I 

diagrams plot the intrared versus the visible-wavelength photometry. The 

color diagrams are the important part of this section because these diagrams 

show clearly that there are differences between the surfaces of some of the 

asteroids. Finally the data for (J3) Ganymede and (J4) Callisto are presented 

and compared with existing infrared photometry by other observers. 

Method and Coverage 

All of the observations havebeen made through the bandpasses centered 

at wavelengths of 8.5, 10.5 and 11.6 IJ.m. The photometry is described in 

Part I of this thesis and the photometer in Appendix II. The data are from 

August 1969 through July 1970. All have been collected using the Mt. Wilson 

60-inch telescope of the Hale Observatories. 

The irradiance above the Earth's atmosphere is obtained from each 

observation. Here the units used for irradiance are W em - 2/J.m -
1 

with the 

symbol "E" as recommended by Nicodemus (1970). The symbol "E" will be 

used exclusively to refer to the irradiance above the Earth's atmosphere. The 
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irradiance data for asteroids and sate II ites ore reduced to a standard reference 

distance of 1 AU from the object by forming the product E · tf-. Aand other 

symbols that are traditionally used in the asteroid literature are explained in 

Figs 1 and 2 . By comparison, visible-wavelength photometry is usually reduced 

to unit distances from both the Sun and the Earth (r=l, A=l). Unfortunately 

there is no simple way to do this for photometry of thermal emission. 
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Fig. 1. Nomenclature used in the asteroid literature. r is the distance 

between the sun and the asteroid. R and ~are the sun-earth and earth­

asteroid distances respectively. ~is the phase angle as measured in the 

plane defined by the sun, earth and asteroid. All distances are given in 

astronomica l units (AU). 
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Fig. 1. 

Asteroid 
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Fig. 2. Reference angles for an asteroid. ctJ is the phase angle and 

¢ is the aspect. 
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The accuracy of the observations has been discussed in Part 1. In addition 

to the procedures described there, each asteroid observation is tested here for the 

presence of a limiting mean. This is done by plotting the cumulative mean versus 

the number of deflections. Observations that show poorly on this p lot are assigned 

hCillf weight. The best criterion for reliability is, of course, to repeat the obser­

vations on several different nights. For objects yielding poor instrumental signal­

to-noise ratios there is always the possibility that part of the signal cou ld be from 

uncompensated background radiation. Great care must be exercised in inter­

preting such data. 

Most of the asteroids were acquired by setting the telescopes at the appro­

priate ephemerides coordinates. The positions for every tenth day came from the 

Institute for Theoretical Astronomy in Leningrad (U.S.S.R. 1969, 1970; Herget 

1970, private communication) and from the Cincinnati Observatory (Herget 1970, 

private communication). The hourly positions for each object were obtained using 

Bessefls second order interpolation formu Ia and the telescope was set to the 

nearest hourly position. In practice this was accomplished using the setting 

circles to make precise differential offsets from bright finding stars. Usually the 

asteroid was required to be no farther than a minute of arc from the nominal 

position. The exact tolerance allowed, of course, depended upon the magnitude 

of the asteroid with respect to the magnitudes of the field stars. For each object 

the visual magnitudes were estimated both through the main 60-inch telescope 

and through a 4-inch finder. These estimates were compared with expected 

values computed in advance. The color had to be simi lor to solar-type stars and 
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the position of the object was checked against the field stars. Prints from the 

National Geographic Society-Palomar Observatory Sky Survey were used to 

verify that there were no bright stars at the object's observed position. Differ­

ential motion with respect to field stars is a sufficient condition for identification 

but only if there is no other asteroid close about. A strong infrared signal is also 

diagnostic. For example, some 9th magnitude asteroids give substantial infrared 

signals, whereas a G2 star of that magnitude could not be detected. 

Many asteroids were not found because they were not close enough to 

their nominal positions to be acquired quickly. (16) Psyche, (192) Nausikaa 

and (324) Bamberga, were some of the more difficu lt asteroids which were 

eventually acquired. Brian Marsden (1971, private communication) notes that 

for these objects the Crimean Astrophysical Observatory has found the right 

ascension residua Is for the 1968-69 ephemerides to be 0 ~3, 0 ~ 4, and 0'"? 8 

respectively. 

The emphasis of this thesis was placed on studying a variety of objects 

and effects • . This type of reconnaissance approach was chosen so that the success 

of the investigation would not depend entirely upon the fruitfulness of any single 

activity. On the other hand, this approach did not permit a complete and in 

depth study of any of the topics. 

There were three chief priorities for the asteroid observations. The first 

was to search for differences between asteroids; the second was to look for any 

infrared lightcurve variation; .the third was to measure the infrared phase effect. 

Other priorities which shared the telescope time were standard star 
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photometry, and observations of (J3) Ganymede and (J4) Callisto. The first goal 

required sampling a large number of objects and the second and third goals were 

met by repeated observations of four asteroids. J3 and J4 were included for use 

as test cases for the data analysis because their diameters are fairly well known. 

The 11.6 um bandpass was used most frequently because it was expected 

to be closest to the peak of the thermal emission spectrum for most of the 

asteroids. Minor planets that proved to be bright at 11.6 ~ were also 

measured at 8.5 and 10.51Jm. 

The observational coverage of asteroids is summarized in Table 1. The 

last two columns of this table show where limited phase and lightcurve data were 

acquired. Here the lightcurves are really "composite lightcurves 11
, and they are 

formed by combining data gathered on different nights. Some of the asteroids 

observed at 11.6 ~were not reobserved because they did not initially yield a 

good instrumenta I signa I to noise ratio. 

There are severo I important types of bias in the data and the properties 

of all asteroids cannot be extrapolated from these observations. First, only 

bright and easy-to-find objects were selected. In a second step, these asteroids 

were further screened by picking only those likely to have measurable infrared 

· signals. The net effect of this selection is to discriminate against the small dark 

objects, and objects beyond 2.5 or 3.0 AU and to favor large asteroids with 

high albedo. 
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Infrared Lightcurves 

The visible light received from an asteroid usually shows a periodic vari­

ation on a time scale of a few hours. Undoubtedly this variation is caused by the 

axial rotation of the asteroid, but t he exact detai ls of how the fluctuations are 

produced are not known. There are severa l possib il ities. lightcurves may be due 

to differences in the projected area, to patches of different albedo, to variations 

of the local photometric phase function, or to combinations of all three. 

Asteroids are expected to exhib it lightcurve variations in the infrared and there 

should be definite relationships between the visib le and infrared lightcurves. For 

example, if the albedo varies over the surface, then when a darker region comes 

into view, the infrared signa I would increase as the signa I in the visible diminishes. 

Enough observations were obtained for {4) Vesta, {6) Hebe, and (7) Iris 

that their lightcurve variations can be studied. Unfortunately these observations 

did not yield any major new conclusions in that the effects appear to be less than 

the scatter of the data. However, this is the first time that this effect has been 

studied and the lightcurves serve the important purpose of showing that this 

variable has been properly sampled. Later, in the case of {4) Vesta, this coverage 

allows the standard deviation of the mean to be used to estimate the error of the 

observations. 

A composite lightcurve is formed by bringing together the available 

data for an asteroid and plotting the irradiance versus the rotational phase angle. 
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If the period of rotation is known, each observation can be registered to the 

correct rotat iona I phase angle. However, the precise fundi ona I reI at i onsh i p 

between the lightcurve amplitude and the coordinate frame fixed in the asteroid 

is not known. This problem leads to a smearing of the features of the lightcurve 

when the data to be combined are obtained at different solar phase angles, co . 

The I im its for this smearing can be computed by considering the extreme cases. 

The maximum possible range of variation is given by the angle in planetocentric 

equatorial right ascension that is subtended by the Earth {as seen from the asteroid), 

between the epochs of the first and the last observation. If the position of the 

rotation pole is not known, then the entire angle is assumed to lie in planeto­

centric right ascension. These limits for smearing are plotted with each light­

curve. The irradiance values in the composite lightcurve also include the solar 

phase angle variation. In a later section, when a model is derived, this effect 

will be removed from the (4) Vesta lightcurve. 

The data for (4) Vesta are tabulated in Tables 1 and 5 in Appendix I, and 

Fig. 3 shows the composite lightcurve. The data for each bandpass are compatible 

with the dashed curve, but upon considering the error bars, perhaps a constant 

value (horizontal line) would be as satisfactory. The dashed line in Fig. 3 is 

actually the visible-wavelength 01 filter) lightcurve from Gehrels (1967a). The 

visible curve has been advanced to the epoch of the infrared observations by 

using the period for (4) Vesta of 5~342 129 (Gehrels 1970). The vertical 

(irradiance) level has been adjusted to match the curve to the infrared data for 
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Fig. 3. Thermal Emission lightcurve for (4) Vesta. The dashed line is the 

visible lightcurve and it has been fit to the data by translation in the vertica I 

direction only. The maximum phase distortion shows the limits for horizontal 

scrambling of the lightcurve by the compositing process. 
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each bandpass. The comparison here is valid because the difference in ecliptic 

longitude between the infrared and visible data is not too large. The visible data 

were obtained when (4) Vesta was near 125° ecliptic longitude and 4° latitude. 

For the most part the infrared data are near one hundred thirty degrees longitude 

and north twenty-four degrees latitude. 

Though (4) Vesta's infrared lightcurve is fairly flat and apparently devoid 

of any grossly complicated structure, it does clear up a minor detail. From the 

small maximum 0.13 magnitude amplitude of the visible lightcurve, (4) Vesta has 

been thought to be nearly of spherical shape with a surface of fairly uniform 

albedo. The infrared lightcurve finally rules out the possibility that the shape of 

(4) Vesta is grossly elongated with the ends of small geometric cross-section 

suitably lightened in albedo so as to keep the reflected light nearly constant. 

In a situation where the contrast of the visible lightcurve is suppressed, the infra-

red lightcurve wi II actually be amplified and vice versa. 

The observations of (6) Hebe show a large variation. The data are tabu­

lated in Appendix I and plotted in Fig. 4; at 11.6 IJm the value of E • ~::.2 varies 

-16 -2 -1 
from 2.9 to 8.8 x 10 W em IJm , a factor of three. This type of variation 

is considerably larger than the variation of 0. 16 magnitude which is the largest 

amplitude so far observed for (6) Hebe in the visible. 
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Fig. 4 Infrared lightcurve for (6) Hebe. The dashed line is the closest 

available visible lightcurve. Its vertical exaggeration is about a factor of 

22 and it has been translated both vertically and horizontally to fit the 

infrared data. The translation along the abscissa is necessary because the 

rotational phase angle for the visible data at the epoch of the infrared 

observations is unknown. 
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However, near 0.2 in rotational phase the 11.6 j.lfTl data show a large 

amount of scatter because other points for the same nights as the two low values 

follow the trend of the rest of the data. The apparent peak in the 8. 5 j..lm data 

is attributed to random scatter. 

The low instrumenta I signa I-to-noise ratio for this object argues that the 

two discordant 11.6 um points should be taken as a conservative measure of the 

true scatter in the data. However, the nine other 11.6 j..lm data which were 

obtained on four different nights seem to follow a trend that bears discussing. 

Comparison with visible data for Hebe cannot be done exactly, because 

the cumulative error in the rotation period has already exceeded half a revolu­

tion. The visible lightcurve for (6) Hebe is from Ahmad (1954), for which the 

ecliptic longitude is about 353° while the longitude for the infrared data is in the 

vicinity of one hundred and fourteen degrees. When the longitude difference is 

this large, comparison of the visible and infrared curves can not be regarded as 

a completely legitimate procedure, but no alternative exists. In the illustration, 

Ahmad's lightcurve is vertically exaggerated by a factor of 21.7 and is fit to the 

11.6 j..lm data by translation both vertically and horizontally. This modification 

of his curve is the dashed line in Fig. 4. The position of (6) Hebe's pole 

has yet to be properly determined (Vesely 1971) and this is one of the reasons 

for the larger limit set for horizontal scrambling. 

If the difference between the amplitudes of the visible and the infrared 

lightcurves is real, then either (6) Hebe has patches of different albedo on its 
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surface or 1970 was an extremely favorable opposition. If the correct 

registration between the infrared and visible lightcurves is as drawn in Fig. 4, 

and if the amplitudes are really in the ratio 20:1, then the data would suggest a 

variation of albedo across Hebe's surface. This is because a change in the 

projected cross-section would give lightcurves of equal amplitude in both spectral 

regions. However, in the event of an extremely favorable opposition, at the 

epoch of the infrared observations the visible lightcurve would have had an ampli­

tude equa I to that suspected in the infrared and both would simply be due to a 

changing cross-sectional area. If this were tru~ then (6) Hebe would be elongated 

by aboutvJ:1. By way of comparisoh, (624) Hector is elongated in the ratio of 

about 5. 3 : 1 (Dun lap and Gehre Is 1969). 

In order to check on possible albedo variations, Ahmad's curve was 

inverted, but this way a good fit to the infrared data could not be found for any 

translation or vertical exaggeration factor. 

The author is unaware of any visible photometry coincident with his 

infrared observations. So~e recent visible photometry (Gehrels 1971, private 

communication) and colorimetry (Chapman 1971, private communication) have 

been obtained for (6) Hebe and the data are currently in the process of being 

reduced. Because of the uncertainty in the pole position, it is not obvious that 

these new observations will help to resolve the present dilemma. The diagnostic 

information will be simultaneous visible and infrared lightcurves of Hebe. 

The composite lightcurves for (7) Iris are in Fig. 5 and the data are 
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tabu Ia ted in Appendix I. The data 11 • 6 1-l m appeor to have an excessive amount 

of scatter when compared to those obtained at 10.5 j..l m. The rotational phase 

angle for the visible photometry of Iris is current ly lost due to the cumulative 

error in the rotation period. The author knows of no visible lightcurves that 

correspond either to the epoch or the ecliptic longitude of these infrared data. 

The existing visible lightcurves for Iris show a maximum amplitude of 0.29 magni­

tude. This amplitude is about that exhibited by the 10.5 j..lm lightcurve data. 

Thus the available infrared data are consistent with the hypothesis of a slightly 

i rreg u lor shape • 

Infrared Phase Effect 

Measurement of the angu lor distribution of the I ight from asteroids is an 

important way to. test theoret i co I mode Is. The best technique for phase effect 

work is to take complete lightcurves throughout an entire opposition and to plot 

the phase effect for either the maximum or the minimum or for some other distinc­

tive feature on the observed lightcurves. This procedure would largely remove 

the lightcurve variation but it would require a tremendous amount of telescope 

time. 

However, it is possible to have a first look at the infrared phase effect 

with the available data. The observations on each night are averaged and plotted 

as a function of solar phase angle. On the plots for (4) Vesta and (7) Iris that 

follow, the numbers beside each point show how many observations were averaged. 
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Data for (4) Vesta are plotted in Fig. 6. The observations obtained by 

D. A. Allen (1970), for this same opposition are also plotted but with a different 

set of symbols. Allen's ll.~m data are roughly comparable with the 11 . 6 J.1.m 

observations of this work and thus they are a II plotted together. The E • t:J. 
2 

has 

been computed for his data and it has then been increased by 17.5% to remove 

the systematic difference in absolute calibration discussed in Part 1 of this thesis. 

On the other hand, the 8.5 11m data have not been adjusted and there may be 

both real and systematic differences between observers. There also seems to be a 

difference in the slope of the data between the two observers, but it must be 

remembered that the effect of the lightcurve has not been removed. 

From Allen's ll.811m and the present 11.6 and 8.51-lm data a reasonable 

lower bound can be set for the infrared phase effect. This empirical boundary 

is compared in Fig. 7 with the visible phase effect. Both are normalized to unity 

at cp = 0°. The infrared phase variation is much less pronounced than the effect 

at visible wave lengths. 

The (7) Iris phase data are plotted in Fig. 8. The scatter is rather large 

but the effect appears to resemble that for (4) Vesta. 

Color Diagrams 

Color diagrams are used to compare the thermal emission data with pre­

visously existing visible photometry. These plots ore important because they 

display the observational data before model-dependent corrections are introduced. 
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There are three plots, one for each bandpass. The ordinates are E· r/ 
and the error bars are for the infrared photometry only. Because E • 6 

2 
is a 

function of the distance from the sun, different symbols are used to show the 

distance intervals. The symbols and the distribution of the asteroids with radius 

vector, r, at the time of observation are shown in Fig. 9. The numerical data 

are tabulated in Appendix I. 

The abscissa are the absolute B magnitudes of the asteroids, B(1,0). The 

quantity B(1,0) is defined and illustrated in Fig. 10. Recent values have been 

tabulated by Gehrels (1970). Though B(1,0) is strictly an operationally defined 

parameter, its definition is so direct that it is useful to think of B(1,0) as a 

property of the asteroid. 

To obtain error bars for the B(l, 0) data one must consider both the error 

in the tabulated B(l,O) magnitudes and the possible error due to the lightcurve 

at the time of the infrared observation. The errors in average magnitude are due 

chiefly to phase, rotation and aspect variations. The weights assigned by Gehrels 

(1970) to the value of B(1,0) for each asteroid are used to estimate the standard 

deviation by the formula: 

= 0.194 magnitude 
s. d. 

