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ABSTRACT

Wireless Parylene-Based Retinal Implant

Thesis by

Jay Han-Chieh Chang

Doctor of Philosophy in Electrical Engineering
California Institute of Technology

The degeneration of the outer retina usually causes blindness by affecting the photoreceptor cells.
However, the ganglion cells, which consist of optic nerves, on the middle and inner retina layers are
often intact. The retinal implant, which can partially restore vision by electrical stimulation, soon
becomes a focus for research. Although many groups worldwide have spent a lot of effort on
building devices for retinal implant, current state-of-the-art technologies still lack a reliable
packaging scheme for devices with desirable high-density multi-channel features. Wireless flexible
retinal implants have always been the ultimate goal for retinal prosthesis. In this dissertation, the
reliable packaging scheme for a wireless flexible parylene-based retinal implants has been well
developed. It can not only provide stable electrical and mechanical connections to the high-density
multi-channel (1000+ channels on 5 mm x 5 mm chip area) IC chips, but also survive for more than

10 years in the human body with corrosive fluids.

The device is based on a parylene-metal-parylene sandwich structure. In which, the adhesion
between the parylene layers and the metals embedded in the parylene layers have been studied.
Integration technology for high-density multi-channel IC chips has also been addressed and tested

with dummy and real 268-channel and 1024-channel retinal IC chips. In addition, different protection



vi

schemes have been tried in application to IC chips and discrete components to gain the longest
lifetime. The effectiveness has been confirmed by the accelerated and active lifetime soaking test in
saline solution. Surgical mockups have also been designed and successfully implanted inside dog's
and pig's eyes. Additionally, the electrodes used to stimulate the ganglion cells have been modified to
lower the interface impedance and shaped to better fit the retina. Finally, all the developed

technologies have been applied on the final device with a dual-metal-layer structure.
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1 INTRODUCTION

1.1 Retinal Prosthesis

In normal human vision, as shown in Figure 1.1, the light enters the eye through the cornea, the
pupil, and is focused by the transparent crystalline lens. The light then goes through the vitreous
body which is filled with vitreous humor, through the layers of the inner retina, and it is ultimately
focused onto the photoreceptors of the outer retina. Along the pathway, the delicate retina performs
significant visual processing works. According to the World Health Organization (WHO), the two
most common leading causes of blindness induced by degenerative retinal diseases are the age-
related macular degeneration (AMD) and retinitis pigmentosa (RP). The defects will damage the
outer photoreceptors and cause the loss of the cone and rod receptors in the eye. Blindness due to
such outer retinal diseases have affected several million people in the world. In fact, it has been
estimated by The Eye Diseases Prevalence Research Group and the National Eye Institute that AMD
alone will affect more than three million people in the United States by the year 2020 [1]. In addition,
the prevalence of RP has been estimated to be approximately 1 in 4000 [2]. Recent evidence has
shown that gene, drug, and nutrition therapies could be some possibilities for the treatment of such
diseases [3-4]. However, such treatments, in reality, are still very far away from being used in
clinical practice, and have a number of ethical and political barriers to their implementation.
Therefore, blindness still cannot be treated in the end.

In 1994, Dr. Humayun et al. reported the results to electrically stimulate vertebrate retinas [5] as
another possible treatment for these retinal diseases. The main idea is to bypass the damaged
photoreceptors in the normal visual route. In this study, damaged bullfrog eyecups and rabbit eyes,
were stimulated with platinum electrodes and the results showed that surface electrical stimulation of

the inner retina in normal eyes and in eyes with outer retinal degeneration can induce a localized



retinal response. The ganglion cell layers which consist of optical nerves can be electrically
stimulated to construct localized vision signals in patients [6-9]. This is so called “Retinal Prosthesis”,

a possible treatment for patients with devastating blindness due to outer retinal disease.
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Figure 1.1. Diagram of the human eyeball structure.
(Image courtesy from www.glogster.com)

There are now a large variety of approaches to artificial vision, each with their own advantages
and disadvantages. Among them, the main stimulation schemes are epiretinal and subretinal
approaches, which differ by the location of the implanted devices and stimulation sites. For the
epiretinal approach, as shown in Figure 1.2, an electrode array is placed directly on the retina from its
anterior aspect. For the subretinal approach, an electrode or photodiode array is placed within the
layers of the retina [10]. The state-of-the-art epiretinal prosthesis has been successfully demonstrated
as a prototype of 60-electrode device, developed by Second Sight Medical Products, Inc. in patients
[11]. Although still not enabling such activities of daily living as newspaper reading and facial

recognition, blind patients can differentiate between a plate, a cup, and a knife, in a high-contrast



environment free from background distracters, which is already a huge achievement of engineering
and medicine. Furthermore, subjects have been shown to be able to determine direction of movement
of parallel white bars on a black background, as well as locate white squares within a quadrant of
otherwise black space [12]. Also, patients have demonstrated their ability to read large letters simply

by scanning the camera mounted on their head back and forth over the image displayed in front of

them.
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Figure 1.2. System overview and comparison of locations of epiretinal and subretinal implants [13].

