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ABSTRACT

The aim of this paper is to investigate to what extent the known theory of
subdifferentiability and generic differentiability of convex functions defined on open
sets can be carried out in the context of convex functions defined on not necessarily
open sets. Among the main results obtained I would like to mention a Kenderov
type theorem (the subdifferential at a generic point is contained in a sphere), a
generic Gateaux differentiability result in Banach spaces of class S and a generic
Fréchet differentiability result in Asplund spaces. At least two methods can be
used to prove these results: first, a direct one, and second, a more general one,
based on the theory of monotone operators. Since this last theory was previously
developed essentially for monotone operators defined on open sets, it was necessary
to extend it to the context of monotone operators defined on a larger class of sets,
our “quasi open” sets. This is done in Chapter III. As a matter of fact, most of
these results have an even more general nature and have roots in the theory of
minimal usco maps, as shown in Chapter II.
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INTRODUCTION

Consider a real Banach space X and a closed, convex subset C of X with non-
empty interior. Recall that a boundary point = of C is called smooth if there exists
a unique hyperplane H of X passing through z and such that C is contained in
one of the halfspaces determined by H. In 1933 S. Mazur [10] proved that, under
the assumption that X is separable, the set of all smooth points of C is a dense G
subset of the boundary of C. Assuming that zero is an interior point of C', we can

consider the Minkowski functional associated to C':

pe(z) =inf{t >0: z €tC}, ze€ X.

This functional is always sublinear and continuous. There exists a close relationship
between the “smoothness” of C' and the Gateaux differentiability of pc, namely: a
point z in the boundary of C is smooth if and only if pc is Gateaux differentiable
at any point of the ray {tz : ¢ > 0}. It follows that the result mentioned above can
be restated by saying that in a separable Banach space a Minkowski functional is
Gateaux differentiable on a dense G4 subset.

It is now natural to ask to what extent convex functions are Gateaux differen-

tiable on “large” subsets of their domains. As a matter of fact, by using Mazur’s



result, one can prove that any continuous, convex function defined on an open,
convex subset of a separable Banach space is Gateaux differentiable on a dense
G5 subset of its domain. However, this result is not true in an arbitrary Banach
space. For example, in [ the continuous convex function p(z) = limsup |z,| is
nowhere Gateaux differentiable. Asplund [2] introduced the following classes of
Banach spaces: the class of weak differentiability spaces (nowadays called weak
Asplund spaces) and the class of strong differentiability spaces (nowadays called
Asplund spaces). The first one consists of those Banach spaces in which any con-
tinuous, convex function defined on an open, convex set is Gateaux differentiable
on a dense Gj subset of its domain. The second one is defined similarly, except
that Gateaux differentiability is replaced by Fréchet differentiability. In these terms
Mazur’s theorem can be restated by saying that separable Banach spaces are weak

Asplund.

Asplund showed that a larger class of Banach spaces are weak Asplund, namely
the Banach spaces that admit an equivalent norm whose dual norm is strictly con-
vex. Besides separable spaces, this class contains the weakly compactly generated

Banach spaces, in particular the reflexive ones.

More interesting and better known is the class of Asplund spaces. For example,
a Banach space X is Asplund if and only if each closed and separable subspace of
X has a separable dual. For more details on Asplund and weak Asplund spaces see

Phelps’ Lecture Notes [14].

In a finite dimensional space a convex set a has non-empty interior if and only
if its affine hull is the whole space. This is no longer true in infinite dimensional
spaces, as shown by the positive cone in [*(N) (see Remark 2.7 (1)). However,
when the interior is empty, there exists sometimes another subset, the “quasi-
interior,” which plays a similar role (see Section 2). It was the striking similarity
between interior and quasi-interior that triggered my interest to study differentia-
bility properties of convex functions defined on quasi-open sets. As a first result in

this direction, I proved that in a separable Banach space any convex and locally
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Lipschitz function defined on a quasi-open convex set is Gateaux differentiable on
a dense G; subset of its domain (see [23]). Even in the case of an open domain this
result is stronger than Mazur’s initial theorem: the set of points where the function
is not Gateaux differentiable cannot contain a closed, convex set with non-empty
quasi-interior. Soon after, my result was extended by Rainwater [16] who proved
a generic Gateaux (respectively Fréchet) differentiability result for Banach spaces
of class S (respectively Asplund spaces). His proofs use a subdifferentiability result
from [23] and techniques from the theory of multivalued maps.

In this thesis all these results are further generalized to the case of convex
locally Lipschitz functions defined on arbitrary convex sets. In this more general
context we have to deal with a new fact: the subdifferential map, the key to dif-
ferentiability results, is no longer locally bounded, one of its main features in the
case of open or quasi-open domains. Fortunately it still has a useful property: it is
“locally efficient.” It turns out that this property is sufficient to derive directly the
main differentiability results of Chapter IV, as I did in a first version of this thesis.
However, most of those results have a more general nature and can be studied in
the context of monotone operators, or even more general, in the context of minimal
usco maps. This is done in Chapter II and Chapter III and some of the results

obtained there may be of independent interest.
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INTRODUCTORY TOPICS

1. Tangent and Normal Cones

1.1. Let A be a subset of the Banach space X and ¢ € A. The simplest cone

associated to A at z is the cone generated by A from z, denoted A, and defined by
A, = {y € X : there exists ¢ > 0 such that z + ty € A}.

Let us notice that if 0 € 4 and A is a cone, then Ay = A; this shows that in
general A, is neither convex, nor closed. If the set A is convex, then A, is a convex
cone, not necessarily closed even if A is closed, as the following example shows it:
let A be the closed unit ball in R? and z = (0, —1); then A, consists of the open
upper half plane and the origin.

A point z € A is called an absorbing point of A if A, = X. Obviously any
interior point of A is an absorbing point of A. The converse is not true in general,
as the following example shows it: let A = {z € X: ||z|]| = 1} U {0}; then 0 is an
absorbing, but not interior, point of A. However, if A is closed and convex then any

absorbing point of A is an interior point of A (this is true in any barreled space).

1.2. A smaller cone, T;(A), can be defined as follows:
T;(A) = {y € X : there exists a sequence (t,) | 0 such that = +t,y € A}.

Of course, if A is convex the two cones coincide.
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1.3. Another useful cone that we shall consider in this paper is the contingent cone
to A at z, denoted K, (A). It is defined for any « € cl(A) as follows: y € I,(A) if
and only if there exist a sequence of positive real numbers (¢,) | 0 and a sequence
(yn) C X (norm) convergent to y such that z + t,y, € A for each n. Equivalently,
y € K (A) if and only if for any neighborhood U of z and any neighborhood V of
y there exist t > 0 and z € V such that z +tz € U N A.

One can easily check that ;(A) is a closed cone. If A is a cone then Ky(A)

is the closure of A. It follows that in general ';(A) is not convex.

1.4. LEMMA. K (A) = K (cl(A)) for every x € cl (A).

PROOF. Trivially we have that I;(A) C K.,(cI(A)). To prove the other
inclusion, let y € K;(cl(A)). Then there exists a sequence of positive real numbers
(tn) 1 0 and a sequence (y,) C X convergent to y such that ¢ + t,y, € cl A. Let
€n = tp/n. Then there exists z, € A with ||zp—z—thyr|| < €n. Let u, = %(zn—:c).

Since
1 1
lun = Yll < llen — ynll + llyn —yll = t—Hzn = —tayn|| + llyn —yll < —+ lon — |

it follows that the sequence (u,) converges to y. Since z, = ¢ +1t,u, € A, it follows

that y € K,(A), completing the proof of the lemma. O

Except the obvious inclusions T;(A) C A, and T;(A) C K;(A), z € A, in
general there are no other relations between the cones introduced above. However,

in the case of convex sets, we have

1.5. LEMMA. Let C be a convex subset of X and ¢ € C. Then K,(C) = cl(C,).

PRroOF. Clearly C, C K,(C) and, since K,(C) is closed, we have cl(C;) C
K.(C). Conversely, if y € K;(C) there exist a sequence of positive real numbers
(t,) | 0 and a sequence (y,) C X converging to y such that = + t,y, € C. Hence
yn € C; for each n and therefore y € cl(C;). O
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1.6. If C is a convex subset of X, the normal cone to C at x € C, denoted C7, is
defined by
C;={z*€ X*: (2%,z) <0 for every z € C,}.

It is easy to see that C} can also be described by

Cr={z*e X*: (2%, y—z) <0 for every y € C}.

2. Quasi interior. Support Points

2.1. Let us notice that for an open subset A of X we have I{;(A) = X for any
z € A. This motivates the following definitions.

DEFINITION. (1) A point z € A is called a quasi interior point of A if K,(A) =
X. The set qi(A) of all quasi-interior points of A is called the quasi-interior of A.

The set A is called quasi-open if it is equal to its quasi-interior.

(2) Let A C B be subsets of X. A is called quasi open in B if K;(A) = K, (B)
for all z € A.

Obviously an epen set is quasi-open. Since N (A) = K (cl(A4)), it follows
that any dense subset of a quasi-open set is quasi-open. Also, a quasi-open subset
of a quasi-open set is quasi-open. The quasi-interior of convex sets will play an

important role in what follows.

2.2. DEFINITION. Let C be a convex subset of X. A point x € C is called a support

point of C if there exists a non zero z* € X* such that
(z*,z) =sup{(z”,y): y € C}.

The functional z* is called a support functional to C at x. We shall denote by S(C')

the set of all support points of C.
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It follows immediately from the definitions that
z € S(C) if and only if C} # {0}
and, since K,(C) = cl(C;),
z € S(C) if and only if 0 € S(C,) if and only if 0 € S(K,(C)).

It is also clear that C7, the normal cone to C' at z, consists of 0 and all the support

functionals to C at z.

2.3. LEMMA. Let C C X be convex and let x € C. Then = € S(C) if and only if
z ¢ qi(C).

PROOF. Let z € S(C). Then 0 € S(K,(C)) and thus K, (C) # X, proving
that = ¢ qi(C). Conversely, if ¢ qi(C), then the closed convex cone K.(C) is
different from X. Let z ¢ K;(C); by the separation theorem there exists z* € X*
such that (z*,u) < (z*, z) for each u € K,(C). It follows easily that z* is a support
functional to K,(C') at zero and this implies that 0 € S(K;(C)). As noticed above,
this is equivalent to = € S(C). O

2.4. LEMMA. Let C C X be a convex subset.
(1) For any z € qi(C) and y € C, the segment [z,y) is contained in qi(C').
(2) For any z € int(C) and y € C, the segment [z,y) is contained in int(C).
PROOF. (1) Recall that z € [z,y) if and only if there exists t € [0,1) such that

z = (1 —t)z + ty. Assume that such a z is a support point of C. Then there exists

a non zero z* € C} and
(1= £)(" ) = (%, 2) — t{z",9) 2 (1= )", 2) 2 (1 = £)(=", =)

implying that (z*,z) = (2*,z) = sup{(z*,u) : u € C}, hence z is a support point

of C. This contradiction proves the first assertion of the lemma.
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(2) Let z be as above, but assume now that =z € int(C). Then there exists

1
€ > 0 such that B(z,e) € C. For any u € B(z,(1 —t)s) let v = e i y.

Since

lo— 2| = lu—z] <

1-—1¢
it follows that v € B(z,e) C C and therefore u = (1 — t)v +ty € C. Thus
B(z,(1 —t)e) C C, proving that z € int(C). m

2.5. COROLLARY. If C C X is convex then qi(C) (resp. int(C)), if non-empty, is

convex and dense in C.

It is obvious that the interior of a convex set is contained in its quasi-interior.
As we shall see, it may happen that the interior is empty while the quasi-interior
is non-empty. However, if the interior is non-empty then it is equal to the quasi-

interior.

2.6. LEMMA. Let C C X be convex and assume that int(C') is non-empty. Then
int(C) = qi(C).

PrOOF. It is enough to prove that if # ¢ int(C') then @ € S(C). Since int(C)
is open and convex, by the separation theorem there exists a non zero z* € X* such
that (z*,z) > (¢*,y) for any y € int(C). Since int(C) is dense in C, the preceeding
inequality is true for any y € C' and thus = € S(C). a

2.7. REMARKS. (1) It is well known that if X is finite dimensional, then a convex
subset C of X has a non-empty interior if and only if the affine hull of C is X. This
result cannot be extended to infinite dimensional spaces, as shown by the following
example.