(0.67) X (weight) 
(1) 

The probable error of 0.194 magnitude corresponds to unit weight. The light-

curve error is taken as one-half of the range of the maximum variation tabulated 

by Gehrels (1970). These v~riations are reasonably well known for only those 



69 

Fig. 9. The distribution of the distances from the sun to the asteroid at the 

time of observation. 



N 4 
3 
2 

70 

Fig. 9. 

A 0 0 4 Plotting 
,.. A , 

' 
, 

' 

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 

r 

Symbols 



71 

Fig. 10. ldealized B magnitude versus phase plot showing how the opposition 

magnitude is obtained by extrapolation. The absolute magnitude, B(1 ,0), is 

obtained when the opposition magnitude is corrected to unit distances (r = 1, 

6 = 1). The 110 11 in B(1,0) refers to zero degrees phase angle, cp= 0°. The 

opposition effect is the brightening which occurs at small phase angle (see 

Gehrels 1956, 1970-p. 363 and Gehrels et ~ 1964. See Oetking 1966 

for laboratory data.) . 
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few asteroids which have had their lightcurves measured at several different 

ecliptic longitudes. With the general paucity of lightcurve data currently 

available, meaningful error bars cannot even be assigned for most of the large 

asteroids of radius greater than 50 km. Whenever lightcurve data are not avail-

able, an error of :t: 0. 15 magnitude is arbitrarily assumed. For the observed 

asteroids with error bars assigned by the above procedure, the lightcurve errors 

dominate except for asteroids 1, 6, 20, 192 and 674, where the errors in the mean 

absolute magnitudes are larger. 

Now consider the point plotted on one of the E • r/ versus B(1, O) graphs 

for the hypothetical asteroid (O) Asterid*. Figure 11 shows how the point moves 

on the diagram when the various properties of the asteroid are changed. The 

scales are chosen in such a way that changes in the size of the minor planet move 

the point along a line of unit slope. If Asterid becomes darker or lighter in 

albedo then the change is indicated. The result of a variation in effective emis-

sivity depends upon the specific situation. Figure 11 illustrates one of two cases 

where theE • t? bandpass is on the blue slope of the thermal radiation spectrum. 

With the visible-wave length albedo fixed the absorbed solar energy is constant. 

If the emissivity is now decreased then the temperature of the surface increases 

and the spectrum shifts blueward. For the case of Fig. 11, as for the asteroids 

under study, the blueward shift of the spectrum more than compensates for the 

*The name 11Astrid 11 was introduced by Arnold (1965). The present author 
prefers to use 11 (O) Aster id 11 to denote the hypothet i ca I asteroid. 
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Fig. 11. Example of how the position of a point on the E · /).2 versus 

B(1,0) plots changes as various parameters are perturbed. This figure 

illustrates the special situation discussed in the text. The ordinate and 

the abcissa are in magnitude units, making this a log-log plot. 
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effect of lower emissivity and the predicted E • t,
2 

increases. On the other hand, 

for the red slope of a spectrum, the situation would be reversed. 

It follows that if two asteroids are at the same distance from the Sun and 

their points plotted on these diagrams cannot be connected by a line of unit slope 

then they must have some surface properties that differ. If they can be connected 

by such a unit-slope line, then nothing is demonstrated uniquely, although it is 

consistent for them to differ only in size. 

Again, the reader is cautioned that there may be some rather large errors 

on these color plots. For some objects, (674) Rachele for example, it is possible 

the lightcurve error may amount to 50%. For the faint objects (poor instrumental 

signal-to-noise ratio) there could be systematic errors in the infrared photometry 

that might amount to 20-30 percent. These possibilities are taken into considera­

tion when drawing conclusions. 

In Fig. 12 the visible and 11.6 J..lm data show that there are differences 

between (324) Bamberg a on the one hand, and (7) Iris, (80) Sappho, {192) 

Nausikaa and perhaps (313) Chaldaea. These latter four objects all lie near a 

line of unit slope and they may have similar surfaces. (6) Hebe and {20) Massalia 

contrast (19) Fortuna and {145) Adeona. All four objects are about the same 

distance from the Sun but the latter two are brighter in the infrared than their 

B(l ,0) values alone would suggest. (19) and (145) are also distinct from {7) Iris 

which is actually closer to the Sun. 



Fig. 12. 11.6 ~m color diagram 
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At 10.51-Lm (Fig. 13), (7) Ir is and (80) Sappho both clearly have surface 

properties that differ from {324) Bamberga. 

In the 8.51-Lm versus B(l,O) plot, Fig. 14, the difference between 

(1) Ceres and (4) Vesta is noted. (19) Fortuna and (145) Adeona still differ from 

{6) Hebe as they did in the 11.61-Lm data. Also, (324) Bamberga and (7) Iris 

still differ. 

The relative position of (324) Bamberga on all three color plots is con-

sistent with the asteroid having a very low albedo. This is the conclusion that 

will be drawn later when a model is used to analyze the thermal emission data. 

Table 2 tabulates what is currently known about periods of rotation and 

the lightcurves for these asteroids. Within the limits of present knowledge, all of 

the above conclusions involve asteroids of roughly comparable periods of rotation. 

Observations of (J3) Ganymede and (J4) Callisto 

Infrared observations of the Galilean satellites have been reported 

previously by Murray=!._~ {1964), Low (1965) and Gillett et ~ {1970). Two 

of these satellites, J3 and J4, were observed for the present work as a check on 

the model and on the photometry. 

The orbital phase angle, e, is defined in Fig. 15. In Fig. 16, the 

E · !::. 
2 

data for (J3) Ganymede is plotted versus the orb ita I phase angle. The 

curve which is drawn with the 11.61-Lm data represents the visible photometry 

( /... = 0.561-Lm) of Johnson (1970,1971) The curve is only for reference and his 

data scatter by more than the curve suggests . The reference curve was fit 
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TABLE 2. ASTEROID DATA (From Gehre Is, 1970) 

Range of observed 
I ightcurve amplitude 

Name Rotation Period (mag} 

Ceres 9.078 hours 0.04 

2 Pallas y- 12? 0.12-0.15 

3 Juno 7.213 0.15 

4 Vesta 5.342 129 0.10-0.13 

5 Astraea 16.806 0.21 - 0.27 

6 Hebe 7.275 0.06 - 0.16 

7 Iris 7.135 0. 04- 0.29 

8 Flora 13.6 0.01 - 0.04 

9 Metis 5.064 0. 06 - 0.26 

15 Eunomia 6.083 0.42- 0.53 

16 Psyche 4.303 0. 11 

18 Melpomene 14 0.35 

19 Fortuna 7.45 0.25 

20 Massalia 8.0980 0.17- 0.24 

25 Phocaea 9.945 0. 18 

27 Euterpe 8.500 0.15 

39 Laetitia 5.138 o. 18- 0.53 

44 Nysa 6.418 0.22- 0.48 

68 L.eto 

80 Sappho 

145 Adeona 

(continued on next page} 



TABLE 2. 

Name 

163 Erigone 

192 Nausikaa 

313 Chaldaea 

324 Bamberga 

674 Rachele 

82 

- continued -
ASTEROID DATA (From Gehrels, 1970) 

Rotation Period 

8 ? 

Range of observed 
lightcurve ampl itude 

(mag) 

0.07 
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Fig. 15. The orbital phase angle, P. , is the angle between the 
planetocentric position vector of the satellite and the anti-earth 
point. 
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Fig. 16. Observations of (J3) Ganymede plotted as a function of 

the orbital phase angle e. The curve shown for reference has been 

sketched from Johnson's (1970,71) 0.54 (J.m data. The vertical 

dimension of this curve has been exaggerated by a factor of 6 and 

has been fit to the infrared data by translating it vertically. 
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vert ical ly to the 11.6 ~m data. 

One does not expect a large cross-section variation for a 2,510 km 

radius object and the shape of the data is probably due to scatter . This interpre-

tation takes the scatter as the range of variation at phase ang les for which several 

data are available. 

The E • t? versus rotationa l phase angle informat ion for (J4) Call isto 

is presented in Fig. 17. At 11 .6 1-1m the infrared data appear to have two 

rather distinct values with the transition between these levels occurring close to 

where Stebbins (1927), Stebbins and Jacobsen (1928) and Johnson (1970, 1971) 

have observed a gross change in the visible lightcurve. 

At 8.5 1-1m the J4 data show an interesting shape. The 8.5 ~m data 

undergo a large change in E • f".. 
2 

while at the same phase angles the 11.6 urn 

data are unchanged. If this feature is real it wou ld imply a spatial and a wave-

length dependence of emissivity. The reason for suspecting these 8.5 urn data is 

that they do not have a very good instrumental signa l-to-noise ratio. The 

largest value of E • t..
2 

at 8.5 ~m bare ly produces a discernible stripchart 

deflection. Thus, it can be argued that large scatter, systematic errors or both 

may be present. The shape of the curve rea fly depends upon the single point at 

e"' 235°. Considering the errors possible in this type of photometry, a single 

observation is not diagnostic and for the present the 8.5 ~m feature is regarded 

as fortu itous. 
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Fig. 17. Observations of (J4) Callisto plotted as a function of orbital 

phase angle, e. The infrared data appear to pass through a transition 

near e = 180 to 200°. Vis ible-wavelength photometry obtained by 

Stebbins (1927), Stebbins and Jacobsen (1928) and Johnson (1970, 1971) 

has a 15-20 percent change in amplitude which is centered at 8 ~ 180°. 
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Fig. 17 
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In Table 3, the J3 and J4 photometry by other observers is summarized 

and reduced to E • r/. The work of Gillett et ~ (1970) is that most comparable 

to this study. Their observations show about the same irradiances as this work 

but Gillett et al do not give either the rotational phase angle, 9, nor the date 

upon which their observations were obtained. So, it is not clear what is being 

compared. With the possib i lity of a variation with 8, it cannot yet be concluded 

that any of the E • 6
2 

values in Table 3 are out of line. 

Infrared photometry of the Galilean satellites is currently being carried 

out as a Ph.D. thesis by Olav Hansen. His detector and photometer combination 

has a better signal-to-noise ratio than the one used in this study and some of 

these questions about the lightcurve variations of the satellites may be resolved. 
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Ill. THE THERMAL MODEL 

This section develops a thermal model for use in interpretation of the 

asteroid and satellite observations. There is good reason to believe that the 

surfaces of the larger asteroids have much in common with that of the Moon. In 

the visible-wavelength region bothpolarimetry and the integral phase effect 

observations support this idea. Veverka (1970a,b) has studied the polarization 

of light from (4) Vesta and {8) Flora. He interprets his data as implying a porous 

or particulate surface layer. The brightness versus phase data for (4) Vesta is 

strikingly similar to that for the Moon and this fact has been noted by Gehrels 

(1967 ) and Veverka (1970b). In Fig. 18 the visible-wavelength phase curves 

are plotted for several bodies. The {4) Vesta curve is from Gehrels (1967); the 

Moon from Gehrels et ~ (1964); the Galilean satellites from the work of 

Johnson {1970, 1971) and Stebbins {1927); and Mars from o•Leary and Rea {1968). 

J3, which differs more from the Moon on this plot than does (4) Vesta, is thought 

to have a porous or particulate surface layer. This belief is substantiated by the 

low values of thermal inertia which are implied by the eclipse cooling observed 

by Murray et 9.J. (1965) and Morrison et al (1971). 

Another line of argument is by analogy with the Moon and Mars. The 

large asteroids probably have surface regoliths simply because they retain some 

of the debris formed by impacts. Consider the limiting case of hyper-velocity 

impact. From the mass of (4) Vesta (.... 2. 4 x 1 o23 
g; Hertz 1968), the escape 
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Fig. 18. Visible-wavelength phase data. The re lative magnitudes 

for the Ga I i lean sate II ites were computed from a mixture of data from 

Johnson (1970, 1971) and Stebbins {1927): 
2 

m
1 

= 0.0360 ~ 0.00100 ~ 
2 

m
2 

= 0.0262 cp 0.00125 cp 
2 

m
3 

= 0.0273 cp 0.00066 cp 
2 

m 
4 

= 0. 0830 cp 0.00270 cp 

Other data are from references cited in the text. 
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velocity is estimated to be --400m/sec. By using the observed laboratory 

relationship between the ejection velocity for a debris particle and the cumula­

tive mass of debris that is ejected at even high velocity {Gault et al 1962, Fig. 

10), one can estimate the percentage of ejecta that returns to the asteroid. For 

(4) Vesta this estimate amounts to more than ninety-five percent when a two­

hundred kilometer radius is used for the asteroid. For these reasons the Moon is 

taken as the basis for a model. Asteroids and satellites will be modeled by 

perturbing the size, albedo, emissivity and period of rotation. All of the other 

parameters in the model will be set equal to those values derived from telescopic 

observations of the Moon. 

Previous Work 

The first studies using detailed thermal models to explain the Moon's 

infrared emission were made by Wesselink {1948), Jaeger and Harper {1950), 

and Jaeger (1953a,b). Their general approach is followed because it is adequate 

enough for the asteroid observations that are to be studied. Readers interested in 

more recent developments in this field should consult Watson (1964), Linsky (1966), 

Buhl et al (1968a,b), Winter and Saari (1969) and Winter and Krupp (1970). 

Modifications of Wesselink's method have been used by Hugh Kieffer 

(1971, personal communication) in calculation model surface temperatures. In 

this study Kieffer's computer program is used to produce a map of the planetary 

surface temperature. Given this map the various radiation parameters can then 

be computed. 
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Description of the Model 

The model partitions the surface of a rotating sphere into 432 area 

elements. The temperature of each element is found by solving the linear 

heat flow equation with a radiation and insolation boundary condition for 

an infinite half-space in which k, p, c, and n= k/ pc are the thermal 

conductivity, density, specific heat and diffusivity. These parameters are 

assumed to have constant values. The linear heat flow equation is 

where 

77 
o T = O 
dT 

T = temperature, °K 
t = time, seconds 

X =depth below the surface, em. 

The boundary condition equation at x= 0 is 

oT ...A dX =ear· - qA (i,r), 
1T 

-2 

= e a r4, i other 

< i < 1T 
7 

(2) 

(3) 

(4) 
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where: 

e: =the effective emissivity 
a =the Stefan-Boltzmann constant 

qA (i,r) =absorbed heat from the sun as a function of angle of isolation, i, 
and distance from the sun, r. 

The function 

qA (i,r) =cos (i) E
0

(r) (1-A), --2- < i <f (5) 

E
0 

(r} is the solar radiation received at the distance of the mode l from the 

sun. A is the bolometric Bond albedo and 

A = 

CD 

I a{A) E
0 

(A, r) d A 
(6) 

in which a(.>J is the monochromatic Bond albedo and E (A. ,r) the spectral 
0 

irradiance of the sun at distance r. 

An explicit solution cannot be obtained because the unknown temper-

ature in the boundary condition occurs raised to the fourth power; numerica I 

methods must be used. A number of methods have been employed and discuss-

ions are given by Wesselink (1948), Jaeger and Harper {1950), 

Jaeger ( 1953 a, b ) and Ingrao et .2! (1966). Of the published discussions 

the method to be used here most closely resembles that of Wesselink (1948). 

The actua l numerical calculations for the model temperatures are done 

using a computer program developed by Hugh Kieffer (1971; personal commun-

ication) for computing planetary surface temperatures. 
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Kieffer's program uses the method of finite differences with layer 

thicknesses that increase exponentially with depth. The depth parameter is 

scaled in units of (kP/1rpc)
112 

and this is the thermal skin depth or the depth 

at which the periodic thermal waves propagating into the surface have been 

reduced in amplitude by l/e. For the calculations involved in this thesis 

12 layers were used with the bottom layer placed at a depth of 5 scale units--

or where the periodic temperature change is less than one percent. The 

bottom of the lowest layer is assumed to be insulating and the temperature 

gradient in the uppermost layer is assumed to be uniform. A perturbation 

solution of the quartic boundary condition equation is mode in each iteration 

in order to calculate the surface temperature. The calculations start at the 

evening terminator with the initial temperature distribution (with depth) of a 

perfect conductor. At the end of the second day a second-degree perturbation 

is applied to the temperature profile. This sets the mean lower layer temper-

ature to equal the mean surface temperature. The time increment used is 

1/480 of a day (revolution) and the linear increment is a function of depth 

due to the exponential layering. A solution is considered to have been 

found when the rms change in temperature between different days is less than 

0. 1 ° K. The resultant temperatures are printed out for each 15 ° of planetary 

longitude. This process is carried out separately for each latitude with the 

latitude spacing being 10 degrees. The output is a temperature map which is 

used as the input data for an irradiance calculation routine. This routine 
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computes the radiation geometry and the projected area for each surface 

element of area AS. The radiant intensity AI contributed by each surface 

element is evaluated using the spectral radiant power for a blackbody 

(B {A, T) ) , the effective emissivity (e), and the projection factor for the unit 

vectors for the direction of the Earth and the local surface normal (~~ • ~). 

