
Robust Near-Threshold QDI Circuit Analysis and Design

Thesis by

Sean Keller

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2014

(Defended August 9, 2013)



ii

c© 2014

Sean Keller

All Rights Reserved



iii

Every day is a new day. It is better to be lucky.

But I would rather be exact. Then when luck comes you are ready.

—Ernest Hemingway - The Old Man and the Sea

To Meg.



iv

Acknowledgements

There is an art to research; picking problems that are interesting, useful, and tractable falls somewhat outside

the scope of the scientific method. It is a skill that probably cannot be directly taught, but rather it requires

an immersive experience working alongside experts. I would like to thank my advisor Prof. Alain J. Martin

for providing me with such an experience, and for teaching me many important lessons both directly and

indirectly.

I am also grateful to Prof. David Money Harris for introducing me to the world of device modeling and for

pushing me to develop a new MOS model for near-threshold circuits. I would also like to thank Dr. Michael

Katelman for putting much time and energy into our collaborative project of applying formal-methods to

asynchronous circuits; this work turned out to be the starting point for much of the research presented in

this dissertation. I also need to thank a number of other current and former graduate students at Caltech:

Siddharth S. Bhargav, Chris Moore, Xiaofei Chang, Nikil Mehta, Piyush Prakash, and Wonjin Jang. I would

also like to thank my committee (Prof. Adam Wierman, Prof. Azita Emami-Neyestanak, Prof. David Money

Harris, and Prof. Alain J. Martin) for taking the time to read and provide useful comments on my dissertation.

Finally, I am thankful for the loving encouragement from my wife Meg, my parents, my grandmother, and

my sister.



v

Abstract

The two most important digital-system design goals today are to reduce power consumption and to increase

reliability. Reductions in power consumption improve battery life in the mobile space and reductions in en-

ergy lower operating costs in the datacenter. Increased robustness and reliability shorten down time, improve

yield, and are invaluable in the context of safety-critical systems. While optimizing towards these two goals

is important at all design levels, optimizations at the circuit level have the furthest reaching effects; they ap-

ply to all digital systems. This dissertation presents a study of robust minimum-energy digital circuit design

and analysis. It introduces new device models, metrics, and methods of calculation—all necessary first steps

towards building better systems—and demonstrates how to apply these techniques. It analyzes a fabricated

chip (a full-custom QDI microcontroller designed at Caltech and taped-out in 40-nm silicon) by calculating

the minimum energy operating point and quantifying the chip’s robustness in the face of both timing and

functional failures.
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Chapter 1

Introduction

1.1 Challenges

Energy efficiency is one of the most important design concerns for modern digital CMOS integrated circuits

and systems [4, 21]. Reducing energy consumption results in longer battery life for mobile devices, and

energy savings in data centers translates directly to reduced operating costs. Energy can be reduced via

system optimization at every level (e.g., software, firmware, architecture, circuits). Among these different

design levels, circuit optimizations have the furthest reaching effects; i.e., circuit optimizations are applicable

to all digital systems. To the first order, the energy consumed by a digital circuit is quadratic in the supply

voltage (VDD), so reducing VDD plays a critical role in reducing energy. Nevertheless, due to second-order

effects (e.g., leakage currents) as VDD is reduced, a minimum-energy (per-cycle) operating point is reached

at a non-zero supply voltage.

In order to build minimal-energy systems, the minimum-energy supply voltage must first be determined.

The technology employed, the structure and size of the system, and external factors (e.g., temperature) have a

significant impact on the minimum-energy operating point; however, the operating point is typically near the

device threshold voltage (Vt) [22, 34, 42, 52]. For this reason, there is considerable interest in the analysis of

near-threshold circuit operation. This in turn necessitates accurate (and usable) near-threshold device models;

however, current models are either inaccurate, discontinuous around Vt, or too cumbersome to use.

Problematically, lowering the supply voltage to near-threshold exponentially reduces system reliability

(compared to reliability at the process nominal VDD); this reliability reduction is largely attributable to pa-

rameter variation. Modern MOS manufacture is certainly among the most sophisticated industrial processes

ever developed and successfully employed, but the process is imperfect, and devices are so small and numer-

ous that atomistic effects are unavoidable. These process imperfections and atomistic effects yield devices

with physical parameters that vary stochastically (i.e., parameter variation). A design optimized for the typi-

cal case may fail because one or more devices are significantly skewed from their nominal value. Parameter

variation-induced failures can be classified as either timing failures or functional failures. An assumption

about a path delay (timing assumption) that is nominally valid may not hold true in actual silicon because of
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parameter variation (a timing failure). A gate may simply fail to switch, or a memory may fail to hold state

(a functional failure). The classic engineering approach to this problem, using worst-case design margins, is

no longer practical or efficient [18].

The design of near-threshold circuits that function reliably despite parameter variation requires new mod-

els and techniques for analysis. Near-threshold statistical delay models must be developed and verified so

that timing assumptions can be verified and their probability of failure estimated. Furthermore, no universal

means of calculating statistical circuit robustness currently exists. To build reliable near-threshold circuits,

the corresponding robustness must be quantified; a new metric and method of calculation is needed. Finally,

QDI (quasi-delay insensitive) asynchronous circuits are widely considered to be the most robust family of

digital circuits [58]. To that end, they offer an inherently practical solution to the problems of parameter

variation and near-threshold circuit operation.

QDI circuits form an elegant class of clockless circuits that rely on a single critical design assumption

called the isochronic fork assumption, a necessary [60] constraint on the relative path delays through branches

of some forks. In order to calculate the probability of a timing failure in a QDI system, the exact timing con-

straint imposed by the isochronic fork assumption needs to be determined. With an accurate near-threshold

device model, the minimum energy operating point for a QDI circuit can be determined. With a statistical

delay model, the probability of timing failures in a QDI circuit can be computed, and with a robustness met-

ric, the probability of functional failures can be calculated. Accurate interconnect models and manufacturing

defect models already exist, and so the robustness and yield of a QDI design operating near-threshold can be

specified.

1.2 Contributions

This dissertation sets out to address the hurdles detailed in Section 1.1. Chapter 2 presents and verifies

the near-threshold model, a physically derived transregional MOS model. This new model is then used to

generate a near-threshold statistical delay model. Chapter 3 introduces a new metric for statistical circuit

robustness and an efficient means of calculation. Chapter 4 analyzes the isochronic fork assumption in detail,

and presents and formally proves the necessary and sufficient timing assumption for QDI circuits. Finally, in

Chapter 5 these methods are used to analyze a modern (40-nm) QDI microcontroller designed at Caltech; the

minimum energy operating point is determined and the probability of failure due to both timing failures and

functional failures is estimated.

1.3 Collaboration

The work presented in this dissertation is mine, but as with most research it stems from a number of different

collaborations. The work presented in this Chapter 2 comes from a rich collaboration with Prof. David
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Money Harris of Harvey Mudd College. Prof. Harris proposed a new empirical model (in [42]), which was

the impetus for the near-threshold model. A version of this chapter has been submitted for publication. The

work presented in Chapter 3 stems from collaboration with Siddharth S. Bhargav and Chris Moore. Some

of this work was presented at the 2nd European Workshop on CMOS Variability [52]. A journal version

of this chapter is in preparation for submission to the IEEE Transactions on VLSI. Finally, Chapter 4 stems

from a fruitful collaboration with Dr. Michael Katelman during his doctoral work under Prof. José Meseguer

at the University of Illinois at Urbana-Champaign. A version of this work was presented at the 15th IEEE

Symposium on Asynchronous Circuits and Systems.[51]. Dr. Katelman later extended and formally verified

much of this work [49, 50].

1.4 Thesis Statement

The minimum-energy operating point of modern nanoscale digital CMOS systems can be accurately mod-

eled and occurs near the device threshold voltage. Parameter variation decreases the robustness of circuits

operating near-threshold, but a metric to quantify statistical robustness can be developed along with an ef-

ficient method of calculation. Lastly, robust quasi-insensitive (QDI) systems can be designed to operate

near-threshold, and the probability of timing and functional failures can be calculated.
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Chapter 2

A Compact Transregional Model for
Digital CMOS Circuits Operating
Near-Threshold

2.1 Introduction

Power and energy dissipation are critical design constraints in modern digital systems. Minimizing power

and energy consumption in CMOS—the dominant digital circuit technology—requires supply voltage scaling

below the process nominal supply voltage (VDD). The minimum energy operating point can occur below the

device threshold voltage (Vt) or above it and is a function of process parameters and environmental factors

(such as activity factor) [21, 57, 96, 97]. Even with additional constraints (e.g., performance, reliability,

yield), the energy optimal operating point typically occurs near the threshold voltage [22, 34, 42, 52]. For

these reasons, there is considerable interest in the analysis of circuits operating near-threshold.

Modeling and analysis in this region of interest, around the threshold voltage, is complicated by the fact

that even a rather narrow range of a few hundred millivolts around Vt spans three distinct MOSFET operating

regimes: weak inversion, moderate inversion, and strong inversion. Conventional compact digital MOS-

FET models—the linear/quadratic strong inversion model [85], the alpha-power law model [17, 77], and the

exponential weak inversion model [85]—are discontinuous and inaccurate around Vt. Accurate continuous

models exist [91], and some have been applied to digital circuit analysis. Nevertheless, it is apparent from

[57] that even the simplest of continuous models are difficult to work with and yield complicated expressions

for digital circuits (e.g., delay and energy) that somewhat obscure the relationship to supply voltage.1 This

relational complexity speaks to a clear need for MOS models that are simple enough to work with and reason

about, while being sufficiently accurate to yield usable results. One of the goals of this chapter is to address

this problem; that is, to clarify the energy and delay relationship to the supply voltage (near-threshold) by

deriving a new simplified drain-current model.

1Markovic et al. are aware of this complexity and do acknowledge it in [57].
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Compact MOS models are usually developed to be used in conjunction with numerical solvers and circuit

simulators, as opposed to being designed for hand calculations. The most accurate of these models tend

to have the greatest computational complexity and are the most difficult to work with by hand, while the

simplest have reduced computational complexity at the expense of accuracy. Circuit simulation, along with

the associated models, certainly plays an important role in digital system design; however, simple models

and hand analysis can give the designer deeper insight into key trade-offs, potential circuit problems, and

optimizations than can be achieved by simulation alone. This chapter presents a MOS device model designed

specifically for hand calculations involving digital circuits.

Toward the goal of reducing model complexity, a number of simplifications are made throughout this

chapter. One such simplification reduces the drain-current (Ids) model to a digital current model. In digital

circuit design, first-order approximations for important characteristics (e.g., energy and delay) of large gate

networks require only two MOSFET models: (1) the drain current of a logically “on” transistor (Ion) as a

function of VDD, and (2) the drain current of a logically “off” transistor (Ioff). Simple but accurate models

for Ioff exist, and those that include short channel effects are adequate. On the other hand, there is a need

for new Ion models that are accurate across all operating regimes. Of course, using Ion and Ioff in lieu of a

general Ids model eliminates a number of variables and reduces model complexity but is only appropriate for

digital applications.

This chapter presents a simple, physically derived, inverted-charge MOS device model for Ion (Equation

2.41) that is accurate for supply voltages ranging from a few times the thermal voltage to approximately

twice the threshold voltage in modern technologies; i.e., it is transregional. Since this model is approximately

centered at Vt, it is referred to throughout as the near-threshold model. The model is continuous and continu-

ous in the first derivative; it makes use of three process-independent fitting parameters, and these parameters

are stable. That is, these fitting parameters remain constant and the model remains accurate across different

process technologies. Moreover, the model is shown to be accurate across four different commercial tech-

nologies from two different foundries ranging from 40 nm to 90 nm. The organization of the remainder of

this chapter is as follows. Section 2.2 gives the derivation of the near-threshold model. Section 2.3 applies

the model derived in Section 2.2 to several problems. Section 2.4 discusses related work, and Section 2.5

concludes the chapter.

2.2 A Compact Near-Threshold Ion Model

It is tempting to avoid the considerable trouble of developing a physical model, and rather to use an empir-

ical curve-fit as the foundation for a simplified transregional model. The problem with a purely empirical

approach—even if the model is only intended for digital circuit analysis—is twofold. First, it is difficult

to stabilize the model with respect to physical parameters that vary, such as the threshold voltage. Second,

it is difficult to trust such a model; it is not clear how the fitting constants might change in new or differ-
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ent technologies. Fortunately, there are a number of established physical MOS models and approaches to

compact modeling. One such approach, inversion-charge modeling, is used in this chapter to generate the

near-threshold model.

Inversion-charge models differ from the classic surface-potential-based models in that they make explicit

the relation between MOS terminal voltages and the inversion-charge density (e.g., the charge due to electrons

below the gate of an NFET). A continuous expression for drain current as a function of terminal voltages fol-

lows directly from this explicit relation when applied to the Pao-Sah [72] model. The inversion-charge density

to terminal voltage relation is difficult to compactly model, and the choice of simplifying approximations is

a key differentiating factor between inversion-charge models.

The goal of this section is to derive a new analytical expression for NFET drain current of an “on”

transistor, Ion, where Ion is defined as the drain current when Vgb = Vdb = VDD and Vsb = 0V . This

expression for Ion and the derivation are also applicable to a PFET; however, the corresponding derivation

is not presented. The derivation begins with the quasi-static long-channel model for an NFET in terms

of gate, source, and drain voltages, all relative to the bulk along the lines of the EKV model derivation

presented in [37]; as such, some of the content presented in Section 2.2.1 and 2.2.2 is a review. It is a

long/wide channel inversion-charge model that makes use of the linearization of inversion-charge to surface

potential. The derivation starts with a well-accepted expression for drain current in terms of a diffusion

component and a drift component, which is reduced to an expression where the drain current is proportional

to a one-dimensional integral from the source potential to the drain potential of the mobile inversion-charge

(i.e., electrons) in the channel. A number of normalizations are applied to simplify the expression, and

the integral is broken into an equivalent difference expression. Next, an expression is given for the mobile

inversion-charge in terms of the normalized gate, source, drain, and threshold voltages. This expression is

directly solved for mobile inversion-charge without approximation, a task that previous works were unable

to accomplish. Additionally, several approximations are explained, and a new approximation that yields the

near-threshold model is presented. These approximations for mobile inversion-charge can be directly applied

to the integral expression for drain current to give drain current in terms of the terminal voltages. Finally, this

drain-current expression is further simplified to give Ion as a function of VDD.

2.2.1 Drain-Current Model

Consider an NFET labeled as in Figure 2.1. The standard long/wide-channel expression for drain current is

given by Equation 2.1. See [40, 91] for a full derivation and a discussion of the physical assumptions required

for validity.

Ids(x) = µW

(
−Q′i

dψs
dx

+ φt
dQ′i
dx

)
, (2.1)
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Figure 2.1: NFET physical view.

where µ is the effective electron mobility, W is the channel width, Q′i(x) is the mobile inversion-charge per

unit area as a function of position along the channel, φt is the thermal voltage2, and ψs(x) is surface potential

(the potential drop from the semiconductor surface to deep into the body). The first term, −Q′i dψsdx , models

drift and the second term, φt
dQ′i
dx , models diffusion.

Assuming a constant channel width, a constant electron mobility, the charge sheet approximation (the

entire mobile inversion-charge is at the surface potential), and the gradual channel approximation (the electric

field along the z-axis is much larger than the field along the x-axis), Equation 2.1 reduces to Equation 2.2;

see [37, 40] for a full discussion.

Ids = µC ′ox
W

L

∫ Vd

Vs

−Q′i
C ′ox

dVc, (2.2)

where C ′ox is the oxide capacitance per unit area, L is the channel length, and Vc(x), the channel potential,

represents the quasi-Fermi potential of electrons in the channel as a function of position; to the first order, it

varies monotonically from the source to the drain, i.e., from Vs to Vd.3

For a fixed Vg and Vs, as Vd, increases the device eventually enters the saturation region. This is due to

the drain-end of the channel pinching-off as the drain-end enters weak-inversion and the mobile inversion-

charge becomes negligible. Intuitively, this happens anywhere along the channel where the channel voltage

is sufficiently large. In general, this property can be stated as the assumption that

lim
Vc→∞

Q′i = 0. (2.3)

As such, Equation 2.2 can be broken into two pieces: a forward current, If , which is independent of Vd, and

2Note that φt =
kBT
q

, where kB is the Boltzmann constant, T is the absolute temperature, and q is the magnitude of the electrical
charge on the electron.

3Terminal voltages are body referenced unless otherwise specified.
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a reverse current, Ir, which is independent of Vs. That is,

Ids = µC ′ox
W

L

∫ ∞
Vs

−Q′i
C ′ox

dVc︸ ︷︷ ︸
If

−µC ′ox
W

L

∫ ∞
Vd

−Q′i
C ′ox

dVc.︸ ︷︷ ︸
Ir

(2.4)

In order to solve this integral, the relationship between the channel potential and the mobile inversion-

charge needs to be established; however, the precise relation is quite complicated. One simplifying approach

is to assume a linear relationship between the mobile inversion-charge and the surface potential. This greatly

simplifies the problem and yields a constant of proportionality, n, the slope factor. From [36],

n =
Q′i

C ′ox(ψs − ψp)
, (2.5)

where ψp is the pinch-off surface potential, the surface potential at which the inversion charge becomes zero.

Before solving Equation 2.4, it is convenient to normalize the terms to unit-less quantities using

qi =
−Q′i

2nφtC ′ox
, I0 = 2nµC ′ox

W

L
φ2t ,

vc =
Vc
φt
, i =

I

I0
,

Vs
vs

=
Vd
vd

=
Vg
vg

= φt, and
Ids
ids

=
If
if

=
Ir
ir

= I0. (2.6)

Equation 2.2 now simplifies to

ids =

∫ vd

vs

qidvc, (2.7)

and Equation 2.4 becomes

ids =

∫ ∞
vs

qidvc︸ ︷︷ ︸
if

−
∫ ∞
vd

qidvc︸ ︷︷ ︸
ir

. (2.8)

Since the model is symmetric with respect to the source and drain, the forward and reverse component are of

the same form; it is convenient to use a combined notation so as to work with both expressions (if and ir)

simultaneously. That is,

if,r =

∫ ∞
vs,d

qidvc. (2.9)

Finally, all that is needed to solve Equation 2.9 is an expression for qi, thus yielding an expression for drain

current in terms of the three transistor terminal voltages - a goal of this section.

In normalized terms, the relation between mobile inversion-charge density and channel potential can be

expressed as (see [37] for details)

2qi + lnqi = vp − vc, (2.10)
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where vp =
Vp
φt

is the pinch-off voltage, defined in [79, 78] as

vp = ψp − ψ0, (2.11)

where ψ0 is a process-dependent term with various approximations used in the literature. Conveniently, vp

can be approximated with common terms as

vp ≈
Vg − Vt
nφt

, (2.12)

where Vt is the threshold voltage [36, 79].

Equations 2.10 and 2.12 give the relation between the gate and channel potential and the mobile inversion-

charge with the process dependent component compacted into the definition of vp. Different [40] and more

accurate [78] relations exist, but Equation 2.10 is simple, practical, and differentiable:

dvc = −dqi(2 +
1

qi
). (2.13)

Substituting this expression for dvc into Equation 2.9 and integrating results in

if,r = q2s,d + qs,d, (2.14)

where qs is the normalized mobile inversion-charge at the source-end of the channel, and similarly for qd at

the drain end. Applying Equation 2.10 to the source and drain ends of channel yields

vp − vs,d = 2qs,d + lnqs,d. (2.15)

Prior work (e.g., [37, 78]) assumed that Equation 2.15 (and Equation 2.10) is not invertible, but it actually

can be inverted by using the principal branch of the Lambert W function. The Lambert W function is defined

as the root of

W(z)eW(z) = z, (2.16)

for any complex number z, (see [29] for details). The function dates back to the days of Euler and has been

recently used in several related works (see Section 2.4).

After exponentiation, Equation 2.15 can be rearranged as

2qs,de
2qs,d = 2evp−vs,d . (2.17)
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Table 2.1: Operating regime bounds for Ion

Operating Regime Current Bounds Potential Bounds
Weak Inversion if < −1.4 vp − vs < 0.20
Moderate Inversion −1.4 ≤ if < 3.6 0.20 ≤ vp − vs < 4.0
Strong Inversion 3.6 ≤ if 4.0 ≤ vp − vs

Applying the Lambert W function4 to Equation 2.17 gives the closed-form expression

qs,d =
W0 (2e

vp−vs,d)

2
. (2.18)

Analogously, applying the Lambert W function to Equation 2.10 gives the closed-form expression

qi =
W0 (2e

vp−vc)

2
, (2.19)

(depicted in Figure 2.2(a)). This expression for qi proves useful for making approximations in Section 2.2.3.

Finally, Equation 2.18 can be directly applied to Equation 2.14, giving a new closed-form expression for

normalized drain current

if,r =

(
W0 (2e

vp−vs,d)

2

)2

+
W0 (2e

vp−vs,d)

2
. (2.20)

This expression for if,r is exact, while the EKV approximation [37], discussed in Section 2.2.2 and given

by Equation 2.28, has a maximum absolute error of 21%. Using a more accurate approximation for inversion

charge, e.g., [78], and then using the Lambert W function to give an exact expression for inversion charge

may further improve total model accuracy; however, this analysis falls outside of the scope of this dissertation

and is left as future work.

Figure 2.3(a) depicts Equation 2.20, and it makes clear the nonlinear nature of drain current as a function

of the terminal voltages. It also helps relate if,r to the standard operating regimes: weak, moderate, and strong

inversion. The model presented in this chapter is symmetric with respect to the source and drain; however, the

ultimate goal of this derivation is to generate a model for Ion wherein the drain-end of the channel is tied to

VDD and the source-end to the body. From this and Equation 2.15, it follows that qs > qd,5 i.e., the inversion

charge density at the source-end of the channel always exceeds that of the drain-end. From Equation 2.14

it follows that if > ir, and so the operating regime is determined exclusively by if and correspondingly

vp − vs. The drain-end of the channel, and the drain-dependent current ir, are pinned in the weak-inversion

regime. The boundaries between operating regimes are approximated in Table 2.1.6 It should be noted that

in the general case, the operating regime can be determined by the larger of if or ir.

4When the domain of the Lambert W function is restricted to the non-negative reals, the co-domain reduces to that of the reals, and
W(z) has a single value denoted by the principal branch W0(z).

5This requires that VDD is a positive value relative to the body.
6Analytical bounds on operating regimes can be found in [91].
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2.2.2 Existing Drain-Current Approximations

There are three well accepted approximations for if,r, a simple weak-inversion approximation, a simple

strong-inversion approximation, and a continuous approximation which is valid in all operating regions. The

weak- and strong-inversion approximation, along with the new near-threshold model, are generated by mod-

eling the mobile inversion-charge as a function of the terminal voltages; Figure 2.2 and Figure 2.3 graphically

depict these charge and current approximations respectively.
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Figure 2.2: (a) Equation 2.19 (b) Equation 2.35 (Near-Threshold Model) (c) Equation 2.26 (Strong Inversion
Approximation) (d) Equation 2.22 (Weak Inversion Approximation).

In weak-inversion, vp − vc � 0, and from Equation 2.10 it follows that 2qi + lnqi � 0. The logarithmic

term dominates, so

vp − vc ≈ lnqi, and (2.21)
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qi ≈ evp−vc (2.22)

(see Figure 2.2(d)). Integrating Equation 2.9 with this approximation gives

if,r ≈ evp−vs,d , (2.23)

depicted in Figure 2.3(d). Removing the normalization, letting the approximation become an equality, and

combining the forward and reverse components yields a well-known equation for sub-threshold drain current

Ids = I0e
Vg−Vt
nφt

(
e
−Vs
φt − e

−Vd
φt

)
. (2.24)

In strong-inversion, vp − vc � 0, so the logarithmic term in Equation 2.10 is negligible. That is

vp − vc ≈ 2qi, and (2.25)

qi ≈
vp − vc

2
(2.26)

(see Figure 2.2(c)). With Equation 2.9,

if,r ≈
(
vp − vs,d

2

)2

, (2.27)

depicted in Figure 2.3(c).

Finally, the continuous EKV approximation [37] given by

if,r ≈ ln2
[
1 + e

vp−vs,d
2

]
, (2.28)

as depicted in Figure 2.3(e), is accurate over all operating regimes (at the expense of increased complexity).