Let X = 2 = I2(N) and C be the positive cone in X, i.e.,, C = {(z,) € * :
zn = 0 for every n}. Clearly the affine hull of C is X. However, the interior of C
is empty. To prove this let ¢ > 0 and z € C. Let no be such that |z,| < /2 if

n > ng. Let y, = 2, if n # np and y, = —¢/2 if n = np. Clearly (yn) is contained
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in B(z,¢e) but not in C. Thus C cannot contain any ball and therefore its interior
is empty. On the other side, C has quasi-interior points, namely qi(C') consists
of those (z,) € [? such that z, > 0 for all n. To prove this let x = (z,) € C
be such that z, > 0 for any n and let z = (z,) € [ be such that z, = 0 for all
but finitely many n. Then, if ¢ > 0 is sufficiently small, x + tz € C' and therefore
z € C,. Since the set of all z with the above property is dense in [2, it follows that
K.(C) = clCx = I, which means that x € qi(C). It remains to be seen that if
x = (z,) € C has a zero coordinate, say z; = 0, then the functional z* € (I?)*
defined by
(*,y) = —y,  forany y=(ya) €1’

is a support functional to C at x and therefore x € S5(C).

An obvious necessary condition for a convex set C' in a Banach space X to have
non-empty quasi-interior is that claff C' be equal to X. In view of the preceeding
discussion we might suspect that this condition is also sufficient. In general this is
not the case. As a matter of fact if in the previous example we replace I?(N) by
[2(U), where U is an uncountable set and let C be again the positive cone in I?(U),
then claff C = I*(U) but C has no quasi-interior points. However, as we shall see
later, in the case of separable Banach spaces the above condition is also sufficient

(see Theorem 2.8).

(2) If C is a closed convex set whose interior is empty, then qi(C), if non-empty,
is neither relatively open nor relatively closed in C (since S(C') is dense in C by the

Bishop-Phelps theorem (see for example [14]).

2.8. THEOREM. Let X be a separable Banach space and C be a closed convex
subset of X which is not contained in any hyperplane (i.e., claft C' = X ). Then the

quasi interior of C is non-empty.

ProoF. Without any loss of generality we can assume that 0 € C. Since X is
separable, C is also separable and there exists a sequence (z,) C C which is dense

in C. Define a new sequence by
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Ty if |len|] <€ 1
Yn = 1 :

——=x,, if [zl = 1.

M

Since 0 € C, it follows that (y,) C C. The series > 27"y, is clearly absolutely
convergent and its partial sums are all contained in C (since 0 € C'). Using the
fact that C is closed we obtain that z = 27"y, is also contained in C'. We claim
that z is a quasi-interior point of C'. Assume the contrary, i.e., assume that z is a
support point of C. Then there exists a non-zero z* € C}. Since (z*,yn) < (z*, z)

for every n, we have

k
(a*, &) = lim Z(m w2 M) € kli—l.Tolo Zl 2" x™, &)

and therefore (z*,y,) = (z*, z) for every n.

If |za|| < 1 then z, = yn, and thus (z*,z,) = {(z*,z). If ||zx]| = 1 then
Zn = ||znllyn and thus (z*,2) > (z*,2s) = [zall{z",yn) = (2%, yn) = (2", 2),
showing that (z*,z,) = (z*,z) in this case too. It follows that (z,) is contained
in the hyperplane H = {z € X : (z*,2) = (z*,z)}. Since (z,) is dense in C, C is
also contained in H, contradicting our assumption that C' is not contained in any

hyperplane. It follows that z must be a quasi-interior point of C' and the theorem

is proved. m]

2.9. REMARK. We have already seen (Remark 2.7 (1)) that the separability condi-
tion imposed on X in the previous theorem is essential. As the following example
shows, the requirement that C be closed is also essential.

Let X = [2(N) and let Cy consist of those (z,) in X such that =, > 0 for
every n and only finitely many of them are non-zero. Then Cj is a convex set whose

closure is the set C consisting of those (z,) such that z, > 0 for every n. As a
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consequence, Cy is not closed in X. Clearly claffCy = X, but Cy has no quasi-
interior points since all its points are support points (this can be proved exactly as

in Remark 2.7(1)).

We have already mentioned (Remark 2.7 (2)) that if C is a closed convex subset
of the Banach space X with empty interior but with non-empty quasi-interior, then
both qi(C) and S(C') are dense in C. The next theorem shows that qi(C) (if non-

empty) is “much larger” than S(C).

2.10. THEOREM. Let C be a closed convex subset of the Banach space X. Then
S(C) is a (relative) F, subset of C, while qi(C') is a (relative) Gs subset of C'.

PRrROOF. Recall first that a subset A of a topological space T is called an F,
(resp. a Gyg) if it is the union (resp. intersection) of countably many closed (resp.
open) subsets of T'. Since gi(C') is the complement in C' of S(C'), it is sufficient to
prove that the S(C) isan F, in C. If S(C) = C, this is obvious. So we shall assume
that S(C) # C. Then there exists x¢9 € qi(C'). For any positive integer n let

F, = {z € C : there exists z* € C}, such that ”1:*” < nand (z*,z — x¢) = 1}.

Next notice that S(C) = | F,. Indeed, let z € S(C). Then there exists a non-
zero y* € C;. If (y*,z — z9) = 0, then (y*,2) = (y*,x¢) and this would imply that
zg is a support point of C, contradicting our choice of &g, Hence (y*,z—z¢) =t >0
and we can consider z* = %y*. It is clear now that z is contained in any F,, such
that n > ||z*]|

It remains to prove that each set F), is closed in C'. To this end let (z,) be
a sequence in F}, convergent to z € C. For every n choose z}, € C; [|mB* such
that {(z%,r, — zo) = 1. Since mB* is w* compact, there exists z* € mB*, which
is a w* cluster point of (z%). For any ¢ > 0 there exists k. such that ||z — z¢|| < ¢

for all k > k.. Since z* is a w* cluster point of (z},), there exists k > k. such that



{z* — %,z — zo)| < €. We have

[{z*,z —zo) — 1| = (%, — 2q) — (2%, Tk — 20)|
= |fo* — 57—} + Loy & — ]

< |(2* — 2ty z — 2ol + ekl - llex — 2 < & + me

and therefore (z*,z — zo) = 1.
We still have to check that z* € C}. Let y € C and ¢ > 0. As before, we can

find k such that ||z — z¢|| < € and |[(z* — 2}, 2 — y)| < ¢. We have

(z*,2) = (2% — oz — y) + (2how — y) + (2%, )

> —c+ (eh,z — o) + (el 2 — ) + (27)

v

—e = [lekll - lle = 2all + (=7, v)

v

—e —me+ (z*,y)

and therefore (z*,z) > (z*,y) for any y € C, proving that «* € C}. Thus z € F},

and the proof of the theorem is complete. m]
Comments

Most of the properties of non-support points (our quasi-interior) of a convex set
can be found in [9]. Our proof of Theorem 2.10 follows [15], where it is proved in

the more general setting of metrizable, locally convex spaces.
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Chapter Il

MINIMAL USCO MAPS

3. Usco and Minimal Usco Maps

3.1. Given a set Z we shall denote by 2Z the set of all non-empty subsets of Z. If
A is another set, a multivalued map from A to Z is a map F': 4 — 24, A selection
for a multivalued map F': A — 27 is a map o: 4 — Z such that o(a) € F(a) for

all a € A.

DEFINITIONS. Assume that A and Z are topological spaces (always Hausdorff).

(1) A multivalued map F: A — 2% is called upper semicontinuous at a € A
if for every open subset U of Z such that F(a) C U, theset F71(U) = {z € A :
F(z) Cc U} is a neighborhood of a in A. If it is upper semicontinuous at each point

of A, F is called upper semicontinuous (on A).

(2) A multivalued map F: 4 — 27 is called usco if it is upper semicontinuous

and compact valued (i.e., F'(a) is a compact subset of Z for every a € A).

(3) A multivalued map F: A — 27 is called convez if Z is a vector space and

F(a) is a convex subset of Z for every a € A.

(4) The graph of a multivalued map F': 4 — 2Z is the set

G(F)={(a,z) € AX Z : z € F(a)}.
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We shall partially order the set of all multivalued maps from A to Z as follows:
Fy X Fy if G(Fy) C G(F32). Thus a minimal usco map is a usco map whose graph
does not properly contain the graph of any other usco map. Similarly, a minimal
convez usco map is a convex usco map whose graph does not properly contain the

graph of any other convex usco map.

3.2. LEMMA. For every (convex) usco map F: A — 2% there exists a minimal
X P

(convex) usco map Fy: A — 22 such that Fy < F.

ProOOF. This follows from Zorn’s Lemma. Indeed, let (Fy)o be a decreasing
chain of (convex) usco maps contained in F'. For each a € A set G(a) = [ Fala).
It is sufficient to prove that G is a (convex) usco map. Let a € A. Since every
Fy(a) is compact and non-empty, G(a) is compact and non-empty (and convex
in the convex case). To prove that G is upper semicontinuous at a, let U be an
open subset of Z such that G(a) C U. Assume that for any «, Fy(a) € U and
therefore Fi,(a)\U # 0. By a compactness argument, G(a)\U = (((Fa(a)\U) # 0;
this contradiction shows that there exists « such that F(a) 2 U. It follows that
F7Y(U) is a neighborhood of a in A. Since, by definition, G~ (U) 2 F;YU),
G~1(U) is a neighborhood of a in A, proving that G is upper semicontinuous at a.

a

3.3. LEMMA. Let F: A — 2% be a multivalued map and a € A. The following

assertions are equivalent:
(1) F(a) is compact and F' is upper semicontinuous at a.

(2) If (an) is a net in A converging to a and (2,) Is a net in Z such that
zq € F(ay) for any «, then the set consisting of all cluster points of the net (z,) Is

non-empty and is contained in F(a).

PROOF. Assume that (1) is true and that the net (z,) has no cluster points.
Then every z € F(a) has an open neighborhood V, and there exists o, such that

za ¢ V2 if @ > a,. Since F(a) is compact, there exist z;, 22, ..., 2n € F(a) such
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that F(a) CV =V, U...UV,, . Also let 8 be such that 82 a;,, i =1,...,n.
Since F' is upper semicontinuous and F(a) C V, D = F~}(V) is a neighborhood
of a in A and hence there exists v > 3 such that aq € D for any « > +. Thus
zo € F(ay) C V for any a > 7, contradicting the construction of V. It follows that
the net (z4) has cluster points. Suppose next that z ¢ F(a) is a cluster point of
the net (zo). Then there exist an open neighborhood U of z and an open set W
containing F'(a) such that U N W = 0. There exist a; and as such that z, € U if
a > a; (since z is a cluster point of the net (z4)) and F(a,) C W if @ > a5 (since
F is upper semicontinuous at a). Thus, if & > a; and a > as, then z, € UNW.,
This contradiction proves that (2) is true.

Assume now that (2) is true. Then any net in F(a) has a cluster point in
F(a), proving that F(a) is compact. Suppose that F is not upper semicontinuous
at a. Then there exists an open set V' containing F'(a) and such that for each
neighborhood U of a there exists ay € U and zy € F(ay) with zy ¢ V. This
implies that the net (zy/) has no cluster points in F'(a), contradicting (2). Therefore

F' is upper semicontinuous at a and the lemma is completely proved. |

3.4. COROLLARY. Let F: A — 22 be a usco map. Then G(F'), the graph of F, is
a closed subset of A x Z.

PROOF. Let (aq,2q) be a net in G(F') converging to (a.z) € A x Z. Then
(ay) converges to a, z, converges to z and z, € F(a,) for any a. By the previous

lemma 2z € F(a) and therefore (a,z) € G(F). a

3.5. LEMMA. Let F, G: A — 2% be multivalued maps such that F < G, G(F) is

closed and G is usco. The F' is usco.

PROOF. Let (ay) be a net in A converging to a and (z4) be a net in Z such
that 2z, € F(aq) for every a, that is (aq, zo) is a net in G(F'). Since G is usco and
G(F) C G(G), Lemma 3.3 implies that this net has at least one cluster point. Since
G(F) is closed, all its cluster points belong to F'(a). The assertion follows now from

Lemma 3.3. O
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3.6. PROPOSITION. Let F: A — 2% be a usco map and p: A x Z — A be the

projection. The following assertions are equivalent:
(1) F is a minimal usco map.
(2) For any proper, closed subset S of G(F'), p(S) is strictly contained in A.

(3) For any (a,z) € G(F) and any open neighborhoods U of a and W of z,

there exists a non-empty open subset V of U such that F(V) C W.

