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Chapter 3

Theoretical Contributions

3.1 Introduction

Many problems require optimizing an unknown reward function, from which we can only obtain

noisy observations. A central challenge is choosing actions that both explore (estimate) the function

and exploit our knowledge about likely high reward regions. Carefully calibrating this exploration–

exploitation tradeoff is especially important in cases where the experiments are costly in some

sense, e.g., when each experiment takes a long time to perform and the time window available for

experiments is short. In some such settings, it may be desirable to run several experiments in

parallel. By parallelizing the experiments, substantially more information can be gathered in the

same time-frame; however, future actions must be chosen without the benefit of intermediate results.

One might conceptualize these problems as choosing “batches” of experiments to run simultaneously.

The challenge is to assemble batches of experiments which both explore the function and exploit

what are currently known to be high-performing regions.

Two key, interrelated questions arise: the computational question of how one should efficiently

choose, out of the combinatorially large set of possible batches, those that are most effective; and

the statistical question of how the algorithm’s performance depends on the size of the batches (i.e.,

the degree of informational parallelism). In this chapter, we address these questions by presenting

GP-BUCB and GP-AUCB; these are novel, efficient algorithms for selecting batches of experiments in

the Bayesian optimization setting where the reward function is modeled as a sample from a Gaussian

process prior (or has low norm in the associated Reproducing Kernel Hilbert Space).

In more detail, we provide the following main contributions:

• We introduce GP-BUCB, a novel algorithm for selecting actions to maximize reward in large-

scale exploration-exploitation problems while accommodating parallel or batch execution of

The work in this chapter has been submitted to the Journal of Machine Learning Research as Desautels, Krause,
and Burdick, “Parallelizing Exploration-Exploitation Tradeoffs In Bayesian Global Optimization”, itself a substantial
expansion of Desautels et al. (2012), published at ICML 2012.
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the actions and the consequent observation of their reward. GP-BUCB may also be used in the

setting of a bounded delay between initiation of an action and observation of its reward.

• We also introduce GP-AUCB, an algorithm which adaptively exploits parallelism to choose

batches of actions, the sizes of which are limited by the conditional mutual information gained

therein; this limit is such that the batch sizes are small when actions are selected for which the

algorithm knows relatively little about the reward and batch sizes are large when the reward

function is well known for the actions selected. We show that this adaptive parallelism is

well-behaved and can easily be constrained using pre-defined limits.

• We prove sublinear bounds on the cumulative regret incurred by algorithms of a general class,

including GP-BUCB and GP-AUCB, and provide corollary extensions to each of these two

algorithms, thus bounding their rates of convergence.

• For some common kernels, we show that if the problem is initialized by making observations

corresponding to an easily selected and provably bounded set of queries, the regret of GP-

BUCB can be bounded to a constant multiplicative factor of the known regret bounds of the

sequential GP-UCB algorithm. This asymptotic post-initialization guarantee is independent of

batch size B so long as B grows at most polylogarithmically in T , the number of queries to be

selected in total. This implies (near-)linear informational speedup through parallelism.

• We demonstrate how execution of many UCB algorithms, including the GP-UCB, GP-BUCB,

and GP-AUCB algorithms, can be drastically accelerated by lazily evaluating the posterior

variance. This technique does not result in any loss in accuracy.

• We evaluate GP-BUCB and GP-AUCB on several synthetic benchmark problems, as well as

two real data sets, respectively related to automated vaccine design and therapeutic spinal

cord stimulation. We show that GP-BUCB and GP-AUCB are competitive with state of the art

heuristics for parallel Bayesian optimization, and that under certain circumstances, GP-BUCB

is competitive with sequential action selection under GP-UCB, despite having the disadvantage

of delayed feedback.

• We consider more complex notions of execution cost in the batch and delay settings and identify

areas of this cost and performance space where our algorithms make favorable tradeoffs and

are therefore especially suitable for employment.

In the remainder of the chapter, we begin by formally describing the problem setting (Section

3.2). In the next section, we describe the GP-BUCB algorithm, present the main regret bound, which

applies to a general class of algorithms using an upper confidence bound decision rule, and present

corollaries bounding the regret of GP-BUCB and initialized GP-BUCB (Section 3.3). We extend

this analysis to GP-AUCB, providing a regret bound for that algorithm, discuss different possible

stopping conditions for similar algorithms, and introduce the notion of lazy variance calculations

(Section 3.4). We compare our algorithms’ performance with each other and with several other
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algorithms across a variety of problem instances, including two real data sets (Section 3.6). Finally,

we present our conclusions (Section 3.7).

3.2 Problem Setting and Background

We wish to make a sequence of decisions (or equivalently, take actions) x1,x2, . . . ,xT ∈ D, where

D is the decision set, which is often (but not necessarily) a compact subset of Rd, and the subscript

denotes the round in which that decision was made; each round is an opportunity for the algorithm

to make one decision. For each decision xt, we observe noisy scalar reward yt = f(xt) + εt, where

f : D → R is an unknown function modeling the expected payoff f(x) for each decision x. For

now we assume that the noise variables εt are i.i.d. Gaussian with known variance σ2
n, i.e., εt ∼

N (0, σ2
n), ∀t ≥ 1. This assumption will be relaxed later. If the decisions xt are made one at a time,

each with the benefit of all observations y1, . . . , yt−1 corresponding to previous actions x1, . . . ,xt−1,

we shall refer to this case as the strictly sequential setting. In contrast, the main problem tackled in

this chapter is the challenging setting where xt may only depend on y1, . . . , yt′ , for some t′ < t− 1.

In selecting these decisions, we wish to maximize the cumulative reward
∑T
t=1 f(xt), or equiv-

alently minimize the cumulative regret RT =
∑T
t=1 rt, where rt = [f(x∗)− f(xt)] and x∗ ∈ X∗ =

argmaxx∈D f(x) is an optimum decision (assumed to exist, but not necessarily to be unique). In

experimental design, D might be the set of possible stimuli that can be applied, and f(x) models

the response to stimulus x ∈ D. By minimizing the regret, we ensure progress towards the most

effective stimulus uniformly over T . In fact, the average regret, RT /T , is a natural upper bound on

the suboptimality of the best stimulus considered so far, i.e., RT /T ≥ mint [f(x∗)− f(xt)] (often

called the simple regret, Bubeck et al., 2009).

3.2.1 The Problem: Parallel or Delayed Selection

In many applications, at time τ , we wish to select a batch of decisions, e.g., xτ , ...,xτ+B−1, where

B is the size of the batch, to be evaluated in parallel. One natural application is the design of

high-throughput experiments, where several experiments are performed in parallel, but feedback is

only received after the experiments have concluded. In other settings, feedback is delayed. In both

situations, decisions are selected sequentially, but when making the decision xt in round t, we can

only make use of the feedback obtained in rounds 1, . . . , t′, for some t′ ≤ t− 1. Formally, we assume

there is some mapping fb : N→ N0 such that fb[t] ≤ t− 1, ∀t ∈ N, and when making a decision at

time t, we can use feedback up to and including round fb[t]. If fb[t] = 0, no observation information

is available.

This framework can model a variety of realistic scenarios. Setting B = 1 and fb[t] = t − 1

corresponds to the non-delayed, strictly sequential setting in which a single action is selected and
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the algorithm waits until the corresponding observation is returned before selecting the succeeding

action. The “simple batch” setting in which we wish to select batches of size B can be captured by

setting fb[t]SB = b(t− 1)/BcB, i.e.,

fb[t]SB =





0 : t ∈ {1, . . . , B}
B : t ∈ {B + 1, . . . , 2B}
2B : t ∈ {2B + 1, . . . , 3B}

...

.

Note that in the batch case, the time indexing within the batch is a matter of algorithmic construc-

tion, since the batch is built in a sequential fashion, but actions are initiated and observations are

received simultaneously. If we wish to formalize the problem of selecting actions when feedback from

those actions is delayed by exactly B rounds, the simple delay setting, we can simply define this

feedback mapping as fb[t]SD = max{t−B, 0}. Note that in both the simple batch and delay cases,

B = 1 is the strictly sequential case. In comparing these two simple cases for the same value of B,

we observe that fb[t]SB ≥ fb[t]SD, that is, the set of observations available in the simple batch case

for making the tth decision is always at least as large as in the simple delay case, suggesting that

the delay case is in some sense “harder” than the batch case. As we will see, however, the regret

bounds for each algorithm presented in this chapter are established based on the maximal number of

pending observations (i.e, those which have been initiated, but are still incomplete), which is B − 1

in both of these settings, resulting in unified proofs and regret bounds for the two cases.

More complex cases may also be handled by GP-BUCB. For example, we may also be interested

in executing B experiments in parallel, but the duration of an experiment may be variable, and we

can start a new experiment as soon as one finishes; this translates to having a queue of pending

observations of some finite size B. Since we only select a new action when the queue is not full,

there can be at most B − 1 actions waiting in the queue at the time any action is selected, as in

the simple batch and delay cases. Again, the maximum number of pending observations is the key

to bounding the regret, though the variable delay for individual observations requires some subtlety

with the feedback mapping’s specification.

