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Abstract

Computational general relativity is a field of study which has reached maturity only within the

last decade. This thesis details several studies that elucidate phenomena related to the coalescence

of compact object binaries. Chapters 2 and 3 recounts work towards developing new analytical

tools for visualizing and reasoning about dynamics in strongly curved spacetimes. In both studies,

the results employ analogies with the classical theory of electricity and magnetism, first (Ch. 2) in

the post-Newtonian approximation to general relativity and then (Ch. 3) in full general relativity

though in the absence of matter sources. In Chapter 4, we examine the topological structure of

absolute event horizons during binary black hole merger simulations conducted with the SpEC code.

Chapter 6 reports on the progress of the SpEC code in simulating the coalescence of neutron star-

neutron star binaries, while Chapter 7 tests the effects of various numerical gauge conditions on

the robustness of black hole formation from stellar collapse in SpEC. In Chapter 5, we examine the

nature of pseudospectral expansions of non-smooth functions motivated by the need to simulate

the stellar surface in Chapters 6 and 7. In Chapter 8, we study how thermal effects in the nuclear

equation of state effect the equilibria and stability of hypermassive neutron stars. Chapter 9 presents

supplements to the work in Chapter 8, including an examination of the stability question raised in

Chapter 8 in greater mathematical detail.
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Chapter 1

Overview and historical summary

1.1 Introduction

The content of this thesis contains chapters of two different natures, both with the goal of sum-

marizing the research I have accomplished during my time as a graduate student in the TAPIR

(Theoretical AstroPhysics Including Relativity) group. One kind consists of works published or

recently submitted for publication to which I have made a significant contribution: Chapters 2, 3,

4, and 8. These works are reproduced in their entirety, and my specific role in these works will

be detailed here in Chapter 1. The other style of chapter contains work which is unpublished or

unfinished work, involving the SpEC-hydro numerical relativity code (Chapters 5, 6 and 7). The

primary goal of these chapters is to not only showcase the scientific results of this work, but also

to document it so that SpEC-hydro researchers have a record of the numerical experiments I have

conducted. Finally, Chapter 9 contains supplementary materials to the paper reproduced in Chapter

8.

The style of this overview chapter will be somewhat in in the form of a historical overview, as

this will assist in detailing the specific contributions I have made to each work. It will also give me

the chance to mention some non-scientific contributions which I feel have had a significant impact

on the SXS collaboration.

1.2 Re: The Title or A Literary Aside

Though unconventional, the title of this thesis is appropriate on several levels. Tori is the plural

of torus which is the mathematical term for a ‘donut’ shape; formally it defines a topology which

is homeomorphic to the Cartesian product of two circles, S1 × S1. In Chapter 4, we study the

topological structure of event horizons in binary black hole mergers, and find no evidence for a

toroidal (donut) shape. Chapter 8 examines equilibrium configurations of hypermassive neutron

star remnants. Here, our investigations originally led us to believe that the enhancement seen
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in the masses of these stellar configurations, due to differential rotation, was related to the stars

beginning to take on a toroidal-like shape; these shapes, which look somewhat like that of a red-blood

cell, are referred to as quasitoroidal. However, after further investigation, we found quasitoroidal

morphologies to be astrophysically unrealistic configurations and not of great relevance to our study.

Hence, I’ve happened to conduct numerical studies of compact objects “Where Tori Fear to Tread.”

Additionally, the phrase is a reference to the famous line of the the poem An Essay on Criticism

by Alexander Pope: “For fools rush in where angels fear to tread.” The verse is a parable noting that

the naive will often venture into situations that shrewd and more experienced will avoid. Directly

applied to the studies I’ve conducted, this line could be twisted into the statement: “A fool may rush

to the conclusion that toroidal shapes are significant to these topics; however a thorough investigation

has revealed that tori are unimportant here.” However, I find the verse’s meaning to be personally

significant as the parable represents perhaps the most important lesson I have learned during my

graduate studies, that of the intrinsic value of experience. For me, this lesson takes many forms,

one of which is the understanding that the hard work invested into tasks and projects which do not

pan out is not wasted. Instead, such labor has intrinsic value in the experience it provides. The

unstructured nature and long duration of graduate study is, essentially, for gaining experience in

accomplishing tasks at the cutting edge of human knowledge. While many tasks and investigations

in research may seem futile, pointless, or without motivation, perhaps such unstructured study is

the only manner in which to prepare one for the task of uncovering new knowledge.