PROOF. Assume that F' is minimal and that p(S) = A for a proper and closed
subset S of G(F). Then S is the graph of a multivalued map G: A — 2% and
G =% F. Since S is closed, the above lemma implies that G is usco and therefore,
by the minimality of F, G = F. This implies that S = G(G) = G(F), contradicting
one of our assumptions. This shows that (1) implies (2).

Assume now that (2) is true and let (a,z), U and W be as in (3). Then
P(G(F)\U Xx W) # A;let a1 € A\ p(G(F)\U x W) # A. It follows that a; € U
and F(a;) € W. Since F is usco, there exists an open neighborhood Vj of a; such
that F(V;) C W. Then V = V) NU satisfies the conclusion of (3). This shows that
(2) implies (3).

Finally, assume that (3) is true and that F is not minimal. Then there exists
a usco map H: A — 2Z such that H < F. It follows that there exist a € A and z €
F(a) such that z ¢-H(a). Since H(a) is compact, we can find open neighborhoods
W of z and Wy of H(a) such that W N W, = @. The fact that H is usco implies
that there exists an open neighborhood U of a such that H(U) C W;. By our
assumption, there exists a non-empty open subset V of U such that F(V) C W.
But then F(V)N H(V) = @, which is impossible. This proves that (3) implies (1).

a

3.7. LEMMA. Let A be a Hausdorff space, X be a complete, locally convex,
Hausdorff topological vector space and F: A — 2% be a usco map. Then the
multivalued map €6 F: A — 2X defined by (¢6 F)(z) = ¢o (F(z)) is a convex usco

map. If in addition F is a minimal usco map, then co F' is a minimal convex usco
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map.

PROOF. First recall that for a subset S of X, €6(S) denotes the closed convex
hull of S. Then ¢6 F is convex and compact valued. We need to show that it is
upper semicontinuous. We shall use the fact that in a locally convex vector space a
compact and convex set K has a neighborhood base consisting of sets of the form
K+ W, where W is a closed convex neighborhood of the origin. Let a € A and V be
an open subset of X such that co F(a) C V. Then there exists a closed and convex
neighborhood W of the origin such that ©6 F(a) C @ F(a) + W C V; in particular
co F(a) + W is a neighborhood of F(a). Since F' is upper semicontinuous, there
exists an open neighborhood U of a in A such that F(U) C co F(a)+ W. It follows
that (co F)(U) C © F(a) + W C V, proving that co F' is upper semicontinuous
at a.

To prove the second assertion, consider a convex usco map H: A — 2% such
that H < coF. We need to show that H = ¢ F. This is obvious if F' < H.
Assume therefore that ' £ H. Then there exist ag € A and 29 € F(ag) such that
zo ¢ H(ag). Since H(ap) is closed and convex, by the separation theorem there

exists z* € X* and t € R such that
(e*,9) <1 € (2", %), for all y € H(ag).

Let
W-=lzeX: (2} <t} and Wr={peX: (z*2) >t}

Then W™ is an open subset of X containing H(ap). Since H is upper semicontinu-
ous, there exists an open neighborhood U of a¢ such that H(a) C W~ for alla € U.
Since W is also open in X and z¢ € F(ao) N W, by Proposition 3.6 there exists
a non-empty open subset V of U such that F(V) C W*. Then o F(a) C X \ W~
for all a € V, implying that co F(a) N H(a) = 0 for all @ € V.- Since H =< co F, this
is impossible. This contradiction shows that F© = H and, as noticed above, this

proves the minimality of co F'. m]
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3.8. LEMMA. Let F: A — 2% be a minimal (convex) usco map and U be an open
or dense subset of A. Then the restriction of F' to U is a minimal (convex) usco

map.

PROOF. Consider first the case when U is open. Let (a,z) € G(F|U) and let
U; be an open neighborhood of a in U and WV be an open neighborhood of z. Since
(a,z) € G(F) and F is minimal, there exists a non-empty open set V of U; such
that F(V) C W. Since (F|U)(V) = F(V), Proposition 3.6 implies that F|U is
minimal.
' Similar arguments can be used to prove the minimality of F'|U in the case of
a dense U.

Assume now that F': A — 2% be a minimal convex usco map and let Fy: A —

22 be a minimal usco map such that F; < F. Clearly @6 Fy = F and therefore
F|U = (o F1)|U =% (F1|U).

We just proved that Fj |U is a minimal usco map; from Lemma 3.7 it follows that

co (F1|U) is a minimal convex usco map and therefore so is F|U. a

4. Existence of Selections

There exists an interesting relation between the fact that a minimal usco map
F is single valued at a point and the continuity of a selection for F' at that point.

Namely

4.1. LEMMA. Let F: A — 2% be a minimal usco map and 0: A — Z be a selection
for F. Then o is continuous at * € A if and only if F(z) is a singleton (as a matter

of fact F(z) = {o(z)}).

PROOF. Define G: A — 2% as follows: z € G(z) if and only if there exists a

net (z,) in A converging to z such that z is a cluster point of the net (¢(24)). Since
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F is usco, by Lemma 3.3, G < F. It is obvious that G(G) = cl(G()) and therefore,

by Lemma 3.5, G is a usco map. The minimality of F implies that G = F.
Assume now that ¢ is continuous at x. Then, by definition, G(z) = {o(z)}

and thus F(z) = {o(z)}. Conversely, if F(z) = {o(z)}, the fact that F' is upper

semicontinuous at z implies that o is continuous at z. a

4.2. COROLLARY. Let F': A — 2¢ be a minimal usco map, Z being metrizable.

Then the set of points at which F' is single valued is a Gg subset of A.

PROOF. Let 0: A — Z be a selection for F. It is well known that o is
continuous on a G5 subset of A. The corollary follows immediately from the previous

lemma. O

4.3. The conclusion of the above corollary 1s unfortunately not strong enough to
imply the existence of at least one point at which a ruinimal usco map is single
valued, even if Z is metrizable. In studying this type of problems Stegall (see [21],
[22]) was led to introduce and develop the following classes of topological spaces,

called C and S respectively.

DEFINITIONS. (1) A Hausdorff topological space Z is in C if any minimal usco

map F: A — 2% defined on a Baire space 4 is single valued on a dense G5 subset

of A.

(2) A Banach space X is in the class S if X* endowed with the w* topology is
in C.

REMARKS. (1) If Z is in C and A is a Baire space, then any usco map
F: A — 2% has a selection that is continuous on a dense G4 subset of A. Indeed, by
Lemma 3.2 there exists a minimal usco map Fy: A — 2% such that Fy < F; since
any selection of Fj is a selection of F' too, the assertion follows from the definition
of the class C and Lemma 4.1. As a matter of fact one can easily see that the

converse assertion is also true.
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(2) Let X be a Banach space in the class S and let F': 4 — 2X" be a minimal
convex w* usco map, A being a Baire space. By Lemma 3.2 there exists a minimal
w* usco map G: A — 2% such that G < F. Lemma 3.7 and the minimality of F
imply that ©6(G) = F. Since X™ is in the class C, G is single valued on a dense
G5 subset Ay of A and therefore F' is also single valued on Ajy.

Before stating the next result we need to introduce some additional notation.
Let F: A — 2% be a usco map and let 7 be the topology of Z. If we need to
emphasize that F' is usco with respect to this topology on Z, we shall say that F

is 7-usco. The same convention will be used for other topological notions.

4.4. PROPOSITION. Let B be a Baire space, let Z be a Hausdorff topological
space and let T denote the topology of Z. Let F: B — 2% be a minimal T-usco
map. Assume that there exists a metric d on Z with the following property: ev-
ery open non-empty subset U of B has an open non-empty subset V such that
F(V') contains non-empty, relatively T-open subsets of arbitrarily small d-diameter.
Then there exists a dense Gs subset of B on which F is single valued and d-upper

semicontinuous.
PROOF. For any € > 0 let
0, = U{G : G C B is open and diam (F(G)) < ¢}.

Clearly O. is open in B. We want to show that O. is also dense in B.

Let U be a non-empty open subset of B. By hypothesis there exists a non-
empty open subset V of U and a 7-open subset W of Z such that F(V)NW # §
and diam (F(V)NW) < ¢e. Take z € F(V)NW and x € V such that z € F(z).
Since F' is minimal, by Proposition 3.6 there exists a non-empty open subset G
contained in V such that F(G) C W, hence diam(F(G) < ¢. Then G C O, and
thus U N O, # 0. This proves that O, is dense in B.

Now let- D = ((Oy/n. Since 4 is a Baire space, D is dense in 4. From
the definition of D one can easily deduce that F is single valued and d-upper

semicontinuous at all points of D. O
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4.5. COROLLARY. If Z is a metric space, then Z € C.

PROOF. It is enough to apply the previous proposition to the case when 7 is

the metric topology on Z. |

4.6. Before we can state our next result, we need to introduce two more definitions.

Let X be a Banach space.

DEFINITIONS. (1) Let V be a non-empty, bounded subset of X* and let z € X
and o > 0. A w* slice of V is the subset of V' defined by

Y(z,V,a) = {z* € V: (z*,2) > sup{{y*,2): y* € V} —a}.

(2) We say that X* has the Radon-Nikodym property if every non-empty

bounded subset of X* has w* slices of arbitrarily small diameter.

4.7. COROLLARY. Let X be a Banach space such that X* has the Radon-Nikodym
property and let F: A — 2% be minimal (convex) w* usco map, A being a Baire
space. Then there exists a dense Gg subset Ay of A such that F is single valued and
norm upper semicontinuous at each point of Ag. If F' is not minimal, then there
exists a dense Gs subset Ay of A and a selection o for F' which is norm continuous

at every point of Ag. In particular, X € S.

PROOF. We can use the lemma immediately following this corollary to find a
dense, relatively open subset D of A such that F|D: D — 2% is a locally bounded,
minimal w* usco map. Let U be any relatively open subset of A. Since F|D is
locally bounded, there exists an open subset V' of U such that F(V') is bounded
in X*. Let ¢ > 0. By assumption, there exists a slice ¥ of F(V) whose norm
diameter is less than e. By definition, ¥ is relatively w* open in F(V'). Thus F(V')
contains non-empty, relatively w* open subsets of arbitrarily small norm diameter.
By Proposition 4.4, there exists a dense G subset Ay of A such that F(z) is single
valued and norm usco at each z € Ay.

The case of a minimal convex w* usco can be handled as in the remark in

section 4.3.



If F' is not minimal, apply the first part of the corollary to a minimal w* usco

map contained in F and then use Lemma 4.1. The last assertion is obvious. O

4.8. LEMMA. Let X be a Banach space, A be a Baire space and F: A — 25" be
a minimal (convex) w* usco map. Then there exists an open, dense subset D of A
such that F|D: D — 2" is a locally (norm) bounded, minimal (convex) w* usco

map.

PROOF. For every positive integer n define
Ap={z e d: Flz)NnB" #0}.

Using the w* upper semicontinuity of F' and the lower w* semicontinuity of the
norm, one can easily prove that A, is closed in 4. Clearly A = |J A, and, since
A is Baire, the open subset D = [ Jint(4,,) is dense in A. Let n > 0 be such that
int(A,) # 0 and set F,, = F'|int(4,). By Lemma 3.8, F), is a minimal (convex) w*
usco map. Since G(F,) N (A x nB*) is a closed subset of G(F},) whose projection

on int(A,) is int(A, ), Proposition 3.6 (or the remark following it) implies that
G(Fn.)N (A x nB*) = G(Fy)

and therefore
G(F|int(A4,)) € 4 x nB".
This proves that F'| D is a locally (norm) bounded, multivalued map. From Lemma

3.8 we get that F'|D is a minimal w* usco map. a

4.9. THEOREM. Let A be a Baire space, X be a Banach space and F: A — 2%~
be a minimal (convex) w* usco map. Then there exists a dense Gs subset Ay of A

such that F(z) is contained in a sphere of X* for every x € Ay.

PROOF. Sfep I. Define ¢: A — R as follows:

¥(a) = min{||z*|| : 2% € F(a)}
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(the definition is correct since F(a) is w* compact and || || is w* lower semicon-
tinuous). We shall prove that v is lower semicontinuous on A. Let (a,) be a net
in A converging to a. For every « choose x}, € F(aq) such that ¥(as) = ||z%].
Since F' is a w* usco map, the set of w* cluster points of the net (z2) is non-empty
and contained in F(A). Since the || || is w* lower semicontinuous, we can find a
w* cluster point z* € F(a) of the net (2}, ) such that the first inequality below is
satisfied
liminf ¥ (as) = liminf ||z} || 2 ||@™] = ¥(a).