Thus, 

€/\ 1\ 1\ 1\ 
AI (A,T) ='It (nEB· n) B(A,T) AS, (nEB. n) >0 (7a) 

= 0 1 (it$ 0 'rt) ~ 0 (7b) 
-1 -1 

The units of AI are W sr p.m . The Al's are summed over the sphere 

and the irradiance falling on a square centimeter at 1 AU from the model is 

calculated. This computed irradiance corresponds to the observational quantity 

E • A
2

• 

As a check on the accuracy of the computer program, the tota I amount 

of energy radiated at the end is computed and compared with the amount that 

was absorbed. To slide rule accuracy, the radiated energy is found to equal 

that initially absorbed. 

-3 
The fixed parameters adopted for the model are: density p = 1.5 g em , 

specific heat capacity C = 0.2 cal g - 1 
oK-

1, and (k pc) 1/ 2 = 0.001 cal em - 2 

-1 -1/2 
°K sec • These values are typical of the parameters that have been 

derived for the Moon from Earth-based telescopic observations of lunation and 

eclipse cooling. 

lateral heat transport is not important in this model because ~X<<\IA$. 
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Several computer runs were made for the Moon using an albedo of 0.07 

and unit effective emissivity. The results for the lunar equator were in agree­

ment with Wesselink 1s (1948) calculations. Calculations for {J3) Ganymede, 

however, did not agree with Richardson and Shum 1s (1968) temperatures when 

their assumed data for J3 were used. Their calculation is incorrect because the 

subsolar point temperature they give for unit emissivity is higher than the solar 

equ i I ibr i urn temperature. 

Phase Functions and Spectra 

The important observational parameters that are implicit in the model 

are the emitted radiation beam pattern (phase function} and the thermal emission 

spectrum. These are the only properties of the model that can be tested by 

integra I photometry. Unfortunately, for observations with Earth-based telescopes, 

only the first ten to thirty degrees of the phase function are accessible and the 

spectrum can only be observed at wave lengths where our atmosphere is transparent. 

Fig. 19 shows some model beam patterns for (0) Asterid • The thermal emission 

spectrum is shown with severo I other spectra in Fig. 20. These parameters vary 

from one situation to the other and they provide the relationship between the 

irradiance, E • r/, and the toto I radiated energy. 
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Fig. 19. Cross sections of model emission beam patterns. 

(a) The pattern the Moon would have if it were placed at a distance of 3 AU 

from the sun. The Moon is the origin for the plot and the cross section lies 

in the ecliptic plane. The rotation pole points directly up, out of the paper. 

The radiation intensity at each wavelength is normalized to the value in the 

direction of the Sun. 

(b) Now the Moon is spun-up to equal the period of Vesta, 5.34 hours. The 

radiation lobe shitts to a position of about 13 or 14 degrees. Also the shape 

of the pattern becomes a more pronounced function of wavelength. 

(c) This is a polar cross section through (b). The axis of rotation lies in the 

plane of the paper and is perpendicular to the direction to the Sun. 
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Fig. 20. Model and reference spectra corresponding to the model beam pattern 

in Figs. 19b and 19c. 

(a) The total spectral radiant power (W ,um-1) from the model if it radiated 

all the absorbed insolation as a uniform-temperature blackbody. 

(b) Integrated spectral radiant power from the model. 

(c) The spectral radiance (W cm-2,um-1sr-1) in the direction of the Sun. 

This is the observable spectrum when the asteroid is at opposition. 
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IV. ANALYSIS OF THE OBSERVATIONS 

(J3) Ganymede and (J4) Callisto 

The comparison of the model with observations of J3 and J4 is import-

ant because these satellites were observed with the same instrument and tech-

niques as were the asteroids. This provides a check for any gross systematic 

errors in either photometry or the model analysis because there are reasonable 

estimates for some of the photometric properties of these satellites. 

The radius is one of the parameters required by the model. In order to 

understand the reliability of this value a short digression is necessary to study 

the angular diameter measurements. Dollfus (1970) has published a recent 

and conven ient tabulation of this work which extends back through the last 

one and a half centuries. From the tabulation the average angular diameter 

measured by each instrumental method is plotted versus a reference method 

(in this case Dollfus' double image micrometer measurements) in Fig. 21. 

Different methods give different values, but the overall trend is that the 

differences between methods are not strongly correlated with the angular size. 

The greatest discrepancies are for J3. Dollfus (1970) has suggested that this 

may be due to albedo spots on that satellite's surface. The diameter to be 

used here for J3 will be the mean of the average values obtained by each 

method. Thus the diameter for J3 is 1 1! 36±0~'08 or (5.13±0.30) x 10 3 km 

and J4 is 1 ~'26±0.06 or (4. 75±0.30) x 10 3 km. The 0.08 second of arc 

error for J3 wi II be used as an estimate of the systematic instrumental error 

for disk measurements. 
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Fig. 21. Disk diameters. The ordinate is the average angular diameter 

obtained by a given instrumental method. The abscissa is the double image 

micrometer diameter from Dollfus. The micrometer data for (4) Vesta was 

measured by Barnard and the interferometry is by Hamy. Data is that 

tabulated by Dollfus (1970). Satellite data is for a distance of 5.203 AU; 

for the asteroid it is 1. 0 AU. 
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Recently {J 1) lo occulted a star and the preliminary size that has been 

determined for it is consistent with the above analysis. The final results are not 

yet available but the pre I iminary results put J 1 at about 0. 94 seconds of arc 

(0 1 Leary 1971, private communication). This datum falls amongst the points 

plotted for J 1 in Fig. 21. 

With the above radii and the rotation periods for J3 and J4 from 

C. W. Allen (1963), the mode I was run for a variety of values for A and 8. 

The model fluxes and the observations of J3 are compared in Fig. 22. The 

ordinate for 22a and b is E • f:l
2

• For 22c the ordinate is the 11.6 iJ.m/8. 5 iJ.m 

ratio. The abscissa for all plots is the model albedo, A. The mean and standard 

deviation for the observations plot as horizontal lines. Points where the model 

was run are shown by filled circles. These points lie on nearly straight lines 

and the dashed lines are a graphical approximation. Since the radius is only 

accurate to......, 1 00/o, the predicted mode I fluxes are expected to have a 20 percent 

uncertainty. Thus each dashed I ine represents the center of a band of values 

that are compatible with the model. 

It can be seen by inspection of Fig. 22 that if 8 = 1. 0, the best solution 

for A is about 0.08 to 0.1. However, other values of 8 yield other A 1s and, in 

fact, the ratio and each wavelength define a region in the albedo-emissivity 

(A-e:) plane. The solution that will be sought is the region in the A-8 plane 

where all of the data can be satisfied to within the stated observational errors. 
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Fig. 22. Model predictions compared with the observations: (a) 11.6 um, 

(b) 8.5 um and (c) 11.6 um/8.5 um ratio. The abscissa is the model 

albedo, A, which corresponds to the bolometric Bond albedo. The 

ordinate for (a) and (b) is E · r/ and for (c) it is the 11.6 um/8.5 um 

ratio. The solid horizontal lines are the mean and the mean plus and 

minus a standard deviation. Model predictions are computed for several 

values of the effective emissivity, €r and are shown as dashed curves. 
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The transfer is carried out graphically from Fig. 22 by replotting in the 

A-e plane the intersections between dashed and solid lines. Regions are then 

defined by drawing curves through these transfer points. The area common to a II 

of the data is outlined by a heavy line in Fig. 23. Any point in this region 

yields a combination of albedo and emissivity that satisfies all the observations. 

For real objects an emissivity of greater than 0.75 is expected, especially 

if the surface is composed of silicates. This level is indicated by a dashed line. 

With the constraint of e>0.75, the model albedo of J3 is between 0.02 and 0.3. 

If E: = 1.0 then A is about 0. 12:!:0. 10. 

From his geometric albedo, Johnson (1970, 1971) has computed the Bond 

albedo of J3 at 0.56 J.lm to be 0.359 by assuming that the lunar phase integral 

applies (q=0.585 from Harris 1961). Using his spectrophotometry of J3 and 

the irradiance of the Sun (Labs and Neckel 1968}, the conversion factor between 

the bolometric and the A = 0.56 J.lm Bond albedos can be found. Johnson's value, 

then, corresponds to A"' 0.31 (also after conversion to a 5,130 km diameter). 

This albedo is a bit high compared to the present work. However, Johnson's lunar 

value cannot be ruled out because it comes within the error bars of the present 

work. 

It is interesting to note that if Dollfus' double image micrometer diameter 

of 1."47 had been used, Johnson's A would be,...,0.23 and the infrared A (E: = 1.0) 

would be centered at A"' 0. 15. 

It is concluded that the model explains the observations to within the 

I im its of uncertainty. 
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Fig. 23. (J3) Ganymede in the A-e plane. The regions which satisfy the 

8.5 11m and the 11.6!1 m data are specified by two sets of three lines. The 

three lines correspond to values of A and e: that satisfy the mean, and the 

mean plus and minus one standard deviation. The triangular region bounds 

all points that are within the standard-deviation error bars of all of the 

observat iona I data. The 8. 511 m data set the left boundary and the 11 • 611 rn 

set the right. The error bars for the 11.6 !lm/8.5 !lm ratio are so large that 

they don't he I p. The error bar near the bottom shows how a 28 percent 

error would affect thee:= 0.75, 8.5\.lm point. This estimate was arrived 

at by assuming 20 percent errors for both the model and the photometry. 
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The lunar mode I was a !so run for (J4) Callisto using a variety of A and 

e values with a 2,380 km radius. The error in the photometric predictions due 

to the uncertainty in the radius is likely to be about 20 percent. The comparison 

between the model and the observations is made in Fig. 24. In Fig. 24a the 

11.6 )J.m observations are a bit high compared to the model when e = 1.0. The 

observations of Gillett et al {1970) give a slightly lower E • r:/ at 11.0 IJ.m 

((14 5 2 3) 10-15 w -2 -1) b . • • h. h b • ± • x em IJ.m ut 1t IS w1t rn t e present error ars. There 

is no problem at 10.51-J.m and the error bars at 8.5 )J.m {not shown) are so large 

that the observations are not very diagnostic. This is also true for the observed 

ratio of 11.6 11m/8.5 IJ.m. 

If the present observations near 8 = 260° are considered and the 11.6 IJ.m 

2 -15 -2 -1 
E • t:, values lie between 16 and 20 x 10 W em IJ.m then no reasonable 

model solution exists. Even when e f: 1.0 is allowed, there is no reasonable 

region (i.e., one withE:~ 0.5) in the A-e plane which satisfies both the present 

11.6 IJ.m and 10.5 11m data. 

For J4 only a 10 percent increase in the predicted E • /::,
2 

can be realized 

if the larger disk-diameter measurements {- 1 ~~ 32 compared to 1 !' 26 adopted in 

this thesis) are used. This helps, but it is not enough to resolve the difficulty. 

Letting e be a function of wave length enables one to construct a model 

that generates the observed 1l.61Jm irradiance data. As merely a demonstration, 

suppose that the emissivity at 11.61-J.m is unity and consider a solution for a vari-

ety of possible values for A and e. This is done fore = 0.75 and 0.5 and auxil-

lary curves are generated and plotted as thin solid lines in Fig. 24a. 
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Taking the upper two horizontal lines as the observational limits for the 

11.6 1-1m data {from 8,...., 260°) and the auxiliary curves, one can find a region in 

the A-e plane that is compatible with the observations for all bandpasses: A--0. 15 

and f."' 0.6 - 0.7 with unspecified error bars. By way of comparison, Johnson 

(1970, 1971) using the lunar phase integral finds A(0.56 1-1m)= 0.156 which 

corresponds to a bolometric Bond albedo of A= 0. 145. 

In conclusion, the lunar model has failed for J4. However, the high 

irradiance values that have been measured are not physically impossible to attain. 

Considering the scatter in the present observations and in the data reported by 

other observers, it is not entirely obvious whether the difficulty is with the 

measurements or with (J4) Callisto itself. 
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(4) Vesta 

In the following, the observed and the model phase effects are compared. 

The model is used to remove the phase effect from Vesta's lightcurve (Fig. 3). 

Using Barnard's diameter for Vesta as a starting point, the model is then used to 

predict values for E • t?. The predictions are found to be much too low. The 

phase integral for the Moon, q = 0.585, is assumed to apply and the radius of 

Vesta can now be computed given the Bond albedo. Using this method the model 

correctly predicts the infrared observations if the bolometric Bond albedo of Vesta 

is about ten percent. The modelling here differs from that of Allen (1970, 1971), 

in that the emissivity is notassumed and several models are considered. One of 

these accounts for rotation and heat flow into the surface. Finally, several alter­

natives for modelling are discussed and are shown not to apply. 

The model developed in Section Ill is now used to investigate the relative 

phase effect for (4) Vesta. The shape of the model beam patterns is fairly insensi­

tive to choice of albedo and wavelength and is not dependent upon the asteroid's 

size. The lunar model was run for (4) Vesta using A= 0.2 and the 10 urn phase 

effect was computed. The results are shown as solid curves in Fig. 25. The 

observational data in this figure are identical to that of Fig. 6 and the model 

curves have been translated vertically by eye unti I they fit the observations. 

The agreement between the model and the observations is excellent at 

8.5 ~m. Unfortunately, Allen's (1970) data appear to have an undue amount of 

scatter. At 11.6 ~m the situation is reversed and the present data seem to have 
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the larger scatter. It is interesting that the trend of the 11 .6 11m data seems to be 

the reverse of what is expected . The data before opposition fit the after-

opposition branch of the phase function better, and vice versa. There is litt le 

chance that the direction of rotation for (4) Vesta could have been mistaken. 

The above effects are attributed to scatter. This can be verified by inspection 

of the reproducibility of the observations a t a given phase ang le. It is noted that 

the correct branch of the model phase function is within the error bars for each 

night 1s data. 

It is concluded that within the limits of observational error, the model 

has the correct angular distribution for the emitted infrared radiation. 

The model was also run for two non-lunar cases to test the sensitivity of 

-3 -1 -1 
the phase effect. First, an iron ba ll (o = 8 gem , C = 0.06 ca l g °C 1 

-3 
y = 0.21 e = 0.5) was tried and second, a sphere of solid rock ( 0 = 2.5 gem 1 

-1 -1 
C = 1.0 cal g °C 1 y = 0.05 1 e = 1.0). The iron case produced practically 

no effect and the case for rock predicted the after-opposition effect at 

phase cp = 25° to be 97 percent of the value at opposition. The best data 

(A. = 8. 5 um) suggest that the observed phase effect is greater. The two above 

non-lunar mode Is are rejected. Note that this cone Ius ion is tentative because 

it rests on only the four 8.5 1-lm observations made before and the eight made 

after opposition. 

With the model phase function now derived 1 the light curve data for 

(4) Vesta can be corrected to remove the nominal phase effect. The result is 
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Fig. 26. The dashed lines are the corresponding visible lightcurve, and as before, 

they have been fit to the infrared data by eye. At 8.5 11m the fit is exce !lent. The 

11.6 11m data here show the scatter which was previously suspected. To within 

the limits of observational precision, the infrared lightcurve cannot be said to 

differ either in shape or phase from the visible lightcurve. This is consistent with 

(4) Vesta having a rather uniform albedo. 

From the corrected lightcurves it appears that the error bars for 8.5 wm 

and perhaps 10.5 11m may have been chosen too conservatively. At 11.61Jm the 

choice appears to be better with the ratio for the bars that fully include the curve 

being 3:1. 

The lunar model is now run for various combinations of albedo and effective 

emissivity. Bornard•s radius of 190 km is used as the nominal starting value for 

the model. The observed and the predicted values of E • r} are plotted in Fig. 27. 

The heavy horizonto I lines represent the data and they are, from the center out, 

the mean, the mean pIus and minus the standord deviot ion of the mean and the 

mean plus and minus the standard deviation. The results of individual model runs 

are designated by filled circles and the curves are graphical interpolations. 

The 11.6 1-1m/8. 5 !Jm ratio is important because it is independent of the 

asteroid 1s size and of any multiplicative systematic errors in the absolute calibra­

tion of the photometry. But, the ratio is sensitive to systematic errors between 

the two bandposses and this error is assumed to be 10 percent in Port 1 of this 

thesis. Inasmuch as the infrared lightcurve coverage for (4) Vesta is good, the 
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observational random errors are estimated by the standard deviation of the 

mean. 

The observed 11.6 ).lm/8.5 ).lm ratio (Fig. 27a) admits the possibility of 

many different combinations of A and E:. These values are now transferred to the 

A-E: plane by the same method used for (J3) Ganymede. In Fig. 28 the curves 

are, from the center out, the ratio, the error in the ratio and the assumed 

10 percent systematic error. If a + 1 OOk error is a I lowed for the ratio, then A 

must be less than 0. 2 for E: = 1 . 0. For E: = 0.75 the mode I albedo is between 0. 04 

and 0.4, and so forth. 

