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ABSTRACT

This investigation considers the elastic instability of cantilever
struts under applied axial and transverse forces at the free end. Fige
1 shows the general case of such a strut.

First the strut of uniform depth and without sweep is studied,
This is shown in Fige 2. A derivation is given for the governing dif-
ferential equation and boundary conditions. These are then solved for
the minimum coupled eigenvalues, which correspond to the eritical load
combinations. Fig. 10 is a plot of these calculated critical loadings.

Next an experimental investigatiom, whose main purpose was to pro-
vide a check on the above theoretical calculations, is presented.
Various difficulties are discussed in addition to the techniques finally
adopted. Experimental values are shown to check theory within several
per cent., See Fig., 16, Also Southwell's experimental procedure for
determining instability loading is shown to apply to this case of
coupled loading, W

The theory is then extended to include the problem of the tapered
strut. Equations and boundary conditions are given for the arbitrary
taper case and a solution presented for the limiting strut having come
plete taper. These results are given in Fig. 24.

In the concluding Part some of the more important unsolved pro-
blems are discussed in detail. These include the strut with arbitrary
taper, the swept strut, and the strut which buckles inelastically.

The Appendix derives the differential equation for the'nonftapered

strut by variational procedure.
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PART I
INTRODUCTION

Struts of the general nature indicated in‘Figo 1 are used to
support aerodynamic models in wind tunnel testing. Prediction of the
loading which will cause an instability type failure‘is therefore a
matter of interest to wind tunnel laboratories.

Either of the forces shown in Fig. 1 is capable of causing strut
instability. Acting together these forces couple and, thus united,
may likewise bring on buckling of the strut. It is this coupled action
in producing instability which is of primary interest in this investi=
gation.

In setting out to theoretically examine such a problem it is ad-
~ visable to first study the simplest possible case. For the strut
shown in Fig. 1 this occurs when the geometric complications of taper
and sweep are avoided. Consequently the uniform strut of Fig. 2 repre-
sents the initial problem to be analyzed. In the detailed investiga-
tion of this untapered and unswept strut, the differential equation is
shown to be of the fourth order in the lateral displacement and to have
variable coefficients. Together with the four appropriate boundary
conditions, the mathematical formulation leads to a linear eigenvalue
problem,

A method is suggested for evaluating the minimum critical load
combinations. An infinity of such combinations exist for the first
buckled mode; these are shown to be representable by means of a single

non~dimensional interaction curve. Such a curve is also particularly



convenient for design purposes and hence has been selected as the means
for presenting sclutions to this problem.

Since not all actual support struts will require sweep, but in
most instances will possess taper, the effect of this parameter is next
introduced into the analysis. The resulting increase in complexity of
the governing differential equation is noted and the changes occurring
in the statement of the boundary conditions pointed out. Since the
first solution was for the untapered strut, the other limiting case of
complete taper is therefore solved in detail. Resulits are again pre-
sented in the form of an interactionvcurveo

It should be emphasized that the above solutions are for the pre-
blem of elastic instability only. This is in keepi@g with the vast
majority of instability sclutions and, insofar as the strut is con-
cerned; this restriction is not necessarily a severe one. This is dis-
cussed further in Part II,

The degenerate or special cases of this problem occur when either
Joad component (Pl or P2 in Fig. 2) vanishes. The problem then re-
duces to either Euler's problem of the column, or Prandtl's problem
in the lateral instability of the deep beam. Before discussing these
special cases further, it is useful to first consider some of the con=
siderations involved in the use of the strut for supporting wind tunnel
models., |

It scarcely seems necessary to point out that such a support strut
should exert a minimum influence on the tunnel air flow. To achieve
this requirement of minimum disturbance, the strut should possess a
~ properly proportioned cross-section of minimum area. A symmetrical

cross-section as shown in Fig. 1 would ordinarily be used, and the



disturbing effect on the air flow becomes a minimum as the thickness
ratio (t/h in Fig. 1) decreases,

Another important effect of the low thickness ratio is to raise
the strut critical Mach number., In high speed tests it is important
that the formation of shock waves at the support strut be delayed as
long as possible. Otherwise the aerodynamic behavior of the model
under test will be unduly influenced by the presence of the strut.
Probably the two most powerful means for raising the strut critical Mach
number is by decreasing the section thickness ratioc and by eventﬁally
employing sweepforward. |

As a direct result of these considerations a strut possessing a
deep but thin cross-section (h > » t) appears most favorable, This
is important in itself for several reasons. First iﬁ indicates one of
the méin assumptions to be made in making the theqretical approach to
the problem. Second, this assumption is the same as that made by
Prandtl in investigating the lateral instability of the deep beam, Con-
sequently; Prandtl's problem beccmes a special case of this present
analysis., And finally, the necessity for a minimum cross-section makes
elastic instability the probable case in practice.

FEuler’s work on the elastic column in 1744 represented the first
theoretical solution of a problem in elastic instability. The result
of this analysis was an expression for the critical or buckling load.
This equation, popularly known as Euler's equation for the elastiec
column, is as well known as any in the entire field of structures, Al-
though seldom clearly pointed out in texts on the subject, several
\faets of fundamental significance are implicit in Euler's analysis on

the column. These, therefore, will be discussed further in Part II.



Prandtl considered his problem of the deep beam in a doctoral
dissertation at Nuremberg in 1899. Under the action of load Py only
(see Fig. 2); the beam becomes subject to a torsional type of insta-
bility. Prandtl showed that the behavior of this instability is des-
cribed by a Bessel equation of one=fourth order. The analysis, as
well as the expression for the critical load as given by Prandtl, may
be found on p. 248 of Ref. 1.

Returning now to the general problem being considered here, the
only previous investigation which the author could discover was some
unpublished results by A. Richardsoﬁ of the Southern California Co-
operative Wind Tunnel. The work by Richardson on this problem has been
reported in the form of a CWT Report and is listed under Ref. 6. This
work will be commented on further a little later. However, in order
to check the previous history of the present problem a careful search
of the literature was first carried out. Vhen this failed to reveal
any previous treatment correspondence was entered into with Professors
S. P. Timoshenko and I. S. Sokolnikoff. Neither of these well known
men in the field of elasticity were aware of any previous work on the
problem., Later, when the first portion (Part III) of the analysis'was
complete, the writer had an opportﬁnity to discuss the problem with
Mro‘Paul Kuhn of the NACA. He too was unaware of any earlier treatment.
These inquiriee indicated that no other treatment of the problem had
been reported. Later Dr. E. E. Sechler of Caltech forwarded Richard-
son's caleculations to the present writer.

The work by Richardson differs from the analysis given herein in
~ several significant respects. First Richardson does not obtain his

solution from the differential equation but uses an approximate Rayleigh-



Ritz approach to the problem. Consequently he devotes a good deal of
discussion in Ref. 6 to the proper choice of a deflection function.
However, by applying this procedure Richardson does calculate a criti-
cal loading curve corresponding to that given in Fig., 10 of this
report.

As might have been anticipated the Rayleigh-Ritz solution, which
will generally represent an energy state somewhat larger than the true
minimum.condition, gives critical values slightly greater than those
obtained directly from the differential equation. The maximum devia-
tion between the results of this present analysis as given in Fig., 10
and Richardson's values as given in Fig. 4 of Ref., 6 is about 7%. This
camparison is useful in that it may be of help in dgciding what refine-
ment in the selection of the deflection function is necessary for
possible future applications of the energy method.

In this thesis the arbitrarily tapered strut is also considered
and a detailed solution presented for the limiting case of complete
taper. Also it is shown that although taper does seriously complicate
the proélem no comparable difficulty arises from introducing the gec-
metric parameter of sweep. Richardson does not take up ﬁhe tapered
problem nor the swept strut in his analysis.

It should be pointed out that in this investigation critical loads
are calculated only for compressive Py o Since in an actual wind
tunnel test P, may also be tensile, this part of the interaction

curve should probably also be calculated in detail, Sections 2 and 3

of Part VI discuss this problem in detail. It is shown that the same
~ expressions and methods as previously used for the case of compressive

Py , may likewise be used to compute eritical values when P, is



tensile. Hence this éspeaﬁ of the problem is reduced to one of numer-
ical calculation, Fige 25 indicates how the complete interaction curve
would appear., For the uniform strut Richardson does give this addi-
tional portion of the interaction curve. (See Figo 4 of Ref. 6.)

For the case in which P, is tensile it is clear that the resul-
tant force at which instability occurs must be considerably greater
than for the case in which Py is compressive. A tensile P, tends
to stabilize the strut and hence delays the occurrence of buckling.
These conclusions are also demonstrated by the shape of the complete
interaction curve as drawn in Fig. 25«

Actually, in any aerodynamic test, it is reasonable to suppose
that the maximum and negative model 1ifts plus the corresponding drags
will be at least approximately known. With this information available
it is possible to decide whether the compressive or tensile Py branch
of the interaction curve is apt to be critical for the design of the
strut. On this basis a suitable strut may be selected which will be
safe for botﬁ positive and negative model lifts; i.e., Pp compres=
sive or tensile,

There is still one more consideration involved in the application
of such struts to wind tunnel testing which deserves mention. Due to
slight imperfections in alignment, initial straightness, etc., of the
strut, and due to model side forces, it is realistic to suppose that
the strut itself will behave as an airfoil. Consequently 1ift and
drag forces will develop on the strut, which must then support these
in addition to the forces Py and P, already discussed. An aero-

~ elastic problem therefore arises which is much broader in scope than

the elastic instability problem as initially posed. Although no



analysis is attempted on the aercelastic problem it is given some dis-

cussion in Part I,



PART II
SOME REMARKS ON STRUCTURAL INSTABILITY

This section of the thesis will present some of the underlying
ideas concerning instability behavior and the calculation of critical
loads. These remarks will attempt to point out the essential differ-
eﬁces between the various problems which may arise., Although none
mathematical in content, the ideas developed will have direct bearing
on the theoretiecal procedures which follow.

Instability problems are conveniently separated into several
classes. First, the broad categories of elastic and inelastic cases
may be established. Euler or long columns belong to the former, while
| short columns are an example of the latter. Elastic instability assumes
that the critical loading is reached without violatinglﬂookefs Law at
any point in the member. On the other hand, this restriction does not
apply to structures which Suckle inelastically.

The elastie instability problem may be discussed by using con-
’stant values for E and Ge Furthermore, the critical loading may be
calculated from a linear differential equation. This is rather remark-
able in view of the faet that instability is intrinsically a non=linear
phenomenon. The inelastic problem, on the other hand, is at once mathe-
matically non-linear since constant E and G no longer exist. When
the material in the structure beeccmes inelastic E and G become func-
tions of the strain which, in turn, varies with the applied locading.

It is also possible to have a mathematically nor=linear, elastic,

~instaability problem., A long column, for example, may be so slender



that it will suffer large bending deflections before becoming unstable.
The differential equation of bending must then contain the exact,
rather than approximate curvature expression. This at once results in
a non=-linear equation and the integration, in the case of the column,
leads to an elliptic integrel. It should be observed, however, that
ihe nor=linearity for this case arises from geometric considerations;
for the inelastic case it arises from the significant change which
takes place in the column material.

It is not inconceivable that the inelastic column might also
suffer deflections which would necessitate the use of the non-linear
curvature expression. As a matter of fact, this would probably be the
more likely condition in an actual engineering structure. The mathe-
matical difficulties arising from such a situation can hardly be over=
stated. Present knowledge of the elasticeplastic behavior of materials,
or of treating non-linear differential equations, is generally inade-
quate to cope with problems of this degree of difficulty.

As a result the vast majority of theoretical anelyses have been
restricted to those problems which are governed by linear differential
equations. The basic assumptions are that Hooke's Law remains valid
up to the critical loading and that approximate, linear, curvature
expressions may be used. The latter implies small deflections.

Since the wind tunnel strut must be slender for reasons already
stated, elastic instability becomes the more likely case in practice.
Hence from the designer's point of view, the restrictive assumption

that buckling be elastic is not necessarily a severe one,

Euler investigated the elastic column by using the linear differ-

ential equation of bending. By sc doing he was able to calculate the



10

- eritical load and show that the deflection curve is a sine wave. How=
ever, he was unable to calculate the amplitude of the sine wave and
thus his linearized treatment was incespable of yielding a complete
solution to the problem.

Several important questions may now be raised concerning analyses
of this type. First, is it necessary that the column deflect before
buckling? Such deflection is usuvally assumed when deriving the con=
ventional second order, linear, differential equation from which the
eritical Euler load is ordinarily calculated. Also experimental evi-
dence indicetes that practical columns invariably bend tc a lesser or
grester degree prior to buckling., Fig. 108, p. 174 of Ref., 1, indi-
cates the results of various experimental attempts to bring a column
to the buckling load without previous bending deflection. The various
imperfections in experimental procedure, which makes some bending
deflection unavoidable even under the best of laboratory ccnditions,
are discussed on pe 173 of this same reference.

The work of Durup ané Weisenberg as reported in Ref. 8 is imm
structive in further illustrating the instability behavior of actual
structures. These investigators tested tapered struts similar to those
being examined here but with only transverse load Pl acting. The
interesting and useful feature of their work was that the eccentricity
of the load Py could be mechanically controlled. If desired, the
direction of P; could be continuously adjusted during a given test in
such a manner that no strut deflections occurred prior to collapse.
(This would be extremely difficult to achieve in a column test but is
not at all impossible when dealing with the cantilevered strut under

 transverse load.)} In addition to tests in which no deflection prior
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to collapse was permitted, numerous experiments were conducted in which
prescribed eccentricity of loading was established. The results of
many tests of this type showed that the critical load was independent
of the eccentricity and therefore independent of deflections prior to
buckling. Elastic behavior was maintained throughout these tests by
Durup and Weisenberg.

The evidence of these tests, and for columns as previously indi-
caﬁedg probably reveals'why the critical load may be calculated from
a2 linear differential equation. The linear equation is wvalid for
those tests where experimental conditions are such that very little
deflection occurs prior to buckling. Therefore the instability loading
can be calculated from the linear equation for these cases., However,
as experimentally observed, the critical loading reﬁains independent
of any deflections occurring up to buckling. Consequently a critical
load calculation from the linear equations is valid no matter what the
condition prior to elastig buckling may be. The theoretical analysis
by Lagrange on the non=linear column problem verifies this conclusions
(Lagrange's work is discussed in more detail later on.)

The question now arises as to what takes place within a structure,
such as a column, when the critical loading is reached. Apparently a
decisive change occurs for the equilibrium state undergoes a transition
from a stable to an unstable condition.

To investigate this it is convenient to examine the energy state
in a column by applying the principle of virtual work. (This prin-
ciple is clearly stated in Ref, L4 on po 125, Application to a column
is given on p. 77 of Ref. l.) This principle is well known in elasti-

city and therefore need not be elaborated on here. If a structure is
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in equilibrium any small virtual displacement from this eguilibrium
position® will result in a change § (U = W) of the total potential
energy of the system. Here U 1is the strain energy and W the ex-
ternal work due to applied forces. Then the principle of virtual work
may be shown (as in Ref, 1) to lead to the following basic statements

concerning the critical condition: namely, if

SwW=-wy>0 , P« Porit,

SW-W=0, P=P_,.

SW-WLO , P>P,

where P = applied load.

Hence a criterion for determining the critical staté exists and is
given by §S(U=-W) =0,

Application of this method to the column leads directly to a
linear, differential equapiono** Out of this equation one may calcu=
late the usual Euler load. (Ii‘is interesting to note that the varia-
tional method as outlined above leads to a fourth order differential
equation for the column, rather than to the customary second order
equation. In fact, the fourth order equation is easily shown to be the
second order equation differentiated twice. The significance of this
has recently been pointed out by H., Lurie in a PhD Thesis at the Cali-

fornia Institute of Technology.)

* Such a virtual displacement to be compatible with the struc-
tural material and consistent with the constraints on the structure.

