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PREFACE 

     For as long as I can remember I have been fascinated by the complexity of life. As a 

child I would obsess over the diversity found within nature, an obsession that has 

remained strong to this day. Growing up in Alabama, surrounded by forests, mountains, 

rivers, and wildlife, fostered my curiosity, and this childlike wonder soon turned into 

questions of “how” and “why.” One of the aspects of nature that has always amazed me 

was the beautiful patterns and symmetry found across all Metazoa. As a child I observed 

these patterns with amazement; as an adult I have the opportunity to study the genes and 

underlying mechanisms that control the patterns found not only within nematodes but the 

entire animal kingdom. As I finish my graduate school career and prepare for 

postdoctoral studies, I realize I am still very much interested in the “how” and “why” 

questions that perplexed me as a child, only now I also have the capabilities of answering 

them.  

     Marie Curie once said, “A scientist in his laboratory is not a mere technician: he is 

also a child confronting natural phenomena that impress him as though they were fairy 

tales.” I could not agree more.  
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ABSTRACT 

     The interpretation of extracellular cues leading to the polarization of intracellular 

components and asymmetric cell divisions is a fundamental part of metazoan 

organogenesis. The C. elegans vulva, with its invariant cell lineage and interaction of 

multiple cell signaling pathways, provides an excellent model for the study of cell 

polarity within an organized epithelial tissue. Herein I discuss the interaction of Wnt and 

FGF signaling in controlling vulval cell lineage polarity with emphasis on the posterior-

most cell that forms the vulva, P7.p.  

     The mirror symmetry of the C. elegans vulva is achieved by the opposite division 

orientation of the vulval precursor cells (VPCs) flanking the axis of symmetry. Opposing 

Wnt signals control the division patterns of the VPCs by controlling the localization of 

SYS-1/ β-catenin toward the direction of the Wnt gradient. Multiple Wnt signals, 

expressed at the axis of symmetry, promote the wild-type, anterior-facing, P7.p 

orientation, whereas Wnts EGL-20 and CWN-1 from the tail and posterior body wall 

muscle, respectively, promote the daughter cells of P7.p to face the posterior. EGL-20 

acts through a member of the LDL receptor superfamily, LRP-2, along with Ror/CAM-1 

and Van Gogh/VANG-1. All three transmembrane proteins control orientation through 

the localization of the SYS-1. 

     The Fibroblast Growth Factor (FGF) pathway acts in concert with LIN-17/Frizzled to 

regulate the localization of SYS-1. The source of the FGF ligand is the 1° VPC, P6.p, 

which controls the polarity of the neighboring 2° VPC, P7.p, by signaling through the sex 

myoblasts (SMs), activating the FGF pathway. The Wnt, cwn-1, is expressed in the 

posterior body wall muscle of the worm as well as the SMs, making it the only Wnt 
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expressed on the posterior and anterior sides of P7.p at the time of the polarity decision. 

Both sources of cwn-1 act instructively to influence P7.p polarity in the direction of the 

Wnt gradient. The FGF pathway leads to the regulation of cwn-1 transcripts in the SMs. 

These results illustrate the first evidence of the interaction between FGF and Wnt in C. 

elegans development and vulval cell lineage polarity as well as highlight the promiscuous 

nature of Wnt signaling within C. elegans. 
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Thesis Overview 

     Proper tissue architecture and organogenesis are fundamental aspects of Metazoan 

development. The arrangement of cells into functional structures is achieved through cell 

division patterning and orientation, resulting from the polarization of intracellular 

components. Loss of cell polarity and asymmetry is a major factor in tumor formation, 

and growing evidence illustrates its importance in understanding human cancer (Wodarz 

and Nathke, 2007). Proper orientation is often achieved through communication between 

cells in the form of intracellular signaling pathways. The action of these pathways is 

initiated when an extracellular ligand binds with its transmembrane receptor, triggering a 

biochemical response within the cell and relaying this message through the downstream 

components of the pathway leading to the polarization of cellular components or the 

transcriptional regulation of genes. Two such pathways involved in Metazoan 

development are the Wnt and Fibroblast Growth Facter (FGF) pathways.  

     Wnt signaling is implicated in many aspects of development, including cell 

proliferation, migration, polarity, terminal differentiation, and the self-renewal of stem 

cells (Boutros and Mlodzik, 1999; Gao and Chen, 2010; Sugimura et al., 2012; Tauriello 

et al., 2012), and deregulation of pathway components is associated with multiple human 

diseases (Luo et al., 2007). Wnt signaling has evolved to function in multiple pathways, 

broadly divided into the canonical/β-catenin-dependent pathway and the noncanonical/β-

catenin-independent pathway, of which the planar cell polarity (PCP) pathway is the most 

studied (Gao and Chen, 2010). In the canonical pathway, Wnt ligands are received by a 

Frizzled and LRP5/6 (Arrow) coreceptor complex. The binding of the Wnt ligand recruits 

Dishevelled and Axin to the cell membrane and results in the inactivation of the β-catenin 
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destruction complex. With the inactivation and dissolution of this destruction complex, β-

catenin is able to translocate within the nucleus and interact with the transcription factor 

TCF/Lef to regulate gene expression (Wharton, 2003). Noncanonical Wnt signaling 

encompasses several different signaling pathways, of which the most studied and, 

therefore, most understood is the PCP pathway. PCP signaling leads to the polarization of 

cells along an epithelial sheet. A wide range of components exist within PCP signaling, 

including the transmembrane proteins Frizzled, Flamingo, and Strabismus (Van Gogh), 

as well as the cytoplasmic proteins Diego, Prickle, and Dishevelled (Seifert and Mlodzik, 

2007). Interactions between these core components leads to the asymmetric enrichment 

and distribution within the cell, which in turn enables the polarization of cells along the 

epithelial sheet.  

     Much like Wnt signaling, FGF signaling is also involved in a wide range of 

developmental functions, including mesodermal patterning in the early embryo, cellular 

proliferation, survival, migration, and differentiation (Turner and Grose, 2010). FGF 

ligands are secreted glycoproteins that bind with a receptor tyrosine kinase leading to 

ligand-dependent dimerization and activation of the kinase domain on the receptor. Once 

tyrosine residues on the receptor are phosphorylated, they serve as docking sites for 

adaptor proteins, which may also be phosphorylated by the FGF receptor. Activation of 

the FGF pathway leads to the activation of Raf and Ras proteins resulting in the 

downstream activation of the Mitogen-activated protein (MAP) kinase pathway. Both 

Wnt and FGF pathways are conserved in C. elegans, and play a role in the patterning of 

the vulva, a classic model system used to study cell-signaling pathways.  

     In chapter 2, I discuss the role of the low-density lipoprotein receptor, lrp-2, and its 
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role in vulval patterning. Nematodes, including C. elegans, do not have a copy of LRP5/6 

(Arrow) in their genome. LRP5/6 plays an important role in canonical Wnt signaling in 

higher order organisms, including Drosophila, Xenopus, mouse, and humans. How then 

does Wnt signaling compensate for the absence of LRP5/6 in C. elegans? Furthermore, it 

is often hypothesized that LRP5/6 evolved from larger low-density lipoprotein receptors, 

LRP1 and LRP2 (megalin), due to the presence of all LRP5/6 protein domains within 

LRP1 and LRP2 and the presence of these receptors in lower order organisms that lack 

LRP5/6. Interestingly, C. elegans does have orthologs of these larger low-density 

lipoprotein receptors; lrp-1 is an ortholog of megalin while lrp-2 appears to be a recent 

duplication of lrp-1 that has diverged to take on specialized function and different 

expression patterns from its paralog. The impetus to study lrp-1 and lrp-2 was to better 

understand these questions of Wnt signaling evolution and decipher a potential role for 

these genes within C. elegans Wnt signaling, a role that could possibly enhance our 

knowledge of the evolution of the function of low-density lipoprotein receptors. Within 

this thesis I show that lrp-2 is downstream of the Wnt, egl-20, and functions with the 

cam-1/Ror and vang-1/Van Gogh transmembrane proteins to direct the localization of 

SYS-1/β-catenin during anaphase of the first vulval cell division, a role that shows 

conservation between the early low-density lipoprotein and their potential evolutionary 

derivative, LRP5/6.  

     Chapter 3 looks at the origin and evolution of dishevelled across Metazoa, with 

emphasis on nematodes. As the hub of multiple Wnt signaling pathways, dishevelled is a 

highly studied and medically relevant protein. Most work on dishevelled takes for 

granted the protein architecture and assumes that the conservation of protein domains and 
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motifs holds true across all of Metazoa. With this in mind, we found it interesting that 

most animals have multiple orthologs of dishevelled, and there are multiple studies that 

imply a functional specialization between different orthologs. To us, the functional 

specialization of orthologs indicated an underlying difference in protein architecture, 

something we wished to explore and better understand. We find evidence of dynamic 

evolution of dishevelled. We identify a new domain specific to some nematode lineages, 

the DEP-like fragment, and find an unexpected nuclear localization signal conserved in 

many dishevelled orthologs, presenting the potential of dishevelled acting as a 

transcription factor in some animal lineages. Our findings raise questions of protein 

evolution in general and provide clues as to how animals have dealt with the complex 

intricacies of having a protein, such as dishevelled, act as a central messenger hub 

connected to many different and vitally important pathways. Furthermore our work 

highlights the fact that the classic domain architecture of dishevelled does not hold true 

across Metazoa. Despite the majority of literature illustrating dishevelled as a highly 

conserved protein, we find that it is dynamically evolving across multiple animal 

lineages, especially within Nematoda. Our work also highlights many future experiments 

that could potentially be performed in different model systems to test how divergence in 

protein architecture leads to diverse function of paralagous proteins. 

     In chapter 4, I look at the interaction of Wnt and FGF signaling in vulval cell lineage 

polarity. How cells are capable of interpreting instructions from complicated cell 

signaling networks that often involve crosstalk between multiple signaling pathways and 

the relaying of this instructional signal between multiple cells of varying types is a highly 

studied and important topic in developmental biology. Two such pathways that have a 
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large role in animal development and also medical implications in humans are the Wnt 

and FGF pathways. Recent work has shown crosstalk between these two pathways in 

vertebrate model systems, a connection that has proven essential to proper animal 

development (Stulberg et al., 2012; Yardley and Garcia-Castro, 2012). Prior to this work, 

no interaction between Wnt and FGF signaling in C. elegans had been presented. With its 

invariable cell lineage, short generation time, ease of genetics and transgenics, and 

conservation of both Wnt and FGF pathways, C. elegans is a phenomenal system to 

better understand the relationship between Wnt and FGF signaling. Furthermore, the C. 

elegans vulva, which has been shown to express both signaling cascades, albeit 

independent of each other, during its development, is the ideal system to study the 

interaction. Here, I present evidence that FGF signaling is necessary for the regulation of 

cwn-1/Wnt in the migrating sex myoblasts. I show that despite receptor specificity, all 

Wnt ligands controlling vulval orientation have the same molecular output, directing the 

localization of SYS-1/β-catinin toward the predominant Wnt gradient at the time of 

anaphase during the first vulval cell division. 

     These findings present new insights into Wnt and FGF signaling both within C. 

elegans as well as other model systems. My work has added a new component, the 

migrating sex myoblasts, into the beautiful network of cells controlling vulval cell 

lineage polarity, shown the interaction between Wnt and FGF signaling within C. 

elegans, and brought us one step closer to understanding how Wnt signaling determines 

the orientation of the 22 cells that make up the vulva. 

 

 



 7 

REFERENCES 

Boutros, M. and Mlodzik, M. (1999). Dishevelled: at the crossroads of divergent 
intracellular signaling pathways. Mechanisms of development 83, 27-37. 
Gao, C. and Chen, Y. G. (2010). Dishevelled: The hub of Wnt signaling. Cellular 
signalling 22, 717-727. 
Luo, J., Chen, J., Chen, Z., Deng, I., Luo, X., Song, W. X., et al. (2007). Wnt signaling 
and human diseases: what are the therapeutic implications? Lab. Invest. 87: 97–103. 
Seifert, J.R. and Mlodzik, M. (2007). Frizzled/PCP signalling: a conserved mechanism 
regulating cell polarity and directed motility. Nat. Rev. Genet. 8, 126-138. 
Sugimura, R., He, X. C., Venkatraman, A., Arai, F., Box, A., Semerad, C., Haug, J. 
S., Peng, L., Zhong, X. B., Suda, T. et al. (2012). Noncanonical Wnt signaling 
maintains hematopoietic stem cells in the niche. Cell 150, 351-365. 
Stulberg, M. J., Lin, A., Zhao, H. and Holley, S. A. (2012). Crosstalk between Fgf and 
Wnt signaling in the zebrafish tailbud. Developmental biology 369, 298-307. 
Tauriello, D. V., Jordens, I., Kirchner, K., Slootstra, J. W., Kruitwagen, T., 
Bouwman, B. A., Noutsou, M., Rudiger, S. G., Schwamborn, K., Schambony, A. et 
al. (2012). Wnt/beta-catenin signaling requires interaction of the Dishevelled DEP 
domain and C terminus with a discontinuous motif in Frizzled. Proc Natl Acad Sci U S A 
109, E812-820. 
Turner, N., Grose, R. (2010) Fibroblast growth factor signalling: from development to 
cancer. Nat Rev Cancer 2, 116-129. 
Wharton, K. A., Jr. (2003). Runnin' with the Dvl: proteins that associate with Dsh/Dvl 
and their significance to Wnt signal transduction. Dev Biol 253, 1-17. 
Wodarz, A. and Nathke, I. (2007). Cell polarity in development and cancer. Nature cell 
biology 9, 1016-1024. 
Yardley, N. and Garcia-Castro, M. I. (2012). FGF signaling transforms non-neural 
ectoderm into neural crest. Developmental biology 372, 166-177. 

 

 

 

 

 

 

 

 

 



 8 

Chapter 2 

 

The role of lrp-2 in vulval cell lineage polarity 
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ABSTRACT 
 
     During C.elegans vulval development the anchor cell induces 3 of 6 multipotent 

vulval precursor cells (VPCs). The closest VPC generates a 1° lineage; the flanking 

VPCs, P5.p and P6.p, each generate a 2°, mirror symmetric, lineage. Two Wnt signals 

from the anchor cell promote the wild-type, anterior-facing, P7.p orientation, whereas the 

EGL-20/Wnt signal from the tail promotes the daughter cells of P7.p to face the posterior, 

antagonizing two parallel Wnt pathways consisting of Frizzled and Ryk and receptors 

necessary to direct the wild-type vulval orientation. We show EGL-20/Wnt acts through a 

member of the LDL receptor superfamily, LRP-2, along with CAM-1/Ror and VANG-

1/Van Gogh. Using a promoter fusion construct, we examined the expression pattern of 

lrp-2 and found expression beginning in the 2-cell stage of the vulva and lasting through 

the fourth larval stage (L4). All three transmembrane proteins control orientation through 

the localization of the β-catenin-like transcriptional coactivator, SYS-1. This work lays a 

solid foundation for the role of LRP-2 in C. elegans vulval formation and brings several 

testable hypotheses to light. 
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INTRODUCTION 

     The orientation of asymmetric cell divisions is an essential part of Metazoan 

development (Strutt, 2005). Loss of cell polarity and asymmetry is a major factor in 

tumor formation, and growing evidence illustrates its importance in understanding human 

cancer (Wodarz and Nathke, 2007). To ensure proper cell divisions and organ formation, 

high amounts of signaling redundancy and cell-cell interactions involving crosstalk 

between multiple signaling pathways are often incorporated to tightly regulate these 

processes. The Caenorhabditis elegans vulva provides a simple model to study this 

phenomenon due to the small number of cells, invariant cell lineage and developmental 

timing, and cell signaling mechanisms involved within vulval formation (reviewed by 

Sternberg, 2005; reviewed by Gupta et al., 2012). Here we examine the antagonism of 

competing Wnt pathways in the development of the C. elegans vulva. 

     The C. elegans vulva is formed from divisions of three VPCs: P5.p, P6.p, and P7.p – 

arranged along the anterior-posterior axis in the ventral epithelium (Sulston and Horvitz, 

1977). During the L3 (third larval) stage, a combination of EGF, Notch, and Wnt signals 

instructs the VPCs to adopt fates corresponding to particular lineage patterns. P6.p adopts 

a 1º fate and undergoes three rounds of symmetric divisions that lead to eight cells that 

form the vulval lumen. P5.p and P7.p adopt the 2º fate, which leads to three rounds of 

asymmetric cell divisions forming seven cells that create the anterior and posterior sides 

of the vulva (Figure 1). The outermost progeny of P5.p and P7.p adhere to the epidermis 

whereas the innermost progeny join the descendants of P6.p in forming the vulval lumen. 

The descendants of P5.p and P7.p display mirror symmetry about the center of the vulva.  
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     Previous analyses show the orientation of P5.p and P7.p descendants is determined by 

the interaction of multiple Wnt signals. In the absence of all Wnts, the VPCs display a 

randomized orientation, which is likely the default (Green et al., 2008; Figure 1). Two 

separate Wnts from the anchor cell, LIN-44 and MOM-2 acting through receptors LIN-

17/Frizzled and LIN-18/Ryk, respectively, regulate P7.p orientation (Ferguson et al., 

1987; Sternberg and Horvitz, 1988; Sawa et al., 1996; Inoue et al., 2004; Gleason et al., 

2006). In the absence of these signals the orientation of the progeny of P7.p mimic those 

of P5.p and face toward the posterior of the worm, a phenotype referred to as posterior-

reversed vulval lineage (P-Rvl; Figure 2). This posterior orientation is dependent on the 

instructive signal of EGL-20, a Wnt expressed in the tail acting through CAM-1/ROR 

and VANG-1/Van Gogh, and is referred to as “ground polarity.” In response to the Wnt 

signals from the anchor cell, LIN-17 and LIN-18 orient P7.p to face the center. This 

reorientation is described as “refined polarity” and is the wild-type orientation (Green et 

al., 2008; Figure 1).  

     Here we examine the role of a low-density lipoprotein receptor, lrp-2, and its role in 

controlling the orientation of P7.p daughter cells. Our genetic data and expression 

analysis indicate lrp-2 functions with cam-1 and vang-1 to antagonize the lin-17 pathway. 

We find that lrp-2 works downstream of egl-20 and controls the localization of SYS-1 at 

the time of the first cell division of P7.p 
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MATERIALS AND METHODS 

Strains and Genetics 

     C. elegans was handled as described previously (Brenner, 1974). All strains used are 

derivatives of C. elegans N2 Bristol strain. The alleles used are as follows. LGI: lin-

17(n671), lrp-2(gk272), lrp-2(gk292). LGII: cam-1(gm122). LGIII: qIs95[pSYS-

1::VNS::SYS-1 with pttx-3::dsRed]. LGX: lin-18(e620), vang-1(ok1142). 

 

Scoring Vulval Phenotypes 

     To determine the vulval phenotype as wild type or P-Rvl, animals were scored in the 

mid-L4 stage. Animals were classified as P-Rvl if the 1° and 2° VPCs were induced but 

separated by adherent cells (Katz et al., 1995). Only fully induced vulvae were scored. 

 

Transgenics 

     To make the Plrp-2 GFP construct 2.5 kb of the promoter region of lrp-2 was 

amplified and then fused to GFP using the PCR fusion technique previously described 

(Hobert, 2002). The Plrp-2::GFP extrachromosomal array was generated by creating an 

injection mix consisting of 15 ng/μl Plrp-2::GFP, 40 ng/μl unc-119(+), and 95 ng/μl 

DNA ladder and injecting the mix into unc-119(ed4) animals as described (Mello et al., 

1991). 

     Anterior expression of egl-20 was achieved by fusing the promoter region of fos-1a to 

the cDNA of egl-20 and injecting the mix, that was created by Jennifer Green, into lin-

17(n671) lrp-2(gk272) animals as described (Mello et al., 1991). 
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RESULTS 

LRP-2 Functions in Ground Polarity 

     The regulation of vulval cell lineage polarity is controlled by Wnt signaling (Figure 

1). Previously known components involved in the regulation of vulval cell lineage 

polarity include LIN-17, LIN-18, CAM-1, and VANG-1 (Inoue et al., 2004; Gleason et 

al., 2006; Green et al., 2008). A directed screen of known Wnt pathway components was 

performed to find additional genes involved in directing vulval orientation. A BLAST 

was run using other known Wnt receptors and it was determined that C. elegans does not 

contain a true ortholog of Drosophila LRP5/6 (Arrow) (He et al., 2004; Eisenmann, 

2005), but does have multiple low-density lipoprotein receptors, including LRP-1 and 

LRP-2 (Figure 3). Like other low-density lipoprotein receptors, both LRP-1 and LRP-2 

contain many LDLR Domain Class A and Class B repeats, EGF-like domains, and a 

transmembrane domain. However, having approximately three times as many amino 

acids, LRP-1 and LRP-2 are more similar to megalin than LRP5/6 (Yochem et al., 1999). 

The absence of LRP5/6 within C. elegans but presence in flies and all other higher order 

organisms suggests that the gene encoding LRP5/6 arose after nematodes, potentially 

from either LRP1 or LRP2/megalin, as both receptors contain the entire extracellular 

portion of LRP5/6 in a single contiguous sequence block (Figure 3). 

     Examining the protein sequence of LRP-1 and LRP-2 we find that most nematodes 

have at least two copies of LRP-like proteins with C. elegans LRP-1 and LRP-2 being 

highly similar possibly due to a recent duplication and divergence (Figure 4). Comparing 

the sequences across Caenorhabditis we find that LRP-1 proteins cluster together and 

LRP-2 proteins also form their own cluster. Based on location in the genome and 
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sequence similarity from protein alignment, we believe that Caenorhabditis lrp-2 is a 

recent duplication and divergence of lrp-1 (Figure 4). 

     To examine the potential role of lrp-1 and lrp-2 vulval cell lineage polarity we 

examined null mutants of each gene. Previous work has shown a role for lrp-1 and lrp-2 

in dab-1/Disabled signaling and lipid transport (Kamikura and Cooper, 2003; Holmes et 

al., 2007; Branicky et al., 2009), but no previous role in vulval formation has been 

investigated. lrp-1 null worms arrest early in development and due to this reason we were 

not able to examine its role in vulval polarity. At the time of this investigation, two 

potential null mutations of lrp-2 existed, allele gk272 with a 253 bp deletion and allele 

gk292 with an approximately 1800 bp deletion. Both mutants are remarkably wild-type in 

most aspects of development including vulval formation (Table 1). 

     lrp-2 expresses in the vulval cells beginning at the two-cell stage and lasting through 

L4, similar to the components known to be involved in vulval cell lineage polarity 

(Figure 5). To investigate this interaction double mutants were constructed with both 

alleles of lrp-2 and lin-17(n671) (Table 1). Much like cam-1(gm122) and vang-

1(ok1142), both alleles of lrp-2 suppress the lin-17(n671) phenotype from 74 to 

approximately 50% P-Rvl, leading us to hypothesize that lrp-2 functions in the same 

pathway as cam-1 and vang-1. To ensure that this phenotype was a result of the null 

function of lrp-2 we injected a fosmid containing the full-length sequence of lrp-2 and 

found that it does rescue the double mutant phenotype of lin-17(n671) lrp-2(gk272) as 

well as lin-17(n671) lrp-2(gk292). In order to better test the hypothesis that lrp-2 

functions with cam-1, a triple mutant was constructed between lin-17(n671), lrp-

2(gk272), and cam-1(gm122) (Table 1). This triple mutant displays the same P-Rvl 



 15 

penetrance as both the lin-17(n671) lrp-2(gk272) and lin-17(n671); cam-1(gm122) 

double mutants confirming that lrp-2 functions in the same pathway as cam-1. 

 

LRP-2 is Downstream of EGL-20/Wnt 

     egl-20 is expressed in the tail (Whangbo and Kenyon, 2000) and forms a posterior-to-

anterior concentration gradient (Coudreuse et al., 2006). It has previously been shown 

that EGL-20 acts instructively in the vulva by imparting directional information opposed 

to being permissive, where it would only be required for polarization (Green et al., 2008). 

By moving the source of egl-20 expression from the posterior of the worm to the anchor 

cell, the axis of symmetry of the developing vulva, we can reorient the daughter cells of 

P5.p and P7.p toward the center in a wild-type configuration. 

     Expressing egl-20 from the axis of symmetry suppresses the lin-17(n671) phenotype 

(Green et al., 2008; see also Table 2). To test whether LRP-2 is downstream of EGL-20 

we ectopically expressed egl-20 from the anchor cell in a lin-17(n671) lrp-2(gk272) 

background. If LRP-2 is not downstream of EGL-20 we would expect further suppression 

of the double mutant phenotype. However, if LRP-2 is downstream of EGL-20 we would 

expect no further suppression since EGL-20 would be lacking a pathway component to 

work through in the lrp-2 null mutation. Because we do not see further suppression of the 

lin-17(n671) lrp-2(gk272) when expressing egl-20 from the anchor cell we can conclude 

that like the transmembrane proteins CAM-1 and VANG-1, LRP-2 is downstream of 

EGL-20 (Table 2). 
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LRP-2 Controls the Localization of SYS-1/β-catenin 

     The polarity of the P7.p cell divisions is controlled by the Wnt/β-catenin asymmetry 

pathway (Green et al., 2008). This pathway includes the β-catenin-like proteins SYS-1 

and WRM-1, POP-1/TCF, and the Nemo-like-kinase, LIT-1 (reviewed by Mizumoto and 

Sawa, 2007). The Wnt/β-catenin asymmetry pathway ensures different ratios of SYS-1 to 

POP-1, controlling the differential transcription of Wnt target genes between daughters of 

an asymmetric cell division. Because or genetic data indicate an antagonism between 

LRP-2 and LIN-17, similar to that between CAM-1 and VANG-1 and LIN-17, we 

wanted to determine if LRP-2 can control the asymmetric localization of SYS-1 between 

the daughter cells of P7.p during anaphase of the first cell division. The initial 

establishment of vulval polarity can be observed through the localization of 

VENUS::SYS-1 (VNS::SYS-1), localized in a high (P7.pa)/low (P7.pp) pattern in the 

wild-type worm, reciprocal to the localization of POP-1/TCF (Phillips et al., 2007; Green 

et al., 2008).  

     As previously reported, VNS::SYS-1 asymmetry in P7.p daughter cells is often lost in 

lin-17(n671) and lin-18(e620) mutants (Figure 6). These mutants display two aberrant 

patterns of VNS::SYS-1 localization as well as the wild-type pattern, though less 

frequently. The two deviant localization patterns include one in which both P7.pa and 

P7.pp express equal amounts of VNS::SYS-1 and a reversed VNS::SYS-1 pattern in 

which P7.pp is enriched with VNS::SYS-1. By observing VNS::SYS-1 localization in a 

lin-17(n671) lrp-2(gk272) background we see that the aberrant localization of SYS-1 is 

suppressed in a similar degree to that of lin-17(n671); cam-1(gm122) and lin-17(n671); 

vang-1(ok1142). This observation confirms LRP-2 controls vulval cell polarity by 
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antagonizing LIN-17 in a similar fashion to CAM-1 and VANG-1 and that the effect of 

LRP-2 is at the level of P7.p rather than its progeny. 
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DISCUSSION 

     We have investigated the role of lrp-2 in C. elegans vulval cell lineage polarity. We 

find that despite the high conservation of the Wnt signaling component, LRP5/6, in 

higher order organisms it appears to have evolved after the split of Nematoda due to its 

lack of presence in all nematode genomes examined. C. elegans contains multiple low-

density lipoprotein receptors within its genome, two of which are lrp-1 and lrp-2. Due to 

the position in the genome and high sequence similarity we believe that lrp-2 is the 

product of a recent duplication of lrp-1 within the Caenorhabditis lineage.  

     lrp-1 mutants are sick and arrest during an early larval stage. For this reason we were 

not able to examine the role of lrp-1 in vulval formation. Despite high sequence 

similarity and proposed functional redundancy with lrp-1, lrp-2 is remarkably wild-type 

as a single mutant. lrp-2 expresses in the developing vulva at the same time as both cam-

1 and vang-1. By examining double and triple mutant strains we find that lrp-2 functions 

downstream of egl-20 along with transmembrane proteins cam-1 and vang-1 (Figure 7). 

All three genes antagonize the lin-17/Frizzled pathway by directing the aberrant 

localization of SYS-1 to the posterior daughter cell of P7.p leading to the posterior 

orientation of the P7.p lineage.  