This proves our assertion.

Step II. Define a (convex) multivalued map Fy: 4 — 2% by

Fo(a) = {z* € F(a): ||z*]| = ¥(a)} = F(a)N {z* € X* : ||z*| < ¥(a)}.

Since F'(a) is w* compact and || || is w* lower semicontinuous, Fy(a) is also w*

compact. As a matter of fact, Fj is w* upper semicontinuous at each point were 1
is continuous. Indeed, let a € 4 be a point at which ¢ is continuous. Consider a
net (a,) in A converging to a and a net (2},) in X* such that 2 € Fy(as). Since
Fo(ay) € F(ay) and F is a w* usco map, by Lemma 3.3 the set of w* cluster
points of the net (z%) is non-empty and contained in F(a). As above, we can find
a w* cluster point z* € F(a) of this net such that liminf ||z%]| > ||z*||. Using the

continuity of ¢ at a we get
¥(a) =lim¢¥(aq) = liminf |25 || = ||z*|| = ¥(a).

It follows that y(a) = ||z*|| and therefore z* € Fy(a). By Lemma 3.3 again, we
conclude that Fj is w* upper semicontinuous at a.

Step III. The function ¢ being defined on a Baire space and being lower semi-
continuous, is continuous at each point of a dense G5 subset A4y of A. It follows
that Fy is w* upper semicontinuous at each point of Ag.

Let G be the closure of G(Fp) in A x X*; clearly G C G(F'). Let G be the unique

multivalued map whose graph is G (in the convex case G may not be convex valued
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and we’ll have to replace it in the following discussion by co G). By Lemma 3.5, G
is a usco map and since F is a minimal usco map, it follows that G = F'. Since Fj is
upper semicontinuous at each point of Ay, Lemma 3.3 implies that Fy |49 = G| 4,
and therefore F'| A9 = Fy|Ao. This shows that for every a € Ay and z € F(a) we

have ||z*|| = ¥(a), which proves our assertion. O

Before giving another example of Banach spaces contained in the class S, let
us recall that a norm || || on a vector space X is called strictly convez if ||z + y|| <

llz|| + ||ly|| for any two distinct points x, y € X such that ||z|| = ||y]|.

4.10. COROLLARY. Let X be a Banach space that admits an equivalent norm

whose dual norm is strictly convex. Then X € S.

PROOF. Let A be a Baire space and F: 4 — 2% be a minimal w* usco map.
By Theorem 4.9 there exists a G5 subset 4y of A such that ¢o F'(a) is contained in
sphere of X* for each a € Ay. Siiice the norm of X™* is strictly convex, any convex
subset of a sphere in X* must be a singleton. Thus o F' is single valued on A4,
implying that F' is single valued on A4y. This shows that X* € C and therefore |
X ES. O

4.11. COROLLARY. Any separable, or any reflexive, or, more generally, any weakly

compactly generated Banach space is in the class S.

PROOF. Any separable (respectively reflexive) Banach space is weakly com-
pactly generated. By Theorem 3 in [1], any weakly compactly generated Banach
space admits an equivalent norm whose dual norm is strictly convex. Now we can

apply Corollary 4.10. O
Comments

In general we have followed [14] (see also [5] and [6]). We were able to simplify
some of the proofs by making consistent use of Lemma 3.3 (the fact that (2) implies

(1) seems to be new). Proposition 4.4 is due to J. Rainwater [16]. The fact that a



Banach space whose dual has the Radon-Nikodym property is in class S (Corollary
4.4) is due to Stegall [-22]. Theorem 4.9 is an extension of a result of Kendorov
[7], [8] who proved it for monotone operators. I could not find any reference for
Corollary 4.10; the proof given here is an improvement of one sketched to the
author by Kenderov in August 1988. As already mentioned, the classes C and S

were introduced by Stegall ([21] and [22]) who studied them intensively.



Chapter Il

MONOTONE OPERATORS

5. Locally Efficient Monotone Operators

5.1. From now on we shall denote by X a Banach space, by X its topological
dual, by B* the unit ball in X* and by B(z, ) the ball in X centered at z and with
radius € > 0. Let A be a subset of X.

DEFINITIONS. (1) A subset G C 4 x X* is called monotone if
(‘T* = y*V‘T = y) = 0 for any (I,.’E*), (yay*) €.

If, in addition,-G' is maximal (under set inclusion) in the family of all monotone

sets contained in A x X*, then G is called mazimal monotone in A x X*.

(2) A multivalued map T: A — 2%, with T(z) # 0 for all z € 4, is called a
(mazimal) monotone operator on A if its graph G(T') is a (maximal) monotone set
in A x X*.

(3) Let F: A — 2% be a multivalued map and r > 0. F is called r-efficient at
a € A if there exists a relative neighborhood U of a in 4 such that F(z)NrB* # 0
for all z € U. If F is r-efficient at a but we don’t need to specify r, we shall say
simply that F is efficient at a. If for every a € A there exists a real number r, > 0

such that F is r,-efficient at a, we call F' locally efficient.



REMARKS. (1) Let F: 4 — 2" be a multivalued map and r > 0. Set
Ar={z € A: Flz)NrB* # B}
and define F,: 4, — 2% by
Fela) = Pzl NerB*,

It is obvious that F' is r-efficient at a € A if and only if F.(z) # 0 for all z in
a relative neighborhood of a in 4. Let us also notice that if F' is r-efficient at a,

then F, is bounded in a relative neighborhood of a in A.

(2) An easy application of Zorn’s lemma shows that for every monotone op-
* . . *
erator T: A — 2% there exists a maximal monotone operator S: A — 2% such

that T < S.

5.2. EXAMPLES. (1) If A C R, then a function f: 4 — R is non decreasing if and

only if it is monotone in the above sense (we identify R* with R as usually).

(2) If H is a real Hilbert space and T : H — H 1is a linear map, then T is
monotone if and only if it is a positive operator, i.e., (Tz,2) > 0 for all 2 € H (we

identify H* with H as usual).

(3) Let C be a bounded, closed, convex subset of the Hilbert space H and let
U: C — C be a (generally non linear) non expansive map, i.e., ||[U(z) — U(y)|| <
||z — y|| for any , y € C. Then T = Id — U: C — H is monotone. Indeed

(T(z) = T(y),z —y) = {x —y = Ulx) + U(y),x — y)
= [lz = yl> = (U(=) = U(y), = — )

> |l —yll* = [IU(z) = Ul - llz —yll = 0.

Note that T-(0) is the fixed point set of U.
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(4) The most important example for us is the following one. Let C be a convex
subset of the Banach space X, A be a relatively open subset of C and f: C — R
be convex and locally Lipschitz on A. Then the subdifferential map 9f: A — 2%~
is a monotone operator that is efficient at each 2 € A. The proof of this assertion
and of other important properties of the subdifferential map will be given in the

next chapter.

5.3. LEMMA. Let AC X and T: 4 — 2~ be a monotone operator.

(1) T is maximal if and only if (y,y*) € A x X* and {(y* —z*,y — z) > 0 for
all (z,z*) € G(T) imply y* € T(y).

(2) If T is maximal, then T(z) is a convex w* closed subset of X*

for all z € A.

PRrROOF. (1) Assume first that 7 is a maximal monotone operator and let
(y,y*) € A x X~ satisfy (y* —z*,y —a) > 0 whenever z € 4 and z* € T(2). Define
S: A — 2X" by S(y) = T(y) U {y*} and S(z) = T(2) if & # y. Clearly S is a
monotone operator on A and G(T) € G(5). Since T is maximal on A, it follows

that G(T) = G(5) and thus y* € T(y).

Conversely, assume that T satisfies the stated condition and let S: A — 2X°
be a monotone operator such that G(T') C G(5). Let (y,y*) € G(S) and (z,z*) €
G(T) € G(95); since S is monotone, (y* —z*,y — ) > 0. In view of the hypothesis,

y* € T(y). This shows that G(T') = G(5) and therefore T is maximal.

(2) Let z € A, z*, y* € T(x), a € [0,1] and v* = (1 — a)z* + ay*. For every
(z,2*) € G(T') we have

=(1l-a)z*—z%z—2)+aly*—2"2—-2)>0

(the inequality is due to the monotonicity of T'). Since T is maximal, (1) implies

that «* € T'(z), proving that T'(x) is convex.



— 929 _

To prove that T(z) is w* closed in X'*, let (2} ) be a net in T(z), w* convergent

to z*, and let (y,y*) € G(T'). Then, since T is monotone,
(zf —y",x—9y) 20

and therefore

(g* —y*sa—y) 2 0.

Using again the maximality of T' and (1) we obtain that z* € T'(z). a

5.4. LEMMA. Let A be a quasi-open subset of X, T: A — 2X° be a monotone
operator and let a € A. Then T is locally bounded at a if and only if it is efficient

at a.

ProOF. If T is locally bounded at a, it is obviously efficient at a. Assume
it is r-efficient at a € A. Then there exists ¢ > 0 such that T(z) N rB* # @ for
every z € B(a,e)N A. Let z € B(a,c)N A and y € X; since z € qi(4) there exist
a sequence (t,) of positive real numbers convergent to 0 and a sequence (y,) C X
convergent to y such that z + t,y, € AN B(a,<c). It follows that for each n there
exists yi € T(x + tpyn) NrB*. Let 2* € T'(z). Since T is monotone

(y; i "I:*’tnyn) 2 03

which implies that

*(yn) < ynlyn) < rllyall

and thus z*(y) < r|ly||. This shows that [[2*|| < r and therefore the lemma is

proved. a

5.5. LEMMA. Let T: A — 2X° be a monotone operator and a be an absorbing
point of A. Then T is locally bounded at a, i.e., there exist a neighborhood U of
a in A and r > 0 such that T(U) C rB*. In particular, T is locally bounded on
int(A).
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PROOF. Let a* € T(a), Ag = A — a and define Ty: Ay — 2% by Ty(z) =
T(x +a) — a*, x € Ap. Clearly 0 € 4y, 0 € T5(0) and T is locally bounded at a if
and only if Tp is locally bounded at 0. So, without loss of generality, we can assume
that a = 0 and 0 € T(0).

Define f: X — (—o0,+0o0] by

flz) =sup{(v*,z—y):y €A, |lyll <1, y* € T(y)}.

Observe that f is always non negative (since 0 € 7(0)) and that f(0) =0 (since T
is monotone). Being the supremum of a family of continuous affine functionals, f
is convex and lower semicontinuous. We want to prove first that 0 is an absorbing
point of dom f = {z € X: f(z) < oo}, the effective domain of f.

Let z € X. Since 0 is an absorbing point of 4, there exists ¢ > 0 such that
tz € A. Fix u* € T(tz). Then, since T is monotone, for any y € A such that
llyll £1 and any y* € T(y) we have

(*,tz —y) < {u”,te —y) < [Ju*||(¢]z|| + 1)

showing that f(tz) < oo, i.e., tz € dom(f). Thus 0 is an absorbing point of dom( f).

Let C = {z € X: f(z) < 1}. Since f is convex, C is convex. Since f is
lower semicontinuous, C is closed. Clearly 0 € C. Since 0 is an absorbing point of
dom(f), for any = € X there exists ¢t > 0 such that f(tz) < co. Using the convexity

of f, it follows that for a sufficiently small s we have

f(stz) = F((1 - $)0 + stz) < (1 — 5)f(0) + sf(tz) = sf(t) < 1,

which proves that 0 is an absorbing point of C. Then Cy = C N (—C) is a barrel
and, since X is Banach, there exists 0 < § < 1/2 such that B(0,26) € Cp. In

particular

flz) <1 if ||z < 26.

For any y € AN B(0,6), y* € T(y) and x € B(0,20) we have

(y',z—y) < f(z) 21
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and thus
(y*,2) <1+ (y"y) S 1+6]y"|l.
Therefore
26]|y*]| < 1+ 6lly*||
or
vl < 5,
proving that T is locally bounded at 0. O

5.6. LEMMA. Let T: A — 2X° be a maximal monotone operator and (z,) C A
be a sequence norm convergent to x € A. Let also (z},) be a sequence in X* with
zy, € rB*NT(z,) (for somer > 0). Then the set consisting of all w* cluster points

of (z7},) is non-empty and is contained in T(x) NrB*.