From the plots forE • t:, 
2 

(Fig. 27b, c, d), it is obvious that Barnard 1s 

radius is too small. The discrepancy at 11.6 ).lm between the observations and the 

predictions is greater than a factor of 2. Such an error is too large to attribute to 

the absolute co libration of the stellar photometry which was estimated at 20 per­

cent in Part 1 of this thesis. Even if the emissivity varies as a free parameter in 

the model, the observed irradiances cannot be matched. In order to obtain a 

better radius, the absolute magnitude, B(1,0), must be used. The visible wave­

length photometry specifies a relationship between the Bond albedo and the size 

if the value of the phase integral, q, is known. This essentially requires an 

assumption about the shape of the beam pattern (phase function) for the reflected 

I ight. The ova i lab le phase data have been shown in Fig. 19 and show Vesta 

to be simi lar to the Moon. Therefore, Harris• (1961) lunar phase integral of 

q = 0. 585 is assumed . 
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Let p be the geometric albedo, and q the phase integral for the model: 

A 
p = -- . 

q 

For the B filter the geometric albedo is, by definition: 

p = 

2 13 -1 2 
(EB • 6 ) x (1. 49 x 10 em AU ) 

EBG 
2 

r 

Equation 9 can be expressed as: 

p = 

B(l, O) 
10 -2.5 

(8) 

(9) 

(10) 

where EB is the asteroid's B irradiance above the Earth's atmosphere, EB is the 

0 
solar B irradiance at 1 AU from the Sun. B(1,0) is the asteroid's absolute magni-

tude, R the mode I radius (in em) and 6 and r are the distances from the asteroid to 

the Earth and to the Sun in AU. Thus, from Eqns. (8) and (10): 

B(1 ,0) 

10-2.5 
(l.49x 10

13 
em AU-

1
) 

2 
(11) 

The factor of 0. 94 has been introduced to convert the bolometric to the B-

bandpass Bond albedo. This conversion factor was derived using the color of 

(4) Vesta (McCord et al 1970) and the spectral irradiance of the Sun (Labs and 

Necke I 1968). 
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When Eqn. 11 is used to calculate the model radius for each trial albedo, 

the predictions of E • /:,. 
2 

increase sharply as the albedo is diminished. The pre­

dicted E • ~:,.2 values now intersect the horizontal lines that represent the obser-

vations. The new predictions are shown as stippled zones in Fig. 27b, c, and d. 

In the A-e plane there is no region that is common to all three infrared 

bandpasses. Such a possibility is created since the problem is over determined 

with only one bandpass being necessary for a solution. In Fig. 28 the envelope 

of the outer standard deviations for ell three solutions is plotted as a stippled 

zone. This zone is truncated near e = 0.7 by the 11.6 1-lm/8.5 11m ratio (on the 

cssumpt ion of a - 1 00/o systematic error) • If the ratio is correct as it stands then 

0. 9 p 8 p 0.8. 

From Fig. 28 it is concluded that the infrared observations are consistent 

with any value of effective emissivity that is greeter than 0.7. Upon taking the 

extrema of the stippled zone (A= 0. 124, e = 0.7, A= 10.51Jm and A= 0.073, 

E: = 1.0, A= 8.5 11m) as the range of the error bars, the model albedo is 

0.099 ± 0.026. From Eqn. 11 the corresponding model radius is then 300~~ km. 

The fact that the value of the model albedo is rather insensitive to 

variation of the emissivity and to errors in the infrared photometry is illustrated 

by Figs. 27 and 28. For example, a 20 percent error in the 10.5 11m E • ~::. 2 

observations would shift the model albedo by about ±0.026 and thus the radius 

by about ±10%. If q errs by ±200/o, then the radius would also change by ±100/o. 
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Surface roughness is an effect which will increase the amount of 

observed infrared radiation. ]n regions on Vesta's surface where the Sun 

appears at a low elevation angle, fragments of rock that rise above the 

mean surface level or otherwise receive sunlight at angles closer to normal 

incidence than the "average ll surface element wi II be heated to higher 

temperatures. This causes the emission beam pattern (phase effect) to have 

a higher value in the direction of the Sun than would a smooth surface. A 

fairly good approximation which accounts for the roughness on the Moon is 

to take the loco I temperature to be the temperature of the subso lar point 

multiplied by the sixth root of the cosine of the angle between the local 

surface normal and the direction to the Sun. 

In Table 4 the results from the J'rough", non-rotating spherical 

model are tabulated. This model is an important limiting case because 

Vesta rotates rapidly ( "'5h) and does not return as much radiation in the 

direction of the Sun. It can be seen from Table 4 that, at best, the effect 

of roughness is not large enough. 

These model results are in excellent agreement with the calculations 

of D.A. Allen (1970) who found a Bond albedo of 0.119 and an infrared radius 

of 287±3 km by using a smooth non-rotating spherical model. For the purpose of 
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comparison, this model is used to reduce the present data; the results are shown 

in Table 4. 

The polarization work by Veverka (1970o, b) has yielded a preliminary 

normal reflectivity estimate of 0.25 ±: 0.07 for Vesta. This implies a bolometric 

Bond albedo of about 0.146 ± 0.041 (for q = 0.585), which is in good agreement 

with the infrared data. However, the polarization method is both empirica I and 

based upon data for materia Is other than those from the surface of Vesta. The 

estimate comes from an equation first given by KenKnight et al (1967) and noted 

independently and applied to asteroids by Widorn (1967): 

h = -~ 
c • r 

n 
(12) 

where h is the percent polarization per degree of phase angle and r is the normal 
n 

reflectivity of the surface. c and ~ are empirical constants. Both the above 

authors and Veverka (1970b) feel that the value of !3 = 0.8 has been fairly well 

determined from laboratory measurements on lunar-like samples and from observe-

tions of the Moon. However, the constant, c, is not as certain and Veverka 

thinks that a likely range of values is 0.024 to 0.031. This range then determines 

the value for r . Veverka points out that the slope, h, can only be estimated 
n 

because Vesta cannot be observed at phase angles greater than ,.._, 26 ° and that the 

relationship, Eqn. 12, should be calibrated in the laboratory by measurements of 

crushed meteorites. In spite of these problems, the agreement between the 

polarization and the infrared methods is significant because the two methods have 
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no common assumptions, except for the value of the phase integral, q, which is 

used in order to compare the resu Its. 

The model diameters found here do not agree with disk measurements when 

the latter are taken at face value. A 600 km diameter at unit distance subtends 

an angle of about 0!'8 or 0!'3 larger than that measured by Barnard. The 

observed phase function for Vesta seems to rule out the possibility of limb 

darkening as the cause of the low measured diameters. This reasoning is based on 

ana logy with the Moon which does not exhibit significant limb darkening. The 

systematic errors between the various disk-measurement methods have been 

estimated here to be 0!'08. The random error for filar micrometers is estimated 

to be :i:O!'~ Dollfus (1970, p.48). For the Vesta measurements mode by Dollfus 

---------- --
and his co-workers the random errors are presumably less, but their value of 0~'62 

is closer to the 0!'8 implied by the infrared work. Considering the size of these 

errors it is probable that the infrared diameter is within 2 standard deviations of 

the disk measurements. 

Could one construct a satisfactory model in which the disk diameter 

measurements are assumed to be correct? One attempt to do this lets the emissivity 

vary with wavelength in a way such that it is unity at 8-141Jm but elsewhere is 

such that the effective emissivity is low, say e = 0.5. This model, then, is 

essentially o test for absorption bands in the thermal emission spectrum which are 

situated at wavelengths other than 8-141-lm. The results of this model are labeled 

"3" in Fig. 27b, c, and d. While the approximate levels of irradiance can be 
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satisfied, the observed 11.61Jm/8.5um ratio is not. It would appear that this 

model requires A "'0. 1. If this is the case, then the phase integral, q, must 

be "' 0. 2 (by Eqn. 11). From the ova i lab le visible-wave length phase coverage, 

Fig. 18, there is no reason to suspect that q differs in any significant way from 

the value for the Moon (q = 0. 585). 

Thus, a reasonable model has yet to be found which can satisfy both the 

disk measurements and the infrared photometry. 

Using the slope of the 8.5 1Jm, E • t::, 
2 

predictions for~ fixed radius, 

Fig. 27d (No. 2), one can return to the corrected lightcurve, Fig. 26, and set 

an upper limit upon the variation of the 11integral 11 model albedo across Vesta's 

surface. Using the peak-to-peak variation of the 8.51Jm lightcurve, the range 

of the model albedo is A= 0.10 ~ 0.06. This limit, of course, dos not apply 

to Vesta's north-polar region because the declination of the Earth as seen in 

Vesta-centric, equatorial coordinates, was about south thirty degrees during 

the 1969-1970 opposition. 

In conclusion, both D.A. Allen (1970, 1971 private communication) and 

this author agree upon the measured irradiances for (4) Vesta and neither author 

has been able to reconcile them with the disk measurements. 

The modelling situation is recapitulated with the aid of Table 5. 

Column A is the lunar-type model with about a 300 km radius. This model 

obviously conflicts with the disk measurements, but it explains all of the other 

observations. Columns B, C, and D show the results of attempts to construct 
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TABLE 5 • RECAPITULATION FOR (4) VESTA 

Data that do not fit 
(Models discussed in text): 

Observational Evidence A B c D 

l. Disk Measurements 
(""' 200 km radius) X 

2. Visible-wavelength Photometry 

3. Visible-wavelength Colorimetry X X 

4. Visible-wavelength Phase Effect ? ? 

5. Visible-wavelength Polarization, 
Negative Branch 

6. Visible-wavelength Polarization, 
Linear Slope X ? ? 

7. Infrared, Thermal Emission, 
Photometry X X 

8. Infrared, Thermal Emission, 
Colorimetry (11.6~-.Lm/8.51-lm) X X 

9. Infrared, Thermo I Em iss ion, 
Phase Effect 

10. Physico I Properties of Natura fly-
occurring Solid Materials ? X 
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models based upon the assumption that the disk measurements are correct. In 

Column B, a 190-km lunar-type model is considered. It yields predictions that 

disagree with all of the infrared observations as well as with the albedo suggested 

by the slope of the I inear portion of the polarization versus phase angle data. 

In an attempt to circumvent the difficulties encountered in Column B1 the 

emissivity of the model is allowed to vary with wavelength in such a way that 

the effective emissivity is ...{).5, and e(A.) = 1.0 for 8.51-!m ~ A.~ 141-im. 

Although this variation allows the approximate observed levels of infrared 

irradiance to be reached, the match at 11 .6 !Jm is not good enough to say that 

the model now agrees with the observations. Furthennore 1 a low value for the 

effective emissivity, ( ~.5) conflicts with the visible-wavelength colorimetry 

that is available for Vesta. According to McCord et al (1970), the colorimetry 

implies that the surface composition of Vesta closely resembles that of certain 

base ltic achondrites (e.g. 1 Nuevo Laredo). 

In Column D the emissivity is allowed to vary freely in the 8 - 141Jm 

region and all of the infrared data can be generated by the model if the effective 

emissivity is low ( ,..._. 0. 2?). Low values of effective emissivity require a 

metallic surface and this model would severely violate the colorimetry by 

requiring that that technique be insensitive to the difference between a metallic 

composition and a basaltic achondrite. Furthermore, emissivities that are high 

at 8-l41Jm and very low elsewhere are not compatible with any abundant 1 

naturally-occurring, so I id materia I. 
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For ell of the models that hove been considered, every attempt to 

reconcile the disk diameter measurements with other observations hcs foiled. 

In order to obtain c self..;consistent set of dote, it appears that the disk diameter 

measurements for Vesta must be rejected. The observations that remain ere 

then compatible with c lunar-type mode l . 
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(7) Iris and (324) Bamberga 

A carefu I comparison of (7) Iris and (324) Bomberga is important 

because the color diagrams (Figs. 12-14) have already identified these two 

asteroids as having different surface properties. Both minor planets have been 

well observed (Table 1) and their infrared signals are nearly equal in amplitude. 

For both asteroids the positions of the axia I rotation vectors are assumed to be 

unknown. Positions have been published for the axis of rotation for Iris 

(Cailliatte 1956, Gehrels and Owings 1962) but the two values disagree, and 

furthermore, the methods of analysis could be invalid (Vesely 1971). 

For an asteroid at opposition the Earth-based observer sees two limiting 

cases: (1) an equatorial view and (2) a polar view. The first case is studied 

by running the lunar-type model (Section Ill) for a variety of A and € values 

with mode I radii computed via Eqn. 11. The second case is studied by ca lcula­

tions for s = 1.0 only; this situation corresponds to the non-rotating spherical 

model. For Iris the rotation period is 7.125 hours but for Bomberga it is unknown. 

A fragment of an existing lightcurve suggests a period compatible with about 

8 hours which is the value tabulated by Gehrels (1970). 

The E • b. 
2 

observations for Iris and Bomberga are compared with the 

model predictions for the two limiting cases in Figs. 29 and 30. The variation 

due to the uncertainty in the axial rotation vector is the more important source 

of modelling error. The effect of the lower values of emissivity have their 

greatest significance at 8.51Jm. For Iris and Bomberga, at"' 1. 9 AU from the 



135 

Figs. 29 and 30. Comparison of the observations with model predictions. 

The heavy horizonta l lines show the mean value and the mean plus and 

minus one standard deviation. The solid curves are the predictions for 

the equatoria !-view case and the dashed curve shows the polar-view 

case. 
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Sun, the 11.61-lm/8.5 urn ratio is not strongly dependent upon the albedo. 

Theoretically, the hiatus between the two limiting cases is not large enough 

to destroy the utility of this ratio, and if the present observations had a higher 

precision, usefu l limits could be set for the emissivities. Table 6 tabulates the 

results obtained when the various models are applied to the present data for 

Iris and Bamberga. 

The error study for Iris and Bamberga shows that the conclusion of low 

albedo is not critically dependent upon either the model or the uncertainties in 

the photometry. The two families of curves in Figs. 31 and 32 represent the 

values of the model parameters that yie ld the observed visible and infrared 

irradiances. At their intersection, the values of A and R satisfy all of the 

avai fab le photometry. The curves for the visible are the constraints set by the 

absolute magnitude, B(1 ,0), when the visible phase integral, q, is given. The 

value of q is not known for either Iris or Bamberga and the lunar value ( q = 

0. 585) is assumed. There is no ~priori reason to suspect that the true value 

will differ much ( mor~ than ""'10%) from this value. The curve is also shown 

for the admittedly extreme values of q = 0.3 and 0. 9 in order to test the sensi­

tivity of the conclusion to this particular assumption. 

The infrared curves are the constraints that correspond to the three 

models: (a) Jlrough" non-rotating sphere, (b) smooth, non-rotating sphere or 

polar view, and (c) the rotating, lunar-type model or equatorial view. 
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The resu It shows that for dark objects (A""' 0. 02), the phase integra I 

gives a model albedo uncertainty of less than :i: 0.01. For Iris and Bamberga, 

the effect of the formal error in B(l ,0) is small and the error bars are plotted 

for two points on the q = 0.585 curve for Bamberga. A single set of error bars 

is plotted for the infrared curves corresponding to a :1:: 20 percent error in 

irradiance. The other infrared bandpasses define similar curves, all of which 

are within this error bar. 

This analysis secures the conclusion that Bamberga must have an 

extremely low bolometric Bond albedo. Even a fortuitous combination of 

observat iona I and I ike ly mode IIi ng errors can not raise the mode I albedo to 

a value as high as A = 0.03. It also follows from Figs. 31 and 32 that the 

possibility that Bamberga and Iris could have equal albedos is not admissible, 

even with a doubly fortuitous combination of errors. 



143 

Other Asteroids 

For the remaining asteroids that were observed, the positions of the 

rotation poles are not known and,for some of the objects, even the rotation rates 

have yet to be determined. By and large, the available lightcurve coverage 

is scant. Consequently some of these objects could have large errors (......, 20-400/o) 

in B(1 ,0). The errors in the infrared photometry is also large as some of the 

error bars w iII show. 

In the ana lysis for these asteroids the infrared phase effect is ignored, 

B(1 ,0) is used directly, and the emissivity of their surfaces is assumed to be 

unity. The visible-wavelength phase integral, q, is assumed to be 0.585. The 

color of Vesta is also assumed and thus the Bond albedo for the B bandpass is 0. 94 

of the bolometric Bond albedo. The emission beam pattern (phase effect) for each 

elemental area is assumed to be L.ambertian. 

The data are now processed using the rough spherical model. The model 

albedo and model radius are then normalized to the value for Vesta (A= 0.099, 

R = 300 km) in order to make a first order correction for the effects of rotation. 

It is reasonable to do this because all the rotation periods measured for asteroids 

fall in the range between 2.87 and 16.81 hours. From experience with (4) Vesta, 

(7) lri s and (324) Bamberga; one does not expect the mode IIi ng errors to be too 

large (Tables 4 and 6). Thus for A...., 0.1, one expects ::1:0.03 to be a reasonable 

estimate on the model albedo errors. For A......, 0.02, the corresponding number is 

about :t:O. 01 • 
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The model parameters for asteroids are plotted in Figs. 33 and 34. The 

boxes in these figures represent the formal standard deviations of the infrared 

photometry and the errors assigned to B(l,O). The most significant feature on 

these plots is the position of (324) Bamberga and (19) Fortuna with respect to 

the other asteroids. Bamberga has been observed 15 times whereas Fortuna has 

been observed only twice, once at 8.51-lm and once at 11.6 urn (Table 1). Even 

though the results from the two bandpasses agree, it is felt that the observations 

are too few and that this asteroid should be reobserved before it can be confi­

dentially classed with (324) Bamberga. 