So I suppose it’s a good thing I went grad school, otherwise I’d be going around with the foolish

impression that the outcome of compact object coalescence is some sort of toroidal structure...

1.3 Summary

1.3.1 Early work

My initial work in the TAPIR group consisted of research led by Kip Thorne and Yanbei Chen in

developing methods of visualizing and understanding the spacetimes observed in numerical simula-

tions of binary black hole mergers. The first approach to this involved using gauge dependent local

measures of gravitational field energy and momentum, along with their respective integral conser-

vation laws in an attempt to understand the dynamics of merging binary black holes. Chapter 2,

originally published as [2] is a particular formulation of the post-Newtonian approximation in a form

designed to resemble Maxwell’s equations in form and function. It was conceived and first organized

by Kip Throne; David Nichols and I repeated and refined Kip’s calculations, and I presented the

work at the April 2009 meeting of the American Physical Society.

I was also an author on the paper Momentum flow in black-hole binaries. II. Numerical simu-

lations of equal-mass, head-on mergers with antiparallel spins [3], which is not reproduced in this
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thesis. For this work, I was trained by Michael Cohen on the use of the event horizon finder which

he wrote for the SpEC code. For the work, I calculated the event horizon for the SpEC head-on,

anti-aligned spinning binary black hole merger simulated by Geoffrey Lovelace, as well as assisted in

calculating the surface integral of field momentum over the event horizon surface. This calculation

is illustrated in Figs. 13 and 14 of the work. Additionally, since the workflow for the event horizon

finder code (from initial data generation through post-processing) was very much experimental at

the time, I formalized and automated the process via scripts.

Another approach developed by our collaboration is that of representing the general relativistic

gravitational field in terms of vortex and tendex lines. Chapter 3 reproduces our collaboration’s

submission to Physical Review Letters [5]. Here I distinctly remember my contribution as checking

the signs in the physical interpretations of the tidal and frame-drag fields (paragraph 2 of Sec. 3.1)!

I also contributed to the fine-tuning of Fig. 3.2 1, and the calculation of the event horizon surface in

Fig. 3.1. The website companion pages; I did those too. Sincerely though, it was a pleasure and an

honor to be a part of an analytical and numerical collaboration so talented that I could just barely

keep up with their insights. Additionally, I was an author on the first in a series of follow up papers,

which I have also chosen not to reproduce in this thesis [4].

1.3.2 Intermediate work: EH No Tori

Chapter 4 is a reproduction of the work published in Physical Review D entitled On Toroidal

Horizons in Binary Black Hole Inspirals [1]. The work consisted of previously unpublished material

in the thesis of Michael Cohen. The event-horizon finding code, algorithm for identification of

crossover points, investigation of the equal-mass BBH merger and analysis of the generic topological

structure of binary black hole mergers was done by Mike. Upon this solid foundation, my task was

to examine the ‘generic’ BBH merger and verify that the conclusions drawn by Mike were robust. I

accomplished this by calculating event horizon of the ‘generic’ merger for different spatial, temporal

and simulation data resolutions. In addition, I thought carefully about what it would mean to

resolve a topological feature of a numerical simulation. I subsequently developed a precise criterion

for how one could, in principle, determine whether or not a numerically located event horizon shows

evidence for the presence of a toroidal topology. Mark Scheel carefully examined our results and, as

always, powered us through when code bugs became too challenging. To this date (almost two years

later!), no one has found evidence for a toroidal event horizon in the slicing of their fully relativistic

BBH merger simulations.

1particularly exciting was that this figure appeared on the cover of Physical Review Letters



4

1.3.3 SpEC-hydro work

In the spring of 2009, just before Christian Ott became an Assistant Professor at Caltech (at the time,

he was a post-doc in the TAPIR group), he inquired if any student was interested in investigating

neutron star-neutron star coalescence with the SpEC code. As a young grad student, I thought

that this would be a good opportunity to use my experience with SpEC (at the time calculating

event horizons) to work on research that had a wider range of astrophysical applications2. Later

the following summer I shipped off to Cornell for a week to learn the methods of the budding

SpEC-hydro code being written by Matt Duez and Francois Foucart. Conveniently enough, Curran

Muhlberger had just written code to calculate NSNS initial data, and before October 2009, I was

using SpEC-hydro to evolve some orbiting neutron stars. How, you might ask, did I end up in

June of 2013 with no SpEC-hydro NSNS publication? Of course, there were distractions with the

previously mentioned projects, and, uh... ‘general grad-studentyness’. However, I’d like to think

that those were not the major reasons for the difficulty in progress with NSNSs in SpEC-hydro. Here

I will explain my thoughts on the issue.