PRrROOF. Since rB* is w* compact, it follows that (z%) has w* cluster points
and all are contained in rB*. Let z* be such a point. We need to show that

z* € T(x). Let y € A and y* € T(y). We have

(" —yg"y=a) =" o, y~a) bz, =, y=x}

(*)

*

= ($ —-i";,y-—:ﬂ) e <3’: —y*,y—wn) e (T:L _y*sxn —:II).

Since z* is a w* cluster point of (z}), by passing to a subsequence if necessary, we

can assume that

lim(z* —z;,,y —z) = 0.

Since T is monotone,

(zn — vy —aa) 0.
Finally, since (z} —y*) is bounded and (z, ) is norm convergent to z, it follows that
lim(z) —y*, 2, —2) =0.

Returning to (x), we get
(z* —y",y—x) <0

and Lemma 5.3 implies that z* € T(z). O
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5.7. COROLLARY. If T: A — 2X° is a maximal monotone operator and r > 0 is
such that A, # 0, then T, is w* usco. In particular, T is w* usco at each point

where it is locally bounded.

PRroOOF. This follows immediately from the above lemma and Lemma 3.3. O

We shall soon see (Corollary 6.3) that locally efficient maximal monotone oper-
ators defined on quasi-open subsets are minimal convex w* usco maps and therefore
they inherit many of the properties of the minimal convex w* usco maps. However,
some of these properties are true for maximal monotone operators defined on not
necessarily quasi-open sets, the proofs being more or less similar. For the sake of

completeness we shall include all the proofs.

5.8. THEOREM. Let A be a subset of the Banach space X and let T: A — 2% be

a locally efficient maximal monotone operator. Then

(1) there exists a continuous function ¢: A — (0, 00) such that, foreveryz € A,
T is v (z)-efficient at x; for any such function 1, the multivalued map Ty: A — 2%
given by Ty(z) = T(z)Ne(x)B* is a locally bounded, w* usco monotone operator.

(2) the function Yr: A — R, defined by ¥r(z) = inf{||z*|; 2* € T(x)}, is
locally bounded and lower semicontinuous on A;

(3) the multivalued map Ty: A — 2% defined by
Tol(z) = {2* € T(z) : ||z%]| = vrlz)}

is a locally bounded monotone operator and Ty(x) is a non-empty, convex, w*

compact subset of X* for all x € A;

(4) Top is w* usco at each point where YT is continuous.

PROOF. (1) For each z € A let ¢; and r; be positive real numbers such
that T(y) N rzB* # 0 for every y € B(x,e;) N A. Since A is a metric space, it
is paracompact (Stone’s theorem; see for example [11], Theorem 4.3 in Chapter

6). Then there exists an open locally finite refinement (U;)ier of the open cover
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(B(m,sx) N A)zeA of A. Since A is also normal, there exists another open cover
(Wi)ier of A such that clq(W;) C U; for each : € I. We can now find continuous
functions @;: A — [0, 1] such that ¢ |W; =1 and ¢|A\ U; =0 for 1 € I. For each
i pick z; € A such that U; C B(xi,ez;) N A and let r; = r;,. Define ¥: 4 — (0, 00)
by ¢(z) = 3 ripi(z). It is easy to see that ¢ is continuous on A. If z € W; C U; C
B(zi,ez;) N A, then ¥(z) > r; and therefore T is 1)(z)-efficient at z. Clearly Ty
is a locally bounded, monotone operator. We are left to prove that it is w* upper
semicontinuous, but this follows immediately from Lemma 3.3 and an argument

similar to that used in proving Lemma 5.6.

(2) Since T is locally efficient, ¥r is locally bounded. To prove the lower
semicontinuity of 1, let (z,) be a sequence in A, norm convergent to z. Let U be
a neighborhood of z in A and r > 0 be such that T(y) NrB* # 0 for all y € U.
Then there exists ng > 0 such that z, € U if n > ng. For each n > ng there
exists z}, € T(z,) such that ¥r(z,) > ||z}]| — 1/n and ||z%|| < r. By Lemma 5.6
the set of w* cluster points of the sequence (2% ),5n, 15 non-empty and contained
in z* € T(z) N rB*. Since the norm is w* lower semicontinuous we can find a w*

cluster point z* € T(z) NrB* of this sequence such that liminf ||z%]| > ||z*||. Then
liminf¥r(za) = liminf (||z}|| — 1/n) = ||z*|| = ¥r(z),

showing that i1 is lower semicontinuous at z.

(3) Let z € A. The definition of 3 implies that for every n there exists
z}, € T(z) such that ¢r(z) + 1/n > ||z}||. This implies that z}, € (¢¥7(z) + 1)B*
and therefore, arguing as above, we can find a w* cluster point z* € T'(z) of the

sequence (z}) such that liminf ||z} || > ||z*||. Since
r(z) 2 liminf||2} || 2 (|27 2 ¥7(2),

it follows that z* € Tp(z), showing that Ty(z) # 0. Clearly Tp(z) is convex and w*

compact. Finally, Tp is locally bounded because i is.
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(4) The arguments we used to prove the upper semicontinuity of Ty in (1),
can also be used to prove the upper semicontinuity of 7, at the points where 3 is

continuous. O

Since a lower semicontinuous function on a Baire space is continuous on a dense

G subset of its domain, we obtain

5.9. COROLLARY. If A is a Baire subset of X and T: 4 — 2% is a locally efficient
maximal monotone operator then there exists a dense Gs subset D of A such that

To is w* usco at each point of D.

5.10. PROPOSITION. Let A be a Baire subspace of X and T: A — 2% be a
maximal monotone operator. Then there exists a dense, relatively open subset D

of A such that T is efficient at each point of D.

PROOF. For each positive integer n let
Fo={z € A;T(z)NnnB* #0}.

Clearly A = |JF,. Observe that each F, is closed in A. Indeed, let (zx) be a
sequence in F,, norm convergent to x € 4. For each k choose z} € T(xr) N nB*.
By Lemma 5.6, the sequence (z}) has a w* cluster point @* € T(z) N nB*, showing
that z € F,.

Let now denote by G, the relative interior of F}, in A. Then, since A is Baire,
D = |JG,, is dense in A and of course relatively open. Obviously T is efficient at
each point of D. a
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6. Maximality, Minimality and w* Upper Semicontinuity

6.1. LEMMA. Let C C X be convex, 4 C C be such that K;(A4) = K.(C) for every
z € AandT: A — 2X° be a locally efficient, convex, w* closed valued monotone
operator. For every © € A let r, > 0 be such that T is r -efficient at + and assume
that T, is w* usco at z. Assume also that T(x) + C} C T(z) for every = € A.

Then T is a maximal monotone operator.

PROOF. Assume T is not a maximal monotone operator. Then there exists
(v,y5) € AxX* such that (z* —yj,z—y) > 0for all (z,2*) € G(T), but y5 € T(y).
Since T'(y) is convex and w* closed, by the separation theorem there exist u € X

and a € R such that
(y*,u) < a < (yg,u), for all y* € T(y).

First let us prove that u € K,(4) = K,(C) = cl(Cy). Assume not. Then there
exists z* € X™* such that

{z*3) S0 < =" u); forall g €6,

The left inequality implies that z* € C and therefore nz* € C} for any positive
n. Choose y* € T(y). Then y* + nz* € T(y) and therefore (y* 4+ nz*,u) < « for
any positive n, which implies that (z*,u) < 0, contradicting the choice of z*. Thus
u € K,(A).

Next let r = r, and choose § € R such that o < 8 < (yg,u). Let W =
{z* € X*; (2*,u) < a}; since W is w* open and contains T(y) and T} is w*
usco at y, there exists a neighborhood U of v in X such that T,.(2) € W for any
z € UN A. We can also assume that T,.(z) # 0 for all z € UN A (T is r-efficient
at y). Since u € K,(A), there exist t >0 and v € V = {z € X;(yg5,2) > B} such
that ||u —v|| < (8 —a)/r and y +tv € ANU. Then T,(y + tv) C W. For any
u* € Tp(y + tv) € W we have

0< (yy —u*,y—y—tv) =—t{yg —u",v)
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and thus (yg,v) < (u*,v). This implies that
(u*,u) = (W™, v} + (u* u —v) 2 (yg,v) = W' - lu =2l 2 B =r(B = a)/r =«

and thus u* ¢ W, contradicting one of our previous choices. The lemma is therefore

proved. m|

Our first main result, stated below, provides a characterization of the maximal
monotone operators among the locally efficient monotone operators on convex sets:
a locally efficient monotone operator on a convex set C' is maximal monotone if
and only if it is convex and w* closed valued, w* upper semicontinuous in a certain
sense and, for every z € C, T(z) is invariant under translations by elements in the

normal cone to C at z. More precisely

6.2. THEOREM. Let C C X be convex, 4 C C be quasi-open in C and let
T: A — 2% be a locally efficient monotone operator. For every z € A choose

r. > 0 such that T is r -efficient at . The following assertions are equivalent:
(1) T is a maximal monotone operator on A;

(2) T is convex and w* closed valued, T, is w* usco for every r > 0 for which
A, #0 and T(2) + C; C T(x) for every z € A;
(3)Tis convex and w* closed valued, Ty, is w* usco at x and T(z)+C2 C T(z)

for every x € A.

PROOF. Assume that (1) is true. Then, by Lemma 5.3 (2), T is convex and
w* closed valued. By Corollary 5.7, T, is w* usco for every » > 0 for which A, # 0.
The last assertion follows from the definitions. Obviously (2) implies (3). Finally,

Lemma 6.1 shows that (3) implies (1). O

6.3. COROLLARY. Let A C X be quasi-open andT: A — 2X" be a locally efficient

monotone operator. The following assertions are equivalent:

(a) T is maximal monotone;
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(b) T is a minimal convex w* usco map;

(c) T is a convex w* usco map.

PRrOOF. Clearly (b) implies (c). Assume (c¢). Since X} = {0} for each z € X,
condition (3) in the above theorem is satisfied (with C = X). It follows that T
is maximal monotone. Thus (c) implies (a). Finally assume that (a) is true. By
Lemma 5.4 and Corollary 5.7, T is a convex w* usco map. Let S: A — 2% be a
convex w* usco map such that S =< 7. Since (c¢) implies (a), S must be maximal.
Since T itself is maximal, S = T and therefore T is a minimal convex w* usco map.

Gl

The following result shows that monotone operators on certain domains have

unique maximal monotone extensions (over the same domain).

6.4. COROLLARY. Let C C X be convex, 4 C C be quasi-open in C and let
T: A — 2% be a locally efficient monotone operator. Then there exists a unique
maximal monotone operator M : A — 2~ such that T(z) C M(a) for every z € A.
If A is quasi-open on X then M can be described as follows: let T be the monotone
operator on A whose graph is the closure (in A x X*) of the graph of T; then M(x)

is the w* closed convex hull of T(z).

PrOOF. By standard arguments there exists a maximal monotone extension
M of T. To prove that M is unique, assume that there exists another maximal
monotone operator S on A which contains 7. Clearly M N S: A — 2X° (M N
S)(z) = M(z)NS(z), is a convex, w* closed valued monotone operator on A. It also
satisfies (MNS)(z)+C: C (MNS)(z) for every x € A (since we can apply Theorem
2.2 to M and S). Let r > 0 be such that (A N S), is defined. Since (M N S), has
a closed graph and is contained in M, which is w* usco (by Theorem 2.2), we can
apply Lemma 3.5 to deduce that (A NS), is w* usco. Finally, Theorem 2.2 implies
that (M N.S) is a maximal monotone operator on A and therefore M = M NS = S.
This proves the uniqueness of M. The description of M given in the last assertion

of the corollary can be proved as in [14], Theorem T7.13. a
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The next result may also be useful.

6.5. COROLLARY. Let T: A — 2% e a locally efficient maximal monotone
operator and A9 C A be such that V,(4dy) = I\, (4) for every z € Ay. Assume
that A is either convex or quasi-open. Then the restriction of T to Ay is maximal

monotone (on Ap).

6.6. THEOREM. Let A be a quasi-open, Baire subset of the Banach space X and let
T: A — 2%" be a maximal monotone operator. Then there exist a dense, relatively

open subset D, of A and a dense Gs subset D of A such that D C Dy and

(1) T | D, is a locally bounded, minimal convex w* usco map;

(2) for each z € D, T(z) is contained in a sphere of X* and T is norm-to-w*

upper semicontinuous at z.