In Fig. 34, the parameters corresponding to each of the infrared band­

passes are plotted. The agreement from one wave length to the next is excellent 

except for (1) Ceres. In the region where the model albedo is about 0.05, 

there are a number of objects: (6) Hebe, (7) Iris, (80) Sappho, and perhaps, 

(68) Leto. A number of other objects cluster in the 50 to 90 km and 0. 03 to 0. 1 

albedo region. The errors for both the infrared and the visible photometry of 

these obi ects are large, as the error bars show. However, the data do suggest 

that there are smaller objects with albedos as high as that of (4) Vesta. 

(20) Massalia is the member of this cluster with the smallest error box, but this 

is based upon only one observation. The data for (2) Pallas, (5) Astraea, 

(15) Eunomia, (27) Euterpe, (39) Laetitia, (44) Nysa and (674) Rachele are 

poor and these asteroids must be observed again in order to reduce the size 

of the error boxes. 
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Figs. 33 and 34. Model albedo versus model radius. These model 

parameters are estimates of the bolometri c Bond a lbedo and the 

radius or the J•equivalent radius 11 in the case of an irregularly 

shaped asteroid. For comparison, the 11.6~-tm data for (4) Vesta 

have been reduced by the methods of this section and plotted. 
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The situation for (1) Ceres has yet to be resolved as the 11.6 urn and 

the 8.5 IJm data yield different model parameters. 
1 

Allen (1971) uses 6 obser­

vations to compute an infrared radius of 580 ±: 40 km which overlaps with the 

8.5 IJm datum in Fig. 34. On the basis of polarimetry, Veverka (1970c) 

obtains a geometric albedo that lies between 0.03 and 0.05. It is quite 

possible that this low a geometric albedo is in conflict with the infrared data 

(Veverka 1971, private communication, and this author). Clearly, further 

study and observation of (1) Ceres are needed. 

In conclusion, Figs. 33 and 34 show that there are clear and distinct 

differences between asteroids. These differences are relative and hold true 

even if the model radius systematically differs from the actual radius. The 

bolometric Bond albedo for real asteroids apparently has a range of at least 

an order of magnitude. Of the large asteroids (R > 200 km), (4) Vesta has 

the highest albedo. (324) Bamberga is extremely dark and also is much 

larger ( R '"'"' 125 km) than hitherto suspected. 

1 
(1) Ceres was observed twice at 11.6 1-lm and once at 8.5 \Jm (Table 1). 
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V. DISCUSSION 

This section opens with a discourse on the relative importance of compo­

sition versus morphology in determining the albedo of an asteroid. The observed 

asteroid and satellite albedo distribution is discussed. Finally, the state of 

knowledge about the density of these objects is reviewed. 

Surface Morphology and Composition 

It is presumed that impact is the important on-going process that governs 

an asteroid 1s surface morphology. Asteroids are envisioned as being impacted 

regularly by particles of debris. In the limiting case, these collisions occur at 

supersonic velocities. The surface of the asteroid is pock-marked by craters 

and is mantelled by the ejecta which falls back to the surface. For Vesta it has 

been estimated that this fall-back amounts to more than 95 percent of the amount 

excavated originally from each crater (p. 91, this thesis). The corresponding 

number for a 100-km radius asteroid {with Vesta 1s density) is ""60-700/o. 

There is evidence that both (4) Vesta and (8) Flora have developed 

regoliths. The observed polarization implies either fine porous or particulate 

surfaces. The observations, however, do not establish that the material is 

particulate and unfettered as opposed to being merely porous as is a tuff or 

cemented as is a conglomerate. That conclusion is supplied by the impact 

hypothesis. With a large percentage of the ejecta recovered as fall-back breccia 

on the surfaces of large asteroids, there is ample opportunity to rework it by 
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repeated impact before it finally escapes from the asteroid. 

Not only does the impact hypothesis supply the fine particulate material 

required by the polarization data but it may also explain the observed lack of 

color changes across the surfaces of many asteroids. On asteroids the horizonta I 

transport of impact debris is many times more significant than it is on the Moon 

or on the Earth. Not only is an asteroid's surface considerably smaller in surface 

area but the gravitational acceleration is also weaker. Consequently, each 

impact distributes throw-out over a large fraction of the entire surface. The 

trend, then, is toward the development of a g loba I rego I ith that has a rather 

uniform texture and composition. 

The impact hypothesis provides the basis for thinking that asteroids of 

comparable size tend to have similar surface morphologies. Of course, this is 

a statistica I statement and there wi II be some variation. The major exceptions 

are expected to be the smaller objects which have recently been involved in 

cataclysmic collisions and those asteroids with high inclinations which give them 

a much lower probability for encountering debris. With these concepts, then, 

it is very difficult to explain the range of asteroidal albedos other than by com­

positional differences. 

The darkening of the lunar surface is a process which at first may appear 

to clash with the above conclusion. It is likely that this process is due to the 

presence of dark glass in the lunar soi I {Adams and McCord 1970). A second 

process that could be involved (in the sense that it cannot be ruled out) is the 
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coating of individual grains by opaque material of unknown composition, but 

presumably originating from solar wind sputtering and/or vapor deposition from 

meteorite impact (Hapke et al 1970). However, both of these possibilities are 

an expression of surface chemistry, and the previous conclusion stands. 

In an attempt to identify compositional variations, a tentative albedo 

classification scheme is drawn up from the available data and presented as 

Table 7. In the sample observed, the extremely dark objects are clearly 

separated from the other objects {Figs. 33 and 34). On the other hand, the 

division between the 1'dark" and the 11 1unar" albedo classes is somewhat arbitrary 

inasmuch as here the data do not show a hiatus. The high albedo class is 

reserved for the Galilean satellites and Johnson's {1970, 1971) values are used. 

(324) Bamberga and Other Dark Objects 

Apparently Bamberga has the lowest {reliable) albedo yet measured for a 

solar-system object; thus relieving Phobos of this distinction. The Bond albedo 

for Phobos is not known but Smith {1970) has reported its geometric albedo to be 

about 0.065. Assuming that the lunar value for the phase integral is close to the 

correct value for Phobos, then the Bond albedo is probably in the range of 0. 03 

to 0.04, making Bamberga darker. 

It is not immediately obvious why {324) Bamberga should be so dark. Not 

only must its surface material be intrinsically of low reflectivity but the morphol­

ogy of Bamberga 1s surface must be such that very I itt le scattered light escapes. 

This suggests a soil or regolith in which the particles are opaque. It is felt that 
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both composition and morphology must be utilized in order to realize such a low 

albedo. By way of comparison, in the laboratory certain preparations of carbon 

black can have albedos this low or lower (Weast 1965). 

Few measurements of meteorite albedos have been made. However, it 

is possible that some of the dark chondrites can have albedos as dark as that of 

Bamberga. Krinov (f960) has summarized his work during the 1930's and that 

of N. N. Sytinskaya which was carried out during 1952. The darkest meteorite 

which Krinov measured (the carbonaceous chondrite Staroe Boriskino) had a 

norma I reflectivity of 4-5%. N. N. Sytinskaya measured 83 stony meteorites 

and she found 13 to have values in the 0.026- 0.075 range. 1 More recent 

laboratory measurements have been made. by Holt (1971, private communication) 

of the U.S. Geologica I Survey. He has studied the reflectivity of the car­

bonaceous chondrites Murray
2 

and Mokoia
2

. At zero degrees phase angle, 

the reflectivities are-0.05 and"'0.06 respectively. At thirty degrees, the 

corresponding values are ....... Q.04 and ....... Q.05. 

It appears from these laboratory data than certain chondrites 

provide a plausible natural material that is also dark enough to match the 

1
The numbers quoted here are believed to refer to normal reflectivity 

averaged over the spectrum. The differing laboratory and astronomical 
geometries make intercomparison only approximate for any of the data. 

2
Samples provided by C. Moore from the collection at Arizona State 

University, Tempe, Arizona. The author is indebted to Dr. Holt for use of 
his unpublished data. 
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low albedo of Bamberga. Because of Bamberga's extreme darkness it is argued 

that the telescopic observations can be compared with the equivalent laboratory 

parameters for fresh surfaces. In favor of this argument are the facts that the 

laboratory and telescope measurements yield about the same values and that 

both Bamberga and the dark chondrites are at the bottom of their respective 

albedo scales. If the particles that compose Bamberga's regolith were originally 

opaque, it seems unlikely that significant darkening could occur either by the 

formation of glass as on the Moon {Adams and McCord 1970) or by thin coatings 

placed on individual grains by sputtering or by impact-produced vapors (Hapke 

et al 1970). 

As has been mentioned before, the data for (19) Fortuna is not beyond 

question and the situation for (1) Ceres is unsettled. In the "dark" category, 

the data are good for both (7) Iris and Phobos with some uncertainty due to the 

phase integra I of the latter. 

The crucial question about the low albedo objects is their number and 

distribution. In the past the only way to estimate size and mass has been to 

assume values for the albedo and the density and to proceed by using the 

absolute magnitudes. If there is indeed a large number of dark and very dark 

asteroid~, then our ideas about asteroids will have to be revised. For example, 

the mass estimates will be increased. As another example, if the Apollo family 

of asteroids has a common Bond albedo of several percent, then calculations of the 

probability for their impact with the Earth-Moon system will be revised upward. 
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From the available albedo and orbit information it appears that the dark 

objects are distributed throughout the asteroid belt: 1 Ceres (semimajor axis = 

2. 8 AU), 19 Fortuna (2. 4 AU), 324 Bamberga (2. 7 AU), Phobos W.ars: 1. 5 AU), 

7 Iris (2.4 AU), 80 Sappho (2.3 AU) and 68 Leto (2.8 AU). Since the sample 

of observed objects is heavily biased, no significance is given to the lack of 

distances greater than 3 AU. It is entirely possible that dark material could be 

abundant. 

Anders (1964) has discussed Bamberga as a potentia I source of meteorites. 

He noted that the perihelion of Bamberga's orbit and the aphelion of Mars differ 

by only "'-'(), 11 AU. However, the change in velocity required to transport ejecta 

from Bamberga into a Mars crossing orbit is large enough that the meteorites so 

produced would be significantly shocked. Anders concluded that Bamberga did 

not contribute appreciably to the earthward flux of the lightly shocked 

meteorites. 

The fact that there·are two dark objects, Bamberga and Phobos, near 

Mars, suggests the speculation that some other asteroids in this neighborhood also 

have low albedos. Presumably, a few of these asteroids will be close enough to 

Mars that low velocity ejecta from their surfaces can be perturbed into Mars 

crossing orbits and thence redirected on an Earth crossing trajectory. The details 

of this mechanism have been discussed by Anders (1964, 1971 and by authors 

therein cited). The contribution of Bamberga and Phobos is to place low albedo 

material very near, but not in, the source area for this particular mechanism. 
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Lunar Type Objects 

The lunar class of objects contains the asteroids with the highest 

(precisely) measured albedos. Other asteroids might have higher albedos 

but this has yet to be demonstrated. The objects of this class are thought to 

resemble the Moon in many of their surface properties. (4) Vesta is the only 

asteroid which is firmly established as a member of this group and (6) Hebe 

and (20) Massalia are included only upon the basis of their albedos. (80) 

Sappho is a borderline case and probably is a member of the dark group typified 

by (7) 1ris. 

(4) Vesta is essentially spherical. Its bolometric Bond albedo is,..._(). 1 

but the error bars do not rule out the lunar average value of "'0. 07. The phase 

and opposition effects for these two bodies are very simi lor. Colorimetry data 

identify the surface composition (at least in part) as being consistent with the 

composition of certai~ basaltic achondrites (McCord ~t ~ 1970). The emissivity 

limit of E: > 0.7 found in this thesis is certainly compatible with any type of 

silicate composition. Frosts appear to be ruled out as a significant surface 

constituent both on the basis of the colorimetry which in that case should have 

detected a different spectrum and on the basis of the stability of volatiles 

{Watson et ~ 1963). 
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High Albedo Class 

The members of the high albedo class are the Galilean satellites of 

Jupiter . No type localities are given because each of these objects is unique 

in its optica I properties. 

The high albedo class is suggestive_of either a frost and ice surface or one 

composed of silicates with high albedo. Johnson and McCord (1970) have dis­

cussed the reflection spectrum of the Galilean satellites and have been unable 

to identify the surface composition on the basis of data from the 0.30 -1. 10 IJ.m 

region. Veverka (1971) concludes from the polarimetry and photometry data 

that J 1, J2 and J3 have surfaces consisting of bright multiply-scattering material, 

such as a frost. J4 he finds to have a darker surface with the possibility of frost 

patches or a mixture of ice and dark silicates. Moroz (1966) discovered that in 

the region of 0.8- 2.5 1-lm the spectra of J2 and J3 show structure that is 

characteristic of the reflection spectrum of a 11snow cover 11
• Recently this work 

has been confirmed by Johnson and McCord (1971). Furthermore, the absence 

of typical structure in the 0.8- 2.51Jm spectrum of J 1 and J3 does not rule out 

the possibility of frosts or ices (Johnson, 1971, private communication). 

Currently there is no laboratory data ova i lab le about the 8-14 llm 

appearance of frosts (Kieffer 1971, private communication). It is not obvious 

what the thermal emission observations mean (especially those of J4) and inter­

pretation may have to await laboratory studies. 
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It is interesting to speculate that there may be asteroids with albedos as 

high as those of J 1 and J2. (944) Hidalgo and the Trojans are a few of the 

asteroids that can retain frozen volati les on their surfaces. If this is true, then 

asteroidal albedos could span a range of two orders of magnitude. 

Densities 

Hertz (1968) has derived a value for the mass of Vesta by studying 

perturbations of the asteroid (197) Arete. This mass is tabulated in Table 8 

a long with its forma I error. Densities can be computed by using both the disk 

measurement and the photometric model radii. Schubart (1971) has used what 

he considers to be the best disk measurement (Dollfus' radius of 210 km) and 

finds the density to be near 5 g em -
3

• A lower density is obtained by using the 

photometric model radius and this value is entered near the bottom of Table 8. 

Allen (1971) has already published such a value and it differs only slightly from 

the present determination. However, the significance of these densities has not 

been previously discussed. 

Upon inspection of Tables 8 and 9 it is obvious that the mass determina­

tion is forcing an important decision. On one hand the density implied by the 

disk measurement leads to reasoning that the composition of Vesta may be simi far 

to stony iron meteorites or to that of terrestria I planets. On the other hand, the 

photometric model radius leads to the conclusion that Vesta is more closely 

related to (J4) Callisto or perhaps to the Moon. 
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TABLE 8. (4) VESTA DATA 

Property Va lue Notes 

Moss ( 1. 20 ± 0. 08) X 1 0-
10 

M 
0 

23 
(2.39:!: 0. 16) X 10 g 

Density 5 gem 
-3 

2.1 :!: 0. 9 g em 
-3 

2 

1
Using Dollfus• radius of 210 km 

2
Using the photometric model radius of 300 km 

TABLE 9. DENSITY RANGE OF METEORITE TYPES* 

Meteorite Type 

Stone 

Iron 

Stony Iron 

*data from Wood (1963) 

Density 

-3 
2. 95 - 3 • 90 g em 

-3 
7.7-7.9gcm 

-3 
4.6 - 4. 9 g em 

Reference 

Hertz 1968 

Schubert 1971 

This thesis 
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Vesta is now compared with the Galilean satellites using a plot first 

published by Johnso~ (1970, 1971). The purpose of the plot, Fig. 35, is to 

compare objects in terms of their surface (geometric albedo) and bulk (density) 

properties. The Vesta data are converted to geometric albedo because it is felt 

that the assumption of q = 0.585 (the lunar value) fits the available asteroid 

data better than it fits the Galilean satellite data. 

Great care must be exercised in drawing conclusions from this particular 

plot. Veverka (1970c) has also studied this matter and he prefers to use the 

masses determined by de Sitter (1931) and the diameters from the double image 

micrometer measurements by Dollfus (1970). The densities that result are then 

(J1):2.5, (J2):3.0, (J3):1.7 and (J4):1.3 g cm-
3

• Veverka's values for J1 

and J3 are lower than the extent of the error bars drawn in Fig. 35. There are 

also other difficulties with this plot. 

Brian Marsden (1971 private communication) points out that the mass 

determinations for J4 have a range of about a factor of 2. He notes that de 

Sitter's 1931 determination is based upon data obtained since 1890. If earlier 

data are considered then larger values are obtained for the mass. De Sitter's 

value is favored by Marsden although this matter is not completely closed. 

Marsden also notes that the mass situation for J 1 is perhaps more serious. Though 

the range of the individual determinations is less (about a factor of one-and-one-

half, discarding some of the earliest determinations), the cause of the variation 

for J 1 has yet to be identified. 
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Fig. 35. Geometric albedo versus density after Johnson (1970, 1971). 