2.2.3 Transregional Near-Threshold Drain-Current Approximation

This subsection presents a new inversion-charge approximation and corresponding drain current approxima-

tion for digital circuits. The model is simpler than the EKV model and continuously models digital devices

operating across weak, moderate, and strong inversion. Consider Equation 2.10; in weak-inversion the log-

arithmic terms dominates and in strong-inversion the linear term dominates. In moderate inversion neither

term dominates, so a simple approximation is not possible. Fortunately, the exact expression for charge,

Equation 2.19, can be simplified for a narrow range of vp − vc.
First, assuming that qi > 0, taking the logarithm of both sides of Equation 2.19 gives

lnqi = lnW0

(
2evp−vc

)
− ln2. (2.29)
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Next, from [94], for x > 0 and W0(x) > 0

lnW0(x) = lnx−W0(x). (2.30)

As such, Equation 2.29 can be expressed as

lnqi = vp − vc −W0(2e
vp−vc). (2.31)

Next, [29] shows that W(ex) can be approximated by a Taylor series expansion. As such, Equation 2.31 can

be written as

lnqi ≈ vp − vc − P (vp − vc), (2.32)

for some polynomial P , wherein the coefficients and validity range are a function of vp − vc. The optimal

polynomial approximation for a particular range of interest can be calculated to a high degree, but this does

not aid in the simplification of the problem at hand. The approach taken in this chapter is to use a degree-two

polynomial and to curve fit the entire expression. That is,

lnqi ≈ ka + kb(vp − vc) + kc(vp − vc)2, (2.33)

where ka, kb, and kc are fitting constants.

Finally, letting kf = eka , vω = vp − vc, and exponentiating both sides of Equation 2.33 gives

qi ≈ kfekbvω+kcv
2
ω . (2.34)

In order to calculate if,r, integration is necessary, so it is helpful to approximate Equation 2.34 as

qi ≈ k0(k1 + 2k2vω)e
k1vω+k2v

2
ω , (2.35)

where k0, k1, and k2 are new fitting constants.7 (See Figure 2.2(b) for a graphical depiction.)

After substituting Equation 2.35 into Equation 2.9 and integrating, the resulting expression for normalized

drain current can be expressed as

if ,r ≈ k0e
k1v$+k2v

2
$ , (2.36)

where v$ = vp − vs,d. Fitting this expression in the near-threshold region, −8 < vp − vs,d < 10, (see

Section 2.2.4 for boundary definition) gives the fitting constants given in Table 2.2 (used throughout this

chapter). (See Figure 2.3(b) for a graphical depiction.) Note that due to the definition of the pinch-off voltage

and the use of normalized variables, the fitting constants (k0, k1, k2) are process independent.
7This is valid, because taking the logarithm of both sides of Equation 2.35 gives lnqi ≈ lnk0(k1+2k2vω)+k1vω+k2v2ω . Using

the first few terms of the Taylor series for the ln term on the RHS reduces the entire RHS to a polynomial with new coefficients, i.e.,
lnqi ≈ P (vω). As such, removing high-order terms and exponentiating both sides gives Equation 2.34.
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Table 2.2: Near-threshold model fitting constants - error reported for if,r (Equation 2.36 compared to Equa-
tion 2.20)

Value
k0 5.4e-1
k1 6.9e-1
k2 -3.3e-2
Maximum Absolute Error 8.1%
Mean Absolute Error 21%

Finally, combining this expression for if,r (Equation 2.36) with Equation 2.8 gives

ids = k0e
k1(vp−vs)+k2(vp−vs)2 − k0ek1(vp−vd)+k2(vp−vd)

2

. (2.37)

Removing the normalization, and using Equation 2.12 to approximate vp yields

Ids = I0k0e
k1(

Vg−Vt
nφt

−Vsφt )+k2(
Vg−Vt
nφt

−Vsφt )
2

− I0k0ek1(
Vg−Vt
nφt

−Vdφt )+k2(
Vg−Vt
nφt

−Vdφt )
2

. (2.38)

Now, referencing all voltages to the source instead of the body and assuming that Vsb = 0V , gives,

Ids = I0k0e
k1

Vgs−Vt
nφt

+k2(
Vgs−Vt
nφt

)2

(
1− ek1

−Vds
φt

+k2
n2V 2

ds−2nVdsVgs+2nVdsVt

n2φ2t

)
. (2.39)

For Ion, VDD = Vgs = Vds, so

Ion = I0k0e
k1

VDD−Vt
nφt

+k2(
VDD−Vt
nφt

)2

(
1− ek1

−VDD
φt

+k2
n2V 2

DD−2nV 2
DD+2nVDDVt

n2φ2t

)
. (2.40)

Assuming that VDD is both a few times larger than φt and less than twice the threshold voltage, allows the

terms within parentheses to be approximated as unity, and letting VDT = VDD − Vt,

Ion = I0k0e
k1

VDT
nφt

+k2

(
VDT
nφt

)2

. (2.41)

Equation 2.41 gives the drain current of a logically “on” transistor as a function of the supply voltage, the

goal of this section and one of the main goals of this chapter. Within this expression, the constants k0, k1, and

k2 are process independent, and the process dependent terms are contained in the definitions of I0, n, and Vt.

The definition of I0 (Equation 2.6) also contains the sizing ratio W
L . This ratio is intentionally kept within the

definition of I0 throughout, because in short/narrow-channel devices, modifying gate dimensions can affect

some or all of the process dependent terms. As with most compact models, short/narrow-channel effects can
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Table 2.3: Model validity regions (bounded by a maximum absolute error of 21%)

Approximation min(vp − vs,d) max(vp − vs,d) min(if ) max(if ) Mean Absolute Error
EKV Continuous < −40 > 40 < 4.2e−18 > 3.6e2 6.9%
Weak Inversion < −40 −1.4 < 4.2e−18 0.20 0.59%
Strong Inversion 3.6 > 40 4.0 > 3.6e2 11%
Near-Threshold −8.0 10 3.4e−4 23 8.1%

be included in the near-threshold model as needed.8 Additionally, regions of validity for both W and L can

be established before using the near-threshold model (or any compact model) to calculate drain current as a

function of either term.

2.2.4 Near-Threshold Model Validation

Figure 2.3 depicts the different approximations for normalized drain current as a function of the transistor

terminal voltages; it is clear that each approximation has a particular region of validity. The region boundaries

are difficult to determine analytically but can be readily defined in terms of a maximum error. The original

EKV approximation, Equation 2.28, has a maximum absolute error of 21% compared to the analytical drain-

current expression given by Equation 2.20. The EKV approximation is a useful and well accepted model,

so the corresponding maximum absolute error of 21% against Equation 2.20 can also be used as a validity

bound for the other drain-current approximations. Table 2.3 provides the region boundaries in terms of both

normalized voltages and currents, along with the mean absolute error.

The near-threshold model is further validated by application to four commercial bulk CMOS processes

from two different foundries. Nominal devices, high-threshold transistors (HVT), and low-threshold transis-

tors (LVT) are modeled in a 40-nm low-power (LP) technology, a 65-nm low-power technology, a 65-nm

general-purpose (GP) technology, and a 90-nm general-purpose technology9. The foundry-provided BSIM4

models for each technology node are used as the basis for comparison and for parameter extraction. Param-

eter extraction is performed by way of a least-squares fit. This method of parameter extraction is common

and convenient, but it has shortcomings. In simplified models, such as those presented in this chapter, the

extracted parameters may not correspond to the physical parameters that they are intended to represent. This

is especially true of parameters that are greatly impacted by short-channel effects, e.g., Vt which is affected

by drain-induced barrier lowering (DIBL) [90].

Figures 2.4 and 2.5 each overlay the near-threshold model on top of the corresponding BSIM4 simulation

of the 40-nm LP and 65-nm GP technologies, respectively. In these figures, the near-threshold model is

plotted for the entire VDD range to make clear how the model deviates outside of its range of applicability.

Table 2.4 gives the lower and upper bounds on model applicability along with error rates (relative to BSIM4

8See [91] for an example of incorporating short-channel effects into a strong-inversion model.
9The 90-nm technology only permits nominal and LVT devices, so 90-nm HVT devices are not modeled.
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Table 2.4: Near-Threshold model compared to SPICE simulation of BSIM4 model for commercial tech-
nologies (at 70◦C) – the circuit parameters Vt, I0, and n are extracted from a least-squares fit against the
corresponding BSIM4 simulation

Technology Device Vt (mV) L (nm) W (nm) I0(A) n
Maximum Mean Lower Upper

Absolute Absolute Bound Bound
Error Error (mV) (mV)

40-nm Low Power NFET 485 36 108 2.30e−6 1.48 15% 8.5% 60 900
40-nm Low Power PFET 458 36 108 1.10e−6 1.24 13% 7.4% 60 900
40-nm Low Power HVT NFET 586 36 108 2.30e−6 1.58 20% 12% 60 1100
40-nm Low Power HVT PFET 572 36 108 1.23e−6 1.56 21% 13% 60 1100
40-nm Low Power LVT NFET 415 36 108 1.34e−6 1.49 17% 8.3% 60 900
40-nm Low Power LVT PFET 425 36 108 2.67e−6 1.45 16% 8.4% 60 900
65-nm General Purpose NFET 310 50 100 1.74e−6 1.32 9.8% 4.9% 60 700
65-nm General Purpose PFET 392 50 100 8.99e−7 1.34 12% 7.6% 60 700
65-nm General Purpose HVT NFET 371 50 100 1.83e−6 1.34 12% 7.7% 60 700
65-nm General Purpose HVT PFET 475 50 100 1.11e−6 1.50 11% 5.0% 60 700
65-nm General Purpose LVT NFET 273 50 100 2.22e−6 1.33 13% 6.4% 60 700
65-nm General Purpose LVT PFET 348 50 100 8.76e−7 1.32 9.3% 5.2% 60 700
65-nm Low Power NFET 504 60 120 1.86e−6 1.46 19% 11% 60 900
65-nm Low Power PFET 504 60 120 1.12e−6 1.50 16% 9.1% 60 900
65-nm Low Power HVT NFET 610 60 120 1.86e−6 1.50 22% 13% 60 900
65-nm Low Power HVT PFET 602 60 120 1.25e−6 1.59 21% 13% 60 900
65-nm Low Power LVT NFET 373 60 120 1.44e−6 1.25 12% 6.3% 60 750
65-nm Low Power LVT PFET 460 60 120 1.28e−6 1.52 11% 5.0% 60 750
90-nm General Purpose NFET 304 80 120 1.52e−6 1.25 14% 7.0% 60 600
90-nm General Purpose PFET 395 80 120 1.24e−6 1.30 15% 9.3% 60 600
90-nm General Purpose LVT NFET 218 80 120 1.24e−6 1.18 21% 6.0% 60 600
90-nm General Purpose LVT PFET 271 80 120 3.62e−7 1.20 6.2% 3.3% 60 600

simulation) and extracted parameter values. Table 2.4 also specifies the device dimensions and provides the

data for LVT and HVT devices (where applicable). Note that the error associated with HVT devices tends to

be greater than that of the corresponding regular devices. This can be attributed to modeling error at the low

end of the VDD range; that is, with HVT devices, the quantity vp − vs,d can be less than the near-threshold

model lower bound given in Table 2.3.

2.3 Near-Threshold Model Applications

The goal of this section is to demonstrate the applicability of the near-threshold model to digital circuit

analysis in a modern technology. The model is first used to generate a closed-form analytical expression

for delay, which is then used to give a closed-form equation for energy, and this is used to determine the

minimum-energy operating point as a function of activity factor and frequency. Finally, parameter variation

is incorporated into the model, and closed-form expressions for the stochastic path-delay are derived. All of

these analyses, which yield closed-form expressions, leverage the simplicity of a digital Ion model designed

for hand calculations.

Model validity is determined by comparing the analytical expressions against corresponding BSIM4

SPICE simulations, and the errors are reported. For simplicity, chains of minimum-size inverters are used

as a basis throughout; minimum-size devices are typical of circuits designed to minimize energy in the near-
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Figure 2.4: Equation 2.36 (Near-Threshold Model) plotted for entire VDD range against SPICE simulation
of BSIM4 model of a 40-nm low-power process with minimum-size devices.
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Figure 2.5: Equation 2.36 (Near-Threshold Model) plotted for entire VDD range against SPICE simulation
of BSIM4 model of a 65-nm general-purpose process with minimum-size devices.
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threshold region. Chains of other gates can be normalized to this basis; the delays of more complex digital

circuits, e.g., a ripple-carry adder, track that of the inverter over a wide supply voltage range [42]. Similar

analyses also make use of inverters as a canonical basis for analytical evaluation, e.g., [21, 98]. Furthermore,

Table 2.5 (in Section 2.3.1) reports the error (as compared to SPICE) when the closed-form delay model is

applied to combinational gates other than minimum-size inverters.

2.3.1 Delay Model

Numerous delay models of varying accuracy and complexity have been used to model the switching delay

of gates operating super-threshold, e.g., [67, 75, 96]. For circuits operating sub-threshold and near-threshold,

[21, 57, 42, 97] use and validate a simple linear RC-delay model. That is, the delay of a gate can be approxi-

mated as

tpd = kfCload
VDD
Ion

, (2.42)

whereCload is the load capacitance, and kf is a small fitting constant. This fitting constant serves to normalize

the RC time constant and is necessary because propagation delay more closely tracks the drain current of

devices that are only partially ‘on’ [67].

Using the near-threshold model for Ion (Equation 2.41), tpd from Equation 2.42 can be expressed as

tpd =
kfCload

k0I0
VDDe

−k1
VDT
nφt
−k2

(
VDT
nφt

)2

. (2.43)

Since I0 is typically treated as a fitting constant, Equation 2.43 can be simplified by combining the constants

kf , k0, and I0 into a single term IF . This gives

tpd =
Cload

IF
VDDe

−k1
VDT
nφt
−k2

(
VDT
nφt

)2

. (2.44)

In order to apply Equation 2.44 to an inverter, separate delays for the PFET and NFET can be calculated.

A simpler approach used in this chapter is to calculate an average propagation delay, which simultaneously

models the delay of both types of devices, but this requires refitting I0 and VDT . Figure 2.6 plots the FO4

delay of a minimum-size inverter in the 65-nm GP process. The Near-Threshold model is plotted against

the BSIM4 model with the Near-Threshold model fit from 135mV to 700mV (the inverters do not function

below 135mV). The mean absolute error is 8.0%, and the maximum absolute error is 13% with Vt = 386mV,

n = 1.43, and Cload
IF

= 1.42nsV .

Equation 2.44 can be applied to a variety of gates by fitting Cload
IF

; Table 2.5 gives the corresponding

error (as compared to the BSIM4 model) for the FO4 delay of several combinational gates: a minimum-size

inverter, a four-times minimum-width inverter, an eight-times minimum-width inverter, a NAND2 gate, a

NOR2 gate, and an AOI21 gate.
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Figure 2.6: Inverter FO4 delay, Equation 2.44, plotted for entire VDD range against a BSIM4 SPICE simu-
lation of 65-nm general-purpose process at 70◦C for minimum-size inverter driving an FO4 load. Fit from
135mV to 700mV yielding, Vt = 386mV, n = 1.43, and Cload

IF
= 1.42nsV .

Table 2.5: FO4 delay of combinational gates determined using Equation 2.44 and compared to BSIM4 SPICE
simulation of 65-nm general-purpose process at 70◦C. Fit from 170mV to 750mV with Vt = 386mV and
n = 1.43

Gate
tpd(ns) Maximum Mean

at Cload
IF

(nsV ) Absolute Absolute
VDD = Vt Error Error

INV 1X 0.57 1.42 13% 8.3%
INV 4X 0.49 1.29 11% 5.7%
INV 8X 0.48 1.28 10% 5.6%
NAND2 1.2 3.03 19% 11%
NOR2 1.2 3.02 14% 7.8%
AOI21 2.4 5.42 29% 15%

2.3.2 Energy Model

The total energy dissipated by a CMOS circuit, Etot, can be expressed as the summation of a dynamic com-

ponent, Edyn, corresponding to the charging and discharging of capacitance and a leakage component, Eleak,

attributed to parasitic leakage current. Assuming periodic operation, e.g., clocking, the total energy can be

defined in terms of energy-per-cycle. That is,

Etot = αEdyn + Eleak, (2.45)
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where α is the switching activity factor; it models the common case in which only a fraction (alpha) of the

logic-gates in the circuit switch. There are numerous physical mechanisms behind leakage currents in modern

MOSFETs [76], but in current technology nodes operating in the near-threshold region, sub-threshold drain-

to-source current dominates [48]. The leakage energy is thus defined as

Eleak = NlIoffVDDTc, (2.46)

where Tc is the cycle time (typically the critical path delay), and Nl is the number of representative gates that

are leaking in a cycle. The dynamic energy of the circuit, Edyn, is defined as

Edyn = CdynV
2
DD, (2.47)

where Cdyn represents the entire switching capacitance, i.e., it includes glitching and crowbar current. The

cycle time can be defined in terms of a sequence of representative gates and corresponding delays as

Tc =td, and

td =tpdLdp, (2.48)

where td is the path delay, and Ldp is the number of gates on the path each with a delay of tpd.

The off-current, Ioff, for a single gate can be defined in terms of the sub-threshold drain current from

Equation 2.24; letting Vg = Vs = 0 and Vd = VDD gives

Ioff = I0e
−Vt
nφt

(
1− e

−VDD
φt

)
. (2.49)

Assuming VDD is a few times larger than the thermal voltage allows the terms in parentheses to be approxi-

mated as unity; that is,

Ioff = I0e
−Vt
nφt . (2.50)

In modern technologies, the inclusion of short-channel effects in the off-current model can significantly

improve model accuracy. For example, ignoring the effects of DIBL can result in an order of magnitude of

error [42]. The effects of DIBL can be included by explicitly making Vt a function of Vds [91]. That is,

the effective threshold voltage becomes Vt − ηVDD, where η is the DIBL factor. Substituting this value into

Equation 2.50 (in place of Vt) gives

Ioff = I0e
ηVDD−Vt

nφt . (2.51)

Figure 2.7 shows the application of the off-current equation to an NFET and PFET in the 65-nm GP process.

The values of fitting bounds, n, and Vt are taken from the tpd model detailed in Figure 2.6. The least-squares

fit value for η is 0.134, NFET I0 = 6.34µA, and PFET I0 = 0.564µA. For the NFET there is a mean
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absolute error is 3.4% and a maximum absolute error of 10%; for the PFET there is a mean absolute error is

3.7% and a maximum absolute error of 15%.
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Figure 2.7: Off-current, Equation 2.51, plotted for entire VDD range against a BSIM4 SPICE simulation of
65-nm general-purpose process at 70◦C for minimum-size devices with Vt = 386mV, n = 1.43. Fit from
135mV to 700mV, resulting in η = 0.134, NFET I0 = 6.34µA, and PFET I0 = 0.564µA.

The off-current equation (Equation 2.51), can be substituted into the expression for leakage energy (Equa-

tion 2.46). That is,

Eleak = I0VDDNlTce
ηVDD−Vt

nφt . (2.52)

Combining this with the dynamic-energy equation (Equation 2.47) by way of Equation 2.45 yields in an

expanded expression for energy;

Etot = αCdynV
2
DD + I0VDDNlTce

ηVDD−Vt
nφt . (2.53)

Finally, expanding the term Tc with Equations 2.48 and 2.44 results in the full expression for energy-per-cycle

Etot = αCdynV
2
DD +NlLdp

I0
IF
V 2
DDCloade

−k1
VDT
nφt
−k2

(
VDT
nφt

)2
+
ηVDD−Vt

nφt . (2.54)

Equation 2.54 is continuously differentiable, and can be used to solve traditional and sensitivity-based opti-

mization problems. For example, in the 65-nm GP process, for a chain of FO4 inverters, Cdyn ≈ 1.8fF ∗Ldp.

Using this value for Cdyn, with Ldp = Nl = 20, and the parameters from Figures 2.6 and 2.7, Figure 2.8

gives the minimum-energy operating voltage as a function of activity factor for the 65-nm GP process using

Equation 2.54. Figure 2.8 also shows the minimum-energy operating voltage when the weak-inversion ap-

proximation (Equation 2.23) and the strong-inversion approximation (Equation 2.27) are used as models for
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Table 2.6: Minimum-energy operating voltage error relative to SPICE simulation of BSIM4 model – the
corresponding plots are depicted in Figure 2.8

Model
Maximum Mean

Absolute Absolute
Error Error

Near-Threshold 5.1% 2.6%
Weak Inversion 34% 11%
Strong Inversion 84% 15%

Ion. The errors for these approximations relative to SPICE simulation of the BSIM4 model are listed in Table

2.6. The strong-inversion approximation is a poor model for high activity factors and the weak-inversion

approximation is a poor model for low activity factors. The near-threshold model proves to be accurate for a

wide range of activity factors.
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Figure 2.8: Minimum-energy operating voltage vs. activity factor (α). The circuit consists of a linear chain
of 20 minimum-size inverters with FO4 loads in a 65-nm general-purpose process at 70◦C.

2.3.3 Statistical Delay Model

Timing and delay play a critical role in digital circuit optimization, and in modern technologies the effects of

parameter variation on path-delay cannot be ignored. In order to account for parameter variation, static timing

analysis (STA)—the most prominent method of delay analysis in digital circuit design—must incorporate

statistical methods (e.g., by way statistical static timing analysis (SSTA)) [1, 2, 31]. Parameter variation can

be modeled in a number of different ways, and a global corner model with local random variation is accurate,

but slightly pessimistic [7]. In this model, global variation affects all devices in the same way (e.g., the TT,
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FS, SF, SS corners), and local variation is truly random: i.e., neighboring identically-drawn devices may

behave differently. With local variation, the physical effects that dominate parameter variation depend on

the operating region. In the sub-threshold and near-threshold regions, parameter variation is dominated by

random uncorrelated normally distributed Vt variation [33]. That is, when modeling the delay of circuits

operating sub-threshold or near-threshold, for any particular global corner, the effects of parameter variation

can be modeled by considering the Vt of each device as an independent normal random variable (RV). The

goal of this section is to generate a closed-form stochastic delay model by way of the near-threshold delay

model (Equation 2.44) with the new assumption that Vt is an RV.

If X is a normally distributed RV with mean denoted as µX , and variance denoted as σ2
X , then the

corresponding probability density function (PDF), f(X), is given by

f(X) =
1

σX
√
2π
e
− (X−µX )2

2σ2
X . (2.55)

For g(X) a function of X , The expected value, E, can be calculated as

E[g(X)] =

∫ ∞
−∞

g(X)f(X)dx, (2.56)

and the variance, V ar, as

V ar[g(X)] = E[(g(X)2]− (E[g(X)])2. (2.57)

Treating Vt as a normally distributed RV with mean µVt and standard deviation σVt , the expected value of

tpd can be calculated by applying tpd from Equation 2.44 to Equation 2.56. That is,

E[tpd(Vt)] =

∫ ∞
−∞

Cload

IF

VDD

σVt
√
2π
e
−k1

VDD−Vt
nφt

−k2
(
VDD−Vt
nφt

)2
−

(Vt−µVt )
2

2σ2
Vt dVt. (2.58)

Similarly, applying tpd from Equation 2.44 to Equation 2.57 gives the variance as

V ar[tpd(Vt)] =

∫ ∞
−∞

C2
load

I2F

V 2
DD

σVt
√
2π
e
−2k1

VDD−Vt
nφt

−2k2
(
VDD−Vt
nφt

)2
−

(Vt−µVt )
2

2σ2
Vt dVt − (E[tpd(Vt)])

2. (2.59)

Due to the form of Equation 2.44, log(tpd(Vt)) is an RV with a non-central χ2 distribution, and tpd(Vt)

can be approximated as log-normal with expected value and variance given by Equations 2.58 and 2.59,

respectively.10 The sum of log-normal RVs can be approximated as log-normal [9, 10], giving closed-form

10X is a log-normal RV iff log(X) is normally distributed.
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Table 2.7: Near-Threshold statistical delay model (Equations 2.60 and 2.61) compared to Monte Carlo SPICE
simulations of BSIM4 statistical model for 65-nm GP CMOS from 300mV to 700mV at 100mV intervals (at
TT-corner, 70◦C, and with 10K MC trials per VDD accounting for local parameter variation) – path delays
corresponding to chains of 2, 10, and 20 inverters (with F04 loads at each inverter) are considered

Measurement
Path Maximum Mean

Length Absolute Absolute
(gates) Error Error

E[td] 2 13% 7.8%
V ar[td] 2 32% 18%
E[td] 10 13% 8.9%
V ar[td] 10 16% 12%
E[td] 20 20% 12%
V ar[td] 20 17% 16%

equations for the path delay, td, of a sequence of gates with Ldp gates on the path (from Equation 2.48).

