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Chapter 1 

Introduction: DNA as a therapeutic target in cancer 
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1.1 Background and significance. 

The human genome consists of approximately 20,000 protein coding genes and many 

more genes that encode non-coding RNA with crucial cellular functions.(1) The 

regulatory networks that govern gene expression are immensely complex and work 

cooperatively to control cellular function and cellular response to environmental stimuli.  

It is due to this intricate regulation of gene expression that cells of the same genetic 

material can differentiate into various phenotypes in the human body to perform 

specialized tasks.  

As a result of numerous DNA dependent processes, corruption to the DNA code can 

result in aberrant cellular behavior.(2)  Thus, essential DNA dependent processes such as 

transcription and replication participate in DNA damage repair to ensure genomic 

stability.(3, 4) (Fig. 1.1)  Transcription coupled nucleotide excision repair (TC-NER) is a 

mechanism that relies on elongating RNA polymerase II (RNAP2) to identify lesions or 

blockages in the DNA.  Once the RNAP2 holoenzyme encounters a blockage on the 

transcribed DNA strand it recruits the proteins CSA, CSB, XAB2, and HMGN1 to repair 

the DNA lesion.  If the DNA damage cannot be repaired, persistent blockage to RNAP2 

elongation will trigger p53 dependent and independent apoptosis.(3, 5-8)   Similarly, 

DNA lesions are recognized by replicating DNA polymerase in the S phase.(4)  If the 

lesion cannot be repaired, persistent block to replication will also trigger cell death.  

While most instances of DNA damage are efficiently repaired, some escape as mutations 

and are retained in the genetic code.  Over time these mutations accumulate and cause 

altered patterns of gene expression, which ultimately lead to genetic diseases like cancer. 
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1.2 DNA as a target for cancer therapy. 

As the underlying source of cancer, some of the oldest and most effective anticancer 

agents are targeted to the DNA.  Historically, the development of DNA targeted 

chemotherapeutics began as circumstantial observation to the side effects of chemical 

warfare during World War II.(9)  Physicians examining sailors exposed to mustard gas, 

after a shipment of M47A1 mustard gas bombs leaked from the damaged SS John 

Harvey, noticed signs of lymphoid and myeloid suppression.(10)  It was reasoned that the 

high proliferation rate of bone marrow cells made them susceptible to the alkylating 

effects of mustard gas, thus cancers with similarly high proliferations rates, such as 

leukemias and lymphomas, may also be targeted by such agents.(11)  In a clinical study 

by Goodman et al. in 1946, it was found that treatment with nitrogen mustards indeed 

caused remission in patients with lymphoma.(12) 
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The utility of alkylating agents for the treatment of lymphoma opened the way for the 

development of new DNA targeted agents with novel mechanisms.(13, 14) (Table 1.1)   

Many of these drugs form covalent interstrand crosslinks, stabilize protein-DNA 

complexes of topoisomerases I and II, or inhibit DNA and RNA synthesis.(4, 13, 14)  

These modifications to the DNA introduce blockages to many DNA dependent processes 

including transcription and replication, which in turn triggers apoptosis in diseased 

cells.(4, 14-17)  However, because transcription and replication are common to cancerous 
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and normal cells alike, systemic treatment with DNA targeted therapeutics can be very 

toxic to the patient as well. 

1.3 Limitations of DNA targeted therapy. 

Most DNA targeted therapeutics preferentially affect cancerous cells due to their high 

proliferation rate and genomic instability, but benign cells can also be affected.  Normal 

cells can tolerate basal levels of DNA damage generated by exogenous chemicals and by 

by-products of cellular metabolism.  However, the endogenous DNA repair mechanisms 

are often overwhelmed by DNA targeted therapeutics.(18)  Studies of patients treated 

daunomycin and cytarabine shortly after their introduction in the 1960s documented the 

presence chromosomal abnormalities associated with DNA fragmentation in normal 

cells.(19, 20)  The extensive DNA damage caused by chemotherapeutic treatment has 

been linked to the acquisition of resistance towards chemotherapy and the development 

of secondary cancers.(21-23) 

A recent study on the effects of chemotherapy in the tumor microenvironment 

indicates genotoxic stress can cause normal cells to promote tumor survival, which 

further complicates the long term utility of DNA targeted drugs.   In the study by Sun et 

al. treatment of prostate fibroblasts with DNA damaging agents such as bleomycin, 

mitoxantrone, and ionizing radiation was found to activate WNT16B expression in a NF-

B dependent manner.(24)  Interestingly, the expression of WNT16B was not 

significantly increased when prostate cancer cells were treated with the same genotoxic 

agents.  As a secreted signaling protein, WNT16B activates the Wnt expression program 

in tumor cells, which in turn promotes survival and metastasis.   
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As a consequence of the numerous side effects of DNA targeted therapeutics, 

research in the field has waned in favor of therapeutic agents with more specific 

molecular targets and less systemic toxicity.(14)   However, despite their limitations 

DNA targeted therapies remain a staple in most treatment regimens.  Thus, development 

of a new class of DNA targeted molecules, without genotoxic side effects, could 

circumvent the problems associated with current therapies. 