The point for each satellite represents the mean va lues of p and p for 

Johnson's choice of diameter. For the sate ll ites, the density error bar 

gives the range of Sampson's and de Sitter's mass determinations {see 

de Sitter 1931 for data and references). The geometric a lbedo range is 

determined from the rotat ion variation measured by Johnson. The 

regions indicated for each satellite indicate the limits of the given 

error bars for the range of diameters considered by Johnson. The 

position plottep for Vesta corresponds to the photometric model radius 

of 300 km and model albedo of 0. 1 The infrared data are interpreted 

as indicating that Vesta is closest in both bu lk and surface properties 

to either (J4) Callisto or, possib ly, the Moon. q = 0.585 is assumed 

for Vesta. 
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With the low densities which Veverka assigns, a solar abundance 

mixture of ices and chondritic materials is certainly possible for the bulk compo-

sition of J3 and J4. However, the present errors in density also admit a lunar­

like density ......,3,3 g cm-
3

. With Johnson's (1970, 1971) values, which are 

plotted in Fig. 35, ice is plausible for J4 but so is a silicate composition. The 

lunar density is also agreeable with the data for J 1 and J2 (the error bars for J 1 

are now larger than those drawn in Fig. 35 due to the range of the various J 1 

mass determinations). 

The error bars for Vesta in Fig. 35 are obtained by (1) tripling the formal 

error in the mass determination and (2) assuming that the error in volume of the 

photometric model is 45 percent. While Vesta could have the same density as 

the Moon, the data suggest that the actual value is probably somewhat less. If 

the true density is near this higher value, then silicates are the likely bulk 

-3 
composition. If the actual value should be at a low value near"'1.1 gem 

then ices are indicated. In this case, the bulk and surface compositions would 

be vastly different, as a surface of basaltic achrondrite composition suggests 

-3 
that the individua I particles have a density of~ g em • 

In conclusion, the infrared data show that Vesta's surface and bulk 

properties probably lie somewhere between those of the Moon and (J4) Callisto. 
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VI. FUTURE WORK 

The fundamental questions about the smaller bodies in the solar system 

cannot be fully answered until more is known about the asteroids. For example: 

11What are the asteroids? How are they related to comets and to meteorites?" 

The important observational work in the immediate future is to continue 

to survey the asteroids both by infrared photometry and by visib le-wavelength 

colorimetry. The work should be oriented toward identification of compositiona I 

classes. How many different types of asteroids are there and how many of them 

have extremely low albedos? Can any objects be found that require low values 

of effective emissivity (e.g. iron) in order to explain the infrared data? Thus, 

in order to characterize the asteroids as a whole, the 50 brightest minor planets 

should be observed. 

There are several specific groups of asteroids that have special significance 

due to their relationship to particular problems. The asteroids close to Mars 

should be observed because of their proximity to the source area for one of the 

mechanisms for delivering meteorites to the Earth. The Mars crossers listed by 
II 

Opik (1963) are the most desirable of these targets but they are by and large 

very faint and only some of the brightest members can be investigated with 

presently ova i lab le equipment. 

The origin of asteroidal families may be a question that can be answered 

by telescopic observations. This type of study would sample two or three of the 
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brightest families, measuring all members within the reach of observational 

technology. If families are homogeneous, but differences exist between 

different fam i I ies then breakup of a parent object would be strongly suspected. 

On the other hand, if the objects within a family differ one from the other, 

then breakup is not disproved because the parent object could have been dif­

ferentiated. In this case too, dynamical processes that cause clumping of 

asteroids might a I so be suspected. 

The observationa I distinction between comets and asteroids is fuzzy. It 

will be recalled that the comets P/Arend-Rigaux and P/Neujmin 1 showed 

slight but definite cometary activity only upon their discovery apparitions. At 

all other times they have been completely asteroidal in appearance. Thus, in 

the present c lassi fi cat ion scheme, a II burned-out comets would be asteroids. On 

the basis of the dynamical parameters of orbits, Marsden (1971) has compiled a 

list of objects which may be defunct comets. The brightest objects on Marsden's 

I ist should be observed as soon as a sample of norma I asteroids is available for 

comparison. Hopefully, these measurements will yield a good observational 

criterion that separates the defunct comets from 1'normal" asteroids. (944) Hidalgo, 

which is a !ways mentioned in this context, is on this list and it is doubly 

interesting because Arnold (1965) found from his Monte Carlo calculations that it 

was highly probable that (944) Hidalgo had formerly been a long-period comet. 

Unfortunately its mean opposition magnitude is +19. 
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The ground-based study of asteroida l surface morpho logies is more difficult 

because the observab le effects are sma ller. Visible-wave length polarimetry is 

presently the important too l for detect ing a porous or part iculate surface layer. 

Under favorable circumstances the infrared photometry can yie ld estimates for 

the thermo I inertia and the co lorimetry can provide evidence for a thin or poor ly 

deve loped rego lith if it finds color differences across the surfaces of individual 

asteroids. A theoretica I study of the surface morpho logy that ar ises in the case 

of hypervelocity impact is ind icated . This study would characterize the morpho­

log ica l sequence of regolith types as a function of the parent body's mass. Such 

a theoretical study is important because of t he very limited types of data that 

show up the differences in morpho logy and the difficu lty of interpreting the 

availab le data in terms of so i I parameters. 
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VII. SUMMARY 

The purpose of this summary is to briefly draw together some of the 

original contributions of Part 2 of this thesis. 

The infrared lightcurve and phase effect data presented in the observation 

section is the only information on these effects that is ava ilable for thermally 

emitted radiation from the asteroids. The infrared lightcurves yield only several 

minor cone Ius ions because the effect is sma II (for the particu lor asteroids that 

were observed), and is probably less than the scatter of the data. The thermo I 

emission phase effect for a rapidly rotating (~5hperiod) asteroid at wavelengths 

near 10 IJ.m is small and is less pronounced than the corresponding visible-

wave length phase effect. Specia I color diagrams are introduced in order to 

display the observational data and to compare the reflected and emitted light 

from asteroids. These diagrams are very important because they a !low variations 

in surface properties between different asteroids to be detected without recourse 

to model-dependent assumptions. As a result, it was discovered that there are 

real differences between the surfaces of (324) Bamberga on one hand and (7) Iris, 

(80) Sappho, (192) Nausikaa and perhaps (313) Chaldaea on the other. {6) Hebe 

and (20) Massa I ia are found to differ from {19) Fortuna and ( 145) Adeona. (19) 

and (145) also are distinct from (7) Iris. 

A detailed thermal model is explained in section Ill. Justification for 

using this lunar-type model is given and the mode l is used to compute typical 

phase functions (beam patterns) and spectra for a hypothetica I asteroid. 
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In the fourth section the data for (J3) Ganymede, (J4) Callisto, (4) Vesta, 

(324) Bamberga and (7) Iris are analyzed with the model just developed and with 

other, less complicated mode Is. A short, digressive ana lysis of disk measure­

ments is made in order to obtain diameters to use for the modelling of the first 

three objects. (J3) Ganymede is found to have a bolometric Bond albedo of 

about 0.12 :i: 0. 10. This is the first estimate for this quantity that involves no 

assumption about the visible-wavelength phase integral, q. For (J4) Callisto, it 

is found that the present observations cannot be satisfied by a lunar-type model. 

The analysis for (4) Vesta f inds that the infrared data and the disk 

diameter measurements are incompat ible. The on ly remedy is to reject the disk 

measurements because no model using the disk diameters could be found that 

satisfied all of the available infrared and visible photometry, colorimetry and 

polarization data. On the basis of this thesis and the concurrent work of D .A. 

Allen (1970), (4) Vesta is thought to have a bolometric Bond albedo near 

0. 10 ± 0.03, a true radius near the model value of 300 ~~ km. Any value for 

emissivity greater than 0.7 is found to be compatible with the infrared data. 

The ana lysis for (7) Iris and (324) Bamberga finds that the model parameters 

for these asteroids are about A ~0.04 -0.05, R~l30- 150 km and A~0.013-0.018, 

R ~120 - 140 km respectively. It is found that the error propagation for very low 

albedo objects is favorable and that (324) Bamberga's actual bolometric Bond 

albedo is probably less than 0.03 even if the several types of errors act in 

fortuitous combination. 
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From plots of model albedo versus model radius, it is found that most of 

the asteroids analyzed (which constit ute a very biased sample) have model 

albedos between 0.03 and 0. 1. Several objects, (324) Bamberga, (19) Fortuna 

and perhaps (1) Ceres, appear to be extremely dark with albedos in the 0.01 -

0.03 range. 

It is felt that impact is the important on-going process on asteroidal 

surfaces. For (4) Vesta, it is estimated that more than 95 percent of the ejecta 

returns to that asteroid's surface. Thus there is ample opportunity to rework the 

surface material by repeated impact and to distribute it over the entire surface 

of the asteroid. The impact hypothesis also provides the basis for thinking that 

asteroids of equal mass tend to have similar surface morphologies. This leads to 

the conc lusion that albedo differences between asteroids are largely an expression 

of compositional differences. 

In an attempt to isolate some of the prospective compositional types, 

objects are classified according to albedo: extremely dark, dark, lunar, and 

high albedo. (324) Bamberga is so dark that it is difficult to find laboratory data 

for comparison. Carbonaceous chondrites are made of a plausible, naturally 

occurring material that appears to be dark enough that it cou ld explain the (324) 

Bamberga data. Other possibilities might exist but laboratory data are lacking. 

On the basis of the present observations there is no reason not to believe that the 

dark asteroids are uniformly distributed within the asteroid belts, so it is entirely 

possible that dark material could be abundant. 
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It is interesting to note that both (324) Bamberga and the small satellite, 

Phobos, are both low albedo objects in the vicinity of Mars. They are both 

close to, but not in, the source area of one particular mechanism for delivering 

(lightly shocked and unshocked) meteorites to the Earth via perturbation of their 

orbits upon close approach to Mars (as discussed by Anders 1964, 1971 and by 

authors therein cited). 

Using Hertz 1S (1968) mass, a density can be computed for (4) Vesta. 

When a 300-km radius is used, Vesta 1s density is 2.1 ± 1.0 g em -
3

• Considering 

both Vesta 1s surface albedo and density, it is suggested that this asteroid is more 

analogous to (J4) Callisto or perhaps even to the Moon than it is to the terrestrial 

planets. 
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APPENDIX I. 

ASTEROID DATA TABLES 

These tables tabu late the data discussed 
in Part 2 of this thesis 



180 

TABLE 1. 4 VESTA, LIGHTCURVE DATA 

Date 
E. t} 

1969-70 X W cm-2~m- 1 
Fractional 

U.T. (1Jm) Wt. X 10-15 Period 

Dec. 2.503 11.6 2.86±0.46 0. 118 

2.509 11.6 2.49± 0.41 0.146 

4.480 11.6 2.45± 0.36 0.000 

4.518 11.6 2.40± 0.41 0.172 

4.539 11.6 1 2.65± 0.4 0.268 

Jan. 13.469 8.5 1/2 1. 92± 0.20 0.149 

13.493 8.5 1. 90± 0.20 0.254 

Feb. 7.393 11.6 2.83± 0.33 0.428 

7.441 11.6 2.57 ± 0.29 0.641 

8.367 11.6 2.83± 0.34 0.817 

8.377 8.5 1.86±0.21 0.859 

8.404 11.6 2.67±0.32 0.982 

8.422 8.5 1.81±0.19 0.063 

Apr. 2.236 11.6 2.51 ± 0.64 0.996 

2.249 11.6 2.68±0.61 0.056 

3.242 8.5 1.60± 0.25 0.527 

3.250 10.5 2. 00± 0.25 0.565 

3.280 11.6 2. 12± 0.45 0.698 

4.140 11.6 2.71 ± 0.34 0.573 

4.146 8.5 1.53± 0.19 0.602 

4.152 10.5 2. 15±0.31 0.628 

4.190 11.6 2.33± 0.29 0.799 

4.199 8.5 1.59± 0. 18 0.839 
(continued on next page) 
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- continued -
TABLE 1. 4 VESTA, LIGHTCURVE DATA 

Date 
E . ~2 

1969-70 A W cm-2um-1 
Fracti ona I 

u .T. (/.Lm) Wt. X 10-15 Period 

Apr. 4.208 10.5 1. 83 ±0.28 0.881 

4.231 11.6 2.49± 0.31 0.982 

4.238 8.5 1.65± o. 20 0.016 

4.247 10.5 1.85± 0. 28 0 . 057 

4.268 11.6 2.47 ± 0.31 0. 149 

4.278 8.5 1 1.59± 0.22 0.195 

4.287 10.5 1 2.04±0.34 0.237 

4.310 11.6 1 2. 98± 0.40 0.338 

4.320 8.5 1 1.65± 0.26 0.385 

4.332 10.5 1/2 1.76± 0.37 0.426 

5.153 10.5 1/2 2.25±0.42 0.135 

5.162 11.6 2.86± 0.34 0.177 

5.172 8.5 1.61 ± 0.20 0.731 

5.221 11.6 2.75± 0.53 0.443 

5.227 11.6 2.84± 0.34 0.470 

5.238 8.5 1 1.53± 0.62 0.520 

5.249 10.5 1/2 1. 78± 0.37 0.570 
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TABLE 2. 7 IRIS, LIGHTCURVE DATA 

Date 
E • ~"1. 

1969-70 A. W cm-2$-Lm-1 Fractional 
U.T. ($-Lm) Wt. X lQ-15 Period 

Aug. 23.501 10.5 1.02±0. 16 0.000 

23.514 11.6 1/2 1.19±0.18 0.042 

23.525 8.5 .79± 0. 13 0.081 

24.476 8.5 .86±0.40 0.286 

24.478 11.6 1.08± 0.20 0.293 

24.480 10.5 • 98± o. 13 0.300 

25.430 10.5 1.02±0. 17 0.505 

25.458 10.5 1.14±0.17 0.598 

25.487 10.5 . 92± 0. 14 0.699 

27,466 11.6 1. 15±0.20 0.373 

27.472 11.6 1 1.07±0. 13 0.391 

27.505 11.6 1/2 .91±0.13 0.503 

Sept. 18.417 10.5 1/2 1.01:~:0.11 0.411 

18.425 11.6 1.29±0. 16 0.439 

18.433 8.5 1 1.07±0. 16 0.465 

18.485 10.5 1/2 .97±0.11 0.641 

19.266 10.5 1 1. 13± 0. 13 0.284 

19.367 10.5 1 1.05± 0.12 0.616 

19.425 10.5 1 1. 18:i: 0. 14 0.812 

19.432 11.6 1 1.43±0.18 0.833 

19.437 8.5 1.15±0.16 0.850 

Oct. 12.393 11.6 1.36± 0.20 0.281 

(continued on next page) 
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- continued -
TABLE 2. 7 IRIS, LIGHTCURVE DATA 

Date E. ~2 

1969-70 A. W cm-2gm- 1 Fractional 
U.T. (J.Lm) Wt. X lQ-15 Period 

Dec. 1.234 11.6 1 .37 ± 0 . 26 0.398 

2.268 11.6 .89±0. 15 0.885 

2.291 11.6 . 86±0.13 0. 962 

3.228 11.6 1.05±0. 10 0.123 

3.249 11.6 1.07± 0.08 0.195 

4.168 11.6 • 92±0. 14 0.295 

4.189 11.6 1.39±0.15 0.365 

4.285 11.6 1.03±0. 15 0.690 
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TABLE 3. 6 HEBE, LIGHTCURVE DATA 

Date E • t:/ 
1969-70 A. W cm-2fm- 1 Fractional 

u .T. (~m) Wt. X 10- 5 Period 

Oct. 12.550 11.6 0.43:!:0.12 0.500 

Dec. 4.398 11.6 1 0.88:!:0. 14 0.322 

4.420 11.6 1 0 . 72 :1:: 0. 15 0.396 

4.440 11.6 1/2 0.56±:0. 10 0.460 

4.469 11.6 1/2 o. 29:!: 0. 07 0.556 

4.510 11.6 1/2 0.58:!:0.11 0.694 

Jan. 13.383 8.5 l/2 0.41±:0.06 0.595 

13.411 8.5 0.32:!:0.03 0.684 

Feb. 7.310 11.6 l/2 0.59±:0. 12 0.060 

7.329 11.6 0. 36:!: o. 08 0. 113 

8.341 8.5 0.23:!:0.09 0.165 

8 .347 11.6 0.74:!:0. 16 0. 185 

8.356 11.6 0. 22:!: 0 . 09 0.214 

8.426 11.6 1 0.63:!: 0. 10 0.446 

8.437 8.5 1 0.31 :!:0.09 0. 482 
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TABLE 4. 324 BAMBERGA1 LIGHTCURVE DATA 

Date E • A 2 

1969-70 >. W cm-2~m- 1 Fractiona I 
U.T. (p.m) Wt. X lQ-15 Period 

Aug. 24.395 11.6 1 1. 42 :i: 0 . 21 0.000 

24.399 10.5 1/2 1.04±0.12 0.312 

24.402 8.5 0. 97 :i: 0.11 0.015 

25.403 10.5 1.29±0.19 0. 033 

26.287 10.5 1.04±0.12 0.702 

26.348 11.6 1.37 ± 0 .32 0 .897 

26.355 10.5 1. 17±0. 13 0.037 

26.360 8.5 1.21±0.17 0.877 

26.293 8.5 1.18±0.16 0.058 

26.402 10.5 1/2 1.20±0.14 0.912 

26.409 11.6 1/2 1.55±0.34 0.012 

27.412 11.6 1. 11 :i: 0 • 09 0.077 

Oct. 12.237 11.6 1.26±0.18 0.935 

Dec. 1.189 11.6 1.30± 0.30 0.204 

4.142 11.6 0. 85± 0. 15 0.085 
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TABLE 5. VALUES USED IN DATA REDUCTION 

(Tables 3 through 6) 

U.T. DATE ~ r 4> 
NAME 1969/1970 (AU) (AU) (Deg.) 