E[td(Vt;Ldp)] =
∑

i∈{1,2,...,Ldp}

E[tipd(Vt)], (2.60)

and

V ar[td(Vt;Ldp)] =
∑

i∈{1,2,...,Ldp}

V ar[tipd(Vt)], (2.61)

where tipd is the delay of the i-th gate in the path.
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Figure 2.9: Log-normal distribution for path-delay, using an expected value and variance calculated with the
near-threshold statistical delay model (Equations 2.60 and 2.61), compared to Monte Carlo SPICE simula-
tions of BSIM4 statistical model for a chain of 20 minimum-size inverters (with FO4 loads at the output
of each inverter) in 65-nm GP CMOS with VDD = 300mV (at TT-corner, 70◦C, and with 10K MC trials
accounting for local parameter variation).
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With these statistical delay models, short-channel effects cannot be completely ignored. As with the Ioff

model (Equation 2.51), DIBL can be easily incorporated by using an effective threshold voltage of Vt−ηVDD
in lieu of Vt. In the 65-nm GP process, incorporating the effects of DIBL into Equation 2.44 yields new

parameters: η = 0.134, n = 1.61, Cload
IF

= 1.23nsV . Vt is normally distributed with mean µVt = 449mV

and standard deviation, σVt = 56.9mV (computed at the TT-corner from statistical BSIM4 models using the

methods from [33]). In order to measure model accuracy, Equations 2.60 and 2.61 are compared to Monte

Carlo (MC) simulations using SPICE and foundry provided statistical BSIM4 models. Path lengths of 2, 10,

and 20 inverters are considered from 300mV to 700mV (at 100mV intervals) with 10K MC trials at each

VDD. The error in both the expected value and the standard deviation are reported in Table 2.7. Figures

2.9 and 2.10 depict the histograms generated from 10K MC trials at 300mV and 700mV respectively with

a path length of 20 inverters; the corresponding log-normal distributions with expected value and variance

calculated from Equations 2.60 and 2.61, respectively, overlay each histogram.
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Figure 2.10: Log-normal distribution for path-delay, using an expected value and variance calculated with the
near-threshold statistical delay model (Equations 2.60 and 2.61) compared to Monte Carlo SPICE simulations
of BSIM4 statistical model for a chain of 20 minimum-size inverters (with FO4 loads at the output of each
inverter) in 65-nm GP CMOS with VDD = 700mV (at TT-corner, 70◦C, and with 10K MC trials accounting
for local parameter variation).

Approximately 1.3 core-hours of computation time is needed to perform each set of 10K Monte Carlo

BSIM4 transient simulations on modern hardware with modern commercial SPICE software. In practice,

fewer trials per set may be necessary; however, the computation cost of a broad analysis (e.g., of a large gate

set over a wide range of supply voltages at multiple temperatures and multiple global process corners) is sig-

nificant. The computation cost associated with solving Equations 2.60 and 2.61 is comparatively negligible;

the only significant computation expense is incurred when calculating the fitting constants in Equation 2.44:

1.1e−2 core-hours when VDD is swept from 60mV to 1V with a 10mV step size.
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2.4 Related Work

MOS modeling dates back many decades, so the set of works that present and discuss various approaches to

it are numerous (see [8] or [28] for a historical discussion). The models used in this chapter are based on

existing inversion-charge models. The EKV [35, 36, 37] model and the ACM [40] model are examples of

accurate and mature continuous compact inversion-charge models. The forthcoming BSIM6 [23] model is a

new and purportedly extremely accurate inversion-charge model that is still under development. The work in

this chapter differs in that the models are reduced and simplified to the point of limiting applicability to that

of digital circuit modeling.

The Lambert W function is currently supported in numerous mathematical computation frameworks, e.g.,

Maple, Matlab, Mathematica, SciPy. Calhoun used it to define a closed form approximation for the minimum

energy operating point of CMOS circuits in [21], and Ortiz-Conde used it to model diode current [71] and

surface potential in an undoped-body MOSFET [70].

One of the primary goals of this chapter is to give a simple, continuous digital MOSFET model that can be

used for hand-calculations of circuits operating near-threshold. A number of works, e.g., [21] and [97], per-

form digital circuit analysis in this region ([99] includes variability and derives a sophisticated sub-threshold

statistical delay model), but these works rely on the weak-inversion approximation. The weak-inversion

model is inaccurate at and above the device threshold voltage, which makes it difficult to perform analysis or

establish trends for circuits operating near-threshold. The authors of [38] and [57] address this shortcoming

by using the EKV approximation, but this makes hand analysis nearly impossible. Simple, continuous, but

piecewise empirical models such as [68] exist but have inaccuracies around the threshold voltage. The initial

work for this chapter, presented in [42], is the first publication to present a simplified continuous transregional

model which is accurate near-threshold; however, the model presented in [42] is purely empirical, so it lacks

the rigor and fitting constant stability associated with the analytical model presented in this chapter.

2.5 Conclusion

This chapter presents the near-threshold model (Equation 2.41), a simplified transregional MOS drain-current

model designed specifically for digital circuit analysis of near-threshold circuits. The near-threshold model

is continuous and continuous in the first derivative, and it accurately models Ion over a wide supply voltage

range. The model derivation follows that of previous inversion-charge based models with the addition of a

new exact expression for inversion charge (Equation 2.19) and a new simplified inversion-charge approxi-

mation (Equations 2.34, 2.35, 2.36). The exact expression for inversion charge may improve the accuracy

of certain analyses, e.g., small-signal; verifying this is left as future work. The near-threshold model is vali-

dated in four modern CMOS technologies against BSIM4 SPICE simulations, and it is used to solve a circuit

analysis problem: finding the minimum-energy operating point of a digital circuit.
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As with all models, the near-threshold model has limitations. In a technology with extremely high or

low nominal threshold voltages, the model accuracy may degrade. In the technologies examined in this

chapter, the HVT devices tended to have higher error rates than the regular devices (see Table 2.4). Explicitly

including short-channel effects within the model may somewhat mitigate this problem; however, this is left

as future work. Similarly, model accuracy may degrade when modeling Ion as a function of transistor length

or width unless short-channel effects are explicitly included (as discussed in Section 2.2.3). This problem is

apparent in most compact models, but examining it in the context of the near-threshold model is left as future

work.
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Chapter 3

Quantifying Near-Threshold CMOS
Circuit Robustness

3.1 Introduction

It is difficult to design efficient and robust modern digital systems; the sheer complexity of utilizing upwards

of a billion devices [16] necessitates the use of numerous levels of logical abstraction throughout the design

flow. Errors introduced at different levels of abstraction can result in circuits that fail to function as expected

for a number of reasons (e.g., timing, design, and functional failures) [96]. Understanding and quantifying

these different modes of failure is important, but failures in the base digital assumption supersede all other

failures. If a gate cannot switch between logic values, then it cannot perform computation, and assuring

correctness with respect to e.g., timing, is moot. Functional failures of this sort can be further divided into

many classes [44]; the focus of this chapter is on active device parametric failures [65], i.e., failures caused

by one of the most significant hurdles for the future of CMOS scaling [48]: parameter variation.

Parameter variation is caused by stochastic process variation and intrinsic parameter fluctuations (IPF); it

is the primary reason why modern digital circuits that function at the process nominal supply voltage (VDD)

eventually fail as the supply is lowered [4]. More importantly, parameter variation makes functional digital

circuits less robust and hence less reliable [3, 4, 15, 21, 24, 25, 41, 54, 95]. This reduction in robustness may

be of little consequence at the process nominal VDD, but, as VDD is lowered, it becomes a critical design

concern. Problematically, in order to minimize the power consumption and energy demands of modern digital

CMOS circuits, the supply voltage must be scaled sub-threshold or near-threshold [21, 22, 34, 42, 52, 57, 96,

97]. As such, in order to build reliable low-power digital systems, it is essential to quantify circuit robustness

as a function of parameter variation, which is the primary goal of this chapter.

The prevailing trend is to perform a simple statistical analysis of worst-case gates and to choose a min-

imum VDD above which most (or many) gates are likely to function despite parameter variation [4]. The

problem with this type of analysis is that it may not be sufficient in real circuits due to the presence of elec-

trical noise. Noise can be mitigated but is fundamentally unavoidable and has proven to be a limiting effect
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in engineering digital systems for decades [83]. This chapter proposes a metric and method with which to

quantify circuit robustness in terms of parameter variation with respect to noise. Moreover, the method pre-

sented is efficient and scalable. The computationally expensive component is limited to a small set of cells

that make up modern standard cell libraries and memories, and the calculation of robustness cost is linear in

the number of instances of these cells (typically in the range of millions to billions).

The remainder of this chapter is organized as follows. Section 3.2 reviews background material on pa-

rameter variation and circuit noise analysis. Section 3.3 introduces the notion of circuit robustness and static

noise margins. Section 3.4 details the method for calculating robustness for inverters, and Section 3.5 ex-

tends the method to a larger set of CMOS gates. Section 3.6 discusses related works, and finally, Section 3.7

concludes the chapter and discusses potential future research.

3.2 Background

3.2.1 Parameter Variation

In modern CMOS technologies, device parameters such as channel length, oxide thickness, dopant concen-

tration, etc. can have significant deviations from their nominal values due to process-induced and intrinsic

parameter fluctuations [12]. Process variability can be considered a global, predictable, and gradual skew in

device characteristics introduced by the complexity of manufacturing chips [7] (e.g., from thermal gradients

during fabrication [69]). Intrinsic parameter fluctuations are truly statistical in nature and cause significant

deviations from device to device within a chip. Intrinsic variations can be attributed to atomistic effects

(e.g., random dopant fluctuation (RDF)) and device structure variations (e.g., line edge roughness (LER))

[7, 12, 26]. There are a number of different ways to characterize and partition these effects, and the approach

used in this chapter is to consider a global component wherein all devices on a chip are affected in the same

way, and a local component wherein each device on a chip has a number of statistical parameters drawn from

distributions with mean values set by the global skew. This style of partitioning variation is not as accurate

as a full combined statistical model, but it is a good, albeit slightly pessimistic approximation [7].

Considering variation in terms of a global and a local component simplifies statistical analysis and still

permits the circuit designer to choose, for example, a worst-case 3σ global corner wherein the die that fall

outside of this range are assumed not to yield and should not be optimized for. For circuits operating sub-

threshold, the local component of variation is dominated by RDF and is accurately modeled by normally

distributed uncorrelated device threshold (Vt) variation [33]. Near-threshold, local variation does exhibit

some degree of spatial correlation, and at the process-nominal VDD spatial correlation is significant and can-

not be ignored. This increase in the spatial correlation of local variation as a function of VDD can be attributed

to the fact that channel-length variation has little effect on devices operating sub-threshold but becomes the

dominant effect at approximately twice the threshold voltage [33]. Channel length variation is spatially cor-
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related between devices within some radius, and is straightforward to model [7, 33, 39]. Given that the focus

of this chapter is to quantify the robustness of low-power sub-threshold and near-threshold circuits, local

parameter variation is treated as random and uncorrelated; however, the effects of spatial correlation can be

included. Furthermore, SPICE simulations, along with foundry-provided statistically-extracted BSIM4 mod-

els, are used throughout this chapter as a basis for correctness; these models are considered accurate over the

entire device operating range [6].

3.2.2 Circuit Noise

Circuit noise can be partitioned into a physical component (e.g., thermal noise) and a man-made digital

switching component [83]. The dominant sources of physical noise in modern CMOS (which have significant

impact on RF CMOS circuits) are 1/f noise and thermal noise [80]. Switching noise is caused by the rapid

full-rail voltage swings typical in digital systems, and includes cross-talk (due to capacitive and inductive

coupling), charge sharing, supply-rail and ground noise, and substrate noise. These switching-noise sources

dominate physical noise by several orders of magnitude in digital circuits, and they must be accounted for

in the design margins in order to build robust digital systems (even in the absence of appreciable parameter

variation) [84]. Accurate modeling of each switching-noise source is possible, but highly impractical for the

simulation and analysis of large circuits (millions or billions of devices). It is, however, possible to lump

all switching-noise sources together into equivalent series voltage sources between gates [84]. These noise

voltage sources are most accurately modeled as time-varying (i.e., AC) sources [32], but using a static DC

voltage is an acceptable approximation [83].

3.2.3 Static DC Analysis

Logic gates in modern technologies exhibit a number of frequency-dependent effects, and incorporating these

effects greatly increases the complexity of analysis. Fortunately, static DC analysis has proven to be an

excellent basis for a wide range of digital circuit characterizations. The first works to discuss the requirements

for functional digital circuits [46, 47, 55] exclusively perform DC analysis. Numerous modern works, e.g.,

[3, 20, 63], also rely on the DC analysis of digital circuits, because in the context of determining functionality,

noise resilience, and reliability, it is representative. Moreover, as discussed in Section 3.1, timing failures

(which cannot be quantified with DC analysis alone) fall outside of the scope of this work. In this chapter

static DC conditions are assumed throughout, and the corresponding canonical method of analysis, voltage

transfer characteristics (VTCs)—the static output voltage of a gate as a function of input voltage—are used

extensively.
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3.3 Defining Circuit Robustness

Parameter variation and noise have a significant impact on circuit robustness, and the primary goal of this

chapter is to quantify this impact. To that end, it is necessary to define the notion of robustness with the

intuition that increasing parameter variation tends to reduce robustness to noise. Consider two circuits, C1

and C2, operating at the same supply voltage; C1 is more robust than C2 if and only if C1 can tolerate more

noise than C2. That is, as the circuit noise increases, C2 fails to function before C1. With statistical parameter

variation, the notion of failure naturally becomes a probability. Robustness can be defined such that C1 is

more robust than C2 if and only if for the same quantity of noise in both circuits the probability that C1 fails

is less than the probability that C2 fails.

As discussed in Section 3.1, the failures of interest are active device parametric failures, wherein a gate

or memory erroneously changes state (between binary digital values) because of parameter variation. Circuit

noise acts to make these failures more likely, and robust circuits need to function correctly despite parameter

variation and switching noise. In order to quantify functional failures due to variation and noise it is nec-

essary to define what it means for a gate or memory to change state. Toward this, consider the base digital

assumption: the abstraction of networks of transistors as logic gates, and logic gates as Boolean functions

over Boolean logic values. This abstraction relies on the definition of a mapping between logic-values and a

physical quantity: the electrical potential of charge stored on capacitive gate nodes. In the simplest mapping,

nodes near the supply rail potential, VDD, represent a logic-1, and nodes near GND represent a logic-0;

however, it is surprisingly difficult to define near. That is, it is difficult to give an exact (necessary and suffi-

cient) mapping between node voltages and logic values for an arbitrary network of logic-gates, because each

logic-gate interprets input voltages differently.

In a real CMOS circuit, no two gates are identical. They differ in function, topology, and sizing; and

distinct instances of the same gate differ because of parameter variation. Consider an inverter; if a 0 is

applied to its input, then a 1 is produced on its output. Similarly, a 1 at the input results in a 0 at the output.

The problem is that it is possible—by way of intentional construction or parameter variation—to have two

distinct inverters, INV1 and INV2, that behave differently. Suppose that for input voltages near VDD or

GND, INV1 and INV2 behave logically identically and correctly (i.e., they invert), but for some input

voltage, VX , between VDD and GND, INV1 produces a 0 on its output and INV2 produces a 1. In this

situation, INV1 and INV2 interpret VX differently. The situation is further complicated when the notion of

the output voltage level is considered. That is, the output of INV1 is really only a 0 when a subsequent gate

interprets it as such, and so on down a chain of gates.

Since different gates have different interpretations of input voltages, the exact mapping between voltage

levels and logic values needs to be defined in terms of this interpretation (as opposed to using a global bound).

That is, suppose that worst-case boundaries on voltages are defined by VH and VL, where it is known that

all gates in a circuit interpret voltages above VH as a 1 and all voltages below VL as 0; then the mapping
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of V (G) > VH ↔ 1 and V (G) < VL ↔ 0 is sufficient for some notion of correct operation, but it is not

necessary. This distinction is important, because this sort of worst-case definition is simple but not practical

for the analysis of modern low-voltage circuits.

Consider an example that demonstrates the trouble with using the worst-case definitions for VH and VL

in low-voltage applications. Figure 3.1 depicts the VTCs for 100 instances of a minimum-size inverter in

a modern 40-nm low-power bulk CMOS process with VDD = 200mV; the curves vary significantly due to

random parameter variation. These VTCs have remarkably similar shapes and are nearly identical modulo

horizontal translation. As such, it is reasonable to consider defining VH = 180mV and VL = 20mV as

worst-case output high and low voltages, respectively (these boundaries are also depicted by blue and red

lines respectively in Figure 3.1). The problem with this worst-case output mapping is that the corresponding

input voltages that yield a logical-1 on the output then range from 25mV to 150mV; similarly, the input

voltages that yield a logical-0 on the output range from 65mV to 195mV. These ranges overlap, so a worst-

case mapping of input voltages to logic values cannot be defined (the nonsensical worst-case mapping would

be V (G) > 65mV↔ 1 and V (G) < 150mV↔ 0).
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Figure 3.1: Voltage transfer characteristics for 100 Monte Carlo trials of a minimum-size inverter in a com-
mercial 40-nm low-power CMOS process utilizing foundry provided statistical models for local random
parameter variation at the TT global corner (VDD = 200mV at 25◦C TT-Corner).

3.3.1 Static Noise Margin

A better approach to defining a local notion of interpretation stems from static noise margin (SNM) analysis.

The static noise margin of cross-coupled inverters was first presented in [46, 47] and later clarified in [43] and

[56]. Consider Figure 3.2; the SNM of this cross-coupled pair represents the largest DC noise voltage, Vnoise,

that can be applied between the bistable pair before the inverters switch state (between logic-0 and logic-1).

If the SNM of a cross-coupled pair is less than or equal to zero (e.g., due to parametric variation), then the
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Figure 3.2: Cross-coupled inverter pair and DC noise voltage sources.

pair is not bistable; i.e., it is unable to hold two distinct logic states (a functional failure). If the SNM of the

pair is infinitesimally greater than zero, then the cell can hold two distinct logic states, but a diminutive noise

can act to switch these states, so the cell is not robust. Given that noise is always present, all cross-coupled

pairs of inverters in a digital system must have static noise margins in excess of the system noise in order to

maintain state.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Vin (V )

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

V o
ut

(V
)

(VIL,VOH)

(VIH,VOL)

VTC

Unity
Gain
Points

Figure 3.3: Voltage transfer characteristic for a minimum-size inverter in a commercial 40-nm low-power
CMOS process (VDD = 1.1V at 25◦C). The unity gain points are used to define the VTC parameters:
VOH , VOL, VIH , VIL.

There are several mathematically equivalent methods used to measure static noise margins [56]. One

such method involves analyzing the unity gain points (|dVoutdVin
| = 1) of the voltage transfer characteristic.

Consider INVa (INVb) from Figure 3.2: a static CMOS inverter consisting of a single NFET and PFET,

with the VTC depicted in Figure 3.3. Both the functionality of the inverter and the definition of SNM rely on

two properties of the VTC holding: (1) two unity gain points exist and (2) the slope between the unity gain

1In real memories, e.g., SRAM arrays, the SNM during both reading and writing of cells need to be considered [20]. Furthermore,
ensuring a SNM of greater than zero is necessary, but it may not be sufficient for ensuring read stability and write-ability [41].
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points exceeds unity in absolute value [63]. From these unity gain points, four properties of an inverter VTC

can be defined: VOH , VOL, VIH , VIL, as in Figure 3.3 (see [43] for details). (These four points are referred

to as VTC parameters throughout.) The VTC parameters serve to demark definable boundaries between the

voltages that are interpreted as a logic-1 or logic-0, and the undefined region of high-gain in between. That is,

VIH can be considered the lowest voltage that the inverter correctly interprets as a 1, and VIL as the highest

voltage that it correctly interprets as a 0. Similarly, VOH can be considered the lowest voltage that the inverter

will output as a 1 and VOL the highest voltage that the inverter will output as a 0.

In general, when one gate drives another gate, a static noise margin can be defined. This static noise

margin can be broken into two components: a noise margin high (NMH ) and a noise margin low (NML)

(one for each logic value). Consider a pair of inverters, with INVx driving INVy . The two components of

the corresponding noise margin are defined as

NMH(INVx, INVy) = VOH(INVx)− VIH(INVy), (3.1)

and,

NML(INVx, INVy) = VIL(INVy)− VOL(INVx). (3.2)

The static noise margin is defined as the smaller of NMH or NML.

SNM(INVx, INVy) =

min (NML(INVx, INVy), NMH(INVx, INVy)) . (3.3)

These relations are implicit functions of VDD.2

For cross-coupled inverters, as in Figure 3.2, INVa drives INVb, and INVb drives INVa, so two different

static noise margins can be defined, SNM(INVa, INVb) and SNM(INVb, INVa). With a few assumption

about the VTCs,3 the condition that SNM(INVa, INVb) > Vnoise ∩ SNM(INVb, INVa) > Vnoise is a

necessary and sufficient condition for differentiation of binary logic-values by way of the electrical potential

stored on the output of each inverter [46, 47, 56]. The static noise margin of cross-coupled inverters plays an

important role in quantifying circuit robustness, but the notion must be extended to incorporate parametric

variability and generalized in order to apply it to arbitrary networks of gates.

3.3.2 Statistical Robustness

This section defines a robustness metric for cross-coupled inverters that includes parameter variation and

noise by way of a statistical noise margin constraint. When considering two different circuits, C1 and C2,

operating with the same supply voltage, C1 is more robust than C2 if and only if for the same quantity of
2Equations 3.1, 3.2, and 3.3 (and all dependent equations) are actually implicit functions of all operating parameters, e.g., temperature,

body potentials, etc.
3The VTCs must be monotonic and have a single inflection point.
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noise in both circuits the probability that C1 fails is less than the probability that C2 fails. That is, for two

different circuits C1 and C2,

ROB(C1) > ROB(C2)↔ P (FAIL(C1)) < P (FAIL(C2)), (3.4)

where ROB corresponds to circuit robustness and FAIL to circuit failure.

Switching noise in digital circuits can be estimated with known-methods [83, 84], and, as with other

common metrics, e.g., power and cycle time, it can be reduced and optimized for (typically at some cost; e.g.,

spreading wires reduces coupling noise at the expense of area). As such, the circuit designer can choose a

noise margin target, NMT : a minimum noise margin constraint for all gates.4 If any gate has a noise margin

less than or equal to the NMT , then the gate is said to fail, as is the entire circuit containing the failing gate.

Consider a cross-coupled inverter-pair, INVa and INVb, (as in Figure 3.2 with Vnoise = 0V ) operating at a

particular VDD. The probability of failure for a pair can then be defined such that

P (FAIL(INVa, NMT ) ∪ FAIL(INVb, NMT ))

= P (SNM(INVa, INVb) ≤ NMT∪

SNM(INVb, INVa) ≤ NMT ). (3.5)

For a circuit, Ca, consisting of n cross-coupled inverter-pairs, i.e.,Ca = (INV ia , INV
i
b ) for i ∈ {1, 2, ..., n},

P (FAIL(Ca, NMT )) =

P

 ⋃
i∈{1,2,...,n}

FAIL(INV ia , NMT ) ∪ FAIL(INV ib , NMT )

 . (3.6)

These two relations treat both the probability of failure and SNM as random variables (RVs). In order to

compute these quantities, the corresponding distributions and the effects of correlation are considered in

Section 3.4. These two relations are generalized for application to arbitrary networks of gates in Section 3.5.

3.4 Calculating Robustness

One of the goals of this chapter is to define a method for calculating robustness in such a way that it can be

feasibly computed for large circuits (billions of gates), and which also fits in with the most prevalent method

of system design, i.e., standard-cell hierarchical digital circuit design. This necessitates the construction

of a new compact model for statistical robustness with parameters that can be stored alongside timing and

energy data in standard cell libraries. Moreover, the model must be defined such that the compact data

4A unique noise margin target can be chosen for each gate (if desired). In this way, noisy gates can be assigned larger targets than
quiet gates.
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is composable; i.e., the robustness of an arbitrary network of standard cells must be computable by the

composition of robustness data from member cells. In this way, the robustness of a large circuit (built out of

standard cells) can be readily calculated.

3.4.1 Statistical VTC Parameters

Device parameter variation results in variation in the static noise margins of gates; the precise relationship

depends on the type of parameter variation and the device operating regime (sub-threshold see [3, 20], and

above threshold see [13, 81]). The variation in SNM can be analyzed in terms of NMH and NML variation

(see Equation 3.3). Similarly, NMH and NML can be considered in terms of the corresponding constituent

VTC parameters, VOH , VIH , and VOL, VIL, respectively (see Equations 3.1 and 3.2). In modern bulk CMOS

technologies, the output VTC parameters of a gate, VOH and VOL, can be considered regular (not random)

variables.5 The input VTC parameters, VIH and VIL, are normal random variables [20]. Consider Figure 3.1

(in Section 3.3): for a particular gate (an inverter) operating at a particular supply voltage (200mV) the output

VTC parameters, VOH and VOL, are nearly constant and close to VDD and GND, respectively (consider the

blue and red lines). The horizontal translation between this family of VTC curves—due to random parameter

variation—corresponds to shifts in the input VTC parameters, VIH and VIL.
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Figure 3.4: VIH and VIL distributions for a minimum-size inverter in a commercial 40-nm low-power CMOS
process at the TT-Corner (VDD = 200mV at 25◦C).