Even in complex cases, one quantity intuitively used in describing the difficulty of the problem

instance is the constant B. In this light, while developing GP-BUCB and initialized GP-BUCB in

Sections 3.3.4 and 3.3.5, we only assume that the mapping fb[t] is specified as part of the problem

instance (possibly chosen adversarially) and t− fb[t] ≤ B for some known constant B.
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3.2.2 Modeling f via Gaussian Processes (GPs)

Regardless of when feedback is obtained, if we are to turn finite numbers of observations into useful

inference about the payoff function f , we will have to make assumptions about its structure. In

particular, for large (possibly infinite) decision sets D there is no hope to do well, i.e., incur little

regret or even simply converge to an optimal decision, if we do not make any assumptions. For good

performance, we must choose a regression model which is both simple enough to be learned and

expressive enough to capture the relevant behaviors of f . One effective formalism is to model f as a

sample from a Gaussian process (GP) prior, as discussed in Section 2.4. Briefly recapitulated, a GP

is a probability distribution across a class of – typically smooth – functions, which is parameterized

by a kernel function k(x,x′), which characterizes the smoothness of f , and a mean function µ(x).

For notational convenience, we assume µ(x) = 0, without loss of generality, and we additionally

assume that k(x,x) ≤ 1, ∀x ∈ D. We write f ∼ GP(µ, k) to denote that we model f as sampled

from such a GP. If noise is i.i.d. Gaussian and the distribution of f is conditional on a vector of

observations y1:t−1 = [y1, ..., yt−1]T corresponding to decisions Xt−1 = [x1, ...,xt−1]T , one obtains

a Gaussian posterior distribution f(x)|y1:t−1 ∼ N (µt−1(x), σ2
t−1(x)) for each x ∈ D, where

µt−1(x) = K(x,Xt−1)[K(Xt−1,Xt−1) + σ2
nI]−1y1:t−1 and (3.1)

σ2
t−1(x) = k(x,x)−K(x,Xt−1)[K(Xt−1,Xt−1) + σ2

nI]−1K(x,Xt−1)T , (3.2)

where K(x,Xt−1) denotes the row vector of kernel evaluations between x and the elements of Xt−1,

the set of decisions taken in the past, and K(Xt−1,Xt−1) is the matrix of kernel evaluations, where

[K(Xt−1,Xt−1)]ij = k(xi,xj), ∀xi,xj ∈Xt−1 , i.e., the covariance matrix of the values of f over

the set so far observed. Since Equations (3.1) and (3.2) can be computed efficiently, closed-form

posterior inference is computationally tractable in a GP distribution via linear algebraic operations.

3.2.3 Conditional Mutual Information

A number of information theoretic quantities will be essential to the analysis of the algorithms

presented in this chapter. In particular, the quantity

γT = max
A⊆D, |A|≤T

I(f ; yA) (3.3)

is the maximum mutual information between the payoff function f and observations yA of any set

A ⊆ D of the T decisions evaluated up until time T . For a GP, the mutual information I(f ; yA) is

I(f ; yA)=H(yA)−H(yA |f)=
1

2
log
∣∣I+σ−2

n K(A,A)
∣∣ ,
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where K(A,A) is the covariance matrix of the values of f at the elements of the set A, H(yA) is the

differential entropy of the probability distribution over the set of observations yA, and H(yA |f) is

the corresponding value when the distribution over yA is conditioned on f , or equivalently, f(A).

The conditional mutual information for observations yA given previous observations yS , is defined

(for two finite sets A,S ⊆ D) as

I(f ;yA | yS) = H(yA | yS)−H(yA | f).

The conditional mutual information gain from observations yA of the set of actions A can also be

calculated as a sum of the marginal information gains of each observation in the set; conditioned on

yS , and for A = {x1,x2, ..., xT } this sum is

I(f ;yA | yS) =
T∑

t′=1

log (1 + σ−2
n σ2

t′−1(xt′)), (3.4)

where the term σ2
t′−1(xt′) is the posterior variance over f(xt′), conditioned on yS and y1, ..., yt′−1. It

is important to note that σ2
t′−1(xt′) is independent of the values of the observations. Since the sum’s

value can thus be calculated without making the observations (i.e., during the course of assembling a

batch), it is possible to calculate the mutual information which will be gained from any hypothetical

set of observations.

3.2.4 The GP-UCB approach

Modeling f as a sample from a GP has the major advantage that the predictive uncertainty can

be used to guide exploration and exploitation. While several heuristics, such as Expected Improve-

ment (Mockus et al., 1978) and Most Probable Improvement (Mockus, 1989) have been effectively

employed in practice, nothing is known about their convergence properties in the case of noisy obser-

vations. Srinivas et al. (2010), guided by the success of upper-confidence based sampling approaches

for multi-armed bandit problems (Auer, 2002), analyzed the Gaussian process Upper Confidence

Bound (GP-UCB) selection rule,

xt = argmax
x∈D

[
µt−1(x) + α

1/2
t σt−1(x)

]
. (3.5)

This decision rule uses αt, a domain-specific time-varying parameter, to trade off exploitation (sam-

pling x with high mean) and exploration (sampling x with high standard deviation). Srinivas et al.

(2010) showed that, with proper choice of αt, the cumulative regret of GP-UCB grows sublinearly

for many commonly used kernel functions. This algorithm is presented in simplified pseudocode as

Algorithm 1.
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Algorithm 1 GP-UCB

Input: Decision set D, GP prior µ0, σ0, kernel function k(·, ·)
for t = 1, 2, . . . , T do

Choose xt = argmaxx∈D[µt−1(x) + α
1/2
t σt−1(x)]

Compute σt(·), e.g., via Equation (3.2)
Obtain yt = f(xt) + εt
Perform Bayesian inference to obtain µt(·), e.g., via Equation (3.1)

end for

Implicit in the definition of the GP-UCB decision rule, Equation (3.5), is the corresponding

confidence interval,

Cseq
t (x) ≡

[
µt−1(x)± α1/2

t σt−1(x)
]
, (3.6)

where this confidence interval’s upper confidence bound is the value of the argument of the decision

rule. For this (or any) confidence interval, we will refer to the difference between the uppermost limit

and the lowermost, here w = 2α
1/2
t σt−1(x), as the width w. This confidence interval is based on the

posterior over f given y1:t−1; a new confidence interval is created for round t+1 after adding yt to the

set of observations. Srinivas et al. (2010) carefully select αt such that a union bound over all t ≥ 1

and x ∈ D yields a high-probability guarantee of confidence interval correctness; it is this guarantee

which enables the construction of high-probability regret bounds. Using this guarantee, Srinivas

et al. (2010) then prove that the cumulative regret of the GP-UCB algorithm can be bounded (up

to logarithmic factors) as RT = O∗(
√
TαT γT ), where αT is the confidence interval width multiplier

described above and γT is the maximum mutual information between the payoff function f and the

observations y1:T . For many commonly used kernel functions, Srinivas et al. (2010) show that γT

grows sublinearly and αT only needs to grow polylogarithmically in T , implying that RT is also

sublinear; thus RT /T → 0 as T →∞, i.e., GP-UCB is a no-regret algorithm.

Motivated by the strong theoretical and empirical performance of GP-UCB, we explore general-

izations to batch and parallel selection (i.e., B > 1). One näıve approach would be to update the

GP-UCB score, Equation (3.5), only once new feedback becomes available, but this algorithm would

simply select the same action at each time step between acquisition of new observations, leading

to limited exploration. To encourage more exploration, one may instead require that no decision is

selected twice within a batch (i.e., simply rank decisions according to the GP-UCB score, and pick

decisions in order of decreasing score, until new feedback is available). However, since f often varies

smoothly, so does the GP-UCB score; under some circumstances, this algorithm would also suffer

from limited exploration. Further, if the optimal set X∗ ⊆ D is of size |X∗| < B and the regret

of the every sub-optimal action is finite, the algorithm would be forced to suffer linear regret, since

some x /∈X∗ must be included in every batch. In short, both of these näıve algorithms are flawed,

in part because they fail to exploit knowledge of the redundancy in the observations which will be

obtained as a result of their actions.
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From the preceding discussion, choosing a diverse set of inputs and while relying upon only

outdated feedback presents a significant challenge. In the following, we introduce the Gaussian

process - Batch Upper Confidence Bound (GP-BUCB) algorithm, which encourages diversity in

exploration, uses past information in a principled fashion, and yields strong performance guarantees.

We also extend the GP-BUCB algorithm by the creation of the Gaussian process - Adaptive Upper

Confidence Bound (GP-AUCB) algorithm, which retains the theoretical guarantees of the GP-BUCB

algorithm, but creates batches of variable length in a data-driven manner.

3.3 GP-BUCB Algorithm and Regret Bounds

We introduce the GP-BUCB algorithm in Section 3.3.1. Section 3.3.2 states the chapter’s major

theorem, a bound on the cumulative regret of a general class of algorithms including GP-BUCB and

GP-AUCB. This main result is in terms of a quantity C, a bound on information used within a

batch; this quantity is examined in some detail in Section 3.3.3. Using this examination, Section

3.3.4 provides a corollary, bounding the regret of GP-BUCB specifically. Section 3.3.5 improves this

regret bound by initializing GP-BUCB with a finite set of observations.

