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Abstract

Therapy employing epidural electrostimulation holds great potential for improving therapy for pa-
tients with spinal cord injury (SCI) (Harkema et al., 2011). Further promising results from combined
therapies using electrostimulation have also been recently obtained (e.g., van den Brand et al., 2012).
The devices being developed to deliver the stimulation are highly flexible, capable of delivering any
individual stimulus among a combinatorially large set of stimuli (Gad et al., 2013). While this ex-
treme flexibility is very useful for ensuring that the device can deliver an appropriate stimulus, the
challenge of choosing good stimuli is quite substantial, even for expert human experimenters. To
develop a fully implantable, autonomous device which can provide useful therapy, it is necessary to
design an algorithmic method for choosing the stimulus parameters. Such a method can be used
in a clinical setting, by caregivers who are not experts in the neurostimulator’s use, and to allow
the system to adapt autonomously between visits to the clinic. To create such an algorithm, this
dissertation pursues the general class of active learning algorithms that includes Gaussian Process
Upper Confidence Bound (GP-UCB, Srinivas et al., 2010), developing the Gaussian Process Batch
Upper Confidence Bound (GP-BUCB, Desautels et al., 2012) and Gaussian Process Adaptive Upper
Confidence Bound (GP-AUCB) algorithms. This dissertation develops new theoretical bounds for the
performance of these and similar algorithms, empirically assesses these algorithms against a number
of competitors in simulation, and applies a variant of the GP-BUCB algorithm in closed-loop to
control SCI therapy via epidural electrostimulation in four live rats. The algorithm was tasked with
maximizing the amplitude of evoked potentials in the rats’ left tibialis anterior muscle. These exper-
iments show that the algorithm is capable of directing these experiments sensibly, finding effective
stimuli in all four animals. Further, in direct competition with an expert human experimenter, the
algorithm produced superior performance in terms of average reward and comparable or superior
performance in terms of maximum reward. These results indicate that variants of GP-BUCB may

be suitable for autonomously directing SCI therapy.
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