ProoF. From Proposition 5.10, there exists a dense, relatively open subset
D, of A such that T is efficient at each point of D;. By Lemma 5.4, T is locally
bounded at each point of D;. By Corollary 6.5 and Corollary 6.3, T'| D, is a minimal
convex w* usco map. This proves (1). The second assertion follows immediately

from Theorem 4.9. O

6.7. REMARK. Let A be as above and T: 4 — 2% be a monotone operator, not
necessarily maximal. Then there exists a dense G4 subset D of A such that T'(z)
is contained in a sphere of X* for each € D. This follows immediately from the
previous theorem and the fact that a monotone operator is always contained in a

maximal one.

6.8. COROLLARY. Let A be a quasi-open Baire subset of the Banach space X and
let T: A — 2X° be a monotone operator. Assume that X* has the Radon-Nikodym
property (resp. that X is in Stegall’s class C). Then there exists a dense Gs subset
Ag of A such that T is single valued and norm-to-norm (resp. norm-to-w*) upper

semicontinuous at each point of 4.
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PROOF. There is no loss of generality if we assume that T is maximal mono-
tone. Since A is quasi-open, Theorem 6.6 (1) implies that there exists a dense,
relatively open subset D of A such that 7| D is a locally bounded, minimal convex
w* usco map. Our assertions follow from Lemma 4.7 and the remark in Section 4.3.

||
Comments

Most of the results in this chapter were known for monotone operators on open sets
(sée the exposition in [14]). We were able to extend them to the case of quasi-open
sets, the essential tool being the notion of local efficiency. Theorem 6.2 is new even
in the context of open sets. The fundamental result expressed in Lemma 5.5 is due
to Rockafellar [18] (who proved more in a less general setting); the proof presented

here is due to Borwein and Fitzpatrick [3].
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Chapter IV

SUBDIFFERENTIABILITY AND DIFFERENTIABILITY

7. Convex Functions

7.1. In this chapter we shall denote by X a real Banach space. Let A be a subset
of X and let f: A — R be a real function. The epigraph of f, denoted epi(f), is

defined as follows
epi(f)={(a,r) EX xR: au€ A4, r> f(a)}.

It is well known that f is lower semicontinuous on A if and only if epi(f) is a
relatively closed subset of A x R.

Let C be a convex subset of X. A function f: C' — R is called convez if
(1=t +ty) <(1—-1t)f(z)+tf(y), forall z, y € C, t € [0,1].

Let us observe that f is convex if and only if its epigraph is a convex subset of

X x R.

Here is a list of well known properties of convex functions:

(1) Any linear (or, slightly more general, any affine) function f: X — R is
convex.

(2) Any subadditive and positively homogeneous function f: X — R is convex

(in particular the norm is a convex function on X).
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(3) The set of all convex functions defined on a convex set is a convex cone
(i.e., the sum of two convex functions is a convex function and any positive multiple
of a convex function is a convex function).

(4) Let fi: C — R be a family of convex functions and let Cp = {z € C :
sqpfi(m) < oo}. Then Cy, if not empty, is a convex subset of X and the pointwise

i

supremum supf; is a convex function on Cl.
i

(5) Assume that C is an open convex subset of X and that f: C — R is

continuously differentiable and has a second derivative f" throughout C. Then f

is convex if and only if f"(z) is nonnegative definite for each z € C.

Like linear functions, convex functions defined on open convex sets need very
little to be locally Lipschitz. Namely, it is sufficient for them to be bounded from

above in an open subset of their domain.

7.2. PROPOSITION. Let D be an open convex subset of X and let f: D — R be

convex. Then the following assertions are equivalent

(1) there exists g € D such that f is bounded from above in a neighborhood

of zg;

(2) f is locally Lipschitz on D.

PRrRoOOF. Clearly (2) implies (1). To prove that (1) implies (2), let M, § > 0 be
such that B(z0,26) C D and f(z) < M for all € B(zo,26). Let z € B(xp,26).
Then 2z¢ — = € B(zq,26) and (since zg = jz + 3(2z9 — ))

flao) < 3(z) + 5 F(2m0 —2) < 3 f(2) + 5 M,

hence

2f(z0) = M < f(a).

If we set N = max{M,|2f(zo) — M|} we obtain

|f(1')| < N for all 2 € B(zg,20).
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Let z,y € B(z0,6), z #y, a =[xz —yll, vy = (e + d)/a and z = (1 — 7)z + yy.
Notice that

lz =yl =l1=-")c—Q=wll=C-Dlz—yll=46

and therefore z € B(zg,26). Sincey = (1 — %;)1: -+ %z and since f is convex we have

Fg) £ (1~ 2)f(e) + = £(2)
¥ Y

or

o )

F@) = @) S () = £(&)) < 2552V < Iy = all.

Interchanging z with y we obtain that f is Lipschitz on B(w,8) with Lipschitz
constant 2N/§.

It remains to show that f is bounded from above in the neighborhood of each
point of D. So let x € D and choose A > 1 such that z = 29 + A(z — z9) € D (this
is possible since D is open). Let g = 1/A. Clearly

B(z,(1 — p)8) = pz + (1 — p)B(xo,6) € D

and for any y = (1 — p)v + pz € B(a, (1 — p)é) with v € B(zp,6) we have
f@) <@ —p)f(v) +puf(z) < M+ f(2).
This completes the proof of the proposition. O

7.3. It is natural to ask if the above result remains true for a convex function
defined on a not open, but quasi-open set. In general the answer is negative.

EXAMPLE. Let X = I*(N) and C = {x = (z,) € X : |z,]| < 27" for all n}.
Notice that if x € C then x + te, € C for any n and a sufficiently small ¢ > 0.
It follows that e, and —e, € Cx and therefore cl(Cx) = X. This shows that C is
quasi-open.

Let f: C — R be defined by

f(X) = Z __(2—71 + -7:71)1/2'
n=1



— 43 ~

Since each summand is continuous, convex, and bounded in absolute value by
2(1-n)/2 the series is uniformly convergent and thus f is continuous and convex.
On the other hand, it is not difficult to check that f is not locally Lipschitz at
any X in C (in view of the previous proposition this shows that the interior of C is
empty). As a matter of fact, we shall prove later a stronger result, namely that f

is not subdifferentiable at any point of C' (see Example 8.6).
8. Subdifferentiability of Convex Functions

8.1. DEFINITIONS. Let C be a convex subset of X', f: C — R be a convex function

and z € C.

(1) A functional z* € X* is called a subgradient of f at x if
(e*,y —z) < f(y) — f(=) for all y € C.

We shall denote by df(z) the (possibly empty) set of all subgradients of f at
z. We shall call 0f(z) the subdifferential of f at z.

(2) The function f is called subdifferentiable at z if its subdifferential at z is

not empty, i.e., there exists at least one subgradient of f at z.

(3) The function f is called subdifferentiable on C if it is subdifferentiable at

each point of C.

8.2. LEMMA. Let f: C — R be a convex function, let A = {z € C : df(z) # 0}
and let © € A. Then

(1) f is lower semicontinuous at .

(2) 8f(z) is a convex, w* closed subset of X* and df(x) + C; C df(z).

(3) 8f: A — 2% is a monotone operator.

PROOF. (1) Let (z,) be a sequence in C converging to = and let z* € df(x).
Then (z*, 2, —z) < f(z.) — f(z), which implies that liminf f(z,) = f(z), proving

the lower semicontinuity of f at z.
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(2) All three assertions follow immediately from the definitions.

(3) Let z, y € 4, z* € Of(x) and y* € f(y). Then
(y*—z%z—y)=(y"z—y)+ ="y — =) < f(z) - fy) + f(y) — f(z) =0,
which proves that df is a monotone operator on A. (m]

Exactly as in the case of differentiable functions, there exists a close relation
between the subdifferentiability of f at @ and “tangential” properties of the graph
of f at (z, f(z)). Before explaining this, we need to introduce some more notation.

Given ¥ € (X x R)*, we shall denote by ry the real number ¥(0,1) and by
1 € X* the functional ¥(z) = ¥(x,0). We shall say that ¥ is non-vertical if rg # 0;

otherwise we shall say that ¥ is vertical.

8.3. LEMMA. Let C be a convex subset of X, z € C and f: C — R be a convex
function.

(1) The assignment ¥ + i determines a one-to-one correspondence between
the set of all (non-vertical) functionals ¥ € (X x R)* with r¢ = —1 and which
support epi( f) at (z, f(z)), and the subset df(z) of X*.

(2) If ¥ is a non-zero vertical support functional to epi(f) at (z, f(z)), then
z € S(C).

PROOF. (1) Let ¥ € (X x R)* be such that r¢y = —1 and let (y,t) € epi(f).
We have (¥, (y,t)) = (¢,y) — t and therefore

(T, (y,1)) < (T, (z, f(2))) = (b,y—=x) <t-— fz),

which shows that ¥ is a support functional to epi( f) at (x, f(z)) if and only if ¢ is
a subgradient of f at z.

(2) Let ¥ be a non-zero vertical support functional to epi(f) at (z, f(z)) and
let y € C. Then (¥, (y, f(v))) < (¥,(z, f(z))), hence (¢,y — z) <0, showing that
z € S(C). O
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8.4. Let f: C — R be convex and let * € C'. For every v € C, there exists § > 0
such that z 4+ tv € C for any t € [0,6]. Define a function d, ,: (0,8) — R by

PPiCE wt) - fz)

Since f is convex, d; , is an increasing function of ¢ and therefore

—oo L limd; ,(t) = infd, (1) < 0.
t10 t>0

We shall denote the above limit by f,.(v). It is easy to see that f.: C, — [—o00, +00)
is positively homogeneous. Moreover, since f is convex, f. is also subadditive (this

follows from the inequality d; ,4u(t) < dy,0(2t) + dy,0(28)).

8.5. PROPOSITION. Let f: C — R be convex, let * € C and let «* € X*. The
following assertions are equivalent:

(1) z* € Of(x).

(2) (z*,v) < fiL(v) for all v € C,.

(3) f. is finite valued and z* € 0f.(0).

PROOF. In order to prove that (1) implies (2), let v € C,. Then there exists
6 > 0 such that z + tv € C for every t € (0,6). Since 2* € df(z), we have

(z*,tv) =(z*,z +tv —a) < f(z + tv) — f(a), for 0 <t < &.
This implies that (z*,v) < d, ,(t), which proves (2).

Assume now that (2) is true. Then f] is finite valued. As noted above, f! is
positively homogeneous and subadditive, hence convex. It makes sense therefore to
consider df(0). Since f,(0) = 0, the condition in (2) implies that «* € 9f.(0).

Finally assume that (3) is true and let y € C'. Then y — z € C; and

g ith £ il — )
On the other hand, using first the definition of f, and then the convexity of f, we
have
fily -2y < TEH =N 2@ ¢ gy pia
(the middle term exists for some t > 0). Combining the last two formulas, we get

(z*,y — z) < f(y) — f(z), which shows that * € df(x). O
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8.6. Let f: C — R be convex and let * € C. We have seen (Lemma 8.2) that a
necessary condition for the subdifferentiability of f at z is that f be lower semi-
continuous at x. If x is an interior point of C, this last condition is equivalent to
f being locally Lipschitz on the interior of C' (see Proposition 7.2). On the other
hand, as the next example will show, if x is not an interior point of C it may happen
that even a continuous f is nowhere subdifferentiable on C. It is therefore natural
to investigate the subdifferentiability of locally Lipschitz functions. First, however,

the example mentioned above.

EXAMPLE. Let f: C — R be as in Example 7.3. Let x € C' and n > 1. Since

C is quasi-open, there exists s > 0 such that the segment [x,x + se,] is contained

in C. Then

V2Tt an +t+ V2T, ~1
t V2R Lo, bt 2T Lo

dfsc,eq (t) = —

for any t € (0, s) and therefore

fi(en) = 1
x T == 2 ,—'—z_n + :l?n.
Assume now that there exists * € df(x). From Proposition 8.5 (2) and the above

equality we get that

—1
” —”CE’*” 5 - for any n Z 19
D D1 + Ty

which is impossible. It follows that f is nowhere subdifferentiable.

8.7. THEOREM. Let C be a convex subset of X, A be a relatively open subset of

C and f: C — R be a convex function whose restriction to A is locally Lipschitz.
We have

(1) For every z € A, 8f(x) is a non-empty, convex w* closed subset of X*; if
in addition z is a quasi-interior point of A, then 0f(z) is also w* compact.

(2) The restriction of 8f to A is a locally efficient monotone operator, locally

bounded at each quasi-interior point of A.
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(3) Let r > 0 be such that A, = {x € A: 3f(x)NrB* # 0} is non-empty and
let (8f),: A, — 2% be given by (9f).(x) = Of(x)NrB*. Then A, is closed in A

and (Of)r is w* usco.