3.3.1 GP-BUCB: An Overview

A key property of GPs is that the predictive variance at time t, Equation (3.2), only depends

on Xt−1 = {x1, . . . , xt−1}, i.e, where the observations are made, but not which values y1:t−1 =

[y1, . . . , yt−1]T were actually observed. Thus, it is possible to compute the posterior variance used

in the sequential GP-UCB decision rule, Equation (3.5), even while previous observations are not yet

available. To do so, we hallucinate observations yfb[t]+1:t−1 = [µfb[t](xfb[t]+1), . . . , µfb[t](xt−1)] for

every observation not yet received. A natural approach towards parallel exploration is therefore to

replace the sequential decision rule, Equation (3.5), with a decision rule which instead sequentially

chooses decisions within the batch as

xt = argmax
x∈D

[
µfb[t](x) + β

1/2
t σt−1(x)

]
. (3.7)

Here, the parameter βt has a role analogous to the parameter αt in the GP-UCB algorithm. The

confidence intervals corresponding to this decision rule are of the form

Cbatch
t (x) ≡

[
µfb[t](x)± β1/2

t σt−1(x)
]
. (3.8)

The resulting GP-BUCB algorithm is shown in pseudocode as Algorithm 2. This approach naturally

encourages diversity in exploration by taking into account the change in predictive variance which
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Algorithm 2 GP-BUCB

Input: Decision set D, GP prior µ0, σ0, kernel function k(·, ·)
for t = 1, 2, . . . , T do

Choose xt = argmaxx∈D[µfb[t](x) + β
1/2
t σt−1(x)]

Compute σt(·)
if t = fb[t+ 1] then

Obtain yt′ = f(xt′) + εt′ for t′ ∈ {fb[t] + 1, . . . , t}
Perform Bayesian inference to obtain µt(·)

end if
end for

will eventually occur after pending observations: since the payoffs of “similar” decisions have similar

predictive distributions, exploring one decision will automatically reduce the predictive variance

of similar decisions, and thus their value in terms of exploration. This decision rule appropriately

deprecates those observations which will be redundant with respect to pending observations, resulting

in a more correct valuation of the action of exploring them.

The disadvantage of this approach appears as the algorithm progresses deeper into the batch. At

each time t, the algorithm creates confidence intervals Cbatch
t (x), the width of which is proportional

to σt−1(x). This standard deviation is used because it is the standard deviation of the posterior over

the payoff f if all observations y1:t−1 are available, which enables GP-BUCB to avoid exploratory

redundancy. However, doing so conflates the information which is actually available, gained via

the observations y1:fb[t], with the hallucinated information corresponding to actions xfb[t]+1 through

xt−1. Thus, σt−1(x) is “overconfident” about our knowledge of the function. The ratio of the

width of the confidence interval derived from the set of actual observations y1:fb[t] to the width of

the confidence interval derived from the partially hallucinated set of observations y1:t−1 is given

by σfb[t](x)/σt−1(x). This quantity is related to I(f(x);yfb[t]+1:t−1 | y1:fb[t]), the hallucinated

conditional mutual information with respect to f(x), such that

σfb[t](x)

σt−1(x)
= exp

(
I(f(x);yfb[t]+1:t−1 | y1:fb[t])

)
. (3.9)

This ratio quantifies the degree of “overconfidence” with respect to the posterior as of the beginning

of the batch. Crucially, if there exists some constant C, such that I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤
C, ∀x ∈ D, the ratio σfb[t](x)/σt−1(x) can also be bounded for every x ∈ D. Bounding this ratio

of confidence interval shrinkage due to hallucinated information links the hallucinated posterior at

round t back to the posterior as of the last feedback, at round fb[t]. Using this bound, the algorithm

can be constructed to compensate for its overconfidence.

This compensation for overconfidence must strike a delicate balance between the algorithmic

requirement of allowing the predictive variance over f to shrink as the algorithm hallucinates obser-

vations, thus allowing the algorithm to avoid redundancy, and maintaining the probabilistic inter-
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Figure 3.1: (a): The confidence intervals Cseq
fb[t]+1(x) (dark), computed from previous noisy observa-

tions y1:fb[t] (crosses), are centered around the posterior mean (solid black) and contain f(x) (white

dashed) w.h.p. To avoid overconfidence, GP-BUCB chooses Cbatch
fb[t]+1(x) (light gray) such that even

in the worst case, the succeeding confidence intervals in the batch, Cbatch
τ (x), ∀τ : fb[τ ] = fb[t], will

contain Cseq
fb[t]+1(x). (b): Due to the observations that GP-BUCB “hallucinates” (stars), the outer

posterior confidence intervals Cbatch
t (x) shrink from their values at the start of the batch (black

dashed), but still contain Cseq
fb[t]+1(x), as desired. (c): Upon selection of the last decision of the

batch, the feedback for all decisions is obtained, and for the subsequent action selection in round t′,
new confidence intervals Cseq

fb[t′]+1(x) and Cbatch
fb[t′]+1(x) are computed.

pretation of the confidence interval size, such that high-probability statements can be made about

the regret. One satisfactory approach is to increase the width of the confidence intervals (through

proper choice of the parameter βt), such that the confidence intervals used by GP-BUCB are conser-

vative, i.e., contain the true function f(x) with high probability. More precisely, we require that for

all t ∈ {1, 2, . . . , T} and x ∈ D, Cseq
fb[t]+1(x) ⊆ Cbatch

t (x); that is, the batch algorithm’s confidence

intervals are sufficiently large to guarantee that even for the last action selection in the batch, they

contain the confidence intervals which would be created by the GP-UCB algorithm, Equation (3.6),

given y1:fb[t]. Srinivas et al. (2010) provide choices of αt such that the GP-UCB confidence in-

tervals have a high-probabilty guarantee of correctness ∀t ≥ 1,x ∈ D. If it can be shown that

Cseq
fb[t]+1(x) ⊆ Cbatch

t (x), ∀x ∈ D, t ∈ N, the batch confidence intervals inherit the high-probability

guarantee of correctness. By multiplicatively increasing the width of the hallucinated confidence

intervals and using the same factor of width increase for all x ∈ D and t ∈ N, the redundancy

control of the hallucinated observations is maintained, and the required degree of conservatism can

simultaneously be achieved. Figure 3.1 illustrates this idea. The main difficulty in using this ap-

proach is finding the degree of conservatism required to guarantee the containment of Cseq
fb[t]+1(x)

by Cbatch
t (x). Sections 3.3.2 and 3.3.4 show that by using a multiplicative factor exp(C) relative

to αfb[t], where C is a bound on the conditional mutual information which can be gained within

a batch, βt can be chosen such that containment of the sequential confidence intervals within the

batch confidence intervals is achieved. This containment follows from Equation (3.14). We further

show that, with appropriate initialization, the regret can be made to only mildly increase relative

to GP-UCB, providing theoretical support for the potential for parallelizing GP optimization.
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3.3.2 General Regret Bound

Our main theorem bounds the regret of GP-BUCB and related algorithms. This regret bound is

formulated in terms of a bound C on the maximum conditional mutual information which can be

hallucinated with respect to f(x) for any x in D, which we assume to be known to the algorithm.

We discuss methods of obtaining such a bound in Section 3.3.3. This bound is used to relate

hallucinated confidence intervals, used to select actions, and the posterior confidence intervals as of

the last feedback obtained, which contain the payoff function f with high probability. This theorem

holds under any of three different assumptions about f , which may all be of practical interest. In

particular, it holds even if the assumption that f is sampled from a GP is replaced by the assumption

that f has low norm in the Reproducing Kernel Hilbert Space (RKHS) associated with the kernel

function.

Theorem 1. Let δ ∈ (0, 1), γt be as defined in Equation (3.3), and αt be a time-varying exploration-

exploitation tradeoff parameter, as in Equation (3.5). Let the variance be bounded, such that

k(x,x) ≤ 1, ∀x ∈ D. Suppose one of the following sets of assumptions holds:

1. D is a finite set, the payoff function f is sampled from a known GP prior with known noise

variance σ2
n, and αt = 2 log(|D|t2π2/6δ).

2. D ⊆ [0, l]d is compact and convex, with d ∈ N, l > 0, and the payoff function f is sampled

from a known GP prior with known noise variance σ2
n. Choose αt = 2 log(t22π2/(3δ)) +

2d log
(
t2dbl

√
log(4da/δ)

)
, where the constants a, b > 0 and k(x,x′) are such that the following

bound holds with high probability on the derivatives of GP sample paths f :

Pr

{
sup
x∈D
|∂f/∂xj | > L

}
≤ ae−(L/b)2 , j = 1, . . . , d.

3. D is arbitrary and the payoff function f has RKHS norm bounded as ||f ||k ≤ M for some

constant M . The noise variables εt form an arbitrary martingale difference sequence (meaning

that E[εt | ε1, . . . , εt−1] = 0 for all t ∈ N), uniformly bounded by σn. Choose αt = 2M2 +

300γt ln3(t/δ).

Further suppose there exists a mapping fb[t] which dictates at which rounds new feedback becomes

available to the algorithm and a bound C > 0 such that, for all t ∈ N and all x ∈ D,

I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ C, (3.10)

where xt is selected according to Equation (3.7) using βt = exp(2C)αfb[t] for all t ∈ {1, . . . , T}.
Then the cumulative regret is bounded by O∗(

√
TγT exp(2C)αT ) with high probability. Precisely,

Pr
{
RT ≤

√
C1T exp(2C)αT γT ,+2 ∀T ≥ 1

}
≥ 1− δ
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where C1 = 8/ log(1 + σ−2
n ).

Proof. The proof of this result is presented in Appendix A.1.

The key quantity that controls the regret in Theorem 1 is C, the bound in Equation (3.10) on the

maximum conditional mutual information obtainable within a batch with respect to f(x) for any

x ∈ D. In particular, the cumulative regret bound of Theorem 1 is a factor exp(C) larger than the

regret bound for the sequential (B = 1) GP-UCB algorithm. Thus, for any practical meaningfulness

of the bound, we must be able to define C. The various methods which can be used for selecting C

are explored in the following sections.