1.4 Noncovalent minor groove binders as anticancer agents. 

DNA minor groove binders consist of molecules that permanently modify DNA in a 

covalent manner and those that interact with DNA noncovalently. The latter group of 

molecules interferes with DNA dependent process in a reversible manner.  This group of 

molecules includes DAPI, pentamidine, berenil, Hoechst, distamycin A, netropsin, and 

their synthetic derivatives.(25)    

Clinically, diarylamidines, consisting of DAPI, pentamidine, and berenil, have been 

used for the treatment of several protozoa related diseases.(26) (Fig. 1.2) The minor 

groove binder DAPI inhibits DNA and RNA polymerases by binding to A/T rich tracts of 

DNA.(27-30)  While DAPI is active against Trypanosome Congolese, undesirable side 

effects have limited its clinical use.  Pentamidine is clinically used to treat infections of 

Trypanosoma brucei gambiense, Leismania donovani, and Pneumocystis carinii.  Berenil 

is used to treat trypanosomiasis in veterinary medicine.(25)  

Bisbenzimidazoles are Hoechst-like compounds that bind to A/T rich DNA 

sequences.(31, 32) (Fig. 1.2)  They have been shown to interfere with DNA dependent 

process in cell culture without causing DNA damage.(33)  Furthermore, a symmetric 
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bisbenzimidazole has demonstrated antitumor activity against  CH1 human ovarian 

carcinoma xenografts in vivo.(34)  

Distamycin A and netropsin are tripyrrole and dipyrrole oligomers, respectively, and 

bind to A/T tracts.  Both compounds bind to the minor groove in a 1:1 fashion.(35, 36)  

(Fig. 1.2) Distamycin has been shown to also bind in a 2:1 manner.(37)  Similar to other 

noncovalent minor groove binders, these compounds inhibit DNA and RNA 

polymerases.(6, 28, 38) 
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 Py-Im polyamides are synthetic oligomers based on the structures of distamycin A 

and netropsin.  Research in the Dervan lab have improved the DNA binding affinity of  

polyamides by linking two oligomers with a turn unit and enforcing 2:1 binding as a 

hairpin.(39)  Sequence recognition by polyamides has also been expanded by 

incorporation of new aromatic heterocycles that discriminate between A/T and G/C base 

pairs through the antiparallel pairing of these amino acids.(40, 41) (Fig. 1.3) 

Additionally, conjugation of fluorescein or isophthalic acid to the C-terminal tail of 

polyamides significantly improves their nuclear localization.(42, 43)  
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 Historically, these compounds were found to exhibit antifungal activity in yeast 

through a DNA dependent mechanism that did not cause genotoxicity.(44)  In cell 

culture, Py-Im polyamides are able to regulate gene expression in inducible transcription 

systems(45-49), and are toxic to a variety of cancer cell lines.(50)  Animal experiments 

have shown Py-Im polyamides are bioavailable through multiple forms of 

administration(51-55), and can affect gene expression in target tissues in vivo.(56, 57) 

These characteristics make Py-Im polyamides ideal candidates for development as novel 

DNA targeted therapeutics. 

1.5 Scope of this work. 

The work presented here focuses on the characterization of Py-Im polyamides as non-

genotoxic antitumor agents that are active against prostate cancer xenografts.  Chapter 2 

details the pharmacokinetic and animal toxicity analysis of two hairpin polyamides 

targeted to the 5’-WGWWCW-3’ sequence found in the androgen response element.  In 

this study it was found that the polyamide with an α amino turn was much less toxic to 

animals than the compound with a β acetamide turn.(55)  The less toxic polyamide is 

further characterized in chapter 3 as a non-genotoxic DNA binder that interferes with 

RNAP2 elongation, and causes cell death in  human prostate cancer cells  in cell culture 

and in xenografts.(58)  Chapter 4 revisits the difference in rodent toxicity that stems from 

the -turn.  By using 4 polyamides that vary at the turn (α amino, β amino, α acetamide, 

and β acetamide), we assessed differences in animal toxicity and determined the target 

organs of pathology.  From this study we identified a structural analog to the parent 

compound that retains antitumor activity without causing animal toxicity. 
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