(I) The coupling of shock-capturing high-resolution finite-differencing methods and pseudospec-

tral methods proved to be more delicate than was anticipated (cf. Ch. 5 for one example): it

took nearly a year after first starting the simulations to achieve inspirals which were convergent in

resolution. One problem identified here was that the PPM reconstruction scheme seemed to pro-

duce gridpoint-to-gridpoint variations in the density. Once we switched to the smoother WENO

reconstruction scheme, we started to make progress on the convergence issue.

(II) The development of the SpEC-hydro code rapidly diverged from many major practices in

the vacuum SpEC code during its initial phases. To be frank, its development ended up somewhat

rushed and without consideration for multiple users. That is, it was particularly specialized to

BHNS coalescences. This issue seemed to stem from the fact that the SpEC code itself is a complex

piece of software with a high learning curve. I never completely ‘dove in’ to the SpEC-hydro code,

deconstructing it and voraciously determining its every nuance and feature. In retrospect, this

is what I now feel would have been necessary to have generated more results. In an attempt to

mitigate future student’s reluctance to ‘dive into’ the SpEC code, reduce bugs and propagate best

practices, I took the initiative to lead the 2011 Summer SpEC coding class. The 9 week informal

video conferenced course was a success: taught by Professors and Senior Researchers, approximately

20 students across more than four universities participated with a completion rate for the optional

assignments of > 50%. Though this course could only scratch the surface of the SpEC code, the

course materials are currently the standard for introducing new researchers to writing software for

SpEC.

2get back to my roots, so to speak: in undergrad at Northwestern I conducted my undergraduate research in the
theoretical astrophysics group under the guidance of Vicky Kalogera
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(III) Communication and propagation of best practices across collaborating research groups

proved difficult. For more than a year after starting the project, I was the only SpEC-hydro col-

laborator who was not at Cornell (and for slightly more than two years I was the only SpEC-hydro

collaborator at Caltech). Additionally, those who were readily available to advise me, were primar-

ily focused on the vacuum SpEC code. This meant that I was primarily assisted by those who used

the same codebase, but a very different branch of the code. One step I took in order to address

the communication issue was to introduce the use of issue-tracking software to the collaboration.

Though the use of bug-tracking software was probably an inevitability for the collaboration, my

initiative in its initial setup certainly hastened its arrival. The trac software I installed now has

over 540 opened tickets, 420 closed tickets, and continues to be in active use by the collaboration.

(IV) Technical developments necessary for the robust simulation of NSNS coalescence needed to

be accomplished. While the necessity of new technology is necessary for any experimental science,

it was perhaps under-appreciated that new technical developments which were unique to the NSNS

coalescence problem (i.e. not shared by the BHNS evolutions) had yet to be innovated. These

included the ‘dual box’ regridder method, pushed by Béla Szilágyi and written by Francois Foucart.

This was necessary in order to accomplish the long inspiral which is the subject of Chapter 6.

Although, this subsequently required infrastructure (developed by Roland Haas) to merge the two

grids into a single grid and continue evolution to black hole formation. Speaking of which, the

formation of a new black hole is a good example of a phenomenon which may be present during the

coalescence of two neutron stars, but is not present BHNS binaries. The technical feat of forming a

new black hole in SpEC-hydro is the subject of Chapter 7.

1.3.4 On thermal effects in hypermassive neutron stars

In September of 2012, Christian Ott was inspired to investigate the subject of thermal pressure

support in hypermassive neutron stars (HMNSs) via examining the maximum masses of neutron

star equilibrium models for ‘hot’ temperatures (∼ 10s of MeV for neutron stars) using realistic

tabulated equations of state. Originally intended to be a one week investigation, I was put to

the task of calculating rotating equilibrium models of HMNS using the code of Cook, Shapiro and

Teukolsky. Nine months later, the study has lead to perhaps the most interesting result included in

this thesis. This study is the subject of the paper reproduced in Chapter 8, which is intended for

submission to The Astrophysical Journal on the same date as the submission proofs of this thesis.