3.3.3 Suitable Choices for C

The functional significance of a bound C on the information hallucinated with respect to any f(x)

arises through this quantity’s ability to bound the degree of contamination of the GP-BUCB confi-

dence intervals, given by Equation (3.8), with hallucinated information. As background for finding

suitable values C, extension of the discussion of Section 3.2.3 on mutual information is required.

Two properties of the mutual information are particularly useful. These properties are mono-

tonicity (adding an element x to the set A cannot decrease the mutual information between f and

the corresponding set of observations yA) and submodularity (the increase in mutual information be-

tween f and yA with the addition of an element x to set A cannot be greater than the corresponding

increase in mutual information if x is added to A′, A′ ⊆ A) (Krause and Guestrin, 2005).

Using the time indexing notation developed in Section 3.2.1, the property of monotonicity allows

the following series of inequalities:

I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ I(f ;yfb[t]+1:t−1 | y1:fb[t]) (3.11)

≤ max
A⊆D,|A|≤B−1

I(f ;yA | y1:fb[t]) (3.12)

≤ max
A⊆D,|A|≤B−1

I(f ;yA) = γB−1. (3.13)

The first inequality follows from the monotonicity of mutual information, i.e., the information gained

with respect to f as a whole must be at least as large as that gained with respect to f(x). The

second inequality holds because we specify the feedback mapping such that t − fb[t] ≤ B, and the

third inequality holds due to the “information never hurts” bound (Cover and Thomas, 1991), which

states that the conditional mutual information I(f ;yA | yS) is monotonically decreasing in S (i.e.,

as elements are added to set S).

Any bound C on the conditional mutual information hallucinated with respect to any f(x) during
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the selection of a batch can be combined with Equation (3.9) to produce the following statement:

σfb[t](x)

σt−1(x)
= exp

(
I(f(x);yfb[t]+1:t−1 | y1:fb[t])

)
≤ exp (C). (3.14)

A bound on I(f(x);yfb[t]+1:t−1 | y1:fb[t]) itself or any bound on one of the terms on the right hand

side of Equations (3.11), (3.12) or (3.13) is suitable for our purposes.

3.3.4 Corollary Regret Bound: GP-BUCB

The GP-BUCB algorithm requires that t− fb[t] ≤ B, ∀t ≥ 1, and uses a value C such that, for any

t ∈ N,

max
A⊆D,|A|≤B−1

I(f ;yA | y1:fb[t]) ≤ C, (3.15)

thus bounding I(f(x);yfb[t]+1:t−1 | y1:fb[t]) for all x ∈ D and t ∈ N via Inequality (3.12). Otherwise

stated, in GP-BUCB, the local information gain with respect to any f(x),x ∈ D, t ∈ N is bounded

by fixing the feedback times and then bounding the maximum conditional mutual information with

respect to the entire function f which can be acquired by any algorithm which chooses any set

of B − 1 or fewer observations. While this argument uses multiple upper bounds, any or all of

which may be overly conservative, this approach is still sensible because such a bound C holds for

any possible algorithm for constructing batches; it is otherwise quite difficult to disentangle the

role of C in setting the exploration-exploitation tradeoff parameter βt from its role as a bound on

how much information is hallucinated by the algorithm, since a larger value of C (and thus βt)

typically produces more information gain by promoting exploration under the GP-BUCB decision

rule, Equation (3.7).

Since the bound C is related to the maximum amount of conditional mutual information which

could be acquired by a set of B−1 actions, one expects C to grow monotonically with B; with a larger

set of pending actions, there is more potential for explorations which gain additional information.

One easy upper bound for the information gained in any batch can be derived as follows. As noted

in Section 3.3.3, mutual information is submodular, and thus the maximum conditional mutual

information which can be gained by making any set of observations is maximized when the set of

observations currently available, to which these new observations will be added, is empty. Letting

the maximum mutual information with respect to f which can be obtained by any observation set

of size B − 1 be denoted γB−1 and choosing C = γB−1 provides a bound on the possible local

conditional mutual information gain for any t ∈ N and x ∈ D, as in Inequality (3.13). This choice

of bound yields the following Corollary, an extension to Theorem 1:

Corollary 2. Assume the GP-BUCB algorithm is employed with a constant B such that t− fb[t] ≤ B
for all t ≥ 1. Let δ ∈ (0, 1), and let one of the numbered conditions of Theorem 1 be met. If
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βt = exp(2C)αfb[t] for all t ∈ {1, . . . , T}, the cumulative regret RT of the GP-BUCB algorithm can

be bounded with probability 1− δ as follows:

Pr
{
RT ≤

√
C1T exp(2γB−1)αT γT + 2, ∀T ≥ 1

}
≥ 1− δ,

where C1 = 8/ log(1 + σ−2
n ) and γB−1 and γT are as defined in Equation (3.3).

While the above result is useful, the choice C = γB−1 is not especially satisfying on its own. The

maximum information gain γB−1 usually grows at least as Ω(logB), implying that exp(C) grows at

least linearly in B, yielding a regret bound which is also at least linear in B. Section 3.3.5 shows

that the GP-BUCB algorithm can be modified such that a constant choice of C independent of B

suffices.

3.3.5 Better Bounds Through Initialization

To obtain regret bounds independent of batch size B, the monotonicity properties of conditional

mutual information can again be exploited. This can be done by structuring GP-BUCB as a two-

stage procedure. First, an initialization set Dinit of size |Dinit| = T init is selected nonadaptively

(i.e., without any feedback); following the selection of this entire set, feedback yinit for all decisions

in Dinit = {xinit
1 , . . . ,xinit

T init} is obtained. In the second stage, GP-BUCB is applied to the posterior

Gaussian process distribution, conditioned on yinit.

Notice that if we define

γinit
T = max

A⊆D,|A|≤T
I(f ;yA | yinit),

then, under the assumptions of Theorem 1, using C = γinit
B−1, the regret of the two-stage algorithm is

bounded by RT = O(T init +
√
Tγinit

T αT exp 2C). In the following, we show that it is indeed possible

to construct an initialization set Dinit such that the size T init is dominated by
√
Tγinit

T αT exp(2C),

and – crucially – that C = γinit
B−1 can be bounded independently of the batch size B.

The initialization set Dinit is constructed via uncertainty sampling: start with Dinit
0 = ∅, and for

each t = 1, . . . , T init, greedily determine the most uncertain decision

xinit
t = argmax

x∈D
σ2
t−1(x)

and set Dinit
t = Dinit

t−1 ∩ xinit
t . Note that uncertainty sampling is a special case of the GP-BUCB

algorithm with a constant prior mean of 0 and the requirement that for all 1 ≤ t ≤ T init, fb[t] = 0,

i.e., no feedback is taken into account for the first T init iterations.

Under the above procedure, we have the following key result about the maximum residual infor-

mation gain γinit:
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Lemma 3. Suppose uncertainty sampling is used to generate an initialization set Dinit of size T init.

Then

γinitB−1 ≤
B − 1

T init
γT init . (3.16)

Proof. The proof of this lemma is presented in Appendix A.2.

Whenever γT is sublinear in T (i.e., γT = o(T )), then the bound on γinit
B−1 given by Inequality

(3.16) converges to zero for sufficiently large T init; thus for any constant C > 0, we can choose

T init as a function of B such that γinit
B−1 < C. Using this choice of C in Theorem 1 bounds the

post-initialization regret. In order to derive bounds on T init, we in turn need a bound on γT which

is analytical and sublinear. Fortunately, Srinivas et al. (2010) prove suitable bounds on how the

information gain γT grows for some of the most commonly used kernels. We summarize our analysis

below in Theorem 4. For sake of notation, define Rseq
T to be the regret bound of Srinivas et al. (2010)

associated with the sequential GP-UCB algorithm (i.e., Corollary 2 with B = 1).

Theorem 4. Suppose one of the conditions of Theorem 1 is satisfied. Further, suppose the kernel

and T init are as listed in Table 3.1, and B ≥ 2. Fix δ > 0. Let RT be the regret of the two-stage

initialized GP-BUCB algorithm, which ignores feedback for the first T init rounds. Then there exists

a constant C ′ independent of B such that for any T ≥ 0, it holds with probability at least 1− δ that

RT ≤ C ′Rseq
T + 2||f ||∞T init, (3.17)

where C ′ takes the value shown in Table 3.1.

The results in Table 3.1 are derived in Appendix A.2. Note that the particular values of C ′ used

in Table 3.1 are not the only ones possible; they are chosen simply because they yield relatively

clean algebraic forms for T init. Relative to Theorem 1, which depends on B and T through the

product exp (2C)TαT γT , Theorem 4 replaces this product with a sum of two terms, one in each

of B and T ; the term C ′Rseq
T in Inequality (3.17) is the cost paid for running the algorithm post-

initialization (independent of B, dependent on T ), whereas the second term is the cost of performing

the initialization (dependent on B, independent of T ). Notice that whenever B = O(polylog(T )),

T init = O(polylog(T )), and further, note Rseq
T = Ω(

√
T ). Thus, as long as the batch size does not

grow too quickly, the term O(T init) is dominated by C ′Rseq
T and the regret bounds of GP-BUCB are

only a constant factor, independent of B, worse than those of GP-UCB.