**  Linear since linear terms are assumed in writing the strain
energy U
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Any other structural member subject to instability failure may be
similarly discussed. The important point is that the elastic inste-
bility condition may be calculated without regard for deflections prior
to buckling. Hence Euler's critical column load has practical signifi-
cance and both theory and experiment bear this out. The non=linearity
in the differential equation arising from the large deflection curva-
ture expression will throw further light on this.

Some years after Euler's original work on the column, the problem
~ was again taken up and this time by the French mathematician, Lagrange.
Lagrange assumed elastic behavior but did not restrict himself to the
linear expression for curvature. By using the precise differential
equation of bending, he was able to demonstrate two important facts:
(1} that the non-linear equation yielded the same véiue for the eri-
tical load as obtained by Euler; (2) that the amplitude factor on the
sinusoidal deflection curve could now be calculated from the non-linear
treatment.,

These results did not come without effort, Lagrange, in solving
the non-linear bending equation, was forced to evaluate an elliptie
integral of the first kind., Such integrals were manageable in La-
grange's day, whereas they were only imperfectly understood during
Buler's time, (The great contributions of Abel, Jacobi, and Legendre
on elliptic integrals still lay in the future when Euler did his work
on the column,)

Some basic conclusions may be drawn from these analytical inves=
tigations by Euler and‘Lagrange. First, as already seen, it is suffi-
cient to consider the linearﬁequation when calculating the eritical

loading. If deflection magnitudes are required one must resort to the
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non=linear formulation of the problem. Furthermore, by eliminating
the non=linear aspects of the problem, certain physical quantities are
no longer fully describeds i.@.,‘they are not‘calculable from the
linearized statement of the problem. (This is also true of non-linear
problems in fields other than elasticity and indicates that one may
possibly lose the very quantity of interest when a linearized version
is investigated.,) Nevertheless, although only incomplete results may
come from the linear equation, as in the case of the column, these may
be of the greatest practical significance.

Fortunately the designer and engineer is much more concerned with
critical loads than with deflection magnitudes. Hence, there is seldom
any practical need for considering the precise equation. If a non-
linear treatment were to be undertaken, it would be;bf much greater
practical value to consider the case of inelastic buckling than to
investigate the large deflection problem. As already noted instability
is primarily a function of the nature and geometry of the unstrained
structure and its material. Thus the instability load for a column is
not changed if the column simultaneously acts as a beam. Deflections
may be neglected and as a result are of little interest to the designer.
Furthermore the imperfections which would determine deflections are so
complex as to escape actual detection and measurement.

The calculation of the instability loading from a linearized
differential equation is the cornerstone on which the present analysis
rests,

A fundamental problem, different from those discussed above,
occurs when the model support strut is placed in the wind tunnel air

stream, Fig. 3 shows the two possible cases., In 3~a it is assumed
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that the strut assumes a zero angle of attack to the wind throughout
the duration of the model test. In 3-~b it is assumed that such perfect:
alignment is impossible and that an angle of attack will actually
exist. The strut then acts as a wing and generates 1lift and drag
forces as shown in 3=b.

The generally unstable nature of the strut air forces are also
shown in Fig. 3=b. The strut 1ift and drag tend to increase the strut
angle of attack. This in turn increases the magnitude of the strut
1ift and drag, assuming a constant wind velocity. This action con-
tinues until the strut achieves equilibrium between aerodynamic and
elastic forces, or until strut failure occurs.

Failure of this type is commonly termed torsional divergence. It
will occur when the dynamic pressure, q , reaches a certain critical
vélue at which the elastic resisting forces in the strut become over-
powered,

Torsional divergence although not a serious problem for the strut
with‘sweepback is extremely serious for the swept=forward strut. In
this latter instance the strut will experience an increase in angle of
attack toward the free end (wash=in toward the tip) due to bending
deflections. The resulting build-up in air forces will quickly bring
on torsional divergence.

The inherent difficulties in analyzing such a problem are great
indeed, First, one must be able to calculate the strut deflections
under any of the possible loadings. Second, the aerodynamic forces on
the strut, due to any angle of attack distribution, must be calculable,
Finally, these two problems must be properly combined so that the re-

sulting equilibrium state, for any given initial conditions of strut
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attitude and tunnel flow, may be determined.

Such calculations have been carried out with some success on aire
plane wings. These, however, have not been subject to the forces Py
and P, which occur here. As a result of the effect of these forces,
the strut aeroelastic problem is considerably more difficult than that
of the wing, It is not the purpose of this present investigation to
examine the aeroelastic problem. From the designer's viewpoint, how-
ever, the p@ésibility of torsional divergence should be kept in mind,

Such divergence is likewise an instability phenomenon,



PART III

BASIC PROBLEM = STRUT OF UNIFORM DEPTH

1. Derivation of Differential Eguation

Two views of the strut with zero taper are shown in Fig. 4. The
basic dimensions and loads are given in Fig. 4a, while the4defle@ted
shape, in which both sidesway and twist are present, is shown in Fig,
4b., Bending deflections parallel to Py are assumed to be of second
Orderlimpertance and are made negligible in the analysis by requiring
that h>> t .

There are two ways in which to derive the differential equation
for such a system., The first is to eonsider the deflected beam and
to write equilibrium equations for any arbitrary station along its
length, The second method is to minimize the potential energy of the
system by an application of the indirect method of the calculus of
variations. Since the former method gives a better picture of the
physical problem it will be employed here. The second method is taken
up in the Appendix. Both methods, although quite different in their
approach to the problem, yield the same basic equation.

Assume a deflected shape as shown in Fig. 5. The origin of the
coordinate system is most conveniently taken at the centroid of the
free end, The angle of twist is measured from the fixed vertical di-
rection (parallel to OZ ) at the wall as shown in Fig. 5¢. Axes OY'
and OZ! are principal axes of the cross=section. The beam bends in the
Xy plane as shown in Fig. 5b. This bending is represented by the cur-

vature of y = y(x) in Fig. 5b. Similarly the twist is given by
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© = 8(x) and this occurs simultaneocusly with the aforementioned
bending.

Since the beam is assumed to remain elastic, © and y are
everywhere small, as are their derivatives with respect to x . Hence
only first order terms will be retained. This will result in a linear
theory which, however, is capable of yielding the desired critical
loads.

To obtain the differential eguation it is necessary to consider
the bending and twisting effects of Py and P, about some arbitrary
section as A in Fig. 5b.

la). Twisting Effect of Py, It is seen from Fige 5b that the

twisting moment.of Py about A will be P; times the distance be-
tween the force P; and a tangent to y = y(x) at A . This can be
more clearly seen from Fig. 6, which is an enlargement of Fig. 5b.

Line OC is drawn perpendicular to tangent AD . From the sketch
(Mt)l = Pl (oc)

where (M), is the twisting moment due to Py
1 1

But,
B=y , AB=x
dy
B = x tan O(Agx(W)A
= X f%%ﬂ (since point A is arbitrary)
therefore,

oD

[
S
8
e
[55]
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However, it is also seen from the sketch that,
OC = OD cos o 4= 0D (cos o 4 =1 since o s is small)
Or,
(), = Py (v = x5 | (1)

From torsion theory it is known that © and (M£)l are related by,

(M), dx
d8 = = ————me
GJ
where, G = modulus of rigidity in torsion = 5{&#%%75»

J = torsional rigidity factor (for rectangle
g,,%,,. ht® when h >> t)

(=) sign indicetes that © decreases as x increases

GJ = torsional stiffness factor = C.

Substituting frem (1),

de Py d \ Py dy
— e, = = x = 2
= == (x ““de y) : ( = y) (2)

1b), Twisting Effect of P,. It is assumed that P, and P,

remain parallel to their initial pointings as the strut deflects.
Therefore P, will continue to be directed along OX . Since no sag
takes place, P, cannot cause twist about arbitrsry section A ,

Hence, (Mt}g =0,
lc}. Bending Effect of Py, The moment due to P, at station

A is simply Py x . It is convenient to represent this vectorially
as in Fig. 7. The component causing lateral bending is then seen

to be,
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Mi = Plx sin €

= P1x 6y (for 9, small, sin @, = 9,)

(3)

= Pyx @ (again A is any station on the strut)

1d). Bending Effect of Pse The force P, does contribute to

the lateral bending (deflections along OY ). The magnitude of the
moment is simply sz acting as shown in Fige. &,

The component of interest is

Mz = P,y cos @A = Py (&)

The sense of Py is the same as that of Pjx © o

Complete Bending Expression. Since the linear differential equa-

tion of bending is

where EI = flexural stiffness factor = B ,

substituting from (3) and (4) gives,

dzy dzy
El =~ = B — = = (P 6x + Poy) (5)
dx’ dx

where I=1, = ht3/12 for rectangle.

le)s Combined Bending snd Torsion. Equation (2) contains the

torsional effect and Equation (5) the bending action for the strut. It
is seen at once that they contain both © and y as dependent vari-

ables, Either one of these may be eliminated. Prandtl eliminates y

and obtains an equation in © and x for the case when PQ =0, If

y is eliminated between (2) and (5) a second order equation in @

de

‘results where q9 = =§§- o This equation proves tc be actually less
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convenient to deal with than the fourth order equation in y and x .
Hence © will be eliminated between (2) and (5). Differentiating
(2) once gives,
2
‘ d@gpl(x dz;v)
ax? c dax?

and successive differentiations of (5) gives,

3

d'y de dy
BmsﬂPl@“Pleé;@stg;“

dl*ymwzp ® _ . dz@.sp &%y

dxct 17ax 1" g2 2 e

Substituting from (2) and the first twc of the above expressions into

the last and simplifying gives,

2
A P P 2
d’y ( 1 - 2 ) dy
s "BC B dx2
2 2 (6)
P. P
+ 2 1 x dy_ . 2 3 y=0
BC dx BC

This will be consider;d as the basic differential equation for the
beam of zero taper. Putting Pl equal tc zero immediately yields the
simple linear column bending egquation=—although here it appears differ-
entiated twice., Likewise if Pz is put equal tc zero and the dependent
variable changed to © , the result is the equivalent Bessel equation as
discussed by Prandtl.

A review of the literature has failed to reveal a previous treat-
mént of an equation similar to (6). The collection of differential
equations by Kamke (Refo. 3) does not include the type given in (6)
above, It is an interesting differential equation since its degenerate

forms are essentially the simple harmonic motion equation and the Bessel
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“equation of one-fourth order,

2. Formulation of the Boundary Conditions

The solution to be determined y = y(x) must satisfy four boun-
dary conditions in addition to equation (6). In seeking these condi=
tions it is useful to first write all the reasonable constraints on the

strut. These are,

(@)

(no deflection at the free end
where the origin is located)

(1) y=0 at x-=

2 }
(i) d g 0 at x=0 (no bending moment at the free

[}

dx end)
(i11) P o at x=0 (no twisting moment at the free
dx end) ‘
(iv) 8=0 at x=J (no twist at the fixed end)
(v) u%zm =0 at x=) (zero slope at the fixed end)
X

These conditions are one too many and hence cannot all be indepen-
dent. The indeterminancy can be resolved by writing the previous equa-

tion (2) as,

de Py dy
X=0 x=0
or,
ae

(at free end) = O

Hence (iii) is actually a restatement of (i) and may be droppeds
As given above the boundary conditions are not in their most useful
form. It will prove expedient later on to have (iv) and (v) rewritten.

This is done below,



23

2a). Restatement of (iv). From equation (5),

2 p P

dx2 B B

and this gives,

dzy + Fay - mpl ox
d}(z B B
X =0 x=4
Now let,
y=y, =y, at x=f (7
The above then becomes,
2
dy Py ) .
+ y =0 by (iv) .
( dx? B
-y
Therefore,
2 P
4y -2 5 at x =4 (8)
dx® B °

Equation (8) is now a restatement of (iv).

2b). Restatement of (v). Differentiating equation (5) once has

already been seen to give,

3

d’y de dy
e = w PO % P e © P, el

ax3 1 1™ dx 2 dx

from which,

3
d P a P

J + 1 (@'ﬂ'x @) g-se-—g;m_.gzw
d.XB B dx ° B dx

Xg,e Xs,e
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Now from equation (2),

do S NS S
I : (x O Ji
x=p x=0
P Py v
-1 (Qo-y3)==21L"0
c
Hence,
3 .
ey v Plos p-BY9] -0
dx’ B C
Or,
3 2
dy P
= at x =
ax> BC 0 £

at x = 4?

(9)

and equation (9) is now a restatement of boundary condition (v).

3, Dimensionless Form of Differential Eguabion and Boundary Conditions

Before seeking a solution to the mathematical problem~-as repre-

sented by equation (6) and boundary conditions (i), (ii), (8), and (9)--

it is advantageous to put these into non-dimensional form.

This may be

accomplished quite readily by introducing the dimensionless variables,

x=x/p , y=yb , T, =%/

where Yo = Ymax, =7 at x=40 .

(10)

Calculation of the various derivatives proceeds as follows:

B commmcmmemeoms 55 e orswsmmms
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Also,
dy dy d&x 1 dy
dx dx dx @ dx
or,
d _ 1 d
dx — p d%
hence,
dy _ d (97) - 1 d (h d§‘}gh
a 9% ax 7 & 2 & 22 &
Likewise,
Py | a (Pyy 1L _d (b ¢’y b
o w ad £ & 22 & g3
dy _ n dF
o &

Substituting into the differential equation (6) and the appropriate boun-

dary conditions gives,
2 -
Py _e 2

&y e 2, &5

2 4
P. -~ dv
+ 2 l’e (x Y

& BC | B &2

]
o
&
wl
]
o

¥

2 -
d¥y =0 at x=0
d‘SZZ

2

dz?“‘"Pz‘e 90 at ;gl
a2 B

3 2 L
ay .l ¥, &t x=1

BC

dx

-y)=0



26

From the above dimensionless forms it is seen at once that the

significant parameters of the problem are,

2 b 2 4
S A )
EIGJ BC
2 2
P P
20 2l
= =k, (12)
EI B

With this simplification the final dimensionless form of the boundary
conditions and differential equation becomes,

a5 2 2 4%

- 4 -
u5§ﬂa + (kg x + kp) =2 + 2k12 (x=—=—-=-y)=0 (13)

=}

&

¥y=0 at x=0

2-;

d -
..mz,.g@ at, Xgo

d§2

(14)

2= -

Y ek 7 8 x=1

) 270

a3y 2 = -
?%kl y@ at Xe= 1

This is now the system which must be examined for the buckling charac-

teristics of the strut.

Lo Hemarks Concerning the Mathematical Problem

Equations (13) and (14) represent the most convenient form of the
mathematical problem describing the physical behavior of the strut. In-
spection reveals that the equation and boundary conditions are linear-=

‘as they should be since only linear bending and twisting effects were
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assumed. Actually (13) and (14) constitute a linear eigenvalue problem,

An obvious solution is 5(%}35 0 o This would represent the zerotl
or unbuckled mode and in this analysis will be referred to as the tri=
vial solution. The mathematical problem, in looking for a nom=trivial
solution, will be to determine the minimum eigenvalues which will
satisfy (13) and (14).

From the physical nature of buckling it is clear that an infinite
set of buckled modes is possible, For the simple column this consists
of néluoped sine waves where n takes on all integrsl values from one
to infinity. FEach buckled mode corresponds to a given critical value
of the loading. The loads increase in megnitude as the number of waves
in the buckled structure increases. Hence the critical modes are
infinite in number and each is associated with a definite loading. The
various critical loads are distinct in value since the various buckled
shapes require distinctly different energy levels,

For each buckled mode the mathematical problem contains an eigen~
value--in this problem a set of values for klz and kz which will
satisfy the differential equation (13) and the boundary conditions (1k)
simultaneously. Thus an infinite set of eigenvalues must exist in
order that the physical problem be completely described. Only the mini=
~mumh set is of practical interest, since these will represent the eri-
tical combinations of P; and P, which will cause buckling of the
strut. The higher buckled modes can be readily calculated if these
should be of interest. This will be pointed out in some detail later
on, although soclutions will only be carried out for the minimum values,

It has already been pointed out that equation (13) has as degenerate

forms the simple harmonic motion equation and an equivalent form of
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| Bessel's equation. These are both treatable by a power series type
solution. As a matter of fact such a procedure is necessary in inves-
tigating Bessel's equation. Hence a solution of (13) in closed form

is probably impossible of attaimment. Furthermore a power series devel-
opment can be made to lend itself readily to a calculation of the eigen=

values. For these reasons a power series solution will be used here.