The input VTC parameter are normally distributed with mean and standard deviation determined by the

supply voltage, gate topology, temperature, and global corner. This is confirmed by the analysis of two

standard cell libraries in different technologies and from different foundries (a 40-nm low-power process and
5First-order analysis in [3] finds VOH and VOL to be global constants dependent only on temperature when operating in the sub-

threshold regime. Including second order affects and near-threshold operation induces a dependence on VDD and gate topology, so
VOH and VOL are treated as regular variables.
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Figure 3.5: VIH and VIL distributions for a minimum-size inverter in a commercial 40-nm low-power CMOS
process at the TT-Corner (VDD = 600mV at 25◦C).
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Figure 3.6: VIH and VIL distributions for a minimum-size inverter in a commercial 40-nm low-power CMOS
process at the TT-Corner (VDD = 1.1V at 25◦C).
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Figure 3.7: VIH distributions for a minimum-size inverter in a commercial 40-nm low-power CMOS process
(VDD = 300mV at 25◦C). Global variation shifts the mean value for both VIH and VIL.
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nm low-power CMOS process (25◦C, TT-Corner). The large ratio across the entire operating range makes it
possible to approximate the output VTC parameters as regular variables, whereas the input VTC parameters
are considered random variables.
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a 65-nm low-power process). Both cell libraries contain hundreds of cells, and Anderson-Darling normality

testing shows that neither VIH nor VIL have any significant departure from normality over the entire operating

range.6 Figures 3.4, 3.5, and 3.6 depict VIH and VIL histograms along with corresponding normal probability

density functions (PDFs) for a minimum-size inverter operating sub-threshold, near-threshold, and at process

nominal VDD, respectively. Global variation simply skews the mean value, as depicted in Figure 3.7. Finally,

Figure 3.8 further justifies the treatment of the output VTC parameters as regular variables: the spread of each

input VTC parameter is several orders of magnitude greater than the corresponding output VTC parameter

spread.

3.4.2 Statistical Noise Margins

At any particular global corner, local parameter variation is uncorrelated (see Section 3.2.1), so the VTC

parameters for distinct gates are independent. Consider two distinct inverters, INVx driving INVy; INVx

and INVy have independent normally distributed input VTC parameters. From Equations 3.1 and 3.2 and

the assumption that the corresponding output VTC parameters are regular variables, it follows that the corre-

sponding NMH and NML are also normally distributed RVs with mean and standard deviation given by

µ(NMH(INVx, INVy)) = VOH(INVx)− µ(VIH(INVy)),

σ(NMH(INVx, INVy)) = σ(VIH(INVy)), (3.7)

and

µ(NML(INVx, INVy)) = µ(VIL(INVy))− VOL(INVx),

σ(NML(INVx, INVy)) = σ(VIL(INVy)), (3.8)

where for any RV Z, µ(Z) and σ(Z) denote the mean value and the standard deviation, respectively. In-

conveniently, the statistical SNM does not follow directly from Equation 3.3 (due to the min function). If

NMH(INVx, INVy) and NML(INVx, INVy) are independent, order statistics can be used to directly cal-

culate SNM(INVx, INVy) [20]; however, they are not independent. From Figure 3.9, it is clear that the

input VTC parameters are highly positively correlated, and it follows from this and Equations 3.7 and 3.8

that NMH and NML are highly negatively correlated, which makes the direct calculation of SNM difficult.

The approach taken in this dissertation is to use NMH and NML directly to calculate the probability that a

circuit fails, thus avoiding the need to compute SNM . In this way, the effects of correlation can be accounted

for, and a general method for failure analysis is made possible.

6The nature of normality testing makes it difficult to make a stronger statement. Furthermore, it is extremely difficult to verify that
the tails of purportedly normal distributions are actually normal; as such, treating VIH and VIL and normal RVs should be considered
an approximation.
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Figure 3.9: Correlation between VIH and VIL in a commercial 40-nm low-power CMOS process (25◦C,
TT-Corner). These input VTC parameters are highly positively correlated across VDD for a wide variety of
gates.

3.4.3 Cross-coupled Inverter: Failure Probability

With a notion of statistical robustness (Section 3.3.2) and statistical noise margins (Section 3.4.2) defined,

it is possible to calculate the probability of cross-coupled inverter failure, and hence its robustness. Again,

consider a cross-coupled inverter-pair, INVa and INVb, (as in Figure 3.2 with Vnoise = 0V ) operating at a

particular VDD and with a noise margin target ofNMT . Calculating the probability of failure (from Equation

3.5) necessitates the evaluation of P (SNM(INVa, INVb) ≤ NMT ∪ SNM(INVb, INVa) ≤ NMT ).

Assuming statistical independence, the disjunction can be treated as an addition, and Equation 3.5 reduces to

P (FAIL(INVa, NMT ) ∪ FAIL(INVb, NMT ))

= P (SNM(INVa, INVb) ≤ NMT )+

P (SNM(INVb, INVa) ≤ NMT ). (3.9)

To calculate this quantity in closed-form, it is necessary to re-term this relation using NMH and NML in

lieu of SNM (as discussed in Section 3.4.2). In order to do this, upper and lower bounds on failure are

determined, and then an approximation is given.

3.4.3.1 Upper Bound

If SNM(INVa, INVb) ≤ NMT , then NMH(INVa, INVb) ≤ NMT and/or NML(INVa, INVb)
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≤ NMT (this follows directly from Equation 3.3). This can be stated in terms of probabilities as

P (SNM(INVa, INVb) ≤ NMT )

≤ P (NMH(INVa, INVb) ≤ NMT∪

NML(INVa, INVb) ≤ NMT ). (3.10)

Due to the high degree of anti-correlation between NMH and NML (see Section 3.4.2), the disjunction can

be approximated as an addition and

P (SNM(INVa, INVb) ≤ NMT )

≤ P (NMH(INVa, INVb) ≤ NMT )+

P (NML(INVa, INVb) ≤ NMT ). (3.11)

Due to symmetry, a similar argument holds for SNM(INVb, INVa), so combining Equation 3.9 and 3.11

yields an upper bound on the probability of failure for cross-coupled inverters. That is,

P (FAIL(INVa, NMT ) ∪ FAIL(INVb, NMT ))

≤ P (NMH(INVa, INVb) ≤ NMT )+

P (NML(INVa, INVb) ≤ NMT )+

P (NMH(INVb, INVa) ≤ NMT )+

P (NML(INVb, INVa) ≤ NMT ). (3.12)

3.4.3.2 Lower Bound

If NMH(INVa, INVb) ≤ NMT and NML(INVa, INVb) ≤ NMT , then SNM(INVa, INVb) ≤
NMT (this follows directly from Equation 3.3). This can be stated in terms of probabilities as

P (SNM(INVa, INVb) ≤ NMT )

> P (NMH(INVa, INVb) ≤ NMT∩

NML(INVa, INVb) ≤ NMT ). (3.13)

Due to the high degree of anti-correlation between NMH and NML (see Section 3.4.2), the conditional

probability of each event (NMH(INVa, INVb) ≤ NMT , and NML(INVa, INVb) ≤ NMT ) is less than
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the unconditional probability, so

P (SNM(INVa, INVb) ≤ NMT )

> P (NMH(INVa, INVb) ≤ NMT )∗

P (NML(INVa, INVb) ≤ NMT ). (3.14)

Due to symmetry, a similar argument holds for SNM(INVb, INVa), so combining Equation 3.9 and 3.14

yields a lower bound on the probability of failure for cross-coupled inverters. That is,

P (FAIL(INVa, NMT ) ∪ FAIL(INVb, NMT ))

> P (NMH(INVa, INVb) ≤ NMT )∗

P (NML(INVa, INVb) ≤ NMT )+

P (NMH(INVb, INVa) ≤ NMT )∗

P (NML(INVb, INVa) ≤ NMT ). (3.15)

3.4.3.3 Heuristic Approximation

One way to approximate the probability of failure comes from the consideration of the cross-coupled pair

as a whole. If INVA is skewed such that it can barely interpret a logical-0 and INVB is skewed such that

is can barely interpret a logical-1 (or vice versa), then a failure is likely. That is, if NMH(INVa, INVb) ≤
NMT and NML(INVb, INVa) ≤ NMT , or if NMH(INVb, INVa) ≤ NMT and NML(INVa, INVb) ≤
NMT , then it is likely that SNM(INVa, INVb) ≤ NMT or SNM(INVb, INVa) ≤ NMT . Empirically,

with a small shift, δ, the lower bound approximation (given by Equation 3.15) leads to an accurate heuristic

over a wide range of NMT and VDD. That is,

P (FAIL(INVa, NMT ) ∪ FAIL(INVb, NMT ))

≈ P (NMH(INVa, INVb) ≤ NMT + δ)∗

P (NML(INVb, INVa) ≤ NMT + δ)+

P (NMH(INVb, INVa) ≤ NMT + δ)∗

P (NML(INVa, INVb) ≤ NMT + δ). (3.16)

3.4.4 Probability Computation

Finally, the Gauss error function, erf , and the cumulative distribution function (CDF) of the normal distri-

bution can be used to compute the probability of failure. If Z is a normal random variable with mean µ and
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standard deviation σ, and c a constant, then

P (Z ≤ c) = 1

2

(
1 + erf(

c− µ
σ
√
2
)

)
. (3.17)

Consider an inverter INVx driving another inverter INVy , combining Equations 3.7, 3.8, and 3.17 yields

P (NMH(INVx, INVy) ≤ NMT ) =

1

2

[
1 + erf

(
NMT − (VOH(INVx)− µ(VIH(INVy)))

σ(VIH(INVy))
√
2

)]
and

P (NML(INVx, INVy) ≤ NMT ) =

1

2

[
1 + erf

(
NMT − (µ(VIL(INVy))− VOL(INVx))

σ(VIL(INVy))
√
2

)]
.

(3.18)
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Figure 3.10: Probability of minimum-size cross-coupled inverter-pair failure for NMT = 0mV in a com-
mercial 40-nm low-power CMOS process (25◦C, TT-Corner). For the heuristic approximation, the mean
absolute error is 13%, and the maximum absolute error is 20% with δ = 4.2%VDD.

Equation 3.18 can be applied directly to Equations 3.12, 3.15, and 3.16, thus yielding close-form equa-

tions for the probability of cross-coupled inverter failure. Note that the these expressions for failure likelihood

rely on an extremely compact set of real numbers:

• VOH(INVx,y)

• VOL(INVx,y)

• µ(VIH(INVx,y))

• µ(VIL(INVx,y))
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Figure 3.11: Probability of minimum-size cross-coupled inverter-pair failure for NMT = 10%VDD in a
commercial 40-nm low-power CMOS process (25◦C, TT-Corner). For the heuristic approximation, the mean
absolute error is 12%, and the maximum absolute error is 20% with δ = 3.2%VDD.
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Figure 3.12: Probability of minimum-size cross-coupled inverter-pair failure for NMT = 20%VDD in a
commercial 40-nm low-power CMOS process (25◦C, TT-Corner). For the heuristic approximation, the mean
absolute error is 5.2%, and the maximum absolute error is 17% with δ = 2.2%VDD.
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Figure 3.13: Probability of minimum-size cross-coupled inverter-pair failure for VDD = 150mV in a com-
mercial 40-nm low-power CMOS process (25◦C, TT-Corner). For the heuristic approximation, the mean
absolute error is 2.5%, and the maximum absolute error is 5.5% with δ = 4.3%VDD.

• σ(VIH(INVx,y))

• σ(VIL(INVx,y)),

which is one of the goals of this section. That is, these are the only parameters needed in order to calculate

the probability of failure, and hence robustness of a circuit. Figures 3.10, 3.11, and 3.12, plots the probability

of failure for a crossed-coupled inverter pair against VDD. Figure 3.13 plot the probability of cross-coupled

inverter failure versus NMT for a fixed supply voltage of 150mV. Digital noise tends to be proportional

to VDD [45], so the NMT is reported as a percentage of VDD. Each of these figures depicts the upper

bound, lower bound, and approximation for cross-coupled inverter failure probability, in addition to the actual

(empirical) failure rate. Actual failures are calculated via Monte Carlo SPICE simulations with foundry

provided statistical BSIM4 models.

Figures 3.10, 3.11, 3.12, and 3.13 also serve to exemplify why an accurate and simple closed-form ap-

proximation for the probability of failure is so important. In each of these plots, as VDD increases linearly,

the probability of failure decreases exponentially, and the size of the Monte Carlo simulations required to

generate accurate failure rates increases exponentially. With a noise margin target of 10%VDD at 300mV the

probability of failure is already less than 10−5, so millions of Monte Carlo trials are necessary. A million

such trials on modern computers with modern tools requires several core-hours of compute time. Further-

more, it is not uncommon for a modern microprocessor design to contain millions of cross-coupled inverters,

so higher supply voltages with lower failure rates on the order of 10−9 or lower need to be considered. This

corresponds to at least a four order of magnitude increase in compute time for a single temperature and VDD

of interest. To ensure reliability, multiple supply voltages and temperatures need to be considered, increasing
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the computation requirement by yet another order of magnitude. Optimization of transistor sizing can easily

increase the computation requirement by another order of magnitude, resulting in a compute requirement in

the realm of millions of core-hours. Finally, one of the goals of this chapter is to extend this type of analysis

to arbitrary gates (typical standard cell libraries contain hundreds of cells). This easily pushes the compute

requirement to billions of core-hours. A closed-form approximation is more practical.

Finally, the probability of failure of a circuit Ca consisting of n cross-coupled inverter pairs (Ca =

(INV ia , INV
i
b ) for i ∈ {1, 2, ..., n}) can easily be computed. Equation 3.6 can be re-written in terms of a

global conjunction instead of disjunction as

P (FAIL(Ca, NMT )) =

1− P
( ⋂
i∈{1,2,...,n}

¬
(
FAIL(INV ia , NMT ) ∪ FAIL(INV ib , NMT )

))
. (3.19)

Given the assumption of VTC parameter independence between gate pairs (see Section 3.4.2), the global

conjunction can be treated as a product, giving a readily computable compact expression for the probability

of failure and hence robustness of a circuit, one of the goals of this section. That is,

P (FAIL(Ca, NMT )) =

1− P
( ∏
i∈{1,2,...,n}

¬
(
FAIL(INV ia , NMT ) ∪ FAIL(INV ib , NMT )

))
. (3.20)
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Figure 3.14: Probability of failure for 2e28 minimum-size cross-coupled inverter-pairs with NMT =
20%VDD in a commercial 40-nm low-power CMOS process (25◦C, TT-Corner, and δ = 2.2%VDD).

With Equation 3.20, it is possible to quantify the probability of failure for an entire memory. Figure

3.14 gives the probability of failure for 2e28 independent cross-coupled inverter pairs (i.e., a 32MB mem-
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ory). Simulation with statistical SPICE is completely infeasible, so δ is taken from the considerably smaller

experiments depicted in Figure 3.12.

3.4.5 Chains of Inverters: Failure Probability

The goal of this section is to extend the notions of noise margins and circuit robustness to arbitrary networks

of inverters. This is necessary because the probability of failure of a linear chain of n inverters differs

significantly from that of n cross-coupled inverters. At first glance, this seems counter-intuitive; several

works (e.g., [56]) have demonstrated that a cross-coupled pair of identical inverters can be modeled as—and

is mathematically equivalent to—an infinite chain of identical inverters. Moreover, alternating worst-case

(demonic) noise sources between a cross-coupled pair can be modeled as demonic alternating noise in an

infinite chain, as depicted in Figure 3.15. The main idea behind this equivalence is that an infinite chain can

be viewed as the unrolling of the loop that is a cross-coupled pair. When a bistable cross-coupled pair in

steady state is perturbed by some voltage δV , the bistable pair either changes digital state, or the inverters

act as a restorative filter, successively removing the δV disturbance one iteration at a time in the same exact

way that a chain of inverters filters a δV disturbance. When the inverters are not identical, the two circuits

no longer behave in the same way, and equivalence is lost. The intuition behind why they differ comes from

further analysis of the heuristic approximation presented in Section 3.4.3.

INVa Vnoise INVb Vnoise Vnoise INVbINVa

Figure 3.15: Infinite chain construct: equivalent to the cross-coupled pair depicted in Figure 3.2.

Consider a cross-coupled inverter pair (INVa, INVb), where INVa and INVb behave differently due to

parameter variation. With the infinite chain construct, this pair can be modeled as a never-ending alternating

linear chain of INVa driving INVb driving INVa driving INVb, etc. (see Figure 3.15). Suppose that this

inverter pair is not robust, i.e., the static noise margin is just slightly larger than 0mV due to INVa being

skewed such that it can barely interpret a logical-0 and INVb being skewed such that it can barely interpret

a logical-1. Consider the state where the input of INVa is a logical-0 and its output (the input of INVb) is

a logical-1. A small DC noise can raise the input voltage, thus causing INVa to no longer interpret its input

as a logical-0, thus resulting in a lowering of its output node voltage. This, in turn, can result in INVb no

longer interpreting its input as a logical-1, thus resulting in INVb raising it’s output node voltage. This, in

turn, pushes INVa even further away from interpreting its input as a logical-0, and so on down the infinite

chain until the bistable pair ‘flips’ digital state.

On the other hand, consider an actual linear chain of inverters, as in Figure 3.16. Due to parameter

variation, each inverter in the chain behaves differently. Suppose that the chain begins with the identical

sequence of skewed INVa driving a skewed INVb, but INVb now drives a different inverter INVc. Again,
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INVa Vnoise INVb Vnoise VnoiseINVc INVd

Figure 3.16: Chain of inverters.

consider the same state and event where the input of INVa is a logical-0 and its output (the input of INVb)

is a logical-1, and a small DC noise raises the input voltage, thus causing INVa to no longer interpret its

input as a logical-0, resulting in a lowering of its output node voltage. This, in turn, results in INVb no

longer interpreting its input as a logical-1, resulting in INVb raising it’s output node voltage. Suppose,

however, that INVc is a robust inverter and completely restores the rather poor logical-0 generated by INVB

to approximately 0mV. That is, the condition that causes INVa and INVb to flip state if configured as a

cross-coupled pair may not cause a failure with INVa and INVb in a linear chain.

In order to calculate the probability of failure for a chain of inverters, the notion of what it means for

a chain to fail must be defined. Not unexpectedly, this definition quickly becomes a problem of logic level

interpretation, and a clear definition for what it actually means for a chain to fail does not immediately follow,

but it is possible to sidestep the problem. That is, cross-coupled inverter static noise margin analysis avoids

the definition of failure of an individual inverter by considering a bistable loop. Analogously, consider a chain

of an even number, n > 2, of inverters. If the output of the last inverter in the chain is connected to the input

of the first inverter, then the chain becomes a state-holding ring (loop). The definition of failure naturally

follows as a failure of the ring to maintain state. Informally, the requirement of an even number of stages

does not result in a loss of generality, as it is always possible to calculate a tight upper and lower bound on

failure rate by considering a chain with one extra and one fewer inverters respectively.7

As with the cross coupled inverter analysis, the NMH and NML can be used to generate an upper

bound, a lower bound, and an approximation for the probability of failure for chains of inverters. For a chain

of inverters, the worst-case, demonic, DC noise consists of alternating positive and negative voltage sources

acting contrary to the desired state of each inverter input. That is, if the desired input to a gate is logical-1,

i.e., VDD, then a voltage source that acts to lower this electrical potential is said to act contrary to the desired

state. In steady-state, a linear chain of n functional inverters consists of alternating sequences of 0 and 1 at

the input of each inverter. As such, there are two possible digital states for such a chain: the sequence either

begins with a 1 or it begins with a 0. Correspondingly, there are two states for alternating demonic noise

sources; the first DC noise source is either positive or it is negative.

Consider a linear chain, CHa, of n inverters with demonic noise sources, as in Figure 3.16 (with the

constraint that n is an even integer greater than 2). The chain is said to fail if the corresponding ring, created

by connecting the output of the last inverter to the input of the first inverter, fails to maintain state when

all inverter inputs are properly initialized with alternating values of 0 and 1. The chain and ring fail with

7The analysis of a ring consisting of an odd number of gates is difficult, because such a ring should oscillate in steady state. The
method of static DC analysis used throughout this work is a poor means of modeling an oscillating circuit; further exploration of this
problem is left as future work.
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respect to a noise margin target, NMT , when the ring fails to maintain state with demonic noise sources

with Vnoise = NMT or Vnoise = −NMT . Given the assumption of statistical independence between the

noise margins of different gates pairs (as discussed in Section 3.4.2), the probability of chain failure can be

analyzed and computed in terms of the NMH and NML of pairs of gates.

3.4.5.1 Heuristic Upper Bound

Consider a labeling of inverters in the chainCHa such that the first inverter is labeled as INV1, the second

inverter as INV2, and so on with the last inverter being INVn. If the chain fails, then it follows that there

exists some inverter pair in the chain, INVi driving INVi+1, with NMH(INVi, INVi+1) ≤ NMT and/or

NML(INVi, INVi+1) ≤ NMT , which leads to the same probabilistic upper bound for cross-coupled pairs

which was discussed in Section 3.4.3.1. For chains, however, this is not a tight upper bound. Empirically,

the cross-coupled pair heuristic approximation (see Section 3.4.3.3) leads to a tighter upper bound for chains

of gates. Consider two connected pairs of inverters, the set (INVi, INVi+1, INVi+2); if the chain fails,

then it is likely that either (1) NML(INVi, INVi+1) ≤ NMT ) and NMH(INVi+1, INVi+2) ≤ NMT ),

and/or (2) NMH(INVi, INVi+1) ≤ NMT ) and NML(INVi+1, INVi+2) ≤ NMT ). With the assumption

of statistical independence, the upper bound on the probability of failure for the chain can be approximated

as,

P (FAIL(CHa, NMT )

. P

( ⋃
i∈{1,2,...,n−2}(

(NMH(INVi, INVi+1) ≤ NMT + δu ∩

NML(INVi+1, INVi+2) ≤ NMT + δu)

∪(NML(INVi, INVi+1) ≤ NMT + δu ∩

NMH(INVi+1, INVi+2) ≤ NMT + δu)
))

(3.21)

where δu is a small constant used to maintain the boundary over a wide range of NMT and VDD. The

directly computable form of this follows directly from Section 3.4.1.
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3.4.5.2 Lower Bound

A heuristic for the lower bound has the same form, but a small constant δl must be subtracted from the

NMT .

P (FAIL(CHa, NMT )

& P

( ⋃
i∈{1,2,...,n−2}(

(NMH(INVi, INVi+1) ≤ NMT − δl ∩

NML(INVi+1, INVi+2) ≤ NMT − δl)

∪(NML(INVi, INVi+1) ≤ NMT − δl ∩

NMH(INVi+1, INVi+2) ≤ NMT − δl)
))
. (3.22)

3.4.5.3 Approximation

As expected, the heuristic approximation follows from the upper and lower bound heuristics.

P (FAIL(CHa, NMT )

≈ P
( ⋃
i∈{1,2,...,n−2}(

(NMH(INVi, INVi+1) ≤ NMT + δ ∩

NML(INVi+1, INVi+2) ≤ NMT + δ)

∪(NML(INVi, INVi+1) ≤ NMT + δ ∩

NMH(INVi+1, INVi+2) ≤ NMT + δ)
))
. (3.23)

Empirically, δu and δl can be defined in terms of δ. For the devices considered in this chapter: INV,

NAND2, NOR3, NAND3, NOR3, AOI21, and for noise margin targets between 0%VDD and 20%VDD, a

relative offset of 3%VDD is sufficient. That is, δu = δl = δ + 3%VDD. Figures 3.17, 3.18, and 3.19 depict

the upper bound, lower bound, and approximations for a chain of 20 inverters.