     This work provides evidence that despite lacking a true LRP5/6 ortholog, the 

formation of the C. elegans vulva is controlled by another member of the low-density 

lipoprotein superfamily, lrp-2. This data could potentially lead to insight into the 

evolution of both structure and function of the highly important Wnt pathway component, 

LRP5/6. Despite strong genetic evidence, this work does not describe the physical 

interaction between LRP-2 and CAM-1, VANG-1, EGL-20. Can LRP-2 bind with the 
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other transmembrane proteins, CAM-1 and VANG-1, involved in this pathway? Can 

LRP-2 physically bind the Wnt ligand, EGL-20? Future work should focus on the 

biochemistry of this pathway. Answers to these questions could provide interesting 

insights into the evolution of low-density lipoprotein receptors, including LRP5/6, as well 

as how Wnt signaling has evolved within nematodes without the presence of one of the 

most important and highly conserved transmembrane proteins.  
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Table 1 

 
Table 1. Genetic analysis of lrp-2 
lrp-2 suppresses the phenotype of lin-17(n671) in roughly the same manner as cam-
1(gm122) and vang-1(ok1142). The triple mutant of lin-17(n671) lrp-2(gk272); cam-
1(gm122) does not show further suppression of either of the two double mutants. 
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Table 2 

 
Table 2. LRP-2 is downstream of EGL-20 
EGL-20 acts instructively. By ectopically expressing EGL-20 from the anterior side of 
P7.p using the Pfos-1a promoter, P5.p and P7.p reorient to face the anterior gradient. The 
anterior source of EGL-20 suppresses the lin-17(n671) phenotype. Because we do not see 
further suppression of the lin-17(n671) lrp-2(gk272) phenotype when EGL-20 is 
ectopically expressed from the anterior side of P7.p we conclude that LRP-2 is 
downstream of EGL-20. 
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Figure 1 

 
 
 

 
 
 
 
 
 
 

A

AC

P6.pP5.p P7.p

EGF

Notch

B 1°2° 2°

Wnt

P7.pP5.p

C

proximal

axis of symmetry

distaldistal

D Default Polarity

? ?



 26 

 

 
 
 

 
 
 

 
Fig. 1. C. elegans vulval development 
(A) Schematic of vulval induction illustrating sources of EGF, Notch, and Wnt. (B) 
Lineage trees of VPC progeny: P5.p, 2° fate, on the left, P6.p, 1° fate, in center, and P7.p, 
2° fate, on left. The progeny of each cell is color coded: A cells – red, B cells (B1 and 
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B2) – orange, C cells – yellow, D cells – green, E cells light blue, and F cells dark blue. 
(C) Final conformation of vulval cells shown as a cartoon and Nomarski image in mid-L4 
stage. Mirror symmetry is noted about the vulval center. Proximal daughter cells of P5.p 
and P7.p join the daughters of P6.p in forming the vulval lumen whereas the distal most 
daughters of P5.p and P7.p adhere to the ventral epidermis. (D) The default polarity of 
P5.p and P7.p is random in the absence of all Wnts. (E) egl-20 is expressed in the tail 
(green circles) and establishes ground polarity in which both P5.p and P7.p face the 
posterior as a result of asymmetric localization of SYS-1, LIT-1, WRM-1 to the posterior 
daughter of P7.p and POP-1 to the anterior daughter. (F) lin-44 and mom-2 are expressed 
in the anchor cell (yellow circle) resulting in refined polarity where both P5.p and P7.p 
both face towards the center as a result of asymmetric localization of SYS-1, LIT-1, and 
WRM-1 to the anterior daughter cell of P7.p and POP-1 to the posterior daughter cell. 
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Figure 2 

 
Fig. 2. Wild-type vulva vs. Posterior-reversed vulval lineage vulva 
(A) Wild-type vulva formed from 22 progeny of 3 VPCs: P5.p, P6.p, and P7.p. The 
progeny of P5.p and P7.p form mirror symmetry about the vulval center. (B) Posterior-
reversed vulval lineage: the daughter cells of P7.p mimic those of P5.p. Both images 
taken with sem-5(n1779) background. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A

P7.p P5.p

B

P-Rvl Wild-type

P5.p P7.p



 29 

Figure 3 
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Figure 3. Protein domains of LRP-2, LRP-1, and Drosophila Arrow 
C. elegans does not possess a true ortholog of Arrow (LRP5/6); however, it does possess 
multiple megalin-like proteins that contain LDLR Class A repeats, LRDR Class B 
repeats, and EGF-like domains that are found in varieties of low density like lipoprotein 
receptors such as megalin and Arrow. All domains are color-coded and drawn to 
approximate scale according to the SMART database. 
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Figure 4 

 

 
Figure 4. Evolutionary trees of lrp-2 
(A) A tree based on the protein sequence of LRP-1 and LRP-2 in nematodes and megalin 
in Dropsophila. Based on sequence similarity, position in the genome, and clustering, it 
appears that LRP-2 is the result of a recent duplication in Caenorhabditis. (B) Within 
Caenorhabditis, LRP-1 orthologs cluster together and LRP-2 orthlogs cluster. 
Pristionchus pacificus is used as the outgroup. 
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Figure 5 

 
Figure 5. lrp-2 expresses in the vulva 
lrp-2 expresses in the vulva beginning as early as the two-cell stage. The L4 vulva is 
pictured using a lrp-2 promoter gfp fusion. The fluorescent picture is shown below the 
Nomarski image. 
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Figure 6 

 
Figure 6. Subcellular localization of VNS::SYS-1 
The localization pattern of VNS::SYS-1 in P7.p daughter cells. The resulting pattern was 
classified by eye into three categories: SYS-1 enriched in the anterior daughter (P7.pa > 
P7.pp), SYS-1 present at similar levels in both daughters (P7.pa = P7.pp), and SYS-1 
enriched in the anterior daughter (P7.pa < P7.pp). A representative image of each 
scenario is shown. 
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Figure 7 

 
Figure 7. The role of LRP-2 in vulval lineage polarity 
(A) EGL-20 acts upstream of LRP-2, CAM-1, and VANG-1. (B) EGL-20 is expressed on 
the posterior side of P7.p and acts through LRP-2, CAM-1, and VANG-1 to drive the 
localization of SYS-1 to the posterior daughter cell of P7.p. This localization results in 
posterior-facing orientation of the P7.p daughter cells. 
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Chapter 3 

 

The origin and evolution of dishevelled 
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ABSTRACT 

     Dishevelled (Dsh or Dvl) is an important signaling protein, playing a key role in Wnt 

signaling and relaying cellular information for several developmental pathways. Dsh is 

highly conserved among metazoans and has expanded into a multigene family in most 

bilaterian lineages, including vertebrates, planarians, and nematodes. These orthologs, 

where explored, are known to have considerable overlap in function, but evidence for 

functional specialization continues to mount. We performed a comparative analysis of 

Dsh across animals to explore protein architecture and identify conserved and divergent 

features that could provide insight into functional specialization with an emphasis on 

invertebrates, especially nematodes. We find evidence of dynamic evolution of Dsh, 

particularly among nematodes, with taxa varying in ortholog number from one to three. 

We identify a new domain specific to some nematode lineages and find an unexpected 

nuclear localization signal conserved in many Dsh orthologs. Our findings raise questions 

of protein evolution in general and provide clues as to how animals have dealt with the 

complex intricacies of having a protein, such as Dsh, act as a central messenger hub 

connected to many different and vitally important pathways. We discuss our findings in 

the context of functional specialization and bring many testable hypotheses to light. 
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INTRODUCTION 

     Dishevelled (Dsh or Dvl) is a multifunctional phosphoprotein originally discovered in 

Drosophila and named for its disruptions in hair and bristle polarity (Fahmy and Fahmy, 

1959; Klingensmith et al., 1994). Dsh plays a key role in Wnt signaling, thus affecting 

cell proliferation, migration, polarity, terminal differentiation, and the self-renewal of 

stem cells (Boutros and Mlodzik, 1999; Gao and Chen, 2010; Sugimura et al., 2012; 

Tauriello et al., 2012). Deregulation of pathway components is associated with multiple 

human diseases. Wnt signaling has evolved to act in multiple pathways, broadly divided 

into the canonical/β-catenin-dependent pathway and the non-canonical/β-catenin-

independent pathway, with Dsh acting in a key role, relaying signals from receptors to 

downstream effectors (Gao and Chen, 2010). Several components of the Wnt signaling 

pathway, including Frizzled, GSK3, and β-catenin, can be found in protozoans, but it is 

not until the emergence of Metazoa that we see a complete Wnt pathway (Holstein, 

2012). The early branching metazoan lineage Porifera has only the major components of 

the canonical pathway, with critical non-canonical pathway components arising 

subsequently in eumetazoan lineages (Kusserow et al., 2005; Adamska et al., 2007; 

Adamska et al., 2010). Thus, although Wnt signaling is conserved across Metazoa from 

sponges to humans, it seems that this pathway’s origin and the original role of Dsh lies in 

the canonical/β-catenin-dependent pathway, with non-canonical signaling developing 

later. Figure 1 summarizes the evolution of Dsh across animals including the loss and 

gain of orthologs, paralogs, and protein domains. 

     In the current model of the canonical pathway, Wnt signals are received by a Frizzled 

(Fz) and LRP5/6 co-receptor complex, leading to the recruitment of Dsh and Axin to the 
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cell membrane. This recruitment results in the inactivation and dissolution of the β-

catenin destruction complex allowing for the nuclear translocation of β-catenin where it 

interacts with members of the TCF/Lef transcription family to regulate gene expression 

(Wharton, 2003). Non-canonical signaling encompasses several different pathways that 

do not necessarily lead to the activation of β-catenin, of which the best understood is the 

planar cell polarity (PCP) pathway. PCP signaling is responsible for the polarization of 

cells along an epithelial sheet. The core components of this pathway include the 

transmembrane proteins Fz, Flaming (Fmi), and Strabismus (Stbm), as well as the 

cytoplasmic proteins Diego (Dgo), Prickle (Pk), and Dsh (Seifert and Mlodzik, 2007). In 

general PCP signaling relies on complex interactions between these core components that 

lead to their asymmetric enrichment and distribution within a cell. For example, during 

polarization in the Drosophila wing two distinct protein complexes antagonize each other 

and localize to opposite ends of the cell: a Fz-Dsh-Dgo complex becomes enriched at the 

distal end of each cell, whereas a Stbm-Pk complex concentrates proximally (Simons and 

Mlodzik, 2008).  

     The literature establishes the archetypal Dsh protein to contain three conserved 

domains: an N-terminal DIX (Dishevelled and Axin) domain, a central PDZ (Post 

Synaptic Density-95, Discs Large, and Zonula occludens-1) domain, and a C-terminal 

DEP (Dishevelled, Egl-10, Pleckstrin) domain (Penton et al., 2002; Gao and Chen, 2010) 

(Figure 2). In addition to these three conserved domains, Dsh is known to contain a basic 

region that precedes the N-terminal of the PDZ domain as well as a proline-rich region 

that includes an SH3 binding motif located between the PDZ and DEP domains (Figure 

2). Both of these regions are thought to be conserved and have functional significance. 
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There is a fourth domain, reported to be conserved, in Dsh, the DSV or Dishevelled 

domain, although its functional significance is rarely discussed (Figure 2). The Dsh 

protein contains approximately 15% serine and threonine residues many of which are 

phosphorylated; however, the functional significance of these residues has been 

questioned (Yanfeng et al., 2011). Expansions in Dsh among metazoan lineages seem 

common and variable, with most vertebrates containing three Dsh homologs (although 

the chicken Gallus gallus has two), while insects have only one (Klingensmith et al., 

1994; Sweetman et al., 2008; Gray et al., 2009; Gao and Chen, 2010). The nematode 

Caenorhabditis elegans has three Dsh homologs and the planarian Schmidtea 

mediterranea has two (Ruvkun and Hobert, 1998; Gurley et al., 2008; Figure 1). 

     With the ever-increasing amount of genomic data available for analysis, we leveraged 

the currently available data to study the evolution of Dsh across animals with an 

emphasis on nematodes. In addition to exploring the potential conservation of the three 

C. elegans Dsh homologs among nematodes, we were interested in identifying conserved 

or divergent protein features that correlate with the known functional divergence between 

Dsh orthologs observed in several animal taxa, and that could provide hypotheses about 

the evolution Dsh. For example, the planarian Dsh paralogs, Smed-dvl-1 and Smed-dvl-2, 

appear to be functionally specialized such that only Smed-dvl-2 is thought to be involved 

in β-catenin-dependent signal transduction, suggesting underlying physical differences in 

these proteins that have not yet been linked to their divergent function (Almuedo-Castillo 

et al., 2011). Similarly, the function of Dsh orthologs seems to have diverged among 

vertebrates, where Dvl1 and Dvl2, but not Dvl3, are necessary to mediate the Wnt-

dependent signals that control neural crest specification in Xenopus, but in murines it is 
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thought that Dvl2 and Dvl3 function in neural crest development whereas Dvl1 apparently 

does not (Lijam et al., 1997; Hamblet et al., 2002; Monsoro-Burq et al., 2005; Etheridge 

et al., 2008; Gray et al., 2009). It is still not known whether Dsh’s role in neural crest 

development is through the canonical or non-canonical pathways, or both (Etheridge et 

al., 2008). In the our study we found that Dishevelled is a highly conserved protein that 

has undergone dynamic evolution across metazoans and variation in protein architecture 

provides clues about its functional roles in β-catenin-dependent and -independent 

pathways. 
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MATERIALS AND METHODS 

Orthology Analyses 

     To study the evolution of Dishevelled, we used the available predicted protein datasets 

from WormBase release WS225 (www.wormbase.org) for the following species – Brugia 

malayi, Caenorhabditis elegans, C. angaria, C. japonica, C. brenneri, C. remanei, C. 

briggsae, Meloidogyne hapla, Pristionchus pacificus, and Trichinella spiralis. We also 

included the Ascaris suum, Bursaphelenchus xylophilus, and Meloidogyne incognita 

predicted proteome data sets from WormBase release WS229. For outgroup and 

comparative analysis we used the predicted protein datasets of Arabidopsis thaliana 

(vGNOMON 7/9/07), Drosophila melanogaster (v10/30/11), Homo sapiens (v9/7/11), 

Mus musculus (v3/4/11), Nasonia vitripennis (v1.2), Saccharomyces cerevisiae (v2/3/11), 

and Tribolium castaneum (vTcas 3.0) genome projects, obtained from the NCBI/NIH 

repository (ftp://ftp.ncbi.nih.gov/genomes). Pre-released proteomes for Panagrellus 

redivivus and Steinernema carpocapsae were also used, from manuscripts in preparation 

(Dillman et al., 2012). Dsh orthologs from the jellyfish, Clytia hemisphaerica 

(AFI99114.1), the planarian Schmidtea mediterranea (Smed-DVL-1 ADZ58511.1 and 

Smed-DVL-2 ADZ58512.1), the frog Xenopus tropicalis (DVL1 NP_001116886.1, 

DVL2 NP_001072660.1, and DVL3 NP_01116929.1), the sponge Amphimedon 

queenslandica (XP_003384321), and the tunicate Ciona intestinalis (NP_001027754.1) 

were acquired from GenBank (http://blast.ncbi.nlm.nih.gov/). 

     Version 1.4 of the OrthoMCL pipeline was used to cluster proteins from the 

proteomes into families of orthologous genes (http://www.orthomcl.org) (Li et al., 2003). 

To identify orthologs of Dsh across animals, we ran OrthoMCL using the full proteomes 
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of C. elegans, P. redivivus, T. spiralis, N. vitripennis, D. melanogaster, T. castaneum, M. 

musculus, H. sapiens, S. cerevisiae, and A. thaliana. To identify orthologs across 

Nematoda, we ran OrthoMCL using the full proteomes of B. malayi, A. suum, P. 

pacificus, C. elegans, B. xylophilus, M. hapla, M. incognita, P. redivivus, S. carpocapsae, 

T. spiralis, with N. vitripennis as an outgroup. To identify orthologs within 

Caenorhabditis we ran OrthoMCL using the full proteomes of C. angaria, C. briggsae, 

C. brenneri, C. japonica, C. remanei, and C. elegans. All orthology analyses were run 

using OrthoMCL version 1.4 with default settings and the BLAST parameters 

recommended in the OrthoMCL documentation (Li et al., 2003). Identified orthology 

clusters are available in the supporting material online (Supplementary Material online). 

 

Domain Analysis 

     Each identified Dsh ortholog was analyzed for protein domains using the SMART 

protein domain analysis website (http://smart.embl-heidelberg.de), used in normal mode 

(Letunic et al., 2012). All additional options (outlier homologues, PFAM domain, signal 

peptides, internal repeats, and intrinsic protein disorder) were turned on for the analysis. 

The full protein sequences and identified domains are available in the supplementary 

material. 

 

Sequence Alignment, Phylogenetics, and Selection Detection 

     Sequence alignments were made using all of the amino acid sequence from the 

beginning of the PDZ domain to the end of the DEP domain, since these were the only 

identified domains conserved across all of the animal taxa we evaluated. Protein 
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sequence alignments of this region were made using the online MUSCLE service 

(http://www.ebi.ac.uk/Tools/msa/muscle) (Edgar, 2004). These protein alignments were 

then replaced with the appropriate nucleotide sequences using the RevTrans server 

(http://www.cbs.dtu.dk/services/RevTrans), which preserves the alignment obtained with 

the amino acid sequences, but replaces each amino acid with the user-supplied protein 

coding nucleotides (Wernersson and Pedersen, 2003). Coding sequence for the proteomes 

was downloaded along with the proteomes from the sites listed above, though the 

sequences for most of the nematodes we used could also be acquired from WormBase 

(www.wormbase.org). Two separate alignments were made using this method, one that 

included the Dsh orthologs across animals, including T. castaneum, N. vitripennis, D. 

melanogaster, M. musculus, H. sapiens, T. spiralis, A. suum, B. malayi, P. pacificus, C. 

elegans, S. carpocapsae, B. xylophilus, P. redivivus, M. hapla, M. incognita, and the 

jellyfish C. hemisphaerica. The other alignment focused on Dsh orthologs within 

caenorhabditid nematodes, utilizing genes from C. elegans, C. angaria, C. japonica, C. 

brenneri, C. remanei, C. briggsae, with the intracellular parasite T. spiralis and the 

parasitoid wasp N. vitripennis as outgroups. Alignments were then shaded to reflect 

sequence conservation using GeneDoc (http://www.nrbsc.org/gfx/genedoc) (Nicholas et 

al., 1997). 

     The nucleotide alignments were then evaluated for the best-fit model of evolution 

using jModelTest2 (http://code.google.com/p/jmodeltest2) (Guindon and Gascuel, 2003; 

Darriba et al., 2012). For the alignment across animals, the corrected Akaike information 

criterion, the Bayesian inference criterion, and the decision theory criterion all selected 

the GTR+I+G model of evolution, with a p-invar=0.0640 and a gamma shape parameter 



 44 

of 0.9840. The analysis of the Caenorhabditis alignment resulted in the GTR+G model 

being chosen by all criteria, with a gamma shape parameter of 0.5140. 

     Following model selection, maximum likelihood (ML) analyses with 1,000 bootstraps 

were done using the RAxML BlackBox server (http://phylobench.vital-it.ch/raxml-bb) 

(Stamatakis et al., 2008). New technology parsimony analyses were done using TNT 

(http://www.cladistics.com/aboutTNT.html) (Goloboff, 1999; Nixon, 1999). Maxtrees 

was set to 10,000. A new technology, random driven search was performed using ratchet, 

drift, and tree fusing options. A bootstrap analysis of 1,000 was performed by 

resampling. 

     Selection was detected using two methods. First, the alignment files of the protein-

coding nucleotide sequences were uploaded into MEGA 5.05 

(http://www.megasoftware.net) (Tamura et al., 2011). The selection analysis option in 

MEGA, which estimates selection for each codon using HyPhy, was used. Our ML 

analysis served as the guide tree, and the ML statistical method was chosen using the 

GTR model, as selected by jModelTest2. All sites were used in the analysis. Following 

the MEGA analysis of selection, we used the HyPhy package as implemented by the 

Datamonkey adaptive evolutionary server (http://www.datamonkey.org). Alignment files 

with the ML phylogenetic analysis written into them were uploaded using the codon data 

type and the universal genetic code. We used the recommended meme method in our 

analyses, setting the options to estimate the global dN/dS value and to average 

encountered ambiguities in the consensus sequence (Murrell et al., 2012). We chose to set 

the level of significance at p=0.1. 

 



 45 

RESULTS 

Dishevelled Conservation and Expansions Among Animals 

     We evaluated the conservation and potential expansion of Dsh using cluster analysis 

of seventeen whole proteomes, including vertebrates, insects, nematodes, and a fungal 

and plant proteome as outgroups (see Materials and Methods). We found no evidence of 

Dsh or Dsh-like genes outside Metazoa. It was previously known that D. melanogaster 

and potentially all insects have one Dsh (Dmel-dsh), the model nematode C. elegans has 

three Dsh homologs (Cele-dsh-1, Cele-dsh-2, and Cele-mig-5), the planarian Schmidtea 

mediterranea has two (Smed-dvl-1 and Smed-dvl-2), and most vertebrates have three 

(Dvl1, Dvl2, and Dvl3; Figure 1). We found three distinct clusters of Dsh genes, the 

largest included all of the insect orthologs (Dmel-dsh, Nvit-dsh, Tcas-dsh; one copy in 

each insect proteome), all nematode dsh-1 orthologs, and the vertebrate orthologs Dvl1 

and Dvl3 (Mmus-Dvl1, Mmus-Dvl-3, Hsap-Dvl1, and Hsap-Dvl3). A second cluster 

included exclusively nematode mig-5 genes, while the vertebrate Dvl2 orthologs (Mmus-

Dvl-2 and Hsap-Dvl2) formed their own cluster, apparently having no orthologs outside 

vertebrates. The C. elegans dsh-2 remained an unclustered orphan in this broad analysis. 

     Using the three C. elegans Dsh homologs (Cele-dsh-1, Cele-dsh-2, and Cele-mig-5) as 

queries, we found that only Cele-dsh-1 has orthologs outside of Nematoda, being highly 

conserved across metazoans, with all insects and nematodes having only one strict 

ortholog, and vertebrates having two, Dvl1 and Dvl3. Among the nematode genera in this 

analysis, C. elegans is unique in having three Dsh homologs. In addition to having an 

ortholog of dsh-1, most nematodes also have an ortholog of mig-5, but none of the 

nematodes in this analysis have orthologs of Cele-dsh-2. Unlike the rest of the nematodes 
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we studied, T. spiralis, which is in the basal clade 2 of Nematoda, retains only a single 

Dsh ortholog (Tspi-dsh-1)(Holterman et al., 2006; Figure 3). This result shows that Dsh 

has experienced dynamic evolution within Nematoda, with extant taxa possessing one, 

two, or three Dsh homologs. 

     In evaluating the relationships among Dsh genes across animals, we included known 

homologs in organisms for which we did not perform whole genome searches (C. 

hemisphaerica, S. mediterranea, and X. tropicalis). We found that each of the three 

vertebrate Dsh orthologs shares ancestry, and that the planarian S. mediterranea and the 

nematode T. spiralis Dshs (Smed-dvl-1, Smed-dvl-2, and Tspi-dsh-1) are not very similar 

to the other nematode Dsh homologs (Figure 4). The rest of the nematode Dsh orthologs 

in this analysis formed two distinct clades, the mig-5 orthologs forming one clade, and 

the dsh-1 orthologs forming the other (Figure 4). Although we did not find any proteins 

with significant similarity to Cele-dsh-2 in our broad clustering analysis, the phylogenetic 

analyses place it in the clade containing all nematode dsh-1 orthologs (Figure 4). These 

C. elegans paralogs, dsh-1 and dsh-2, are approximately 130 kb apart on chromosome II, 

have the same orientation, and form a conserved gene cluster with a recombination 

frequency of 0.61%. Together with the phylogenetic analyses, this suggests that Cele-

dsh-2 is a diverging duplication of Cele-dsh-1 and is specific to C. elegans or perhaps the 

Caenorhabditis lineage. 

     To evaluate the apparent expansion of Dsh among caenorhabditids and determine the 

origin of dsh-2, we performed a cluster analysis of whole caenorhabditid proteomes, 

including C. angaria, C. japonica, C. elegans, C. brenneri, C. remanei, and C. briggsae. 

The relationships among Caenorhabditis nematodes are becoming increasingly refined as 
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more species are described (Kiontke et al., 2011). Our analysis includes members of both 

the Elegans and Drosophilae supergroups within the Caenorhabditis genus, and resulted 

in three unsurprising clusters of Dsh genes: dsh-1, dsh-2, and mig-5. We found that all 

caenorhabditids have dsh-1 and mig-5 orthologs, but that C. angaria lacks a dsh-2 

ortholog, suggesting that only members of the Elegans supergroup (C. japonica, C. 

elegans, C. brenneri, C. remanei, and C. briggsae) have dsh-2 orthologs. Furthermore, 

this clustering analysis revealed the possibility of species-specific expansions. For 

example, C. angaria appeared to have two potential dsh-1 orthologs, C. japonica 

appeared to have two dsh-1 orthologs and two dsh-2 orthologs, and C. brenneri appeared 

to have two orthologs each of dsh-1, dsh-2, and mig-5. Detailed protein analyses of this 

kind rely on the quality of the assemblies and gene predictions of the proteomes used, and 

the results can often improve the annotations. Despite valiant efforts to inbreed these 

nematodes prior to genomic sequencing, the current assemblies of C. brenneri, C. 

remanei, and C. japonica (WormBase release WS225) are known to have considerable 

heterozygosity, with some genes being represented by allelic variants (Barrière et al., 

2009). Furthermore, the genome assembly for C. angaria is still quite fragmented 

(Mortazavi et al., 2010), although additional sequencing is ongoing. We explore these 

genes in more detail in the following section.  

     The gene relationships among the Caenorhabditis Dsh paralogs is consistent with 

those recovered using a broader sampling of animal taxa (Figure 4 and Supporting 

Information): we recapitulate three clades, one for each of the three paralogs with dsh-1 

and dsh-2 being more closely related, supporting the notion that dsh-2 is the result of a 

fairly recent duplication event and has subsequently diverged from dsh-1. This 
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duplication could have occurred after the split between the Elegans and Drosophilae 

supergroups, or may have occurred earlier and been subsequently lost in C. angaria. 

More could be inferred about the evolution of Dsh among caenorhabditids from 

sequencing additional taxa from this genus.  

 

Conservation and Diversification of Dsh Domain Architecture 

     Next we wanted to assess the protein domains in Dsh and evaluate the conservation of 

domain structure across animal evolution among orthologs and paralogs. The SMART 

database recognizes the DIX, DSV, PDZ, and DEP domains as being around 80, 72, 80, 

and 75 amino acids respectively, with some variation between species, particularly in the 

DIX and DSV domains (Figures 2, 5, and 6). The basic region located between DIX and 

PDZ, and the proline-rich region containing an SH3 binding domain located between 

PDZ and DEP are not recognized by SMART, but they were identifiable by sequence 

alignment similarity with known sequences (Penton et al., 2002).  

     We found the PDZ and DEP domains to be the most highly conserved structural 

components of Dsh across taxa, being present in all taxa from the sponge A. 

queenslandica to mammals (Figure 5 and Supplemental Figure 1). The basic region, just 

anterior to the PDZ domain, is also highly conserved and only absent from the Bxyl-dsh-1 

ortholog, which is truncated. The proline-rich region extends over an approximately 20 

amino acid window and contains a class I core SH3 binding motif RxEPV/IR/QP (where 

x stands for any amino acid), with ligand preference varying around the PxxP core 

(Penton et al., 2002). Although the proline-rich region is not always conserved, the SH3 

binding domain is conserved in the dsh-1 orthologs of all taxa, but is absent in in 
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nematode mig-5 orthologs (Figures 5 and 6 and Supplemental Figures 2 and 3). We refer 

to this region as the SH3 binding motif rather than the proline-rich region due to the 

conservation of the motif across taxa, although the area surrounding the motif is not 

necessarily proline-rich in some nematode taxa. The DIX domain is conserved in all Dsh 

orthologs but is conspicuously missing from two nematode dsh-1 orthologs; Ppac-dsh-1 

and Asuu-dsh-1 (Figure 5). The understudied DSV domain appears to have experienced 

dynamic evolution, being absent from both sponge and jellyfish taxa and arising in 

bilaterian taxa (Figures 1 and 5). The DSV domain is conserved in planaria, vertebrates, 

and two of the three insect taxa we investigated (Dmel-dsh and Nvit-dsh) but is missing 

from Tcas-dsh and is absent from all nematode Dsh homologs except Tspi-dsh-1, the only 

Dsh homolog in the most basal nematode lineage included in our analysis (Holterman et 

al., 2006; Figure 3). The Dsh-C domain is vertebrate specific, but appears to be truncated 

in Xtrop-Dvl1 (Figure 5). We found a previously unreported DEP-like fragment (DLF) 

domain, recognized by the SMART database, and is present and conserved in several 

nematode species from clades 8, 9, and at least one species, S. carpocapsae, from 

nematode clade 10 (Figures 3 and 5). The amino acid sequence conservation and codon 

variation that we detect both in the DSV and DLF domains suggest that these are 

functionally relevant, despite the current lack of functional data (Supplemental Figures 2 

and 3). The absence of a recognizable DSV domain in early branching lineages (i.e. A. 

queenslandica and C. hemisphaerica), and its apparent loss in T. castaneum and all 

evaluated nematode lineages branching after clade 2 suggest that its conservation among 

some insects, planarians, and vertebrates has functional significance and should be tested. 
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Similarly, the conservation of DLF among clades 8, 9, and at least one clade 10 nematode 

(S. carpocapsae), suggest that it too has functional significance. 