3.4 Adaptive Parallelism: GP-AUCB

While the analysis of the GP-BUCB algorithm in Sections 3.3.4 and 3.3.5 used feedback mappings

fb[t] specified by the problem instance, it may be useful to let the algorithm control when to request
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Kernel Type Size T init of Initialization Set Dinit Regret
Multiplier C′

Linear: γt ≤ ηd log (t+ 1) max

[
log (B)

log η+log d+2 log (B)
2 log (B)−1

eηd(B − 1) log (B)

]
exp (2/e)

Matérn: γt ≤ νtε (ν(B − 1))1/(1−ε) e

RBF: γt ≤ η(log (t+ 1))d+1 max

[
(log (B))d+1

(
e
d+1

log η+(d+2) log (B)
2 log (B)−1

)d+1
η(B − 1)(log (B))d+1

]
exp (( 2d+2

e
)d+1)

Table 3.1: Initialization set sizes for Theorem 4.

feedback, and to allow this feedback period to vary in some range not easily described by any

constant B. For example, allowing the algorithm to control parallelism is desirable in situations

where the cost of executing the algorithm’s queries to the oracle depends on both the number of

batches and the number of individual actions or experiments in those batches. Consider a chemical

experiment, in which cost is a weighted sum of the time to complete the batch of reactions and

the cost of the reagents needed for each individual experiment. In such a case, confronting an

initial state of relative ignorance about the reward function, it may be desirable to avoid using a

wasteful level of parallelism. Motivated by this, we develop an extension to our requirement that

t − fb[t] ≤ B; we will instead simply require that the mapping fb[t] and the sequence of actions

selected by the algorithm be such that there exists some bound C, holding for all t ≥ 1 and x ∈ D,

on I(f(x);yfb[t]+1:t−1 | y1:fb[t]), the hallucinated information as of round t with respect to any value

f(x). This requirement on fb[t] in terms of C may appear stringent, but in actual fact it can be easily

satisfied by on-line, data-driven construction of the mapping fb[t] after having pre-selected a value

for C. The GP-AUCB algorithm controls feedback adaptively through precisely such a mechanism.

Section 3.4.1 introduces GP-AUCB and states a corollary regret bound for this algorithm. A few

comments on local versus global stopping criteria for adaptivity of algorithms follow in Section 3.4.2.

3.4.1 GP-AUCB Algorithm

The key innovation of the GP-AUCB algorithm is in choosing fb[t] online, using a limit on the amount

of information hallucinated within the batch. Such adaptive batch length control is possible because

we can actually measure online the amount of hallucinated information using Equation (3.4), even

in the absence of the observations themselves. When this value exceeds a pre-defined constant C,

the algorithm terminates the batch, setting fb for the next batch to the current t (i.e., fb[t+ 1] = t),

and waits for the oracle to return values for the pending queries. The resulting algorithm, GP-AUCB,

is shown in Algorithm 3. The GP-AUCB algorithm can also be employed in the delay setting, but

rather than using the hallucinated information to decide whether or not to terminate the current

batch, the algorithm chooses whether or not to submit an action in this round; the algorithm submits

an action if the hallucinated information is ≤ C and refuses to submit an action (“balks”) if the

hallucinated information is > C.
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In comparison to GP-BUCB, by concerning itself with only the batches actually chosen, rather

than worst-case batches, the GP-AUCB algorithm eliminates the requirement that C be greater than

the information which could be gained in any batch, and thus makes the information gain bounding

argument less conservative; for such a C,

I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ I(f ;yfb[t]+1:t−1 | y1:fb[t]) ≤ C, ∀x ∈ D, ∀t ≥ 1,

that is, via the monotonicity of conditional mutual information, the information gain locally under

GP-AUCB is bounded by the information gain with respect to f as a whole, which is constrained to

be ≤ C by the stopping condition. Using such an adaptive stopping condition and the corresponding

value of βt, Equation (3.14) can be used to maintain a guarantee of confidence interval correctness

for batches of variable length. In particular, the batch length may possibly become quite large

as the shape of f is better and better understood and the variance of f(xt) tends to decrease.

Further, if exploratory actions are chosen, the high information gain of these actions contributes

to a relatively early arrival at the information gain threshold C and thus relatively short batch

length, even late in the algorithm’s run. In this way, the batch length is chosen in response to the

algorithm’s need to explore or exploit as dictated by the decision rule, Equation (3.7), not simply

following a monotonically increasing schedule.

This approach meets the conditions of Theorem 1, allowing the regret of GP-AUCB to be bounded

for both the batch and delay settings with the following corollary:

Corollary 5. If the GP-AUCB algorithm is employed with a specified constant value C, for which

I(f ;yfb[t]+1:t−1 | y1:fb[t]) ≤ C,∀t ∈ {1, . . . , T}, δ is a specified constant in the interval (0, 1),

one of the conditions of Theorem 1 is met, and under the resulting feedback mapping fb[t], βτ =

exp(2C)αfb[τ ],∀τ ∈ {1, . . . , t}, then

Pr
{
RT ≤

√
C1T exp(2C)αT γT + 2, ∀T ≥ 1

}
≥ 1− δ

where C1 = 8/ log(1 + σ−2
n ).

Note that it is also possible to combine the results of Section 3.3.5 with Corollary 5 to produce

a two-stage adaptive algorithm which can deliver high starting parallelism, very high parallelism as

the run proceeds, and a low information gain bound C, yielding a low regret bound.

Despite the advantages of this approach, the value of C is rather abstract and is certainly less

natural for an experimentalist to specify than a maximum batch size or delay length B. However,

C can be selected to deliver batches with a specified minimum size Bmin. To ensure this occurs, C

can be set such that C > γ(Bmin−1), i.e., no set of queries of size less than Bmin could possibly gain

enough information to end the batch. Further, if we choose C such that C < γ(Bmin), it is possible
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Algorithm 3 GP-AUCB

Input: Decision set D, GP prior µ0, σ0, kernel k(·, ·), information gain threshold C.
Set fb[t′] = 0, ∀t′ ≥ 1, G = 0.
for t = 1, 2, . . . , T do

if G > C then
Obtain yt′ = f(xt′) + εt′ for t′ ∈ {fb[t− 1], . . . , t− 1}
Perform Bayesian inference to obtain µt−1(·)
Set G = 0
Set fb[t′] = t− 1, ∀t′ ≥ t

end if
Choose xt = argmaxx∈D[µfb[t](x) + β

1/2
t σt−1(x)]

Set G = G+ 1
2 log (1 + σ−2

n σ2
t−1(xt))

Compute σt(·)
end for

to select a batch of size Bmin which does attain the required amount of information to terminate the

batch, and thus Bmin truly can be thought of as the minimum batch size which could be produced

by the GP-AUCB algorithm. Often, however, γt is not available directly, and cannot be obtained

except for combinatorial optimization; in such a case, if Bmin is very small, this combinatorial

optimization may be tractable, and if Bmin is too large, greedy maximum entropy sampling can

be used to bound γ(Bmin−1) from above, allowing the selection of values for C which satisfy the

specification on minimum batch size, if with a large degree of conservatism. While relating C to

some Bmin is not the only way to choose the constant C intelligently, doing so gives a clear way to

specify C in a more intuitive and relatable way.

It is also possible to choose a very small value for the constant C and produce nearly sequential

actions early, while retaining late-run parallelism and producing a very low regret bound. This can

be seen if Bmin is set to 1; following the analysis above, such a C must satisfy the inequalities

γ0 = 0 < C < γ1, i.e., C can be a very small positive number. Following rearrangement, the regret

of GP-AUCB is bounded by Corollary 5 as RT ≤ exp(C)Rseq
T , where Rseq

T is the bound of Corollary

2 with B = 1, the regret of the GP-UCB algorithm. Since for very small C, exp(C) is nearly 1,

the regret bound of GP-AUCB is only a very little more than for GP-UCB. With regard to action

selection, choosing C to be a small positive value should result in GP-AUCB beginning its run by

acting sequentially, since most actions gain information greater than C. However, the algorithm has

the potential to construct batches of increasing length as T → ∞; even assuming the worst case,

that all observations are independent and each gains the same amount of information, the batch

length allowed with a given posterior is lower-bounded by Bmax ≥ C/log(1 + σ−2
n σ̃2

fb[t]) where σ̃2

is the largest variance among the actions selected in the batch. If the algorithm converges toward

the optimal subset X∗ ⊆ D, as the regret bound suggests it will, and X∗ is of finite size, then

the variances of the actions selected (and thus the denominator in the expression above) can be

expected to generally become very small, producing batches of very long length, even for very small
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C. Choosing C as a small positive value thus produces the potential for naturally occurring late-run

parallelism for very little additional regret relative to GP-UCB.

3.4.2 Local Stopping Conditions Versus Global Stopping Conditions

Both GP-BUCB and GP-AUCB rely upon bounds on the information gain of the hallucinated ob-

servations with respect to f as a whole, but Theorem 1 is stated in terms of a bound on the

information gain with respect to f(x), which must hold ∀t ≥ 1,∀x ∈ D. During the proof of the

regret bound, the information gain threshold is a vehicle for ensuring that the confidence inter-

vals do not shrink to too small a ratio, as in Equation (3.14); this enables a choice of βt which

ensures that Cbatch
t (x) ⊇ Cseq

fb[t]+1(x) for all t ≥ 1 and x ∈ D. However, as has been stated

above, the standard deviation can be calculated on-line, even without the actual observations, thus

enabling exhaustive checking of the ratio σfb[t](x)/σt−1(x) for every x ∈ D; assuming this calcula-

tion is practical, this strongly suggests that it would be possible to create an algorithm for which

the standard deviation ratio is directly checked, rather than being bounded from above through

the information gain. Doing so would also imply the existence of some information gain bound

C ≥ (f(x);yfb[t]+1:t−1|yfb[t]), ∀t ≥ 1, x ∈ D, without requiring recourse to the multiple upper

bounding arguments used for GP-BUCB and GP-AUCB. This formulation appears attractive because

it might enable the algorithm to avoid waiting for early observations when such waiting may be

unnecessary, e.g., when the subsequent actions will be additional initialization and not close to pre-

vious actions in the batch. This allows the choice of a very small C, e.g., C = (1 + ε)γ1, such that if

the algorithm makes a single observation at a point, and perhaps some other distant points, it will

not stop the batch. Due to the small value of C, this translates to a quite small regret bound under

Theorem 1.