Finally, a circuit, Ca, composed of n chains of inverters, is said to fail if any chain fails. That is, with

chain labeled as CH1, CH2, ..., CHn,

P (FAIL(Ca, NMT ) =

P

 ⋃
i∈{1,2,...,n}

FAIL(CHi, NMT )

 . (3.24)

As with the cross-coupled inverter analysis in Section 3.4.4, Equation 3.24 can be re-written in terms of a
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Figure 3.17: Probability of chain of 20 inverters failing with NMT = 0%VDD in a commercial 40-nm low-
power CMOS process (25◦C, TT-Corner). For the heuristic approximation, the mean absolute error is 17%,
and the maximum absolute error is 43% with δ = −3.2%VDD.
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Figure 3.18: Probability of chain of 20 inverters failing with NMT = 10%VDD in a commercial 40-nm
low-power CMOS process (25◦C, TT-Corner). For the heuristic approximation, the mean absolute error is
13%, and the maximum absolute error is 38% with δ = −2.3%VDD.



54

150 200 250 300 350

VDD(mV )

10−5

10−4

10−3

10−2

10−1

100

101

P
(F

A
IL

)

Actual

Approximation

Upper Bound

Lower Bound

Figure 3.19: Probability of chain of 20 inverters failing with NMT = 20%VDD in a commercial 40-nm
low-power CMOS process (25◦C, TT-Corner). For the heuristic approximation, the mean absolute error is
6.8%, and the maximum absolute error is 24% with δ = −1.8%VDD.

global conjunction instead of disjunction as

P (FAIL(Ca, NMT )) =

1− P

 ⋂
i∈{1,2,...,n}

¬FAIL(CHi, NMT )

 . (3.25)

Given the assumption of VTC parameter independence between gate pairs, and hence chains (see Section

3.4.2), the global conjunction can be treated as a product, giving a readily computable compact expression

for the probability of failure and hence robustness of a circuit consisting of chains of inverters, one of the

goals of this section. That is,

P (FAIL(Ca, NMT )) =

1− P

 ∏
i∈{1,2,...,n}

¬FAIL(CHi, NMT )

 . (3.26)

Using Equation 3.26, Figure 3.20 gives the probability of failure for 2*2e28 independent inverters in the

form of chains. As with the cross-coupled pairs, simulation with statistical SPICE is infeasible, so δ is taken

from the considerably smaller experiments depicted in Figure 3.19. The probability of failure of chains of

inverters is considerably lower than that of cross-coupled pairs (with the same number of devices, noise-

margin target, and VDD), as depicted in Figure 3.21. The failure probabilities are similar for cross-coupled

pairs of inverters operating 50 − 100mV above the inverter chain supply voltage. This is the first work to



55

350 400 450 500 550 600

VDD(mV )

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

P
(F

A
IL

)

Approximation

Upper Bound

Lower Bound

Figure 3.20: Probability of failure for 2*2e28 minimum-size inverters in chains with NMT = 20%VDD in a
commercial 40-nm low-power CMOS process (25◦C, TT-Corner, and δ = −1.8%VDD).
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Figure 3.21: Probability of failure for 2*2e28 minimum-size inverters in chains compared to that of 2e28
minimum size cross-coupled pairs withNMT = 20%VDD in a commercial 40-nm low-power CMOS process
(25◦C, TT-Corner).
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quantify and compare these two very different devices’ configurations and corresponding probabilities of

failure.

3.5 Generalized Circuit Robustness

The goal of this section is to extend the notions of static noise margins to a larger gate set than that of inverters

alone. As with the analysis in Section 3.4, the main goal is to generate a composable robustness metric, so

that the robustness of an arbitrary network of standard cells can be easily computed.

3.5.1 VTC Parameters of Combinational Gates

GND

in2

in1

in1

VDD

in2
out

Figure 3.22: NAND2.
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Figure 3.23: Voltage transfer characteristic for the minimum-size NAND2 (depicted in Figure 3.22) in a
commercial 40-nm low-power CMOS process (VDD = 1.1V , 25◦C, TT-Corner)
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Figure 3.24: Voltage transfer characteristic for the minimum-size NAND2 (depicted in Figure 3.22) in a
commercial 40-nm low-power CMOS process (VDD = 1.1V , 25◦C, TT-Corner).

Consider a combinational CMOS 2-input NAND gate, NAND2, with nodes labeled as in Figure 3.22.

If the input nodes, in1 and in2, are treated independently, then the VTC describes Vout as a function of

both Vin1 and Vin2, as depicted in Figures 3.23 and 3.24. Figure 3.23 provides a three dimensional view,

and Figure 3.24 plots the VTC in the Vin1 × Vin2 plane with Vout encoded by color. The partial derivatives
∂Vout
∂Vin1

and ∂Vout
∂Vin2

describe two continuums of unity gain points depicted by purple triangles and red squares,

respectively, in Figure 3.24. The gradient is given by

∇Vout =
∂Vout
∂Vin1

i+
∂Vout
∂Vin2

j, (3.27)

where i and j are the unit vectors in the Vin1 × Vin2 plane. The two continuums of unity gain points defined

by |∇Vout| = 1 (depicted by a black line in Figure 3.24) are analogous to an inverter’s two unity gain

points given by |dVoutdVin
| = 1 in Section 3.3.1. In fact, for an inverter the two measures are identical, i.e.,

|∇Vout| ≡ |dVoutdVin
|. Moreover, the magnitude of ∇Vout is the most general measure for determining unity

gain points, as it is applicable to any gate regardless of the number of inputs.

For noise margin analysis, choosing individual unity gain points as representative approximations is an

important simplification, and individual points can be chosen by considering slices of the VTC (planes or-

thogonal to Vin1 × Vin2). Three slices of the NAND2 VTC are depicted by dashed lines in Figure 3.24.

These three slices are of particular interest for two reasons. First, they give the upper and lower unity-gain

bounds in terms of Vin1 and Vin2. Second, they correspond to a logical reduction of the NAND2 to that of

an inverter. That is, if either input is tied to logical-1 or if both inputs are tied together, then the NAND2 is

functionally equivalent to an inverter. In Figure 3.24 the three possible inverter-equivalent slices are depicted
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by: (1) an orange dashed-line corresponding to tying in1 to VDD and sweeping in2 from GND to VDD, (2)

a light-blue dashed-line corresponding to tying in2 to VDD and sweeping in1 from GND to VDD, and (3) a

red dashed-line generated by tying in1 to in2 and sweeping them together.

1

1in

in≡ ≡ inout out out ≡ in out

(1) (2) (3)

Figure 3.25: NAND2 inverter equivalence.

The idea of inverter-equivalence is general and can be used to generate the boundary unity-gain points for

arbitrary gates. Consider an inverting binary CMOS gate, G, with n inputs and a single output. Gate G can

be made to act logically as a single input/output inverter for some assignment of inputs where inputs can be

tied together, tied to 1, or tied to 0. Since G is an inverting CMOS gate, one or more inverter-equivalent input

assignments exist, and the assignments depend on the topology of G. The three inverter-equivalent slices

from Figure 3.24 are depicted at the gate level in Figure 3.25.

A general notion of an inverter equivalent assignment is helpful. Let G be an inverting binary CMOS

gate with k inputs labeled as in1, in2, ..., ink, a single output, out, and with functionality defined by Vout =

G(Vin1, Vin2, ..., Vink). The set of inverter equivalent input assignments to G, denoted IE(G), is a set of k-

tuples, (ie1, ie2, ..., iek), where iei ∈ (1, 0, in), and (ie1, ie2, ..., iek) ∈ IE(G) if and only ifG(ie1, ie2, ..., iek)

is functionally equivalent to an inverter with input in, and output out. For the NAND2, the three inverter

equivalent input assignments are (1) (1, in), (2) (in, 1), and (3) (in, in). In order to work with inverter

equivalent input assignments, it is convenient to define F , a simple mapping function between real voltages

and elements of (1, 0, in). That is,

F (Vi) =


0 if Vi = GND

1 if Vi = VDD

in otherwise.

(3.28)

With a notion of inverter equivalence, it is possible to define a representative set of unity gain points for a

gate. Let G be an inverting binary CMOS gate with k inputs labeled as in1, in2, ..., ink, and a single output,

out. The gradient of Vout is defined as

∇Vout =
∂Vout
∂Vin1

i1 +
∂Vout
∂Vin2

i2 + ...+
∂Vout
∂Vink

ik, (3.29)

where i1, i2, ..., ik are the corresponding unit vectors. The representative set of unity gain points for G,
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RS(G), is defined such that

(Vin1, Vin2, ..., Vink, Vout) ∈ RS(G) if and only if

|∇Vout(Vin1, Vin2, ..., Vink)| = 1 , and

(F (Vin1), F (Vin2), ..., F (Vink)) ∈ IE(G) , and

for all x, y ∈ (1, 2, ..., k) (3.30)

if F (Vinx) = in and F (Viny) = in then Vinx = Viny. (3.31)

For the NAND2, the representative set of unity gain points are depicted in Figure 3.24 as light-blue, or-

ange, and red circles with annotated values. The values for each slice (Vin1, Vin2, Vout) are (1): (1100,470,1066),

(1100,626,42) (2): (445,1100,1063), (630,1100,40), (3): (540,540,1062), (674,674,51). These representative

points can be mapped back to simple pairs of the form (Vin, Vout) by using the inverter equivalent input

assignment to remove the references to VDD, GND, and shared inputs. For the NAND2 this reduced rep-

resentative set of unity gain points is (1): (470,1066), (626,42) (2): (445,1063), (630,40), (3): (540,1062),

(674,51).

Finally, the VTC parameters can be defined using the reduced set of unity gain points. The usual mapping

of unity gain points to VTC parameters can be employed, so for the NAND2, (1): VIL = 470, VOH = 1066,

VIH = 626, VOL = 42, (2): VIL = 445, VOH = 1063, VIH = 630, VOL = 40, and (3): VIL = 540, VOH =

1062, VIH = 674, VOL = 51. Statistical analysis is greatly simplified when a single set of representative

VTC parameters is chosen, but the parameters—as measured with (1), (2), and (3)—differ. It is clear that

VOH and VOL are nearly constant; this is expected (see Section 3.4.1). The two inverter equivalent input

assignments where a single input is tied to VDD ( (1) and (2) ) are highly symmetric and have only slightly

different values for VIH and VIL, respectively. The input assignment wherein both inputs are tied together,

(3), does differ significantly in terms of VIH and VIL from (1) and (2).

Consider the measurement of VIL performed by sweeping the input(s) from GND to VDD using (1) as

compared to (3). The value of VIL corresponds to the greatest input voltage that still results in the output

being pulled-up to a logical-1. The NAND2 contains 2 parallel PFETs with gates connected to in1 and in2,

respectively. With input assignment (1), in1 is tied to VDD, causing the corresponding PFET to effectively

turn off, i.e., it contributes only sub-threshold leakage current to the pull-up network as in2 is swept from

GND to VDD. As Vin2 is increased, the corresponding PFET begins to turn off and the NFETs begin to turn

on, thus transitioning the output towards a logic-0; VIL is the input voltage at which this transition occurs.

With (3), both inputs are tied together, and the parallel PFETs actively pull up the output node together as the

input is swept. The parallel PFETs in (3) continue to actively pull up the output node as the input voltage is

increased beyond the VIL from (1). As such, VIL as measured with (3) is greater than VIL as measured with

(1). An analogous, but reciprocal explanation can be given for VIH . That is, VIH as measured with (1) is

greater than VIH as measured with (3).
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In order to provide an upper bound on the robustness, the representative set of VTC parameters should

be chosen so as to overestimate the probability of failure of a gate. This corresponds to underestimating both

NMH and NML; this, in turn, necessitates underestimating VIH and overestimating VIL.8 Since VOH and

VOL are approximately constant across inverter equivalent input assignment slices, the smallest VIH and the

largest VIL should be chosen from the reduced representative set of unity gain points. For the NAND2 this

corresponds to selecting the VTC parameters from different slices: VIH from (1) and VIL from (3).9 This

somewhat complicates the task of gate characterization, so in this chapter the VTC parameters from (1) are

chosen as the representative set, despite the fact that this simplifying choice slightly underestimates VIL. In

terms of calculating the probability of failure, this simplification has little impact.

Finally, the VTC parameters for an arbitrary gate can be defined. LetG be an inverting binary CMOS gate

with m inputs and a single output, out, and let RS(G) be the reduced representative set of unity gain points

for G. Assume that RS(G) has cardinality n, and elements labeled as (Vini , Vouti) for i ∈ {1, 2, ..., n}. The

VTC parameters for G are defined as

VIH(G) = min(Vini)

VIL(G) = max(Vinj )

VOH(G) = min(Voutk)

VOL(G) = max(Voutl),

for i, j, k, l ∈ {1, 2, ..., n}.

3.5.2 Statistical Noise Margins of Combinational Gates

In order to give general definitions for NMH and NML, it is necessary to consider the input VTC parameter

correlation between multiple inputs of the same gate. As shown in Figure 3.26, the input VTC parameters

are highly uncorrelated over a wide range of VDD. Given this and the treatment of output VTC parameters as

regular variables, arbitrary networks of combinational gates with fan-in and fan-out greater than unity can be

broken apart into equivalent gate-pairs, and ultimately, into inverter-equivalent pairs for statistical analysis;

i.e., for the purpose of computing the probability of circuit failure.

Consider a circuit, Ca, composed of a network of n combinational gates in an array of simple linear

chains; Ca is said to fail if any chain of gates within the circuit fails (see Equation 3.24). In general, digital

circuits consist of networks of combinational gates organized as interconnecting chains, wherein some gates

drive multiple gates, some gates are driven by multiple gates, or both. Consider a circuit, Cb, composed of a

network of n combinational gates with interconnecting chains, i.e., some gates within Cb drive multiple gates

8Assuming that the corresponding variances are approximately equal.
9In a similar fashion, the smallest VOH and largest VOL could be chosen as representative VTC parameters; however, the output

VTC parameters are approximately constant, so they can also be chosen arbitrarily or by convenience.
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Figure 3.26: NAND2 input Correlation in a commercial 40-nm low-power CMOS process (VDD = 1.1V ,
25◦C, TT-Corner).
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Figure 3.27: Equivalent gate-pairs formed from multiple fan-in and fan-out gate networks. GP1 and GP2 are
formed for each input of the NAND gate, and GP3 and GP4 are due to the inverter fan-out.
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and some gates have multiple inputs. Consider a gate, Gx ∈ Cb that drives k gates in Cb, labeled as G1, G2,

..., Gk. Since the output VTC parameters of Gx are not stochastic in nature, these gates can be treated as k

equivalent gate-pairs (Gx, Gi) for i ∈ {1, 2, ..., k}. As an example, consider GP3 and GP3 in Figure 3.27.

Similarly, consider k gates in Cb, labeled asG3, G4, ..., Gk that drive (fan-in) to a multi-input gate, Gx ∈ Cb.
Given that the input VTC parameters of Gx are independent, each pair, (Gi, Gx) for i ∈ {1, 2, ..., k}, can

be considered as components of independent equivalent gate-pairs, as illustrated in 3.27 by GP1 and GP2.

Finally, as discussed in Section 3.5.1, every equivalent gate-pair can be analyzed as an inverter equivalent pair,

and the robustness of a circuit consisting of arbitrary connections of combinational gates can be computed by

way of the methods detailed in Section 3.4.5. Figure 3.28 plots the failure probabilities for a linear chain of

20 gates: alternating NAND2 and NOR2 with NMT = 10%VDD. Similarly, Figure 3.29 shows the failure

probabilities for a chain consisting of alternating NAND3 and NOR3 gates with NMT = 20%VDD.
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Figure 3.28: Probability of chain of 20 combinational gates failing (the chain consists of alternating NAND2,
NOR2 gates) withNMT = 10%VDD in a commercial 40-nm low-power CMOS process (25◦C, TT-Corner).
For the heuristic approximation, the mean absolute error is 16%, and the maximum absolute error is 36% with
δ = −1.2%VDD.

3.5.3 Applications

The methods presented in this chapter give a circuit designer the ability to calculate the robustness of a digital

circuit composed out of gates. That is, for some circuit, Ca, and a target noise margin, NMT , Equation 3.26

gives the probability that some gate chain in Ca has a noise margin less than the target, i.e., a probability of

failure P (FAIL). This quantity can, of course, instead be considered as a passing probability P (PASS)

by subtracting it from unity, and this passing probability can be thought of as a parametric yield. That is, if

P (PASS) = 95%, then in 95% of instances of Ca, all gates will exceed the noise margin target constraint
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Figure 3.29: Probability of chain of 20 combinational gates failing (the chain consists of alternating NAND3,
NOR3 gates) withNMT = 20%VDD in a commercial 40-nm low-power CMOS process (25◦C, TT-Corner).
For the heuristic approximation, the mean absolute error is 16%, and the maximum absolute error is 67% with
δ = −1.3%VDD.

(this is definitionally a parametric yield). If the circuit under consideration, Ca, is an entire microprocessor,

then this parametric yield can be included as a part of the die yield calculation.

In Equation 3.26, the circuit under consideration, Ca, is an independent variable, and P (FAIL) is a

dependent variable. It is straightforward to instead treat Ca as dependent on P (FAIL). In this way, a

designer can choose a NMT and a yield, and then calculate the maximum number of gates that satisfy this

constraint (i.e., how large of a circuit can be built). Figure 3.30 plots the maximum number of equivalent

gate-pairs that satisfy a NMT and yield constraint vs. VDD. It is clear from this figure that the gate choice

has only a small impact on how large of circuit can be constructed, and the most important constraint is

supply voltage; i.e., the maximum circuit size is exponential in VDD. Figure 3.31 plots the maximum NMT

that can be guaranteed (for 1M equivalent gate-pairs in chains and a yield of 95%) versus VDD.

3.6 Related Work

The earliest works to consider digital circuit robustness with respect to noise and a definition of a static noise

margin come independently from Lo and Hill, respectively [46, 47, 55]. More recently, Shepard proposed a

systematic approach to incorporating noise margins into the design process of large circuits via Harmony (an

EDA tool) [84]. The primary problem with Harmony is that it does not account for parameter variation, so it

is not sufficient for modern low-voltage circuit analysis. It may be possible to apply the robustness metrics

and computation techniques detailed in this chapter to a tool like Harmony, but this is left as future work.

Noise margin based analysis of memory cells [81] is common, and a number of works consider the
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Figure 3.30: Maximum number of equivalent gate-pairs vs. VDD with NMT = 20%VDD and yield = 95%
in a commercial 40-nm low-power CMOS process (25◦C, TT-Corner). Chains consist of alternating gates,
and all combinations from the set (INV,NAND2, NOR2, AOI21, NAND3, NOR3) are considered.
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effects of parameter variation in SRAM based analysis, e.g., [13, 19, 20, 41, 65, 82, 95]. These works perform

statistical analysis using the SNM expression (Equation 3.3) and are thus limited by the min function. Calhoun

works around this somewhat in [20] by using order statistics on the tail of the SNM distribution. A few works

(e.g., [14, 15, 53, 54]) analyze combinational gate failures due to parameter variation when operating at

low voltages, but these works only consider the single case where all inputs of each gate are tied together.

Moreover, these works only consider a simple binary failure model (i.e., SNM > 0 or SNM < 0), as

opposed to the generalized noise margin target based analysis presented in this chapter.

Several works specifically consider and model some of the effects of parameter variation on circuits

operating sub-threshold. Chen considers the limitations in terms of large fan-ins and fan-outs in [24], and Pu

[74] uses affine arithmetic to model the effects of parameter variation on VOH and VOL. Alioto derives an

accurate closed-form sub-threshold SNM model in [3] and considers the effects of variation on sub-threshold

circuits by way of analyzing the imbalance factor (IF) between the PFET and NFET networks that make up a

gate. Some of the work discussed in this chapter was initially presented in [52].

3.7 Conclusion

This chapter presents a metric for digital circuit robustness with respect to parameter variation and noise. The

robustness metric is general, and while only applied to CMOS circuits in this chapter, can be extended to

other technologies (possible future work). Additionally, a compact method for calculating the robustness of

CMOS circuits operating sub-threshold or near-threshold is detailed and validated. The method of calcula-

tion relies on a new compact representation of parameter variation at the cell level; as such, the robustness of

an extremely large circuit can be quickly, efficiently, and accurately computed. The statistical details of the

model are flushed out and validated against SPICE simulations of foundry provided statistical BSIM simu-

lations in a modern (40-nm) technology. This work relies extensively on the notion of a static noise margin

(see Section 3.3.1). This notion, previously defined exclusively for cross-coupled gate-pairs, is extended in

three important ways:

• it is turned into a statistical quantity in Section 3.4.2,

• it is extended to cover chains of gates in Section 3.4.5, and

• it is generalized for use with any inverting single-output CMOS gate in Section 3.5.1.

As with all metrics, there are limitations to the applicability of the work presented in this chapter. Many

of the calculations rely on the assumption of statistical independence of parameter variation between different

gates. This assumption is discussed in detail and justified in Section 3.4.2. If this assumption does not hold,

the effects of correlation can be accounted for by way of adding a correlation coefficient to Equations 3.16,

3.20, and 3.26. These effects are likely well modeled as spatial correlation [89], so accurate correlation mod-

els may require knowledge of circuit layout. Quantifying these effects, which are currently only significant
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at high supply voltages, is left as future work. Finally, choosing different noise margin targets for different

gates is left as future work (circuit noise can vary from gate to gate).
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Chapter 4

A Necessary and Sufficient Timing
Assumption for Speed-Independent
Circuits

4.1 Introduction

Asynchronous logic can be effectively engineered within a variety of different frameworks, e.g., via quasi-

delay insensitive (QDI) [58, 59, 62] or speed-independent (SI) circuits [64, 66]. Across the various frame-

works there are clearly many important differences, but these frameworks also share certain issues that seem

to be inherent to asynchronous circuit design; in particular, the notion of forks. For example, the class of

SI circuits is characterized as the set of circuits that are functionally correct regardless of gate and wire de-

lays, except at forks; similarly, forks play a crucial role in the context of QDI circuits. In fact, if no delay

assumptions are made about forks, then the resulting delay-insensitive (DI) circuits are extremely limited

in functionality [60]. Moreover, for many asynchronous logic frameworks, the relative delays through fork

branches form the basis of all timing assumptions and the corresponding timing closure. This suggests that in

order to gain insight into the exact similarities and differences between these frameworks, it may be fruitful

to compare their timing assumptions.

Making such comparisons can be difficult because different frameworks use different terms and mathe-

matical constructions; a mathematical setting in which common terms are used to describe all of the timing

assumptions is required. Therefore, towards clarifying the nature of forks across multiple asynchronous cir-

cuit frameworks, this chapter first formally defines a notion of asynchronous computation and then upon that

defines a set of well-known fork-related timing assumptions. Using this foundation, the chapter then proves

that one such assumption, the adversary path timing assumption [62], is necessary and sufficient for proper

SI circuit operation.

The foundation starts with the structure given by production rule sets (PRS). This is not crucial: any

number of systems can be used instead. However, PRS are structured in a way that clearly exposes how forks
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and hazards [5, 64] interact. Moreover, PRS can be used to model arbitrary switching networks, and therefore

can be used to examine important properties of circuits generated within a wide range of asynchronous design

methodologies. In addition, the proof is just one example of how the formalization can be used. It can also

serve as a foundation for other proofs or definitions, and it can even be used as a basis for computerized

proofs.

Each of the following technical sections contains both an informal overview of main concepts, with ex-

amples derived from the circuit depicted in Figure 4.1 (a closed variant of a circuit used in [60]), as well as

thoroughly developed mathematical details. The details add rigor and some subtle insights, but the main ideas

and notation are presented at a higher level. The organization of the chapter is as follows. Section 4.2 re-

views production rule sets and defines a set of structural constraints that are assumed throughout. Section 4.3

formally defines a notion of computation with respect to PRS. Then, upon this notion of computation, Sec-

tion 4.4 defines the relevant timing assumptions for DI, QDI, and SI circuits. The proof and a discussion of

its implications are given in Section 4.5. Section 4.6 reviews related work, and Section 4.7 concludes with a

summary and a discussion of several assumptions and limitations of this work.
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Figure 4.1: Closed simple buffer.

4.2 PRS Structural Constraints

Section 4.2.1 begins by reviewing the traditional definition of PRS [59]. Section 4.2.2 adds a set of structural

constraints that facilitate the definition of a formal notion of computation and timing assumptions in Sections

4.3 and 4.4, respectively. These structural constraints ultimately result in a set of “legal” production rule sets,

which are called proper.

4.2.1 PRS

This section reviews a few of the basic terms from [59]. The mapping from PRS to CMOS transistor networks,

used in a number of figures throughout this chapter, also comes from [59]. Additionally, in order to simplify

the exposition, this chapter assumes a fixed set V of variables from which the PRS draw node names; TB(V )

denotes the set of Boolean expressions over variables V .



69

Definition 4.2.1. A production rule is any triple

(g, x, d) ∈ TB(V )× V × {↑, ↓}

and is typically denoted g 7→ xd.

Definition 4.2.2. A production rule set (PRS) is any finite set of production rules.