One of the first aspects I noticed of the properties of equilibrium models with significant differen-

tial rotation was the correlation between very massive models with ρb,max around nuclear saturation

density (2.7× 1014 g/cm3) and a quasitoroidal morphology of the model. While, investigations into

this correlation never matured into causation, I was still able to derive a few nice analytical results

regarding the properties of quasitoroidal equilibrium models (cf. Sec. 9.2). The fundamental puzzle
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we were exploring was that results in the literature of 3D NSNS simulations indicated that thermal

support was important in stabilizing HMNSs from gravitational collapse. However the properties

of the 1D and 2D equilibrium sequences we were calculating implied that thermal effects were es-

sentially irrelevant to the maximum mass supported by rotation and the nuclear equation of state.

I was led to the resolution of this discrepancy through my efforts attempting to understand how

one might reason about the stability of the equilibrium models we had constructed. This led me to

construct sequences of constant baryonic mass models and examine a primitive version of Fig. 8.11.

Figure 8.11 shows that, for varied temperatures and magnitudes of differential rotation, all constant

baryonic mass equilibrium sequences reach a minimum in their energy (gravitational mass) within

a small window of maximum densities. After much blank staring at the figure, I came to the re-

alization which was to become the major result of the work: a picture of the secular evolution of

HMNSs in which this density regime should mark the transition from a stable HMNS to one which

is unstable to gravitational collapse. With this new framework, we were able develop a coherent

picture which reconciled the results found in the literature with those of our equilibrium models;

this work is discussed in Chapter 8.
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Work in (a) vacuum
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Chapter 2

Post-Newtonian Approximation in
Maxwell-Like Form

The equations of the linearized first post-Newtonian approximation to general relativity

are often written in “gravitoelectromagnetic” Maxwell-like form, since that facilitates

physical intuition. Damour, Soffel and Xu (DSX) (as a side issue in their complex but el-

egant papers on relativistic celestial mechanics) have expressed the first post-Newtonian

approximation, including all nonlinearities, in Maxwell-like form. This paper summa-

rizes that DSX Maxwell-like formalism (which is not easily extracted from their ce-

lestial mechanics papers), and then extends it to include the post-Newtonian (Landau-

Lifshitz-based) gravitational momentum density, momentum flux (i.e. gravitational stress

tensor) and law of momentum conservation in Maxwell-like form. The authors and

their colleagues have found these Maxwell-like momentum tools useful for developing

physical intuition into numerical-relativity simulations of compact binaries with spin.

Originally published as Jeffrey D. Kaplan, David A. Nichols, and Kip S. Thorne. Post-

Newtonian approximation in Maxwell-like form, Phys. Rev. D 80, 124014

2.1 Introduction

In 1961, Robert L. Forward [1] (building on earlier work of Einstein [2, 3] and especially Thirring

[4, 5]) wrote the linearized, slow-motion approximation to general relativity in a form that closely

resembles Maxwell’s equations; and he displayed this formulation’s great intuitive and computational

power. In the half century since then, this Maxwell-like formulation and variants of it have been

widely explored and used; see, e.g., [6–13] and references therein.

In 1965–69 S. Chandrasekhar [14, 15] formulated the first post-Newtonian (weak-gravity, slow-

motion) approximation to general relativity in a manner that has been widely used for astrophysical
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calculations during the subsequent 40 years. When linearized, this first post-Newtonian (1PN)

approximation can be (and often is) recast in Maxwell-like form.

In 1991, T. Damour, M. Soffel and C. Xu (DSX; [16]) extended this Maxwell-like 1PN formalism

to include all 1PN nonlinearities (see also Sec. 13 of Jantzen, Carini and Bini [17]). DSX did so as

a tool in developing a general formalism for the celestial mechanics of bodies that have arbitrary

internal structures and correspondingly have external gravitational fields characterized by two infi-

nite sets of multipole moments. (For a generalization to scalar-tensor theories, see [18].) In 2004,

Racine and Flanagan [19] generalized DSX to a system of compact bodies (e.g. black holes) that

have arbitrarily strong internal gravity.