If we assume a flat prior, such a procedure would tend to create a first batch which thoroughly

initializes over the whole set, since most points would be scattered widely, and therefore the local

information gain stopping condition would not be met until actions were proposed close together.

For practical purposes, it is therefore necessary to introduce a limit on batch size Bmax such that

the first batch is not of a size approaching that of D. By doing so, the tendency is to produce an

algorithm which actually tends to just produce batches of the maximal size, i.e., B = Bmax in the

simple parallel case, albeit with a tighter regret bound. If nothing else, this tends to offer justification

of the common practice with GP-BUCB of setting βt much smaller than the theory would suggest

setting it, such that the algorithm tends to exploit more heavily.

We implement this algorithm, denoting it GP-AUCB Local, and show it in some of the experiments

and figures in Section 3.6, along with the Hybrid Batch Bayesian Optimization algorithm (HBBO) of

Azimi et al. (2012b). HBBO implements a similar local check on a hallucinated posterior, though this

check is expressed in terms of expected prediction error versus the true posterior if all information
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had been acquired, rather than information gain, and the local stopping condition is only checked

at xt, rather than all x in D.

3.5 Lazy Variance Calculations

In this section, we introduce the notion of lazy variance calculations, which may be used to greatly

accelerate the computation of many UCB-based algorithms, including GP-UCB, GP-BUCB, and GP-

AUCB, without any loss of performance.

Though GP-UCB, GP-BUCB, and GP-AUCB may be implemented as linear algebraic operations

and are thus amenable to computational implementation without sampling, the execution time of

the algorithms may still be lengthy, particularly as the number of observations becomes larger. The

major computational bottleneck is calculating the posterior mean µfb[t](x) and variance σ2
t−1(x) for

the candidate decisions, as required to calculate the decision rule and choose an action xt. The

mean is updated only whenever feedback is obtained, and – upon computation of the Cholesky

factorization of K(X fb[t],X fb[t]) + σ2
nI (which only needs to be done once whenever new feedback

arrives) – the calculation of the posterior mean µfb[t](x) takes O(t) additions and multiplications.

On the other hand, σ2
t−1 must be recomputed for every x ∈ D after every round, and requires

solving backsubstitution, which requires O(t2) computations. For large decision sets D, the variance

computation thus dominates the computational cost of GP-BUCB.

Fortunately, for any fixed decision x, σ2
t (x) is non-increasing in t. This fact can be exploited to

dramatically improve the running time of GP-BUCB, at least for decision sets D which are finitely

discretized or are themselves finite. The key idea is that instead of recomputing σt−1(x) for all

decisions x in every round t, we can maintain an upper bound σ̂t−1(x), initialized to σ̂0(x) = ∞.

In every round, we lazily apply the GP-BUCB rule with this upper bound to identify

xt = argmax
x∈D

[
µfb[t](x) + β

1/2
t σ̂t−1(x)

]
. (3.18)

We then recompute σ̂t−1(xt) ← σt−1(xt). If xt still lies in the argmax of Equation (3.18), we

have identified the next decision to make, and set σ̂t(x) = σ̂t−1(x) for all remaining decisions x.

Minoux (1978) proposed a similar technique, concerning calculating the greedy action for submodular

maximization, which the above procedure generalizes to the bandit setting. A similar idea was also

employed by Krause et al. (2008) in the Gaussian process setting for experimental design. The

lazy variance calculation method leads to dramatically improved empirical computational speed,

discussed in Section 3.6.

Locally stopped algorithms (Section 3.4.2) may have stopping conditions which are dependent

on the uncertainty at every x ∈ D, but they also benefit from lazy variance calculations. Since the

global conditional information gain bounds the local information gain for all x ∈ D, as in Inequality
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(3.11), we obtain the implication

I(f ;yfb[t]+1:t−1 | y1:fb[t]) ≤ C =⇒ @x ∈ D : I(f(x);yfb[t]+1:t−1 | y1:fb[t]) > C

that is, that until the stopping condition for GP-AUCB is met, the stopping condition for GP-AUCB

Local is also not met, and thus no local calculations need be made. In implementing GP-AUCB Local,

we may run what is effectively lazy GP-AUCB until the global stopping condition is met, at which

time we transition to GP-AUCB Local. For a fixed maximum batch size Bmax, it is often the case

that local variance calculations become only very rarely necessary after the first few batches.

3.6 Computational Experiments

We compare GP-BUCB with several alternatives: (1) The strictly sequential GP-UCB algorithm

(B = 1) receiving feedback from each action without batching or delay; (2) Two versions of a state

of the art algorithm for Batch Bayesian optimization proposed by Azimi et al. (2010), which can use

either a UCB or Maximum Expected Improvement (MEI) decision rule, herein SM-UCB and SM-MEI

respectively. Similarly, we compare GP-AUCB against two other adaptive algorithms: (1) HBBO,

proposed by Azimi et al. (2012b), which checks an expected prediction error stopping condition

and makes decisions using either an MEI or a UCB decision rule; and (2) GP-AUCB Local, a local

information gain-checking adaptive algorithm described briefly in Section 3.4.2. We also present

some experimental comparisons across these two sets of algorithms.

In Section 3.6.1, we describe the computational experiments which were performed in more

detail. Each of the described computational experiments was performed for each data set. These

data sets and the corresponding experimental results are presented in Section 3.6.2. Results of the

computational time comparisons are reserved to Section 3.6.3. We also briefly highlight the tradeoffs

inherent in adaptive parallelism in Section 3.6.4.

3.6.1 Experimental Comparisons

We performed a number of different experiments using this set of algorithms; (1) A simple experiment

in the batch case, in which the non-adaptive batch length algorithms are compared against one

another, using a single batch length of B = 5 (Figure 3.2); (2) A corresponding experiment in the

delay case, comparing GP-UCB, GP-BUCB, GP-AUCB, and GP-AUCB Local against one another,

using a delay of B = 5 (Figure 3.3); (3) An experiment examining how changes in the batch length

over the range B = 5, 10, and 20 affect performance of the non-adaptive algorithms (Figure 3.4),

and a similar experiment where the maximum batch lengths for the adaptive algorithms vary over

the same values (Figure 3.5); (4) A corresponding experiment in the delay setting, examining how
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varying the delay length over the set 5, 10, and 20 affects algorithm performance (Figure 3.6); and (5)

an experiment which examines execution time for various algorithms in the batch case, comparing

basic and lazy versions (see Section 3.5) of the algorithms presented (Figure 3.7). All experiments

were performed in MATLAB using custom code, which we make publicly available for use. 1

Comparisons of reward and regret among the algorithms discussed above are presented in terms

of their cumulative regret, as well as their simple regret (how close did the points considered ever

get to the maximum function value). Execution time comparisons are performed using wall-clock

time elapsed since the beginning of the experiment, recorded at ends of algorithmic timesteps. All

experiments were repeated for 200 trials, with independent tie-breaking and observation noise for

each trial. Additionally, in those experimental cases where the reward function was a draw from a

GP (the SE and Matérn problems), each trial used an independent draw from the same GP.

In the theoretical analysis in Section 3.3, the crucial elements in proving the regret bounds of

GP-BUCB and GP-AUCB are C, the bound on the information which can be hallucinated within a

batch and βt, the exploration-exploitation tradeoff parameter, which is set with reference to C to

ensure confidence interval containment of the reward function. For practical purposes, it is often

necessary to define βt and the corresponding parameter of GP-UCB, αt, in a fashion which makes

the algorithm considerably more aggressive than the regret bound requires. This removes the high-

probability guarantees in the regret bound, but often produces excellent empirical performance. On

the other hand, leaving the values for αt and βt as would be indicated by the theory results in heavily

exploratory behavior and very little exploitation. In this chapter, in all algorithms which use the

UCB or BUCB decision rules, the value of αt has been set such that it has a small premultiplier

(0.05 or 0.1, see Table 3.2), yielding substantially smaller values for αt. Further, despite the rigors

of analysis explored above in Section 3.3, we choose to set βt = αfb[t] for the batch and delay

algorithms, without reference to the value of C or the batch length B. Taking either of these

measures removes the guarantees of correctness as carefully crafted in Section 3.3. However, as is

verified by the experiments comparing batch sizes, this is not a substantial detriment to performance,

even for large batch sizes, and indeed, the batch algorithms remain generally quite competitive with

the sequential GP-UCB algorithm. One experimental advantage of this approach is that (with some

limitations necessitated by the adaptive algorithms) the various algorithms using a UCB decision rule

are using the same exploration-exploitation tradeoff parameter at the same iteration, including GP-

UCB, GP-BUCB, GP-AUCB, and even SM-UCB and HBBO when using the UCB decision rule. This

choice enables us to remove a confounding factor in comparing how well the algorithms overcome

the disadvantages inherent in the batch and delay settings.