The basic components of the retinal prosthesis system are almost the same, as shown in Figure
1.3: an external camera is mounted on a glass to take videos and pictures to general the raw signals.
The signals will be then wirelessly sent into the eye and further analyzed by internal circuitry to
generate the stimulation signals. The stimulation signals will then be sent to electrodes to stimulate

the retina ganglion cells to partially restore some useful vision.



Figure 1.3. Basic components for the retinal implant system.
(Image courtesy from www.thinfilmsblog.com)

1.2 MEMS Technology

Micro-electro-mechanical system (MEMS), the acronym which originated in the United States, is
also referred to as Microsystems Technology (MST) in Europe and Micromachines in Japan. MEMS
is a fabrication technology applied to build small integrated devices and systems that consist of both
mechanical and electrical components [14-15]. Because of its root in the IC industry, MEMS devices
are fabricated using integrated circuit (IC) batch processing techniques and typically can range from
0.1 to 100 micrometer in sizes. Usually, these devices are able to detect, control and actuate on the
micro scale, and response on the macro scale. Fabrication processes such as bulk and surface
micromachining can selectively remove parts of the substrate, such as silicon, or add some additional

structural layers to form the mechanical and electromechanical components and devices. While



integrated circuits (IC) are designed and fabricated to take advantages of the electrical properties of
the silicon, MEMS technology exploits both its electrical and mechanical properties, thus resulting in
broader application. MEMS is an integrated technology in micro-scale. It can consist of many
microstructures, such as sensors, actuators, and electronics, all of them are integrated onto single
silicon substrate. Among them, sensors can first detect the changes in the system’s environment by
measuring the mechanical, thermal, magnetic, chemical or electromagnetic data and phenomena.
Electronics can then process this information. After that, the actuators can react and create some form
of changes to the environment. In addition, MEMS devices are usually very small, and their
components are usually in micro scale. Levers, gears, pistons, and motors have all been fabricated by
MEMS technology. Figure 1.4 shows a potential complexity of MEMS system with the addition of

independently-structured layers.
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Figure 1.4. Complexity of MEMS device by structure layers [15].

MEMS has many diverse advantages, in micro-scale, as a fabrication technology. Many
previously unrelated fields have been connected together by the interdisciplinary nature of MEMS

technology. Besides, the batch fabrication techniques of MEMS also enable the manufactured



devices to be more stable and reliable. In addition, MEMS provides the foundation for the
manufacture technology of products that cannot be replaced by other methods. All these factors make
MEMS potentially a more popular and broader technology than integrated circuit (IC) microchips
technology. However, there are still many challenges and technological difficulties associated with
the miniaturization that need to be studied and overcome before MEMS technology can really realize
its overwhelming potential around the world.

When it comes to the history of MEMS, from a very early vision in the early 1950’s, MEMS has
gradually made its way out of research laboratories and into everyday products. In the mid-1990’s,
MEMS components began to appear in numerous commercial products and applications including
accelerometers used to control airbag in vehicles, pressure sensors for medical applications, and
inkjet printer heads. Today, MEMS devices are also found in projection displays and used for
micropositioners in data storage systems. However, the most important potential for MEMS devices
lies in the new applications on the biomedical and process control areas.

The following lists the major history of MEMS which is useful to show its diversity, challenges,

and application [16]:

1947 Realization of transistors.

1958  Silicon strain gauges commercially available.

1959 “There’s Plenty of Room at the Bottom” — Richard Feynman gives a milestone
presentation at California Institute of Technology.

1961 First silicon pressure sensor demonstrated.

1967 Invention of surface micromachining. Westinghouse creates the Resonant Gate Field Effect
Transistor, (RGT). Description of use of sacrificial material to free micromechanical devices
from the silicon substrate.

1970 First silicon accelerometer demonstrated.



1979  First micromachined inkjet nozzle demonstrated.

1982 Disposable blood pressure transducer demonstrated.

1982 “Silicon as a Mechanical Material” [17]. Instrumental paper to entice the scientific
community — reference for material properties and etching data for silicon.