     The domain architecture of Dsh orthologs within Caenorhabditis genus is more 

dynamic than that observed across a broader sampling of animals, likely facilitated by the 

presence of three Dsh orthologs (Figures 5 and 6). The PDZ and DEP domains are the 

most highly conserved across caenorhabditid orthologs, with both only being absent from 

Cjap- dsh-1a and Cang-dsh-1b. The DEP domain is missing from Cang-mig-5, and PDZ 

and DEP are separated between the Cjap-dsh-2a and Cjap-dsh-2b (Figure 6 and 

Supplemental Figure 3). The basic region is also highly conserved and is present in all 

orthologs with protein sequence N-terminal to the PDZ domain (Figure 6). The SH3 

binding motif is conserved in dsh-1 and dsh-2 orthologs that contain protein sequence C-

terminal to the PDZ and/or N-terminal to the DEP domain, but is entirely absent from all 

mig-5 orthologs (Figure 6 and Supplemental Figure 3). The newly discovered DLF 

domain, where present, is between the PDZ and DEP domains, just C-terminal to the SH3 

binding motif. The DLF domain is only present in nematode dsh-1 orthologs that have 

PDZ and DEP domains except Cbre-dsh-1a, where it is conspicuously missing. 

     We investigated the splice isoforms of all three Dsh paralogs within Caenorhabditis 

and used B. malayi and P. pacificus for outgroup comparison (Figure 7). There is 

conserved isoform architecture among these species for all three paralogs, although no 

species has been as thoroughly studied as C. elegans, which has 3 isoforms of Cele-dsh-1 

as well as Cele-mig-5 (Figure 7). For example, all dsh-1 isoforms that have a DIX 

domain have it split across three exons, whereas the PDZ domain appears to be split 

across two exons in all caenorhabditid taxa except C. japonica, where it might be split 
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across three. In addition to partitioning domains among proteins, as P. pacificus seems to 

have done with the DIX domain being present in Ppac-dsh-1 and absent from Ppac-mig-

5, other taxa can produce isoforms with and without certain domains (e.g. Cele-dsh-1 and 

Bmal-dsh-1; Figure 7). Too little is known about splice isoforms in the other species to 

draw strong conclusions from these data, but interesting features of conservation and 

divergence are apparent. Additionally, this analysis sheds light on the potential paralogs 

identified within C. japonica and C. brenneri. Cjap-dsh-1a and Cjap-dsh-1b are tandem 

in the same orientation, with Cjap-dsh-1a being <3 kb upstream from Cjap-dsh-1b, 

suggesting that these are fragments of the same gene (Figures 6 and 7). However, Cjap-

dsh-2a and Cjap-dsh-2b, although still in the same orientation, are >10 kb apart with 

Cjap-dsh-2b, which has the DEP domain, being upstream of Cjap-dsh-2b, inverting the 

traditional order of DIX, PDZ, and then DEP, suggesting that these might actually be 

separate genes, representing a physical partitioning of DIX, PDZ, and the basic region on 

one protein and the SH3 binding motif and DEP on the other (Figures 6 and 7). The 

potential paralogs within C. brenneri (Cbre-dsh-1a, Cbre-dsh-1b, Cbre-dsh-2a, Cbre-

dsh-2b, Cbre-mig-5a, and Cbre-mig-5b) were each on separate contigs, offering no 

potential clarification. However, a nucleotide alignment of the PDZ and DEP domains 

revealed that each paralogous pair has identical nucleotide sequence, suggesting that 

these are likely allelic variants or splice isoforms (Barrière et al., 2009). Splice isoforms 

seem particularly likely in cases in which a paralagous pair differ in domain content (e.g. 

Cbre-dsh-1a, Cbre-dsh-1b, and Cbre-mig-5a, and Cbre-mig-5b). 

     The amino acid sequence alignments of Dsh across animals and across 

caenorhabditids show clear regions of high conservation and other regions with 
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considerable divergence. Across animals, we detect at least two codons that are 

experience strong negative selection (codons 318 and 335) and at least 10 codons that are 

experiencing diversifying selection (codons 6, 221, 222, 234, 235, 238, 239, 252, 284, 

and 354; Supplemental Figure 2). Focusing on caenorhabditids, we detect at least three 

codons experiencing negative selection (codons 113, 252, and 261) and at least 4 codons 

that are experiencing diversifying selection (codons 63, 85, 155, and 193; Supplemental 

Figure 3). It is not surprising that areas of functional significance are highly conserved 

across species, whereas those regions that show considerable divergence or are 

experiencing diversifying selection may play important roles in the acquisition of novel 

functions but remain to be functionally tested. 

 

Nuclear Transport 

     In addition to the conserved elements of Dsh shown in Figure 2, there are other motifs, 

structural components, and phosphorylation sites that affect the function of Dsh. For 

example, the presence of a nuclear export signal (NES) and a nuclear localization signal 

(NLS) affect the subcellular distribution of Dsh. A conserved NES has been identified as 

M/LxxLxL, where mutations in the leucines lead to nuclear localization of Dsh in 

Xenopus (Itoh et al., 2005). We found this NES to have patchy conservation, being 

present in Aque-Dvl, Cint-Dvl, and all vertebrate Dsh orthologs, except Xtrop-Dvl1 

(Supplemental Figure 2). It was not present in Chem-Dvl or any insect or nematode Dsh 

orthologs (Supplemental Figure 2); however, it was present in Smed-dvl-2 but absent 

from Smed-dvl-1. Previous studies indicate that Dsh translocates to the nucleus and is 

actively exported into the cytoplasm, presumably via NLS and NES signals, and that 
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blocking the nuclear export by mutating the NES or chemically inhibiting nuclear export 

leads to nuclear localization of Dsh in vertebrates (Torres and Nelson, 2000; Itoh et al., 

2005). A NLS sequence was previously identified in vertebrates, flies, and Hydra, and 

identified as IxLT/VAK (Itoh et al., 2005). We found this NLS to be highly conserved 

across the taxa in our analyses, being present in the Dsh orthologs of most taxa we 

examined, but absent in all nematode mig-5 orthologs, and identifiable yet slightly altered 

in dsh-2 orthologs (Supplemental Figures 2 and 3). This NLS has been shown to be 

necessary and sufficient for nuclear translocation of Dsh in vertebrates, although this has 

not been pursued in invertebrate taxa (Torres and Nelson, 2000; Itoh et al., 2005).  

 

Phosphorylation of Tyrosine473 

     The phosphorylation of tyrosine 473 (Y473), located in the DEP domain, is essential 

for PCP signaling (Yanfeng et al., 2011). The substitution of Dmel-dsh Y473 to 

phenylalanine (DshY473F) leads to strong PCP specific defects in Drosophila, but has no 

effect on canonical Wnt signaling. It is believed that this site in the DEP domain is 

phosphorylated by an Abelson family tyrosine kinase (Abl), which is also required for 

PCP signaling, but not canonical Wnt signaling (Singh et al., 2010). We find that Y473 is 

conserved across all evaluated Dsh orthologs except Mhap-mig-5 and Minc-mig-5 as well 

as Smed-dvl-1. All evaluated organisms have at least one Dsh with a conserved Y473 

implying an ancient and essential function across Metazoa, and suggesting another 

potential mechanism for partitioning the function of Dsh paralogs and/or splice isoforms. 
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DISCUSSION 

     The origin of Dsh lies in the common ancestor of Metazoa and likely had the three 

major functional domains DIX, PDZ, and DEP (Figure 8A). Dsh has experienced 

dynamic evolution across animal evolution, acquiring new domains and experiencing 

duplications in several animal lineages. The DSV domain seems to have evolved prior to 

the bilaterian split and been subsequently lost in some nematode and insect taxa. In no 

phylum where multiple taxa were examined did we find complete conservation of both 

domain architecture and number of Dsh orthologs. We have identified many structural 

features that are conserved and divergent and that suggests potential mechanisms for 

partitioning the various functions of Dsh among isoforms and/or paralogs. We discuss 

these findings in the context of known functional specializations among invertebrates. 

 

Dishevelled Across Nematodes 

     Nematoda is an ancient lineage, originating during the Precambrian or Cambrian 

explosion over 500 million years ago (Ayala et al., 1998; Rodriguez-Trelles et al., 2002). 

With this abundance of evolutionary time, nematodes have evolved to inhabit virtually 

every habitat known and nearly every ecological niche. The model nematode C. elegans 

was the first metazoan to have its genome sequenced and is among the most studied and 

best understood animal on earth (Consortium, 1998). Often what is learned about C. 

elegans is assumed to be conserved among nematodes, and although this may be largely 

true for some features, e.g., neuroanatomy and CO2 detection and response (Bumbarger et 

al., 2007; Hallem and Sternberg, 2008; Bumbarger et al., 2009; Ragsdale et al., 2009; 

Hallem, E.A. et al., 2011; Hallem, E. A. et al., 2011), C. elegans is a derived nematode 
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with many unique features (Blaxter, 1998; Blaxter, 2011). We have shown that the 

number of Dsh homologs varies across nematodes, at least from one to three, but many 

taxa remain unstudied, especially within the basal clades of the phylum (Figure 8B). 

Most genera in our study have two Dsh homologs, dsh-1 and mig-5. The acquisition of 

mig-5 is ancient, occurring sometime after the split of clade 2 and before the split of clade 

8, although additional taxon sampling would improve this estimate (Figure 8B). The C. 

elegans genome encodes three Dsh genes, Cele-dsh-1, Cele-dsh-2, and Cele-mig-5. We 

have shown that dsh-2 is likely a paralog of dsh-1 and a derived character among 

Caenorhabditis species, perhaps only among members of the Elegans supergroup (Figure 

8C). We identify only one Dsh ortholog in T. spiralis, Tspi-dsh-1, and find that among 

nematodes, it has unique similarity to insect Dsh as it is the only nematode Dsh known to 

have a DSV domain (Figures 5 and 6). 

     The domain architecture among nematode Dshs is variable and suggests potential 

mechanisms of functional divergence. We have discovered a novel Dep-like fragment 

domain that is present and highly conserved in half of the 10 nematode taxa we examined 

(Figures 5, 6, and 8B). The domain architecture of mig-5 is conserved, having the same 

structural features (DIX, PDZ, DEP, and the basic region) in all taxa (except Cang-mig-5, 

which is missing DEP), while dsh-1 orthologs are more diverse (Figures 5 and 6). Asuu-

dsh-1 and Ppac-dsh-1 lack the DIX domain, Bxyl-dsh-1 lacks the DIX domain and the 

basic region while Scar-dsh-1 seems to have acquired a signal peptide and a coiled 

domain that is unknown in any other Dsh homologs. Finally, we detected a conserved 

NLS in all nematode dsh-1 orthologs (and both Cbre-dsh-2 orthologs), suggesting that 

these proteins may be translocated to the nucleus, as has been shown in vertebrates. It is 
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worth noting that the presence of an NLS and a basic region, features that are broadly 

conserved in Dsh orthologs across animals, are hallmarks of transcription factors, 

although this possibility has not been experimentally explored (Grove et al., 2009).  

     Although there are many examples in C. elegans of the functional overlap of Dsh 

paralogs, there are also known specializations for each. For example, B cell polarity in 

males is controlled by Wnt signaling, where Cele-mig-5 males have altered B cell 

daughter size (Herman et al., 1995; Sawa et al., 1996; Wu and Herman, 2006). Neither 

Cele-dsh-1 nor Cele-dsh-2 affects the polarity of the B cell as single mutants and neither 

enhances the phenotype of the Cele-mig-5 mutant, showing specialization of Cele-mig-5 

in this pathway (Wu and Herman, 2006). The divergence of Dsh function in C. elegans 

can also be seen in the outgrowth of neurites from RME head motor neurons. In this 

pathway, Cele-DSH-1 physically interacts with Ror/CAM-1 to transmit the Wnt/CWN-2 

signal to downstream components enabling neurite outgrowth (Song et al., 2010). The 

binding activity of Cele-DSH-1 to Ror/CAM-1 lies in its PDZ and DEP domains, 

whereas the DIX domain is not required for binding. Furthermore, only Cele-dsh-1b, the 

isoform that lacks the DIX domain (Figure 7; Cele-dsh-1b is the Cele-dsh-1 ‘b’ isoform 

from WormBase), was shown to express in the RME cells and Cele-DSH-1b is sufficient 

to rescue the dsh-1 null phenotype, suggesting that alternative splicing of Dsh can lead to 

functional specialization within C. elegans (Song et al., 2010). An example of domain 

specialization within a Dsh homolog can be seen in the asymmetric cell division of the 

ABpl/rpppa neuroblast via a β-catenin independent pathway (Hingwing et al., 2009). 

Domain analysis has shown that the DIX domain is not required for ABpl/rpppa 

asymmetric division, but the DEP domain is essential. Hingwing et al. (Hingwing et al., 
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2009) go on to show that Cele-dsh-2 is involved in the asymmetric divisions of SGP cells 

along the proximal-distal axis of the developing gonad, which leads to the formation of 

distal tip cells from distal daughters and an anchor or ventral uterine cell from the 

proximal daughters. Loss of Cele-dsh-2 results in two proximal daughters. Unlike the 

asymmetric division of the ABpl/rpppa neuroblast, both the DIX and DEP domains are 

essential for proper SGP cell division, thus demonstrating the divergent functional roles 

of domains in a single Dsh ortholog (Hingwing et al., 2009). 

     We have identified and shown the conservation of a Dep-like fragment domain across 

all Caenorhabiditd dsh-1 orthologs along with Asuu-dsh-1, Bmal-dsh-1, Ppac-dsh-1, and 

Scar-dsh-1. Furthermore we have shown that the basic region, DIX, PDZ, DEP, SH3 

binding motif, and the NLS are conserved across nematode dsh-1 orthologs (with a few 

exceptions lacking the DIX domain and the absence of the basic region in Bxyl-dsh-1). 

We have shown the extreme conservation of structure across all mig-5 orthologs, and that 

these uniformly lack the SH3 binding motif as well as the NLS. The functional relevance 

of these features and what role, if any, they play in the partitioning of Dsh function would 

be interesting to explore. These results suggest, for example, that Ppac-dsh-1 and Ppac-

mig-5 might have evolved to function in separate pathways and perform at least some 

non-overlapping functions (Figure 5). The apparent lack of an NES in any nematode or 

insect Dsh is also striking, especially considering the presence of an NLS among most 

dsh-1 orthologs. Perhaps nematodes and insects have an alternative and as yet 

unidentified NES, since these proteins are not reported to be nuclear-specific. 
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Dishevelled in Other Invertebrates 

     S. mediterranea has two orthologs of Dsh, Smed-dvl-1 and Smed-dvl-2 (Gurley et al., 

2008). Initial studies in this flatworm have investigated the functional specialization of 

these paralogs. Only Smed-dvl-2 appears to be involved in β-catenin-dependent signaling: 

phenotypes described after silencing canonical Wnt ligands are reproduced upon the 

silencing of Smed-dvl-2 (Almuedo-Castillo et al., 2011). Conversely, both Smed-dvl-1 

and Smed-dvl-2 transduce the noncanonical signals that control neural connectivity as 

well as mediolateral patterning of the central nervous system, neither of which involves 

components of the PCP pathway. Components of the PCP pathway, including Van Gogh 

and Diversin, have been implicated in the apical positioning of the basal body in 

epithelial cells. Interestingly, only Smed-dvl-2 has been shown to function alongside 

these core PCP components. Our domain analysis of planarian Dsh supports these 

experimental results. Only Smed-dvl-2 contains the NLS and NES sequences, implying 

its role in β-catenin-dependent signaling. Because Smed-dvl-1 lacks both sequences, we 

would suggest that it cannot function in a β-catenin dependent pathway, and this 

hypothesis is supported experimentally (Almuedo-Castillo et al., 2011). Furthermore, it 

has been shown that tyrosine473 is essential for PCP signaling. This amino acid is 

present in Smed-dvl-2, but not Smed-dvl-1, supporting the experimental finding that only 

Smed-dvl-2 can function in the PCP pathway (Almuedo-Castillo et al., 2011). 

     Insects have only one copy of Dsh, at least the taxa that have been investigated so far. 

Significant effort has gone into understanding how Drosophila, with one Dsh ortholog, 

channels a Wnt signal into distinct pathways. It has been shown that specificity is 

achieved by the presence or absence of binding partners as well as the subcellular 
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localization of Dsh (Wallingford and Habas, 2005). Other work has shown that 

qualitatively different Fz-Dsh interactions underlie PCP and canonical Wnt signaling 

(Strutt et al., 2012).  

     The insect proteins, Dmel-dsh, Tcas-dsh, and Nvit-dsh are very similar in architecture. 

All have a DIX, PDZ, and DEP domain as well as the basic region and SH3 binding 

motif. T. castaneum is the only one that lacks a DSV domain, but this suggests that 

additional taxon sampling could reveal a broader trend. Interestingly, all insect Dsh 

proteins have a NLS, but none have the known NES that has been shown in Xenopus. It is 

currently not known whether invertebrate Dsh translocates to the nucleus, but if Dsh 

does, it must employ a different export signal than the one found in Xenopus. More work 

must be done to better understand the localization and transport in invertebrates. 
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CONCLUSIONS 

     We have discussed the origin and evolution of Dsh in a variety of metazoan lineages, 

emphasizing a recurring theme of Dsh duplication and expansion in many phyla. The data 

we have evaluated suggest that Dsh arose in the most recent common ancestor of 

Metazoa and possessed many of the structural features that have come to characterize 

Dsh (Figure 2). Most basal lineages within explored phyla appear to have only a single 

Dsh ortholog, leading us to conclude that the ancestral state of Wnt signaling pathways 

was built using a single Dsh protein acting as the hub, and has then experienced lineage-

specific expansions in many phyla. The deuterostome taxa wherein Dsh has been 

explored reveal that early branching deuterostome phyla (e.g., Echinodermata and 

Hemichordata) have only one Dsh ortholog, which is also true of basal chordate lineages 

like lancelets and sea squirts (Cephalochordata and Urochordata, respectively) (Gray et 

al., 2009). It is noteworthy that as more taxa in a particular phylum are explored, the 

derived lineages seem to have convergently evolved multiple Dsh orthologs, although 

there may be exceptions such as insects, where even the more recent lineages seem to us 

the ancestral strategy of partitioning Dsh function in ways other than protein duplication 

and subsequent divergence. 

     As the hub of Wnt signaling, Dsh plays an essential role in animal development and 

homeostasis. We have shown that Dsh has experienced dynamic evolution across 

Metazoa, including the acquisition and loss of domains as well as gene duplication in 

many lineages. Our findings on the divergent and varied architecture of Dsh across taxa 

provide testable hypotheses about the means of these specializations. The dynamic 

evolution of Dsh among nematodes both by paralogous duplication and the formation of 
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lineage-specific splice isoforms raises questions of protein evolution and provides clues 

as to how these organisms have dealt with the complex intricacies of having a protein, 

like Dsh, act as a central messenger hub connected to so many different and vitally 

important pathways. 
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SUPPORTING INFORMATION 

All Dsh proteins identified and used in this analysis 

The supporting information included all of the protein sequences used in this analysis and 

has the various protein domains, as identified using the SMART database 

(http://smart.embl-heidelberg.de/) highlighted, according the the key below. 

 
Domain Highlight Key: 
Green – DIX 
Yellow – PDZ 
Pink – DEP 
Blue – Basic Region 
Red lettering – SH3 binding domain in the proline-rich region 
Dark Green – DEP-like fragment 
Red – Dishevelled specific domain 
Teal – Dishevelled C domain (mammalian specific) 
Black & White – Signal sequence 
Maroon – Coil domain 
Grey – internal repeat 
 
 
>Cele-DSH-1 
MAESPPPVDSSLNAPNVGSPTTMMERLRLRDQTEENGKEDDFDNKSVSSAQYSQ
TSEATTAVKQQPFLHTMTKVYCHIDDETDPYMLEVHVPPDLITLGDLKRVLMRT
NFKYYRKALDPDSGYEVKAEIRDDSQRLTPSPNNLFELFLLTIEGSTHSDGSSGK
MRKYPSVPGPAPSNRNGPPMNYQHAAYQFDNSMMSTDSESMISAAIPGYLKSAA
YNRRFPQHYLGHRRHLEESTIGSESDARVFSDDDDRGSTTTDFTSVSRQHEKMA
KKKKNKRNFRKPSRASSFSSITESSMSLDVITVNLNMDTVNFLGISIVGQTSNCGD
NGIYVANIMKGGAVALDGRIEAGDMILQVNETSFENFTNDQAVDVLREAVSRRG
PIKLTVAKSFENGQSCFTIPRNSREEPVRPIDTQAWIQHTNAMRGMPSIVEESAPTP
IPGEWPHGRPPSSSTVTSNGSNGQNTVVGGGAHIILDIHTDKKKVVEIMAMPGSG
LDIKNRTWLKIPIPMSFLGSDLVEWLLDHVEGLRERKTARNFAADLLKLKYIAHV
VNKVTFTEQCYYVLGDECSDYARFRNEDGGPKYQWTIGMNGMSAGNGSSVML
PPPHLPGGMAGPPGAFKGMAPSMVSGYASMPASPFPPAQLQQQRREGSTTSGSS
GGGIRKQRVVVLPRKPSSSANVPFDDSSTIYEESNNSFLMATGQRYEY 
 
>Cele-DSH-2 
MTDSPSPIDSSFDASDVATPCTVIAAKISLRNRNGLEEDQENLDSFDAFTETHETQ
ESKNIAHGEHEEDVSNIYVDDFSKEFGDTVSSVMEPLPKPLTFARTITKVYCHLD
DQEHPYMVEVHVPPDCITLRDVKRKLMRTNFKYYCIALDPDTGLEVKAEVRDD
SRRLYPLKNGRFELYLLTVEGSVHSDTSSGRHRRKQDGSSKGSSGSREYLRAAH
HYDNPTPFSDDESQASSLPTYVKKAHAYNRKHAPQAYERHLPHMKHNNRHNHH
RQNHYEESTFDVTTESDDHYRDGVTYYDEDEDDSRSINTDLTSVSQVHLKQKW
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RQQQKEMRNKWKRMPSISTASSSFSSITESSMGLEVITVRLNLETIPLGMTPSGHT
NARGDAGLYVGDIQDRGAVALDGRIDIGDMIVGINEISLGNYSNKEAVQLLREA
VQRQYLTLTIAKTGDPKQNAFPRNPRAEPIRPIDPNEWVKHATNAMKAMPSISEE
SSSTPIPDDWPTNSSASGTPFGGPPPANCLNVMTDKKYVVEVMAAPGSGLDIKDR
YWFKIPIPMSFLGTDLVEWLVKHVQGLETKKKAREFAEEMLKLGYIRPGVGKQS
FTKECYYVMGDECADYTQLRGPDGGYKYPQSHASSASGHSSNNLIFPPSMYPPQ
PPTAGAVQSSKFGHSTFFNDWRIRITTGVSISSRKGICQ 
 
>Cele-MIG-5 
MEPPCTSDCSQIKVFYYLDDETTPYVSVIEAREGVATLGNFKNSFTKRGYKYYA
KELDPDIQREVKVELTTDSDRLRKSQNGFYEIFLVSTPGYGTLPRNSGTMTRPQR
TALDKRRRRSADFDATPYSDASLAPSTIVSRRAGEHLAELYTSNSEDPYQYDEHT
RRTGDDSSLYEPLAARDMNKIYDDDRRRKKQKKERFRRPYVPSTISSATESSVNS
GLPRILEIYLPMKNVPYLGLSVCTIDGHIFVSEIAPEGAVEKDGRVNVGDQILQVN
RVSFEELSGPQAVRSLREAASSKRPITLYISKFARGAPSEYDDPLASMASETMPLD
VGVWVETAVQNTEKMKALGLDPQEQTATTIDDGTLPFTSTASDDEERMLYDQR
RNGIPRALIEEAERKRENEQNEKIEQLTEMIDPIIVVRSMARPDSGLAVKNRKWL
KILVPMSFIGRDLVDWLVDHMADIHNRKKARIYAARLLAAGLIRHVVSKLTFTE
KCYYVFGDGILGNDRNSTDTTGTSGTTMRVEATTEVTYVGSPAPHALAARVGR
NIPHRLETTTLSPVAHDQTWLRRRRDCESPMTNDYASMVGESQIGMNPVGNYH
VFGTKNNHRQVPAPSQVTSSSLTNGSGGLGGPPPTPLSSTMVLAASPIQSQNAVN
HDFDGENSSNSRTRILRT 
 
>Bmal-DSH-1a 
MDVSDTLDTSNTTDTIIEKTNKLKISSAVESKDESSKNSSCTSKAPLAKGTSCLEH
GIGVPSQQTSTKVYYHIDDEMVPYCTDVMVPPDKITLGDFKRVLTRSNFKYYCK
APAPDSGVFPEVKVEIRDDNECLHRSANGQFELFLLTSEGSSHSDGSSGLPLKSAR
LMFSKIIFRPIIVHCEKNFLVASTDSDSFISDMRALPMQVKGISRRPFPQQYISQGH
RGGRRFEDSTLGSESDARLFSDDDDRSRVSTSTDITSVSRQHHAPAYRKRRNRRR
FRQPSRASSFSSITESSMSLDVITVTLNMDTVNFLGISIVGQSSSRGDNGIYVANIM
KGGAVALDGRIEPGDMILQVNDISFENFTNDQAVDVLRESVARRGPIKLTVAKM
WDSGPRSAFTVPRHRDEPVRPIDTQAWIQHTNAMRGMPSILEGSEGAPTPIPGQY
GRPASSSTATSNGSVPNTIVGGAHFRLDAMTDKKKVVQMMVMPNSGLDIKNRT
WLKIPIPMSFLGSDLVDWLMEHVDGLRDRKDGRKFAGELLKEKLISHVVNKITF
TEQCYYILGEECADYARLRQNPGGDDPGVRSEVGSVLPPPPPGLVAAAAAQQSG
RAWPQPTMIPQSAPSMVSGIENPANADGTTRFYLTNL 
 
>Bmal-DSH-1b [SPLICE ISOFORM] 
MLFSVPGPAPTMYPVGSMAYRQAVQQFDQSMASTDSDSFISDMRALPMQVKGI
SRRPFPQQYISQGHRGGRRFEDSTLGSESDARLFSDDDDRSRVSTSTDITSVSRQH
HAPAYRKRRNRRRFRQPSRASSFSSITESSMSLDVITVTLNMDTVNFLGISIVGQSS
SRGDNGIYVANIMKGGAVALDGRIEPGDMILQVNDISFENFTNDQAVDVLRESV
ARRGPIKLTVAKMWDSGPRSAFTVPRHRDEPVRPIDTQAWIQHTNAMRGMPSIL
EGSEGAPTPIPGQYGRPASSSTATSNGSVPNTIVGGAHFRLDAMTDKKKVVQMM
VMPNSGLDIKNRTWLKIPIPMSFLGSDLVDWLMEHVDGLRDRKDGRKFAGELL
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KEKLISHVVNKITFTEQCYYILGEECADYARLRQNPGGDDPGVRSEVGSVLPPPPP
GLVAAAAAQQSGRAWPQPTMIPQSAPSMVSGIENPANADGTTRFYLTNL 
 