5s Recursion Formula from Power Series

Expand ;(;E) in an infinite series as follows:

=S e

y(x) = asx3a9+a1x4a2§2{»°°° (15)

I\/l%

e}

@
[}

Derivatives may be written at once as,

[=2-)

¥ - = =5=1
3y? (x}gz assxsa (16)
dx S=0
d2§; - = - =52
—5 =7 (X =7Z ag 8(s = 1) x (17
dx 8=0
3- _ = —5=3
d_}; T =) g s(e-1)(s-2) % (18)
dx $=0
LR | s —8=l
T =3 (%) = Z ag 8(s=1)(e=2)(e=3) X (19)
dax §=0

Substituting into equatiom (13) gives,

[<=]
Z. [.as s(s=1)(s=2)(s=3) %S@Za’ + ag s(s=1) ko is«»&.

5=0 ,
. asi s(s=1) kg2 + 28 ky° = 2k12} 5?] -0

This equation must hold for all X . This is only possible if the

coefficient of each power of X vanishes identically. To insure that
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this condition be fulfilled, select any power of X and equate its

coefficient to zerc., Such a general teym will be given, for example,

—s=k . . =S . =5=2
by =x o Gollecting all terms in x (and remembering that x

@ -

leads ESW& by two terms in the expansion process, ete.),
[as s(s-1)(52)(s-3) + a5y (5-2)(s-3) Kk,
2 2 2
+ Bga, {(S"Za)(s*E) ky o+ 2(s=4) k" = 2k } x =0
In the above the bracketed term must vanish since in general x £0 .
Hence the following recursion formula is obtained:
- [ g2 ?
a_ s(s=1)(s=2)(s=3) + a_ o (s=2)(s=3) k,

| (20)
. as-z@{(s'“(s”” k2 + 2 (omb) ky° = 2 kf} =0

The usefulness of the recursion formula lies in the fact that by

means of it all the coefficients in the expansion (15) may be calculated.

6. Calculating the Power Series Coefficients

It should be kept in mind from (15) that the power series is only
- defined for values of s 2 () o Now since (20) is general, and must
therefore hold for all values of s , it becomes useful to substitute
actual values of s into (20) and observe the results. Or,

s =0 ay(0) + undefined terms = 0 3 hence aj # O

s =1 a3(0) + undefined terms = 0 ; hence a; # 0

s =2 aZ(O) + ao(o)'+ undefined terms = O ; hence a, £0

s=3 a3(0) + 2,(0) + undefined terms = O ; hence a3 £0
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s=4 1°2°3°h 2y + 1°2 kyay + ag{o +0=2 kl‘?} -0

2
k, a_ = k,.a
or, a, = 1 "o 22
3ol
s = 2°3°4°5 ag + 2°3 k283 * al(o) =0
=kna
or, 35 = 2 3
Le5

s=6 3456 a5+ 3°h kogy + 4 klz a, =0

2 2 2

3eho5e6

or, ag ==

s =7 &‘5°6°7 a?’ + beb k285 + a3{3~2 klz 4+ 203 k12 - 2 klz} = 0
2 2
or ap = k2 -0 kl a
s 8n = 3
Le56°7

s = 8 5°6°78 ag + 58 koag + ah{le k12 + 24 klz - 2 kl%} =0

(k1%ky? = 18k1*)ag + (22k3%k, = kyP)ay
3'&"596'7‘8

Or; as =

This procedure can be carried out for any number of terms. In
this particular problem it is necessary tc consider a relatively large
number of terms in order that all quantities of a given type be com=
bletely collected (as all terms in klzkz s k12k22 .« + o ebce, ebce).
Furthermore it can be seen from the above calculations that all even
coefficients (as 8, 5 8, 0 etc,) depend only on a, and a, .

Using equations (15) and (17) the first two boundary conditions of (14)

become,
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2 3 A

a +a“+a§ + 88X + &, X % o o o
e R 3 A

<
U

0 at x=0 if a,=0 (21)

]

- -2
2 ap + 6 asx + 12 ax + o oo

|
(]

[}

0 at x=0 if ay=0 (22)

Hence, since a, = a; = 0 , all even coefficients in (15) must vanish,
This, then, makes it necessary to continue the calculations for odd

coefficients only. All the odd terms up to ajg are listed below,

al;éo

kpd = 38 kply” (23)

kot = 92 ky%Ky2 4 540 Kyt .
111/31

5. 3 2 L
_ k2 180 k2 kl + 3884 kzkl
a, == ag

13 133/3}

a1 = 3

6 2
k,” = 310 kzhklz + 15844 k, kl‘* - 70200 klé

a. = s a
15 154/31 ?

(Equation (23) is continued on p. 32.)
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k7 = 490 kK ® + 4820k kP, b = 769,320 kegkey &

a = = a
17 3
174/31
g - ko8 - 728K, 0k, 2 +122,026k,460 4= 4, 5A0§192k22kf+ 16,707,600k, .
194/31 >

For the accuracy maintained in the solution which follows only

coefficients up through a5 need be determined.,

7. Remaining Two Boundary Conditions

On substituting the cocefficients (up through a9 ) intc the ex-

pansion (15) there results

3 ko _5 k22 - 1ok12 _7
x

F=a.x+a,| x = X +
1 3{ 51/31 71/31

3 2 k 2, 2 b
k" = 38K T 9 kY - 92k, kT + 5M0KT 11

931 111/3¢

=

(24)
5 - yank 3
k2 180k2 kl

134/31

2, 388141{2}{11* 13
X
6 _ Ly, 2 . 2 b 6 &
K = 310k " + 15,84kk)%ky " = 70,200k, ° -
154/3%

Using this last expression the two remaining boundary conditions of

equation (14) may be imposed, Since the conditions are,

y ==kyy, at x=1
(25)
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it becomes necessary to calculate the second and third derivatives of

equation (24). These mey be written as,

X 4+

33 53 7%

o = kp 3 kol e 10ki? P ko3 = 38kokq 2 7

I3 2, 2 ‘l& 5. 3 2 L5
gt = sagi? o 9 k- 160k 2 3suicly 1

9! 11!

. 2 x

131

6 L o2 2 b 6 13
ky = 310k, "+ 15,8l Ky ¥ = 70,2000 A3 ]

and

A
S
]

L 2 2 L 5 3 2 4
k, = 92k, ky " + 540k, E8 _ kp” = 180k, Ky ” + 3880y 3}10
81 10

121

. ko® - 310}{2%12 +15,844ko7k) ¥ = 70320%16 :';12 . J

Regquiring that the boundary conditions of (25) hold then gives,

2 2 3 2
L _ kK, k.2-10k2 k.- 38k.k
[1~ 2,2 L. 2 21’+°*eth

7 == kyyg = 633 3 + =7 =
2 2 3 2
e ko k.= 10k k"= 38k k
= 2 2.2 1 .72 2°1 . s ete.
¥ o=ky yoaéa?“l 22-&- i 7 + o0

These can now be combined into a single expression. Multiply the first

1“ and the second by kz and add the results. Recalling from equa~

tion (23) that aq £ 0 this leads to the following expression:

by k



2_ 10 & 540 70,200 ., 8 .,
kl T ky '+ 31 31 k" 4
2 3 L 5 6 7
'y k% Lk Kyt kY kS kI

21 L3 6! 8f 1ol 121

[}

Gr+ 3 0+ G+ ) 1% - G+ ) 1y

1 130 5
4 (9@ lO') kl kz = (11' %2?",‘) kl 2 + e o e & o

38 & 9 388& h

180 . 15.844 L 3
+ (11@ 5%_22;&) kl kz + o o o o o

388L 70,200y 4 6 .
-GS ket e e o020 (26}

The values of kl2 and k2 which satisfy (26) will now satisfy both
the differential equation (13) and the four boundary conditions of equa=
tions (14). At the same time thé deflection function y(x) =0 , since
8, £ 0 ., Hence solutioné to (26) will represent the eigenvalues of the
mathematical problem and the buckling load combinations for the physical
probleii,

Inspection of (26) immediately reveals that klz and k, are
coupled, Calculating the critical values will therefore be considerzbly
more complicated than for the usual instability problem where such
coupling is not present. Before attempting the general problem, the two
important degenerate cases will be discussed. Thus the solutions to

Fuler’s column problem and Prandtl's beam problem must be contained in

(26) as special cases.
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8. Degenerate Cases of the Generazl Problem

Case A (The Euler Column)

When P, = O the original strut problem reduces to that of a

1

column and the axial load is Py s Since by equation (11} when Pl =0,

2
k, = 0 also; it is clear that (26) reduces to,

1

2 3 A
k k k
kg’“ 2 + 2 e 2 ‘Q‘oa@eego
21 bl 61

Since P, £ 0 , it follows from (12) that k, # 0 . Hence the above

may be written as,

1& &+ - '4“9@000%0 (27)

Values of k2 which satisfy this equation are eigenvalues. They also
are critical load values for the physical problem. Since the above is

the cosine expansion for 1 k2 one can write,

cos \[Q; = 0

or

%
Joo - n—

which gives, on using (12),

2 2
(k ) - (Pz)critwe - n2 Tl‘
2 C.n.'”its , EI Lﬁ‘
or,
2 i£2 2
: n 9 EI EI
(PZ) = = k] for n=1
cr‘it“ h‘ez L[z

‘and this is precisely the Euler value for the cantilever column of



length £ . (Ref. 1, p. 66, equae 59)
Case B (The Prandil Problem)
Prandtl’s well known problem is obtained by putting ky = 0 in

equation (26)., This leaves,

2 10,4 540, 6 _ 70,200, 8
kl ”ﬁkl +-a-§u§-mk1” 3132 kl ‘9’9@@930

Since ky £ 0 Dbecause Pl # 0 , it is possible to reduce the above

expression to,

0.2 540, % 70,200, 6
la‘g‘zkl '!"Wkl“'mﬁrkl +»aoe30

This latter expression may be further simplified to read,

4 =
3ok 3ehyoTe8  3ehioToBellol2

+ o 0o 0 = 0 (28}

There is no need to calculate the minimum value of kl for this
equation. On pe 247 of Ref. 1, equation (g), this same expression
appears as the solution to Prandtl's problem. Hence the minimum root

is as given in this same reference and is,

2
(kl) = (4.013)
) erib.
or, 5 )
(Py) J 2
erit.
= gOl
— (4+013)

which comes on substitubing from equation (11). This last result agrees

with equation (146}, p. 248 of Ref. 1,
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9, Numerical Evaluation of Minimum Eigenvalues

There is need for a practical method for determining the minimum
root of an infinite expression such as equation (28). Such calculations
are not given in the texts on elasticity; in fact, the writer has never
seen any reference as to how the eritical value of such equations is
actually caleulated., Hence a suggestion, which works very well, will
be made here concerning such ealculations,

The proposed method hinges on two facts: one, that the roots of
(28) represent the critical loads for the various buckled modes, all of
which differ by appreciable finite amounts; second, that by a change of
varisble the maximum root (corresponding to the minimum or eritical root
by the change of variable) may be easily caleculated using Graeffe's
root squaring method. (See Refo. 2, p. 194, for an account of this
method. )

Thus to epply Graeffe's method for finding the maximum root let,
so that,

(kl) . corresponds to (zl)
min, + max.

- Substituting (29) into (28),

1 1., 1 1 1 1
3ok 292 3:4o708 zqh  3:4:7-8°11:12 56

(30)

-ﬁ-ooegO

Using only the first three terms of (30),

2
Z
S A !

A A v - Sl
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which now may be used to write,

2 : 2
f(zlz) - (212) I S
3oy 3478

2 .
f@$212) = (212) P S . 1l
‘ 3l 3e4-7.8

2)2

2yb _ (21 1

£(242) = £{~292) = (2 +
t . ! 252 (3-5-7.8)2

Graeffe's method then states that maximum 212 is given by,

CONE ./1/252 = 1/15.9

i

But,

(klz) S 1549 (first approximation)
min.  (g.2)
1 ’max.

And from (11},

2y "
(%) = F10erss £

. = 1509
min, EIGJ

or,

3:99 | v100
erit, 2
¥/

[

(Py)

' This result agrees with the previously stated correct result within 1%,
The great utility and ease of Graeffe's method for calculations of this
type will be taken advantage of in attacking the coupled problem.

From these results it is now clear that the general expression
equation (26) contains the problems of Euler and Prandtl as special

Ta8E8,.



39

10, Procedurs for the Coupled Problem

When both klz and k, are different from zero the solution of
equation (26) for the critical values becomes more difficult. A system
for calculating the minimum coupled eigenvalues needs to be devised.
This is done below,

First select a definite resultant load by making

2

.,,%.,., = d (31)

2
For any given value of the parameter ol , the ratio of the eritical
loads is therefore fixed. By selecting different values of d |
various directions of the resultant load are obtained. Since, when
klzsgg A =0 and when k, =0, d =00 , it is clear that o
may range between O and o®@ ; hence an infinity of directions for the
resultant load is possible. This corresponds to the actual state of
affairs for the strut.

In equation (31) write klz = d k, and substitute this into
equation (26). The result will be an equation in of and k, . For
any selected value of o , a critical ko, may be calculated and the

2 4g obtained from equation (31),

corresponding critical kjy
Graphically a plot of (31) is a parabola as shown in Fig. 9, Here

o 1 < d 2 < o 3 etc. Corresponding to each o , a critical kj

is determined from equation (26). Then, for example, when o = o 3

the critical k, calculated from (26) corresponds to point D as shown

in the sketch. Actually one selects o (as of = 3) , calculates

critical k, , then obtains the critical kj° from equation (31). This

locates point D without requiring that the parabola be constructed,

2
It is clear from (31) that when o is small, o

k,
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is also small and the critical loading is predominantly P2 o On the
other hand, when of is large, klz > kg » and P; predominates,
Hence for ¢ 1< o5 40(3 <oy etc., the criticel points C , D,
E, and F are spaced as shown. At point A all the loading is Py ,
or the Prandtl problem exists. When only P, is present, Euler's
problem results and the critical condition is given by point B ,
Hence the solution naturally leads to the interaction type curve
ACTEFB , |

Each point on this curve represents a critical combination of klz
and ko . As required by the physical problem an infinity of such com=
binations exist. All points within the curve and the coordinate axis
represent a nonecritical state; all points outside this region represent
a buckled state, Hence for zerc margin of safety in éesign the loads

Py and P, should yield values of klz and ko which Just fall on

the curve,

1l. Celculations for the Critical Coupled Values

In this section a few sample calculations for the determination of
points on the interaction curve will be given.

Substituting equation (31) into (26) gives,

o=\ e G 9 - B

2
+[£~a + (_}]_? + %@;)0( + (ﬁ% % é,,.g}d + §;‘Zi9;43] kgg
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which reduces to,
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Now consider special values of o . X =1/2 Equation (32) reduces

to,
1 = Ou541,667 ky + 0,051,761 ky° = 0,002,006 k,’
+ o o o o = O (33}

Trom this eguation RZ critical or minimum can be calculated. For
caleulating minimum ky a substitution similar to that used for mini-

mun klz will be used. (See equation (29).) Thus let

k, = (34)

s0 that minimum kz corresponds to maximum % Then substituting

29
equation (34) into (33) gives,

757 = 0.541,667 2,2 + 0,051,761 5, = 0,002,006 + o + o = O

Applying Graeffe's method as before,
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£(2,) = 2,0 = 0.541,667 2,2 + 0,051,761 3, = 0,002,006
£ (=25) = =257 = 0.541,667 5p° = 0,051,761 2o = 0.002,006
: 6 L 2
£ (z5)f(=3p) = = zp + 0,189,881 z5 = 0,000,505 25" +
+ 0,000,004

and from this last result,

= \I 0.189,881 = 0.435 (first approximestion)

The second approximation is made by reapplying Graeffe's Rule.