During the past 18 months, we and our colleagues have been exploring the flow of gravitational

field momentum in numerical-relativity simulations of compact, spinning binaries [20, 21]. In their

inspiral phase, these binaries’ motions and precessions can be described by the 1PN approximation,1

and we have gained much insight into their dynamics by using the 1PN DSX Maxwell-like formalism,

extended to include Maxwell-like momentum density, momentum flux, and momentum conservation.2

In this paper, we present that extension of DSX,3 though with two specializations: (i) we fix

our coordinates (gauge) to be fully harmonic instead of maintaining the partial gauge invariance

of DSX, and (ii) we discard all multipole moments of the binaries’ bodies except their masses and

their spin angular momenta, because for black holes and neutron stars, the influences of all other

moments are numerically much smaller than 1.5PN order.

The DSX celestial-mechanics papers [16, 22–24] are so long and complex that it is not easy to

extract from them the bare essentials of the DSX Maxwell-like 1PN formalism. For the benefit of

researchers who want those bare essentials and want to see how they are related to more conventional

approaches to 1PN theory, we summarize them before presenting our momentum extension, and we

do so for a general stress-energy tensor, for a perfect fluid, and for a system of compact bodies

described by their masses and spins.

This paper is organized as follows: In Sec. 2.2 we summarize the basic DSX equations for 1PN

theory in Maxwell-like form. In Sec. 2.3 we specialize the DSX formalism to a perfect fluid and make

contact with the conventional 1PN notation. In Sec. 2.4 we extend DSX by deriving the (Landau-

Lifshitz-based) density and flux of gravitational momentum in terms of the DSX gravitoelectric and

gravitomagnetic fields and by writing down the law of momentum conservation in terms of them.

1For black-hole and neutron-star binaries, the influences of spin that interest us are formally 1PN, but because of
the bodies’ compactness (size of order Schwarzschild radius), they are numerically 1.5PN.

2A referee has pointed out to us that some papers in the rich literature on the Maxwell-like formulation of linearized
1PN theory, e.g. [10], argue that the Maxwell analogy is physically useful only for stationary phenomena. Our spinning-
binary application [20] of the momentum-generalized DSX formalism is a counterexample.

3When we carried out our analysis and wrote it up in the original version of this paper, we were unaware of the
Maxwell-like formalism in DSX [16]; see our preprint at http://xxx.lanl.gov/abs/0808.2510v1 When we learned of
DSX from Luc Blanchet, we used it to improve our Maxwell-like treatment of gravitational momentum (by replacing
our definition for the gravitoelectric field by that of DSX) and we rewrote this paper to highlight the connection to
DSX.

http://xxx.lanl.gov/abs/0808.2510v1
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(It is this that we have found so useful for gaining intuition into numerical-relativity simulations of

inspiraling, spinning binaries [20, 21].) In Sec. 2.5 we briefly discuss energy conservation. In Sec. 2.6,

relying on Racine and Flanagan [19], we specialize to the vacuum in the near zone of a system made

from compact bodies with arbitrarily strong internal gravity. Finally, in Sec. 2.7 we summarize the

DSX formalism and our extension of it both for a self-gravitating fluid and for a system of compact

bodies.

Throughout this paper, we set G = c = 1, Greek letters run from 0 to 3 (spacetime) and Latin

from 1 to 3 (space), and we use the notation of field theory in flat space in a 3+1 split, so spatial

indices are placed up or down equivalently and repeated spatial indices are summed whether up or

down or mixed. We use bold-face italic characters to represent spatial vectors, i.e. w is the bold-face

version of wj .

2.2 The DSX Maxwell-Like Formulation of 1PN Theory

Damour, Soffel and Xu (DSX [16]) express the 1PN metric in terms of two gravitational potentials,

a scalar w and a vector wj :

g00 = −e−2w = −1 + 2w − 2w2 +O(U3
N ) ,

g0i = −4wi +O(U
5/2
N ) , (2.1)

gij = δije
2w = δij(1 + 2w) +O(U2

N )

[DSX Eqs. (3.3)]. The Newtonian limit of w is UN = (Newtonian gravitational potential), and wi is

of order U
3/2
N :

w = UN +O(U2
N ) , wi = O(U

3/2
N ) . (2.2)

The harmonic gauge condition implies that

w,t + wj,j = 0 (2.3)

[DSX Eq. (3.17a)]; here and throughout commas denote partial derivatives. Using this gauge con-

dition (which DSX do not impose), the 1PN Einstein field equations take the following remarkably

simple form:

∇2w − ẅ = −4π(T 00 + T jj) +O(U3
N/L2) , (2.4a)

∇2wi = −4πT 0i +O(U
5/2
N /L2) (2.4b)

[DSX Eqs. (3.11)]. Here Tαβ is the stress-energy tensor of the source (which we specialize below to
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a perfect fluid), ∇2 is the flat-space Laplacian (i.e. ∇2w = w,jj), repeated indices are summed, dots

denote time derivatives (i.e. ẅ = w,tt), and L is the lengthscale on which w varies.