The basic intuition for a production rule g 7→ x ↑ is that g is a sufficient condition to enable the pull-up

network in the gate associated with x. This means that the entire condition for the pull-up network can be

spread out across multiple production rules gi 7→ x ↑. For example, one of the structural constraints that this

chapter enforces, without loss of generality, is that each variable x is defined by exactly two production rules,

g+ 7→ x ↑ and g− 7→ x ↓.

4.2.2 “Proper” PRS

The definitions in this section serve to impose extra structure on PRS. This added structure facilitates a

straightforward definition of computation in Section 4.3 and the mapping of computation to physical circuits;

furthermore these constraints simplify the definition of timing assumptions in Section 4.4 and the proof in

Section 4.5.

Definition 4.2.3. Let P be a PRS and x ∈ V , the x operator on P , denoted Ox, is defined such that for all

g 7→ x′d ∈ P
g 7→ x′d ∈ Ox ⇔ x′ = x.

Definition 4.2.4. Let P be a PRS. P has simple operators if and only if all Ox are such that

Ox = {g+ 7→ x ↑, g− 7→ x ↓},

and g+ and g− are in disjunctive normal form.

Definition 4.2.5. Let P be a PRS with simple operators. Oy is called a wire if and only if

Oy = {x 7→ y ↑,¬x 7→ y ↓}

for some y ∈ V . An operator Ox is called a gate if it is not a wire.

The majority of structural constraints for a proper PRS simply enforce a regular forking structure. These

requirements essentially guarantee a one-to-one correspondence between the branches of a fork and wire

operators. In order to define and force these and other structural requirements, it is necessary to have a clean

way of expressing variable sharing within and between the operators, as such sharing can imply forking. This
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is formalized beginning with the function π, which counts the number of occurrences of a specified variable

in the guard of a production rule.

Definition 4.2.6. π : V × TB(V ) −→ N:

π(x, x) = 1

π(x, x′) = 0 if x′ 6= x

π(x, g1 ∧ g2) = π(x, g1) + π(x, g2)

π(x, g1 ∨ g2) = π(x, g1) + π(x, g2)

π(x,¬g1) = π(x, g1).

Using Definition 4.2.6, PRS variables are related to each other by constructing a directed multi-graph

with a node for every variable and a directed weighted-edge between pairs of variables.

Definition 4.2.7. Let P be a PRS. Associate to P a directed multi-graph (V,E : V × V −→ N) where

E(x, x′) =
∑

g 7→x′d∈Ox′

π(x, g).

The most important information encoded by this graph is a matching of input variables to the output

variable of each gate. This is expressed via the following −→ relation.

Definition 4.2.8. Let P be a PRS. With respect to P , −→ ⊆ V × V is a binary relation defined such that

for all x, x′

x −→ x′ ⇔ E(x, x′) > 0.

Figure 4.2 expands the NAND gate from Figure 4.1 and adds two wires, Oa′ and Oa′′ . This expansion

illustrates several definitions, e.g., E(a′′, x) = E(a, x) = 1, E(b, x) = 2, a −→ a′, and a′ −→ a′′. The −→
relation is employed extensively, and in many cases the following notational conventions are used: · −→ x′,

which means the set {x | x −→ x′}, and x′ −→ ·, which means the set {x | x′ −→ x}. With respect to

Figure 4.2, · −→ x = {a, a′′, b}, and b −→ · = {x}. This notion usefully extends to multiple arrows and

multiple dots; e.g., x −→ · −→ x′ or · −→ · ≡−→.

The existence of composed wires is equivalent to the statement that there exist wiresOy andOy′ , y 6= y′,

such that y −→ y′, e.g., in Figure 4.2, a′ −→ a′′. This sort of composition is not allowed in a proper PRS,

and, similarly, gate-to-gate connections are also disallowed, e.g., in Figure 4.1, the variable a acts as both the

output of the inverter and an input of the NAND gate. Therefore, between gates, a signal must go through

exactly one wire.

Definition 4.2.9. Let P be a PRS. P has no wire-to-wire connections if and only if for all pairs of wires

Oy,Oy′ , (y, y′) /∈−→.
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Figure 4.2: CMOS NAND gate and wires.

Definition 4.2.10. Let P be a PRS. P has no gate-to-gate connections if and only if for all pairs of gates

Ox,Ox′ , (x, x′) /∈−→.

This leaves the possibility of implicit forking through sharing of wire variables across different gates,

which can be removed by enforcing that P has explicit inter-operator forks.

Definition 4.2.11. Let P be a PRS satisfying the conditions of Definitions 4.2.9 – 4.2.10. P has explicit

inter-operator forks if and only if for all wires Oy , |y −→ ·| = 1.
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Figure 4.3: Explicit inter-operator fork.

Figure 4.3 transforms an implicit inter-operator fork from Figure 4.1 into an explicit inter-operator fork

by connecting inverter Oa to two new wires Oa1 and Oa2 . Nevertheless, variable sharing can occur within a

gate, e.g., this happens in Figure 4.2, where E(b, x) = 2. This leads to the final structural constraint on forks.

Definition 4.2.12. Let P be a PRS satisfying the conditions of Definitions 4.2.9 – 4.2.10. P has explicit

intra-operator forks if and only if for all wires Oy , if y −→ x then E(y, x) = 1.

Figure 4.4 further expands Figure 4.3 by making explicit the NAND gate intra-operator forks. This

necessitates the addition of another new wire, Oa3 , to inverter Oa and two new wires Ob1 and Ob2 to C-

element Ob. Definitions 4.2.9 – 4.2.12 ensure that at the switch level, there is a one-to-one correspondence

between gate interconnections and wires.

Making inter-operator forks explicit is commonplace and essential for a discussion of asynchronous cir-

cuits. Making intra-operator forks explicit is less typical but not unprecedented (see [73]); they are exposed

for completeness in Section 4.4 on timing assumptions. In what follows, a properly structured PRS is closed

and is considered to have all of the above properties.
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Figure 4.4: Explicit intra-operator fork.

Definition 4.2.13. Let P be a PRS. P is closed if and only if for all x ∈ V ; · −→ x 6= ∅ and x −→ · 6= ∅.

Definition 4.2.14. Let P be a PRS. P is proper if and only if P satisfies the conditions of Definition 4.2.4

and Definitions 4.2.9–4.2.13.

4.3 PRS Semantics

This section defines a mapping from PRS to legal computations, where computations are legal if they fall

within the set of dynamic behaviors defined by a circuit. The formalization treats PRS as a set of concur-

rent processes with each gate and wire acting individually. The main ideas as well as several examples are

presented in Section 4.3.1, followed by further details in Section 4.3.2.

4.3.1 Overview

Conceptually, the definition of computation given in this section treats gates and wires as independent pro-

cesses. These processes are continuously sensitive to the current state of all nodes named in the guards of the

corresponding pair of production rules. For example, the expanded NAND gate shown in Figure 4.4 is treated

as a process that is sensitive to the state of four nodes: a2, a3, b1, b2. At any given “step” in the computation,

each process can either (a) act on the current state of its inputs by transitioning its target node appropriately,

or (b) delay a pending transition to a future step. There is also a third possibility, (c): a gate can express a

pending hazard.

Ignoring hazards for the moment, the state of the circuit nodes is encoded as a function, χ : V −→ {F, T},
which maps nodes to logical values. For example, χ(a2) = T means that the current state of node a2 acts as

logical true. Now, consider again the NAND gate and a state

χ(a2) = T, χ(a3) = T, χ(b1) = T, χ(b2) = T, χ(x) = T.

A computation “step” takes the current state, χ, to a new state, χ′. Corresponding to cases (a) and (b) above,

there are two alternatives for x in χ′. Either (a) the pending transition gets expressed and χ′(x) = F, or (b)

the transition is delayed and χ′(x) = χ(x) = T.
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For every gate, there is also a specific set of undesirable states that expose its non-digital and non-atomic

nature. These hazardous states generate uncertainty in the logic value of the gate output. As such, subsequent

gates may individually interpret the value as either T, F, or undefined. These possibilities necessitate further

enrichment of state beyond χ : V −→ {F, T}. First, for hazards to be explicitly manifested, the co-domain

of χ is expanded to the set {F, X, T}, so that χ becomes a function χ : X −→ {F, X, T}. Second, the state is

enriched so that it becomes a pair (χ, I) with χ as above and I ⊆ V , where I is a set containing all nodes

with pending hazards. That is, x ∈ I implies that case (c) is a valid option, so χ′(x) = X is possible in some

future computation step.

4.3.2 Formalization

The definition of computation is given as a binary relation on execution states. From this point onward,

denote by B the structure with elements {F, X, T} and functions ¬,∧,∨.

Definition 4.3.1. An execution state is any pair

(χ : V −→ B, I ⊆ V ).

In order to define inference rules for generating the next system state χ′ from the current state χ, it is

useful to have formal notions describing the current “state” of a gate. Intuitively, if χ is such that a gate is

being pulled up, then the gate is allowed to transition to T. Similarly, if the gate is being pulled down, then it

is allowed to transition to F, and if there is a pending hazard, it is allowed to transition to X. The following

definitions formalize the various sensitivities of a gate.

Definition 4.3.2. Let χ : V −→ B and g ∈ TB(V ). χ(g) denotes the extension of χ to Boolean expressions.

Definition 4.3.3. Let χ : V −→ B and let Ox be a gate defined such that

Ox = {g+ 7→ x ↑, g− 7→ x ↓}.

• A↑χ is a predicate on gates denoting that Ox is currently being pulled up with respect to χ, i.e.,

A↑χ(Ox)⇔ χ(g+) = T and χ(g−) = F.

• A↓χ is a predicate on gates denoting that Ox is currently being pulled down with respect to χ, i.e.,

A↓χ(Ox)⇔ χ(g+) = F and χ(g−) = T.
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• Alχ(Ox) is a predicate on gates denoting that Ox is interfering, or shorted, with respect to χ, i.e.,

Alχ(Ox)⇔ χ(g+) = T and χ(g−) = T.

• A•(Ox) is a predicate on gates, denoting that Ox is being invalidated with respect to χ, i.e.,

A•χ(Ox)⇔ χ(g+) = X or χ(g−) = X.

For the moment, ignore how the I set is computed and just assume that any pending hazard is contained

in I . The semantics allows for the state of any operator output to either change or to stay the same. A state

change from χ to a state χ′ must satisfy the following property: for all x ∈ V such that χ(x) 6= χ′(x):

χ′(x) = T⇒ A↑χ(Ox)

χ′(x) = F⇒ A↓χ(Ox)

χ′(x) = X⇒ x ∈ I.

As there are many such χ′ in general, there are many possible next states; this is a reflection of the natural,

per-gate concurrency that is expressed in the above constraints whenever χ′(x) 6= χ(x).

There are two varieties of hazards that can occur in asynchronous circuits: interferences and instabilities.

The first type of hazard, interference, occurs when a gate is being shorted; e.g., the NAND gate of Figure 4.4,

defined by production rules

{¬a2 ∨ ¬b2 7→ x ↑, a3 ∧ b1 7→ x ↓},

exhibits an interference when both guards evaluate to true, such as in a state where

χ(a2) = F, χ(a3) = T, χ(b1) = T, χ(b2) = F.

Definition 4.3.4. Let χ : V −→ B and Ox a gate. Ox is interfering with respect to χ if and only if Alχ(Ox).

The second type of hazard is unstable behavior. This occurs when, at some state (χ, I), a gate Ox is

enabled to transition (i.e., there exists a legal execution step to a state (χ′, I ′) where χ(x) 6= χ′(x)) but does

not transition in the actual step to (χ′, I ′) (i.e., χ(x) = χ′(x)), and the inputs toOx change when going from

(χ, I) to (χ′, I ′) in such a way that Ox is disabled from transitioning in the following step. This unstable

behavior captures some of the non-atomic properties of gates in real circuits. If a gate begins to transition

towards one rail, but is cut off before completing this transition, the output of the gate may be interpreted

individually by subsequent transistors as either T, F, or as a non-Boolean value.
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Taking the NAND again as an example, it is enabled in the state (χ, ∅) with

χ(a2) = T, χ(a3) = T, χ(b1) = T, χ(b2) = T, χ(x) = T

in that there exists a legal step χ′(x) 6= χ(x), χ′(x) = F. However, suppose that instead of this transition

happening, only the gate’s inputs change, so that χ′ is given by

χ′(a2) = F, χ′(a3) = F, χ′(b1) = T, χ′(b2) = T, χ′(x) = T.

This gate is no longer enabled in the sense that during the next step, say to (χ′′, I ′′), x cannot transition to

the other stable value, i.e., χ′′(x) = F is impossible.

Definition 4.3.5. Let χ, χ′ : V −→ B and Ox a gate. Ox is unstable with respect to χ, χ′ if and only if

A↑χ(Ox), χ′(x) 6= T, and ¬A↑χ′(Ox); or A↓χ(Ox), χ′(x) 6= F, and ¬A↓χ′(Ox).

The I set tracks all pending hazards, so that in a “step” from (χ, I) to (χ′, I ′), it must be ensured that I ′

contains (a) all interferences with respect to χ′, as well as (b) all instabilities with respect to χ, χ′. In addition

to these two hazard origination events, X values must also be allowed to propagate. This is formalized by

creating two auxiliary sets I+ and I−. The I+ set simply accumulates all of the new interferences and

instabilities generated in going from χ to χ′, and the I− set includes all variables that have transitioned. The

set I \ I− is then used to allow unresolved hazards to persist from I to I ′.

Definition 4.3.6. Let χ, χ′ : V −→ B; the set of new potential hazards with respect to χ, χ′, denoted I+χ,χ′

is defined such that

u ∈ I+χ,χ′ ⇔ Ou is unstable with respect to χ, χ′,Ou is interfering with respect to χ′, or A•χ′(Ou).

Similarly, the set of non-persisting potential hazards, denoted I−χ,χ′ , is defined such that

u ∈ I−χ,χ′ ⇔ χ′(u) 6= χ(u).

Definition 4.3.7. Let P be a proper PRS. The computation step relation,⇒, is a binary relation on execution
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states defined such that (χ, I)⇒ (χ′, I ′) if and only if for all x ∈ V with χ(x) 6= χ′(x):

χ′(x) = T⇒ A↑χ(Ox)

χ′(x) = F⇒ A↓χ(Ox)

χ′(x) = X⇒ x ∈ I,

and I ′ = I+χ,χ′ ∪ I \ I−χ,χ′ .

Definition 4.3.8. Let P be a proper PRS and ~σ = 〈σ1, σ2, . . . 〉 be an infinite sequence of states. ~σ is a legal

execution sequence, if and only if for all i ≥ 1, σi ⇒ σi+1.

In what follows, computations are restricted so as to satisfy a few important sensibility requirements.

Such a computation assumes (a) that the reset state is free of interferences, instabilities, and X values, and

(b) that the reset state initializes forks with the same value on every branch. The restriction on fork branches

simplifies several timing assumptions given in Section 4.4.

Definition 4.3.9. Let P be a proper PRS and ~σ = 〈σ1, σ2, . . . 〉 an execution sequence. σ1 is called the reset

state.

Definition 4.3.10. Let P be a proper PRS and ~σ an execution sequence with reset state σ1 = (χ1, I1). ~σ is

proper if:

• for all x, χ1(x) 6= X; and I1 = ∅; and

• for all gates Ox, for all y, y′ ∈ x −→ ·, χ1(y) = χ1(y
′).

Lastly, it is useful to extend the notions of stability and non-interference beyond a single sequence.

Definition 4.3.11. Let P be a proper PRS and σ1 a reset state. P, σ1 is stable and non-interfering if and only

if all proper execution sequences, ~σ, with reset state σ1 are stable and non-interfering.

4.4 Timing

Reaching a timing closure for an asynchronous system tends to be considerably easier to achieve than for a

similar synchronous design. Even so, as CMOS evolves and becomes ever more varied, and as entirely new

paradigms are targeted, certain assumptions about timing become harder to satisfy [62]. This section gives

formal meaning to the terms used to discuss common timing assumptions made for asynchronous circuits and

then uses these terms to provide concrete definitions for DI, QDI, and SI systems.

4.4.1 Transition Causality

An important concept used to reason about the sequencing of transitions is the notion of acknowledgment.

Acknowledgment embodies the causal relationship between the current inputs of an operator, say Ox, and
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a transition in the state of x, e.g., from χ(x) = T to χ′(x) = F. This chapter leverages the fact that all

guard expressions of a proper PRS are in disjunctive normal form in order to say that each guard variable in

a true-valued conjunctive clause is acknowledged when the target variable transitions.

Definition 4.4.1. Let ~σ be a proper execution sequence. Associate to ~σ an acknowledgment relation,

�⊆ V × N× V,

and write x�i x
′ when (x, i, x′) ∈�. The relation is defined inductively such that

(a) x�i x
′ if, letting

Ox′ = {c1 ∨ · · · ∨ cm 7→ x′ ↑, d1 ∨ · · · ∨ dn 7→ x′ ↓}

either

– χi(x
′) 6= T, χi+1(x

′) = T, and π(x, cj) > 0 for some cj such that χi(cj) = T; or

– χi(x
′) 6= F, χi+1(x

′) = F, and π(x, dj) > 0 for some dj such that χi(dj) = T;

(b) x �i x
′ if Ox′ is a wire with x −→ x′, and for some x′′ ∈ x −→ ·, x �i x

′′; χi+1(x
′) = χi(x); and

letting j be the largest index less than i such that y �j x for some y, x�/kx
′ for all j < k < i.

Condition (a) formalizes the well-known definition of acknowledgment as a causal relationship between

transitions [60], and it extends the definition by allowing wires to acknowledge gates and gates to acknowl-

edge wires. Condition (b) further extends acknowledgment to handle inconsistencies that can occur at certain

forks. As an example, consider Figure 4.5. This figure completely exposes all forks from a segment of the

circuit from Figure 4.1. Notice that gates and wires inherently “hold” state, so b is automatically staticized.

Now, consider a proper execution sequence ~σ, where σi is specified by Figure 4.5. In this state, the inverter

Oa is enabled to transition, as are the wires Oa2 , Oa3 , Ob1 , and Ob2 . If the inverter output transitions but

the wires do not, then χi+1 = χi[a 7→ T], and by condition (a) of acknowledgment, d1 �i a. Continuing

with this example, suppose that the Oa1 wire transitions next, yielding χi+2 = χi+1[a1 7→ T]. By condition

(a) of acknowledgment, a �i+1 a1, and by condition (b) a �i+1 a2 and a �i+1 a3. In some sense, Oa2

and Oa3 skipped a transition (legally), and condition (b) maintains a consistent notion of acknowledgment.

Furthermore, acknowledgment “chains” give rise to a transitive version of acknowledgment.

Definition 4.4.2. Let ~σ be a proper execution sequence. Associate to ~σ a relation

�+⊆ V × N× N× V,

and write x�+
[m,n] x

′ when (x,m, n, x′) ∈�+. The relation is defined inductively such that

• if x�i x
′ then x�+

[i,i+1] x
′;

• if x�+
[m,n] x

′ and χn+1(x
′) = χn(x

′), then x�+
[m,n+1] x

′;
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Figure 4.5: Simple buffer segment; at state σi = (χi, ∅).

• if x�+
[m,n] x

′ and x′ �n x
′′, then x�+

[m,n+1] x
′′.

4.4.2 Timing Assumptions

All of the timing assumptions presented in this chapter involve forks. Furthermore, these assumptions are

defined and applied in terms of general n-way forks, as opposed to simply binary forks. The first such timing

assumption is frequently overlooked because it places restrictions on forks internal to gates. These intra-

operator forks are usually concealed by sharing variables across distinct conjunctive clauses within operator

guard expressions, but they are made explicit by disallowing shared variables in every proper PRS. These

forks are intentionally exposed, because they exist in real circuits, and they accurately account for a number

of analog circuit constraints [30, 73].

The strong intra-operator fork assumption states that if any branch of a fork emanating from gate Ox
has been acknowledged by a wire leading to another gate, say Ox′ , then all branches of the fork leading to

Ox′ have been acknowledged. This assumption is part of the standard gate-based digital circuit abstraction;

e.g., in CMOS circuits, it abstracts away details such as switching slew rates and relative transistor strengths.

Additionally, it greatly simplifies the execution model, as hazard-free execution sequences are entirely within

the digital realm; i.e., at every step each variable can be interpreted as either T or F.

Definition 4.4.3. Let ~σ be a proper execution sequence. ~σ satisfies the strong intra-operator fork timing

assumption if and only if for all pairs of gates Ox,Ox′ and every index i;

if x�i y for some y ∈ x −→ · −→ x′, then

x�i y
′ for all y′ ∈ x −→ · −→ x′.

Consider a proper execution sequence ~σ, where σi is specified by Figure 4.5, and the execution step where

χi+1 = χi[a2 7→ F]. This execution step does not satisfy the strong intra-operator fork timing assumption

as a�i a2 but not a�i a3.

The next assumption is nearly identical but constrains forks branching out to distinct operators.
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Definition 4.4.4. Let ~σ be a proper execution sequence. ~σ satisfies the strong inter-operator fork timing

assumption if and only if for every gate Ox and index i

if x�i y, then for all x′ such that x −→ · −→ x′ 6= ∅

x�i y
′ for some y′ ∈ x −→ · −→ x′.

Consider a proper execution sequence ~σ, where σi is specified by Figure 4.5, since χi(a1) 6= χi(a2), ~σ

does not satisfy the strong inter-operator fork timing assumption.

Taken together, the strong intra-operator fork and inter-operator fork timing assumptions are equivalent

to the standard isochronicity assumption.

Definition 4.4.5. Let ~σ be a proper execution sequence. ~σ satisfies the strong fork timing assumption (SFTA)

if and only if it satisfies the properties of Definitions 4.4.3–4.4.4.

Defined next is the notion of an adversary path [58, 62], a specific type of acknowledgment path beginning

at one branch of a fork and looping around to the target of another branch of the same fork.

Definition 4.4.6. Let Ox,Ou,Ov be distinct gates such that x −→ · −→ u 6= ∅ and x −→ · −→ v 6= ∅.
In addition, let y �+

[h,k] x for some y ∈ · −→ x, such that for all m, χm(x) = χh+1(x) with h < m ≤ k.

With respect to y �+
[h,k] x, an adversary is any acknowledgment path x �+

[i,j] v �
+
[j,k] x

′, with i > h and

x′ −→ · −→ u 6= ∅, and where for all y′′ ∈ x −→ · −→ u and h < l ≤ k, χl(y′′) 6= χi(x); all, such

wires Oy′′ are referred to as isochronic branches of the fork.

Figure 4.6 completely exposes all inter-operator forks from Figure 4.1. For clarity, since the strong intra-

operator fork timing assumption is assumed, intra-operator forks are not drawn. Consider a proper execution

sequence ~σ, where σi is specified by Figure 4.6. Now imagine that Oa1 , the wire between the inverter and

the C-element, transitions; i.e., χi+1 = χi[a1 7→ F]. Next, the C-element transitions, and χi+2 = χi+1[b 7→
T]; there is now an acknowledgment path a �+

[i,i+1] a1 �
+
[i+1,i+2] b. This acknowledgment path is an

adversary. Intuitively, this adversary path creates a potential instability at Ox. For example, suppose that

χi+3 = χi+2[b1 7→ T]. This enables the NAND gate, Ox, but the F at the output of the inverter, Oa,

can propagate to the a2 input of the NAND gate at any step, disabling the NAND gate and generating an

instability.

Definition 4.4.7. Let ~σ be a proper execution sequence. ~σ satisfies the weak inter-operator fork timing

assumption if and only if ~σ contains no adversaries.

The weak inter-operator fork timing assumption yields a weaker assumption than SFTA. This weaker

assumption is the adversary path timing assumption (APTA). Section 4.5 proves that the SFTA and APTA

assumptions are equivalent with respect to the existence of hazards.
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Figure 4.6: Adversary path; at state σi = (χi, ∅).

Definition 4.4.8. Let ~σ be a proper execution sequence. ~σ satisfies the adversary path timing assumption

(APTA) if and only if it satisfies the properties of Definition 4.4.3 and Definition 4.4.7.

Next, following the classic definition [60], a circuit is defined as delay-insensitive if it is hazard-free under

the assumption that wires, gates, and forks have arbitrary but finite delays.

Definition 4.4.9. Let P be a proper PRS. P is delay-insensitive (DI) with respect to reset state σ1 if and only

if for all proper execution sequences ~σ with reset state σ1 and satisfying the properties of Definition 4.4.3, ~σ

is stable and non-interfering.