(22)

maXe

This should be done to note the divergence between the first arnd second

approximations. From the above it can be written at once that,
: 3 : 2
£(2,2) = = (2,2)7 + 0,189,881 (25°)” = 0.000,505 (2p%)
+ 0,000,004

3 2
£(=2,%) = + (2,°)" + 0.189,881 (2,%) + 0,000,505 (z,°)

+ 0,000,004
So that,

£(252) *£(=2p2) = = 3,7 + 0,035,051 5, + 0,000,001 z,*
and hence, ,

(25) = \410@0353051 = 01873 = 0.433 (second
Hlax.

approximation)
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The change is guite small indicating that the first approximation

is very accurate. (Incidentally, the first approximation could havs

been caleculated from a quadratic in 2z, o This, however, would not

have permitted an accurate caleulation for the second approximation.
p i

Hence, a cubic was used from the first.)

Returning to equation (34) it follows that,

(ko) -1 = o 22,31
min.  (zp) . 0e433

But from equation (12},

2
- (Pz)crit . L°
Min. EI

(Po) =223 gp

erit, 22
At the same time klz is related to kz by equation (31),
quently,
2
(kl ) o= o (ky) where o = 1/2 .
min. min.
Or,
2 1 o
(k") = = (2:31) = 1.155
min. 2

and by equation (11) the critical value of P, must be,

erit.

2 :
2y - f%_..;’.,_..,.
1 min. z b

(k BC = 1.155

(35)

Conse~
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These caleulations may now be repeated for various values of o .
As d increases, numerical accuracy by the above procedure be-

comes more difficult. It then becomes advisable to let,
= -8 (37)
Putting this into equation (26) gives,

?
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which ean be simplified to,

2
(L+8) = (0,083,333 + 0.563,333B + 0.5 B%) Iy

+

(0,001,488 + 0,020,9338 + 0,061,111 B *

0,041,667 B 2) i

4
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%

"}-oaaeegO (38)
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The value of B may now be specified in equation (38) and the

corresponding value of (klz} calculated. The procedure is simi-

min,
lar to that already used in determining (kg)min when & is given.

A summary of calculated results is given in Table I. These have
been used in plotting the interaction curve (Fig. 10)., Each point on

the curve represents a critical or buckling combination of Py and

P2e

be calculated readily from the expressions already developed., These

The solution is for the first buckled mode. Higher modes could

are seldom of importance in actual design problems.



PART IV

EXPERIMENTAL INVESTIGATION

l. General Comments

The basic purpose of the experimental program is to verify the
theoretical derivations and calculations. To do this the critical
curve of Fig, 10 will be determined experimentally. Agreement of the
two curves will be considered as verification of the theory.

In undertaking such an experimental study the usefulness of the
basic differential equation (equation 13 of Part III) should be noted.
The fundamental dimensionless parameters kl and k2 appear in this
equation, and are also the coordinates of the interaction curve of Fige
10. Hence, even though a s@lﬁti@n of the differential equstion may be
lacking, the non-dimensional form of the equation nevertheless gives
the most useful means for representing the experimental data,

Any attempt to measurercritical loadings for a typical strut will
soon be concerned with two problems: (1) how to apply the theoreti-
cally assumed loadings, and (2) how to determine when the critical

loading is reached.

‘2@ Method for Avplving Load

The two foree components Py and P, must be apﬁlied at the free
end of the strut in such a manmer that no constraints are developed.
In other words, these forces must be "freely floating",

A first attempt at securing these conditions is shown in Fig. 11.

Points A s By C,and D all lie in a single plane. By varying the
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location of B , the resultant load R din AB can be given any desired
pointing. A pin at A carries the force R dinto the strut through
direet bearing action. By making L >> J/ , any deflection of the
strut prior t¢ buckling will result in only a very small component of

R acting normal to the initial plane ABCD . Hence, although a con=
straining force is developed, its magnitude can be made very small.

However, experimental data showed that for any reasonable ratio
of Lfe » the constraint developed was sufficient to appreciably raise
the eritiecal loading. For this reason the basic idea contained in the
method of Fig, 11 was abandoned,

Various solutions to this loading difficulty suggest themselves
and the simplest was found to be entirely satisfactory. Since any
actual test specimen will suffer a certain amount of d@fle@@ion before
buekling, it is necessary that such deflection be permitted, By util-
izing an image strut as shown in Fig. 12, point € was found to de=
flect precisely as A deflect@d@ Consequently points A , C , and B
always formed a vertical plane and no ceéstrainimg ccmponent of R
ever developed.

A symmetrical specimen was therefore securely clamped at D
(Fig. 12) by clamping between rigid structural steel sections. The
loading pins at A and C were placed at the elastic axis of the
sﬁru@o' Dead weights (W) were used to supply the loading. Lateral
deflections were measured in the vicinity of the free end with a dial
gauge. In all tests the strut was permitted to deflect away--rather
than toward-=the dial gauge, In that way the spring force acting on
the spindle of the dial gauge was not introduced as a constraining force

on the strut.
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The imsge method with the above refinements gave very satisfactory
results. Its simplicity and ease of operation are too apparent to need

further discussion.

3, Determining the Critiecal Loading

This is an important consideration since there may be times when
the attainment of the critical condition is not altogether obvious.

For example, assume that a certain test specimen is not initially flat
and that a certain amount of eccentricity has occurred in the loading;
i.es, the bearing pressure at pin A in Fig. 12 is such that the re-
sultant pressure is eccentric to the elastic axis. In such a case con-
siderable deflection of the strut may take place before instability
occurs. Any casual observation of these deflections, as loading in-
creases, may fail to detect the instability condition.

As a result it is necessary that a consistent method be devised,
whereby the occurrence of the critical condition may be definitely
recognized, It should, however, be kept in mind that for some struts
the critical loading is accompanied by an unmistakgablg deflection,

The experimental work of Ref, 8 illustrates this quite wells'

Refs 8 lists the results of a professional degree thesis at Galeit*,
1947, in which certain strut instability measurements were made. These
tests were all for the Prandtl case in which omnly load ccmponent Pl
was different from zero, However, strubts with varying degrees of taper
were tested, in addition to those of uniform section throughout. In

these tests the dead weight vertieal loading was applied to the beam

B3

Guggenheim Aeronautical Laboratory, California Institute of
Technology.
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through 2 mechanical unit which could be adjusted to give any desired
eccenbricity of loading,

By properly adjusting the line of action of the applied load it
thereby became possible to load the strut without causing any lateral
deflection to take place. In Ref, 8 such a test was called the "eri-
ti@al runs At the instability loading the beam would suffer a2 sudden
collapse. The "eritical run® loading was taken to be the eritical load
for the beam,

Other btests were then conducted at varying eccentricities of loade
ing. In all instances a plot of P vs § gave a curve which tended

to become asymptobic to P {Here § is the torsional deflection

, erib.
of the beam, However, as shown in the derivation of the differential
equation in Part III, either the angle of twist or the transverse bend-
ing deflection may be selected as the dependent variable. In Ref, 8
the torsional deflection was measured by mounting a long, slender
pointer on the free end and noting its movement relative to a fixed,
graduated scale,)

Fig. 13 gives a sketch showing the conclusions mentioned above,
These are typical of the results given in Ref, 8.

Another conclusion reached in Ref. 8 is that Southwell's method®
for experimentally determining eritical loads may be used for these
cases. OSouthwell®s method consists essentially of plotting P
(ordinates) vs P/g (abscissa). Since this must be a linear rele=
tionship for elastic structures (by Hooke's Law) it is merely necessary

to determine several values of P and the corresponding deflections,

* See Ref, 1, po 177, for a detailed discussion,
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S s for the giﬁen structure. It is advisable to take these fairly
close to the critical condition. Then plotting these results, using
P and P%s coordinates, and extending the resulting straight line
to PV% = 0 , will yield the critical value of P , This is illus-
trated in Fig. 14 for an achbual Prandtl type test specimen.

The reasonableness of this procedure is simple enough to under%
" stand, Since S tends toward very large values, as P approaches

s in the 1limit as P becomes P the value of P/s will

P, .
erit. erit.

become zero, Ref., 8 shows this to be very nearly true for the Prandbl
cases investigated. Southwell showed that it must hold for a eolumn,
There is still some question as to how such a plot will work out
when bending, rather than torsional deflections, are measured for the
Prandtl type beam. To examine this a typical case was studied in this
present investigation. The beam tested had the specifications shown
on Fig, 14, Test data gave results which have also been plotted on Fig.
14, Calculations for the critical load of this strut, using Prandtl's

equation, are given below.

-4
Te w312 =437 x 10" in,t

3

=8
J=ht"/3 = 1748 x 10 insh

2

fad
(2]
B

B = 4630 1bs.~in,

‘ 2
GJ = C = 7120 lbs.~in,

BC = 5750 1bs.=ine.

#

013 JBC o0
(p . 20 . he013 (5750) 22,6 1lbs,

) .=
Lerit, 22 1020
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Or the calculated critical load is 22,6 1bs. It should be noted that
slide rule accuracy is generally sufficient for these caleculations.
However, since the thickness appears as a cube in the final result, it
should be measuréd with the aid of a micrometer,

Figo 14 shows that, for this example, Southwell's method gives an
excellent value for the critical loading., The curved line is shown to
fall off asympt@ﬁi@ally to {Pl}@rit° as loading is increased.

As a result of these preliminary investigations either curve of
Fige 14 shows promise of indicating the critical condition for the

general problem. However, Southwell's method has nolt as yet been shown

to apply when instebility is due to the coupled effect of Pl and Py o

e Typical Test = (General Qase

It is helpful to examine in some detail a typical test as per—
formed for the case in which both Py and P, are present. In this
section only those plots corresponding to Fig. 14 for the Prandtl case
will be discussed, (The examplé selected here is more fully discussed
in the next section as Specimen A, The angle of the resultant load is
at @ = 58° 30' ,) |

Table II gives the experimental data from which Fig. 15 was plotted.
The load in this case is simply the total weight W of Fig. 12, Since
instability occurs at a definite value for W , it is sufficient to be

able to determine W

erit. in order to know when the critical condition

Ifde i L K i g
is reache hen Wit . is known, (P1>@r

it and (Pé)cr may be

it.
calculated from the geometry of Fig. 12,
For this strut definite instability ocecurred at a load of 65,31

lbs. Hence the critical value on Fig. 15 is known. A further glance
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at Fig. 15 will show how the curve representing the plot of P vs §

has tended to hecome asymptobtic to P This indicates that ths

erit.
eritical point eannot lie far beyond the last plotted point on the P
vs § curve. Finally Southwell's method=-constructed through the
three points of maximum loading-~is shown to closely approximate the
actual instability loading.

These results are very useful. First they indicate how the cri-
tical loading for a test strut may be determined experimentally. Then
they also indicate that under the @@upled action of the applied forces,
the instability loading may be predicted by using Southwell's suggested
progedure,

On the basis of the above results the experimental determinations

desired in this present investigation were obtained.

5., Test Results

Two different struts were tested at various critical combinations
of Py and P5 o The method for performing the tests and for deter-
mining the ecritieal loading is as discussed in the previous sections,
Table III gives pertinent data on these specimens while Fig., 12 shows
the general arrangements, etc.

From @quatioﬁs‘(ll} and (12) of Part III the non=dimensional

critical load parameters are,

2
3
(Pi’critae
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Hence when the loads are known experimentally, the critical dimension=
less parameters may be determined from the above equations., Their
proximity to the curve of Fig, 10 will then indicate the agreement
between theory and experiment.

In the sketch of the specimen (Fig. 12) the angle P between P,
and R 4is shown. This is convenient in visualizing the point of R
for the various tests.

The experimental results in the form of (Pl)@ritg and (pz)@rit@

are summarized in Tables IV = A and B. Corresponding values of the

parameters (kl) " and (k are also given. These latter
erit,

z)crita
values are plotted on Fig. 16. The critical curve of Fig. 10 is also
given on Fig. 16, thereby indicating the agreement attained between
theoretical and experimental results. The check is sufficiently good
to justify the theoretical calculations.

Tables V = A and B contain the complete load and deflection data
as recorded for the two test specimens. Figures 17 = 22 plot these
data in a form similar to that already discussed with reference to Fig.
14. Hence these remaining plots contain the detailed information which
is used to obtain the critical loads for Tables IV - A and B and in
which the experimental critical values of Fig. 16 are based. All
general conclusions previously reached in regard to the experimental

program and test results are seen to also apply to these graphs (Figs.
17 had 22)@



PART V

ANALYSIS OF THE TAPERED STRUT

1. Introductory Comments

The analysis on the untapered strut plus the subsequent experi-
mental verification gave encouragement for further pursuit of the
theoretical work. Consequently the next logical step, that of intro-
ducing taper into the problem, will be discussed in this section.

It will be seen that for arbitrary taper the mathematical problem
becomes considerably complicated relative to the first problem.
Attempts at achieving a solution soon exposed serious difficulties,

As a matter of fact no solution could be located in the literature for
either of the degenerate problems (Pl or Py equal to zero) when the
taper was arbitrary and the sides of the strut straight lines,

Consequently the problem is set up for the case of arbitrary taper.
Then the limiting case of c@mplete taper is considered in complete
detail. The solution thus obtained, together with the previous results,
then sets the limits on the effect of taper. All arbitrary tapers must
yield results lying between these limiting cases.

An example of the influence of taper on the buckling strength may
be of interest. Suppose Py and P, to be equal so that their resul-
tant acts at 45° to either. Then at the critical conditiom, the
resultant for the fully tapered strut will be 41 1/2 per cent less
than for the strut without taper. As a result it is not advisable to

neglect the effect of taper when designing these struts.
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2. Derivation of the Differential Eguation

The immediate objective will be to derive the equation for the
tapered strut, corresponding to equation (6) of Part III for the un-
tapered strut,

To do this the selection of coordinates, terms, and so on in Fig.
23 will be made. The loading is the same as before and therefore is not
shown on the figure.