Following DSX, we introduce the 1PN gravitoelectric field g (denoted e or E by DSX , depending

on the context) and gravitomagnetic field H (denoted b or B by DSX):

g = ∇w + 4ẇ +O(U3
N/L) , (2.5a)

H = −4∇×w +O(U
5/2
N /L) . (2.5b)

[DSX Eqs. (3.21)].

The Einstein equations (2.4) and these definitions imply the following 1PN Maxwell-like equations

for g and H:

∇ · g = −4π(T 00 + T jj)− 3ẅ +O(gU2
N/L) , (2.6a)

∇× g = −Ḣ +O(gU2
N/L) , (2.6b)

∇ ·H = 0 +O(HUN/L) , (2.6c)

∇×H = −16πT 0iei + 4ġ +O(HUN/L) (2.6d)

[DSX Eqs. (3.22)]. Here ei is the unit vector in the i direction.

In terms of g and H, the geodesic equation for a particle with ordinary velocity v = dx/dt takes

the following form [Eq. (7.17) of DSX, though in a less transparently “Lorentz-force”-like form

there]:

d

dt

[(
1 + 3UN + 1

2v
2
)
v
]

=
(
1− UN + 3

2v
2
)
g + v ×H

+O(gU2
N ) . (2.7)

Note that the spatial part of the particle’s 4-momentum is mu = m(1 + UN + 1
2v

2)v at 1PN

order. This accounts for the coefficient 1 + UN + 1
2v

2 on the left-hand side of Eq. (2.7). The

remaining factor 2UN is related to the difference between physical lengths and times, and proper

lengths and times. In the linearized, very-low-velocity approximation, this geodesic equation takes

the “Lorentz-force” form dv/dt = g+ v×H, first deduced (so far as we know) in 1918 by Thirring

[4], motivated by Einstein’s 1913 [2] insights about similarities between electromagnetic theory and

his not-yet-perfected general relativity theory.

The 1PN deviations of the geodesic equation (2.7) from the usual Lorentz-force form might make

one wonder about the efficacy of the DSX definition of g. That efficacy will show up most strongly

when we explore the gravitational momentum density in Sec. 2.4 below.
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2.3 Specialization to a Perfect Fluid

We now depart from DSX by specializing our source to a perfect fluid and making contact with a set

of 1PN gravitational potentials that are widely used. We pay special attention to connections with

a paper by Pati and Will [27] because that paper will be our foundation, in Sec. 2.4, for computing

the density and flux of gravitational field momentum.

We describe our perfect fluid in the following standard notation: ρo = (density of rest mass),

Π =(internal energy per unit rest mass, i.e. specific internal energy), P = (pressure), all as measured

in the fluid’s local rest frame; vj ≡ dxj/dt = (fluid’s coordinate velocity).

Following Blanchet and Damour [28], and subsequently Pati and Will (Eqs. (4.13), (4.3) of [27]),

we introduce a post-Newtonian variant U of the Newtonian potential, which is sourced by T 00 +T jj :

∇2U = −4π(T 00 + T jj). Accurate to 1PN order, the source is [see Eq. (2.18d)]

T 00 + T jj = ρo(1 + Π + 2v2 + 2UN + 3P/ρo) , (2.8)

where UN is the Newtonian limit of U

UN (x, t) =

∫
ρo(x

′, t)

|x− x′| d
3x′ . (2.9a)

Correspondingly, U can be written as

U =

∫
ρo(1 + Π + 2v2 + 2UN + 3P/ρo)

|x− x′| d3x′ . (2.9b)

Here and below the fluid variables and gravitational potentials in the integrand are functions of

(x′, t) as in Eq. (2.9a). In Eq. (2.9a) for UN , ρo can be replaced by any quantity that agrees with

ρo in the Newtonian limit, e.g. by the post-Newtonian “conserved mass density” ρ∗ of Eq. (2.13b)

below. We also introduce Chandrasekhar’s Post-Newtonian scalar gravitational potential χ (Eq.