Finally, this chapter provides a definition for quasi-delay-insensitive and speed-independent circuits. In

agreement with [11], a circuit is SI if it is hazard-free under the assumption that gates and wires can have

arbitrary delays, as long as these delays are positive and finite, but all wire forks must transition at the same

time, i.e., all sequences obey the strong intra-operator fork and strong inter-operator fork timing assumptions.

Similarly, a circuit is QDI if it is hazard-free (stable and non-interfering) under the assumption that gates and

wires can have arbitrary (positive and finite) delays with all sequences obeying the strong-intra operator fork

timing assumption, and with a subset of the forks, called isochronic forks, additionally obeying the strong

inter-operator fork timing assumptions.

Definition 4.4.10. Let P be a proper PRS. F denotes the subset of operators of P that are wires.

Definition 4.4.11. Let P be a proper PRS, let F1,F2 partition F , and assume that the constraints of Defini-

tions 4.4.3 and 4.4.4 are satisfied by all forks in F1, i.e., they are isochronic, but that the forks in F2 are only

required to satisfy the constraints of Definition 4.4.3.

(a) P is speed-independent (SI) w.r.t. to reset state σ1 if and only if the set of proper execution sequences

beginning with σ1 are stable and non-interfering and F2 = ∅.

(b) P is quasi-delay-insensitive (QDI) w.r.t. to reset state σ1 if and only if the set of proper execution

sequences beginning with σ1 are stable and non-interfering.
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4.5 Equivalence of SFTA and APTA

Consider again Figure 4.5 and the operational definition of PRS computation from Section 4.3; there are

a number of legal execution sequences from σi = (χi, ∅) that exhibit hazards. For example, there is an

interference hazard when χi+1 = χi[b1 7→ T]. The goal of timing assumptions, such as the strong intra-

operator fork timing assumption (Definition 4.4.3), is to restrict the set of execution sequences so that hazards

are excluded. Indeed, under the strong intra-operator fork timing assumption, the above execution step is

impossible. Of course, different timing assumptions may exclude different execution sequences. Moreover,

they may do so at different costs; i.e., some timing assumptions may be weaker (easier to satisfy with physical

circuits) than others.

This section primarily addresses the set of execution sequences that are excluded under (a) the strong fork

timing assumption (SFTA, Definition 4.4.5), and (b) the adversary path timing assumption (APTA, Definition

4.4.8). The goal is to show that whenever the strong fork timing assumption excludes all execution sequences

exhibiting a hazard, then so does the adversary path timing assumption; and vice versa. Formally, the aim is

to prove the following theorem:

Theorem 4.5.1. Let P be a proper PRS and σ1 a reset state. P, σ1 is stable and non-interfering with respect

to the strong fork timing assumption (SFTA) if and only if P, σ1 is stable and non-interfering with respect to

the adversary path timing assumption (APTA).

With respect to the interference hazard from Figure 4.5, when χi+1 = χi[b1 7→ T], both SFTA and

APTA exclude the execution sequence, because both entail the strong intra-operator fork timing assumption.

(It is worth noting that the strong intra-operator fork assumption may not be strictly necessary for proper

SI circuit operation, but relaxing it falls clearly in the realm of analog constraints and is orthogonal to the

equivalence of SFTA and APTA.) As a second example, modify the initial state of Figure 4.5 so that σi =

(χi[d1, d2, a1, a4 7→ T, b 7→ F], ∅). Consider the instability hazard exposed through the execution sequence

χi+1 = χi[a1, a4 7→ F], χi+2 = χi+1[b 7→ T], χi+3 = χi+2[b1, b2 7→ T], and χi+4 = χi+3[a2, a3 7→ F]. Ox
is enabled at index i+ 3, but no longer enabled at index i+ 4, so that Ii+4 = {x}. Both timing assumptions

again reject this sequence, but this time for different reasons. The execution step from i to i + 1 is rejected

under SFTA because χi+1(a1) 6= χi+1(a2). Under APTA this execution step is allowed, but what is not

allowed is the sequence of acknowledgments a �i a1 �i+1 b.

The (⇐) direction of Theorem 4.5.1 is straightforward, and is given in Section 4.5.1. The (⇒) direction

is substantially harder. Section 4.5.2 sketches the main idea of the proof of Theorem 4.5.1 (⇒) at a high

level. Sections 4.5.3 – 4.5.6 develop the details.

4.5.1 Theorem 4.5.1 (⇐)

Proof. Every SFTA execution sequence is also an APTA execution sequence. Toward a contradiction, as-

sume there exists an execution sequence ~σ which is SFTA but not APTA. ~σ must contain an adversary path.
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Let x �+
[i,j] v �+

[j,k] y′ be as in Definition 4.4.6. By the definition, for some index l, i < l < j, and

all z, z′ with z ∈ x −→ · −→ v and z′ ∈ x −→ · −→ u, χl(z) 6= χl(z
′). This contradicts the strong

inter-operator fork timing assumption.

4.5.2 Theorem 4.5.1 (⇒) Overview

The proof of Theorem 4.5.1 follows by contradiction: assuming that SFTA is stable and non-interfering, it is

shown that the existence of a hazardous APTA sequence implies also a hazardous SFTA execution sequence,

an obvious contradiction. The proof given in the following sections is constructive, and so given an APTA

execution sequence ~σ with a hazard, it is shown how to construct an SFTA execution sequence that also has

a hazard.

The construction crucially relies on the notions of relaxation (Definition 4.5.2) and variant execution

sequence (Definition 4.5.4). Given an APTA execution sequence, ~σ, a variant is a modified execution se-

quence, say ~σ′, in which certain transitions on wires are either forced or suppressed. In Figure 4.5, assuming

again a modified initial state σi = (χi[d1, d2, a1, a4 7→ T, b 7→ F], ∅), consider going from σi = (χi, ∅) to

χi+1 = χi[a1, a4 7→ F]. This execution step is APTA but not SFTA because χi+1(a1) 6= χi+1(a2). The con-

dition where the branches of theOa fork differ between gatesOx andOb is called a relaxation, and the modi-

fications that are made in a variant sequence are with respect to relaxations. One possible variant of the above

execution step is to force a2, a3 to acknowledge a along with a1, a4, so that χ′i+1 = χi[a1, a2, a3, a4 7→ F];

the second type of variant suppresses the acknowledgment of a on a1, a4, so that χ′i+1 = χi. Note that in

both cases the modified execution sequence is SFTA.

A main insight of the proof is the identification of a gate, say Ou, that is the inherent origin of a hazard.

Moreover, the proof makes concrete the forced/suppressed transitions needed to manifest this hazard at Ou.

The gate is identified by considering the variant of ~σ in which all relaxations are forced (call this variant ~σ+)

and is found at the smallest index, say j, where there is a gate, Ou, such that χj(u) 6= χ+
j (u).

The details of Theorem 4.5.1 (⇒) are broken down as follows. Section 4.5.3 formally defines the no-

tions of relaxation and variant. Section 4.5.3 also establishes (see Lemma 4.5.7) that all variants are SFTA.

Section 4.5.4 isolates the hazard to a specific index and gate. Section 4.5.5 characterizes exactly how certain

specific variants differ from the original APTA sequence. Finally, Section 4.5.6 demonstrates that the differ-

ences proved in the previous section are minor enough to yield a hazard in the SFTA variant when the APTA

sequence has a hazard, which is finally proved in Section 4.5.6.

4.5.3 Relaxations and Variant Execution Sequences

The notion of relaxation encapsulates the idea that the first difference between the two timing assumptions

manifests itself on the branches of a fork between two different gate operators. More specifically, using the

weak inter-operator fork timing assumption, a signal may propagate to one gate at the end of a fork branch
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and not to another gate at the end of a different branch, while, by definition, this is impossible under the

strong inter-operator fork timing assumption.

Definition 4.5.2. Let ~σ be an APTA execution sequence. Associated to ~σ is a set of relaxations,R~σ , with

R~σ ⊆ V × V × N× N ∪ {∞},

such that (x, u,m, n) ∈ R~σ if and only if

• Ox,Ou are gates, m < n, and x −→ · −→ u 6= ∅.

• For some y ∈ x −→ ·; x�m y.

• For some y ∈ x −→ ·, x�n y; or n =∞.

• For all y ∈ x −→ · and i such that m < i < n; x�/ iy.

• For all y′ ∈ x −→ · −→ u, χm+1(y
′) 6= χm(x).

When ~σ is clear from context,R is used in place ofR~σ . The essential idea behind constructing a variant

execution sequence is to modify an APTA execution sequence at relaxed forks. There are two types of local

modifications when a fork has a relaxation: the relaxed branches can be made to mimic the non-relaxed

branches by forcing transitions; alternatively the non-relaxed branches can be made to mimic the relaxed

branches by suppressing transitions. Conceptually, it is simpler to consider such modifications over a set of

related relaxation points, a “relaxation span,” rather than at every individual relaxation.

Definition 4.5.3. Let ~σ be an APTA execution sequence. The relaxation span set,

S~σ ⊆ V × N× N ∪ {∞}

is defined such that for every maximal sequence of relaxations

(x, u1,m, i1) (x, u2, i1, i2) · · · (x, uk, ik−1, n)

with χi(x) = χm(x) for all m ≤ i ≤ ik−1; (x,m, n) ∈ S~σ .

In the above definition, “maximal” means that there is no longer sequence, which includes the given one.

Consider an (APTA) execution sequence ~σ. The formal definition of variant attempts to mimic ~σ as closely

as possible except with the relaxation spans. For a span (x,m, n) ∈ S , the branches y ∈ x −→ · of the fork

from Ox are either all forced, or all suppressed. Since every relaxation is part of a span, and across a span

all branches of a fork are treated equally, a variant will always be SFTA. This is proved formally in Lemma

4.5.7.

The set S+ in the definition of variant corresponds to spans which are forced. The set S− corresponds to
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spans which are suppressed. The definition is broken up into pieces to facilitate explanation of the construc-

tion.

Definition 4.5.4. Let ~σ be an APTA execution sequence, and let S+,S− partition S. The variant of ~σ with

respect to S+,S− is the execution sequence, say ~σ′, such that σ′1 = σ1, and . . . (continued below)

For gates, ~σ′ should always mimic ~σ if it can, and otherwise a default action should be taken. The default

action forces the previous value of x to persist across the execution step.

Definition 4.5.5. Let P be a proper PRS and χ, χ′ : V −→ B. For any operator Ox, χ, χ′ agree on

Ox, χ(Ox) ⇔ χ′(Ox), if and only if they give the same interpretation with respect to the predicates of

Definition 4.3.3.

(Definition 4.5.4 Cont., Gates). . . . for i+ 1 > 1 and x such that Ox is a gate:

χ′i+1(x) = χi+1(x) if χ′i(Ox)⇔ χi(Ox) and (1a)

y �i x for some y

χ′i+1(x) = χ′i(x) otherwise (1b)

The same basic strategy employed for gates is also used for wires, except across a span.

(Definition 4.5.4 Cont., Wires). . . . for i+ 1 > 1 and y such that Oy is a wire with y ∈ x −→ ·:

χ′i+1(y) = χm(x) if χ′m(Oy)⇔ χm(Oy) and (2a)

there exists a (x,m, n) ∈ S+

with m ≤ i < n

χ′i+1(y) = χ′m(y) if χ′m(Oy)⇔ χm(Oy) and (2b)

there exists a (x,m, n) ∈ S−

with m ≤ i < n

χ′i+1(y) = χi(x) if χ′i(Oy)⇔ χi(Oy), there is (2c)

no (x,m, n) ∈ S+ ∪ S− with

m ≤ i < n, and x�i y
′ for

some y′ ∈ x −→ ·

χ′i+1(y) = χ′i(y) otherwise (2d)

It is straightforward to show that Definition 4.5.4 yields a well-defined execution sequence. Finally,

Lemma 4.5.7 demonstrates that all variant execution sequences are SFTA.
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Lemma 4.5.6. Let ~σ be an APTA execution sequence and ~σ ′ a variant of ~σ . ~σ ′ is a proper execution

sequence with the same reset state as ~σ .

Proof. Sketch. ~σ and ~σ ′ have the same reset state by Definition 4.5.4. It can be shown that each state update

given by Definition 4.5.4 is valid and hence; proof by induction follows directly from this.

Lemma 4.5.7. Let ~σ be an APTA execution sequence and ~σ ′ a variant of ~σ . ~σ ′ is SFTA.

Proof. By induction. It is sufficient to show that for all gates Ox and every index i, if y, y′ ∈ x −→ ·, then

χ′i(y) = χ′i(y
′). At i = 1, σ′1 = σ1 and the result follows from the definition of a proper execution sequence

reset state. Assume the result up to i; it must be shown to extend to i+ 1.

Toward a contradiction, suppose χ′i+1(y) 6= χ′i+1(y
′) for some such y, y′ as above. It is easy to show

that for any of the cases, if χ′i+1(y) is defined by that case, then so is χ′i+1(y
′). Clearly, both χ′i+1(y) and

χ′i+1(y
′) cannot be defined by case (2a) or case (2c) (this would force χ′i+1(y) = χ′i+1(y

′) = χm(x) or

χ′i+1(y) = χ′i+1(y
′) = χi(x), respectively); similarly, χ′i+1(y), χ

′
i+1(y

′) cannot both be defined by case

(2b) or both be defined by case (2d) (by the induction hypothesis).

4.5.4 Isolating the Hazard

Let ~ω be some unstable or interfering APTA execution sequence. This execution sequence is carried through

the remainder of the proof of Theorem 4.5.1 (⇒), and is used to distinguish from ~σ, which is used more

generally. From ~ω a “refined” APTA sequence is generated, ~ω′, and it is proved that a specific variant of ~ω′,

~ω′−, also contains a hazard. This implies a contradiction because all variants are SFTA.

~ω′ is constructed so as to isolate the hazard to an index j and specific gate Ou. The construction is

notable because the differences between ~ω′ and ~ω′− are extremely limited. The exact differences are given

by Lemma 4.5.11. This allows for a relatively straightforward comparison of ~ω′ and ~ω′−, showing that the

variant sequence contains a hazard. Index j and gate Ou are found by comparing ~ω′ with ~ω′+, the variant of

~ω′ where all relaxation spans are forced.

Definition 4.5.8. Let ~σ be an APTA execution sequence. ~σ+ denotes the variant of ~σ with respect to S, ∅.

Refinement. Consider ~ω and ~ω+. Let j be the smallest index such that either Ij 6= ∅ or for some gate Ou,

χj+1(u) 6= χ+
j+1(u). Refine ~ω to the execution sequence ~ω′ as follows . . . (continued below)

The refinement branches based on the two conditions, i.e., Ij 6= ∅ or not. The details of the first case

are omitted and left as future work but are quite similar to when Ij = ∅. The second case is the key idea

developed for the proof. χj+1(u) 6= χ+
j+1(u) indicates the potential for an instability hazard at Ou. It will

be shown that, essentially, if all of the relaxed forks leading toOu at index j are forced to transition, thenOu
becomes disabled. The remainder of the Refinement and proofs below deal with the details of demonstrating

this result formally.
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(Refinement Cont., (Ij = ∅)). Let Z ⊆ S be such that for all (x,m, n) ∈ S , (x,m, n) ∈ Z if and only if

there is a (x, u, k, l) ∈ R with m ≤ k < j ≤ l ≤ n. For all i ≤ j and x ∈ V

χ′i(x) = χm(x) if there exists a (x,m, n) ∈ Z

with m < i ≤ n.

χ′i(x) = χi(x) otherwise

for i = j + 1

χ′j+1(x) = χm(z) if there exists a (z,m, n) ∈ Z

with z −→ x.

χ′j+1(x) = χ′j(x) otherwise

and for all i > j + 1, ω′i = ω′j+1.

Lemma 4.5.9. Let ~ω and ~ω′ be as in the refinement; ~ω′ is an APTA execution sequence with the same reset

state as w.

Proof. Sketch. The main intuition as to why Lemma 4.5.9 is true comes from the fact that for i ≤ j, ~ω and

~ω′ differ at some gate Ox if and only if (x,m, n) ∈ Z , where m < j ≤ n. By Definitions 4.5.2 and 4.5.3,

for all y ∈ x −→ ·, m < k < n, x�/ky. That is, even if Ox transitions at some state, say ωk, m < k < n, no

wire could have observed this transition prior to ωn. As such, x can clearly be held at its initial state in ωm

until ωn.

4.5.5 Constructing the Hazardous SFTA Sequence

The SFTA variant of ~ω′ that will be shown to contain a hazard is defined so that every relaxation span

(x,m, n) ∈ Z is suppressed, while every other relaxation span is forced. This execution sequence is denoted

~ω′−. Every difference between χ′i(x) and χ′−i (x) is accounted for in Lemma 4.5.11 below. Unless x is the

relaxed branch of a fork from a span (x′,m, n) ∈ S \ Z , then the lemma essentially shows that χ′i(x) is on

an acknowledgment path from a suppressed (x′,m, n) ∈ Z .

Definition 4.5.10. Let ~σ be an APTA execution sequence, and Z ⊆ S . ~σ− denotes the variant of ~σ with

respect to S \ Z, Z .

Lemma 4.5.11. Let ~ω′, j, Ou, and Z be as in the Refinement. With respect to ~ω′−, for all i ≤ j and x, if

χ′i(x) 6= χ′−i (x) then either

(a) there is a (x′,m, n) ∈ S \ Z with x ∈ x′ −→ · and relaxed at m < i ≤ n, or

(b) there is a (x′,m, n) ∈ Z such that x′ �+
[m,i] x in ~ω′.
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Proof. Future work.

4.5.6 Theorem 4.5.1 (⇒)

Proof. (Ij = ∅)

Let y ∈ · −→ u be such that χ′−j (y) 6= χ′j(y). By Lemma 4.5.11, either (a) there is a (x,m, n) ∈ S \ Z
and x −→ · −→ u is relaxed at m < j ≤ n, or (b) there is a (x,m, n) ∈ Z and x �+

[m,j] y in ~ω′. Case (a)

is impossible by the construction of the Z set, and case (b) is impossible by the definition of adversary path

(x −→ · −→ u is relaxed atm < j ≤ n, yet there is an acknowledgment from x atm that leads back toOu at

index j). Therefore, for all y ∈ · −→ u, χ′−j (y) = χ′j(y). By similar reasoning, χ′−j (u) = χ′j(u) = χj(u). It

remains to be shown that χ′j+1(y) = χ+
j (y) for all y ∈ · −→ u (this implies an instability in ~ω′−). A simple

corollary to Lemma 4.5.11 establishes that χ+
j (y) 6= χ′j(y) exactly on those y ∈ x −→ · −→ u that are

relaxed at j. By the construction of the refinement and case (2c) of the definition of variant, these are exactly

the y that change in the execution step from χ′−j to χ′−j+1. Therefore, for all y ∈ · −→ u, χ′−j+1(y) = χ+
j (y)

and Ou gets disabled, an instability and a contradiction that SFTA is stable and non-interfering.

(Ij 6= ∅) future work.

4.6 Related Work

The importance of understanding timing assumptions in asynchronous circuits is well-known [60, 88]. Fur-

thermore, it is recognized that strict isochronicity (SFTA) is both difficult to satisfy [93] and unnecessary

for hazard-free operation. The adversary path is described directly in [62], and similar timing assumptions

are described in [87]. These works provide important intuition as to why relaxing the strong fork timing

assumption to the adversary path assumption is sufficient for ensuring hazard-free operation. However, they

do so without a formal framework, and hence without proof of correctness. Moreover, they do not provide

any intuition as to why the adversary path timing assumption is the weakest timing assumption that is both

necessary and sufficient for correct operation of SI circuits.

Other works have generated useful extensions of SI circuits that relax isochronic forks, e.g., the extended

isochronic fork from [92]. The extended isochronic fork allows for additional gates to be placed on the

unacknowledged branch of a fork and can yield more compact circuits. It seems clear that the adversary

path assumption naturally extends to this assumption; although a formal proof establishing this is not given.

Similarly, the timing constraint on orphans in NULL convention logic is almost certainly a specific variant

of an adversary path; again, this is not formally established in this dissertation. However, by providing a



88

formalization at the level of switching networks, the current work could be extended to investigate such

issues further.

4.7 Conclusion

This chapter presents a complete formalization of the notion of production rule sets, a well-known asyn-

chronous computation system. Using this system, a number of fork-related timing assumptions are also

formalized, including the adversary path assumption, and these formalizations are employed in order to char-

acterize several important asynchronous logic frameworks. Finally, it is proved that the adversary path timing

assumption is both a necessary and a sufficient condition for correct operation of speed-independent circuits

and various extensions of SI circuits.

However, the model of computation presented, like all models, has limitations. First, it does not provide

syntactic or semantic support for pass-transistors. Second, it does not directly include the transistors required

to physically reset a PRS. Third, wires are assumed to be perfect. Finally, the model does not support inter-

fering state-holding circuits such as cross-coupled inverters. The first two limitations are relatively minor;

they have been excluded for clarity. The last two limitations require considerable effort to remedy without

excessively encumbering the specification of the system, and are therefore left as future work.
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Chapter 5

Real-World Application

During the course of my doctoral research I had the opportunity to design, build, tape out, and test a pair

of radiation hardened ultra-low power QDI AVR microcontrollers: LP1 and DD1 (working as a team with

Prof. Alain J. Martin and Chris Moore). I am deeply indebted to Alain for the opportunity and to Chris for

performing more than his fair share of the engineering. Both LP1 and DD1 work to specification, and LP1

is able to operate reliably near the technology threshold voltage, consuming only 5.5pJ-per-instruction. As

with any device, the choice of process technology plays a critical role in all aspects of the design, and in order

to minimize power consumption (one of the primary goals of the project), I pushed our team to use a new

cutting edge process (at the time): TSMC 40-nm low-power bulk CMOS (TSMC40LP). We had no design

experience in this technology at the onset of the project, and many of the techniques developed throughout

this dissertation were not mature enough for use in its evaluation. In this last technical chapter, I use the

entirety of the work developed in my dissertation to analyze three critical design decisions—made with only

partial knowledge early in the project—that were necessary in order to have high confidence in successful

tape-out. This analysis was not possible prior to the development of the work presented in Chapters 2, 3, and

4.

5.1 Introduction

Two goals—minimize power and maximize reliability—drove the design and implementation of LP1. In

order to achieve these goals and to maximize the likelihood of functional first-silicon, three conservative (and

critical) design assumptions were made early in the project:

• the minimum energy operating point falls between 600mV and 700mV,

• if all adversary paths contain at least five gates in series, timing will not be violated, and

• by using combinational gates throughout (with the exception of SRAM) the chip will be robust.

The primary goal of this chapter is to apply the methods developed in this dissertation in order to analyze

and quantify these assumptions in the TSMC40LP technology as applied to LP1. The secondary goal of



90

this chapter is to demonstrate how these methods of analysis can be easily and quickly applied to a real

problem with minimal setup and computation cost. There may be some error in this back-of-the-envelope

style of analysis, but the rigorous development of the models and careful quantification of error in Chapters

2 and 3, along with a formal proof about timing assumptions in Chapter 4, lend credence to an assumption

of correctness. The organization of this chapter is as follows. In Section 5.1.1, the near-threshold model

(developed in Chapter 2) is used to determine the minimum-energy operating point as a function of activity

factor. Section 5.1.2 uses the near-threshold statistical delay model from Chapter 2 along with the adversary

path timing assumption (see Chapter 4) to estimate the probability of a timing failure in LP1. Finally, the

LP1-core robustness is estimated in Section 5.1.3 (see Chapter 3), and the probability of functional failure is

compared to the probability of timing failure.

5.1.1 LP1 Minimum Energy Operating Point
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Figure 5.1: Inverter FO4 delay, Equation 2.44, plotted for entire VDD range against a BSIM4 SPICE simula-
tion of TSMC40LP (25◦C, TT −Corner) for minimum-size inverter driving an FO4 load. Fit from 135mV
to 750mV, yielding Vt = 515mV, n = 1.60, and Cload

IF
= 0.869nsV .

From the delay model derivation in Section 2.3.1 and from Equation 2.44, the FO4 delay of a minimum

size inverter in TSMC40LP can be calculated and plotted as a function of VDD (as depicted in Figure 5.1).

Compared to BSIM4 SPICE simulation the mean absolute error is 18% and the maximum absolute error is

7.2%.

Using Equation 2.51, the leakage current (Ioff), of minimum-size devices in TSMC40LP can be plotted

and compared to BSIM4 SPICE simulations as depicted in Figure 5.2. The NFET Ioff mean absolute error is

13% and the maximum absolute error is 4.1%; the PFET Ioff mean absolute error is 16% and the maximum

absolute error is 4.0%.
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Figure 5.2: Off-current, Equation 2.51, plotted for entire VDD range against a BSIM4 SPICE simulation of
TSMC40LP (25◦C, TT-Corner) for minimum-size devices with Vt = 515mV, n = 1.60. Fit from 135mV to
750mV, resulting in η = 0.110, NFET I0 = 552nA, and PFET I0 = 190nA.
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Figure 5.3: LP1 minimum-energy operating voltage vs. activity factor (α) (25◦C, TT-Corner).