From Fig. 23,

he_"0 (dex | 69

d+,£

Also for struts in which the thickness of cross-sections is independent

of x (as each section a rectangle),

I=1 (40)
© d év\a.,e

Jug, StX (41)
d+ £

where I, and J, occur at the fixed end, x = 2 , and

I and J are minimum values at any cross—section,

At first glance it might appear sufficient to put the variable I
and J into equation (6) directly. This, however, is not permissible
since in deriving (6) certain differentiations were performed and these
assumed I andv J as constants., Hence it is necessary to go back to
basic equations (2) and (5) of Part III and introduce the variable
inertia terms there. Hence rewriting (2) and (5) from Part III with

the new inertia terms,
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9. 3L ey 130l (5o
d-x GJOd%'X C@ d+3{

d+ x dzy d+ x dgy

Cd+f o °d+l oxf

d+ x dgy
— (Pl ex+ P,y
Od-&-ﬂ dxz 2

or more conveniently,

Py (a +f)
Co

d«f-.f

0

(d+ x) 8 = (xy* = y) (42)

(d+x) y" = = (P ® x= Py y) (43)

Now differentiate (42) once with respect to x ,

Py (d+4)

(d+ x) " ¢+ 8" = G

(" + 3 = ¥")
O

Multiplying by (d + x) ,

Pl (d 4;2)

Co

(d+x)° 0"+ (d+ %) 6 = (d+x) xy"  (4k)

Subtracting (42) from (44),

2 P]_ (d '*,e)
(d + x) @"sT [(d+x} m"axy9+y] (45)

Likewise differentiate (43),

d+d

(]

(d+ x) "+ g9 = = (Ple + PIX@“ + P2 y?)

differentiating again,

d gf (pl@q + plgw - plxgaa,g, szw)

(d N x) yﬂ? + ym# ymg -

d

(d + %) Ve 2yWs =

+ L.,
N (2 P18' + Py 38" + P, ")
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Multiply this last equation by (d + x) ,

(4 + x)2 vV 2 (dsx)ym

d+£
B

(46}
2Pl(d + x)0" + Plx(d + X)O" + Pé(d + x)y%l

s =

o
Now substitute from (42) and (45) into (46), thereby eliminating ©

as a dependent variable., Or,

P (d‘+ )
(a + x)2 ¥V + 2(d + x)y"'= = d ;’e {2?1 ;3% (xy' = ¥)
o )

Py(d - xy!
+ Plx l( +) Xy + u + PQ (d + x)y»
Co d+ x

which may be simplified in several steps as indicated below,

; 2 2
P, “(ds p,(d+f)
(4 + X)Q ¥V o+ 2(d + x)y" = @[# *2 +—-%-é-—-(d+x)] y¥
070 [¢)
P.2(a)?  P.2(anf)?
.,,[21( ;A X](xy”«y)
B,C, BoCo  d+X

hence,

(d+x)2 vV o+ 2(dex)y" +| —————— x* +

F o 2 2
Py°(asf)” , Poldef) )
TR

(xy' = y) =0 (&7)

2, 21
P .
{,M[QQL

BOGQ dex i

Now introduce dimensionless variables. These should be consistent

with the definitions made previously for the untapered strut. Or by

analogy with equations (10) of Part III

X=X v=_1 To = 8 (48
) 9 v A 9 Jo _Hr )
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where, ¥, = ¥gay, =V ot x=4,

It is convenient to write,

d+ 4 =1 (49)
so that,
= X
= e 0
x 5 (50)

By analogy with the calculations following equation (10) of Part III

the derivatives of equation (47) are:

dy _ o _ hg =
&= " T 7
2

d y = yﬂﬂ h@ §“

a2 12

dgy‘ . h@ mw

3 = ¥ 3 ¥
dx L
v

d&y 'V _ h@ - !
o 2§ L ¥y

dxclt Lt

Substituting into (47),

—2h _iv _ h. _m P.212 2.2
(deLx) a% y ¢+ 2(d+Ix) =2 y o+ 4 L x
L 13 BoCo
P, L — h. -t
+ 2 (d—z-Lx}] =2 y
B, 12
272 =
Py*L ILx h, _? -
. = 2-——| (E<_F -b,F =0
BoCo d+LX L _

Since h0 # 0 it may be divided out of the above equation. The above

equation may now be written as,



BoCo Bo L
2
PP, LX) -
#=e | 2L% = = (xy -y)=0 (51)
BQC@ - 4+ X

which is the eguation for the tapered beam., It can be written in more

compact form by letting,

a'd d = 1 2
A L d+} 2 (52)
l-&hﬂa

In (52) A is the taper ratio, When d =0, A =0 and the fully
tapered strut results. If d=00 , A =1 but equation (51) does
not degenerate to the corresponding equation in Part III. This can be
expected since the complexities due to variable I and J appear in

the sbove equation. Introducing (52) into (51) gives,

2w _m [rAf 2 py?
(A+x) ¥ +2(A+ x)y + X o+ ==
(e}
P, 2Lk x
(2 = =
B,Co A-s- x

<1+@]§

OCO

4+

JGF -F) =0 (53)

- The above equation for arbitrary teper is difficult to solve as already
mentioned. For complete taper d=0, A =0, L= 4? s hence the

above becomes for this special case,

2 _w __m p2ph _2 P2 _ _n
X ¥y +2xy <+ [ 14 x o+ m§£= x ¥
BoCo Bo
29k 2,0
P - ! P -
&+ ll Xy emlz yza@ (51&3
BoCo BoCo

Corresponding to equations (11) and (12) of Part III the signi-

ficent dimensionless parameters now are,
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2 5 L2
2 _P4° migt

kg (55)
EI, GJ, By Co
P. #2 P 2

K, =24 Pl (56)
EI, B,

so that (54) may be written,

—2 aﬂ’ - e’ﬁﬂ 2 - QW 2 - _29 2=
X7 +2x7 + (g% + kN7 +k) %y =k y=0 (57

This is the equation which will be solved in this section. Come

parison with (13) of Part III reveals the complexities added by putting
taper into the problem. The third derivative term now appears and the
ko ;r term becomes multiplied by X . Also the fourth derivative is
now multiplied by x> o The last two terms in (57) do not have the
factor 2 which appears in (13) of Part III. Altogether a more com=
plicated mathematical problem is posed by (57); however it will yield
to a power series solution as did the former case.

It should be noted that the dimensionless parameters should have

L in place of ,2 for the arbitrary taper equation (53).

3. The Boundary Conditions

The differential equation was seen to undergo considerable change
‘due to taper effects. Hence it can be expected that the derivatives
in the boundary conditions may appear differently than for the un~
tapered problem,

Examining the varicus conditions which the strut must satisfy

gives the boundary conditions. These are developed in detail below,
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a)s MNo deflection at free end

y=0 at x=0 is required condition,
or in dimensionless form,
hy Yo=0 at xL=0
~since h, #0, LAO,
Vo=0 at x=0 ~(58)

is the required boundary condition.

b)s No bending moment at free end

2
EI %;% =By'=0 at x=0 is required condition,

or,
Bd+xy°, AgO
°d+_e
x=0
BQ #
since 0 at x=0
d+,e ?
(d+x)y" = 0

x=0

or in dimensionless form,

- ho 7
(d+Lx) =¥ =0
*=0
- h_ _m
(mﬁm-e-x)migy =0
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h@ =-1
and here —— £0 for x=0 and hence,

A+DF| =0 (59)

F=0

This is the general form of the boundary condition. Whem A = O,

"

% |

X

=0 | (60)

x=0

and it is obvious that this is automatically assured since x
i
multiplies y . Hence a simplification occurs for the completely

tapered strut.

c)o No twist at fixed end

To examine the twist © at the fixed end consider the equation

immediately preceding (42). This is,

d+ x
Qd+£

from which,

B

== (P x8+ P, y) (61)

BQ
Plx@awT(d+x)y"wP2y

Nowat x=§ ,6=0,y=y,,andy" #£0. Or,

BQ
O == T(d+x)y"+i’2y

which is,

X= e

Pry
yﬁgm 270 -at Xge

In dimensionless terms,



hy _" Py hy ¥ -
w%g; y = o ° a‘t X = @‘gs-

L By L

2
8 P, L ,e
2 - -
= a't K = oo

y B@ o T

This is again the general statement of the boundary condition.

For complete taper L = ¢ and,

] P, p2 _ - =
y == 24 Yo==k, ¥y, a8t x=1
By

and this is the form useful in the analysis which follows.

d). Zero slope to elastic curve at fixed end

The actual condition to be imposed is,
y' =0 at x= Y

This implies a clamped edge.

To find y' differentiate (61) once to get,
B
"i"g (_(d->X)y"’ -e-y‘"] = = (Plx@" + P1@+P2y@)
Or the slope is given by,
B
Py y* %uu..f‘?i [(d«a» x)y™ +y‘“] =Py x@" - P’lg

The boundary condition may therefore be represented by,

_E.Q ‘.(d-a-x)ym +y"] +Plx@ﬁ+Pl@@ at xs,e
L

To find x 6' multiply the second equation above (42) by

x to get,



— (x ¥’ = 3)
{;‘Q d+ x

Putting this into the above equation and letting x = @ s

B P2
By ¥ + O gy < 1'2 Yo =0 at X%l
L Co

In obtaining this last result use has been made of the fact that
y'=0,0=0,y=y9, at = =4 . The last equation may also

be written as,

2
- yﬁﬂmMy =0 at ==

y@” b e
T B, Co

and since by the second equation above (62), y" = =
at x = 'e 3

‘ 2

P, y. Py°

> Jo . f1

1B, By Cq

s}
pz Yo
EI@

[

ym - Jo=0 at x=4

It is now convenient to introduce non-dimensional quantities,

hg =™ 1 Py hy §® :}122 2

J= = h@ 5;0 =0 at ;E E- . SN
LB L B@ E@ CQ L
or
T rfpid_ it Ny \
v o= 1 y@ + = y@ at Hom B (64)
BO CO B@ L

which is the general form for the boundery condition. Vhen
d=0,L=g¢,x=1 the above reduces to,

e ‘532314 P 2
UL s

v g,__l.m, S;©+ Yo at X=1
BO CG B@

Introducing the parameters of (55) and (56),
Moo (k 2 k)7 at el (65)
J o= 1 2.} YO < = J

This is the form which will be used in the analvsis which follows.,
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Le Mathematical Problem

For the completely tapered beam the mathematical statement
governing the physical problem is then (from (57), (58), (63) and
(65) ),

e =gy

e . 2‘,,2 - Y R,
xy +2xy + (k" x + kyx)y 23 (xy=3)=0 (66)

y=0 at x=0 1 a
xy =0 at x=20 b
(67)
< - : -
y == kz Yo at x =1 c
il : 2 - .
v o= (k“+ky)y, at x=1 d

The analogous mathematical problem for the untapered strut is
grouped under equations (13) and (14) of Part III.
A solution for (66) and (67) will again be sought in the form

of an infinite power series,

5. Recursion Formula from Power Series

As in Part IIT let,

T S= i
y (x) = ag 8 X
=0
_n _5=2 . '
y(x>szass<smnx | (68)
S=
09 ey : _5=3
¥y (X) = ag s (s=1)(s=2) x
s=0
W o gsi-e&
y (x) = ag 8 (s=1)(s=2)(s=3) x
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Substituting into the differential equation (66),

2

2 & Eo_ 3
DI s(s-1)(s=2) (=35 + 7% D &, s(s=1)(=2)%

g=0 s=0
[—_~]
=2 _’392
+ (klz X + kzx) z ag s(s=1)x
s=0

s=0 8=0
or,
oD
v _s=2
z_(_{as a(s-1)(2)(=3) + 22, s(e=1)(-2) } %
8=0
_s=1 5 S
+ ky & s(s=1)x + kg as{s(swl} + S'“l} x [|=0
=2
Now collect a general term of the expansion--as Xx o Then,

(_&s s(s=1)(s=2)(e=3) + 28 s(s=1)(s=2) + ko 8,1 (s=1)(s=2)

5 A =2
+ ky asaz{ (s=2)(s=3) + s=2 + 1}] X =0

s=2 ‘
In general x # 0 : hence the bracketed term must vanish. Doing this

and simplifying leads to the following recurrence relatiqm
2 2
ag s(s=1) (s=2) + ag. ko (s=1)(s=2) + g0 Ky (s=1)(s=3) = 0 (69)

Out of this equation all the coefficients may be calculated by assign-
ing values to s . Again note that 0 £ s <°° ; that is, s is

restricted to being a positive integer.
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6, Coefficients of the Power Series

The debtails for calculating the coefficients appearing in the
expansion of ¥ (x) --as given in (68)--are calculated the same as in
Part III, Section 6. Therefore, with similar details, the results may

be written at once as,

ag# O from s = O
a8y # 0 from s =1
a2 = 0 from s = 2
k
2
33 s = Y a, from s = 3
k 2 3k 2
ah = 12 1 a2 from s = L
< (39)(&)
(70)
'k23 = 11k2k12
a5 = = 3 ag from s =5
1wy
(ete.)
k%o 26k 2k ? . u5k b
2 2 1 1
36 = 82
= (58)(62)
k,” = 50k, ky” + 309K,k
77" T en (e 2
T (66)(7@)
6 by 2 2, L 6
. k2 = 85k2 kl + 1219k2 kl = 1575kl )
g =
e DICD)
7 5 2 6
kz = 133k2 k]_ + 3619&(23k1£g> = 16 914071:{2}{1
ag = = 3.2

1
== (81)(9Y)
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8 6 2 L o4 2 6 8
ky =196ky ky +89Thky ky =93,20hky ky +99,225ky

&103 3.2
== (94)(101)
9 e T2 5 4 3 6 8
k2 @27@&2 kl +1%6Mk2 k., =382, vzak k +1 141197851{2151

i b i 7 8
5 (103)(114)

10
~9,823,275k) =— - —— _ _
\\
\
lqﬁﬁf%i%&m%%@1zﬁlmk4fﬂo@s%mfﬁ8’
a = a
12 ‘ " 2
L myQ2y
56,565,861k, k, =179,237, 475k oy
* 5,801k, kq 21 ™
1 9 2 7 4 5 6 P
ky =495k ky 472,138k ky =3,620,830k, ky - - ——- -
= (121)(131)
2 10 12
=1,700,611,758ky ky  +1,404,728,325k; =<
12 10 2 8 & 6 6 L 8
k, =638k, ky +125,763k, Kk =9,204,404k, k; +238,340,311k, kl__,
8, = a

=5 (138)(1sy)

7o Imposing the Boundary Conditions

The coefficients of equation (70) may now be substituted back into
the series for y (x) . Then on this expression the boundary conditions
(67) should be imposed.

Since a, = O it follows that the first boundary condition is al-

ready satisfied. Furthermore the second is likewise assured since

)

- = ==t .
Xy =0 at x= 0, independent of y . Hence the last two conditions
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of (67) must now be guaranteed.
Expanding the series for y (x) gives,

2 3 L P 6 b

s = =

(%)= aii + aé% + 85X + @ X + agk + aég * oo o+ 8YX
It is now convenient to use the notation,
ai = fi (kl 9 kz) 32 = i‘i 32 . (71-}

for example,

ag = fB a2

ah = fh 32

etcs,, etce

Hence,

2 3 b 5 6 1

y(x) = ayjxearx +£58.% +f anx +f 8 X +L,8,% + o o 48y 8%

Differentiating,

2 3 L 5 6

o _ - _ N _ _ 7
y"(x) = {f%6f33+12fhx +20f5x +30f6x +h2f7x +56f8x +72f9x

8 9 10 11

+9Of10X +ll®fllx +132flzx +156f13x

12
+182f1£}x + e ® ° ® ] az (72)
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2

£

3 b )
x -e-lZOféx «#2101‘7;& +336f8x

ne -
vy (x) = [6f3+24f&x¢60f5

6 7 8 9

#504f§§ +72@f15§ +99@f1i§ +1320f, ,x

10 !
+l716f13K -e-l%#&flhx + o o o ] 32 ( 73 )

The last two boundary conditions of (67) may be written as,

1

=1

4l

-t -
¥y +kyy,=0 at

e

§”(k12+k2)§030 at x=1

2
Multiplying the first by kl + kz s, the second by k2‘9 and adding,

il

= =

2 _u
(k" + ky)y +ky =0 at x=1 (74)
Substituting from (72) and (73} into (74) gives,

2 - 2 12
(kl «e-kz) [2+6f33§+12f1&x + 6 o o +182f1&x + e .] 8,

2
sk [6f3$24f4§+60f5§ e e e
14

1
+19L4E. x '5“090] azs@

Letting x = 1 and since a, # 0 by (70),

2
(kl +k2)(2+6f3+12f£4+20f5 Fo o o o +182fl£{,)