(4) VESTA DEC 2.5 2.035 2.490 22.7 

4.5 2.011 2.487 22.2 

JAN 13.5 1.566 2.455 12.8 

FEB 7.4 1.452 2.433 2.0 

8.4 1.451 2.433 1.7 

APR 2.2 1.732 2.382 21.5 

3.2 1.742 2.381 21.7 

4.2 1.752 2.380 21.9 

5.2 1.762 2.379 22.1 

(6) HEBE OCT 12.5 1.963 2.148 27.6 

DEC 4.4 1.491 2.264 19.2 

JAN 13.4 1.384 2.356 5.0 

FEB 7.3 1.525 2.404 12.6 

8.3 1.532 2.404 12.9 

(7) IRIS AUG 23.5 1.145 1.954 23.5 

24.5 1.135 1.952 23.2 

25.5 1.126 1.950 22.8 

27.5 1.107 1.947 22.2 

SEPT 18.4 0.951 1.908 13.3 

19.4 0.946 1.907 12.9 

OCT 12.4 0.885 1.874 6.7 

(continued on next page) 
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-continued-
TABLE 5. VALUES USED IN DATA REDUCTION 

U. T. DATE A r q, 
NAME 1969/1970 (AU) (AU) (Deg .) 

(7) IRIS DEC 1.2 1.036 1.836 27.0 

2.3 1.043 1.836 27.3 

3.2 1.051 1.836 27.5 

4.2 1.058 1. 884 27.8 

(324) BAMBERGA 
AUG 24.4 0.860 1.861 6.5 

25.4 0.856 1.858 6.0 

26.4 0.853 1.856 5.6 

27.4 0.850 1.854 5. 1 

OCT 12.2 0.926 1.787 22.6 

DEC 1.2 1.326 1.786 32.8 

4. 1 1.355 1.790 32.8 
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TABLE 7. (J3) GANYMEDE DATA 

E • f2 
- 1 

Date A. W em J.Lm- e l:l 
1969-70 U.T. {J.Lm) X lQ-15 Wt. Degrees (AU) 

Jan 13.546 8.5 1. 37 ± 0.70 82. 5.558 

13.570 8.5 2.90±0.69 1 82. 5.558 

13.597 8.5 2.69:!:: 0. 93 1/2 82. 5.558 

Feb 7.478 11.6 14.6 ±3.4 1 258. 5.155 

7.578 11.6 10.7 :f: 1.4 1/2 258. 5.155 

8. 505 8.5 2.41 ±0.50 305. 5.139 

8.512 11.6 9.0 ±1.6 305 5.139 

Apr 2.426 11.6 6.3 ±2.1 140. 4.501 

3.344 11.6 9.2 :f: 1.5 186. 4.496 

3. 496 8.5 0.64± 0.53 1 194. 4.496 

4.423 11.6 11.7 ±1.5 1/2 245. 4.490 

4.447 8 .5 1.6 :f: 0.60 1 242. 4.490 

4.515 10.5 4.1 ±0.77 1/ 2 245. 4.490 

5.324 11.6 11.4 ±1.5 1 287. 4.484 

5.355 8.5 2.05± 0.54 1 287. 4.484 

5.411 10.5 5.9 ±1'.2 290. 4.484 

5.447 11.6 13.5 ±1.6 290. 4.484 

Jul 28. 176 11.6 8.9 ± 1.5 210. 5.452 

28. 189 11.6 5.3 ± 1.5 210. 5.452 

Mean 8.5 2.17±0.61 

10.5 5. 0± I. 2 

11.6 10.1±2.9 
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TABLE 8. (J4) CALLISTO DATA 

E · t/ 
-1 W cm-2~m Date X e 11 

1969-70 U.T. (~m) X lQ-15 Wt. Degrees (AU) 

Jan 13.532 8.5 3.08±0.69 292. 5.558 

Feb 7.491 11.6 20.1 ± 2.6 105. 5.139 

7.590 11.6 21.0 ±2.7 107. 5.139 

Apr 2.459 11.6 15.1 :!:3.6 1 212. 4.501 

3.359 11.6 17.5 ±2.8 1 231. 4.496 

3.506 8.5 5.50± 1.1 234. 4.496 

4.422 11.6 17.5 ±2.2 256. 4.490 

4.430 8.5 2.55± 0.64 254. 4.490 

4.518 10.5 9. 1 ± 1.3 1 256. 4.490 

5.315 11.6 18.2 ±2. 1 1/2 275. 4.484 

5.384 8.5 1.6 ± 0.4 275. 4.484 

5.433 10.5 7.9 ±1.5 1 276. 4.484 

5.459 11.6 16.3 ±2.0 1/2 276. 4.484 

Jul 27.200 11.6 11.4±1.7 174. 5.437 

28. 167 11.6 10.2 ± 1.7 195. 5.452 

Mean 8.5 32.±1.7 
10.5 8.50± 0.84 
11.6 16.4 ±3.6 
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INTRODUCTION 

Astronomical instruments employed in the study of far­

infrared radiation differ in important ways from equipment used to 

study visible light. This paper describes an astronomical photometer 

that was designed for observing in the 8-14 micron region of the 

spectrum. This instrument has been used for more then a year on the 

Mt. Wilson 0.61 m and 1 .52m (24-inch and 60-inch) telescopes of 

the Hale Observatories. 

It is difficult to do accurate ground-based astronomical 

photometry ct far-infrared wavelengths because of the severe 

constraints imposed by the Earth's environment. All observations 

must be made through uwindows 11 in the atmosphere. These 11windows 11 

such cs the one from 8 to 14 microns, are spectral regions where 

the extinction of extraterrestrial radiation is relatively small. If this 

extinction changes too quickly in time or varies spatially in an 

unexpected way (e.g. due to 11clo!Jds 11
), photometric work cannot be 

done. 

The thermal radiation emitted by c room temperature black­

body is at a maximum near ten microns. Thus the structural 

members of the telescope, the photometer, and the other equipment 

emit a very large amount of thermal radiation. The photometer's 

optics must be designed so that radiation from these bright objects 

, 
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does not reach the detector and swamp the signals from faint 

sources in space o The eorth 1s atmosphere a lso emits on appreciable 

amount of energy at ten microns and specie I techniques ore 

required to separate the extraterrest rial s ignals from this background. 

The magnitude and the variability of the atmospheric background 

radiation do not permit the successful operation of a conventional 

photometer with a single field of view. Modern instruments make a 

differential measurement between two fields of view. One field 

contains the object to be observed plus the radiation from the 

atmosphere and the other field contains only atmospheric radiation. 

Typically the two fields of view ore compared and the differences 

ore measured many times a second. The first modern semiconductor-

detector photometer was built and described by Westphal =._t ~ in 

1963 •1 Since that time, a number of other instruments hove been 

built and their descriptions and other information con be found in the 

. 2-5 
l1terature . Of particular interest is Low 1s discussion of special 

5 
purpose infrared telescopes. Compared to photomultiplier tubes, all 

present for-infrared detectors hove poor signal to noise ratios and 

they must be used at cryogenic temperatures. 
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THE PHOTOMETER 

The mechanical structure of the photometer is basically a 

sturdy skeleton frame to which modular parts 1 holding the various 

optical elements 1 are fastened by built-in clamps. This design was 

used so that maintenance and testing at the telescope could be 

carried out with a minimum of effort. 

The instrument uses a single detector which alternately views 

two different fields in the plane of the sky. The switching from one 

field to the other is done by means of a rotary optical chopper (as 

shown in Fig. 1). By chopping at a rate of 30Hz the photometer 

alternately samples and compares light from two separate parts of the 

telescope's focal plane. Converging f/16 light from the telescope is 

brought fo focus at the photometer's entrance aperture. Because the 

two incoming beams have different optical lengths their resulting 

foca I planes are not the same 1 but the focus of an f/16 beam on a 

large telescope has enough depth that compensation is not necessary 

when the path difference is only a few millimeters. 

The focal plane aperture is situated inside the vacuum vessel 

of the dewar that holds the liquid hydrogen coolant. The aperture is 

inc lined at forty-five degrees to the optical axis. A combined 

dichroic plate and long-wavelength-passfilter is attached to its front 

surface. At the dichroic plate 1 rays of visible light are reflected and 
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exit the vesse I through a window where they reach an observer 

with an eyepiece, who sees a rea I image of the star to use for 

guiding. A thin, aluminized, microscope-slide cover slip with a 

hole in it is fastened iust in front of the filter and indicates the 

position of the true aperture. Infrared radiation with wavelengths 

longer than about 7 o51J passes through both the blocking filter 

and the aperture and on to a whee I which places filters, one at 

a time, in the optical path to obtain the three narrow bandpasses. 

A fourth position in the filter wheel has no filter, and allows 

8-1411 wideband photometry. The filter whee I and its detent (for 

precise, repeatable positioning of the wheel) are operated through 

the wall of the vacuum vessel by two pairs of magnets o A KRS -5 

lens behind the filter wheel forms the bundle of diverging rays into 

an image of the primary mirror of the telescope. As the distance 

between this lens and the entrance aperture is increased, more of 

the stray rays ( in this case rays diverging faster than f/16) 

tend not to reach the lens. This is only a precautionary measure 

and is not the chief means for reiecting off-axis rays. The maximum 

permissible distance is fixed by the diameters of the aperture and the 

KRS -5 lens. The requirement to form a real image of the primary 

mirror on the detector determines the focal length of the lens and 

the permissible amount of aberration gives the focal ratio, thus 
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fixing the lens diameter. 

A pupil immediately in front of the detector allows only the 

geometric rays from the image of the primary mirror to reach the 

detector. All parts of the image (except for focused starlight, if it 

passes through the center of the photometer's aperture) are blurred by 

d iffraction due to the entrance aperture. To e liminate diffracted 

thermal radiation from the primary mirrorsupports, port of the light near 

the perimeter of that mirror's image must be discarded. If the photo­

meter's aperture were smaller, diffraction effects would be greater and 

it would be necessary to make the pupi I smaller. Correspondingly more 

starlight would be rejected. The size of this pupil is the primary means 

of rejecting off~xis rays and adjusting the angular response of the 

instrument. 

The detector is housed in a gold-plated, highly reflective cavity 

immediately behind the pupil. This cavity intercepts light which passes 

entirely through the detector and reflects it back for another pass o The 

detector is a 2 x 2 millimeter crystal of mercury-doped germanium 

(Ge:Hg). Indium solder fastens the crystal to a copper heat sink (not 

shown in Fig. 1) o Heat flowing from this fitting reaches the liquid 

hydrogen reservoir and is removed by evaporation. Should the power 

absorbed by the detector or its immediate environment be too great, the 

temperature of the crystal will rise, its responsivity and impedance will 
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change, and the response of the system will no longer be linear. 

This effect must be kept in mind when measuring sources of large 

irradiance and also when comparing faint sources observed under 

different background conditions. 

The angular response of the detector and the optics inside 

the dewar was measured by placing a test source of chopped thermal 

radiation at numerous locations in the field of view. The contoured 

response is displayed in Fig. (2). 

Fig. (3) shows the normalized instrumental response as a 

function of wavelength. This response was obtained using the 

measured spectral transmission data for each filter, pub I ished 

spectral transmission curves for the other optical elements, and 

published spectral response curves for Ge:Hg photoconductors. The 

overall response of the photometer to an extraterrestrial source of 

radiation depends both upon the intrinsic spectral response of the 

instrument and the instantaneous transmission spectrum of the 

atmcsphere. Advantage can be gained by using bandpasses that 

avoid the major absorption features. The lack of detector response 

beyond about 13 .5il provides the long-wavelength cut-off for the 

instrument. 

The photometer was tested in the laboratory for light 

leakage by comparing the theoretical responses to the responses 
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observed for fields of view at several different temperatures but at 

approximately a constant level of illumination in the visible. 

Additional leakage tests were performed at the telescope by observing 

the response to bright, early-type stars which emit very little energy 

at ten microns . Within experimental error 1 neither type of test 

detected a light leak. The photometer's aperture was also checked 

at the telescope. By trailing a bright infrared star along a raster 

pattern it was found that the central part of the aperture gave a 

uniform response to within the testing precision of a few percent. 

Mechanical tests were made to verify that the optical 

elements of the photometer did not shift significantly with respect to 

each other. This was done by applying static loads to the various 

structural parts in generous excess of what they would experience at 

the telescope. 

Extreme care must be taken when setting up any far-infrared 

astronomical equipment because these instruments receive thermal 

radiation from the telescope and the atmosphere, as well as from any 

extraterrestrial source to be observed. For example, if the photometer 

shifts position as the telescope is moved from one setting to another, a 

spurious signal will result which originates totally within the equip­

ment. In setting up the photometer the beam pattern from the optical 

chopper is centered on the secondary mirror of the telescope and then 
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the fixed mirror is set coplanar with the chopper . The photometer 

and all optica l elements in it are then checked to make sure that 

each is held rigidly and is in its proper pos it ion. 

ELECTRONICS 

As shown in Figs . (4) and (5) the modu lated optical beam 

induces a variation in the number of charge carriers in the Ge:Hg 

photoconductor. This variation causes a fluctuat ion in the bias 

current which produces a voltage variation across the load resistor 1 

R L . The voltage of the signal a t point 11 as shown in Fig . (5) 1 

is preamplified at the photometer and sent by cable to an electronics 

rack where the signal is amplified and demodulated synchronously 

with respect to the phase of the chopper. 

The angular position of the optical chopper is determined 

when its rotating blades interrupt a small beam of light that is 

directed at a photoresistor. The voltage across the photoresistor is 

amplified and used to operate the demodu lator as well as to control 

a relay which briefly grounds the input of the amplifier whenever an 

edge of the optical chopper's blades passes through the detector's field 

of view. This latter process is necessary because thermal radiation 

emitted from 11warm" parts of the photometer is scattered into the 

detector by the edge of each blade. Electrical signals at several 

locations in the circuit are displayed in Fig. (5) . The electronic 
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switching of the demodulator leads the mechanical switching of the 

relay, but the amount of electrical signal confusion is negligible. 

The synchronous demodulator converts the ac output signal 

from the amplifier to a de voltage which is fed into a voltage-to­

pulse-frequency converter. The generated pulses are counted 

over a fixed time interval by an electronic counter and after the 

end of each interval a printer prints the total on a paper tape. 

The output of the amplifier is continuously monitored by an oscillo­

scope, and a strip chart recorder continuously plots the output from 

the demodu Ia tor. These monitors are extremely useful for detecting 

irregularities during observations. 

In the operation of this equipment on Mt. Wilson, a 

considerable amount of effort was required to eliminate the electrical 

interference from numerous nearby radio and television stations. This 

was necessary because the locations and amplitudes of standing radio 

frequency waves on the equipment changed with time and with each 

setting of the telescope. Long signal cables were particularly 

vulnerable and in this particular case satisfactory results were 

obtained only after careful attention was paid to adjusting the lengths 

of the cable shields in an attempt to use the dominant standing waves 

on one shield to cancel those on the other shield. 
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Empirically it was found that a detector bias voltage of six 

and one half volts yields the best signal to noise ratio. This 

voltage was determined under actual observing conditions on Mt. 

Wilson using Mars as a test object. The bias voltage and other 

properties vary greatly between individual detectors •1 13 

RESULTS 

Some sample strip chart traces made with this equipment are 

shown in Fig. (6) and (7). Two different observational techniques 

were used and both are explained in the captions. 

The noise seen in these traces is from severo I types of 

sources found (1) in the telescope-photometer combination 1 (2) in 

the earth's atmosphere, and (3) in the Ge:Hg detector. The noise 

in the telescope-photometer system can be due to several effects. 

Because surfaces of the optical chopper blades are not exactly 

coplanar each blade projects the beam pattern 1 Fig . (2), in a 

slightly different direction and the resulting composite pattern 

cannot be perfectly matched by single pattern projected off the 

fixed mirror. Thus cancellation of radiation emitted by the telescope 

is imperfect. When the amount of thermal radiation from the 

telescope varies, perhaps due to a slight change of the surface 

temperature of a structure I member 1 a deflection can resu It on the 
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strip chart . Other things being held constant 1 the actual signal 

voltage, and thus the pen position, is a function of the algebraic 

sum of all errors in matching the patterns of beams 1 and 2. 