92

Finally, using the energy model derived in Section 2.3.2, the minimum energy operating point for the

LP1 can be estimated. The LP1 operates at approximately 3,000 FO4 delays per cycle (this actually exceeds

the performance requirements), so a corresponding path length of 3,000 FO4s is assumed; i.e., Ldp = Nl =

3, 000. In TSMC40LP the dynamic switching capacitance for an FO4 chain of inverters can be estimated

as Cdyn ≈ 1.2fF ∗ Ldp. With this and the parameters taken from Figures 5.1 and 5.2, Figure 5.3 plots the

estimated minimum-energy operating point for the LP1 as a function of activity factor. Minimum energy

operation is achieved with a supply voltage ranging from approximately 400mV to 800mV depending on the

activity factor.1 The original target range of 600mV to 700mV falls well within this range but is too high to

achieve minimum energy operation at high activities. Given that minimum energy operating range requires

sub-threshold or near-threshold operation, reliability is a real concern; the probability of timing and noise

margin failures must be analyzed and quantified.

5.1.2 LP1 Adversary Path Timing Failures

isochronic
fork

tdi

tda

Figure 5.4: Depiction of the length-five simplified adversary path timing assumption. The delay on the
isochronic branch is labeled as tdi, and the adversary path delay is labeled as tda.

The rigorous definition and proofs from Chapter 4 can be reduced to a simple statement. When designing

QDI circuits using Martin Synthesis [58], only one type of timing assumption is made: every isochronic fork

must satisfy the constraint that the isochronic branch of the fork transitions faster than the corresponding

adversary path. The LP1-core contains approximately 20K isochronic forks with adversary paths consisting

of a variety of gates; however, there are at least five gates on every adversary path. Most of the LP1 adver-

sary paths contain seven or more gates, and approximately 100 adversary paths contain only five gates in

sequence. One simple approximation that provides an upper bound on the probability of failure is to consider

an isochronic fork with a single FO1 inverter delay on the isochronic branch (tdi), and either five or seven

FO4 inverter delays on the adversary path (tda) as depicted in Figure 5.4; the assumption that tdi < tda is

referred to throughout as the simplified adversary path timing assumption (SAPTA). It is reasonable to as-

sume that the probability of an adversary path timing failure in the LP1 is strictly less than the probability

1The physical test data for the LP1 corroborates this, but is currently unpublished.
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that either 100 instances of length-five SAPTA fail or 20K instances of length-seven SAPTA fail (i.e., the

probability of the union of these two events). The exact timing assumption is difficult to specify, because

the transition on the isochronic branch does not cause a subsequent gate to switch. The isochronic branch of

the fork must tie or cut a subsequent gate [61], thus preventing this gate from switching erroneously due to

transitions on the adversary path. This chapter models this tie or cut time as a the shortest propagation delay,

an FO1, and further justification and experimental confirmation is left as future work.
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Figure 5.5: TSMC40LP NFET Vt distribution (25◦C, TT-Corner).

The TSMC40LP process is a low-power process with Vt = 515mV at 25◦C in the TT-Corner. As shown in

Figure 5.5, Vt is a normally distributed RV with mean, µVt = 515mV, and standard deviation, σVt = 34mV,

(computed from statistical BSIM4 models using the methods from [33]). From Section 2.3.3, tdi and tda

can be modeled as log-normal RVs with expected values and variances given by Equation 2.60 and 2.61

respectively, where Ldp = 1 for tdi and Ldp = 5 or 7 for tda (see Figure 5.6). Assuming independence, the

probability that tdi > tda can be calculated by integration of the joint PDF. That is,

P (FAIL(SAPTA)) = P [tda < tdi] =

∫ ∞
−∞

∫ y

−∞
ftda(x)ftdi(y)dxdy, (5.1)

where ftda(x) and ftdi(y) are the density functions for tdi and tda respectively. For a log-normal RV the PDF

follows from a change of variables on the normal PDF given in Equation 2.55. That is, If Z is a log-normally
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Figure 5.6: TSMC40LP tdi and length-five tda distributions at VDD = 300mV (25◦C, TT-Corner). These
log-normal PDFs are calculated from Equations 2.60 and 2.61, with parameters taken from Figures 5.1, 5.2,
and 5.5. The small region of overlap (visible on the plot from 50ns to 100ns) makes clear the non-zero
probability of an SAPTA timing failure.

distributed RV, then the corresponding probability density function (PDF), f(Z), is given by

f(Z) =
1

ZσZ
√
2π
e
− (lnZ−µZ )2

2σ2
Z , where

µZ = ln(E[Z])− σ2
Z

2
, and

σ2
Z = ln

(
1 +

V AR[Z]

(E[Z])2

)
. (5.2)

From Equations 2.58, 2.59, 2.60, and 2.61

E[tdi(Vt)] =

∫ ∞
−∞

Cload

IF

VDD

σVt
√
2π
e
−k1

VDD−Vt
nφt

−k2
(
VDD−Vt
nφt

)2
−

(Vt−µVt )
2

2σ2
Vt dVt, (5.3)

V ar[tdi(Vt)] =

∫ ∞
−∞

C2
load

I2F

V 2
DD

σVt
√
2π
e
−2k1

VDD−Vt
nφt

−2k2
(
VDD−Vt
nφt

)2
−

(Vt−µVt )
2

2σ2
Vt dVt − (E[tdi(Vt)])

2, (5.4)

E[tda(Vt)] = Ldp(da) · E[tdi(Vt)], and (5.5)

V ar[tda(Vt)] = Ldp(da) · V ar[tdi(Vt)]. (5.6)
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As such, P (FAIL(SAPTA)) (Equation 5.1) can be directly computed by way of numerical integration.

Figure 5.7 shows the estimated LP1 SAPTA failure probability vs. VDD. Over the minimum energy oper-
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Figure 5.7: LP1 probability of isochronic-fork timing failures vs. VDD. The probability is calculated by
way of Equation 5.1, assuming 100 independent length-five and 20K length-seven SAPTA instances in
TSMC40LP (25◦C, TT-Corner). The parameters for Equation 5.1 are taken from Figures 5.1, 5.2, and 5.5.

ating range ∼ 400mV − 800mV (see Figure 5.3); the LP1 timing failure probability ranges from 74% to

astronomically unlikely. At 500mV (just slightly below the threshold voltage) the estimated probability of

failure is approximately one in ten-thousand, or put another way, the expected yield loss is 0.01%—two to

three orders of magnitude less than manufacturing defect yield loss. Of course, ensuring reliable timing is

of little consequence if there is a high probability that gates simply fail to switch or are easily corrupted by

noise.

5.1.3 LP1 Combinational Gate Robustness Estimate

It is possible to use the work developed in Chapter 3 to accurately compute the probability of SNM-based

failures in LP1. At the time of the writing of this dissertation, the tools needed to perform this analysis

are not complete, so this is left as future work. However, it is possible to derive a back-of-the-envelope

robustness estimate. The LP1 contains full-custom radiation-hardened memories with a separate supply

voltage from the core, so the memories are not considered in this analysis. The LP1-core also contains a

few full-custom registers, but these are biased separately and also removed from this analysis. The LP1-core

contains ∼16K standard cells. All of these cells (with the exception of the arbiter) are constructed using

CMOS combinational logic, and the cell topology can be represented as ∼120K inverter equivalent pairs.

Using the least robust gate pair (NAND3, NOR3) (as determined in Figure 3.31), an accurate upper bound on

the probability of failure can be calculated. That is, for the purpose of calculating robustness, the LP1-core
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Figure 5.8: LP1 probability of isochronic-fork timing failures and robustness failures vs. VDD. Timing
failure probability is calculated by way of Equation 5.1, assuming 100 independent length-five and 20K
length-seven SAPTA instances in TSMC40LP (25◦C, TT-Corner). The parameters for Equation 5.1 are taken
from Figures 5.1, 5.2, and 5.5. Robustness failures are calculated using Equation 3.26 with δ = −0.013, and
120K (NAND3, NOR3) pairs in TSMC40LP (25◦C, TT-Corner).

can be represented by chains of 120K minimum-size alternating NAND3 and NOR3 gates, and the probability

of failure can be computed using Equation 3.26.

Figure 5.8 plots the LP1 robustness vs. VDD, along with the probability of timing failure (from Fig-

ure 5.7). Noise-margin targets of 20%VDD, 15%VDD, and 10%VDD are depicted. Nonetheless—near the

threshold voltage and to the first order—in a real QDI microcontroller core (LP1), the probability of a timing

failure is greater than the probability of a noise-margin failure. Operation in the range of 300mV to 400mV

comes at a significant risk of both timing and functional failures. In the energy-optimal range of 400mV to

800mV the failure probability quickly transitions from moderate (at 400mV) to negligible (> 600mV).
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Chapter 6

Conclusion and Future Work

6.1 Summary

This dissertation presents new models and methods for the analysis of minimum-energy QDI circuits. Chapter

2 details the physical derivation of the near-threshold model: a simplified and accurate transregional drain-

current model for digital CMOS circuit analysis. This new model is compared with BSIM4 device models,

and the error is reported. The near-threshold model is applied to several problems including determining

the minimum energy operating point and modeling statistical path delay. Chapter 3 explores the effects of

parameter variation on circuit robustness. A new metric to quantify statistical robustness is presented, and

an efficient composable method of calculation is given. Chapter 4 formally defines the syntax and semantics

of production rule sets (the object code used to build QDI circuits). This formal system is instrumental in

the proof that properly designed and synthesized QDI circuits rely on the relatively easy-to-satisfy adversary

path timing assumption. Finally, Chapter 5 uses the work developed in Chapters 2, 3, and 4 to analyze a

QDI microcontroller developed at Caltech. The minimum energy operating point is determined, and the

probabilities of timing failures and functional failures are calculated.

6.2 Discussion

The stated primary goal of this dissertation is to explore in detail the problems associated with building

ultra-low-power QDI circuits in modern technologies. In [61], Martin discusses problems and solutions

to building QDI circuits in high-variability technologies. In particular, he proposes a systematic method

to replace staticizers (ratioed state-holding circuits) with combinational feedback, he suggests using longer

adversary paths to mitigate timing failures, and he notes that QDI rings must consist of a sufficient number

of gates in order to oscillate. These solutions improve reliability, but at a cost in power, performance, and

area. This dissertation builds the analytical tools needed to reason about and to quantify these trade-offs, and

then it demonstrates how to use them. Furthermore, these tools are not limited in application to QDI circuits;

rather, they can be used to analyze any digital system.
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In some sense, this dissertation attempts—by way of an extensive modeling effort—to provide insight

into the nature of low-voltage digital circuits and systems in the face of parameter variation. In this con-

text, QDI circuits serve an ancillary role; they provide a specific application for which to generate a general

framework but are not the primary focus of the research. By intention, the near-threshold model (Chapter 2),

the robustness metrics (Chapter 3), and the PRS syntax and semantics (Chapter 4) are entirely application

agnostic. This broader-than-QDI-circuit applicability is essential, because the vast majority of digital circuits

and systems in use today are synchronous. The reason behind this synchronous-circuit dominance is difficult

to precisely determine. It may relate to the way in which the notion of computation is abstracted: the QDI ab-

straction is perhaps the most mathematically elegant, but the synchronous abstraction is probably simpler. On

the other hand, it may be due to a practical engineering problem. QDI circuits currently cost approximately

twice the area of their synchronous counterparts, but they should offer an increase in robustness at lower sup-

ply voltages [58]. This increase in robustness must be quantified in order to weigh the area/robustness/power

trade-offs; perhaps the work presented within this dissertation can be used to better understand and quantify

these trade-offs.

6.3 Future Work

Sections 2.5, 3.7, and 4.7 discuss several of the open problems that remain, and this section introduces a few

other problems.

6.3.1 Near-Threshold Model

The near-threshold Ion model can be extended to act as a general Ids model with which to analyze analog

circuits, and include additional second-order digital effects (e.g., the body effect). Generalizing the model

comes at a real cost in complexity; in fact, it may result in an expression of similar complexity to that of EKV

[37]. However, by using the Lambert W function and a more accurate approximation for inversion charge

[78], it is possible to generate a new transregional Ids model that is much more accurate than the EKV model

at similar complexity. Such a model has the potential to aid analog circuit designers; in the analog realm,

small improvements in model accuracy have a more significant impact on system design than in the digital

realm.

6.3.2 Robustness

The robustness metric for chains of gates (proposed in Chapter 3) makes use of the static analysis of rings.

Functional QDI circuits consist of interconnected oscillating rings; however, gates in oscillating rings spend

most of a cycle attempting to hold state while waiting for a subsequent cycle, so a static analysis can serve

as a first-order approximation. Nevertheless, a static analysis may not be sufficient to capture every failure
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case; further investigation is necessary. An in-depth analysis of sub-threshold and near-threshold switching

noise also remains largely open. It is likely that man-made noise in circuits operating sub-threshold and near-

threshold is less (as a percentage of %VDD) than in the same circuits operating at the process nominal VDD

(the slew-rate degrades significantly as the supply is lowered).

Further validation of statistical circuit robustness may also prove fruitful. Verification of calculated ro-

bustness against statistical simulation of real circuits (e.g., a 32-bit multiplier or a CPU) should serve to

strengthen this work; however, the compute requirements are significant. A tiny transistor-level simulation

of the LP1-core requires hundreds of core-hours of compute time using the most advanced fast-SPICE tools

currently available. A meaningful statistical simulation requires millions of core-hours of computation. Re-

gardless, further analysis of certain second-order effects (e.g., correlation) is merited, and electronic design

automation tools capable of handling large circuits should be completed. With such tools in place, new

optimization algorithms to increase robustness—by way of sizing and gate selection—can be explored.

Lastly, it is possible to estimate circuit robustness using a simple ratio of device on-current to off-current,
Ion
Ioff

. Alioto considers this problem in terms of an imbalance factor between PFET and NFET networks [4].

It may be possible to estimate the VTC parameters of a gate as a function of Ion
Ioff

, which in turn can be

approximated in closed-form using the near-threshold and sub-threshold models.
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[50] Michael Katelman, Sean Keller, and José Meseguer. Rewriting semantics of production rule sets. The

Journal of Logic and Algebraic Programming, 81:929–956, 2012. Rewriting Logic and its Applications.



104

[51] S. Keller, M. Katelman, and A.J. Martin. A necessary and sufficient timing assumption for speed-

independent circuits. In Asynchronous Circuits and Systems, 2009. ASYNC ’09. 15th IEEE Symposium

on, pages 65–76, 2009.

[52] Sean Keller, Siddharth S. Bhargav, Chris Moore, and Alain J. Martin. Reliable minimum energy CMOS

circuit design. In 2nd European Workshop on CMOS Variability (VARI 2011), Grenoble, France, May

2011.

[53] M.A. Korbel, D.C. Stow, C.R. Ferguson, and D.M. Harris. Yield-driven minimum energy CMOS cell

design. In Signals, Systems and Computers (ASILOMAR), 2012 Conference Record of the Forty Sixth

Asilomar Conference on, pages 1010–1014, 2012.

[54] J. Kwong and A.P. Chandrakasan. Variation-driven device sizing for minimum energy sub-threshold cir-

cuits. In Low Power Electronics and Design, 2006. ISLPED’06. Proceedings of the 2006 International

Symposium on, pages 8–13, October 2006.

[55] A.W. Lo. Physical realization of digital logic circuits. In Micropower Electronics, pages 19–39. Macmil-

lan, NY, 1964.

[56] J. Lohstroh, E. Seevinck, and J. de Groot. Worst-case static noise margin criteria for logic circuits and

their mathematical equivalence. Solid-State Circuits, IEEE Journal of, 18(6):803–807, 1983.

[57] D. Markovic, C.C. Wang, L.P. Alarcon, Tsung-Te Liu, and J.M. Rabaey. Ultralow-power design in

near-threshold region. Proceedings of the IEEE, 98(2):237 –252, February 2010.

[58] A.J. Martin and M. Nystrom. Asynchronous techniques for system-on-chip design. Proceedings of the

IEEE, 94(6):1089–1120, 2006.

[59] Alain J. Martin. Compiling communicating processes into delay-insensitive VLSI circuits. Distributed

Computing, 1(4):226–234, 1986.

[60] Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In AUSCRYPT ’90:

Proceedings of the sixth MIT conference on Advanced research in VLSI, pages 263–278. MIT Press,

1990.

[61] Alain J Martin. Asynchronous logic for high variability nano-CMOS. In Electronics, Circuits, and

Systems, 2009. ICECS 2009. 16th IEEE International Conference on, pages 69–72, 2009.

[62] Alain J. Martin and Piyush Prakash. Asynchronous nano-electronics: Preliminary investigation. In

Asynchronous Circuits and Systems, 2008. ASYNC ’08. 14th IEEE International Symposium on, pages

58–68, 2008.

[63] J.D. Meindl and J.A. Davis. The fundamental limit on binary switching energy for terascale integration

(TSI). Solid-State Circuits, IEEE Journal of, 35(10):1515–1516, October 2000.

[64] R E Miller. Switching Theory, Volume II: Sequentical Circuits and Machines. John Wiley & Sons, Inc.,

1965.



105

[65] S. Mukhopadhyay, H. Mahmoodi, and K. Roy. Modeling of failure probability and statistical design

of SRAM array for yield enhancement in nanoscaled CMOS. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 24(12):1859–1880, 2005.

[66] D E Muller, W Bartky, and S. A theory of asynchronous circuits. In Laboratory of Harvard University,

Vol. 29, Part I, Harvard University Press, pages 204–243, 1959.

[67] M.H. Na, E.J. Nowak, W. Haensch, and J. Cai. The effective drive current in CMOS inverters. In

Electron Devices Meeting, 2002. IEDM ’02. Digest. International, pages 121–124, 2002.

[68] Koichi Nose and Takayasu Sakurai. Optimization of VDD and VTH for low-power and high speed

applications. In ASP-DAC ’00: Proceedings of the 2000 Asia and South Pacific Design Automation

Conference, pages 469–474, New York, NY, USA, 2000. ACM.

[69] K. Okada and N. Onodera. Statistical modeling of device characteristics with systematic fluctuation. In

Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Sympo-

sium on, volume 2, pages 437–440, 2000.

[70] A. Ortiz-Conde, F.J. Garcı́a Sánchez, and M. Guzmán. Exact analytical solution of channel surface

potential as an explicit function of gate voltage in undoped-body MOSFETs using the Lambert W

function and a threshold voltage definition therefrom. Solid-State Electronics, 47(11):2067–2074, 2003.

[71] Adelmo Ortiz-Conde, Francisco J Garcı́a Sánchez, and Juan Muci. Exact analytical solutions of the

forward non-ideal diode equation with series and shunt parasitic resistances. Solid-State Electronics,

44(10):1861–1864, 2000.

[72] H.C. Pao and C.T. Sah. Effects of diffusion current on characteristics of metal-oxide (insulator)-

semiconductor transistors. Solid-State Electronics, 9(10):927–937, 1966.

[73] Karl Papadantonakis. Design rules for non-atomic implementation of PRS. Technical Report CaltechC-

STR:2005.001, California Institute of Technology, 2005.

[74] Yu Pu, J.P. de Gyvez, H. Corporaal, and Yajun Ha. Statistical noise margin estimation for sub-threshold

combinational circuits. In Design Automation Conference, 2008. ASPDAC 2008. Asia and South Pacific,

pages 176–179, 2008.

[75] Jan Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital Integrated Circuits, 2nd Ed. Prentice

Hall, 2003.

[76] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand. Leakage current mechanisms and leakage

reduction techniques in deep-submicrometer CMOS circuits. Proceedings of the IEEE, 91(2):305–327,

February 2003.

[77] T. Sakurai and A.R. Newton. Alpha-power law MOSFET model and its applications to CMOS inverter

delay and other formulas. Solid-State Circuits, IEEE Journal of, 25(2):584–594, April 1990.



106

[78] Jean-Michel Sallese, Matthias Bucher, Franois Krummenacher, and Pierre Fazan. Inversion charge

linearization in MOSFET modeling and rigorous derivation of the EKV compact model. Solid-State

Electronics, 47(4):677–683, 2003.

[79] Jean-Michel Sallese, Matthias Bucher, and Christophe Lallement. Improved analytical modeling of

polysilicon depletion in MOSFETs for circuit simulation. Solid-State Electronics, 44(6):905–912, 2000.

[80] A.J. Scholten, L.F. Tiemeijer, R. Van Langevelde, R.J. Havens, A.T.A. Zegers-van Duijnhoven, and V.C.

Venezia. Noise modeling for RF CMOS circuit simulation. Electron Devices, IEEE Transactions on,

50(3):618–632, 2003.

[81] E. Seevinck, F.J. List, and J. Lohstroh. Static-noise margin analysis of MOS SRAM cells. Solid-State

Circuits, IEEE Journal of, 22(5):748–754, 1987.

[82] Mingoo Seok, D. Sylvester, and D. Blaauw. Optimal technology selection for minimizing energy

and variability in low voltage applications. In Low Power Electronics and Design (ISLPED), 2008

ACM/IEEE International Symposium on, pages 9–14, 2008.

[83] K.L. Shepard and V. Narayanan. Conquering noise in deep-submicron digital ICs. Design Test of

Computers, IEEE, 15(1):51–62, Jan.-Mar. 1998.

[84] K.L. Shepard, V. Narayanan, and R. Rose. Harmony: static noise analysis of deep submicron digital

integrated circuits. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

18(8):1132–1150, August 1999.

[85] B.J. Sheu, D.L. Scharfetter, P.-K. Ko, and M.-C. Jeng. BSIM: Berkeley short-channel IGFET model for

MOS transistors. Solid-State Circuits, IEEE Journal of, 22(4):558–566, August 1987.

[86] A. Singhee and R.A. Rutenbar. Why quasi-Monte Carlo is better than Monte Carlo or latin hypercube

sampling for statistical circuit analysis. Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, 29(11):1763–1776, November 2010.

[87] N. Sretasereekul and T. Nanya. Eliminating isochronic-fork constraints in quasi-delay-insensitive cir-

cuits. In Design Automation Conference, 2001. Proceedings of the ASP-DAC 2001. Asia and South

Pacific, pages 437–442, 2001.

[88] K.S. Stevens, R. Ginosar, and S. Rotem. Relative timing [asynchronous design]. Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, 11(1):129–140, 2003.

[89] Dennis Sylvester, Kanak Agarwal, and Saumil Shah. Variability in nanometer CMOS: Impact, analysis,

and minimization. Integration, the VLSI Journal, 41(3):319–339, 2008.

[90] R.R. Troutman. VLSI limitations from drain-induced barrier lowering. Electron Devices, IEEE Trans-

actions on, 26(4):461–469, 1979.

[91] Yannis Tsividis and Colin McAndrew. Operation and Modeling of the MOS Transistor, 3rd Ed. Oxford

University Press, USA, 2nd edition, 2011.



107

[92] K. van Berkel, F. Huberts, and A. Peeters. Stretching quasi delay insensitivity by means of extended

isochronic forks. Asynchronous Design Methodologies, 1995. Proceedings., Second Working Confer-

ence on, pages 99–106, 1995.

[93] Kees van Berkel. Beware the isochronic fork. Integration, The VLSI Journal, 13(2):103–128, 1992.

[94] Darko Veberic. Having fun with Lambert W(x) function. CoRR, abs/1003.1628, 2010.

[95] N. Verma, J. Kwong, and A.P. Chandrakasan. Nanometer MOSFET variation in minimum energy

subthreshold circuits. Electron Devices, IEEE Transactions on, 55(1):163–174, January 2008.

[96] Neil H. E. Weste and David Money Harris. CMOS VLSI Design, 4th Ed. Addison-Wesley, 2010.

[97] Bo Zhai, D. Blaauw, D. Sylvester, and K. Flautner. Theoretical and practical limits of dynamic voltage

scaling. In Design Automation Conference, 2004. Proceedings. 41st, pages 868–873, 2004.

[98] Bo Zhai, D. Blaauw, D. Sylvester, and K. Flautner. The limit of dynamic voltage scaling and insom-

niac dynamic voltage scaling. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

13(11):1239–1252, November 2005.

[99] Bo Zhai, S. Hanson, D Blaauw, and D Sylvester. Analysis and mitigation of variability in subthreshold

design. In Low Power Electronics and Design, 2005. ISLPED ’05. Proceedings of the 2005 International

Symposium on, pages 20–25, 2005.