-ﬁﬁkz(éfzﬁ‘gi&fiﬁé()fﬁ-&- I +l914l4f1@) = 0 (75)
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This is now the expression out of which the eigenvalues must be calecu~
lated, All the fi terms are functions of kl and kz as indicated
in (71). Substituting from the a; into (75) and writing out com=

pletely gives,

2 2 2 L 2, 3 L
K%k | kg Pkyomkyt kg Pk, =11k, b
2k %632 1222 P M s N

+BQ§12k2@a26k bk o245k, ©
= (BDGY FGHEGY —%-»{ss)m

5. ol 3 6 2 6 L & 6 2 8
42 kl wﬁOk 2 +309k1 k2 +5[k1 k2 @85k1 kg +1219k1 k2 “1575k1
=§= (61)(71) | .%,.,, (71)(81)

ey Py T=133ky e %4 3619k Ohey 16,107k B

72
-~ (81)(91)
geklgkzgn196k1&k26+897hk16k2h»93920&k18k22+99,225k110
&
=5 (91)(201)
6, 5 o g 3 10

1 9 g
- (101)(211)

=382, 724k, “ky7=1,411,785ky "k
~110

12
=9,823,275k) " 4 =~

J
. kq 2y 0= 3757 41,84 39, 018k, Ok, 01, 271,150k, Bk 44 10,638, 981k 10k 2/
+132

1 7 1
-5 {(119)(12 1)

~179,237,475ky ke, ==~

5 10, 3 )
k,Z -

k 2 &QSk hk 9@72 138k 6k 7@3$62A3830k k

+56,565, 861k
~156 1 2

l 9 [
T (12 9) (13 e)

+ (continued)
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=1,700,611, 758k, Pky2e1, 404, 728 325k1_&*.,_~~w\

\

by 10 6 8 6 10, z%,,

2, 12
1 kg +125,763k; k, aggzoasaohkl +238,340,311k, " k, -

kl 5 =638k

+182
- (131)(141)

ko’ k,3=3k, 2Kk Kohel1k %k 2 ko9=26kq2ks el 5kq Hk
+2ka632 o2y KamllgTRT o KeTmRoky Tk ehdky o
: S0k = sy = (58)(61)

k,0-50k) 2k s 309K, ho? Ky T=85ky 2ky O+ 1219k, 4k = 1575k, Ok,

=42 o 56—
1 1
- (61)(7) == (73)(81)
vqkzgwl33k12k26+3619klhk24m169h@?klékzz

1 9 9
=~ (81)(91)

+9Ck29n196k12k27+897hk1hk25~93,20&&16k23+99,225k18k2

= (91)(201)

8 2

6 6, 4

1, 0= 276k, %k, 2419, 614k M, =382, 724k, Ok 21, 121, 785K

1102 1 Ko 1 K 1 Ko 1
u%m (108)(111)

ks

~9,823,275k{0%k, «~
[}
+132k211*375k12k29*39,Ol8klkk27~l,27lﬁl§0klék25+103638,9819k18k23_, ,/

- (1183(121)

~179,237, 475k, Ok, %
\
/

6, L -

6 gt e

12195k Pk 0072, 138K o -3, 621,830k, Ok 04 56, 565, 8611,

=156-

=~ (121)(131)

+ (continued)
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=1,700,611, 758k 1,241, 404,728, 325Kk, M2k, ==

)
/
/

key =638k 2, 1 be 125, 763k My P=9, 201, 408k, Bk, T+238, 340, 311k, B, S ——~

+182 T
=~ (131)(1s)

k.2 2 he33k, 2K ,2 26k, 2
. k. +2L}k23-n3k1 k, méckz 11k, <k, #1201{25 26k 2k, 3445k, bk,
31 7L

F GG - wHey - (s1)6Y)

6 2y b by, 2 7 2,5 Ly 3_qgme,. 6
kn == 50k “kn*+ 309k, Yk kq'=85ks “kn 41219k "kn"=1575k "k
-27, 2 1 %2 1 %2 +336 2 1 =2 12 152
L (617 (7¢)(81)

2 6

8-133k, %k, 2 3619k, ik, =16 407, ©

2
ky

k

= 5012

- (a1)(9n)

+720}{29@1%k12k27+89mk1hk25e93,201.1{1%234.993225}{1%2

,%w (92)(1032

1, %276k %, 8119, 6141, e, %= 382, 720, Ok, a1 413, 7851, B2

1 «
- (108)(11¢)

g |
-9,823,275k; Ok.z -
. ;
3
k2

7-1,271,150k, °k,+10,638, 981k, ®

11 2,9
k, =375k, °k,, '+ 39,018k, “k,

+1320 .
m%m (111)(121)

= (continued)



-179,237,475k, 06,2 e - - o=

6 3

k212@L95k 21,10, 72, 138k, 1e,B- 3, 624, 830k, 8k 5156, 565,861k, e b

=1716

e (121)(131)

~1,700,611, 758k, “%k, %41, 401,728, 325k, Pk, = ~

/

ke L3638k, 2icy L4125, 763k Y 7-9, 204, 401k Oy T+ 238, 340, 312k, Oy —— =7

+21.81
- (131)(141)

This last expression is lengthy and complicatedo In order to make it

easier to handle collect terms. This results in,

L2 gt kb 157sg® 99,205 10 9,823,275k 1

L 2131 4151 6171 8191 101118
19A0A97285325k11h
o 4 ® ] -3 @ °
121 138

(ALK 1 3.1 ,_ 1 yh&
Hep =57 gg) S vorad o Gt Tk
sz S R S P
3151 &359 Aﬂév 5ﬂ6“ 973 6171 6181 7181
1 1 9 1 10 , 1 1 .. 1 , .
+(7a9z+ 859$) (8&10? glgg)kZ *(9gllg*‘1@gllg>kg - (continued)
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1

1151

26

21 Tns1 12

113;)k2

= (

+

1

58718

196

85 . 2 5 1
v 6;71)kl k" E

= (

781 *

1

7191¢

375

276

276

g1 2 *'gErt

375 2 9

8110%

1

9810%

495

2 8
)y Ky

495

= (

91108

1

ES
111y 108118

111128

11

111133 121138 1 2

b5, 45 )klﬁkz - (26,

10811¢

+ ® °

309 ,

101128

38

53

53§

1219

L3538 Li5%

1219, 4 3

L6y 5

3619

16

3619

+(§

50
$

61 * 5171

4

85
Tk K - (G

b2, BT BTy by 5 (196, 10,614 , 19,60

71814

7491

+ (continued)

81914 8191

+

* 6181

781K

9110t

114128

309)k14k22

172

b
)y 'k,

2
Yky Ky

6

10
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276 39,018 39,018, 4 7 375 72,138 72,138, 4 8
k1 k2 - Ky Kk
* et qunt t omrrt k2 - Tt 1o T Laar KL k2

495 125,763 . 125,763y, & 9
*gant Tt pmrh ket

@ @ @ o

_ 309 1575 1575, 6 1219 16,407 16,407, 6, 2
Gt S e ke (6L72 *erer T T Yy

3619 93,204 93,204, 6 3 8974 382,724 382,72k, 6 b
- Gt ST T ek ¢ Gor T der t Taor e ke

/

19,614 1,271,150 1,271,150, 6, 5

94101 9111¢ 108118 © 1 2

39,018 3,624,830 . 3,624,830y, °, ©
+ ( + + Jk. k

10111y 10!12! 111128 © 12

- (’723138 o 2:204,L04 9,201*,9@0@)1{ 6k 7 .
11112} 111138 121138 © 172

® @ L] ®

+ (16919'07 + 993225 + 999225)k18k2 - (939202# + 19[&11;785 +19hllg78§)k18k22
7181 71914 8191 8191 81101} 91104

(382,72h 10,638,981 10,638,961
*\Vgnor Y Tomir T T 1ot

8, 3
k "k
) 12

8 L
(1_»12713150 + 569 565 9861 + 563 565’861)}&1 kQ + (ccmtinued)
10111 lO&lZi 113128
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S 11112 11113¢ Temay 12 e

(Lk11,785 9,823,275 9,823,275, 10

k., k
9110¢ 9111} 10111} ) 1 72

+ (10638981 | 179,237,475 | 179,237.475y, 10, 2
101111 101128 111121 i 72

L (542565,861 | 1,700,611,758 1,700,611,758 o 3
111128 111138 121138 172

(L2700,611,758 | 1,404,728,325 1,404,728, 325
111128 111138 121131

12
}Kl Lxg + e s ®

+ e 5 @ 2 ® ° ® @ Y ® ° = 0 {76}

This long expression corresponds to equation (26) of Part III,

The tremendous complication, due to complete taper, is obvious on com-
paring the two equations.

Values of klg and k, which satisfy (76) will likewise satisfy
the differential equation and boundary conditions for this fully tapered
beam. At the same time we know that the deflection is not zerc since
a, # 0 . As a result solutions of (76), for minimum coupled klg and

k will represent solutions Lo the physical problem. The criticsl
2 2 I

loads Py and P, are given by (klz} and (k.) from equa-
min. 2 min.

tions (55) and (56),



8., Degenerate Cases

Case A (The Completely Tapered Column)

It is convenient to study the calculation of the critical load for
this case since the exact sclution is known in terms of Besssel Funce
tions, (See Ref. 9, p. 94.) Thus the correct result is,

1.446 B Lokt EI
(7,) = = - . (773

2 erit, /gg /2

Case A occurs when k; = O in equation (76). Since k, £ 0

the resulting equation may easily be seen to reduce to,

2 3 4 5 6

@z + -3 o .%., am
(2% (31)% (2 (512 (61)2

H
Ko
P

.o o= 0 (78)

The minimum value of ko given by this expression will then correspond

P
to (Pp) for the fully tapered column,

erit.
To caleculate numerically this critical condition it is again cone

venient to use Graeffe's llethod, The proper manner of applying
Graeffe's method will therefore be sought by carrying out some detailed

evaluations of (Fy)
erib.

First Approximetion to (Fp) (Py = 0)
, er -

it.

Let, 2, = 1
k2

QZZ} corresponds 1o (kg} ]
MEX o “"mins

Substituting into (78) gives,

1 ] ] 1 )i 1 1 £y
l@m‘t’ = o “‘L‘ﬁ' maaca%@ i?@j

) (23}2 Zgz (32}2 223 {@322 Zg&



-

&
]
[0]

£

)

1]

~5

f<22} e f{‘”’Zg} =

23

[EESE

I

iy +

4
% e
2 2

Graeffe's method then states that,

(2,)

= J1/2
MaKe
Hence,
1
(kgzﬁ . = O
Mine 422}
max.,

Applying equation (56) which relates

Ml

2
Po) s
(k) | = (P2)epsp l” [2

EI,
or,

] wT
1, i@lﬁg Fod o)

02

kg

.

16

to Pg
It is

2

cF
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Second Approximation to (Pp) |
: < erit, L

Ordinar

¥ a second approximabion is
of Graeffe’s method. This will not give resulis different from bthe

i,

first approximation, however, unless additiona]

samvj
e
il
bt
&
]
b
tofo
-
=
i}
~3
N
S
2]
i
o]
[
]
i
jo
&

T g it I em N o2 s SR LN . a 2w L PRTOU, QU S, ¢ .
Furthermore; using additional terms in (79) and applying Orasffe's

method onee more will yield a result no different from the first

approximation. Hence to get a significant second approximation, take

one additional term in (79) and carry out Craelfe's method twice. The
details are shown below,

from {79),

2
(]
e}
&
£
cF
]

from which,

and

1o, b 1 2 1

of 3 0
y\zp)sf{azz:ﬁ = = ZZ P et § P cmiee By b e
2 2 52 T IR

&
%)
S?
b
i

MEX s
Now apply the method a second time. Write from the previous ex-



g BT (36)2
- 2 2y . L1 (2.9 1
£loz<) = + {2z } + amm (z, ) o (227 ¢ 6

so that,

é 7 L , 2
£(2,°) £(=2,°)= =(2,7) + %Z (2,2) vt (2,2) 7 -2

16(36)° (36)
Graeffe’s method now gives as the second approximation for (Zz)max s
{z?} s b7 . 1 {(to slide rule accuracy)
" maXe 72 1.435
Consequentl,

: 1.435 EI,
2 eribe. 22

The error is now less than 1%,

Third Approximation to <P2}ﬂr%* (Py = 0)

A third application of Graeffe's method would not be advisable
unless an additional term is used in equation (79). Thus select all
the terms shown in (79) and apply Graeffe's method three times., This

will give a sufficiently accurate value for (P (with

AY
2/ erit,

?1 = 0 ) so that it may be used ss an end point for the intersebion

curve, Thus,

4 3. 1 2
fa,) = 2,0 = 2,7 + —o 2.5 - L 3 1
2/ =Ty T Byt g%y T gp 2t em
2 .
fl=2z ) = ZQQ + 223 + m%mazg + éz E%g



so that,

8 31 .6 1 4k 1 2, 1
£(zo) £(=2n) = By = = By + p Byt e B4 =
2 TR TR U982 g36)2 2 (576)2

It is obvious that taking these additional terms and applying the
method only once leads 40 a resulft no different from that obtained
from the much simpler first approximation. Therefore apply the method

a second bime,

5y P 2 3 2 2 1 # :L
£(2y )= (25°) = 2(2,°) "+ L(z,) zgzgﬁg iy
2 96 36) (576)
2y (o 2yb 1233 1. 22 3 28 3
Flo=zs )=(25%) + ==(2,")7+ 2(2,") = ———(2,") + —=
2/ TR T ep 2 g(3e)2 2T (576)2
and hence,
# - 44
f(zgg} - £(=252) = (zgg) - %% (242 + 23 5 (zgg
© ) 256(36)
~ 2
L 491 1 1 ( Q} 1
192 (8)2 (36)2 < (576)%
The approximation to {zg) is now,
[ED 3
(zg} e b 11/48 = 1 (to slide rule accuracy)
RaX. 145
This compares favorably with 1 from the previous approximabion.,
1434
However it is reasonable to carry the method out for a third step
this time. Therefore from the product of f{zgz} . f{@ﬁgg} form the

expression for £ 22&) as follows:
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L 13 I3 X 2
£z,%) = (2.8) = 2= (2,07 « =23 (2.b)
2 2 TR 256(36)° <

Bl S B OO SR
192 (8)2(36)2 (576)%

£z = (20" « E (507 ¢ 33 (57
: 48 256(36)2

1
L1911 W, 1

{z5%)
192 (8)2(36)2 "2 (576)%

Now the third term in the produet of f{zgh) . f{m%zh) is the one
of interest. This will be the term in {22@}@ o Hence the complete

product need not be carried out and it is sufficient to write,

£z k) - £(onph) = (2% - 22, 106
EEEENORGO.

(2.) o 8/ 11(263) _ gl 1 _ 1
2 max, ™ 21,(6)2(8)2 19,1106 Lebi
gl 8 8/ 1 1
(), wm ] 282 . Y29 .
max, — 2@(6)2(8)2 55206 19,1 1.445

and from this result,

@ <@ @

so that,

a5 EI@

it 5 {to slide rule accuracy) (80)

.3
(P2l
Hence the approximation is now very accurate. This final result

may be used in the plotting of one of the end points on the interaction

CUITVE .