PROOF. Let z¢g € A, let ¢, M > 0 be such that f is Lipschitz on B(zg,e)NC
with Lipschitz constant M and let @ € B(zq,c)NC . With the notation introduced

before, we have

|dz,v| < M]||v||, ve e
hence
(*) |fa(v)] < M|v|| for every v € C,

and therefore f. is finite valued. Next, we need to show that f, is Lipschitz on C,.
To this end, let v,w € C, and t > 0 be such that « + tv, z + tw € B(ag,e) N C.
Then

f@+t) = f(@)  flz+tw) - f(a)
t t

< Mllv — wl|

_ ‘ fle +tv) — f(z + tw)
t

and, after passing to limits,
|f2(v) = f2(w)| < Mljv — ]|,

Being Lipschitz, f] can be extended to a Lipschitz function F, : K,(C) = cl(C,) —
R, with the same Lipschitz constant /. Since f; is subadditive and positively
homogeneous, it is easy to see that I, has these properties too. It follows that
epi(F;) is a closed convex cone in X x R. Consider the open convex cone D =
{(vy,r) € X x R: —M]|[v|| > r}. Since epi(F;) and D are disjoint, by the separation

theorem there exists ® € (X x R)* such that
®(y,s) €0 < O(z,t), (y,s) €epi(Fy), (2,¢) € D.

Since (0,—1) € D, r = ®(0,—1) > 0. Let ¥ = (1/r)®. Clearly ® supports epi( ;)

at (0,0) and the same is true for ¥. Since ¥(0,1) = —1, it follows that we can
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apply Lemma 8.3(1) to ¥ and, with the notation introduced there, ¥ € 9F.(0)
(recall that ¥ (y) = ¥(y,0)). Since clearly OF,(0) = 9f,(0), from Proposition 8.5
we obtain that ¢ € df(z). Thus df(z) is non-empty and, by Lemma 8.2, it is
convex and w* closed.

Let us also notice that ||| < M. Indeed, for any v € X and any ¢ > 0,
(v, —M||v|]|—¢€) and (—v, —M||v||—¢) are contained in D. Then ¥(v, —M||v]|—¢) <0
and ¥(—v, —M]||v|| —¢) < 0, which imply that [1/(v)| < M||v||+¢e. Thus, ||¢| < M.
This proves that 9f is efficient at x.

Assume now that z € qi(C). Then for any * € df(z) and v € C,, from

Proposition 8.5 and (*) we get
(x*,v) < fi(v) < M|v]|.

Since cl(C,) = X, the part of the above inequality involving the left and right sides
is true for any v € X and therefore df(2) C A/ B*. Assertions (1) and (2) are now
completely proved.

To prove (3), let (z,) be a sequence in 4, norm convergent to z € A and for
every n let z}, € df(z,)NrB*. Since rB* is w* compact, the sequence (z%}) has at
least one w* cluster point and all its w™* cluster points are contained in rB*. Let

z* be such a cluster point and let y € C. We have
(z*,y—z) ={z" —zyh,y—z) + (ah.y —an) + (ah, 20 — T)
<{a" —an,y—2) + fly) — flea) + (23]l - llzn — 2]
<zt —aty — ) + fy) — fwa) +rllen — ]|
By passing to a subsequence, we can assume that lim(z* — z},y — ) = 0 and
therefore the above inequalities imply that (¢*,y — x) < f(y)— f(z), which means

that z* € f(xz). We have already seen that x* € rB*. Thus z € A, (proving that

A, is closed in A) and we can use Lemma 3.3 to conclude that (9f), is w* usco.O

REMARKS. (1) Assertion (3) is true for any subset A of C, without any as-

sumption on f.
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(2) In the above theorem the condition imposed on 4 to be relatively open is
essential. The following example (due to Borwein and Fitzpatrick) will show that
even if A is a dense Gg subset of C' the theorem does not hold. In particular, it will
show that not all assumptions of the Proposition in [13] are true.

Lét X = ?(N) and C be the positive cone in X (see Remark 2.7(1)). Define
f:C — Rby f(z) =sup{e "% : n € N}. It is easy to see that f is a convex lower

semicontinuous function on C' and that 0 < f(z) < 1 for any = € C. Clearly
1
- -1 — T n ~ [ A—p——
A= (1) |n|{1EC fiz) > n}

is a Gg subset of C (since f is lower semicontinuous). Since S(C') is dense in C
and S(C) is contained in A, it follows that 4 is dense in C. Thus A is a dense Gy
subset of C and f|A is Lipschitz (being constant on A!). However, 8f(z) = @ for
all points = in the dense G subset 4 N qi(C), ie., if 2 € A and 9f(z) # O then
z € S(C). Indeed, if f(z) =1 and z* € df(x), then

(z*,y —a) < f(y) — f(2) <0 for any y € C,

hence z* € C%. Since there are points y € C such that f(y) < 1, 2* cannot be zero

and thus z € S(C).

8.8. COROLLARY. Under the same assumptions as in the previous theorem, the

restriction of 0f to A is a maximal monotone operator on A.

PROOF. The previous theorem and Lemma 8.2 show that condition (2) in

Theorem 6.2 is satisfied, hence Jf |4 is a maximal monotone operator on A. a

8.9. COROLLARY. Let C be a quasi-open convex subset of X, and A be a relatively
open, Baire subset of C' (e.g., A = C is the quasi-interior of a closed convex subset of
X). Let f: C — R be a convex function whose restriction to A is locally Lipschitz.
Then Of| A is a minimal convex w* usco map and there exists a dense Gs subset

Ay of A such that 9f(zx) is contained in a sphere of X* for each € 4,.

PROOF. By the previous corollary, df|.4 is a maximal monotone operator on

A. The assertion follows now from Corollary 6.3 and Theorem 4.9. O
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We have proved so far that locally Lipschitz convex functions are subdiffer-
entiable. We may now ask the following question: is a subdifferentiable convex
function locally Lipschitz? If its domain is open, the answer is yes: being subdif-
ferentiable, f is lower semicontinuous (see Lemma 8.2), hence it is locally Lipschitz
(see Proposition 7.2; as a matter of fact we need only the subdifferentiabilty of f
at one point!). We cannot prove such a strong result in the general case, but we

shall come close enough.

8.10. PROPOSITION. Let C be a convex subset of X, A be a subset of C' and f: C —
R be convex. Assume that 0f(z) # 0 for every * € A and that 0f|A is locally
efficient. Then f|A is locally Lipschitz. If in addition f is lower semicontinuous on

clc(A), the closure of A in C, then f|clc(A) is locally Lipschitz at each = € A.

PROOF. Let £ € A and let ¢, » > 0 be such that J(f) is r-efficient on B(z,&)N
A. Let y,z € B(z,e) N A and choose y* € df(y)NrB* and z* € 8f(z)NrB*. We
have

—rlly —2ll < ¥,z —y) < f(2) = fly) STz —y) S rlly — =]

proving that f is locally Lipschitz on A.

Assume next that f is lower semicontinuous on clg(A) and let @ € A. By
the first part, there exist §, r > 0 such that f is Lipschitz on B(z,é) N A, with
Lipschitz constant r. Let y, z € B(x,8) Ncle(A4) and let ¢ > 0. Since f is lower

semicontinuous at z, there exists p, 0 < p < g, such that
(") > f(z) —e, for all ' € B(z,p) Ncle(4).

Pick y' € B(y,p) N B(z,§)N A, ' € B(z,p) N B(x,6)N A and y* € df(y') NrB*.
Then

f(z) = fly) = f(z) = FG)+ f(2") = F@) + ') = f(w)
<e+r|Z =¥+ @y —v)

<e+r2p+llz—yl)+rp < rllz =yl +(1+3r)



Since ¢ is arbitrary, we obtain that f(z) — f(y) < »||z —y||. Interchanging y and z,

we finally obtain that
1f(z) — f)| < rllz — vl for any y,z € B(x,6)Ncle(4),

and the second assertion is also proved. O

8.11. THEOREM. Let C be a convex subset of X and let f: C — R be convex.
Assume that 0f(z) # 0 for every point @ of a Baire subset A of C. Then there
exists a dense, relatively open subset D of A such that the restriction of f to A is
locally Lipschitz at each point of D. If in addition f is lower semicontinuous on

clo(A), then the restriction of f to cle(A) is locally Lipschitz at each point of D.

PROOF. For every positive integer n define
A, ={z € d: df(z)yNnB* # }.

From Theorem 8.7(3) (see also the remark following it), we deduce that every A4,
is closed in A. Clearly A = |J A, and, since A4 is Baire, D = |Jint4(A,) is dense
and relatively open in A. Since 9f is n-efficient on A4,, it is locally efficient on D

and the theorem follows from the preceding proposition. )
9. Gateaux and Fréchet Differentiability

9.1. DEFINITIONS. (1) Let X and Y be Banach spaces and 4 be a subset of
X. Amap f: A = VY is called Gditeauz differentiable at + € A if there exists a

continuous linear map df,: X — Y, called a Gateauz differential of f at z, such

that df.(v) = fi(v) for all v € T, (A) (see Section 1.2 for the definition of T,(A)).

(2) The map f: A — Y is called Fréchet differentiable at x € A if there exists
a continuous linear map Df,: X — Y, called a Fréchet differential of f at z, such
that the function Of,: A — Y defined by

f@) = f(@) = Dfuly—2)
O,ey) = Ty = =1 v B
0, y==zx

is norm-to-norm continuous at z.



REMARKS. (1) The definition of Fréchet differentiability given above is equiv-

alent to the usual one, which requires that lim () - f(l'lr) — D”fz(y — 2l = 0.
P y—

(2) It is also clear that if f is Fréchet differentiable at z, then it is Gateaux
differentiable at z and any Fréchet differential of f at 2 is also a Gateaux differential

of f at x.

(3) The Gateaux (respectively Fréchet) differential, if it exists, is not unique in
general. However, if claff(7,(4)) = X' then it is unique. This happens for example

when A is convex and claff(4) = X.

9.2. Let f: C — R be convex and assume that f is Gateaux differentiable at
z € A. From Proposition 8.5 it follows immediately that df, € df(z). The same
proposition implies that «* € df(z) if and only if {z* — df,,v) < 0 for any v € C,,
ie., o* € Of(z) if and only if z* — df, € C¥. It follows that df(z) = {df:} if
z € qi(C). |

Conversely, if z € qi(C), f is Lipschitz in a neighborhood of =z and 9f(z) is
a singleton, then f is Gateaux differentiable at x. Indeed, let df(z) = {z*}. It is
enough to prove that (z*,v) = F.(v) for all v € X, where F,: X =¢l(C,;) —» R is
the continuous sublinear map which extends f. (see the proof of Theorem 8.7). Let
v € X; by the Hahn-Banach theorem there exists y* € X* such that (y*,v) = F;(v)
and (y*,u) < F,(u) for any u € X. From Proposition 8.5 we deduce that y* € 9f(z)
and therefore y* = z*, hence (z*,v) = F;(v), which proves that z* is the Gateaux

differential of f at z. To summarize, we have

9.3. LEMMA. Let f: C — R be convex and locally Lipschitz on a relatively open
subset A of the quasi-interior of C. The f is Gateaux differentiable at x € A if and
only if Of(z) is a singleton.

9.4. LEMMA. Let f: C — R be convex and locally Lipschitz on a relatively open

subset A of C and let x € A. Then
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(1) If A is contained in the quasi-interior of C' and f is Gateaux differentiable
at = then any selection o: A — X* for the subdifferential map is norm-to-w*
continuous at .

(2) If there exists a selection o: 4 — X* for the subdifferential map which is

norm-to-w* continuous at x, then f is Gateaux differentiable at x.

PRrROOF. (1) Corollary 8.9 implies that the restriction of df to A is w* usco
and this clearly implies our assertion.
(2) The proof is analoguous to that of assertion (2) in the next lemma and we

omit it. O
A similar result can be proved for the Fréchet differential. Namely

9.5. LEMMA. Let f: C — R be a convex function.

(1) Assume that C is open and that f is locally Lipschitz on C' and Fréchet
differentiable at some x € C. Then any selection o: C — X* of the subdifferential
map is norm-to-norm continuous at x.

(2) Assume that there exists a relatively open subset 4 of C such that f|A
is locally Lipschitz. Assume also that there exists a selection o: A — X* of the
subdifferential map which is norm-to-norm continuous at some x € A. Then f is

Fréchet differentiable at z.