1See Appendix E.
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3.6.2 Data Sets

We empirically evaluate GP-BUCB and GP-AUCB on several synthetic benchmark problems as well

as two real applications. For each of the experimental data sets used in this chapter, the kernel

functions and experimental constants are listed in Table 3.2. Where applicable, the covariance

function from the GPML toolbox (Rasmussen and Nickisch, 2010) used is also listed by name. For

all experiments, δ = 0.1 (see Theorem 1) for UCB-based algorithms and tolerance ε = 0.02 for

HBBO. Each of the experiments discussed above was performed for each of the data sets described

below and their results are presented, organized by experimental comparison (e.g., delay, adaptive

batch size, etc.), in the accompanying Figures.

Problem Setting Kernel Function Hyperparameters Noise Variance σ2
n

Premultiplier
(on αt, βt)

Matérn covMaterniso l = 0.1, σ2 = 0.5 0.0250 0.1
SE covSEiso l = 0.2, σ2 = 0.5 0.0250 0.1

Rosenbrock RBF l2 = 0.1, σ2 = 1 0.01 0.1
Cosines RBF l2 = 0.03, σ2 = 1 0.01 0.1
Vaccine covLINone t2 = 0.8974 1.1534 0.05

SCI covSEard
l = [0.988, 1.5337, 1.0051, 1.5868],

σ2 = 1.0384
0.0463 0.1

Table 3.2: Experimental kernel functions and parameters.

3.6.2.1 Synthetic Benchmark Problems

We first test GP-BUCB and GP-AUCB in conditions where the true prior is known. A set of 100

example functions was drawn from a zero-mean GP with Matérn kernel over the interval [0, 1].

The kernel, its parameters, and the noise variance were known to each algorithm. The decision

set D was the discretization of [0, 1] into 1000 evenly spaced points. These experiments were also

repeated with a Squared-Exponential kernel. Broadly speaking, these two problems were quite easy;

the functions were fairly smooth, and for all algorithms considered, the optimum was found nearly

every time, even for long batch sizes or delay lengths. Even for long batch lengths, as in Figures

3.4(a) and 3.4(b), which show substantial disadvantages in the average regret plots, the first batch

has essentially all of the information needed to find the optimum, such that minimum regret after

receiving the observations in the first batch is essentially zero. Similar sorts of results are present in

the delay length experiments, where the adaptive algorithms which balk at spending queries early

are able to do very well after receiving only a very few observations.

The Rosenbrock and Cosines test functions used by Azimi et al. (2010) were also considered,

using the same Squared Exponential kernel as employed in their experiments, though with somewhat

different lengthscales. The Rosenbrock test function shows a very strong skew toward actions near

the upper end of the reward range, such that the minimum regret is often nearly zero before the first

feedback is obtained. Since under conditions of the same batch length, most algorithms perform very

comparably in terms of both average and minimum regret, the most interesting results are in the
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case concerning delay length changes, Figure 3.6(c). In this figure, it is possible to see that GP-AUCB

balks too often in this setting, leading to substantial losses in performance relative to GP-AUCB Local

and GP-BUCB. The Cosines test function also shows broadly similar results across specific problem

instances, where there is not a tremendous spread amongst the algorithms tested. Because the

Cosines function is multi-modal, the average regret seems to show two-phase convergence behavior,

in which all algorithms may be converging to a local optimum and then subsequently finding the

global optimum. The overly frequent balking by GP-AUCB present in the Rosenbrock test function

is also present for longer delays in the Cosines function, as can be seen in 3.6(g).

In both the Rosenbrock and Cosines delay experiments, one reason this behavior may occur has

to do with the kernel chosen and how this interacts with the stopping condition, which requires that

the information gain (either with respect to the reward function f as a whole or with respect to

f(x), ∀x ∈ D) be less than a chosen constant C. With a flat prior, both GP-AUCB and GP-AUCB

Local initially behave like Greedy Maximum Entropy Sampling (GMES). Since GMES gains a great

deal of information globally, GP-AUCB tends to balk; on the other hand, since GMES scatters queries

widely, the information gained with respect to any individual reward f(x) is small, and so GP-AUCB

Local tends not to balk much or at all. Since the information gain is calculated using the kernel used

by the algorithm to model the function, misspecification of this kernel’s longer-ranged properties

may be particularly problematic for GP-AUCB, as opposed to GP-AUCB Local, which is (initially)

more dependent on the local properties of the kernel and the assumed noise.

3.6.2.2 Automated Vaccine Design

We also tested GP-BUCB and GP-AUCB on a database of Widmer et al. (2010), as considered for

experimental design by Krause and Ong (2011). This database describes the binding affinity of

various peptides with a Major Histocompatibility Complex (MHC) Class I molecule, of importance

when designing vaccines to exploit peptide binding properties. Each of the peptides which bound

with the MHC molecule is described by a set of chemical features in R45, where each dimension

corresponds to a chemical feature of the peptide. The binding affinity of each peptide, which is

treated as the reward or payoff, is described as an offset IC50 value. The experiments used an

isotropic linear kernel fitted on a different MHC molecule from the same data set. Since the data

describe a phenomenon which has a measurable limit, many members of the data set are optimal; out

of 3089 elements of D, 124, or about 4%, are in the maximizing set. In the simple batch experiments,

Figures 3.2(h) and 3.2(k), GP-BUCB performs competitively with SM-MEI and SM-UCB, both in

terms of average and minimum regret, and converges to the performance of GP-UCB. In the simple

delay setting, Figures 3.3(h) and 3.3(k), both GP-BUCB and GP-AUCB produce superior minimum

regret curves to that of GP-UCB, while performing comparably in terms of long-run average regret;

this indicates that the more thorough initialization of GP-AUCB and GP-BUCB versus GP-UCB
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may enable them to avoid early commitment to the wrong local optimum, finding a member of the

maximizing set more consistently. This is consistent with the results of the non-adaptive batch size

comparison experiment, Figures 3.4(h) and 3.4(k), which shows that as the batch size B grows, the

algorithm must pay more “up front” due to its more enduring ignorance, but also tends to avoid

missing the optimal set entirely. This same sort of tradeoff of average regret against minimum regret

is clearly visible for the GP-AUCB Local variants in the experiments sweeping maximal batch size

for adaptive algorithms, Figures 3.5(h) and 3.5(k).

3.6.2.3 Spinal Cord Injury (SCI) Therapy

Lastly, we compare the algorithms on a pre-recorded data set of leg muscle activity triggered by

therapeutic spinal electrostimulation in spinal cord injured rats. This setting is intended to mimic the

on-line experiments conducted in Chapter 4. Much greater detail is given regarding the experimental

design in that chapter, but, in brief, the procedure is as follows. From the 3-by-9 grid of electrodes

on the array, a pair of electrodes is chosen to activate, with the first element of the pair used as

the cathode and the second used as the anode. Electrode configurations were represented in R4 by

the cathode and anode locations on the array. These active array electrodes create an electric field

which may influence both incoming sensory information in dorsal root processes and the function

of interneurons within the spinal cord, but the precise mechanism of action is poorly understood.

Since the goal of this therapy is to improve the motor control functions of the lower spinal cord, the

designated experimental objective is to choose the stimulus electrodes which maximize the resulting

activity in lower limb muscles, as measured by electromyography (EMG). We used data with a

stimulus amplitude of 5V and sought to maximize the peak-to-peak amplitude of the recorded EMG

waveforms from the right medial gastrocnemius muscle in a time window corresponding to a single

interneuronal delay. Note that in Chapter 4, the muscle chosen is the left tibialis anterior, but

the procedure is fundamentally the same. This objective function attempts to measure the degree

to which the selected stimulus activates interneurons controlling reflex activity in the spinal gray

matter. This response signal is non-negative and for physical reasons does not generally rise above

3mV. A squared-exponential ARD kernel was fitted using experimental data from 12 days post-

injury. Algorithm testing was done using an oracle composed of data from 116 electrode pairs tested

on the 14th day post-injury.

Like the Vaccine data set, the SCI data set displayed a number of behaviors which indicate that

the problem instance was difficult; in particular, the same tendency that algorithms which initialized

more thoroughly would eventually do better in both minimum and average regret was observed. This

tendency is visible in the simple batch setting (Figures 3.2(i) and 3.2(l)), where GP-UCB was not

clearly superior to either GP-BUCB or GP-AUCB; this is surprising because being required to work in

batches, rather than one query at a time, might be expected to give the algorithm less information
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at any given round, and should thus be a disadvantage; this under-exploration in GP-UCB may be

a result of the value of the exploration-exploitation tradeoff parameter α being chosen to promote

greater aggressiveness across all algorithms. Interestingly, this data set also displays both a small gap

between the best and second-best values of the reward function (approximately 0.9% of the range)

and a large gap between the best and third-best (approximately 7% of the range). When examining

how many out of the individual experimental runs simulated selected x∗ = argmaxx∈D f(x) on

the 200th query in the simple batch case, only 20% of GP-UCB runs choose x∗; the numbers are

considerably better for GP-BUCB, SM-UCB, and SM-MEI, at 35%, 30.5%, and 36%, but are still not

particularly good. If the first sub-optimal x is also included, these numbers improve substantially,

to 63.5% for GP-UCB and 84%, 91%, and 96.5% for GP-BUCB, SM-UCB, and SM-MEI. These results

indicate that the second-most optimal x is actually easier to find than the most optimal, to a fairly

substantial degree. It is also important to place these results in the context of the experimental

setting; even assuming that there truly is a difference between these pairs of SCI electrodes, the

rewards produced are so close to one another as to likely produce no therapeutic difference between

the most optimal and second-most optimal actions. Since all of GP-BUCB, SM-UCB, and SM-MEI

more consistently found one of the two best actions in the decision set than GP-UCB, all of them

showed strong performance in comparison to GP-UCB.