Case B (The Fully Tapered Beam Problem)

This also has a known solubion. {See Ref. 10 and alsc table on
pe 250 of Ref, 1.} The solution is,

. _ 2405 /B@C@ ) 29@,@5,1 EI, GJg
Lerit, VE VE

Putting kz = 0 in equation (76) and remembering that for this
case klg £0,

k. 2 Ezkl& 32852316 32®§2@72kl$

1
l - + = +
202 (L% (612 (81)?
2 o2 w2 e A0
3%:5%-7%°9Ky -
hd (iﬁﬁ)g - ® Py e =B @ & L}

As before the problem now is reduced to that of calculating (klz)min

from the above equation. Thus proceed as in previous examples and letb,

() = (82)

which substituted into (81) gives,

2 2 2 2 2 2
1.1 1, 3 1.3 1,357 1.,.,=0
(2002 2, (412 2% (612 2,3 (81)2 g4
1 1 1 1

By experience with Case A only terms up to 21& will be retained. A
second application of Graeffe's method on this equation will give suffi-

ciently accurate resulis. Thus
3

1 1 1 1
f{z) = 2 b= 213 + 29% = e 7, 4 = = 0
VULT TR T T L ZE0L T 147,556



b 1.3, 1.2, 1 1l _ -0
T M e M s B 147,456

£~z

and hence,

) 1 Lo

F(z,) o £l=27) = 3 8.l 5.5, % o o »
E U3 T gse L
so that,
2 o2 1,23 1 2,2
f(%l}m(21> ‘gbz{%l}%m(gl} s = o
2, 2. 3, 272 1, 242
f(azl}g(zl} «@»fﬁ(zl} +2&57@ (21)«%« o o o
and
f(zz)gf(®g2>@<22)8m;&m(z2>é+ o
1 1 1 12,288 L

It is unnecessary to carry additional terms since only the first or

lowest buckled mode is being considered. From this last expression,

b f
(zl)mm [ 1L .
: 12,288
&/ . by
(klz) - I 12,288 1117
min,  {z7) i1

2

min,

{to slide rule accuracy)

#
A%
L)
-3
o3

(kq

Consequently from equation {55) critical Pl s when P, =0 ; is given

kl,’EI@ GJ@ 2040 /EI@ GJ@

P, = =

. ’e 2 4? 2

by,
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- This agrees remarkably well with the results previously attributed to

Federhofer,

9, The Coupled Problem

This, in principle, is the same as the earlier calculation made
for the untapered strut. Consequently the procedure adopted there will
be also used for this present case of the tapered strut.

Corresponding to equation (31} of Part III the following may there-

fore be written:

2
i (83)

ks

This may now be substituted in equation (76) to give the following

equation in k,

ok, = 0,25 (d k2)2 + 0,015,625,0 ( kz)Ba 0.000,434,0 (« kz)"f

+ 0.000,006,8 (d k2}5 ~ 0,000,000,1 (& kz)6 PO

) 22 + 0.25 k7 = 0,027,777,8 k% + 0,001,736,1 k7

= 0,000,069,k k,® + 0,000,001,9 k,7 o « « 4

- 1.25 o k22 + 0,388,888,9 o(k23 -~ 0,052,083,2 e(kzl*

+ 000039819,&-4 k25 - 00000317592&4 kzé + (‘(‘iﬁﬂtiﬂu@@}
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+ 0,000,005,5 of k' = 0,000,000,1 ok B . ...

2 | 2
+ 0,154,513,8 o k23 - 0.030,486,0 of k;“

+ 0,002,930,1 ok, = 0,000,165,8 o °k,°

|+ 0,000,006,2 o %7 = 0,000,000,1 o5+ . . .

- 0.006,614,4 of’k,* + 0.000,981,8 ok,

- 0,000,075,1 0(311{25’ + 0,000,003,5 9(31{27

- 0.,000,000,1 a(3k28 +

+ 0,000,141,7 o(l?"kzﬁm 0.000,017,0 o4k, °

+ 0,000,001,1 o(l"k; - e e ..

- 0,000,001,9 0(5326 + 0,000,000,1 o(5k27 - 0. .=0 (84)

Then o = O this becomes equivalent to equation (78) for the
degenerate case of the column., However, the above expression may now

be solved for (k2> for various values of the parameber d

mine
2

Then the corresponding value of (kl ) is obtained by substitution

: min,

into (83).



Solutions have been calculated for of = 1/10, 1/4, 1/2, and 1.

For larger values of o it becomes desirable to re-define the para-

2

meter relating kl and kz as,

k ;
ai;mge §85}*
k.2 , :

1

The numerical work is improved by following such a procedure, Sub=

stituting (85) into (76) gives,

k 2 = 09252{1& + Oe@lﬁgégﬁgaklé had 090009@3@9%{18

1

0 1
. @@0@,@@@%11 ~ 0,000,000, 1k, e

2 2 6 8 10
+e kl = e klg%'% 97925 631{1 - 09027977798 ei}kl + 090@1@73691 eﬁkl

12 14

6
- 0,000,069,4 B &, ™ + 0.000,001,9 p7k1 - e e e

. 1256}{1&% 0.388,888,9 @ k 6@ 0.,052,083,2 @3 8

@10 512

+ 0,003,819,4 @ k™ = 0.000,175,4 Bk

6 14
+ 0,000,001,5 B ky = ee e
10
+ O&%,SBQSGB&;’ = 0,030,486,0 szf + 0,002,930,1 Qf%kf

| 12 5
~ 0.000,165,8 ?Akl + 0,000,006,2 Bk 14

® & 9

8 12
= O@OO@;@lhy&?@kl <+ 090@0998«19& ngllgq O @OO 075 1% k

Lo 14
+ 0,000,003,58 'k, = o« .+ .

(eontinued)
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10 2 12 L
+ 0,000,141,7 Bk, '+ 0,000,017,0 §7k," = 0+000,001,1 @%{l b e e

2
- 0900@500199%11” + 0,000,000,1 ggkim -

14
+ Oe@@@g@@@;@@kl = e e ° ° o 0 = O (86)

When € = 0 the above degenerates to equation (8l) for the beam
problem., Solutions have been calculated for equation (86) to supple-
ment the pr@vibus results from equation (84). Values of P used were
0s5 5 0e3 , 002 , and 0.1 o

To insure decent numerical accuracy equations (84) and (86) were
taken with seven terms for each value of the parameter. Calculations

were then made for (ki) . and (ko) | by carrying out Graeffe's
min mi

@ [}

method through a second approximation. The numerical details have been
amply illustrated in previous calculations and therefore need not be
repeated here., Results are listed in Table VI, A plot of these values

gives the design curve of Fige. 2L.



PART VI

PROBLEMS FOR FURTHER INVESTIGATION

1. Intreductery Comments

Since there are a number of unsolved problems connected with this
research and since these are of importance to the designer, they will
be considered in some detail in this section. Wherever possible the
governing differential equation and boundary conditions will be.givene

Those cases previously considered have been restricted to a come
pressive axial load component. Actually this axisl load could also be
tension. In fact, the aerodynamic model may produce either effect
depending on how it is mounted and what the angle of attack happens to
be., Consequently it is necessary that this possibility be recognized.
Seections 2 and Brdiscuss this aspect of the problem.

In section L a brief discussion is given of the possible influence
of axial stresses on the t@rsi@h&l rigidity of the strut. This is then
related to the shape of the eross-section.

$@@ti©n‘§‘takes up the general prcblem of the tapered strut with
sweepba@ke A reasonable pi@turenaf the physical behavior of such a
‘strut is given. From this discussion it follows that sweepback does
n@t.@ompli@ate the problem to ﬁhe seme extent that baper doeél Both
axial compression or tension are permitted for the swept strut.

The final section, 6, deals with the inelastic problem. No theore-
tical analysis is attempted. It is suggested that an experimental study

be made, much as for the case of inelastic (1.e., short) columns.
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2. Untapered Strut - Axial Tension (Pz) + Transverse C@Mp@n@nﬁr(Pl}

Dependent on the attitude of the aerodynamic model being tested,
the axial component P, may be either compressive or tensile in
nature, In the analysis of Part III a compressive component was
assumed.

When P, is tension, rather than campressiong,it tends to delay
buckling. Consequently the resultant load needed to pr@ducé strut
instability @én be expected to increase greatly as P2 becomes
sbtabilizing in nature.

A complete analysis should admit the possibility of P2 being
a tensile component, This can be done by reconsidering the analysis
in Part IIT.

Since Pz produces only bending at an arbitrafy section along
the strut (see Sections 1lb and ld of Part III) it is merely necessary
to correct its sign in equation (5) of Part III. Instead of being
In@gative, P2 now beccmes positive,

This corfecﬁiom automatically carries through the remaining equa-~
tions. Thus the new equations are:

(Equation (6) of Part III becomes),

bk pa2 P, d? P2 d p,2

dx BC B 4x? BC dx BC

This is the basic differential equation for this problem.
Establishing non-dimensional variables and coefficients as before

(see equations (10}, (11), and (12) of Part III) the non-dimensional

form of the preceding differential equation appears as,
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d&m dQu o

- y - -
um% + (kﬁg X = kg) —5 + 2 k12 (x fg - y)=0 (88)
dx - dx dx

The corresponding equation in Part III is (13).

The boundary conditions alsoc undergo some change. Thus equation
(8) of Part III represents a boundary condition which depends on eque-
tion (5), also of Part III. Therefore, a change in (8) may be ex-
pected. As before, it is only necessary tc change the sign of PZ R
a fact which is easily demonstrated by carrying through the details
analogous to those of 2a in Part III. Eventually the boundary con-

ditions (14) of III become ,

y=0 at x=0 (unchanged)
d2m
R -
£l-0 at x =0 (unchanged)
P
dx AY
(89)
d2m
T = = - s
_ ky ¥, at x =1 (change in sign)
dx
dB“ 2 |
¥y _ = at x =1 (unchanged)
;jukl (y@>
X

In spite of these changes in the boundary conditions, detailed

calculations show that the problem reduces to equation (26) of Part
)

111 with = k2 everywhere substituted for -+ kz . Or the critical

loads must satisfy,

+ o o s o

k%10 k", 540 6 70,200, 8
TR S T TR

(continued)



2 3 /3 5 6 7
ky kT kKT Ok K
2t 4t 61 8, 101 12!

1 10y, 2 1 38 2 2 1 92 2.3
+( GZ?)kl kg +( - + )kl 2 (7% + 82>kl k

1 180) (l 310} 5
$10 1 12% l 2

® e

_¢38 . 50y 4. _(92 . 388l (180 , 15,8LLy, 4 3
(;Y + “EE)kl k2 (§§ + ‘iﬁ?)kl (11“ Ty )k k + o e

3884  70,200,, 6 _
d(EF e STk, .= 0 (90)

This equation differs significantly from (26) of Part III. Thus

when kl = 0 the above degenerates to,

2 3 I [

k k k k k

- 2 2 2 2 2 -
k2 (1 + 3? + T + = + 1 + 107 PR 0

The portion in parenthesis can have no real positive rcoots. Hence the
only real solution in this case is for k2 = 0 . Or instability is
impossible unless Pl is acting, This is already known from the phy-
sical problem.

The mini@um eigenvalues of (90) have not been calculated out in
detail. To do so one would proceed as in Part III. The plojted results
would have the appearance of the dotted curve in Fig. 25.

The angle of the resultant load may be fixed by ¢ as in Fig. 26.

In terms of the dimensionless parameters kl and k2 this angle is

given as follows:



s

P k , k , '
tan ‘P = 1 = 1 c = _m-l-—a i (91}
P2 k2 B kz BC

where Pl and P2

are as given by equations (11) and (12) of Part

111,
E 3E

2(1 +V) 8
cross-section is a rectangle with h >>t , then J = 4I , where I

Suppose ) = 1/3 so that G = o Also if the

is I minimum. For this case,

tan @ = —= \/ 3/2
ky
or
kl
¢ = areban 1,226 —=—
k2
| GJ-
TNk EI
Finally if @ = - in (91), then ky=k; ———=0.
o

3. Tapered Strut - Axial Tension (P;) + Transverse Componeﬁt (Py)

Assuming again that Py is unchanged but that Pé is now a
tensile force, the basic equations of Part V undergo change.

Detailed consideration of the influence of this change in Py s
indicateé that both the differential equation and boundary conditions
of V become altered. Furthermore the change which takeg place can, in
every instance, be correctly obtained by changing k2 as in V to
- k2 o

For ccmplete taper the dimensionless parameters are given by (55)

and (56) of V . These are,



As mentioned in the second paragraph below (57) = V, for arbitrary

taper L should replace 1? in the above expressions. Or,

2 bk 2 b 2 2
2 p°L' p L P, L° P, L
LW | = .1 Vo l2 7 2
(kl ) = GJ = B 9 k2 = = (92}
EI, GJ, By Cg EI, B,

With this change in notation equation (53) - V may be rewritten to
apply when P, is tensile, or,
_2_?V — g2”‘2 . - 1
AR F 20 DF [0 F -1 A D]F
0 2 3
X = =i =
+ (k) (2= xy =y)=0 (93)

+ X

At the same time the boundary conditions change to,

¥, = 0 at x=0
m,m" =
(A+x)y =0 at x=0
‘ 2
w P L
o B -4
y o= - Vo = ks Yo at X = —E»
o
' 2 3 2 (94}
=T P L,Z P>, L -
1 2
y = = 5 Yo )
Boco ° - 22‘
at X | eemme
L

r 2
[(kl) -—é“’ kg'] .VQ

For the special case of complete taper the differential equation
and boundary conditions are given by (66), (67) - V. These again apply

when P, is compressive. When P, 1is tensile these become,



- - -t ’
X cky B kS ET-D =0 (95)

Vo = 0 ‘ at x=0
xy=20 at x=20
(96)
== = -
y = kg Yo at x=1
i 1 — -

The solution to the sbove set mf'eqma@i@n@ must satisfy (76) - V

with %k? everywhere replaced by @kz o Binece this expression is so

very lengthy it will not be written out again here.
However, if only ?2 acts on the strut it is physically obvious
that instability camnct occur, Then (76) = V becomes (remembering to

replace k, by =k, ) ,

e ol 1y, 2 1 1y 22 1 3
ky =35 + 570k, “(lwf 2333) 2 TVon zgamg} 2

Nt 1 Ve o =
\Bﬁﬁg + m)hg ® o e @ NO

or,

2
kg 3’{23 kgi@ k25
ekg 1= k2 + = 4 + - + o ol =0 (9
| (212 (3% (!
Again the portion inside brackets can have no real, positive

root. Hence ko, = 0 is the only real solution,
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Lo Shape of the Cross—section

So far in this present analysis very little mention has been made
as to the actual cross-sectional shapes which may be permitted. As a
matter of fact the only stipulations have been that the depth be con-
siderably greater than the thickness (h> > t) and that the sections
have twd axes of symmetry. One of these axes of symmetry (that of
minimum moment of inertia) must be parallel to the transverse load Pl o

It is an interesting fact that the torsional rigidity of a member
is a function of the internal axial stresses in the member. Thus
consider two strips of the same material, identical in size and shape,
and possessing deep buﬁ thin rectangular cross-sections. Further
suppose that one of these strips has been subjected to a rolling oper-
ation such that surface tensile stresses have been loéked into the
member. Under these conditions the beams will look alike in every
respect, will exhibit identical bending stiffnesses, yet the strip
which has been pre-stressed will have a noticeably greater torsional
rigidity. This fact is of some interest in discussing the effect of
cross-sectional shape on the instability analysis of this present
investigation,

In conventional torsion theory it is customary to assume that
.distamc@s between cross-sections remain unchanged as twisting takes
place. For most materials (as the usual structural metalg) and for
many cross-sectional shapes, this is essentially true. However, for
some sections--as the thin rectangular section--this assumption cannot
be made even for metal parts. Twisting of such members causes the

cross-sections to approach one another, thereby inducing axial stresses.
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It is possible to investigate these axial stressés in some détaile
They are distributed over the cross-sections in such a manner that the
net axisl force vanishes. Furthermore they have a component which
causes a moment about the axis of twist., This moment increases as the
cube of the angle of twist.

Thus the induced axial stresses serve to stiffen the section
against torsional deflection, producing an effect analogous to in=
creasing the torsional rigidity of the member., This is the reason
that, in the example mentioned earlier, the strip with locked in
tensile stresses had more torsional stiffness than the strip which
had not been pre-stressed.