>Bmal-MIG-5 
MREEAAAISTKVYYYLDDSTPYLSVVPVADDAITLGDFKKVFNKKGYKYFCKQL
DEAVGCEVKVEIRDDSTKLVKSANGLIELVLLSSSDNVHCSGTLPRVSNKTNKGQ
LTGAKLKDFNLRKRRSLHDLASENRDLLRIHRNKSDENSITASSLSTVISKRAGEG
LAELYASNSEDPYHLEDVNSRYFKHPGACXPVFPASPLASPSGVLPCPRRQRRPR
KERYRKAYVPSTISSVTESSMTSLSLPRIDVITLPMKNGVFLGISVLSHDGGIFVSD
VHSGGIVDLDGRIEVGDQIVQVNRSSFENLSDVEAVDLLRKAAASRKPITLYVAK
RTCNNSDKRADILSGIASETMPIDISLWVESTKHNIVRPPKGLEEMVSVNDGDAT
LVAEEAETDLEGAYAERRNGHIPSIQNCVKLKQLNPPDLNTSLNIEDIARRRENEE
NEQQLDNLNVDMDPVIILKYMALPSSGLQIKNRKWLKIPVPMSFIGCDLVDWLM
EHVHGITDRKAARIYASKLLAEGHIRHVVNKLTFTEKCYYIFEDSILSVRNKNKS
DSSLGKAGAEVTTEVTYVGSPAPAHLSRTSARNTLGGKAIFDQSWPHLTITSSEQ
RKSFCGSSTNDYASVMGPDMIDSTLLTEAPTLKLSHRTLPNRLDMEQRINGCEVA
QPPNTPNSLLHEQRNADSETEFETVEDNKFLVIQK 
 
>Bxyl-DSH-1 
MSSMTETSMSLQVMHVRLNMDTVKFLGITVVGQSSARGDNGIYVAHVMPGGA
VALDGRIEIGDMILEVNDVSLEKMTNDEAVEFLREAVTTKGPIKLTVAKCVDSNR
ANFLVSSREPVRPIDTRAWVQHTNAMIGMPMNSIPESAEEAPTPIPGQYPQNNSH
PVFCRPQSSSTATSNGSGGPKNTVVGIPGAYFALPPRLDLSTDKKIVAKAMAMPN
SGLEVRNRTWLKIPVPMSFLGSALLDWIHEHVEGIRDRKEARKYASELLKDRLIA
HVVNKSSFTEQCYYVFGEDCQEILKLRNEDGTPRTDLMPQPPMHPPKPIPGHSAF
GWTQARSTGDYASMPVSPYPGNGPFIPTNSLNQPLNKHGDIHSQASGNSNDGSSS
SDQRRKPLLPAAPPLPMGLNPLYQQGPQPPPSQPPPLPPFEARDPSSLKLDDLGSN
QQLQALVSQGFTVDHL 
 
>Bxyl-MIG-5 
MASTKVYSYLDDDNTPFLTSVPVSASQITLGDFKKALPKRNLTYSQKVFDENVK
KHVKRTIHDDSEPLQLNENGVVELFLTSNGPIGTLKTNGRHYKNLPPHLANYGV
GDLDVCGGQRVSMVTAEPSISGAGSYLSKRAGEQLASIDNTSASEDPYVFEQSSI
ANQSSDYLRVMNTTDYSRRRKKRERYRRPYVPSTISSASGMSSVPQVTEIMLDLR
EHALGIDIGMCDGAVLITSIAKNSAADRCGALGVGDQIVQVDNTSFEELSDEQVV
SLLRKISSQKRVVRIVVARYKRDSDQRSDALSALCETAEIDVSLWVEGTKQANPD
APFDDFHQNPNTSAHINEAAEETSDEERAAYDDRRNGIGAHFVPQIKLMRAIHQR
TEANGHIPNDENDRHSRLSATDAMEIVVRQMARLDSGLKIKDRKWLKIPIPMSFI
GHELVNWLLENVDGLDNRKQARNYAKQLLEKGFIKHAVNMNSFSEKCYYKFQ
EKICEERLLMEQQAKLNTVDSPTEITYMSGPSSPHQPHRQIPNNYHTGPLDVLQQ
RQINYSGTQPPPPRINPQMTSKSQPALPNTLPMNSTQVQRPMNSTAVDLSKWEFS
PIPARNYRDCESTSGIYDVVKQ 
 
>Tspi-DSH 
MEIRKDSSRTSVIGKGNYNGENDKKVVKEEISDDAVKLPTFNGCVESWLVTSEG
STHSDANGPTTQHGHSSPRHPPTRSSGLGESRPPSFHGGRADSRDNLVPSGCSSET
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ESTLSGLPKFPRYGTKLDRRSFHPQFHERVRYPKGMRARCFDVGHGLTSDLDSTS
FMDSEDDQASRISSSTDITSVSRQYLKRKKRRRLPRTLLSRASSVSSITESSMSLNII
TVTLNMDTVNFLGISIVGHSNQLGGDGGIYVGSIMKGSARGAVALDGRIEPGDMI
LQVNDISFESMSNDDAVRVLREAVQKPGPIKLVVAKCWDPNPKGYFTIPRTEPVR
PIDPGAWVAHTNALRAEMPLDYPGPLSVNTGSFTPVPEAEKFLEECNLDVNVHDI
LTIVRAMAKPESGLEIRDRTWLKITIPNAFLGSDVVEWLYTNVQGFYDRRDARK
YAARMLKEGYIKHTVNKITFAEQCYYVFGDICDNFAGLRLEPHREEPPQLEHDSI
SALPPPPMTPSTLWSSNVGHPYYPHQACPSFVQTSSVASGYVPIPYQYNNEAGSF
PSLVVGGAPPTSRSDANSAGSAGSNGSNESERVRKGVVGGLLPMTSTPGVPLDP
NIQLKGYGPPVGAMTSKGMIGPLSPTSRNVNDLQSDISGSRQSFRMAMGNPCEFF
VDVM 
 
>Asuu-DSH-1 
MGEGIGMSLLLDCPISQAACYLNFVKHPNVSMYMKLFVEVTSSLQMPTDDLVD
VDENRRVVKLSQSFELKGRKSGRSRSLPHTDKKGCRCHRAGRRFEDSTIGSESDA
RLFSDDDDRSRVSTSTDITSVSRQHQANAYRKRRNRRKFRQPSRASSFSSITESSM
SLDVITVTLNMDTVNFLGISIVGQSSSRGDNGIYVANIMKGGAVALDGRIEPGDM
ILQVNDISFENFTNDQAVDVLRESVARRGPIKLTVAKMWDGGPRSAFTVPRHRD
EPVRPIDTQAWIQHTNAMRGMPSILEGSEGAPTPVPGQYGRPPSSSTMTSNGSAP
NTVVGGTHIRLDTTTDKKKIVHMMVLPNSGLDIKNRTWLKIPIPMSFLGSDLVD
WLMEHVDGLRDRKDGRKFAGELLKEKLISHVVNKITFTEQCYYILGDECAEFAR
LRQNPSAGDEQGVRSDVGSVLPPPPPGLMAAAAAQQTATRAWPQTTLLQNAPPS
MVSGYASMPISPYPGQPPTQPFAPSIMHGVGNPVSIYKGGCAPDVHSQTSSNDGS
SGSEHIRASQLAHSIIEKGTACPHLRLRDTDVVIYQDNVVTQSHGTRARSSLLEIR
FGKSEQAAHVRIKCGLYFPTCCGLCFPFYRQKYAGAAFTRERKCEFL 
 
>Asuu-MIG-5 
MPLDENAAVASTKVYYYLDDNTPYLSVIPVPENKVTLGDFKKIFTRKGYKYFCK
QLDKAIGCEVKVEIRDDSSRLEKSANGLIELVLLSTVTPSGTLPRAITNKTEHNGV
GNRDPVVNFESDLKVRKRRSLHELADNVVVNADPLANGCRASMRNSNEDSITA
SSLSTVISSYSILERAGEGLAELYTSNSEDPYRFDGSNSRFTLNSEACSSAYGGIRM
AASSAASCLKAHRQRRPRKERYRKAYMPSTISSITESSMASLSLPRIEIVKLLMTN
GAFLGISVLSNDGGIFVSDIIKGGAVALDGRIEVGDQIVQVNKNSFENLTDAQAV
QLLRQAAVSRRPITLYVVKRPCNTDSRSDVLSGLASETLPIDISLWIESAKQNSVK
PLKPFAIDETNSIMVENTLGEEEHETDMEGAYAERHDMIQIPPTSNKGRTTQVVT
TKRGVMTTEDVARRRENEENEQLVDNLNVNMDPRIILKFMARPDSGLQIKNRK
WLKIPVPMSFIGRELVDWLLDHVHGLHDRKAARSFASKLLADGHIRHVVNKLTF
TEKCYYVFDDSILSVRSINHSDGSNGKTGAEATTEVTYVGSPAPQAAARLAVRN
CNDSGMPPPPINNKMPAEIDQTWPVSPITIYGPTQRRKDCDSPVTNDYASVIGPDV
VTSTMLGTSLTEAPTLKLPRHGFIGRGNEMRRRMDDEIVVAQPPNTPSSLSAAPNI
GVDLGADFDSLEQDRRNMLKENR 
 
>Ppac-DSH-1 
MSGYQVDTDDVSSTSGSGGGYYGYGGSTSGGSVYYGMSGATVRNRGTMTIREA
DEDGGERDDGEGSMSTDLTSVSRQHEKMLARRRKAQRTYHRRPSRASSFSSITES
SMSLHVETVTLNMDTVNFLGISIVGQSSARGDNGIYVANVMKGGAVALDGRIEP



 67 

GDMILQVNEVAFENFTNDQAVDVLRDAVERKGTIRLTVAKSIDSNQRSDEPVRPI
DTGAWIQHTNAMRGMPSILEGSEGAPTPLPGERLHHHQQQMQQRPATSSSATST
GSNGQNTVVGSAGLPGTMPPLPRLDVHTDKRRVVEVMTRPGSGLDIKNRTWLKI
SIPMSFLGSDLVEWLLEHVSGLRERKEARKYATELLRQRLIAHVVNKISFTEQCY
YVLGEQCADFARYRTVQVEEGGVNGGGGTQPTWQWGGGGPRPTGITPGGVGG
SMSTLPAESHLFFLVKCNFINCASQVSGYASMPMSPHPPLFGGASAPGVRTFGGE
GSQISSTDGSGSSDAHKRGSI 
 
>Ppac-MIG-5 
MQVHDIASILKKKEMGVESELMTNQLPLRIYESEGLVFEWMWLRSVPVMGLDS
NTYGKVFEDFDLHELKEMLTVNYTSWRKYVWMVLDGMHVLSFPLPIPPQELIIY
RLEDMKMKYTSIQSESPNNLLRYFELRSFDFRPADEELKGFIESELRNGSMAIDGV
DWREWLCESDVLNGMSDTVAEDRQLCWIEDVNGKEKKRLMAATEAMRVDTP
YLWKDVMELAMEKLQLMALPTMKFNVMKYGETKRQRILMKEEKSGEIPPRYF
KEIHCMSRENIVPPGVNETTKVFYYLNDEPTPYVEIIHVGAESVTLGHFKREVKV
ELIGDETKLTRNGENGLFELFLLSTGTQNGGGGGTLQRKTNGTLTRRVGKERND
RDIYNTHRVHSDDYDSSSRQDTLMSRRAGEILAESITSASENLYEYDDSRQYNAV
MGDEASRIDGPRRRKARKNRVRKSYVPSTVGSQPESRYGGIPGTSLSLPRILEVNL
QIGPNDLLGISVVSVEGSILISDVFPVGVVARDGRIDVGDQIVQVNTRSFENLSDQ
QAIMILRKVAAAKKPLTLYVAKRTMSTAESDPLCTLASETLPLDISLWVENAVHC
TERQRFGVDGSVDGTILSEGVGRAASICTEDEEEERMLYVQRRNGMGIRERGLE
QPPIHLHSAPPPRGNYSEGSGYTERLSTRINPHSLINIISQPNSGLTVKNRKWLKIPV
PQSFIGVELVDWLVQNVEDLGERKEARKYATHLLEKGLIKHVVNKRDFTEKCYY
VFNGE 
 
>Scar-DSH-1 
MYFSLAIWPTVATRGFVLVLVMFDLLSFHRGLCNVRVSSPVLLPLIVKPNMSDSA
VSNSTLEPIVAVTARMTIKDDSALVGPSSDVSDRQSDVSGSQSLQPIGGPESDQCV
ANANVPSSKQTTKVYYNIDDETTPYCTEVPVPPDRITLRDFKNAFNRQQNFKYY
CKRIDKELGKEVKSELRDDSQPIERSQNDIFELFLLTAEGSTHSDGSSGAHTRPSL
RGTHMVPAPAPSGAHFDAYNAQYMHGRNFDPSCKITSLQEKTDLYHFSGEHRLR
IDVRKRTPVLPAGQHEPKAAVLPASPSADSSCLRSFQSNEGYGKRPPCRLSLFAN
TLLLLNPNLAGLGCCSSPSSFYDFQSWLPLLIYCAAFDNLSFIPRSIIPHRKKIHMS
GADRNSAERIDRLRERAKRLQELITDRRRSCRYVSEKCERFDVSAEPETSLKANK
PTTAPEPMVKMREPKPYVKSRTRELVESLINILPREPRDVRRSESLAVIVPSSTSTT
APMVIRHSSVSASNSKRQKDSDAPPGKQEQYAVIKKKSKRLSLVEKLPFLSAYSE
RQRPKSTSVAFERDTESLLPNRSEPPEAESESKAPPKAESESKAPPNAEELVEPAE
KIHRRSLPNPVRYRPKSIYQQSQMLPSGSTPKTLTRAMTMVDSPRRLPPLIEVTAP
EPSEAGESAAQSQSEAAAEKTSRKPRRYTGSHTTSTYQGGRDAAPDASPRRHLIG
FLHRTSHLSLTSELSADASFYLIGHRGRGRFEESTIASESDARIFSDDDDQTRVSTS
TDITSVSRQQHHNIYRKRKNRRKYRQPSRASSFTSITESSMSLDVITVTLNMDTVN
FLGISIVGQSSNRGDNGIYVANIMKGGAVALDGRIEAGDMILQVNDVSFENFTND
QAVDVLRDAVARRGPIKLTVAKCWESAQKNCFPVPRPRDEPVRPIDTQAWIQHT
NAMRGMPSIMEGSEGAPTPVPGQYSQHQRPHSSSTVTSGGSGPNTVIGNGPNHIQ
LDSKMDKRKVVEAMAMPNSGLDIKDRTWLKILIPMCFLGTDLVNWLIEHVHGL
KDSKEAKKYAMELLQAKLIKHVVKKVTFTEQCYYELGEEFARHRLMTGECSSG
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RSDVGSLPPPPPGFLQSQPQQAARWQVMPGSNGVPSAPSMVGNHAPSSHMVPPR
HGGVPSSSEYGIVSGGHPCARVTIENGTTSHFILDI 
 
>Scar-MIG-5 
MEVKVFYYLNEGDVPYVSVLNPASGAAPTLGDFKKVFNRAGFKYYCKELDTDI
GREVKVELTDDKAPLLRAGSGLIELFLVQQQQQNFNSGTLPRTGKQNHEAAAGA
AFEPGGRLKKRRSLYGLSSVDGFDIGGGQRVSMVTNEQSLAESSQGTVLSRRAG
EHLADMYATNSEDPYNMEDPSASSFSAASSAYGGIPIGNNGRLPQNRHRKPRKE
RYRKAYVPSTISSAAESSLTSQSLPRIDVIKVSMKNAITLGIKVVGHDGGIFVSLIL
PDGAASQDGRLEVGDQIVQINEESFENLNDQQAVSILKKASKSKRSVTLYVSKRP
RAHDDGSSDVLTGMTANETMPLNISSWVKSTMHRKVEKHVPFQSVVGESTLDP
SESMTIADETSDEEQAAYLDRRGGVGPRFVPALGMRNQIAEDVFMRQKENDEN
DVMIDTLSVNMDPRIILKVMAKPDSGLQIKNRKWLKILVPMSFIGSGLVDWLLM
HVQGLHDRKSAREYASQLLQEGLIRHVVNKMTFTEKCYYVFDESIMQMANRGS
RGGAHSSGGEVTTEVTYVGSPAPGTDKTQPRPLDSNLTVQNANVNATWPISPITL
YGNQTARRCESPAVTNDYASMIGTEFVQQQHQMPVMMPSEAPTLKIGTQSPSTR
SPFFPPPPPSLQRSMSPPPNTPNTLLSSVLLSGATGSSRLTHQQSSHM 
 
>Pred-DSH-1a [SPLICE ISOFORM] 
ARKKRAPRRYIHSHTTSTYDAAANEKVPDASERRKLIGFLHRTSHLSPLVPEGIDT
VTTVASVTNVVGNRRRYLEDSTVGTESDARVFSDDESRVSTSTDNITSVSRQHN
NYRVRQRRMRRHLRQPSRASSMSSMTETSLALEVMTVTLNMDSVNFLGISIVGQ
SSTGGDNGIYVANIMKGGAVALDGRIQPGDMILQVNDTSFENFSNDQAVEVLKE
AVVHRGPIKLTVAKSDTGRFDAFNVPSEPVRPIDMRAWIQHTNAANNLPHIPEGS
EGAPTPIPGQYPHNYGRAPSSSTATSNGSNGHTILGPNGQVFILPKKLDLSTDRKR
VVSVMALPNSGLDIKDRTWLKIPIPMSFLGSDLVEWLIDHVEGLCDRKEAKKYA
TDLLKEGYITHMVNGNKFSEQSYYMIGRECSDAVRLRLSEEGASRSDVASSLPAP
PPHLAPQPWTANSAMTSDYVPISPFPQQHQMFYRGHDMFSQVSGQSNGDSSGSE
ARRARPILPPAPSSVTNVPYNAGANFFRQQTARLGDFPKNLAASRQSFRIACGNQ
TSEEFFIDHL 
 
>Pred-DSH-1b 
TFCVAVFIGQPMLSHLMSESRDTSATTAHSSSVSVDDAVTAIDKLALTSNGCNGA
LPGPSSSDADAKSDAASSEARSVPRTNGSGSTVSANVTKIVYHVDDESMPYVTE
VPVAPDRVTLLDFKKMLNKLNYKYYCKSNDPEVGGEVKAEIRDDNQQLFRSLN
GQFELFLLTTDGSNNSDGGASSGFSRNVTQSVPGPAPPSAYPPFGLPQHMRQYSG
YDNGNRRRYLEDSTVGTESDARVFSDDESRVSTSTDNITSVSRQHNNYRVRQRR
MRRHLRQPSRASSMSSMTETSLALEVMTVTLNMDSVNFLGISIVGQSSTGGDNGI
YVANIMKGGAVALDGRIQPGDMILQVNDTSFENFSNDQAVEVLKEAVVHRGPIK
LTVAKSDTGRFDAFNVPSEPVRPIDMRAWIQHTNAANNLPHIPEGSEGAPTPIPGQ
YPHNYGRAPSSSTATSNGSNGHTILGPNGQVFILPKKLDLSTDRKRVVSVMALPN
SGLDIKDRTWLKIPIPMSFLGSDLVEWLIDHVEGLCDRKEAKKYATDLLKEGYIT
HMVNGNKFSEQSYYMIGRECSDAVRLRLSEEGASRSDVASSLPAPPPHLAPQPW
TANSAMVGHPHHPPQMPQQGGRLLVATPNSTRKSPVLNGVPNGGGNGAYPTSY
AADNSSYGVIGGVNGVAAPPPTWRLTEESLGSLRHMADV 
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>Pred-MIG-5 
MSDAGSSSFTTVYYYLDGATPFKSEVPVPPEKITLGDFKRVFDRQNYKYFCKEFD
PMLKKDVKVELTKDSQKLNKSESGVIQLVLLPVYPASARASDSSGGTLPRASRSD
TGRNPPRRGFAQPKRALSITDETDYANNRYSLATDPASTAYSRRAGEQMAETLSS
SDFDDDNEREDTSDEEANRESGSSTSCRRPHGNRRNRQPRAYVPSSRGSKSATSQ
SDSLPGIAEICIQIYPHQNLGFNVADHDGGIFISDIFDDTAAGNCPDLSVGDQILEV
NSVCFEHLTFEQALAQIKKATKTAKSEATETKPGKIKMHVARLRVSDQHSESGLS
AGLGDTIPFEVSEWVMATTAENVDRFDDPLNNSRFDDGGVTSDEERAAYIDRRN
GVGARLVPALHNFRSNNGFDVPSSPHNRNHPALLMPPPPPRSRENDENEFLNAPL
SVDTDPITILKRMVHPASGLEITTRKWLKIPFPDSFIGNEMLAWLMEHVEGLKNK
KAARKYAASLLTKGLIRHVLDGKQFDKKRYYFFADNIISYRRQIEHARATASASR
LPTSATAATEVTFLGSPSYPPPAGPTANGGLLKSIPASCGALPSSSNNFFSSQNTYL
TGSRAPTRSMHSQQRLPQATRSPYYPAPIGPAMYMPQPQASPGLPQWPISPLIGSN
ERRPSCTSPVTTNEYASMINAEVNSNYMSVPTLPRGYGNARLMNNGTPPPNTPN
TALQGTASRSQVPIQHR 
 
>Minc-DSH-1 
METTKLDNDESNEVRMLEKETVQLDINKAMNTNNDLNSQAEKIDNVSDASSHL
THSSMSICSSAAGRGATKVYYHIDDEQTPYCTELPVPNNRVTLGDFKRVLNRTNF
KYYCKAIDSEVGGEVKAEIRDDAQQLTRSSNGHFELFLLTAENSNSDGNSSGVSK
LASMKKVPLGPTTIYPFTSSQHYRPRNRCDSNYVSGNHTRQPFDDSTLYTNETDH
RLYSDDESRLSTSTDNITSVSRQRYNLYRRRRRQAPRNRRKPSRASSLSSMTETS
MALEVITVTLNMDSAVNFLGISIVGQSSSRGDNGIYVANVIKGGAVALDGRIEPG
DMILQVNDVSFENFKNDKAVEVLKQAVNRQGPIKLTVAKSFDSGRANYFSVPVR
EPVRPIGSEGAPTPIPAHNQYHPREQMVNMLNIPPSITQHQQRSACSSNTTATSTN
GSGGVAPQIVLGQGGVFLAVQPRLDINSDKRIIIRAMVAIGSGLEIRDRTWLKIPIP
MSFLGSSLVDWLIQNVDGLKTRKEARKYASDLLKERFIAHVVNKQVFTEQCYY
VFGDNCSDLLLLRNGIEHGSALVRNPQNQAVLANQRLFHDRDCGTQVPYMLHT
NFGGSEYAMPSVSPYPPPVIPMQTTLEYSNQQRQLHKLVPQNPVHTQTRFDQFG
ANSQASNNSNEESSGSEHRRKAMLPPAPSLTSIGQPQYFQPHQFFPGQIHRTSQPT
GPPPTTPDDVNSMMLNRFCGINALLAMDVYANYMIQQNGIRQEQQPTLSQMKQ
EFAPYSGSSSQATGTGKFVAMPLLQQTGKVFVGPGQHREAQLIGLGLRKLRTFE
REDIERAKRYALDQSVKFVMLKQREAHQQQVNFIWDFLCFKLLFSRIRRMTILFC
RGHMYSID 
 
>Minc-MIG-5a 
MSEQPKGSTKVYYHLDDSTPYMSELMTSPDRLTLGDFKRAFNRKGYSYFCKEW
DPNLKREVKVEIVNDRQLLRKSVNGLFELFLLSQQNSTQPFSNTTSNMGADQESD
LQTLISKRAGENLAEMYNSTSEDPYNRTSVSSSSIFQRRPLPGAPMPSAESTAESA
AERTLLVNTSAARQKRLRKQRYVPSTISSESESTYSLPRIEEVKLRLQDAPLGISV
ASQCGSIFIYHIQHGSAAERCCRLEVGDQIVQIDETRFEDLNEKQALEVLKKLNSV
KKTITMYVAKRARTNGGESSEDHKSDPLSLLCETQQLDISQWVESTTNKNCVEQ
VRPFAEIPPVAKVERGTLPIDGCKVKNQTVDETSDEEKAAYLDRRNGVGARLVPI
IHQVRFHQQQQQQQKSEEMHKMQMINLENNPTTSSCPVMLGTLEESSPHLDCHP
PLIQLPLHAAMDPKIILFRMVEFDSGLEIRNRKWLKIPVPMSFIGDEMIDWLISNV
QGFRDRRHARSFASNLLAQGLIKHDEIIADRLRIEEQQKQQHLLKQHKPDADFQT
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TSIKKPPALAPESNTEITYMSNPPVTSTCLGSSGAPQNVSSHTHPTLTDQQQRTQY
VIANNPRYAPGPMSNNFCGQKINKNTAALITDAANLNKIDKNAPKNAVATNIPLR
TLNPPKFGLKLPVWPISPILSFYRPQNQEVSQQQRGRCDSPEASKTNDDYASMIQ
GEINCGAQFDDGLNTFQNQQQ 
 
>Minc-MIG-5b 
MSELSITPDRLTLGDFKRAFNRKGYSYFCKEWDPNLKREVKVEIVNDRQLLRKS
RGQAKIWQKCTIQHRKILTTELQSSSSIFQRRPLPGASMPSAESTAESAAERTLLV
NTSAARQKRLRKQRYVPSTISSESESTYSLPRIEEVKLRLQDAPLGISVASQCGSIFI
YHIQHGSAAERCCRLEVGDQIVQIDETRFEDLNEKQALEVLKKLNSVKKTITMY
VAKRARTNGGESSEDHKSDPLSLLCETQQLDISQWVESTTNKNCVEQVRPFAEIP
PVAKVERGTLPVDGSKVKNQTVEETSDEEKAAYLDRRNGVGARLVPIIHQVRFH
QQQQQQKSEEMHKMQMINLENNPTVSSCPVMLGTLEESSPHLDCHPPLIQLPLH
AAMDPKIILSRMVEFDSGLEIRNRKWLKIPVPMSFIGDEMIDWLISNVQGFRDRR
HARSFASNLLAQGWIKHVVNISSFNEKCYYVFNDEIIADRLRVEEQQKQQHLLD
QKPDADFQTASIKKPPAPAPESNTEITYMSNPPVTSTCLGSSGAPQNVSSHLHPTL
TDQQQRTQYVIANNPRYAPGPMSNNFCGQRINKNTAALITDAAHLNKIDKNAPK
NAAATNIPLRTLNPPKFGLKLPVWPISPILSFYRPQNREVSQQQQRGRCDSPEASK
TNDDYASMIQGEINCGAQFDDGLTFQNQHQQQHLLKSKVTSPLGTGKYSKDLK
NDVNMSNKLSQSLATTNTTKPPPLPKHQFPSEFLTLQ 
 
>Minc-MIG-5c 
MSEQPKASIKVYYHLDDSTPYMSELPIPPDRLTLGDFKHAFNRKGYSYFCKEWD
PNLKREVKVEIVNDRQLLRKSVNGLIELFLLSQQNSTQPFSNTTTNLGADQESDL
QTLISKGRRKFGRNVQFNIRGSLQQNFNPPLAFFKEGLYLVLLCLQLKAQQRTLL
VNTSAARQKRLRKQRYVPSTISSESESTYSLPRIEEVKLRLQDAPLGISVASQCGSI
FIYHIQHGSAAERCCRLEVGDQIVQIDETRFEDLNEKQALEVLKKLNSVKKTITM
YVAKRARTNGGESSEDHKSDPLSLLCETQQLDISQWVESTTNKNCVEQVRPFAEI
PPVAKVERGTLPVDGSKVKNQTVEETSDEEKAAYLDRRNGVGARLVPIIHQVRF
HQQQQQQKSEEMNKMQMINLENNPTTSSCPVMLGTLEESSPHLDCHPPLIQLPL
HAAMDPKIILSRMVEFDSGLEIRNRKWLKIPVPMSFIGDEMIDWLISNVQGFRDR
RHARSFASNLLAQGLIKHVVNISSFNEKCYYVFNDEIIADRLRIEEEQKQQHLLKQ
HKPDADFQTASIKKPPAPAPESNTEITYMSNPPVTSTCLGSSGAPQNVTSSHPHPT
LTDQQQRTQYVIANNPRYAPGPMSNNFCGQKINKNTAALITDAANLNKIDKNAP
KNAAATNIPLRTLNPPKFGLKLPVWPISPILSFYRPQNQEVSQQQQRGRCDSPDAS
KTNDDYASMIQGEINCGAQFDDGLTFQNQHQQQHLLKSKVVS 
 
>Mhap-DSH-1 
MEATKLEFNEMQVLEKETVQLNINEANDTSKKDLNSKAENVDRTSDVSSHLTDS
SMSVCSSAAARGATKVYYHIDDEQTPYCTELPVPNDIVTLGFLFANQGHQFEIIG
DFKRVLNRTNFKYYCKAIDSEVGGEVKAEMRDDAQQLIRSSNGHFELFLLTAES
SNSDGNSSGVSKLASMKKRQTFEDSTIYTTETDHRLYSDDESRLSTSTDITSVSRQ
RYNLYRRRRRQEPRNRRQPSRASSLSSMTETSMALEVITVTLNMDSTVNFLGISIV
GQSSSRGDNGIYVANVIKGGAVALDGRIEPGDMILQVNDVSFENFKNDKAVEVL
KQAVSRRGPIKLTVAKSFDSGRANYFSVPAREPVRPIGSEGAPTPIPAQYPQGHMI
NILNAPPSISQRQQRSACSSNTTATSTNGSGGVAPQTVIGPGVFLTLQSQLDLNTD
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KQIIMRVMAEINSGLEIRDRTWLKIPIPMSFLGSSLVDWLLQNVDGLKSRKEARK
YASDLLKERFIAHVVNKQASYL 
 