3.6.3 Computational Performance

Another test of interest across the set of experiments discussed above was the degree to which lazy

variance calculations, as described in Section 3.5, reduced the computational overhead of each of

the algorithms discussed. These results are presented in Table B.6 and Figure 3.7. Note that for

algorithms which appear as both lazy and non-lazy versions, the only functional difference between

the two is the procedure by which the action is selected, not the action selection itself; all computa-

tional gains are without sacrificing accuracy and without requiring any algorithmic approximations.

All computational time experiments were performed on a desktop computer (quad-core Intel i7, 2.8

GHz, 8 GB RAM, Ubuntu 10.04) running a single MATLAB R2012a process.

For all data sets, the algorithms lie in three broad classes: Class 1, comprised of the lazy GP-UCB

family of algorithms; Class 2, the non-lazy versions of the GP-UCB family of algorithms, as well as

the HBBO UCB and MEI variants; Class 3, consisting of the SM-MEI and SM-UCB algorithms, in

both lazy and non-lazy versions. Class 1 algorithms run to completion about one order of magnitude

faster than those in Class 2, which in turn are about one order of magnitude faster than those in

Class 3. The various versions of the simulation matching algorithm of Azimi et al. (2010), require

multiple samples from the posterior over f to aggregate together into a batch, the composition of

which is intended to match or cover the performance of the corresponding sequential UCB or MEI

algorithm. The time difference between Class 2 and Class 3, approximately one order of magnitude,
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reflects the choice to run 10 such samples. Within Class 3, our implementation of the lazy version

of SM-MEI is slower than the non-lazy version, largely due to the increased overhead of sorting the

decision rule and computing single values of the variance; a more efficient implementation of either

or both of these elements could perhaps improve on this tradeoff. The lazy algorithms also tend to

expend a large amount of computational time early, computing upper bounds on later uncertainties,

but tend to make up for this early investment later; this is even visible with regard to the lazy

version of SM-UCB, which is initially slower than the non-lazy version, but scales better and, in all

six data sets examined, ends up costing substantially less computational time by the 200th query.

3.6.4 Parallelism: Costs and Tradeoffs

Parallelism is motivated by the setting in which each round or opportunity to submit a query is

expensive, but the additional marginal cost of taking an action at that round is not very large. It

is interesting to consider more precisely what we mean by “expensive” or “not very large.” For a

given relationship between the individual costs, one can examine which algorithms most effectively

trade these costs off against one another. One way to do this is to experimentally measure the costs

incurred by several algorithms solving the same problem. In the following discussion, we examine

the delay case, in which the algorithm is faced with a choice of which action (if any) to take at each

round. A similar examination of cost tradeoffs can be made in the batch case.

Given N sample runs, a successful algorithm should have a (nearly) monotonically decreasing

sample average regret curve, defined as r̄(T ) =
∑N
n=1RT,n/T , where RT,n is the cumulative regret

of the nth run at round T . This curve can be inverted to find the first round τ(r̄) in which the

average regret is at or below a particular value r̄. The sample mean cost of running the algorithm

until round τ(r̄) can then be computed. The cost of the nth run is the sum of two contributions, the

first for running τ(r̄) rounds of the algorithm, and the second for the actual execution of an(τ(r̄))

actions. Parameterizing the relative costs of each round and each action using w, the average cost

C(r̄, w) = (1 − w)τ(r̄) + w · ā(τ(r̄)) corresponding to a particular average regret value r̄ can be

obtained, where ā(τ(r̄)) =
∑N
n=1 an(τ(r̄)). Note that w ∈ [0, 1] translates to any constant, non-

negative ratio of the cost of a single action to that of a single round. As a technical point, note

that this average cost is not exactly equivalent to specifying r̄, continuing each individual run until

RT,n/T ≤ r̄, and averaging the individual costs incurred in so doing; such a method, while more

intuitive, must deal with the problem that a run may fail to ever attain a specified value of r̄,

e.g., a run could fail to converge to the optimum. This failure to converge happens with a non-zero

probability, and is theoretically treated in Theorem 1 through δ. The post-hoc calculation of C(r̄, w)

as proposed here is robust to this case, giving an estimate of the expected cost to run the algorithm

until a round in which the expected cumulative average regret is below r̄.

Among a set of algorithms, and given a test problem, one can find which among them has the
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lowest value of C(r̄, w) at any particular point in the r̄, w space. Similarly, for any fixed value of

w, it is possible to once more invert the function and plot r̄w(C); this plot resembles conventional

average regret plots, and corresponds to intersection of the set of C(r̄, w) surfaces with the plane at

a fixed w. A comparison between three algorithms on the SCI data set, with simple delay B = 5,

is shown in Figure 3.8. In this scenario, GP-AUCB costs the least through most of the parameter

space, due to its tendency to pass in early rounds, when the potential for exploitation is lowest. The

advantage changes to the fully sequential algorithm when w is large (i.e., parallelism is expensive),

and to GP-BUCB when w is small. Many real-world situations lie somewhere between these extremes,

suggesting that GP-AUCB may be useful in a variety of scenarios.

3.7 Conclusions

We develop the GP-BUCB and GP-AUCB algorithms for parallelizing exploration-exploitation trade-

offs in Gaussian process bandit optimization. The analytical framework used to bound the regret of

GP-BUCB and GP-AUCB is generalized to include all GP-UCB-type algorithms. We prove Theorem

1, which provides high-probability bounds on the cumulative regret of algorithms in this class, which

hold for both the batch and delay setting. These bounds consequently provide guarantees on the

convergence of such algorithms. Further, we prove Theorem 4, which establishes a high-probability

regret bound for initialized GP-BUCB. This bound scales independently of the batch size or delay

length B, if B is constant or polylogarithmic in T. Finally, we introduce lazy variance calculations,

which dramatically accelerate computation of GP-based active learning decision rules.

Across the experimental settings examined, GP-BUCB and GP-AUCB performed comparably

with state of the art parallel and adaptive parallel Bayesian optimization algorithms, which are not

equipped with theoretical bounds on regret. GP-BUCB and GP-AUCB also perform comparably to

the sequential GP-UCB algorithm, indicating that GP-BUCB and GP-AUCB successfully overcome

the disadvantages of only receiving delayed or batched feedback. With respect to cost to achieve

a given level of regret, GP-AUCB appears to offer substantial advantages over the fully parallel or

fully sequential approaches. We believe that our results provide an important step towards solving

complex, large-scale exploration-exploitation tradeoffs.
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(f) Rosenbrock: MR
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(h) Vaccine: AR
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(k) Vaccine: MR
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Figure 3.2: Time-average (AR) and minimum (MR) regret plots, batch setting, for a batch size of
5.
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Figure 3.3: Time-average (AR) and minimum (MR) regret plots, delay setting, with a delay length
of 5 rounds between action and observation.
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Figure 3.4: Time-average (AR) and minimum (MR) regret plots, non-adaptive batch algorithms,
batch sizes 5, 10, and 20.
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(l) SCI: MR

Figure 3.5: Time-average (AR) and minimum (MR) regret plots, adaptive batch algorithms, maxi-
mum batch sizes 5, 10, and 20. For the adaptive algorithms, minimum batch size Bmin was set to
1, as in HBBO. The algorithms tended to run fully sequentially at the beginning, but quite rapidly
switched to maximal parallelism.
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Figure 3.6: Time-average (AR) and minimum (MR) regret plots, delay setting, with delay lengths
of 5, 10, and 20 rounds between action and observation. Note that the adaptive algorithms, GP-
AUCB and GP-AUCB Local, may balk at some rounds. The time-average regret is calculated over
the number of actions actually executed as of that round; this means that the number of queries
submitted as of any particular round is hidden with respect to the plots shown, and may vary across
runs of the same algorithm.
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(b) SE
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(c) Rosenbrock
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(d) Cosines
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Figure 3.7: Elapsed computational time in batch experiments, B = 5. Note the logarithmic vertical
scaling in all plots. Note also the substantial separation between the three groups of algorithms,
discussed in Section 3.6.3.
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(b) w = 0
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(c) w = 1/2
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Figure 3.8: Parameterized cost comparison on the SCI data set, simple delay case, B = 5. The same
experiment, with a different set of algorithms shown, is presented in Figure 3.3(i). Figure 3.8(a):
the space of cost tradeoff parameter w and attained average regrets r̄ is colored according to which
algorithm has the lowest mean cost at the round in which the mean, time-average regret is first ≤ r̄.
The algorithm denoted GP-UCB Balking refuses to submit another query while one is pending, i.e., it
is the GP-UCB algorithm obeying the delay constraint of the problem setting. Figures 3.8(b), 3.8(c),
and 3.8(d) show r̄ as a function of C and correspond to vertical slices through Figure 3.8(a) at the
left, center, and right. Since GP-AUCB and GP-UCB Balking pass on some rounds, the terminal cost
of GP-AUCB and GP-UCB Balking is possibly < 300.