PRrOOF. (1) There is no loss of generality in assuming that + = 0 and f(0) = 0.
Let 7, £ > 0 be such that B(0,r) C C, k is a Lipschitz constant for f on B(0,r)
and 8f(y) C kB* for all y € B(0,r).

Let £ > 0 and let @ = ¢/(1 + 2k). Since f is Fréchet differentiable at 0, there

exists § > 0, § < min{a, r, 1}, such that
f(z) = {Dfo,z) < allz|l, for all z € B(0,).

Let y € B(0,6?), y* € @f(y) and = € X with ||z|| = 6. Using the above

inequality and the fact that y* is a subgradient of f at y (see Definition 8.1(1)),
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we have

(y* — Dfo,2) < f(z) — f(y) + (y",y) — (Dfo,z)

<allz)l = f(y) + (") < ab + ko + k6% < b1 + 2k) = e

hence ||y* — D fy|| < €, which proves (1).

(2) Let 0: A — X* be any selection of df. Then for @, y € A we have

(o(z),y —x) < f(y) = f(z) and (o(y),z —y) < f(z) - f(y)

hence

0 < f(y) — f(z) — {o(2),y — z) < (o(x) —a(y),y —z) < |lo(z) —a()| - llz — ]|

If o is continuous at z this shows immediately that f is Fréchet differentiable at z

(and that o(z) is a Fréchet differential of f at x). This proves (2). a

9.6. COROLLARY. Let C C X be an open convex subset and let f: C — R be
convex and locally Lipschitz. Then the set Cy consisting of all points of C at which

f is Fréchet differentiable is a relative G subset of C.

PROOF. Let 0: C' — X™ be any selection for 0f. From the preceding lemma,
Co consists of the points of C' at which ¢ is norm-to-norm continuous, which is

known to be a Gs subset of C. a

9.7. DEFINITIONS. (1) A Banach space X is called an Asplund space if every
convex and continuous function defined on an open convex subset of X is Fréchet

differentiable on a dense G5 subset of its domain.

(2) A Banach space X is called a week Asplund space if every convex and
continuous function defined on an open convex subset of X is Gateaux differentiable

on a dense Gg subset of its domain.



REMARK. One can alternatively define Asplund spaces as being those Banach
spaces with the property that every convex and continuous function defined on an
open convex subset of X 1s Fréchet differentiable at at least one point of its domain.

Indeed, if a Banach space X satisfies this last condition, then any continuous
convex function f: C — R, C being open and convex, is Fréchet differentiable on
a dense subset Cp of C' and, by Corollary 9.6, Cy is also a Gs subset of C. Thus
X is an Asplund space. The other implication being obviously true, the definitions

are equivalent.

9.8. THEOREM. A Banach space X is an Asplund space if and only if X* has the

Radon-Nikodym property.

PROOF. Assume first that X is an Asplund space. Let 4 be a bounded subset

of X* and let £ > 0. Let p: X — R be given hy
p(z) =sup{(z*,z) : 2™ € A}.

Clearly p is a sublinear functional on X. Since A is bounded, p is bounded and
therefore continuous. By hypothesis, there exists @ € X such that p is Fréchet

differentiable at z. It follows that there exists & > 0 such that
p(z +v) +p(z —v) —2p(z) < ¢||v]|/2, for all v € B(0, 26).

Let z*, y* € £ = X(z, A,e6/4) and v € X with ||v]| = §. From the definition of p,

the definition of a slice (see 4.6) and the above inequality we have

(zF —y*,v)={c"a+v)+ ¥, a—v)—(a* +y", )
<plz+v)+ple —v)—2p(x) +cb/2
<elloll/2+ ¢llvll/2 = <]|v]]
and therefore ||z* — y*|| < . Thus £ has diameter less than ¢, which proves that
X™* has the Radon-Nikodym property.
The converse implication can be proved easily from some of the previous results.

It is also a consequence of the next, more general fact. a
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9.9. THEOREM. Let X be an Asplund space, C be a convex subset of X and
f: C — R be a convex function. Let A be a Baire, relatively open subset of C' such
that f|A is locally Lipschitz. Then there exists a dense Ggs subset Ag of A such
that f is Fréchet differentiable at each point of Ay.

PROOF. By Theorem 8.7(2) and Corollary 8.8, 9f: 4 — 2% is a locally
efficient, maximal monotone operator. We can apply Theorem 5.8 (1) to obtain a
locally bounded w* usco map (f)y: A — 2V for some continuous 1): 4 — R. By
Corollary 4.7, there exists a dense Gs subset 4y of 4 and a selection o for (9f)y
which is continuous at all the points of 4,. Notice that o is a selection for df too

and therefore by Lemma 9.5(2) f is Fréchet differentiable at each point of Aq. O
We shall continue by giving some characterizations for Asplund spaces.

9.10. PROPOSITION. A Banach space X is an Asplund space if and only if for any
Baire space A and any w* usco map F: 4 — 2" there exists a dense Gg subset

Ap of A and a selection o for F' which is norm continuous at each point of Ay.

ProoF. If X is Asplund then X* has the Radon-Nikodym property (see
Theorem 9.8) and Corollary 4.7 implies that X has the stated property.

Conversely, assume that X has the stated property and let f: C — R be a
continuous convex function, with C open. Then f is locally Lipschitz and therefore
df: C — 2X" is w* usco. By hypothesis there exists a selection o for df and a
dense Gs subset Cy of C such that o is norm-to-norm continuous at each point of
Cy. Lemma 9.5(2) implies now that f is Fréchet differentiable at each point of Cj.

Thus X is an Asplund space. a

9.11. PROPOSITION. Let X be a weak Asplund space. Then X is an Asplund
space if and only if for any Baire space A and any w* continuous map f: A — X*
there exists a dense G subset Ag C A such that f is norm continuous at each point

Oon.



PROOF. Let X be an Asplund space and let f be as above. Then f is a
minimal w* usco map, hence, by Corollary 4.7, it is norm continuous at each point
of a dense Gg subset of A.

Conversely, let f: C — R be a continuous convex function, with C open. Since
X is weak Asplund there exists a dense G5 subset C; of C such that f is Gateaux
differentiable at each point of C;. Let o: €' — X™* be any selection for df. By
Lemma 9.4, o is w* continuous at each point of C;. By assumption there exists
a dense G; subset Cy of C) such that ¢ is norm continuous at each point of Cj.
By Lemma 9.5 (2), f is Fréchet differentiable at ecach point of Cy. Since Cj is

obviously a dense G4 subset of C', the proposition 1s proved. O

REMARK. It is not my aim to discuss here all the known characterizations of

Asplund spaces, however I would like to mention one more. Namely:

A Banach space X is an Asplund space if and only if every closed separable
subspace of X has a separable dual. In particular, a Banach space with separable

dual is an Asplund space (see, for example, [14]).

We now turn our attention to the class of weak Asplund spaces, which in
contrast to the class of Asplund spaces has no characterization yet. However, a
lot of Banach spaces have been proven to be weak Asplund. Among them, are the
Banach spaces of class S, which in view of Corollary 4.10 and Corollary 4.11 is

fairly large. Indeed we have:

9.12. THEOREM. Let X be a Banach space in the class S, let C' be a convex subset
of X and let f: C — R be a convex function. Asswune that there exists a Baire,
relatively open subset A of C such that f|A is locally Lipschitz. Then there exists
a dense Gg subset Ay of A such that f is Gateaux differentiable at each point of

Ag. In particular, X is a weak Asplund space.

PROOF. We begin as in the proof of Theorem 9.9 to find a continuous ¢: 4 —
R such that (8f)y: A — 2% is a w* usco map. By Remark (1) in Section 4.3
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there exists a selection 0: A — X * for (0f )y which is w* continuous at each point
of a dense G;s subset Ay of A. Lemma 9.4 (2) implies now that f is Gateaux

differentiable at each point of A4y. O

9.13. COROLLARY. Let X be a Banach space in the class S, let C be a convex
subset of X and let f: C — R be a convex and locally Lipschitz function. Then
the set of points of C where f is not Gateaux differentiable cannot contain a Baire,

quasi-open convex subset of C.

At this point we have proved our main results about generic differentiability

of convex functions. We shall conclude by proving a chain rule type result.

9.14. THEOREM. Let X and Y be Banach spaces, let B be a Baire subset of Y,
C be a convex subset of X and A be a relatively open, Baire subset of C. Let
h: B — A be continuous and Fréchet differentiable (resp. Gateaux differentiable)
and f: C — R be convex and such that f|A is locally Lipschitz. Assume that X is
Asplund (resp. in the class S). Then theré exists a dense Gg subset By of B such
that f o h is Fréchet (resp. Gateaux) differentiable at each point of By.

Proor. We shall prove only the Fréchet part, the proof of the Gateaux one
being similar (in fact simpler). Exactly as in the first part of the proof of The-
orem 9.9 we can find a continuous ¥: 4 — R such that (8f)y: 4 — 2% is a
locally bounded, w* usco map. Then the set valued map F': B — 2% defined by
F(z) = (0f)y(h(z)) is locally bounded and w* usco. By Corollary 4.7 there exists
a selection o for F' which is norm continuous at each point of a dense G4 subset By

of B. For each z € By define
DF,:Y - R by Py = olejeolih,,

where Dh, is a Fréchet differential of h at 2. Clearly DF), is linear and continuous.
We shall show that it is a Fréchet differential of f o i at x.
To this end let y € B. Since o(z) € df(h(z)) and o(y) € df(h(y)y) we have

(o(x), hy) — h(2)) < F(h(y)) — F(h(z))



= 50 —

and

(a(y), h(z) — h(y)) < f(h(z)) — F(A(y))

hence

0< foh(y)—foh(z)— (cr ), h(y) — h(z)) < (a(y) —o(z),h (y) — h(z)).
Using the Fréchet differentiability of h at x we get

0 < foh(y)— foh(z)— (o(x), Dho(y — z) + |ly — || Os,=(y))
<{o(y) — o(z), Dho(y — x) + ||y — 2||On,2(v))

or

foh(y)— foh(x)—{a(z), Dhs(y — x))

ly — |
<{o(y),On=(v)) + o) - U|(|;)ilz-ﬁr(y =
<o (¥), One(y)) + llo(z) — a(y)|| - | Dh||.

(o(2), On,z(y)) <

Since (o(z), Dh,(y — z)) = (DF,,y — x), we obtain

<0’(£L‘), Oh,z(y)> < Ofoh,z(y) = <(f(y)s Ohx(y)> =+ ”U(t) = U(?f)“ ) ”Dh:”

Since o is norm-to-norm continuous at x and lim O .(y) = 0 it follows that
y—z

lim Oygon,-(y) = 0, which proves our assertion. : o

y—z

REMARK. If in the above theorem we take X = Y and B = A we reobtain

Theorem 9.9 and Theorem 9.12.
Comments

Theorem 8.7 is well known for open convex sets (with the only apparently weaker as-
sumption that f is lower semicontinuous). Without any assumption on the interior

of C, it is known that the lower semicontinuity of f implies the subdifferentiability
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of f on a dense subset of C (see [4]). In our case C' is arbitrary and by imposing
stronger conditions on f we obtain its subdifferentiability on any relatively open
subset of C' on which it is locally Lipschitz. A first version of Theorem 8.7 was
proved by the author in [23] for the case of quasi-open convex sets. Corollary 8.8
is due to Rockafellar [19] who proved it for any lower semicontinuous function; our
context is less general, but the proof is simpler. Theorem 8.11 is one of the results
in [24]. One implication in Theorem 9.8 (the fact that the dual of an Asplund space
has the Radon-Nikodym property) is due to Namioka and Phelps [12]; the other
one is due to Stegall [20]. Theorem 9.12 was first proved by the author in the case
of a separable Banach space and of a quasi-open convex set in [23]; Rainwater [16]
extended it to the case of Banach spaces in the class S and also proved Theorem 9.9,
both in the case of quasi open convex sets. Here we extended Rainwater’s results
to the case of arbitrary convex sets. Propositions 9.10 and 9.11 seem to be known
to the specialists in the field, but have never appeared in published form. Theorem
9.14 is an extension of a result due to Stegall [22] for open sets; a less general ver-
sion (for quasi-open sets) is contained in [24]. Some of the results in this chapter
(parts of Theorems 8.7 and 8.11 and Theorem 9.9) were obtained independently
and by completely different methods by Noll [13].
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