>Mhap-MIG-1 
MSEVQIPLDRLTLGDFKRVFNRKGYSYFCKEWDPNLKRSSSSIFRRGPLPGAPMP
SAESMTESAAERTLLVNTSTARQKRLRKQRYVPSTISSESESTYSLPRIEEVKLRL
QDAPLGISVASQCGSIFIYHIQNGSAAERCCRLEVGDQIVQIDETRFEDLNEKQAL
EVLKKLSYVKNKNCVEPFAEIPPVESRIGINQITGALPIDEFKVKNQTIDETSDEEK
AAYLDRRNGVGARLVPIIHQVRFHQQQKADVKQRIKMVDLENNPTTSSFPITLGI
VEECSPHPDCHPPLIQLPLHAAMDPIVILRRMVELDSGLEIRNRKWLKIPVPMSFI
GDEMIDWLIANVQGFRDRRHARSFASNLLAQGLIKHDEIIASRLHFEEEQKQLLL
KHQQNIDCQNTSIKKAPAPPPESNTEIT 
 
>Dmel-DSH 
MDADRGGGQETKVIYHIDDETTPYLVKIPIPSAQVTLRDFKLVLNKQNNNYKYFF
KSMDADFGVVKEEIADDSTILPCFNGRVVSWLVSADGTNQSDNCSELPTSECELG
MGLTNRKLQQQQQQHQQQQQQQQQQHQQQQQQQQQQVQPVQLAQQQQQQV
LHHQKMMGNPLLQPPPLTYQSASVLSSDLDSTSLFGTESELTLDRDMTDYSSVQ
RLQVRKKPQRRKKRAPSMSRTSSYSSITDSTMSLNIITVSINMEAVNFLGISIVGQS
NRGGDGGIYVGSIMKGGAVALDGRIEPGDMILQVNDVNFENMTNDEAVRVLRE
VVQKPGPIKLVVAKCWDPNPKGYFTIPRTEPVRPIDPGAWVAHTQALTSHDSIIA
DIAEPIKERLDQNNLEEIVKAMTKPDSGLEIRDRMWLKITIPNAFIGADAVNWVL
ENVEDVQDRREARRIVSAMLRSNYIKHTVNKLTFSEQCYYVVNEERNPNLLGRG
HLHPHQLPHGHGGHALSHADTESITSDIGPLPNPPIYMPYSATYNPSHGYQPIQYG
IAERHISSGSSSSDVLTSKDISASQSDITSVIHQANQLTIAAHGSNKSSGSSNRGGG
GGGGGGGNNTNDQDVSVFNYVL 
 
>Hsap-Dvl1 
MAETKIIYHMDEEETPYLVKLPVAPERVTLADFKNVLSNRPVHAYKFFFKSMDQ
DFGVVKEEIFDDNAKLPCFNGRVVSWLVLAEGAHSDAGSQGTDSHTDLPPPLER
TGGIGDSRPPSFHPNVASSRDGMDNETGTESMVSHRRERARRRNREEAARTNGH
PRGDRRRDVGLPPDSASTALSSELESSSFVDSDEDGSTSRLSSSTEQSTSSRLIRKH
KRRRRKQRLRQADRASSFSSITDSTMSLNIVTVTLNMERHHFLGISIVGQSNDRG
DGGIYIGSIMKGGAVAADGRIEPGDMLLQVNDVNFENMSNDDAVRVLREIVSQT
GPISLTVAKCWDPTPRSYFTVPRADPVRPIDPAAWLSHTAALTGALPRYELEEAP
LTVKSDMSAVVRVMQLPDSGLEIRDRMWLKITIANAVIGADVVDWLYTHVEGF
KERREARKYASSLLKHGFLRHTVNKITFSEQCYYVFGDLCSNLATLNLNSGSSGT
SDQDTLAPLPHPAAPWPLGQGYPYQYPGPPPCFPPAYQDPGFSYGSGSTGSQQSE
GSKSSGSTRSSRRAPGREKERRAAGAGGSGSESDHTAPSGVGSSWRERPAGQLS
RGSSPRSQASATAPGLPPPHPTTKAYTVVGGPPGGPPVRELAAVPPELTGSRQSFQ
KAMGNPCEFFVDIM 
 
>Hsap-Dvl2(>hsap_g0044131) 
MAGSSTGGGGVGETKVIYHLDEEETPYLVKIPVPAERITLGDFKSVLQRPAGAKY
FFKSMDQDFGVVKEEISDDNARLPCFNGRVVSWLVSSDNPQPEMAPPVHEPRAE
LAPPAPPLPPLPPERTSGIGDSRPPSFHPNVSSSHENLEPETETESVVSLRRERPRRR
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DSSEHGAGGHRTGGPSRLERHLAGYESSSTLMTSELESTSLGDSDEEDTMSRFSS
STEQSSASRLLKRHRRRRKQRPPRLERTSSFSSVTDSTMSLNIITVTLNMEKYNFL
GISIVGQSNERGDGGIYIGSIMKGGAVAADGRIEPGDMLLQVNDMNFENMSNDD
AVRVLRDIVHKPGPIVLTVAKCWDPSPQAYFTLPRNEPIQPIDPAAWVSHSAALT
GTFPAYPGSSSMSTITSGSSLPDGCEGRGLSVHTDMASVTKAMAAPESGLEVRDR
MWLKITIPNAFLGSDVVDWLYHHVEGFPERREARKYASGLLKAGLIRHTVNKIT
FSEQCYYVFGDLSGGCESYLVNLSLNDNDGSSGASDQDTLAPLPGATPWPLLPTF
SYQYPAPHPYSPQPPPYHELSSYTYGGGSASSQHSEGSRSSGSTRSDGGAGRTGR
PEERAPESKSGSGSESEPSSRGGSLRRGGEASGTSDGGPPPSRGSTGGAPNLRAHP
GLHPYGPPPGMALPYNPMMVVMMPPPPPPVPPAVQPPGAPPVRDLGSVPPELTA
SRQSFHMAMGNPSEFFVDVM 
 
>Hsap-Dvl3 
MGETKIIYHLDGQETPYLVKLPLPAERVTLADFKGVLQRPSYKFFFKSMDDDFG
VVKEEISDDNAKLPCFNGRVVSWLVSAEGSHPDPAPFCADNPSELPPPMERTGGI
GDSRPPSFHPHAGGGSQENLDNDTETDSLVSAQRERPRRRDGPEHATRLNGTAK
GERRREPGGYDSSSTLMSSELETTSFFDSDEDDSTSRFSSSTEQSSASRLMRRHKR
RRRKQKVSRIERSSSFSSITDSTMSLNIITVTLNMEKYNFLGISIVGQSNERGDGGI
YIGSIMKGGAVAADGRIEPGDMLLQVNEINFENMSNDDAVRVLREIVHKPGPITL
TVAKCWDPSPRGCFTLPRSEPIRPIDPAAWVSHTAAMTGTFPAYGMSPSLSTITST
SSSITSSIPDTERLDDFHLSIHSDMAAIVKAMASPESGLEVRDRMWLKITIPNAFIG
SDVVDWLYHNVEGFTDRREARKYASNLLKAGFIRHTVNKITFSEQCYYIFGDLC
GNMANLSLHDHDGSSGASDQDTLAPLPHPGAAPWPMAFPYQYPPPPHPYNPHP
GFPELGYSYGGGSASSQHSEGSRSSGSNRSGSDRRKEKDPKAGDSKSGGSGSESD
HTTRSSLRGPRERAPSERSGPAASEHSHRSHHSLASSLRSHHTHPSYGPPGVPPLY
GPPMLMMPPPPAAMGPPGAPPGRDLASVPPELTASRQSFRMAMGNPSEFFVDV
M 
 
>Mmus-Dvl3 
MGETKIIYHLDGQETPYLVKLPLPAERVTLADFKGVLQRPSYKFFFKSMDDDFG
VVKEEISDDNAKLPCFNGRVVSWLVSAEGSHPEPAPFCADNPSELPPSMERTGGI
GDSRPPSFHPHASGGSQENLDNDTETDSLVSAQRERPRRRDGPEHAARLNGTTK
GERRREPGGYDSSSTLMSSELETTSFFDSDEDDSTSRFSSSTEQSSASRLMRRHKR
RRRKQKVSRIERSSSFSSITDSTMSLNIITVTLNMEKYNFLGISIVGQSNERGDGGI
YIGSIMKGGAVAADGRIEPGDMLLQVNEINFENMSNDDAVRVLREIVHKPGPITL
TVAKCWDPSPRGCFTLPRSEPIRPIDPAAWVSHTAAMTGTFPAYGMSPSLSTITST
SSSITSSIPDTERLDDFHLSIHSDMAAIVKAMASPESGLEVRDRMWLKITIPNAFIG
SDVVDWLYHNVEGFTDRREARKYASNLLKAGFIRHTVNKITFSEQCYYIFGDLC
GNMANLSLHDHDGSSGASDQDTLAPLPHPGAAPWPMAFPYQYPPPPHPYNPHP
GFPELGYSYGGGSASSQHSEGSRSSGSNRSGSDRRKEKDPKAGDSKSGGSGSESD
HTTRSSLRGPRERAPSERSGPAASEHSHRSHHSLTSSLRSHHTHPSYGPPGVPPLY
GPPMLMMTPPPAAMGPPGAPPGRDLASVPPELTASRQSFRMAMGNPSEFFVDV
M 
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>Mmus-Dvl2 
MAGSSAGGGGVGETKVIYHLDEEETPYLVKIPVPAERITLGDFKSVLQRPAGAKY
FFKSMDQDFGVVKEEISDDNARLPCFNGRVVSWLVSSDTPQPEVAPPAHESRTEL
VPPPPPLPPLPPERTSGIGDSRPPSFHPNVSSSHENLEPETETESVVSLRRDRPRRRD
SSEHGAGGHRPGGPSRLERHLAGYESSSTLMTSELESTSLGDSDEDDTMSRFSSST
EQSSASRLLKRHRRRRKQRPPRMERTSSFSSVTDSTMSLNIITVTLNMEKYNFLGI
SIVGQSNERGDGGIYIGSIMKGGAVAADGRIEPGDMLLQVNDMNFENMSNDDA
VRVLRDIVHKPGPIVLTVAKCWDPSPQAYFTLPRNEPIQPIDPAAWVSHSAALTG
AFPAYPGSSSMSTITSGSSLPDGCEGRGLSVHMDMASVTKAMAAPESGLEVRDR
MWLKITIPNAFLGSDVVDWLYHHVEGFPERREARKYASGLLKAGLIRHTVNKIT
FSEQCYYVFGDLSGGCESYLVNLSLNDNDGSSGASDQDTLAPLPGATPWPLLPTF
SYQYPAPHPYSPQPPPYHELSSYTYGGGSASSQHSEGSRSSGSTRSDGGAGRTGR
PEERAPESKSGSGSESELSSRGGSLRRGGEPGGTGDGGPPPSRGSTGAPPNLRALP
GLHPYGAPSGMALPYNPMMVVMMPPPPPPVSTAVQPPGAPPVRDLGSVPPELTA
SRQSFHMAMGNPSEFFVDVM 
 
>Mmus-Dvl1 
MAETKIIYHMDEEETPYLVKLPVAPERVTLADFKNVLSNRPVHAYKFFFKSMDQ
DFGVVKEEIFDDNAKLPCFNGRVVSWLVLAEGAHSDAGSQGTDSHTDLPPPLER
TGGIGDSRPPSFHPNVASSRDGMDNETGTESMVSHRRERARRRNRDEAARTNGH
PRGDRRRDLGLPPDSASTVLSSELESSSFIDSDEEDNTSRLSSSTEQSTSSRLVRKH
KCRRRKQRLRQTDRASSFSSITDSTMSLNIITVTLNMERHHFLGISIVGQSNDRGD
GGIYIGSIMKGGAVAADGRIEPGDMLLQVNDVNFENMSNDDAVRVLREIVSQTG
PISLTVAKCWDPTPRSYFTIPRADPVRPIDPAAWLSHTAALTGALPRYGTSPCSSAI
TRTSSSSLTSSVPGAPQLEEAPLTVKSDMSAIVRVMQLPDSGLEIRDRMWLKITIA
NAVIGADVVDWLYTHVEGFKERREARKYASSMLKHGFLRHTVNKITFSEQCYY
VFGDLCSNLASLNLNSGSSGASDQDTLAPLPHPSVPWPLGQGYPYQYPGPPPCFP
PAYQDPGFSCGSGSAGSQQSEGSKSSGSTRSSHRTPGREERRATGAGGSGSESDH
TVPSGSGSTGWWERPVSQLSRGSSPRSQASAVAPGLPPLHPLTKAYAVVGGPPG
GPPVRELAAVPPELTGSRQSFQKAMGNPCEFFVDIM 
 
>Nvit-DSH 
MEETKIIYHIDDEETPYLVKLNISPERVTLADFKNVLNRPNYKYFFKSMDDDFGV
VKEEIVDDDAHLPCFNGRVVSWLVSAEGSNVSDGASQCTDTVPHQDPKHDRVD
HVTPGHTNRAQLSLSHEDTLTETESIISSRQGHHLHKSSRHHTDKYEKYNKYNGL
RINGHSKHRSGMGYESASILSSDLETTTFLESDDDASSRITSTTGRHTNMSSAVDR
ATLDRRRPQRRRRHRLPPMSRTSSFSSITDSTMSLNIITVSLNMDTVNFLGISIVGQ
SNKGGDGGIYVGSIMKGGAVALDGRIEPGDMILQVNDINFENMSNDEAVRVLRE
VVQKPGPIKLVVAKCWDPNPKGYFTIPRTEPVRPIDPGAWVAHTAAIRGEGFPPR
PPSATTLTSTSSSLASTLPDTERPFDELDLSVNTDMPTIVRAMARPDSGLEIRDRM
WLKITIPNAFIGADVVDWLHNHVKGFIDRRDARKYASLMLKAGFIRHTVNKITFS
EQCYYIFGDLCSAMSNMKLDCDTVGPLPPPSAWDMPYSGTYAPHSATGYSPMPF
NFTNEPTVYGYHREESLHSGSGGSSAGSELMFKAPMHDVKSCCSASESELQMPV
VPAMPKSTATTVTTGGSGNGNGSGSNGKRSNGSRSRSSGSEQSVQTGTGSGGGG
GSSVGPQQQQQQQDLSGSRQSFRIAMGNPCEFFVDVM 
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>Tcas-DSH 
MDETKVIYHIDDEETPYLVKIPISPEKVTLSDFKNVLNRPNYKFFFKSMDDDFGV
VKEEIIDDSAHLPCFNGRVVSWLVSADGSNQSDGGSQCTDSVTHQSERVPPQAPE
SICTDTESIISSRQGRRHHKYSSRINGHLPRVYETASIVSSDLETTSFQSETTGRHTA
LSECSSVSRLHVAGRKRPQRRRKQRMQAMSRTSSYSSITDSTMSLNIITVTLNMD
TVNFLGISIVGQSNKGGDGGIYVGSIMKGGAVALDGRIEPGDMILQVNDVNFEN
MSNDEAVRVLREVVQKPGPIKLVVAKCWDPNPKGYFTIPRTEPVRPIDPGAWVA
HTAAVRGDPVARPPSSSTVSSTSITSTIPANERFPDLEEPLTVNTPMATVVQAMQR
PDSGLEIRDRMWLKITIPNAFIGTDMIDWLLTHVDGFQERRDARKYASHLLKAGF
IRHTVNKITFSEQCYYIFGDLCSAMNNLKIQGDTDSVGPLPNVPNYMPYSGTYNP
LEYMPMPFYTASENTVYGYNREESVLSGSGGSSNGSDHLKDAAAGHSSASDSDL
TSLGPRSALPMATGNGNGSSNGSDQSSGTQVAAQSKDIAGSRQSFKIAMGNPCE
MFVDVM 
 
>Chem-Dvl 
MAEKETKIIYHVDDEETPYLVKIPKPPDQVTLGDFKSVINRPNFKFFFKSMDDDF
GVVKEEIIDDDAPLPCFNGRVVSWVVPPEDGSCDGQSQHSGDGIFVPVQSSNSNI
SRSSTMRSKERVQDSDAESIVSRRSSRSRSSRKYESDADRRSRRSHREHRNYDQY
DSASMMSSDLETTSFVDSEEESQMSSATESSRYVGGNKRRRRRRQRMPRVERCS
SFSTITESTMSLNIITVTLNMDKINFLGISIVGQASKKGDGGIYVGSVMKGGAVDA
DGRVEPGDMILAVGDVNFENMSNDDAVRVLRECVHKPGPIQLTVAKCWDPNPK
GYFTVPKDDVTRPIDPAAWVQHSEAMRAGGGLMGRGSPSMSTMTSTSDSFSSSI
PEADRYLEHDLGLTLTIDTDMLTIVKVMNQENSGLTVRDRMWLKITIPNAFIGSD
LVDWLFANVEGFQDRREARKYASKLLKANLIRHTVNKVTFSEQCYYVFGDLSD
RRRGMHMQDIEGSEEDTLAPLASTSAQAQMGGYIQQPYGMAMIPGGMMVTGA
PPAYQQVVQPGMYAQYPYVAGSIAPSHLSGGSGGSGSQKSQKIHDDQATVRSSG
SSDRSHSSKGSRSRKPMLDDRSSLSSFHSDTISLRSEIIAPDNRSISSHHSIPPMMVM
PPGVAYSAAPVGLTPEQQQHIQVQMHQQQQMHHQIQQQLQQLQLQSPAQTPQP
PPAGSPQPPQDGTRTPAEQHRELGRLDTLPASLSASRQSFRMAMGNSSNEFFVDV
M 
 
>Aque-Dvl 
MEETKVIYYVDDEETPYMTKIPLSPSKVKLSDLKEQLSRPGPFKKFFFKSIDDDIG
VVKEEIIEDSALLPTAKGRIVCWVVSEGSASGSDVASKDLETIKEKDDDEASIVSG
VSKSSRHSTSSRRHHHHHHHRHHRRRHDRHKQPGSVTDYETATELTATDLEASC
YETEDTASRLSVETTSTVTSHKHPRKKVLTKKKVPRSMSMSTMTTSTMSDASMD
ILTVTLNMDAYNFLGISIVGHANDDGVGGIYVGTVMKGGAVAADGRIETGDML
LQVNDISFENMSNDDAVRTLREIVQQPGPIILTVAKCLEPEAYAPMFEPRLEPIRPL
DPSAWVMHTNAQRAGDYGRPFTSSPTMSTMTSNSSPSLASSIPESERDLVKLNLT
SPLYRVAKAMAAPDSGLEVKDRMWLKMPIPKSFIGSDMVEWLHNNVEGFIDRR
HARKYAAIMLKQGFVKHAVNKYTFSEQCYYIFGDFKKAAANNLSTELTQLHLS
DNSGGETDTLGPLPSDRNNGQGWSSSDDQISLPTIEGSFYPHLMHSHSNSPEGQM
QHHTGSSASSSSAAGSGYAHYPPRQHSGSPSDPRQYPSPRPSHSHMELPPQMRMR
HSNSISSASEFTSVSQQQYHHPGNGGAMGGASLPPDRMSLRSLNIGGQVPPGVSA
SRASFQQALDNPCEYFIDVM 
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>Cint-Dvl 
MSDETKIVYYLGDEQTPYVSKINLPPDSITLGDFKAAIKKINYKFFFKSTDADFGV
VKEEVTNDKSILPLCDNRIVAWLKAPDMDSVSQCSLNSNTLPMQDKNEDMQLR
PNSTNEGELSIENKRVSPHYPLYNRYGSQSTLMSSDIETTSWDSRDDMSEYSTCT
DMTASSRRKPRPKRQRYKKKRPRPGSDTTSTYSSSITDSSMSLNILTVTLNMEKY
NFLGISIVGQTNDKGDGGIYIGSIMKGGAVAADNRIEPGDMLLQVNEVNFENMS
NEDAVRVLRNIVHKPGPITLTVAKCWDPNPDNYFTIPKDEPVRPIDPAAWANHIM
TVKGDMHGPSPPYSLNPESSSASSLPESERYDMPLSTCTDMGAVVKSLKMPDSG
LDVKTRMWLKITIPNAFIGSDLVDWLQQKVHGLTERRDARKYASSLLKAGYIRH
TVNKITFSEQCYYVFGDYTGTLDKDMSNLSLVESNSDRDSDTLGPLHGHHNTQP
WMHQPSTSNHGYASYSQYPYTQSGQLSVGPPIPLNNGISSMVDYSSPPPTYPGLA
SHHSDGDNLSVHSAHSLHRAASEASTYRQHLATFGANGNNSAGSESESRYSSRS
GKSGSGGSAKPRSRSGSEKSSDVLHQQMAYGGSTSYHNSLQRSNHPNQRTNQHS
RPLSAIPPNLSNSQQSFQQAMGNPCDYFVDVM 
 
>Smed-DVL-1 
MEETRIIYYVDDEETPYLIKFHSPPEQITLGDFKNALNRPNYKFFFKSLDDDFGVV
KEEITDDDAKLPYVNGRVVSWLVVSEGSTQSDNHSSSGKEVLLVDSDKSKDKGT
VSDSSDPKSPSFRNYNKIPTKHSSSSKKQEESNKIHRQNHKFTGPEKITLDETDDA
FDEIDSIYNEDKVPPLRKFSDFKHSVKLKKLRNAQGSHGNSNSSSNNNNSNSNNA
SNNAPAKQQPIYESSSSMMSSDLDTTSFFDSEDDSSRFSSATETTMSSKYGKQRR
QLRRRRKMPHLSRASSFSSMTDSTVSLNIITVTLNMDTVPFLGISIVGQTNGNQEN
GDGGIYVGSIMKGGAVALDGRIEPGDMILEVNGISFENVSNEEAVRTLREQVQKL
GPVTLVVAKSWDPNPTGYMLPQQDPVRPIDPRAWVLHTQAMGNMAPPNQPPV
ASGDQFIQSGKYLPYAGAMSTVASTITTTSSSLKSRTDETIPSPLTTNHEPSVIIRA
MAQADSGLPIRDRLWLKITIYNAFIGSDLVDWLYSHVQGFTDRKDARKFATNLL
KMGFIRHTVNKSSFSEHQRLTRFRLLPANSNPKRDWCIKILAVRSRQFSHRDSSLL
AVTNGQVTISSRILVQKCIHKHKS 
 
>SmedDVL-2 
MTNCATSGNVISDETRIIYHIDEEETPYLIKLSISPDKVTLGDLKNTLNRPHYKYFF
KSMDDDFGVVKEEITDDEAKLPCFKGRVISWLVTAEGSTVSDNVDSNGILDKNE
SRMLPFQESHFPLINNIKASGGTTTNESDTICDTCTDTDSVYSAAQDRVGPPRSFH
DYKQAGRVAAHANRVNTNTPNGQNPIYETNSSMMSSDLESTSFFDSEDESSRFST
TTCTTMSSRYGRQKQQRRRRRPPAISRASSFSSITDSTMSLNIVTVRLNMDTVKFL
GISIVGQSNKGGDGGIYVGSIMKGGAVAQDGRIEPGDMILEVNDISFEDMSNDDA
VRTLREQVQKPGPINLVVAKCWDPNPKGYFTIPRQEPVRPIDPRAWVLHTNAMT
AGASEPPSSVNGVHPQVSNLVAPSMQSLLSGGTMLAGTSAATFNAAAFGYMPQP
QNINQNTASVSTVGGPPGASVGFFGYPMGMPGQFSQGAGSIVTTSSSLPESERYQ
EELHLTKNTDVGTILRVLSQPDSGLDIRDRLWLKITLPNAFIGSNLVDWLYRHIEG
FSDRKEARKYAANLLKFGYIKHTVNKVTFSEQCYYVLGNTTLNMSRLSLDQVES
VSEVGVNGPHHLAALPPPNFSSNKQPISSCINQPPLNINPQLTATSEPLPSNNANVA
TATASSNSQYSVVGPLPCSQPSQHASSNASASAIKKSGSCNSLSGSSSSTSSSSSSN
RSNTRINGNASSVSNMISKNPPPKIPPRTIASVSTNSTNPIISGFQNRGQSSVSQ 
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>Xtro-Dvl1 
MAETRIIYHIDEEETPYLVKLPVPPEKVTLADFKNVLSNRPVHHYKFFFKSMDQD
FGVVKEEISDDNAKLPCFNGRVVSWLVLAESSHSDGGSQSTESRTDLPLPIERTG
GIGDSRPPSFHPNASSSRDGLDNETGTDSVVSHRRDRHRRKNRETHDDVPRINGH
PKLDRIRDPGGYDSASTVMSSELESSSFVDSDEDENTSRLSSSTEQSTSSRLIRKHK
RRRRKQKMRQIDRSSSFSSITDSTMSLNIITVTLNMEKYNFLGISIVGQSNDRGDG
GIYIGSIMKGGAVAADGRIEPGDMLLQVNDVNFENMSNDDAVRVLREIVSKPGPI
SLTVAKCWDPTPRSYFTIPRAEPVRPIDPAAWITHTSALTGAYPRYEQEDSPLSVK
SDMATIVKVMQLPDSGLEIRDRMWLKITISNAVIGADVVDWLYTHVEGFKERRE
ARKYASSMLKHGYLRHTVNKITFSEQCYYVFGDLCGNVAALNLNEGSSGTSDQ
DTLAPLPHPAAPWPLGQGYSYQYPLAPPCFPPTYQEPGFSYGSGSAGSQHSEGKS
TYSGVFLP 
 
>Xtro-Dvl2 
MAETKVIYHLDEEETPYLVKVPVPANEIRLRDFKAALGRGHAKYFFKAMDQDF
GVVKEEISDDNAKLPCFNGRVVSWLVSSETSQTDSAPPAAEVRPDPPPVPPPVPPP
PAERTSGIGDSRPPSFHPNVSGSTEQLDQDNESVISMRRDRVRRRDSTEQGVARG
VNGRAERHLSGYESSSTLLTSEIETSICDSEEDDAMSRFSSSTEQSSASRLLKRHRR
RRKQRPPRLERTSSFSSVTDSTMSLNIITVTLNMEKYNFLGISIVGQSNERGDGGIY
IGSIMKGGAVAADGRIEPGDMLLQVNDINFENMSNDDAVRVLRDIVHKPGPIILT
VAKCWDPSPQGYFTLPRNEPIQPIDPAAWVSHSAALSGSFPVYPGSASMSSMTSS
TSVTETELSHALPPVSLFSLSVHTDLASVAKVMASPESGLEVRDRMWLKITIPNA
FLGSDMVDWLYHHVEGFQDRREARKFASNLLKAGLIRHTVNKITFSEQCYYIFG
DLTGCENYMANLSLNDNDGSSGASDQDTLAPLPLPGASPWPLLPTFSYQYPAPH
PYSTQPPAYHELSSYSYGMGSAGSQHSEGSRSSGSNRSDGGRGTQKDERSGVVG
VGGGESKSGSGSESEYSTRSSIRRIGGGEAGPPSERSTSSRPPLHHPPSVHSYAAPG
VPLSYNPMMLMMMPPPPLPPPGACPPSSSVPPGAPPLVRDLASVPPELTASRQSF
HMAMGNPSEFFVDVM 
 
>Xtro-Dvl3 
MGETKVIYHLDEQETPYLVKLPVPAEKVTLGDFKNVLNKPNYKFFFKSMDDDFG
VVKEEISDDNAKLPCFNGRVVCWLVSADGSQSDAGSVCADNQSDLPPPIERTGGI
GDSRPPSFHPNTRGSQENLDNETETDSVVSAHRERPRRKETPEHATRLNGTSKME
RRRDTGGYESSSTLMSSELDSTSFFDSDEDDSTSRFSNSTEQSSASRLMRRHKRRR
RKPKAPRIERSSSFSSITDSTMSLNIITVTLNMEKYNFLGISIVGQSNERGDGGIYIG
SIMKGGAVAADGRIEPGDMLLQVNDTNFENMSNDDAVRVLREIVHKPGPITLTV
AKCWDPSPRNCFTLPRSEPIRPIDPAAWVSHTAAMTGSYPAYGMSPSMSTITSTSS
SITSSIPETERFDDFQLSIHSDMVTIVKAMRSPESGLEVRDRMWLKITIPNAFIGSD
VVDWLYHHVEGFTDRREARKYASNLLKAGYIRHTVNKITFSEQCYYIFGDLCGN
MANLSLNDHDGSSGTSDQDTLAPLPHPGAAPWPIAFQYQYPLPHPYSPHPGFPDP
AYSYGGGSAGSQHSEGSRSSGSNRSSTEKRKEREAKGGDTKSGGSGSESDHTTRS
SVRRERAASERSVPASEHSHRSHHSIAHSIRSHHTHHSFGPPGIPPLYGAPMMMM
PAPASVIGPPGAPPSRDLASVPPELTASRQSFRMAMGNPTKNSGVFDFL 
 