(44) of [14]), which is sourced by 2UN , ∇2χ = −2UN or equivalently

χ = −
∫
ρo|x− x′|d3x′ . (2.10)

Pati and Will use the notation −X for χ (Eqs. (4.14), (4.12a) and (4.3) of [27]).

It is straightforward to show that the 1PN solution to the wave equation (2.4a) for the DSX

scalar potential w is

w = U − 1

2
χ̈ ; (2.11)
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and the 1PN solution to the Laplace equation (2.4b) for the DSX vector potential wj is

wj =

∫
ρovj
|x− x′|d

3x′ . (2.12)

The fluid’s evolution is governed by rest-mass conservation, momentum conservation, and energy

conservation.

The 1PN version of rest-mass conservation takes the following form:

ρ∗,t + ∇ · (ρ∗v) = 0 , (2.13a)

where

ρ∗ = ρou
0√−g = ρo(1 + 1

2v
2 + 3U) (2.13b)

(Eqs. (117) and (118) of Chandrasekhar [14]). Here u0 is the time component of the fluid’s 4-velocity

and g is the determinant of the covariant components of the metric.

We shall discuss momentum conservation and energy conservation in the next two sections.

We note in passing that Chandrasekhar and many other researchers write their 1PN spacetime

metric in a different gauge from our harmonic one. The two gauges are related by a change of time

coordinate

tC = tH − 1
2 χ̇ , (2.14a)

and correspondingly the metric components in the two gauges are related by

gC
00 = gH

00 + χ̈ , gC
0j = gH

0j + 1
2 χ̇,j . (2.14b)

Here C refers to the Chandrasekhar gauge and H to our harmonic gauge. DSX write their equations

in forms that are invariant under the gauge change (2.14).

2.4 Momentum Density, Flux, and Conservation

We now turn to our extension of the DSX formalism to include a Maxwell-like formulation of gravita-

tional momentum density, momentum flux, and momentum conservation. Following Chandrasekhar

[15], Pati and Will [27] and others, we adopt the Landau-Lifshitz pseudotensor as our tool for

formulating these concepts.

From Pati and Will’s 2PN harmonic-gauge Eqs. (2.6), (4.4b) and (4.4c) for the pseudotensor,

one can deduce the following 1PN expressions for the the gravitational momentum density and
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momentum flux (stress) in terms of the DSX gravitoelectric and gravitomagnetic fields g and H:

(−g)t0jLLej = − 1
4πg ×H + 3

4π U̇Ng ,

(2.15a)

(−g)tijLL = 1
4π (gigj − 1

2δijgkgk)

+ 1
16π (HiHj − 1

2δijHkHk)− 3
8π U̇

2
Nδij .

(2.15b)

Each equation is accurate up to corrections of order UN times the smallest term on the right side

(2PN corrections).

For comparison, in flat spacetime the electromagnetic momentum density is 1
4πE ×B and the

momentum flux is 1
4π (EiEj− 1

2δijEkEk)+ 1
4π (BiBj− 1

2δijBkBk). Aside from a sign in Eq. (2.15a) and

the two terms involving U̇N , the gravitational momentum flux and density (2.15) are identical to the

electromagnetic ones with E → g and B →H. Therefore, by analogy with the electromagnetic case,

there are gravitational tensions |g|2/8π and |H|2/8π parallel to gravitoelectric and gravitomagnetic

field lines, and gravitational pressures of this same magnitude orthogonal to the field lines. This

makes the gravitoelectric and gravitomagnetic fields g and H powerful tools for building up physical

intuition about the distribution and flow of gravitational momentum. We use them for that in our

studies of compact binaries [20], relying heavily on Eqs. (2.15).

Here are some hints for deducing Eqs. (2.15) from Pati and Will [27] (henceforth PW): (i) Show

that the last two terms in (2.6) of PW are of 2PN order for {α, β} = {0j} or {ij} and so can be

ignored, whence 16π(−g)tαβLL = Λαβ . (ii) Show that our notation is related to that of PW by χ = −X,

U the same, w = U− 1
2 χ̈ = 1

4 (N+B)− 1
8 (N+B)2 [for the last of these cf. PW (5.2), (5.4a,c)], and at

Newtonian order UN = 1
4N . (iii) In PW (4.4b,c) for Λαβ , keep only the Newtonian and 1PN terms:

the first curly bracket in (4.4b) and first and second curly brackets in (4.4c). Rearrange those terms

so they involve only K, N + B and the Newtonian-order N , use the above translation of notation

and use the definitions (2.5) of g and H. Thereby, bring PW (4.4b,c) into the form (2.15).