Different effects arise because the two incoming beams diverge 

continuously from the primary mirror of the telescope, where they 

are coincident, to the optica I chopper 1 where they are completely 

separated. First, the optical through-put of the two beams is not 

equal because they are not reflected by the identical mirror 

surfaces and because the chopper spreads the beam pattern. If the 

level of the atmospheric background radiation changes o deflection 

will result on the strip chart due to the difference in optical 

through-put between the two beams. The second effect is the very 

small variation that arises from differences in thermal emission 

from the optical surfaces that ore not common to both beams o In 

practice, this effect is mode negligible by keeping the mirror 

coatings fresh. 

Another type of noise has its origin in the atmosphere. 

Fig. (7) illustrates noise due to small changes in the extinction 

of radiation from Mars. The correction of observations for the effects 

of extinction is o difficult problem and will be taken up in future 

articles about observations mode with this photometer o 
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As one might suspect, the background radiation from the 

atmosphere is neither uniform in time nor space. When the amount 

of radiation received by one beam changes with respect to that 

received by the other, a nnoise 11 signal is produced. When 

irregular clouds pass through the beams this effect is very large. 

One can easily find the locus of points in the atmosphere where 

the photometer is sensitive. By retracing all the rays that reach 

the detector the locus for the 1 .52m (60-inch) telescope is found 

to be two diverging frusta, one corresponding to each beam. Both 

apex angles are 17.8 seconds of arc, a value governed by field 

and the first minimum of the Airy disk. The frusta hove a common 

truncation at the telescope 's primary mirror and their axes diverge 

at an angle of one minute of arc. At an altitude of 9 ,200m 

(7 ,450m plus the height of Mt. Wilson) the frusta cease to overlap. 

At this height they hove a diameter of approximately 2.1 meters. 

Thus this atmospheric noise is caused by spatial emission differences 

separated horizontally by only about a meter. Vertically, however, the 

noise can originate anywhere from just outside the dome to very high 

in the atmosphere. 

At the telescope the detector noise was estimated to be, 

typically, one third to one fourth of the total noise level on an 

overage night. This estimate was made on several occasions by noting 
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the noise level when a piece of cardboard wos placed between the 

chopper and the entrance aperture. For discussions of noise in 

photoconductors the reader is referred to the literature , 6-8 

By using the dichroic plate in the aperture assembly, the 

precision with which images (that are bright enough for guiding) can 

be centered is independent of the object's stellar magnitude. A 

2mm diameter entrance aperture was chosen so that at the Cassegrain 

focus of the Mt. Wilson 1 .52m (60-inch) telescope, the aperture 

would geometrically subtend about 16 seconds of ore on the sky. 

Using Rayleigh's criterion for the 1 .52m (60-inch) mirror,diffroction 

at 121-l is 1 .8 seconds of arc. Thus, for a point source the effective 

infrared aperture subtends about 14 seconds of ore. On the other 

hand, it is possible for some background atmospheric radiation from 

a 19 second of arc field to also reach the detector. 

11$eeing" typically spreads the image of a star by one to 

four seconds of arc • Precise centering and the aperture 1S large size 

contribute to minimizing the photometric errors due to this effect. 

This instrument has been used successfully for more than a 

year on Mt. Wilson at the 0.61m and 1 .52m (24-inch and 60-inch) 

telescopes of the Hale Observatory. Asteroids and some bright stars 

were observed. Results of these two observational programs will be 

discussed in articles appearing elsewhere. Observing with the method 
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described in the caption for Fig. (6) signals have been integrated 

for times much longer than those illustrated here by the strip chart 

traces. Obtaining bias free measurements for astronomical sources 

is observationally difficult and tricky and will be discussed in a 

subsequent paper. 
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CAPTIONS 

Figure 

A cutaway and slightly exploded view of the optical 

elements in the photometer. The coverslip and everything above 

it a re cooled by the I iquid hydrogen. The bandpass fi Iter is one 

of the three filters mounted in a cold fi Iter whee I. Black 

Nextel velvet coating (Wiinnesota Mining and Manufacturing Co.) 

paint was used inside the dewar's optical train to absorb scattered 

I ight. 

Figure 2 

Beam pattern of the detector and optics inside the dewar. 

The contours show the normalized response as a function of angular 

pos ition in the field of view o The maximum response was used for 

the normalization o The width of the pattern is determined chiefly 

by the size of the pupil in front of the detector. 

Figure 3 

The relative laboratory spectral response of the instrument 

and the relative transmission of the 8-141-l window as measured by 

Goetz 9 
o The atmospheric transmission depends on weather conditions 

including smog . Thus at any given time the relative spectral 
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response of the photometer to an extraterrestrial source is determined 

by the relative laboratory response spectrum and the instantaneous 

atmospheric spectrum. However, shifts in effective wavelengths are 

in fact small. The filter bandpasses are normalized to the detector's 

response at 1 OI-L • The difference from unity is due to absorption and 

other losses in the optics. The 8-141-L bandpass (BPl, not shown) is 

essentially the atmospheric spectrum shown above. Resolution is 

about 0 o08u. 

Figure 4 

Functional diagram of the electronics. The Ge:Hg photo­

conductor is inside the dewar and is at a temperature of about 20°K. 

The circuits in the photometer are connected to an electronics rack 

near the telescope by the JJtransmission lines •11 The circled numbers 

refer the reader to wave forms in Fig. (5). 

Figure 5 

Sketch of the ideal (no noise) waveforms at locations numbered 

in Fig. (4). The top line represents the response when radiation from 

an infrared bright star arrives via beam 1. The spikes occur when 

radiation from within the photometer is scattered to the detector from 

the edges of the chopper blades. The bottom line shows this same 
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signal {at a different vertical scale) as seen on the monitor oscillo­

scope. By this stage the spikes have been discarded and the signal 

is ready for the synchronous demodulator. 

Figure 6 

Traces of strip chart records obtained at the Mt . Wilson 

1 .52m {60-inch) telescope. The recorder plots beam 1 minus beam 

2. First the object is placed in beam 1 giving a (+) deflection. 

After the count is printed the object is placed in beam 2, giving 

a (-) deflection. One peak-to-peak deflection is a measurement. 

Instrumental constants must be included in any color ratio, thus 

the fact that the a Orion is trace for Bandpass No. 3 is of less 

amplitude does not mean that the star is fainter at that bandpass. 

This method of observing was introduced by Low. 

Figure 7 

Strip chart trace for Mars as seen at the 0.61 m (24-inch) 

telescope. The observational technique here differs from the one 

used in Fig. (6). First Mars is placed in beam 1 and a count is 

taken. After the count is printed Mars is moved out and another 

count is taken with both beams on the sky. The relative units used in 

this figure are the same as those used in Fig. (6). The insert shows 



214 

the effect of atmospheric extinction (as seen with a 0.5 sec time 

constant) compared with the noise when both beams are on the 

sky. 
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Fig. 6 
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This paper is a brief, preliminary report about a program of 
reconnaissance photometry designed to study the thermal radiation 
emitted from asteroids. Observations of thermal radiation, and 
their subsequent interpretation, can provide new knowledge that 
presently cannot be gained by any other method. The emitted 
thermal power is by and large that portion of the insolation which 
is absorbed. Part of the asteroid 's emission spectrum can be 
observed through windows in the Earth's atmosphere. With the 
aid of models for the detai ls of energy transfer at the asteroid's 
surface, and accurate visible photometry, reliable estimates can 
be made for some of the important parameters in the models. Of 
particular interest are Bond albedo, size, emissivity, and thermal 
inertia. 

Infrared observations were made through bandpasses centered at 8.5, 

10.5, and 11.6 J.Lm (.!lA. =0.5, 0.5, and 1.0 ~-tm, respectively). The obser-

vations were made from July 21, 1969, to July 27, 1970, using the Hale 

Observatories' l • 52 m telescope at M t. Wi I son. A tota I of 26 objects was 

observed: 1 Ceres, 2 Pallas, 3 Juno, 4 Vesta, 5 Astraea, 6 Hebe, 7 Iris, 

8 Flora, 9 Metis, 15 Eunomia, 16 Psyche, 18 Melpomene, 19 Fortuna, 

20 Massa I ia, 25 Phocaea, 27 Euterpe, 39 Laet it ia, 44 Nysa, 68 Leto, 

80 Sappho, 145 Adeona, 163 Erigone, 192 Nausikaa, 313 Chaldaea, 324 

Bamberga, and 674 Rachele. Most of the program asteroids were observed 

through the 11.6~-tm bandpass, and bright objects were measured at a II three 

wavelengths. The observationa I coverage varies from good for the bright 

objects, which were observed at a number of phase angles, to poor for those 

asteroids observed only once. 
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Phase data for 4 Vesta and 7 Iris are shown in Fig. I and Fig. 2. Each 

point represents the weighted nightly mean. The curve in each of these figures 

is the average using both the 4 Vesta and 7 Iris data. This curve is used to 

correct all the 11.6 IJ.m thermal emission observations to zero phase angle. 

For any given angle, the phase variation is a function of the temperature 

distribution, which in turn is a function of the thermal properties of the aster-

oidal surface, the orbit, the rotational period, and the aspect geometry. The 

regions on each side of opposition where the phase angle is large are the two 

most important critical regions for testing thermal models. Under the proper 

circumstances, additional critical regions can be provided by aspect differ­

ences from one opposition to another. 

The ordinate on the phase plots is calibrated by the assumption that 

a-Bootis has a flux per unit area at the Earth of 4.1, 1.8, and 1.2 X 10-15 

W cm-2 IJ.m-1 for 8.5, 10.5, and 11.6 IJ.m, respectively. The accuracy of 

this calibration is not known. The calibrations currently for use in the 8 to 

141J.m region have a range of about 20 percent. 

A II measurements reported here were made with respect to three new 

stellar photometry systems that were established from observations obtained 

concurrently with the asteroid program and using the some equipment (Matson, 

1971). 

The scatter shown by the 7 Iris data is due to the lightcurve variation 

of that asteroid. In fact, enough data are available to construct a composit 
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lightcurve of the thermal emission at 10.5 J.Lm. Correlation of these data with 

the phose of the visible I ightcurve wi II enob le one to differentiate between a 

spotted asteroid and an irregularly shaped ob ject. This can also be accom­

plished with the infrared data alone by using observations from two bondpasses 

to obtain the color temperature as a function of the rotational phase angle. 

For this method the propagation of observational errors is not as favorable as 

when using the visible and infrared data. 

The error bars on the two phase variation plots represent the propagation 

of a II random and nom ina I errors incurred in transferring the asteroid obser­

vation to a -Bootis. The bounds are intended to delimit the region where the 

probab i I ity of the 11 true value 11 is two-thirds or greater. 

Table I tabulates some simple models that have been used to analyze 

the same 4 Vesta data. The parameters, as it can be seen, vary as the model 

is changed. The common assumption of the models in Table I is that each 

elemental area on the surface radiates like a blackbody. Phase effects, other 

than for the corrections applied to the observational data, have been ignored. 

The albedo parameter has been assumed to be independent of wavelength. 

This parameter is a weighted average over the solar spectrum. The weight is 

the amount of energy absorbed at each wavelength. 

The albedos provided by the models are surprisingly low and the corres­

ponding sizes are large compared to disk measurements. The models and the 
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absolute calibration of the photometry have a systematic error of unknown size 

and it is premature to assume that the albedo anomaly is due to some unexpected 

property of asteroida I surfaces. Currently, detailed thermo I mode Is that take 

rotation and the direction of the pole into account are being examined. The 

simple models (Table I) err chiefly in their treatment of the infrared phase 

integral and are used only for a differential comparison of the data. 

Table I shows that the changes in parameters from model to model are 

small enough that it is safe to draw some conclusions at this time. For this 

purpose, the "rough," nonrotating sphere model is employed because it repre­

sents the Moon better than the other two. Normalization to 4 Vesta enables 

a differential comparison to be made between asteroids. The arbitrary normal­

ization is set at 210 km radius and 0.3 albedo. In this way systematic errors 

from many diverse sources are mitigated, but other errors are introduced. For 

example, error from the visible phase integral q for 4 Vesta is introduced if the 

result is interpreted as the Bond albedo. The ll .6 J..Lm infrared data are 

corrected to zero phase angle and the visible data, B (1 ,0) are taken from 

Gehrels (1970). The resulting model radius and model albedo are plotted in 

Fig. 3. 

The first things to note are the infrared points for 1 Ceres and 2 Po lias. 

Already they are in reasonable agreement with published data. Part of the 

difference is the result of the adopted normalization and the model. 
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The asteroids vary in the albedo parameter from about 0. 03 for 324 

Bamberga to about 0.3 for several objects. 324 Bamberga is extremely dark. 

Presently it is the darkest member of a group of large, dark asteroids. By 

contrast, 4 Vesta appears to be unique -the only known large, light-colored 

asteroid. Objects of comparable albedo are not encountered unti I the 50 to 

90 km radius interval is reached. Type I bias is the discrimination against 

small, dark asteroids. 313 Chaldaea was obtained near the end of the program 

when a small number of objects that were thought to be too faint for detection 

were observed. Considering this bias, it seems likely that there exist small, 

dark asteroids comparable in size and albedo to Phobos. Infrared observations 

of Phobos are extremely important. This control point wi II help to remove 

distortion in the radius and albedo scales due to differences in surface mor­

phology between large and sma II asteroids. 

At the other extreme of the albedo range is type II bias. Here objects 

are unduly favored by observational selection. It is surprising that more of 

them were not discovered. This imp! ies that they are not particularly abund­

ant in the time and space regions sampled. 

At this time 20 Massalia and 39 Laetitia are the asteroids with the 

highest albedo. Their data are dispersed because of their lightcurves. In this 

reduction, their albedo is in the same class as 4 Vesta and perhaps J3, using 

Johnson's (1970) lunar-model values for the Bond albedo. 
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For the large bodies without atmospheres, the trend in the inner part 

of the so Jar system is one of low a I be do. The Moon 1 Mercury, and perhaps 

J4 can be thought of as part of a branch of large, dark objects. The light 

objects appear to be singular with no trend except for the sheer size of the 

Galilean satellites of Jupiter. At a radius of about 100 km the dark asteroids 

continue but they are now joined by objects with higher albedos. 

Considering the errors in the model and in the data, it would be risky 

to draw cone Ius ions about any of the smaller features of Fig. 3. 

Infrared observations also have other applications that are not related 

to the main thrust of this project. For example, they can aid in the study of 

rotating asteroids. Consider a rotating, spherical asteroid with an absolutely 

uniform albedo. Fig. 4 shows how the visible and infrared fluxes will be 

related. Before opposition, warm material is still seen after it crosses the 

evening terminator. After opposition, the morning terminator of the asteroid 

is viewed and cool material on the night side contributes only a small amount 

to the infrared radiation. 
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Figure I. - Phase data for 4 Vesta. The curve through the 11.61Jm data is the 
phase function used for the reduction of the data presented in Figure 3. 
Errors for some of the data are less than the size of the plotted symbol. 
Allen's (1970) data for the same opposition have not yet been reduced 
to the present photometry systems. 

Figure 2. - Phase data for 7 Iris. Some of the scatter is due to the lightcurve. 

Figure 3. - Differential comparison of the model parameters for selected 
asteroids. The error bars are for the infrared photometry only. The 
errors in albedo and radius are correlated and lie along trajectories 
defined by B(1,0) =constant. Errors in B(1,0) and the phase correction 
are not plotted. The lightcurves appear to be responsible for much of 
the scatter of values for the smaller asteroids. The ordinate for the 
data from the literature is the Bond albedo, which is approximately 
equivalent to the normalized model albedo. Data for Icarus are from 
Gehrels et al. (1970) and Veverka and Liller (1969). 

Figure 4. - Infrared flux as a qualitative function of visible flux for a rotating, 
spherical minor planet with uniform albedo and zero obliquity. 
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Fig. 3 

ALBEDO vs RADIUS 
Compared by using a "rough" 
non- rotating sphere. 

o Observations at 11.6J.L; 
B (1,0) from Gehrels (1970) 

o Data from C.W. Allen (1963) \ 
"Johnson (1970) TYPE ll BIAS 

I 

(normalization) 

:>-4 

0 J 1 

oJ2 

L>J4 
oJ4 

MOON 
0 

0 

MERCURY 



I.R. 
FLUX 

EVENING SIDE 

234 

Fig. 4 
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TABLE I. SIMPLE MODELS FOR 4 VESTA 

Method of handling 
temperature, T, Model Model 

Description distribution albedo radius,km 

Flat disk T =constant 0. 13 264 

Smooth, nonrotating 
T ~[(1-a)! cosp]l/4 

0.085 328 

sphere 

~r4 "Rough," nonrotating T = (coscp) 116 
0.098 306 

sphere 

a= Stefan-Boltzmann constant; cp =angle between heliocentric radius 
vector and loco I surface norma I; and S =solar constant at the asteroid. 