 
 



 77 

>Cang-DSH-1a(CAN07318) 
MDTVNFLGISIVGQTSTRGDNGIYVANIMKGGAVALDGRIEAGDMILQVNDISFE
NFTNDQAVDVLRDAVSRRGPIKLTVAKSFENGPQSCFTIPRNSREEPVRPIDTQA
WIQHTNAMRGMPSIVEGVEGAPTPLPGDWPPHANGRPQSSSTVTSNGSNGQNTV
VGGGNGTQIKLDLATDKKKIVEVMAMPNSGLDIKNRTWLKIPIPMSFLGSDLVE
WLLDHVEGLRERKDARKFAAELLKLKYIAHVVNKITFTEQCYYVLGDECSALL
MLNWNFCWKIHEN 
 
>Cang-DSH-1b 
MPERKIGGGGSLVTTIVSRFESKNLSGGPATKKSPQPPIAKLDDDFDAAPPPKSKV
LHQLKRTYTNLPTEEILSKKQLKKRQSESALQHLGGNKNKEGGAGQMFIGTLMR
LASLKSLVASVEDIQIGEGKKKDQKKKRKRKRADAKEALKNRLLNWNSVEEPA
PSWVNRSPSPSKIHIPTPVFKRSPEVEEEPEGLKKSSSRSLFSFSRSESKESLLSQKT
SPRSLSPARNLAENIKKKIWGRSDSLGSQASLGSAKSPRSLSPARNLVNRFLGKSA
SQTSIRSQETLKERSSSLKSKQEGSEVEGRSGSLRSLSKKILGSNLKLEARPSEPNIS
SPVATSAPTSAPAATPAPKRRLVRSDATIGARLKKKLSVEEDEPTEPEPLPKSPLR
SPLPKLVIEHLPDRPQVTQRSLSEIVSTDRLRPLSLPAGRRKLPPMARTMSLIPPPV
LPPLYEEESLAETSHNSLGTTTHTKRRYGGSNTTSTYQGVKDAAPDASPRRHLIG
FLHRTSHLSLTSELSGNASFYLIDLGTELEPEVGSETFGAQHQLSRRDLSSYFCSSG
HPGSKKKTCPIGRHDRSQAQEEAVGHRRQHLEDSTIASESDARIFSDEDDR 
 
>Cang-MIG-5 
MEPQGSSDQIKVFYFLDDESTPYVSVIESRGGIVTLDDFKNSFTKRGYKYFCKEL
DPDIQCEVKVELTEGTDRLRKSQNGFYEIFLVSTPGYGTLPRNSGTLTRKNVKGT
LDRRRRRSADFDAVPYSDASLAPSTIVSRRAGEHLAELYTSNSEDPYQYDDSTRL
TGESSLYEPLATRDMNKMYEDDRKQKRKIKKERHHRRPYVPSTISSATESSAGSG
LPRILEVFLPMKNVPYLGLNVCTIDGHIFVSEIAQNGAVERDGRIDVGDQILQVNR
ISFEELSVPQAVRALREAAASRKPMTLYVSKFSKAAGSEXXXXSSYIANIAVRAL
REASRKPMTLYTYLL 
 
>Cbri-DSH-1 
MAESPPRVDSSAPDVGDPTSMMERLRLGDDGGKDDEFDNKSVSSAQYSQASEA
TTAVKQQPFLHTMTKVYCHIDDETDPYMLEVHVPPDLITLGDLKRVLMRTNFKY
YRKALDPDSGYEVKAEIRDDSQRLTPSSNNLFELFLLTIEGSTHSDGSSGKMRKY
PSVPGPAPSNRSGPPMNYQHAAYQFDNSMMSTDSESMISAAIPGYLKSAAYNRR
FPQHYLAMSIKLGVARERAIPASSNTPSTSSMTTSSDVLRSLLFTAKERKVLSTYT
APPSHRNHSPGVVSQLINKIEQKASPPTTSSRTKKKKKAPPLAQIDDLDLIEDEKT
VVEVAKSPRRKKYTGNPLGNLKILNGFLPSSKTTDDKENDSVPSTGKKLKKSKS
KSRVEPETDPPFRLKRTLTDLTNNHTPSGSTWRQMVSNALGGPLKKRLSEGALFF
PGTSKAADDCVDEEGGNTKTKTKSPFLQRRKQNEKSAGGANRKESGGSASSSFF
GALIRLSHSAASLTSLTSLGGSRSNSASPSSSRSNTKEFKEELKPPQPPPPDLISPAA
ALSKPIFSLAPPSSPVSLTPPSRELRKSKTCQITTDRPPIIPSITISESRSLNRIDRCRPV
TVDGSNLTPDRRPLVSRRSTMSRTMSLIPTSPSLPPLYEEEMASTAAMVDEEREE
KTQKRRMRRYGGSNTTSTYQGRKDAAPDASPRRHLIGFLHRTSHLSLTSELSAD
ASFYLIGHRRHLEESTIGSESDARVFSDDDDRGSTTTDFTSVSRQHEKMAKKKKN
KRNFRKPSRASSFSSITESSMSLDVITVNLNMDTVNFLGISIVGQTSNCGDNGIYV
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ANIMKGGAVALDGRIEAGDMILQVNETSFENFTNDQAVDVLREAVSRRGPIKLT
VAKSFENGQSCFTIPRNSREEPVRPIDTQAWIQHTNAMRGMPSIVEESAPTPIPGE
WPHGRPPSSSTVTSNGSNGQNTVVGNGAHIHLDIHTDKKKVVEIMAMPGSGLDI
KNRTWLKIPIPMSFLGSDLVEWLLDRIEGLRERKTARNYAADLLKLKYIAHVVN
KVTFTEQCYYVLGDECADYARFRNEDGGPKYQWTMGMNGMSAGNGSSVMLP
PPQFPGAVPFKGMAPSMVSDGESRMYVMHI 
 
>Cbri-DSH-2 
MTDSPSPIDSSFDASDVATPCTVIAAKSSIRNFRDLEEGDDFDDDDDGIEDQTDYT
ESFPQPEDRALDGEDPSNIYVDDLSKEFSGCASSVMEPLPKPLTFARTMTKVFYH
LDNDPVPYTIDVHVPPDCMTLRDVKRKLPRTNYQYYCIALDPDSGKEVRAEIRD
DSQRLYPLRSGEFRLYMLTIEGSVHSDTSSGRHRRKNKGGSSNGSSSSRDYLRAA
RDYDNQSESHAVLSRYFTFILSAPFTDDESQVSETPVYVKKANAFNRRQASQAY
DQYQPRHMLHARHHQNHYEDSTFDVTSESESQFRSGALYDEDVDDAQSINTDLT
SVSQVQLKKRWRQQQKEMRNKWKRMPSMSTASSSLSSITESSMGLEVITVRLNL
QSMPLGMIPYGLKTARGGDAGLYVGDILGRGAVALDGRIEVGDMISEINEIDLSN
YSNEAAAQLLKDAVAPRQFVTLTIAKSLDSRKAAAAASARNTRNEPIRPIDTNEW
IKHANAMKGMPSISEESCSTPIPDDWPTNSSASGTPFGGPHPAIAHMTTETNKKRI
MEILAAPGSGLEIKDREWMKLPLKMCFLGKDLVNWLLDHVEGLRKHKEAKQFA
KEMWKLGYIVDALGQNVFSENCYYKMGEECADYTQLRAPDGGFKYAQSHTSS
ASGHSSNNNIFPPSMYPPQMKPMPSTAGLNAHHRNSAVLNSMVSGYASMPSSPF
PNVKPSAVDCGRTRDDVRSQTSGSSQGSSRRYVELPRKPSSLGSGSGISDQMNID
RVASRSSFRAAMSGSLRHFSID 
 
>Cbri-MIG-5 
MEPPCSSDSNQIKSKQDGFQVFYYLDDETTPYVSVIDAREGVATLGNFKNSFTKR
GYKYYAKELDPDIQREVKVELISDTDRLRRSQNGFYEVFLVSTPGYGTLPRNTGT
MTRPQRAAIDKRRRRSADFDATPYSDASLAPSTIVSRRAGEHLAEMYTSNSEDPY
QYDESTRRTTDDSSMYEPLTARDMNRYHDDDRRKKKQKKDRFRRPYVPSTISSA
TESSVNSGLPRILEIYLSMKNVPYLGLSVCTMDGHIFVSEIAPEGAVEKDGRVNV
GDQILQVNRVSFEDLTGPQAVRALREAAGSKRPITLYISKYRRAAPSEYDDPLAS
MASETMPLDVGVWVETAVQATEKMKALGIDPQEQTMTSVDDGTMPFTSTASD
DEERILYDQRRNGIPRALLEEAERKKENERNEKAEQLTELIDPIIVVRAMARPDSG
LVIKNRKWLKISVPMSFIGQDLIDWLVDHMTDIHNRKRAKLYAARLLAAGLIRH
VVSKLTFTEKCYYVFGDGILPTDRTSADNSGTSGTTTTRVEATTEVTYVGSPAPH
ALANRMGRTIPPHRLETTTLSPVAHDQTWLRRRRDCESPMTNDYASMVGESQIG
MNPAGNYYGAKNSRQMMVPASSQVTSSSLTNGSGGIGGPPPTPLSSTMVLAASPI
QS 
 
>Cbre-DSH-1a 
MAEPPPQVDSTNAPDIGNPTSMMERLRLRDQTEDGGENDDFDNKSVSSAQYSQA
SEATTAVKQQPFLQTMTKVYCHIDDEPDPYMLEVHVPPDLITLGDLKRVLMRTN
FKYYRKALDPDSGYEVKAEIRDDSQRLTPSSNNLFELFLLTIEGSTHSDGSSGKM
RKYPSVPGPAPSNRNGPPMNYQHAAYQFDNSMMSTDSESMISAAIPGYLKSAAY
NRRFPPQQHYLGHRRHLEESTIGSESDARVFSDDDDRGSTTTDFTSVSRQHEKMT
KKKKNKRNFRKPSRASSFSSITESSMSLDVITVNLNMDTVNFLGISIVGQTSNCGD
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NGIYVANIMKGGAVALDGRIEAGDMILQVNETSFENFTNDQAVDVLREAVSRRG
PIKLTVAKAFENGQSCFTIPRNSREEPVRPIDTQAWIQHTNAMRGMPSIVEGSDLV
EWLLDRIEGLRERKTARNYAAELLKLKYIAHVVNKVTFTEQCYYVLGDECADY
ARFRNEDGGPKYQWTIGMNGMSAGNGSSIMLPPPHLPGPPGAFKGMAPSMVSG
YASMPSSPFPAQLQQQMQNHRREGSTTSGSSGGGIRKQRVVLPRQPPPSANGNV
HYDDSSTIYEGSNNSFLAATGQRYEFN 
 
>Cbre-DSH-1b 
MSIKLEARKTRALPTDSSSPSTSMSTSSDVLRSLLFTAKERKVLSTYTAPPSNRHH
SPGVVSQLINKIEQKTSPPSTSSRPKKKKKAPPLAQIDDLDIIEDEKVEEVVKSPRR
KKYTGNPLGNLKILNNILPKATSSEDKIDKEDKENSSHPTTGKKLKKSKSKSRVEP
EIEPPFRLKRTLTDLTNNHTPAGSTWRQMVSNALGGPLKKRLSEGALFLPGPSNC
GDEEGEKTTTTKQRRFLQRRKQSEKSAGDGKESSGGRGGSASSSFFGALIRLSHS
AASLTSLTSLGGSKSRSTSASPSSSRSNTKEFKEEIKPPQPPPPDLISPAAALSKPIFS
LASPPSPVELAPPSRELRKSKTCQITTDRPPLIPSITISESRSLNRIDRCRPVTVDGSG
LTPDRRPLVSRRSTMSRTMSLIPTSPSLPPLYEEETASTAAMVEEERLDKVQKRR
MRRYGGSHTTSTYQGRKDAAPDASPRRHLIGFLHRTSHLSLTSELSADASFYLIG
HRRHLEESTIGSESDARVFSDDDDRGSTTTDFTSVSRQHEKMTKKKKNKRNFRK
PSRASSFSSITESSMSLDVITVNLNMDTVNFLGISIVGQTSNCGDNGIYVANIMKG
GAVALDGRIEAGDMILQVNETSFENFTNDQAVDVLREAVSRRGPIKLTVAKAFE
NGQSCFTIPRNSREEPVRPIDTQAWIQHTNAMRGMPSIVEESAPTPIPGEWPHGRP
PSSSTVTSNGSNGQNTVVGGGAHIHLDIHTDKKKVVEIMAMPGSGLDIKNRTWL
KIPIPMSFLGKVFMIDKPFSINFFLGSDLVEWLLDRIEGLRERKTARNYAAELLKL
KYIAHVVNKVTFTEQCYYVLGDECADYARFRNEDGGPKYQWTIGMNGMSAGN
GSSIMLPPPHLPGPPGAFKGMAPSMVSDGESRMYVMHI 
 
>Cbre-DSH-2a 
MTDSPSPIDSSFDISDVGTPATVIHKSIFRKEAEEEDFDLETDEDYTEQYREHDGV
DQSELSSSFLVDDYSKDCDSSISAPIPKPSFFRTITKVYYHVDDENIPYTADIHVPP
DCITLGDVKRKLPRTNFKYYCIALDPESGLEVKAEVRDDSQRLYPLRDGRFVLYL
LTIEGSVHSDTSSGRHRKNKLSSKGSNSSREYLKAAHHFDNPASYSDSESQASSIP
AYFKKAKAFNKRQAFQAHDRHHHHQLPRHKPHGRHHHNHYDEESTFDITTESD
DHYRDGITYYDEDEDDSRSINTDLTSVSQVALKAKWRQQQREMRNKYKRMPST
ASSTLSSITESSMGVEVITVRLNIQEFPIGMVPSILTTARGDDGGLYVGQVNPRGA
VALDGRIVVGDMISEINNIDLSNYSGKEAVNILKQAVTNQPYITLTVVKTGENKK
AAPAVLRNPRAEPIRPIDTNEWLKHATNAMKAMPSISEESCSTPIPDDWPTNSSAS
GTPFGGPPPNIHCLTVTTDKKDLVQAMMAPGSGLEIKNHEWLKILIPMSFLGKDL
VDWLLDHVQGLKNRDDSCKYAGKMLKEHYIVQPNGKKKFSENCYYVVGEKCG
DYTSLRGNDGEYKYAQSQTSSASGHSSNNNVFPPSMYPPPLPPSALGAHHRNSA
VLNSIGSGYASMTSSPLPSEKPSNCGRTRDDQRSQTSGSSRGSSRRYVELPRKPSS
LGSGSGVSDQINLDRVASRSSFRAAMSGSLRQFNIDS 
 
>Cbre-DSH-2b 
MTDSPSPIDSSFDISDVGTPATVIHKSIFRKEAEEEDFDLETDEDYTEQYREHDGV
DQSELSSSFLVDDYSKDCDSSISAPIPKPSFFRTITKVIIFVKVEFFNWVLGCITKSD
ENTAKTHLSAKEPTFFCVELGPFLTELFSWSIETSKKKVVTENSKSSNKTFFPRIEL
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FYLNFQVYYHVDDENIPYTADIHVPPDCITLGDVKRKLPRTNFKYYCIALDPESG
LEVKAEVRDDSQRLYPLRDGRFVLYLLTIEGSVHSDTSSGRHRKNKLSSKGSNSS
REYLKAAHHFDNPASYSDSESQASSIPAYFKKAKAFNKRQAFQAHGTQPLSLFSS
FVSFSDRHHHHQLPRHKPHGRHHHNHYDEESTFDITTESDDHYRDGITYYDEDE
DDSRSINTDLTSVSQVALKAKWRQQQREMRNKYKRMPSTASSTLSSITESSMGV
EVITVRLNIQEFPIGMVPSILTTARGDDGGLYVGQVNPRGAVALDGRIVVGDMIS
EINNIDLSNYSGKEAVNILKQAVTNQPYITLTVVKTGENKKAAPAVLRNPRAEPI
RPIDTNEWLKHATNAMKAMPSISEESCSTPIPDDWPTNSSASGTPFGGPPPNIHCL
TVTTDKKDLVQAMMAPGSGLEIKNHEWLKILIPMSFLGKDLVDWLLDHVQGLK
NRDDSCKYAGKMLKEHYIVQPNGKKKFSENCYYVVGEKCGDYTSLRGNDGDY
KYAQSQTSSASGHSSNNNVFPPSMYPPPLPPSALGAHHRNSAVLNSIGSGYASMT
SSPLPTVLNSIGSGYASMTSSPLPSEKPSNCGRTRDDQRSQTSGSSRGSSRRYVELP
RKPSSLGSGSGISDQINLDRVASRSSFRAAMSGSLRQFNIDS 
 
>Cbre-MIG-5a 
MDAPCTSDTHQIKVFYYLDDETTPYVSVIDTREGVATLGNFKNSFTKRGYKYYG
KELDPDIQREVKVELISDSDRLRKSQNGFYEVFLVSTPGYGTLPRNTGTMTRPQR
AALDKRRRRSADFDATPYSDASLAPSTIVSRRAGEHLAELYTSNSEDPYQYDEHT
RRTTTDDSSMYEPLAARDMNRYHEEERRKKKQKKDHRFRRPYVPSTISSATESS
VNSGLPRILEIYLPMKNVPYLGLSVCTIDSHIFVSEIAPEGAVEKDGRVSCGDQILQ
VNRVSFEDLTATAAVKALRDAAASKRPITLYISKFVRGAPSEYDDPLASIASETM
PLDVGVWVETAVQNTEKMKALGLDPQEQTMTSVDDGTLPFTSTASDDEERILY
DQRRNGIPRALMEEAERKRENEQNEKIEQLTELIDPIIVVRAMARPDSGLVVKNR
KWLKILVPNSFIGRDLVYWLVDHMTDIHSRKHARLYAARLLAAGLIRHVVSKLT
FTEKCYYVFGDGILPPTATVNDRNSTDTSGTSATTMRVEATTEVTYVGSPAPHAL
ATRIGRNIPPHRLETTTLSPVAHDQTWLRRRRDCESPMTNDYASMVGESQLGMG
MNTGNYHGYVAKNPRVVPAPSQVTSSSLTNGSGGIGGPPPTPLSSTMVLAAVPSP
IQSSPNVALLMHDFDAENNSGNSKSSRILRA 
 
>Cbre-MIG-5b 
MTRPQRAALDKRRRRSADFDATPYSDASLAPSTIVSRRAGEHLAELYTSNSEDPY
QYDEHTRRTTTDDSSMYEPLAARDMNRYHEEERRKKKQKKDHRFRRPYVPSTIS
SATESSVNSGLPRILEIYLPMKNVPYLGLSVCTIDSHIFVSEIAPEGAVEKDGRVSC
GDQILQVNRVSFEDLTATAAVKALRDAAASKRPITLYISKFVRGAPSEYDDPLAS
MASETMPLDVGVWVETAVQNTEKMKALGLDPQEQTMTSVDDGTLPFTSTASD
DEERILYDQRRNGIPRALMEEAERKRENEQNEKIEQLTELIDPIIVVRAMARPDSG
LVVKNRKWLKILVPNSFIGRDLVYWLVDHMTDIHSRKHARLYAARLLAAGLIRH
VVSKLTFTEKCYYVFGDGILPPTATINDRNSTDTSGTSATTMRVEATTEVTYVGS
PAPHGLATRIGRNIPPHRLETTTLSPVAHDQTWLRRRRDCESPMTNDYASMVGES
QLGMGMNTGNYHGYVAKNPRVVPAPSQVTSSSLTNGSGGIGGPPPTPLSSTMVL
AAVPSPIQSSPNVALLMRDFDAENNSGNSKSSRILR 
 
>Cjap-DSH-1a 
MADPPVDELEKLENLRIADDPDSKEDDFDTKSGSSAQYSQASEATTAVKQQPFL
QQTMTKVYCHIDDETDPYMLEVHVPPDMITLGDLKRVLMRTNFKYYRKALDPD
SGYEVKAEIRDDSQRLAPSPNNLFELFLLTIEGSTHSDGSSGKLRKYPSVPGPAPS
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NRNGPPMNYQHAAYQFDNSMMSTDSESMISAAVPGYLKNAYNRRFPAQYLELK
VQFFDLITKYRTTRQNRVISRVSQRCSL 
 
>Cjap-DSH-1b1 
MSNHGSTRHSDATLRALKFTAKERKVLSNYTAPPPNRHHSPGVVSQLVNKIEKK
SSPPLASSKRKKIPPLAEIDDLEMAVEDVVEVVKSPRRKKYTGNPLGNLKILNHL
LPGTSKDPKDEVPIKKLPENKENTATQTPTPSTGKRLKKSKSKGRVEPEDERFFRL
KRTMTDNTNNHSKSSPTGSGGWRQIVSSALGGPLKKRLSEGALLPSTSSGSMYP
GGEKKSKRGRLQRMKSAEGSASSSFFGALIRLSSSAVSLTSLTSLGSLGSNKSKPH
SPSNTKEFVESLRRSPPPPTLVSESDSVQLPTQPPPPLRKSKTCQNTPDRPPIIPSITIT
ESRSLNRIDRCRPITVDGSGLTPRSSRRSAMSRTMSLIPTSPSLPPLYEEETASTAA
MVDEERIAEKKHRMRRYGGSNTTSTYQGRKDVAPDASPRRHLIGFLHRTSHLSL
TSELSGNASFYLIGHRRHLEESTIGSESDARVFSDDDDRGSTTTDFTSVSRQHEKM
AKKKKRNIKNFRKPSRASSFSSITESSMSLDVITVNLNMDTVNFLGISIVGQTSTG
GDNGIYVANIMKGGAVALDGRIEAGDMLLQVNDVSFENFTNDQAVDVLRGSTT
TDFTSVSRQHEKMAKKKKRNIKNFRKPSRASSFSSITESSMSLDVITVNLNMDTV
NFLGISIVGQTSTGGDNGIYVANIMKGGAVALDGRIEAGDMLLQVNDVSFENFT
NDQAVDVLREAVSRRGPIKLTVAKSFENGAQSCFTIPRNSREEPVRPIDTQAWIQ
HTNAMRGMPSIVEESAPTPIPGEWPHGRPPSSSTVTSNGSNGQNTVVGGGAHIHL
DVHTDKKKVVEIMAMPGSGLDIKNRTWLKIPIPMSFLGSDLVEWLLDHIDGLRE
RKTARNYAAELLKLKYIAHVVNKVTFTEQCYYVLGEECADYARFRNEDGGPKY
QWTIGMNNGVAASNGGSVMLPPPHLSGPGAHFKGMAPSMVSDGESRMYVMHI 
 
>Cjap-DSH-2a 
MTDSPSPIDSSFDASDIATPCTVIAAKTRNLRDLKIEEEDGEDSSHGDEEEVSAIYV
DDFSKTDFSEGESSVMEPLPRPPSFARTITKVYCHMDNEEVPYMVEVHVPPDCIT
LRDVKRKLTRTNYKFFCIALDPDSGLEVKAEIRDDSNKLYPLKDGRFQLFLLTIEG
SVHSDTSSGRHRKQKTSSKGSSSSREFRAGYEHASVMSEVSSDASSLPTYVKKAH
AYNRRHGAPPQYGDLRQHLLQKQRHRNIPYQQQQNPYEESSFDVTESDVYGGG
HHHHHQHRDGETFYDEDDDSRSINTDLTSVSQQHLKKMYREQQARAQNKWKS
AMSTTSSSFTDITESSMGVEIITVRLNLETLPLGMIPCGDTDSRGDSGLFVGSITDR
GAVALDGRIDIGDMILEINGVSLQNHTNQQAANLLKLRPLPCYFLL 
 
>Cjap-DSH-2b 
MHLESAVQRQFLTLTIAKTDKKKTAFLRNTRNEPVRPIDTNEWIKHATQHMKAM
PSISEESSSTPIPDEWPSHSSASGTPFGGPTPTINQLSVITDKKYVVEVMAAPGSGL
EIKDREWLKIPIPMSFLGRDLVDWLLDHIKGLTKREEACNFAGEMLKMGYIQHV
VNKKHFSEKCYYVMGEECADYTQLRAPDGGFKYPQSRESSTSNSTTNNNNNNV
FPAHMYPPNQNEVQSANSSQNHQRNSVVLPNGIPMQQSVSGYASMPSSPFPPKN
GGDCGRTRDDQRSQTSGSSRGSSRRYVELPRKPSSQGSGSAHENSLMDRVASRS
SFRAAMSGSLRQFNIDG 
 
>Cjap-MIG-5 
MEQPCTSESSQIKVFYYLDDETTPYVSVIDTQDGVATLGNFKNSFTKRGYKYYG
KELDPDIQREVKVELTLDSDRLRRSQNGFYEVFLVSTPGYGTLPYSTMTRTQRTA
LDKRRRRSADFDAQPYSDASLAPSTIVSKEIMIIYLLSARENDQTRSAELSAXXXX
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XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXNSEDPYDDSAHRTGDTMYEPLATRDMNQIYEDDRR
QKRKPKKERFRRPYVPSTISSATESSVGSGLPRILEIYLPMKNVPYLGLSVCTIDGH
IFVSEIAAEGAVEKDGRMNVGDQILQVNRISFEELGGPQAVRALRDAAASGRPIT
LYISKYTKGAASEYDDPLASMASETMPLDVGVWVETAVQNTEKMKALGLDPQE
QTITTIDDGTLPFTSTASDDEEKLLYDQRRNGIPRVVHEDVERKKKESENEHLTEL
IDPMIVVRNMARPDSGLVVKNRKWLKILVPMSFIGRDLICWLMEHMTDIHSRKQ
ARVYAARLLAAGLIRHVVSKLTFTEKCYYVFADGILPEGTVDRNSTGTTSTRAD
ATTEVTYVGSPAPRGLALGARRGIPPHRLETTTLSPVAHDQTWLRRRRDCESPMT
NDYASMVGESQLGLNPTHIFGDQKKNHQRPTTTTMTAASQVTSSSLTNGSGGIG
GPPPTPLSSTMVLASPTLSHTCIADSEAGDGAKSRSKIIRS 
 
>Crem-DSH-1 
MSIKLEARERAIPTGSNTPSTSTSSDVLRSLLFTSKERKVLSTYTAPPPNRHHSPGV
VSQLINKIEQKTSPPTTSSRPKKKKKAPPLAQIDDLDLIEDDKTAVEVVKSPRRKK
YTGNPLGNLKILNNILPLSKTSEDKENSNQPTVGKKLKKSKSKSRVEPESEPPFRL
KRTLTDLTNNHSPAGSTWRQMVSNALGGPLKKRLSEGALFFPGTSKTADDCDDE
EGDNTKTTTKRRFLQRRKQSEKSAGGANGKESGGSASSSFFGALIRLSHSAASLT
SLTSLGGSRSNSASPSSSRSNTKEFKEELKPPQPPPPDLISPVAALSKPIFTLDSSHP
VSLTPPSRELRKSKTCQITTDRPPIIPSITISESRSLNRIDRCRPVTVDGSGLTPDRRP
LVSRRSTMSRTMSLIPTSPSLPPLYEEETASTAAMVEEEREDKAQKRRMRRYGGS
NTTSTYQGRKDVAPDASPRRHLIGFLHRTSHLSLTSELSADASFYLIGHRRHLEES
TIGSESDARVFSDDDDRGSTTTDFTSVSRQHEKMAKKKKNKRNFRKPSRASSFSS
ITESSMSLDVITVNLNMDTVNFLGISIVGQTSNCGDNGIYVANIMKGGAVALDGR
IEAGDMILQVNETSFENFTNDQAVDVLREAVSRRGPIKLTVAKSFENGQSCFTIPR
NSREEPVRPIDTQAWIQHTNAMRGMPSIVEESAPTPIPGEWPHGRPPSSSTVTSNG
SNGQNTVVGNGTHIHLDIHTDKKKVVEIMAMPGSGLDIKNRTWLKIPIPMSFLGK
YLFPVHIIIFFYSGSDLVEWLLDRIEGLRERKSARNYAADLLKLKYIAHVVNKVTF
TEQCYYVLGDECSGKRNEELTFIQSKYSDYARFRNEDGGPKYQWTMGMNGMS
AGNGSSVMLPPPHLPGGVPPGAFKGMAPSMVSDGESRMYVMHI 
 