1982 LIGA Process.

1988 First MEMS conference held.

1992 MCNC starts the Multi-User MEMS Process (MUMPS) sponsored by Defense
Advanced Research Projects Agency (DARPA).

1992  First micromachined hinge demonstrated.

1993  First surface micromachined accelerometer sold (Analog Devices, ADXL50).

1994 Deep Reactive lon Etching is patented.

1995 BioMEMS rapidly develops.

2000 MEMS optical-networking components become big business.

MEMS can be further divided into three different classifications; bulk micromachining, surface
micromachining, and high-aspect-ratio micromachining (HARM), which includes technology such as
LIGA (a German acronym from Lithographie, Galvanoformung, Abformung translated as
lithography, electroforming, and molding). Traditional macro-scale fabrication techniques are
beneficial for building three dimensional (3D) shapes and devices, but they might be limited on
applications for structures with smaller size because the nature of the low complexity. However,
MEMS fabrication technology uses IC batch processing, which applies photolithography and other
associated dry and wet etching processes, to perform the addition or subtraction of two dimensional
(2D) layers on a substrate. Therefore, the 3D structure of MEMS devices can be fabricated by the
patterning and interaction of the 2D layers. Additional layers can be added by thin-film deposition or

other bonding techniques.



1.2.1 Photolithography

Photolithography is the technique used to transfer copies of a master pattern onto the other
substrate, such as silicon wafers. This step provides pattern resolution high enough to achieve
miniaturization. The photo-definable material, photoresist, is very light sensitive and can be
selectively removed by shining ultraviolet (UV) light on a specific area. Figure 1.5 shows the
comparison of the fabrication process between positive and negative photoresist. A thin layer of
photoresist is first spin coated on the oxide layer. Then a photomask, consisting of a transparent glass
plate coated with an opaque chromium (Cr) pattern, is then placed in contact with the photoresist
coated surface. The wafer is then exposed by the UV radiation in order to transfer the pattern on the
mask to the photoresist, which is then developed in the developer solution. The UV radiation induces
the chemical reaction on the exposed areas of the photoresist. After the UV radiation step, the
positive photoresist is enhanced by UV radiation while the negative photoresist is weakened. In
developing process, the developer removes either the exposed areas (positive photoresist) or the
unexposed areas (negative photoresist) of the photoresist. The pattern of photoresist-coated (positive
photoresist) or bare (negative photoresist) oxides is then left on the wafer surface. The resulting
photoresist pattern is either the positive or negative image of the original master pattern of the
photomask. The chemical, such as hydrochloric acid, is applied to remove the uncovered oxide from
the exposed areas of the photoresist. After that, hot sulphuric acid is used to remove the remaining
photoresist to complete the whole process. This chemical only removes the photoresist but not the
oxide layer on the silicon, resulting in a oxide pattern left on the silicon surface. The final left oxide

is the copy of the master photomask pattern and is used as the mask in the subsequent processes.
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Figure 1.5. Comparison of the fabrication process between positive and negative photoresist.
(Image courtesy of NCSU soft lithography from Wiki)

1.2.2 Bulk Micromachining

Bulk micromachining is the fabrication process applied to remove part of the bulk substrate. It is
a subtractive process used to create large pits, grooves and channels on the original substrate, as
shown in Figure 1.6. Bulk micromachining can be performed by using wet etching with corrosive
etchants or a dry etching method such as reactive ion etching (RIE) or deep reactive ion etching
(DRIE). Materials such as silicon and quartz are commonly used for wet etching, while silicon,

metals, plastics and ceramics are usually used for dry etching.

1.2.2.1 Wet Etching
Wet etching is usually applied in order to remove the materials on substrates by immersing in a
chemical etchant liquid bath. These chemical etchants can be isotropic or anisotropic. Among them,

isotropic etchants etch the materials at the same rate in all directions, and consequently etch materials
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under the etching masks at the same rate as they etch through the material. This is the so called
"undercutting". The most common solution of the isotropic etchant for silicon is HNA, which
consists of a mixture of hydrofluoric acid (HF), nitric acid (HNO;) and acetic acid (CH;COOH).
Isotropic etchants are limited by the geometry of the structure to be etched. Etch rates can slow down
and in some cases they can stop by introduction of the diffusion limiting factors. However, this effect
can be minimized by agitation of the chemical etchant liquid bath, resulting in structures with near
perfectly rounded surfaces [18]. Anisotropic etchants, on the other hand, etch faster in a specific
crystal direction. Potassium hydroxide (KOH) is the most common anisotropic etchant used in
process because it is comparatively safer. Besides, ethylene diamine pyrocatechol (EDP), tetra-
methyl-ammonium-hydroxide (TMAH), and hydrazine water are the other common anisotropic
etchants used in MEMS process. Structures formed in the substrate by wet etching are dependent on
the crystal orientation of the silicon wafer substrate. Such anisotropic etchants etch faster in the
crystal direction perpendicular to the (110) plane. However, they etch slower in the direction
perpendicular to the (100) plane. The direction perpendicular to the (111) plane is also etched very
slowly. Silicon wafers, originally cut from a large ingot of silicon grown from single seed silicon, are
cut according to the crystallographic plane. They can be supplied in terms of the orientation of the
surface plane. Dopant levels introduced in the substrate can affect the etching rate of KOH. They can
effectively stop