Effects similar to these may occur for struts ofithe type being
investigated here. For example, assume deflections to occur prior to
the instability loading. Bending as well as torsion will then cause
axial stresses which may influence the torsional rigidity. As a result
the use of C = GJ for the stiffness in torsion may have to be re-
examined and modified,

Professor Goodier of Stanford University has recently carried out
some investigations (unpublished) to determine the scope and magnitude
of such torsional effects. There is evidence that when the @r@sé@
~section has two axes of symmetry no torsional stiffeningigue to bending
is possible. Furthermore, in so far as the present problem is con-
cerned, there is also reason to feel that this phenomenon cannot in-

fluence the actual critical loading. As pointed out previously, the

instability condition is basically an energy condition and hence does

not depend on previous deflections for its attainment. In this sense,
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when the eritical loading is applied the energy state is such that

S (U=-W) = 0 and by definition instability is imminent. Neverthe-
less the possible influence of cross-sectional shape might be given
further consideration. The purpose here is merely to point out these
rather interesting possibilities,

Actually this discussion can be carried much further. For
example, thin, open-section columns are subject to a torsional type
instability under axial compressive loading. This may be viewed as
being caused by a decrease in torsional rigidity due to the compres-
sive stress. At the eritical loading the compressive stress will have
reached a magnitude such that the torsional stiffness due to G and
J is mullified by the opposing influence due to the twisting come
ponents of the axial stresses. This case then is the opposite of that
in which axial tension stiffened the member torsionally. (Open section
columns were specified above since these are the most apt to fail by

twisting before general Euler column instability occurs,)
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5, The Swept and Tapered Strub

In the general case the wind tunnel model suppert strut may be
both tapered and swept. The difficulties encountersd in cslculating
the eritical loadings for the tapered but unswept strut, serve to
emphasize the probable greater complexity of the g@n@fal case. It
will be shown, however, that the strut with sweepforward can be re-
duced to the same problem as the strut without sweep.

As in the previous cases already discussed, buckling will again

o

be manifested by & combined twisting and bending action, the strub
essentially displacing normal to its own plane as it deflects. This
at once suggests the difficult problem of the swept, cantilever plate,
loaded normal to its own plane. The sclution to this problem has not
as yet been made knownm,

H@Wever, it should be kept elearly in mind thet the model support
strut has been considered és & beam ﬁhraughout this analysis. In fact
in the derivations of Parts III and IV, the differential equation of

beam bending was explicitly used. Consequenly there is little Justi-
fication for introducing the plate problem into the case of the swept
strut,

Physically the swept strut will be assumed to possess an elastic

axis. Sections normal to this axis (as B = 4 = C in Fig. 27) will

K

A
then displace without rotabing due to loads concentrated along this
axis., &Similarly such sections will only robate when a torsional moment

acts along the elastic axis,

In other words, by postulating the exisbtence of an elastic axis

e

the behavior of the swept strul is 2 considerat’
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of bending and twisting, these actlons now being calculable bj

Q@
(<l
ﬂ"

conventional mebhods as used previously for the simpler unswepht cases.

For the symmebry properties already noted as being probable for

such strubs, {>§ of Fig. 27 will represent the elastic axis, Normal

.

sections as B = A - € will then bend or twist with respect to this

-.

axis., These effects are separable,
Some assumptions are, of course, inherent in such a simplification,
Most important is that the aspect rabtio, AR, be large, Calculating

the AR as though the strut were a wing half-span,

2 X 2
(spen)” _ (22) _ L f
. 1 ¥ n
total area 2[ - (h02+ 1’13!)] hQ + Iy

R o=

Experiments on actual swept airplane wings indicate that the assump-
tion of an elastic axis is quite accurate if this ratio, as given by
(98), is of the order of eight or nine. In keeping with the aerody-
namic requirements and th@ condition that the slenderness ratio be
sufficient to give elastic buckling, it appears reasonable to adopt
the elastic axis concept into the analysis.

It is also true that the sbrut will suffer collapse oubboard of
the ciamped edge neighborhood. Or at the critical ssction the use of
an elastic axis is reasonable,

A strut having g =2 ine, hy = 10 in., hy = 5 in., will have
an M of eight,

Since the strut is now reduced to a consideration of behavior with

respect to the elastic axis, the load components parallel and normal to

this axis will be caleulated (Fig. 28). Or,

(along 08) B

% =-P, siny + P, cos ¥ (99}



{along ON) B = mf‘z cos Y = P, siny” (100)

where Y is the sweep angle as defined in Fig. 28 and P, has been

&

assuned compressive,

These are now the axial and transverse loads respectively, achbing
on the elastic axis of the swept strut. The trigonomsiric terms are
constants for any given sweep angle. As before, the origin 0 moves
with the strut free end and Py and Pg remain parallel to their
initial directions,

The problem may now be approached in several ways. In many

respechts the simplest will be to deal directly with cross-sections
normal to the elastic axis. Although these may he related to the

cross-sechbions in the stream direction (hy hy , ete. in Fig. 26) it
is not necessarily helpful to do so., Hence the problem will be formu-
lated from Fig. 28,

As shown in Fig, 28 the elastic axis defines sections such as
B= A= C , For these sections I' and J' may be calculated., Then
the problem becomes identical to that considered in Part V. The loads
.are now ?F and ?q . Hence all the equations previously developed,
including those where ?F is tensile, may be used directly.

hs a result of this interpretation of the problem it is seen that
sweepforward does nob introduce complications comparablé to those caused

by taper.

6, DBuckling of the Inelastic Strub

Inelastic buckling occurs when, under the applied loading, Hooke's
Law no longer holds throughout the strut.

When this occurs the strut problem becomes closely analogous to that
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of the short column, As in the case of the column a completely theore-
tieal approach is not yet feasible from a design point of view,

Nevertheless certain empirical facts, whose accuracy in the case
@f’the column is well understood, may be reasonably extended to the
proolem of the strubt. Chief amongst these is the fact that if the
tangent modulus (E) 4is substituted for the elastic modulus (E) in
Euler's equation, the result is an equation which quite closely
represénts inelastic buckling. (See Ref. 11, pages 158-163 and Ref,
12, pages 1=22 to 1=24,)

‘The basic idea behind such a procedure seems quite reasonable,

In the Fuler equation E is the only material constant which appears;

=

hence when the column material properties undergo change due to in-
elastic action setting in, it would necessarily mean that E must
change. OSuch a statement while not entirely comprehensive in its de-
picting of elastic-plastic behavior, yet has been found to agree well
with a large number of test results.

In view of this an attempt will be made to extend this concept to
the case of the strut, This will not only give a means for estimating
inelastic buckling loads but will also indicate how experimental re-
sults might best be represented.

It is clear that in the strut problem, changes in G , as well as
in E , must be considered. That is, when the pr@portiggal limit is
surpassed and E is used in place of E , then some rational means
for likewise modifying G must be found,

Elastically E and G are related by,

G= ol (101)
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where V is Poisson's Ratio., Since the maximum column stress is essen~
tially the yield point*, the value of J over the range between the
proporvional 1imit and the yield stress will be substantially constant.

Hence to a reascnable first approximation for this problem,

fol]
b |

b

(102)
2(1 «V )

Hence the change over from elastic to inelastic behavior will, on
the above basis, be assumed to occur simultaneously in bending and
twisting. Physically this also appears correct, since the strut cannot
bend without twisting and vice versa; hence, yielding in one type of
action will quickly precipitate yielding in the other,

VWi&h this in mind equations (11) and (12) of Part III can now be
examined. The eritical elastic loads in bending and torsion are

respechivel
k]

P, = —2— (12)

(11)

1% 22

Since B=FI and C=GJ, let B=EI and C= GJ so that for

inelastic buckling,

_ k. B

P = 2 (103)
2772 '

_ kl,l BC

P, = (104)

4 ‘eg'

See Ref, 12, page 1-23.
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Thus the inelastic loads are cbtalned by madifying B and { as-indi-
cated and leaving kl and k, wunchanged. This is also in agreement
with coluwmn procedure, where the end fixity factor (ususlly written

as C in column theory) does not depend on anything other than the end
supports., Likewise kg and k, are funetions of the end econditions
and will behave inelastically as they do for the elastic cases,

A first graphical representation may now be made. Consider Fig.
29 in which the elastic column curve is represented by AB , which is
an Buler curve. The corresponding elastic torsional eurve is shown by
eurve DE and is drawn by noting the mathematical analogy between
eguations (11) and (12) as Jjust @ritbeng Combinations of Py and P,
will cause elastic failure described by the interaction curve EB
Hence to the left of plane EOB the strut behavior is completely
elastic.

Then inelastic behavior sets in the typical column tangent modulus
curve is shown as BC on Fig, 29. Comparison between equations (104)
and (103) show that when Py alone is acting, a similar type inelastic
curve must ocecur. This is shown as EF .

Surface EFCB then defines coupled loads capable of buckling the
”sh@r@” strubt. It corresponds to the short column curve, The coupled
and k

1 2
‘ y
(as Fig, 10 of Part III)., As already pointed out this will remain

behavior is essentially dependent on the curve relating k

unchanged during the transition to the inelastic regime.

Such a picture of what appears to be a likely representation of
the strut behavior should be checked experimentally. The techniques
already developed should prove sufficient for this purpose. Actually

non=dimensional curves similar to those used on columns ought to be
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bused instead of the dimensional curves of Fig. 29. However, the proce-
dure for doing this is so well established that it need not be ela-
borated on here, The important point would be to check the anticipated
behavior as outlined in the above discussion, and for this purpose an
experimental program is necessary. The usefulness is apparent, since

for some applications inelastic behavior may be unavoidable.



APPENDIX

The equation which is to be derived here by variational methods
is that previously given for the uniform strut. This equation, (6}

of Part 1III, is repeated below for easy reference,

b 2

dy P" Py dy P d
e T R xZ-p=0 (8
et B ax® :

)

In order to derive this expression by variational procedure the
following well known minimum prineiple from elastieity will be em-
ployeds ﬁamelys that eqﬁilibrium is established when the variation of
the total potential energy of the system vanishes., Symbolically this

may be represaented as,
S(U « W) =0 (105)

where, U = total strain ensrgy

[

W= total exbternal work done by applied forces

§

i

conventional variation symbol of Caleculus of Variations

i}

This Principle is well known in Elasticity, and hence need not be
elaborated on.here,

To ecalculate the strain energy, U , it is convenient to separately
consider bending and twisting effects, Since the strain energies for
these separate effects are known for beams from strength of materials
they may be set down at once as,

L

i B (om? 4
Ypending = - (y")" ax



108

0 = borsional stiffness of sbtrub
2
«}?N = ﬁ y
o
dxz
91 = ae
dx

Hence the total strain energy is,

Tx
Ua f [“ﬁ* m? « L en? ] ax (106)
2 2
O

The work term, W , is somewhat more difficult to calculate. It

may be first expressed as,

W= P 81 + P 32 (107)

[

where, 81 deflection of centroid of strut free end

in direction of P

o

= deflection of same point in direction of
P
2

The problem then becomes one of determining O 7 and § 9 ¢

Peflection Sil o Initially it might seem that, due to the

assumptions made, § 1 should be zero, Thugs h >2> t was reguired
in deriving (6) so that bending deflections in the xz or vertical

plane (see Fig. 29a) could be neglected. Nevertheless, it will be
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shown that due to bending in the =xy or horizontal plane, plus

twisting about the neutral axis, that a deflection § ., does exist,

1
A very exsggerated picture of the deflected strut (Fig. 30) brings
this out rather vividly. The vertical displacement of origin O as
the beam deflects, can be visualized from such a sketch.
Fig. 30b shows S 1? ag the deflsction of the origin measured
in the horizontal xy=-plane. This deflection is readily calculated by

Materials., Thus if the contribution of a length dx of beam at arbi-

trary point x is considered (Fig. 3la), then by this theorem,

A8 " =M xaxas L xox= y* ox dx
1 EL B

This is merely an ap

Lo

pplication of @mnw@mtiaua& bean theory.
Now consider the vertical deflection suffered by (ﬁslw at the
free end as a twist © is imported to the beam at arbitrary point x.

Due to this twist the cross-section at x rotates through an angle © .,

5&«

Furthermore, the element <383” can be thought of as being rigidly
cornected to this cross-section at x . Hence it will deflect dowr~
ward by an angle © as shown in Fig. 31b. The vertical component d 8,

due to twisting end bending effects at station x is then,
d€, = 8 ¥ x dx

This effect at a point can now be extended to include the enbire

strut by integration,

S = 8 v x dx (108)
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Teflection Sg o This represents the decrease in distance from

the fixed edge to the centroid of the free end, measured parallel to

ox , which takes place as the strut deflects., It may be ealculated

see Ref. 1, peo 27) by keeping in mind that the actual length of the
$ & o ? (&) &

neutral axis does nobt change as deflection takes place. The result as

given on p. 28 of Ref, 1 is the well known expression,

.,
9 = 2 .

§,= mi {y*)” ox {109)
Y%

Substituting these last two equations into (107) gives,

T

Sk

W [ POy x+ 2 P, {y@}g] dx (110)

B

O

quations (106} end (110} may now be substituted into (105) to

=

yield the stetement of the variational problem,

L
B W2 C 2
) L[w;(y”; « = (9")" = P 0y

In dealing with this expression it is not necessary to apply the de-
tailed methods of the variational celeulus., Thus on p. 290 of Ref, 5

it is given that if,

!

=
i

. n
Fx q a' g, ... q( ) ) dx = a min,
x0 |

then the corresponding differentisl equation to be satisfied is,



ol
g 1= n 4B .
F - 4F .0 F “@@@-%(E’l}ﬁ@;af"{)gﬂ(llz‘}
4 dx q' g2 Q" , gt pln

The identity of this with the problem posed by equation (111) is evi-

dent on inespection.

hence (112) will be applied te each separately.

Vhen q =y equation (111) substituted inte (112) gives,

2
F_- 9 B, + don
dx dx" v
or,
0= —— (=F, 7'} + - { Byt =P, Ox = 0
e 2 d?ﬁ‘? 1
is@@g
Byl L b xemam yre2P 0 =0 (113)
17 "2 1
When g =6 the result is;
d
F.®*= —F 0
© dx e
or
-p oyt x-S (Cer) =0
1 dx
Fl Xyt + 08" =0 (114)
Thiz last eguation may be integrated once to give,

Cor+ Py (xy'" = 3) =0
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e

where the left hand side is zeroc since at x =y = 0 , the value of
o' (which is alse the twisting moment) is likewise zero. Substituting

the above into (113},

“’?1 wa??\ ?'F

) o+ p@ g = gpl[m mzé, (}gy-ﬁ - y} =

B yg ﬂf) [ ?1 K (

or

2 -~

(), P P By
y(ﬂ)*,(; }izz+i)ysa+gg%(}qfe@3y;i§@
C B

which is again equation (6},
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TABLE III
SECTION AND MATERIAL PROPERTIES
FPOR TEST SPECIMENS
(See Fig. 12 for typical sketch,)
seEcney | £ | h |t I, ~J \
Tn. | Tn. | In. Tn," In, El = B|GJ=C BC
- =&
A 18 2 2127 | 341 = 10 é 1364 % 10 3620 5550 LI80
B 19 3 2126 | 512 x 10 20L8 x 10 52770 8120 6540
In the above Table:
B = Flexural stiffness
0 = Torsional stiffness
6 .
= 10,6 x 10 psi

3 (Poisson's Ratio)

B/2 (1 +V

)

6
4:07 x 10

psi
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TABLE IV-A

SPECIMEN A

TEST

i P k %
vuEEr | P (Pl}@fitm ( Q)Gfit 1 %
A1 119° 321 9,59 27,00 69 2442
2 1360 120 17.98 24, 055 1..30 2,20
A=3  [58° 30t 32,15 19,69 2,32 1.76
=L 17° 6" | LL.25 1%.10 3,98 T.26
Notes

¢ is measured from P, to the resultant load,

]

Fige 26,

. ZW 1 @Pj\,t»e
bl)@riﬁ" ‘l-— 13,82 )
=X BC ESE-)
2 (P)
(p,) Y4 V27 orit,
erit, B 11.18
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SPECIMEN B - COMPLETE TEST DATA
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