>Crem-DSH-2 
MTDSPSPIDSSLDYSDVATPCTVIAAKCSIRNQKDLENEEDDLENQEDYTESFQQ
QEGDSVEQEDLSHIYVDDLSKDFSDAASSVMEPLPKPHTFARTITKVYYHLDDET
VPYMVDVHVPPDCITLRDVKRKLPRTNFKYYCIALDPESGREVKAEIRDDSQRLY
PLRCGKFELYLLTVEGSVHSDTSSGRHRKKHQTSSKGSSSSREYQRAAHHYDNP
TPYSDNESQASSIPTYVKKAHAFNRRQASQAYDRHQPRHRLHERHHQNHYDDST
FDVTTESDDHYRDGVTYYDEDEDDSRSINTDLTSVSQIHLKQRWKQQQQREARN
KWKRMPSMSTASSSLSSITESSMGLELLTVRLNLQTMPLGMVPYGLKTARGGDA
GLYVGDILDRGAVALDGRIDVGDMISEINNIDLSNYSNEAAAQLLRDAVAPRQF
VTLTIAKSIDSRKAVAAAFTKNTRAEPTRPIDTNEWLKHATNAMKAMPSISEESC
STPIPDEWPTNSSASGTPFGGPPPPSIACMNTSTNKKFVVEVMAAPGSGLEIKDRE
WLKIPIPMSFLGKDLVDWLLDHIQGLRKRGEAGKFAGEMLKLGYIQHVLNKNKF
SENCYYIMGEECADYTQLRAPDGGFKYAQSQTSSASAHSSNNNIFPPSMYPSQTQ
PSSAAGVNAHHRNSAILNSMVSGYASMPSSPFPNSKPAVGDCGRTRDDQRSQTS
GSSQGSSRR 



 83 

>Crem-MIG-5 
MEPPCTSDSNQIKVFYYLDDETTPYVSVIDTREGVATLGNFKNSFTKRGYKYYG
KELDPDIQREVKVELTSDSDRLRKSQNGFFEVFLVSTPGYGTLPRNTGTMTRTQR
TALDKRRRRSADFDATPYSDASLAPSTIVSRRAGEHLAELYTSNSEDPYQYDEHT
RRTIDDSSIYEPLGTRDMNKFHDDDRRKRKQKKERFRRPYVPSTISSATESSVNSG
LPRILEIYLPMKNVPYLGLSVCTMDGHIFVSEIAPEGAVEKDGRVNVGDQILQVN
RVSFEDLSGPQAVRALRDAAASKRPITLYISKFARGAPSEYDDPLASMASETMPL
DVGVWVETAVQNTEKMKALGLDPQEQTMTSVDDGTLPFTSTASDDEERILYDQ
RRNGIPRALLEEAERKKENERNEKAEQLTELIDPIIVVRAMARPDSGLVVKNRKW
LKILVPMSFIGCDLIDWLVEHMTDIHSRKHARLYAARLLAAGLIRHVVSKLTFTE
KCYYVFGDGILSTDRNSTDTSGTSGTTMRVEATTEVTYVGSPAPHAVATRIGRNI
PPHRLETTTLSPVAHDQTWLRRRRDCESPMTNDYASMVGESQIGMNPAGHYNP
YATKNNRQVPAPSQVTTSSLTNGEKLNPLAVLFSTNSVTNSRKRWYWRAPTDTS
VQYYGSSSVSDPITEHHQPRFRRGE 
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Table 1 

 
Table 1. Dishevelled nomenclature 
Comprehensive list of all dishevelled abbreviations used throughout. 
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Figure 1 

 
Fig. 1. Dishevelled cladogram 
A cladogram showing key features during the evolution of Dsh among animals including 
the origin of Dsh and lineage-specific paralogs as well as the gain or loss of protein 
domains. 
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Figure 2 

 
Fig. 2. Dishevelled architecture 
Diagram showing the archetypal Dsh protein with conserved domains and motifs. From 
left to right: the DIX domain, the DSV or dishevelled domain, the basic region, the PDZ 
domain, the SH3 binding motif, which is often referred to as the proline-rich region, and 
the DEP domain. 
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Figure 3 

 
Fig. 3. Cladogram of Nematoda 
A schematic representation of the division of the phylum Nematoda into clades, with the 
12-clade designation after Holterman et al. 2006 (Holterman et al., 2006) and the five-
clade designation after Blaxter et al. 1998 (Blaxter et al., 1998) in Roman numerals. 
Blaxter clades are encompassed in colored boxes. 
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Figure 4  

 
Fig. 4. Analysis of dishevelled phylogeny 
Phylogenetic analysis of Dsh orthologs across animals based on the protein coding 
nucleotide alignment from the N-terminus of the PDZ domain through the C-terminus of 
the DEP domain. The ML tree (rooted with the outgroup C. hemisphaerica) is shown. For 
each node, ML bootstrap support values (1000 replicates) are above the nodes whereas 
parsimony bootstrap values (1000 replicates) are written below. Support values #70 are 
not shown. 
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Figure 5 

 
Fig. 5. Dishevelled schematic 
Schematic diagram of Dsh orthologs in selected animal species. Proteins and their 
domains are drawn in proportion to the number of amino acids they contain. 
 
 
 
 
 
 



 94 

Figure 6 

 
Fig. 6. Dishevelled schematic across Caenorhabditis 
Schematic diagram of Dsh orthologs in sequenced Caenorhabditis species. Proteins and 
their domains are drawn in proportion to the number of amino acids they contain. These 
C. brenneri proteins are thought to be splice isoforms or per- haps allelic variants and not 
paralogous duplicates. Cjap-DSH-1a and Cjap-DSH-1b although presently annotated as 
separate genes, we suggest they are fragments of the same protein rather than two 
different orthologs of DSH-1. This is not the case with Cjap-DSH-2a and Cjap-DSH-2b, 
which likely are separate proteins. 
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Figure 7 

 
Fig. 7. Dishevelled splice isoforms 
The known Dsh splice isoform architecture for dsh-1, dsh-2, and mig-5 among 
caenorhabditids. All features (exons, introns, and domains) are drawn in proportion to the 
number of nucleotides they contain. All isoforms are shown in the same orientation, 
regardless of their actual orientation in their respective genomes. The known isoforms of 
Bmal-dsh-1, Bmal-mig-5, Ppac-dsh-1, and Ppac-mig-5 are included at the bottom for 
outgroup comparison. 
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Figure 8 
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Fig. 8. Dishevelled cladograms 
Graphical summary of events during the evolution of Dsh mapped onto cladograms. (A) 
A cladogram of animal evolution with important features of Dsh evolution mapped onto 
it. (B) Cladogram of nematodes with identified features of Dsh evolution mapped onto it. 
(C) Cladogram of caenorhabditids with identified features of Dsh evolution mapped onto 
it. 
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Supplemental Figure 1 

 
Supplemental Figure 1. Dishevelled across caenorhabditids 
Phylogenetic analysis of Dsh orthologs across caenorhabditids based on the protein 
coding nucleotide alignment from the N-terminus of the PDZ domain through the C-
terminus of the DEP domain. The ML tree (rooted with the outgroup taxon N. vitripennis) 
is shown. For each node, ML bootstrap support values (1,000 replicates) are above the 
nodes while parsimony bootstrap values (1,000 replicates) are written below. Support 
values <70 are not shown. 
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Supplemental Figure 2 
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Supplemental Figure 2. Dishevelled Protein Alignment 
Protein alignment from the beginning of the PDZ domain through the end of the DEP 
domain across animals. A nucleotide version of this alignment was used to generate the 
phylogenetic tree from Figure 3. Domain features are highlighted in color and labeled, 
including PDZ, NLS, SH3, DLF, and DEP. The conserved tyrosine 473 (Y473) is labeled 
with a polygon. Codons identified to be under negative selection are labeled with a 
triangle while codons identified as experiencing diversifying selection are labeled with a 
circle. 
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Supplemental Figure 3 

 
Supplemental Figure 3. Additional dishevelled protein alignment 
Protein alignment from the beginning of the PDZ domain through the end of the DEP 
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domain from all caenorhabditids in this analysis, plus N. vitripennis and T. spiralis as 
outgoups. A nucleotide version of this alignment was used to generate the phylogenetic 
tree from Figure S1. Domain features are highlighted in color and labeled, including 
PDZ, NLS, SH3, DLF, and DEP. The conserved tyrosine 473 (Y473) is labeled with a 
polygon. Codons identified to be under negative selection are labeled with a triangle 
while codons identified as experiencing diversifying selection are labeled with a circle. 
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Chapter 4 

 

FGF signaling regulates Wnt ligand expression to control vulval cell 

lineage polarity in C. elegans 
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ABSTRACT 
 

     The interpretation of extracellular cues leading to the polarization of intracellular 

components and asymmetric cell divisions is a fundamental part of metazoan 

organogenesis. The C. elegans vulva, with its invariant cell lineage and interaction of 

multiple cell signaling pathways, provides an excellent model for the study of cell 

polarity within an organized epithelial tissue. Here we show that the Fibroblast Growth 

Factor (FGF) pathway acts in concert with LIN-17/Frizzled to influence the localization 

of SYS-1/β-catenin, a component of the Wnt/ β-catenin asymmetry pathway, indirectly 

through the regulation of Wnt, cwn-1. The source of the FGF ligand is the 1º vulval 

precursor cell (VPC), P6.p, which controls the orientation of the neighboring 2º VPC, 

P7.p, by signaling through the sex myoblasts (SMs), activating the FGF pathway. The 

Wnt, CWN-1, is expressed in the posterior body wall muscle of the worm as well as the 

SMs, making it the only Wnt expressed on the posterior and anterior sides of P7.p at the 

time of the polarity decision. Both sources of cwn-1 act instructively to influence P7.p 

polarity in the direction of the highest Wnt signal. Using single molecule FISH 

(smFISH), we show the FGF pathway regulates the expression of cwn-1 in the SMs. 

These results demonstrate an interaction between FGF and Wnt in C. elegans 

development and vulval cell lineage polarity, as well as highlight the promiscuous nature 

of Wnts and the importance Wnt gradient directionality within C. elegans.  
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INTRODUCTION 
 
     The orientation of asymmetric cell divisions is essential to proper tissue architecture 

and organogenesis (Strutt, 2005). Loss of cell polarity and asymmetry is a major factor in 

tumor formation, and growing evidence illustrates its importance in understanding human 

cancer (Wodarz and Nathke, 2007). Because polarity and asymmetry are such vital 

components of proper organ formation, cell-cell interactions involving crosstalk between 

multiple signaling pathways are often incorporated to tightly regulate these processes. 

The Caenorhabditis elegans vulva provides a simple model to study this phenomenon 

due to the small number of cells, invariant cell lineage and developmental timing, and 

cell signaling mechanisms involved within vulval formation (reviewed by Sternberg, 

2005; reviewed by Gupta et al., 2012). Here we examine the interaction of FGF and Wnt 

signaling in controlling vulval cell lineage orientation. 

     The C. elegans vulva is formed from divisions of three VPCs: P5.p, P6.p, and P7.p – 

arranged along the anterior-posterior axis in the ventral epithelium (Sulston and Horvitz, 

1977). During the L3 (third larval) stage, a combination of EGF, Notch, and Wnt signals 

instructs the VPCs to adopt fates corresponding to particular lineage patterns. P6.p adopts 

a 1º fate and undergoes three rounds of symmetric divisions that lead to eight cells that 

form the vulval lumen. P5.p and P7.p adopt the 2º fate, which leads to three rounds of 

asymmetric cell divisions forming seven cells that create the anterior and posterior sides 

of the vulva (Figure 1). The outermost progeny of P5.p and P7.p adhere to the epidermis 

whereas the innermost progeny join the descendants of P6.p in forming the vulval lumen. 

The descendants of P5.p and P7.p display mirror symmetry about the center of the vulva.  
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     Previous analyses show the orientation of P5.p and P7.p descendants is determined by 

the interaction of multiple Wnt signals. In the absence of all Wnts, the VPCs display a 

randomized orientation, which is likely the default (Green et al., 2008; Figure 1). Two 

separate Wnts from the anchor cell, LIN-44 and MOM-2 acting through receptors LIN-

17/Frizzled and LIN-18/Ryk, respectively, regulate P7.p orientation (Ferguson et al., 

1987; Sternberg and Horvitz, 1988; Sawa et al., 1996; Inoue et al., 2004; Gleason et al., 

2006). In the absence of these signals the orientation of the progeny of P7.p mimic those 

of P5.p and face toward the posterior of the worm, a phenotype referred to as posterior-

reversed vulval lineage (P-Rvl; Figure 2). This posterior orientation is dependent on the 

instructive signal of EGL-20, a Wnt expressed in the tail acting through CAM-1/ROR 

and VANG-1/Van Gogh, and is referred to as “ground polarity.” In response to the Wnt 

signals from the anchor cell, LIN-17 and LIN-18 orient P7.p to face the center. This 

reorientation is described as “refined polarity” and is the wild-type orientation (Green et 

al., 2008; Figure 1).  

     The adult vulva is essential for egg-laying and mating. The sex muscles, consisting of 

uterine and vulval muscles, are required for egg-laying. The vulval muscles are formed 

from the migrating SMs (Thomas et al., 1990). Both gonad-independent and dependent 

pathways control the anterior migration of SMs in the C. elegans hermaphrodite (Burdine 

et al., 1998; Branda and Stern, 2000). EGL-17/FGF is the gonad-dependent attractant and 

acts via FGF receptor EGL-15. The dorsal uterus, ventral uterus, anchor cell and P6.p 

produce the gonad-dependent attractant (Branda and Stern, 2000). The function of EGL-

17 in SM migration requires other components of the FGF pathway: genetic mutations of 

each component affect the migration and final location of the SMs (Sundaram et al., 
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1996). Because egl-17 expression in P6.p is not necessary, but is sufficient, for proper 

SM migration, it is believed that this expression is used to fine-tune the gonadal attraction 

(Burdine et al., 1998). egl-17 expression in P6.p is activated by the inductive signal from 

the anchor cell that occurs in early L3 at which time the SMs have reached the center of 

the gonad (Figure 3). 

     Interactions between Wnt and other signaling pathways during vulval orientation have 

not been explored. Here we present evidence that FGF signaling promotes the wild-type 

orientation of P7.p. We show that FGF signaling interacts genetically with LIN-17 and 

indirectly controls the localization of SYS-1/β-catenin, a key component of Wnt/β-

catenin asymmetry pathway. The 1º cell, P6.p, is the source of the EGL-17 signal that 

controls polarity and acts through EGL-15 and the remainder of the FGF pathway in the 

migrating SMs. The effect of FGF signaling on vulval orientation is two-sided. First, the 

SMs must reach their final position, around the gonad center, then EGL-17 must activate 

the remainder of the FGF pathway in the SMs. Using smFISH we discovered that the 

FGF pathway is necessary for the regulation of a Wnt, cwn-1, in the left and right SMs as 

they flank the center of the gonad during the polarity decision of P7.p. cwn-1 is also 

expressed strongly from the posterior body wall muscle, making it the only Wnt with 

sources of expression on both the anterior and posterior sides of P7.p. We demonstrate 

that these two sources act instructively and add to the overall Wnt gradient in both the 

anterior and posterior directing pathways. 
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MATERIALS AND METHODS 
 
Strains and Genetics 

     C. elegans was handled as described previously (Brenner, 1974). All strains used 

(listed in Table S1) are derivatives of C. elegans N2 Bristol strain. The alleles used are as 

follows. LGI: lin-17(n671), sem-2(n1343). LGII: cwn-1(ok546), ayIs4[egl-17::gfp, dpy-

20(+)]. LGIII: qIs95[pSYS-1::VNS::SYS-1 with pttx-3::dsRed]. LGIV: lin-45(sy96), dpy-

20(e1282). LGX: lin-18(e620), egl-17(e1313), egl-17(n1377), egl-15(n484), sem-

5(n1779, cs15, n2109, n2195), ksr-1(ku68). The strain ayIs4[egl-17::GFP, dpy-20(+)]; 

dpy-20(e1282); lin-18(e620) was constructed by crossing strains NH2466 with CB620 

(Ferguson and Horvitz, 1985; Burdine et al., 1998). For RNAi experiments, gravid 

hermaphrodites were fed RNAi-expressing bacteria and their L4 progeny were scored. 

 

Scoring Vulval Phenotypes 

     To determine the vulval phenotype as wild type or P-Rvl, animals were scored in the 

mid-L4 stage. Animals were classified as P-Rvl if the 1° and 2° VPCs were induced, but 

separated by adherent cells (Katz et al., 1995). Only fully induced vulvae were scored. 

 

Transgenics 

     To make the CWN-1::GFP construct backbone, cwn-1 was amplified from genomic 

DNA (forward primer, 

ATGTGATGTCGACAAAAATGCTGAAATCTACACAAGTGATCC; reverse primer, 

GCAGCTTCTAGATAAGCATAAATACTTCTCAATTCG) and inserted into Fire 

vector pPD95.75 using restriction sites SalI and XbaI. To create Pegl-17::CWN-1::GFP, 
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first the promoter region of egl-17 was amplified from genomic DNA (forward primer, 

GCCTATGCAGCATTGGAGGATG; reverse primer, 

GGATCACTTGTGTAGATTTCAGCATAGCTCACATTTCGGGCACCTG). The 

promoter region of egl-17 was then fused to CWN-1::GFP (forward primer, 

GCCTATGCAGCATTGGAGGATG; reverse primer, 

AAGGGCCCGTACGGCCGACTA) (Hobert, 2002). The Pegl-17::CWN-1::GFP 

extrachromosomal array was generated by creating an injection mix consisting of 1 ng/μl 

Pegl-17::CWN-1::GFP, 7 ng/μl Pmyo-2::dsRed, and 142 ng/μl DNA ladder and injecting 

the mix into cwn-1(ok546); lin-18(e620) as well as lin-18(e620) egl-15(n484) animals as 

described (Mello et al., 1991). 

 

Ablations 

     Cell ablation experiments were performed as described (Bargmann and Avery, 1995). 

P6.p was ablated post induction, but before the first division of the VPCs. Strain NH2466 

was crossed into lin-18(e620) in order to accurately time the experiments by monitoring 

egl-17 expression in P6.p. The M cell was ablated in the early L1 stage in both a lin-

18(e620) as well as cwn-1(ok546); lin-18(e620) background. After ablations, the animals 

were recovered from slides and grown at 20°C until the mid-L4 stage when the vulval 

phenotype could be scored. Mock ablations were performed by placing appropriately 

staged worms on a slide for approximately 10 minutes, recovering them, and then scoring 

their vulval phenotype in mid-L4.  
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Single Molecule mRNA FISH 

     Probes for cwn-1 detection were provided as a gift from Dong Hyun Kim (Harterink et 

al., 2011). Preparation and hybridization steps were performed as previously described 

(Raj et al., 2008). Both strains, N2 and egl-15(n484), were prepared and imaged in an 

identical manner. Multiple plates were grown until full of gravid hermaphrodites and then 

bleached. The eggs from these bleachings were placed on fresh plates and grown at 20°C 

to enable an approximate synchronization of animals. After the animals had reached 

vulval induction they were washed from the plates using ddH20 and fixed in 3.7% 

formaldehyde in 1x PBS for 1 hour. Fixed animals were then permeabilized in 70% 

ethanol for 48 hours. Animals were washed and the cwn-1 probes coupled with Cy5 were 

added and left overnight at 37°C. The next day animals were washed and DAPI stained. 

Images were taken in z-stacks using an Olympus IX2-UCB microscope, Andor iKon-M 

934 camera, and appropriate optical filters for Cy5 and DAPI. Z-stacks were flattened 

into single images using Fiji. Quantification of single mRNA transcripts within the SMs 

was performed using a MATLAB script and manually corrected for further accuracy. 
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RESULTS 
 
FGF Signaling Defects Enhance the lin-18/Ryk Phenotype 

     The C. elegans Grb2 ortholog, sem-5, acts in both vulval induction, controlled by the 

Epidermal Growth Factor (EGF) pathway, and SM migration, controlled by the FGF 

pathway (Clark et al., 1992; reviewed by Sundaram, 2006). SEM-5 is an adaptor protein 

whose SH2 domain likely binds to the phospho-tyrosine residues of LET-23/EGFR and 

EGL-15/FGFR and recruits the RAS exchange factor SOS-1/Son of sevenless via its SH3 

domains. Expression of the FGF ligand in P6.p is dependent upon vulval induction 

(Burdine et al., 1998).  

     Different alleles of sem-5 have varying degrees of effect on vulval induction as well as 

SM migration, but a role in vulval orientation has not previously been reported. We 

scored the vulval lineage of P7.p in four different alleles of sem-5. Two alleles, n2019 

and cs15, which cause a Glycine to Alanine substitution in the first SH3 domain and an 

opal stop in the second SH3 domain, respectively, cause polarity and induction defects, 

whereas n2195, which causes a Glycine to Arginine substitution in the second SH3 

domain, yields neither polarity nor induction defects. The fourth allele, n1779, causes a 

Glutamate to Lysine substitution in the SH2 domain, results in a 13% P-Rvl phenotype, 

affecting polarity, but not induction. We thus used sem-5(n1779) as the canonical allele. 

Previously known components involved in the regulation of vulval cell lineage polarity 

include LIN-17, LIN-18, CAM-1, and VANG-1, all Wnt signaling components (Inoue et 

al., 2004; Gleason et al., 2006; Green et al., 2008). SEM-5 is the first non-Wnt signaling 

component found to be involved in vulval orientation.  
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     We next looked at the involvement of each component in the FGF pathway. No allele 

of egl-17, egl-15, or any other downstream FGF component other than sem-5 had any 

effect on orienation as single mutants (Table 1), which is likely due to the involvement of 

sem-5 in one of the other pathways controlling vulval orientation as well as its role in the 

FGF pathway. No null mutations of the downstream components of the FGF pathway are 

available due to their lack of viability. There are conflicting reports on whether egl-

17(n1377) is a null or reduced-function allele, though due to the severity of its phenotype 

as well as the frequency with which egl-17 mutations arise in EMS screens, it is most 

often considered null (Burdine et al., 1997; Chateau et al., 2010). 

     To understand the genetic relationship between FGF signaling and the previously 

known Wnt polarity pathway components required for the wild-type vulval orientation, 

we constructed double mutants of egl-15(n484) with lin-17(n671) and lin-18(e620), the 

canonical null alleles (Table 1). Because egl-15(n484) enhances the lin-18(e620) P-Rvl 

phenotype from 31 to 63% and has no effect on lin-17(n671) we believe the FGF 

pathway is working with the LIN-17 pathway to control vulval orientation. To test this 

hypothesis we constructed double mutants of all known FGF pathway components with 

lin-18(e620) or used RNAi in a lin-18(e620) background (Table 1). Alleles of egl-17 

enhanced lin-18(e620) to approximately 55% P-Rvl, similar to the effect of sem-

5(n1779), which enhanced lin-18(e620) to 57% P-Rvl. The double-mutant with the Son 

of sevenless ortholog, sos-1, had a P-Rvl of 63% whereas the double mutant with the Ras 

ortholog, let-60, enhanced the lin-18(e620) phenotype to 68% P-Rvl. Finally, the MAP 

kinase cascade consisting of lin-45, mek-2, mpk-1, and the scaffold, ksr-1, also enhanced 

the vulval phenotype to 60, 67, 68, and 66% P-Rvl, respectively. Each component of the 
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pathway enhanced the P-Rvl phenotype of lin-18(e620) to roughly the same degree 

implying the entire FGF pathway functions together.  This pathway likely acts with LIN-

17 as the mutations enhance lin-18(lf) but not lin-17(lf) alleles. If FGF signaling was 

working separately from the LIN-17 pathway we would expect FGF to enhance the lin-

17(lf) phenotype as it does lin-18(lf); however, because there is no effect on lin-17(lf) we 

assume FGF acts in concert with, not separately from, LIN-17. 

 

FGF Regulates the Localization of SYS-1/β-catenin 

     The polarity of the P7.p cell divisions is controlled by the Wnt/β-catenin asymmetry 

pathway (Green et al., 2008), which includes the β-catenin-like proteins SYS-1 and 

WRM-1, POP-1/TCF, and the Nemo-like-kinase, LIT-1 (reviewed by Mizumoto and 

Sawa, 2007). The Wnt/β-catenin asymmetry pathway ensures different ratios of SYS-1 to 

POP-1, controlling the differential transcription of Wnt target genes between daughters of 

an asymmetric cell division. Because our genetic data show an interaction between FGF 

and LIN-17 we wanted to determine if the FGF pathway, like LIN-17, can control the 

asymmetric localization of proteins between daughter cells of P7.p. The initial 

establishment of vulval polarity can be observed through the localization of 

VENUS::SYS-1 (VNS::SYS-1), localized in a high (P7.pa)/low (P7.pp) pattern in the 

wild-type worm, reciprocal to the localization of POP-1/TCF (Phillips et al., 2007; Green 

et al., 2008).  

     As previously reported, VNS::SYS-1 asymmetry in P7.p daughter cells is often lost in 

lin-17(n671) and lin-18(e620) mutants (Figure 4). These mutants display two aberrant 

patterns of VNS::SYS-1 localization as well as the wild-type pattern, though less 
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frequently. The two deviant localization patterns include one in which both P7.pa and 

P7.pp express equal amounts of VNS::SYS-1 and a reversed VNS::SYS-1 pattern in 

which P7.pp is enriched with VNS::SYS-1. By observing VNS::SYS-1 localization in 

sem-5(n1779) mutants we found 2 of 20 worms having an atypical localization of 

VNS::SYS-1, which reflects the small percentage of worms that have P-Rvl phenotype 

(13% P-Rvl). Since in wild-type worms VNS::SYS-1 invariably localized to the anterior 

daughter of P7.p, this result is physiologically relevant. In agreement with our model, no 

other VPCs show defective VNS::SYS-1 localization in a sem-5(n1779) background. The 

reversal of VNS::SYS-1 localization in lin-18(e620) sem-5(n1779) double mutants is 

slightly enhanced to a degree greater than lin-18(e620) alone (Figure 4). This observation 

confirms FGF pathway controls vulval cell polarity by interacting with LIN-17 and thus 

the Wnt/β-catenin asymmetry pathway and indicates the FGF effect is at the level of P7.p 

rather than its progeny. 

 

P6.p is the Source of EGL-17/FGF and Controls P7.p Polarity 

     Once it was confirmed that FGF regulates P7.p polarity we wanted to find the source 

of FGF. Since the FGF ligand, EGL-17, is expressed in the 1° VPC, P6.p, after EGF has 

activated vulval induction (Burdine et al., 1998; Figure 3), we hypothesized that P6.p 

could be the source of the polarity cue. To date, only the anchor cell and the tail of the 

worm have been shown to be sources of polarity cues; there has been no evidence of the 

1° cell regulating the polarity of its 2° neighbors despite their crosstalk during vulval 

induction (Sternberg and Horvitz, 1989; Levitan and Greenwald, 1998). We ablated P6.p 

after it received its induction cue, but prior to any polarity choice of P7.p. We used a 
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Pegl-17::gfp construct to time induction, and ablated the primary cell in both a wild-type 

background as well as a lin-18(e620) background to sensitize the animals to defects in 

FGF signaling. Worms were monitored until the Pegl-17::gfp construct expressed in P6.p 

and then P6.p was ablated using a laser microbeam (Figure 5). Similarly to the single 

mutants of the FGF pathway, ablating P6.p in a wild-type background does not lead to 

any instances of the P-Rvl phenotype. However, the ablation of P6.p in a lin-18(e620) 

background showed a strong enhancement of the lin-18(e620) P-Rvl phenotype, similar 

to that of every FGF pathway component mutant: the mock ablated animals had a 30% P-

Rvl phenotype whereas the ablated animals had a 68% P-Rvl phenotype. These data 

suggest that P6.p produces the EGL-17 ligand cue that directs the polarity of P7.p, and 

the 1° vulval cell influences polarity of the neighboring 2° vulval cells.  

 

Ablation of the Sex Myoblasts Enhances the lin-18/Ryk Phenotype 

     After verifying the location of the EGL-17 source we wanted to confirm the location 

of the receptor and remainder of the FGF signaling cascade that influences cell 

orientation. EGL-15 is expressed in the SMs and is necessary for proper SM migration 

(DeVore et al., 1995; Sundaram et al., 1996; Branda and Stern, 2000; Lo et al., 2008). To 

determine whether the polarity cue is acting through the SMs or possibly through the 

VPCs, we examined the expression pattern of egl-15 using a gfp translational fusion and 

found no expression in P7.p or any other VPC; however, expression was seen in the M 

cell lineage, consistent with previous observations (Lo et al., 2008). 

     The SMs are born from the M cell approximately 13 hours post-hatching (Sulston and 

Horvitz, 1977), begin migrating approximately 2 hours after they form, and reach their 
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final position, flanking the gonad center, 4 hours after beginning migration (Branda and 

Stern, 2000; Figure 6). If the SMs are the source of the FGF polarity pathway we should 

see an enhancement of the lin-18(e620) P-Rvl phenotype; however, if the source is in 

another location, such as the vulval precursor cells, we would expect to see no 

enhancement. We ablated the M cell, the precursor to both the left and right SMs, in 29 

worms, approximately 10 hours post-hatching, in a lin-18(e620) background. Ablation of 

the M cell resulted in a strong enhancement of the lin-18(e620) phenotype in the same 

manner as all FGF mutants as well as in the ablation of P6.p: specifically, the M cell 

ablated worms showed a 66% P-Rvl phenotype as compared to 30% in the non-ablated 

controls (Figure 6).  

     Because the M cell descendants also contribute to the posterior body wall muscle and 

coelomocytes, we sought a cleaner way to eliminate the SMs before the polarity cue. The 

SoxC ortholog, sem-2(n1343), alters the M cell lineage and prevents the formation of the 

SMs by driving the cells initially destined to become SMs to become posterior body wall 

muscle (Tian et al., 2011; Figure 6). Constructing sem-2(n1343); lin-18(e620) double 

mutants results in a 68% P-Rvl phenotype, confirming that the SMs influence the polarity 

choice of P7.p. 

     We wanted to observe the effect on vulval orientation in a mutant that inhibits SM 

migration independently of FGF signaling and does not eliminate FGF signaling within 

the SMs. mig-2 encodes a member of the Rho family of GTP-binding proteins, is 

expressed in the SMs, and prevents the SMs from wild-type migration in approximately 

half of the animals (Forrester and Garriga, 1997; Zipkin et al., 1997; Kishore and 

Sundaram, 2002). Because half the SMs do not migrate to their final wild-type position, 



 117 

we hypothesized these SMs would not be capable of giving the polarity cue to P7.p since 

they do not migrate to the anterior of the cell. mig-2 RNAi treated lin-18(e620) animals 

have a 56% P-Rvl phenotype, a significant increase from the lin-18(e620) single mutant, 

confirming the SMs must migrate to their wild-type position to transmit the polarity cue 

to P7.p (Figure 6).  

     These results, along with the expression pattern of egl-15, indicate the FGF polarity 

signal comes from P6.p, and requires the SMs. Because the polarity decision of the vulval 

precursor cells is made prior to anaphase of the first cell division, we believe the FGF 

polarity cue acts once the SMs have reached their final position flanking the center of the 

gonad. Mutations of each component of the FGF pathway have varying degrees of 

penetrance on the migration of the SMs (Sundaram et al., 1996). By contrast the effects 

of these mutants on vulval lineage orientation are strikingly similar. We believe the effect 

of FGF signaling on P7.p orientation is two-sided. First, the SMs must migrate to the 

anterior side of P7.p via an uncompromised FGF signal. Once the SMs have migrated to 

the anterior side of P7.p, the FGF signal from P6.p activates the downstream components 

of the pathway, activating the transcription of a gene or set of genes necessary for proper 

VPC orientation. If either of these two events is compromised, the FGF pathway cannot 

direct the anterior orientation of P7.p. 

 

FGF Signaling Regulates Expression of cwn-1 in the Sex Myoblasts 

     The C. elegans genome encodes five different Wnt proteins, expressed in partially 

overlapping patterns across the anteroposterior axis, but only one, cwn-1, is expressed in 

the SMs (reviewed by Eisenmann, 2005; Harterink et al., 2011). Work in other animals 
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has shown crosstalk between FGF and Wnt pathways, often leading to the regulation of 

Wnt by FGF (Hong et al., 2008; Stulberg et al., 2012; Yardley and Garcia-Castro, 2012). 

We hypothesized that FGF signaling regulates a Wnt signal produced in the SMs that 

controls P7.p polarity. To test this idea directly we used smFISH to quantify the number 

of mRNA transcripts of cwn-1 found within the left and right SMs just prior to the 

polarity decision of P7.p in a wild-type and reduced FGF signaling backgrounds (Figure 

7). 

     On average, the wild-type SMs each express 50 transcripts of cwn-1 prior to the 

polarity choice of P7.p. In an egl-15(n484) background, the expression of cwn-1 

transcripts is reduced two-fold on average with 23% of the SMs having 1/3 the number of 

wild-type transcript and 10% having as little as 1/5 of the number of wild-type 

transcripts. There is no overlap in SM transcript count between the wild-type and mutant 

backgrounds. The lowest wild-type SM transcript count is still greater than the highest 

SM transcript count in the mutant background: 40 transcripts per SM is the lowest wild-

type count compared to 37 transcripts per SM for the highest egl-15(n484) count  (Figure 

7 and Table S2). Therefore, FGF signaling regulates the expression of the Wnt ligand, 

cwn-1. It cannot be determined just how much cwn-1 transcript is needed to produce a 

wild-type vulval orientation, although previous work has examined how a change in 

transcript count affects phenotype (Raj et al., 2010). Examining the transcript count of 

egl-15(n484), we hypothesize that the SMs with a higher cwn-1 transcript count, similar 

to that of the wild-type, produce a P7.p lineage with an anterior orientation. It is the SMs 

with a greatly reduced cwn-1 transcript count that likely fall below the necessary 

threshold to orient P7.p to the anterior and, therefore, produce a P-Rvl phenotype. 
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cwn-1 Acts Instructively from Both the Anterior and Posterior Sides of P7.p 

     cwn-1 is expressed in the posterior body wall muscle and M cell descendants, making 

it the only Wnt ligand expressed from the anterior and posterior sides of P7.p during the 

polarity decision (Harterink et al., 2011; also see Figure 7). Previous work suggested that 

Wnt ligands instruct P7.p to orient toward the direction of the Wnt gradient: LIN-44 and 

MOM-2 toward the anterior and EGL-20 toward the posterior (Figure 1). Genetic 

evidence indicates cwn-1 acts upstream of lin-17, a receptor necessary for the anterior 

signal (Gleason et al., 2006), and has been shown to bind to CAM-1, a receptor necessary 

for the posterior signal (Green et al., 2007). Because cwn-1 is expressed on both sides of 

P7.p and has been shown to interact with receptors associated with the anterior and 

posterior pathways, we hypothesized that each gradient might instruct P7.p to orient 

toward the direction of the respective gradient. A cwn-1 mutation would, therefore, 

abolish the anterior and posterior signals making the overall effect of CWN-1 on P7.p 

minimal. We analyzed a cwn-1(ok546); lin-18(e620) double mutant and found it had little 

effect on lin-18(e620) vulval orientation, 31 versus 26% P-Rvl.  

     All Wnts directing VPC polarity instruct the localization of SYS-1 to the P7.p 

daughter cell toward the gradient (Green et al., 2008). Despite being different Wnts, LIN-

44 and MOM-2, acting through LIN-17 and LIN-18, respectively, both have the same 

molecular output of anterior SYS-1 localization. EGL-20, from the posterior, drives the 

posterior localization of SYS-1. We assume that each Wnt imparts a directional cue 

instructing SYS-1 to localize to the direction of the Wnt source. Therefore, CWN-1 from 

the SMs joins LIN-44 and MOM-2 in driving anterior localization, through an overall 

anterior Wnt gradient, and CWN-1 from the posterior body wall muscle joins EGL-20 in 
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driving posterior localization, through an overall posterior Wnt gradient (Figure 8). This 

assumption makes physical sense when considering mutations in FGF pathway 

components. The single mutants do not affect orientation because only one anterior Wnt 

is removed, leaving LIN-44 and MOM-2 to direct the localization of SYS-1. However in 

a lin-18(e620) double mutant, the animal has lost two anterior sources of Wnt, CWN-1 

and MOM-2, being the ligand of LIN-18, and therefore the overall anterior Wnt gradient 

is greatly reduced allowing the posterior gradient to dominate. Likewise, if the posterior 

CWN-1 signal is compromised the overall posterior Wnt gradient is reduced and SYS-1 

is instructed to localize to the anterior daughter cell.  

     To test this hypothesis we designed a construct that would provide an anterior gradient 

of CWN-1, namely, Pegl-17::CWN-1::GFP, and therefore reinforce the anterior gradient. 

The egl-17 promoter activates the expression of cwn-1 in P6.p upon vulval induction 

(Figure S1). By expressing this construct in a cwn-1(ok546); lin-18(e620) background, 

the only source of CWN-1 comes from the anterior side of P7.p. Anterior expressed 

CWN-1 suppresses the cwn-1(ok546); lin-18(e620) phenotype from 26 to 13% (p-value 

0.1288). We hypothesized the P-Rvl phenotype of cwn-1(ok546); lin-18(e620) could be 

too mild at 26% to see the full suppression resulting from driving CWN-1 from the 

anterior, so we used a sensitized background that gives a higher initial P-Rvl phenotype. 

Treating cwn-1(ok546); lin-18(e620) worms with lin-44 RNAi increases the percentage 

of P-Rvl to 52% due to the role of LIN-44 acting upstream of LIN-17. Expressing the 

Pegl-17::CWN-1::GFP construct in cwn-1(ok546); lin-18(e620) worms treated with lin-

44 RNAi results in significant suppression of the P-Rvl phenotype to 30% (p-value of 

0.0210) (Table 2).  
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     We next tested whether anterior CWN-1 could rescue the phenotype of lin-18(e620) 

egl-15(n484), and found that it does rescue the phenotype from 63 to 38% (Table 2). We 

believe the construct does not rescue fully back to 30% because in a lin-18(e620) egl-

15(n484) animal the SMs are still producing a reduced CWN-1 signal from the posterior 

side of P7.p.  

     These data illustrate that CWN-1 provides an instructive anterior gradient sufficient to 

suppress the posterior gradient in the wild-type nematode (Table 2). If this cue were 

permissive we would not expect to see a sole anterior source of CWN-1 suppress either 

cwn-1(ok546); lin-18(e620), cwn-1(ok546); lin-18(e620) grown in lin-44 RNAi, or 

rescue the phenotype of lin-18(e620) egl-15(n484). CWN-1, therefore, acts instructively 

from the anterior and posterior of P7.p. In the absence of a posterior signal, the anterior 

signal reinforces the progeny of P7.p to face the center and can suppress the P-Rvl 

phenotype. Likewise, in the absence of the anterior CWN-1 signal, through defects in the 

FGF pathway, removal of P6.p, or the SMs, the posterior signal instructs the progeny of 

P7.p to orient posteriorly when the anterior Wnt gradient has been compromised (Figure 

8). 
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DISCUSSION 
 
     Our results describe an interaction between FGF and Wnt signaling in vulval cell 

lineage polarity. Through genetic analysis we have shown that each component of the 

FGF pathway enhances the P-Rvl phenotype LIN-18/Ryk mutants, but does not affect 

those of LIN-17/Fz, indicating a specific interaction between FGF and LIN-17, likely 

CWN-1 acting on LIN-17 but not LIN-18. The underlying mechanisms of the P-Rvl 

phenotype can be seen on the molecular level through the localization of the β-catenin 

ortholog, SYS-1. FGF signaling indirectly controls the localization of SYS-1 to the 

anterior daughter cell of P7.p, which leads to the wild-type vulval orientation. FGF 

signaling does not directly influence the vulval lineage orientation, but instead is required 

for the regulation of CWN-1 expression, which acts instructively from both sides of P7.p 

(Figure 8). CWN-1 is the only Wnt ligand expressed on the anterior and posterior of P7.p 

at the time of its polarity decision and acts upstream of receptors involved in directing 

P7.p to face the anterior and posterior: LIN-17 and CAM-1, respectively.  

     How does P7.p always orient toward the anterior in the wild-type worm? Genetic data 

suggest MOM-2 and LIN-44 have a greater ability to direct the anterior orientation of 

P7.p, with CWN-1 acting as a minor player. Both posterior expressed CWN-1 and EGL-

20 act over a distance and form a poster-anterior gradient that has the ability to direct the 

orientation of P7.p toward the posterior, though the concentration of posterior Wnts 

might be much lower compared to anterior expressed Wnts by the time they reach the 

VPCs (Coudreuse et al., 2006). Expressing either CWN-1 or EGL-20 from the anterior of 

P7.p (from the anchor cell or P6.p) is sufficient to redirect the orientation of P7.p toward 

the anterior. All four Wnts involved in vulval orientation direct the localization of SYS-1 
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despite acting through three different receptors, all of which are present in the same cell, 

P7.p. There is receptor specificity, but all Wnts seem to have the same effect: P7.p orients 

in the direction of the highest Wnt gradient. P7.p always faces the anterior in a wild-type 

worm because of the three anterior sources of Wnts in close proximity to P7.p. Only by 

removing these sources can we begin to see the effects of the posterior Wnts; the same 

posterior Wnts that can impart an anterior directing cue when repositioned. The two 

posterior Wnts, EGL-20 and CWN-1, both activate competence to respond to LIN-3/EGF 

in the anterior VPCs and may have the same molecular activity (Penigault and Felix, 

2011). A possible hallmark of Wnt-mediated patterning within C. elegans could be 

similar molecular outputs from genes that are not truly redundant. 

     How similar is Wnt driven VPC patterning to other systems? A major difference 

between C. elegans and Drosophila is no Wnts have been implicated in Drosophila 

planar cell polarity whereas Wnts play a major roll in patterning the VPCs. On the other 

hand, the receptor CAM-1/Ror and transmembrane protein, VANG-1/Van Gogh, 

antagonize LIN-17 and LIN-18 by directing the localization of SYS-1 to the posterior 

daughter of P7.p. The antagonism between Fz and Van Gogh is a hallmark of planar cell 

polarity in the Drosophila wing (Seifert and Mlodzik, 2007; Gao, 2012; Singh and 

Mlodzik, 2012), but much less is understood about the interaction between Ror and Van 

Gogh (Gao et al., 2011).  

     Other comparisons can be drawn between C. elegans and vertebrate Wnt signaling. 

Wnts LIN-44 and CWN-1 act through LIN-17/Fz and MOM-2 acts through LIN-18/Ryk 

to direct SYS-1 to localize to the anterior daughter of P7.p. Although the possibility of a 

Fz-Ryk coreceptor complex exists in the mammalian systems (Lu et al., 2004), LIN-17 
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and LIN-18 function in parallel pathways despite both directing the localization of SYS-

1. Recent work in vertebrates has shown FGF regulates the expression of Wnt similar to 

our work in C. elegans vulval patterning. FGF regulates the expression of Wnt in the 

non-neural ectoderm of the chick (Yardley and Garcia-Castro, 2012). FGF also elevates 

Wnt expression, through inhibition of Wnt antagonists, in the zebrafish tailbud (Stulberg 

et al., 2012). Furthermore, our results illustrate a network of signals, relayed back and 

forth between different tissues: the gonadal anchor cell expresses an EGF signal that 

induces the ectodermal vulval cells, activating an FGF signal that is sent to the 

mesodermal sex myoblasts, which enables the regulation of a Wnt that directs the 

patterning of the ectodermal vulval cells. This relay between different tissues bears 

resemblance to Xenopus where it has been shown that Fgf8a induces neural crest 

indirectly through the activation of Wnt8 in the paraxial mesoderm, which then directs 

neural crest formation in the overlying ectoderm (Hong et al., 2008).  

     Using the C. elegans vulva as a model, we have shown a network of Wnt signals, with 

distinct receptor specificity directs the orientation of the vulval precursor cells through 

the localization of β-catenin. One of these Wnts, CWN-1, is regulated through the 

activity of the FGF pathway in a crosstalk between multiple tissues that enables the 

efficacy of its directional cue. 
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Table 1 

 
Table 1. FGF signaling enhances the P-Rvl phenotype of lin-18(e620) 
Double mutants were constructed between lin-18(e620) and each known component of 
the FGF pathway. Vulval phenotypes were scored during mid-L4. The p-values were 
calculated in comparison with lin-18(e620) using Fisher’s exact test. 
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Table 2 

 
Table 2. cwn-1 acts instructively from the anterior and posterior sides of P7.p. 
Driving CWN-1 from the anterior side of P7.p suppresses the P-Rvl phenotype of cwn-
1(ok546); lin-18(e620) mildly and significantly suppresses the phenotype of cwn-
1(ok546); lin-18(e620) grown in lin-44 RNAi. Anterior expression rescues the phenotype 
of lin-18(e620) egl-15(n484). 
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Supplemental Table 1. Original source of worm strains 
A comprehensive table of the original work where each strain used can be found. 
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Supplemental Table 2 

 
Supplemental Table 2. Raw data from smFISH analysis. 
Transcript counts from both SMs in a wild-type and egl-15(n484) background. 11 worms 
were analyzed, representing 22 SMs. 
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Figure 1 
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Fig. 1. C. elegans vulval development 
(A) Schematic of vulval induction illustrating sources of EGF, Notch, and Wnt. (B) 
Lineage trees of VPC progeny: P5.p, 2° fate, on the left, P6.p, 1° fate, in center, and P7.p, 
2° fate, on left. The progeny of each cell is color coded: A cells – red, B cells (B1 and 
B2) – orange, C cells – yellow, D cells – green, E cells light blue, and F cells dark blue. 
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(C) Final conformation of vulval cells shown as a cartoon and Nomarski image in mid-L4 
stage. Mirror symmetry is noted about the vulval center. Proximal daughter cells of P5.p 
and P7.p join the daughters of P6.p in forming the vulval lumen whereas the distal most 
daughters of P5.p and P7.p adhere to the ventral epidermis. (D) The default polarity of 
P5.p and P7.p is random in the absence of all Wnts. (E) egl-20 is expressed in the tail 
(green circles) and establishes ground polarity in which both P5.p and P7.p face the 
posterior as a result of asymmetric localization of SYS-1, LIT-1, WRM-1 to the posterior 
daughter of P7.p and POP-1 to the anterior daughter. (F) lin-44 and mom-2 are expressed 
in the anchor cell (yellow circle) resulting in refined polarity where both P5.p and P7.p 
both face towards the center as a result of asymmetric localization of SYS-1, LIT-1, and 
WRM-1 to the anterior daughter cell of P7.p and POP-1 to the posterior daughter cell.  
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Figure 2 

 
Fig. 2. Wild-type vulva vs. Posterior-reversed vulval lineage vulva 
(A) Wild-type vulva formed from 22 progeny of 3 VPCs: P5.p, P6.p, and P7.p. The 
progeny of P5.p and P7.p form mirror symmetry about the vulval center. (B) Posterior-
reversed vulval lineage: the daughter cells of P7.p mimic those of P5.p. Both images 
taken with sem-5(n1779) background. 
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Figure 3 

 
Fig. 3. egl-17::gfp expression in P6.p 
egl-17 is activated by EGF signaling and is expressed in P6.p. Expression of egl-17 is 
used as a marker for vulval induction. 
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Figure 4 

 
Fig 4. Subcellular localization of VNS::SYS-1 
The localization pattern of VNS::SYS-1 in P7.p daughter cells. The resulting pattern was 
classified by eye into three categories: SYS-1 enriched in the anterior daughter (P7.pa > 
P7.pp), SYS-1 present at similar levels in both daughters (P7.pa = P7.pp), and SYS-1 
enriched in the anterior daughter (P7.pa < P7.pp). A representative image of each 
scenario is shown. 
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Figure 5 

 
 
Fig. 5. P6.p influences the polarity of P7.p 
(A) Prior to induction, the anchor cell is directly dorsal to P6.p. (B) During induction the 
anchor cell produces LIN-3/EGF, which is supplied to P5-7.p. Induction activates egl-17, 
illustrated in blue, within P6.p. (C) P6.p is ablated at the start of induction, but prior to 
the VPC polarity choice, leaving only P5.p and P7.p, the 2° VPCs. (D) Wild-type 
orientation of a worm with P6.p ablated (E). P-Rvl orientation of a worm with P6.p 
ablated. (F) Ablating P6.p enhances the phenotype of lin-18(e620). 
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Figure 6 

 

 
 

 
Fig. 6. The sex myoblasts influence the polarity of P7.p. 
(A) The sex myoblasts arise from the M cell as shown in the cell lineage. The sex 
myoblasts are born 13 hours post hatch and migrate anteriorly until they reach their final 
position, flanking the center of the gonad. The polarity decision of P7.p is made after the 
sex myoblasts have reached their final position and prior to their first division. The M 
cell/sex myoblasts are shown in purple, the gonad blue and the VPCs green. (B) Ablating 
the M cell enhances the phenotype of the lin-18(e620) single mutant, but does not 
enhance the cwn-1(ok546); lin-18(e620), suggesting the SMs, which arise from the M 
cell, regulate vulval cell lineage polarity and CWN-1 is the necessary cue expressed in 
the SMs. sem-2(n1343) genetically ablates the SMs and mig-2(RNAi)  causes a migratory 
defect in the SMs, denoted by Mig. (C) The M cell lineage shown in a sem-2(n1343) 
background. The SMs do not form in this background, but instead become posterior body 
wall muscle, marked in red with an asterisk. 
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Figure 7 

 

 
 
Fig. 7. FGF signaling regulates cwn-1 expression in the SMs 
(A) smFISH analysis of the cwn-1 transcript in a wild-type worm. cwn-1 is 
predominantly expressed in the posterior body wall muscle (BWM) and the M cell/SM 
lineage. (B) A wild-type sex myoblast at the time of the polarity decision. (C) A 
histogram quantifying the number of cwn-1 transcript/SM in both a wild-type and egl-
15(n484) background. 
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Figure 8 
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Fig. 8. The role of Wnt signaling on P7.p  
(A) The anchor cell (shown in blue) releases LIN-3 (red arrow), inducing the VPCs 
(shown in green). Induction triggers the expression of the FGF ligand, egl-17 (yellow 
arrow), in P6.p, which activates the FGF pathway located in the SMs (shown in purple). 
The FGF pathway regulates the expression of cwn-1 in the SMs. The SMs are the anterior 
source of CWN-1 for P7.p whereas the posterior body wall muscle serves as the posterior 
source. All Wnt signals are depicted with an orange arrow. lin-44 and mom-2, both 
expressed anterior to P7.p, express in the anchor cell whereas egl-20 expresses in the tail, 
the posterior side of P7.p. (B) CWN-1 from the SMs and LIN-44 act through LIN-17 and 
MOM-2 acts through LIN-18. All three ligands act to drive SYS-1 localization to the 
anterior daughter of P7.p. Posterior expressed CWN-1 and EGL-20 act through CAM-1 
to drive SYS-1 localization to the posterior daughter of P7.p. Genetic data indicate EGL-
20 possibly acts through another, unknown receptor. (C) Genetic data for components of 
the anterior and posterior acting pathways. Combinations of mutations for anterior 
pathway components increase the P-Rvl penetrance whereas mutations in posterior 
components suppress the P-Rvl phenotype. cwn-1 is the only component found in both 
pathways. (D) – (F) Examples of how mutations drive phenotypic output. In lin-
17(n671); lin-18(e620) all anterior receptors are eliminated resulting in a 100% P-Rvl 
phenotype. Mutations in cwn-1 eliminate it from both sides of the pathway whereas sem-
2(n1343), due to a genetic ablation of the SMs, eliminates only the anterior source of 
cwn-1. 
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Supplemental Figure 1 

 
Supplemental Figure 1. Pegl-17::CWN-1::GFP expression 
smFISH picture of Pegl-17::CWN-1::GFP expressing in P6.p immediately after 
induction.  
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Chapter 5 

 

Conclusion 
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Concluding Remarks 

     The work presented in this thesis highlights the role of Wnt and FGF signaling in 

vulval cell lineage polarity. In chapter 2, I described how the low-density lipoprotein 

receptor, lrp-2, functions downstream of egl-20/Wnt with cam-1/Ror and vang-1/Van 

Gogh to direct the localization of SYS-1/β-catenin. The foundation that this chapter lays 

for future studies on low-density lipoprotein receptors and their function in Wnt signaling 

within C. elegans is extremely exciting. The first step I would like to see taken is to better 

understand the biochemistry of the system. Does LRP-2 have the ability to bind with 

CAM-1 or VANG-1 and form a true coreceptor complex? Furthermore, can LRP-2 

physically bind the posterior Wnts, EGL-20 and possibly CWN-1? If there is a physical 

interaction between LRP-2 and the other transmembrane proteins in this signaling 

cascade or between LRP-2 and the posterior expressed Wnts, what protein domains are 

necessary? A structure function analysis would be essential. By better understanding the 

structure and function of LRP-2 within the context of vulval formation we, perhaps, 

could learn more about the evolution of other low-density lipoprotein receptors, mainly 

LRP5/6 (Arrow) and how it has evolved to be an essential component of Wnt signaling in 

higher order organisms. I would also like to see more work done investigating the role 

lrp-1. I did not pursue lrp-1 in this work because mutations in this gene cause the worm 

to arrest at an early larval stage, prior to when one observes the orientation of the L4 

vulva. However, this does not mean that lrp-1 is not involved in vulval lineage patterning 

or other asymmetric cell divisions within C. elegans. I would like to see more work done 

with this gene to determine any possible function in Wnt signaling within the worm. 

     In chapter 3, I discussed the origin and evolution of dishevelled. As the hub of 
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multiple Wnt signaling cascades, dishevelled plays an important role in many 

developmental pathways across Metazoa. Our findings show that dishevelled is a protein 

that has undergone dynamic evolution, particularly in nematodes. We found a novel 

protein domain, the DEP-like fragment, and also present evidence that a nuclear 

localization sequence has been highly conserved across many dishevelled orthologs. We 

also hypothesize that much of the dynamic evolution dishevelled has undergone has 

readied specific orthlogs for functional specialization. Our work raises questions of 

protein evolution in general and provides clues as to how animals have dealt with the 

complex intricacies of having a protein, such as dishevelled, act as a central messenger 

hub connected to many different and vitally important pathways.  

     As a work that focuses on bioinformatics and theory, there are many future directions 

to take our findings. I would like to see the functional significance of the DEP-like 

fragment investigated. With its high level of conservation, one would assume that it does 

have a functional role in Wnt signaling. I would also like to see the likelihood of 

dishevelled acting as a transcription factor investigated. Dishevelled possesses many 

hallmarks of transcription factors, and with the high conservation of a nuclear 

localization sequence, I think it would be worth pursuing this idea further. Finally, our 

work has shown that many predicted functional specializations based on domain 

architecture hold true for the planarian, Schmidtea mediterranea, but not enough 

experimental work has been done in C. elegans to fully determine the role that domain 

architecture plays in functional specialization within nematodes. Wnt signaling through 

dishevelled has been implicated in many processes within C. elegans. I would like to see 

how well our bioinformatics predict which ortholog of dishevelled is involved within 
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these Wnt signaling cascades. 

     In chapter 4, I discussed the interaction between Wnt and FGF signaling in vulval cell 

lineage polarity. My data illustrate crosstalk between multiple cells in order to direct the 

orientation of the vulva. I also show that FGF is required to regulate the expression of 

cwn-1/Wnt in the sex myoblasts. The interaction between the sex myoblasts and vulval 

formation was not previously known, and looking back I am proud to be able to add an 

additional player to the already impressive list of components involved in vulval 

signaling. Finally, I also show that despite receptor specificity, all Wnts acting on the 

vulva have the same molecular output, directing the localization of SYS-1 in the direction 

of the overall Wnt gradient. This work brings us one step closer to fully understanding 

how Wnt signaling regulates the orientation of vulval cells.  

     Looking back at this project I feel there are several questions that should be pursued to 

further our understanding of the interaction between Wnt and FGF signaling. First, my 

data shows that FGF regulates the expression of cwn-1 within the sex myoblasts; 

however, the level of this regulation is not known. It would be interesting to find the 

downstream effectors of the FGF pathway and see if they are necessary for upregulating 

cwn-1 expression. Currently we do not know the promoter sequence necessary for cwn-1 

expression, but determining this sequence and the effector necessary for expression 

would be a great leap in our understanding of the Wnt and FGF interaction. On the other 

hand, perhaps FGF does not directly regulate the expression of cwn-1, but rather 

indirectly regulates expression level through the suppression of a Wnt inhibitor. 

Regardless of how FGF controls Wnt expression in C. elegans, determining the 

mechanisms would not only be a great discovery in the worm field, but also for Wnt 
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signaling in general.  

      