In the Landau-Lifshitz formalism, the local law of 4-momentum conservation T jµ;µ = 0 takes

the form

[(−g)(T jµ + tjµLL)],µ = 0 (2.16)

(Eqs. (20.23a) and (20.19) of [29], or (100.8) of [30]). Here (as usual), commas denote partial

derivatives, and semicolons denote covariant derivatives. This is the conservation law that we use

in our studies of momentum flow in compact binaries [20].

When dealing with material bodies (e.g. in DSX) rather than with the vacuum outside compact

bodies, an alternative Maxwell-like version of momentum conservation is useful. Specifically, using
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expressions (2.15) and (−g) = 1 + 4UN [from Eq. (2.1) with w = UN at leading order], and using

the field equations (2.6) for g and H, the conservation law (2.16) can be rewritten in the following

simple Lorentz-force-like form (Eq. (4.3) of Damour, Soffel and Xu’s Paper II [22])

[(1 + 4UN )T i0],t + [(1 + 4UN )T ij ],j (2.17)

= (T 00 + T jj)gi + εijkT
0jHk .

Here the Levi-Civita tensor εijk produces a cross product of the momentum density with the grav-

itomagnetic field. For comparison, in flat spacetime, the momentum conservation law for a charged

medium interacting with electric and magnetic fields Ei and Bi has the form T i0,t + T ij ,j =

ρeEi + εijkJjBk, where ρe is the charge density and Jj the charge flux (current density). The

right-hand side of Eq. (2.17) (the gravitational force density) is identical to that in the electromag-

netic case, with ρe → (T 00 + T jj), Jj → T 0j, E → g, and B → H. Again, this makes g and H

powerful foundations for gravitational intuition.

For a perfect fluid, the components of the 1PN stress-energy tensor, which appear in the mo-

mentum conservation law (2.17), are (Eqs. (20) of Chandrasekhar [14])

T 00 = ρo(1 + Π + v2 + 2UN ) , (2.18a)

T i0 = ρo(1 + Π + v2 + 2UN + P/ρo)vj , (2.18b)

T ij = ρo(1 + Π + v2 + 2UN + P/ρo)vivj

+P (1− 2UN )δij , (2.18c)

T 00 + T jj = ρ(1 + Π + 2v2 + 2UN + 3P/ρo) . (2.18d)

2.5 Energy Conservation

For a perfect fluid, the exact (not just 1PN) law of energy conservation, when combined with mass

conservation and momentum conservation, reduces to the first law of thermodynamics dΠ/dt =

−Pd(1/ρo)/dt; so whenever one needs to invoke energy conservation, the first law is the simplest

way to do so. For this reason, and because deriving the explicit form of 1PN energy conservation

[(−g)(T 0µ + t0µLL)],µ = 0 is a very complex and delicate task (cf. Sec. VI of [31]), we shall not write

it down here.

However, we do write down the Newtonian law of energy conservation in harmonic gauge, since

we will occasionally need it in our future papers. Chandrasekhar calculated (−g)(T 0µ + t0µLL) in

[15]; his Eqs. (48) and (57) are the time-time and time-space components, respectively. When one



16

writes the expressions in terms of the “conserved rest-mass density” ρ∗ [Eq. (2.13b)] and in our

Maxwell-like form, Newtonian conservation of energy states that

[
ρ∗(1 + Π +

1

2
v2 + 3UN )− 7

8π
g · g

]
,t

+∇ ·
[
ρ∗v(1 + Π +

P

ρ
+

1

2
v2 + 3UN )

+
3

4π
U̇Ng −

1

4π
g ×H

]
= 0 . (2.19)

While this equation is perfectly correct, it expresses Newtonian energy conservation in terms of

the post-Newtonian gravitomagnetic field H. It is possible to rewrite the H-dependent term using

the relationship, ∇ · [−1/(4π)(g ×H)] = ∇ · [−4UNT
0jej + (1/π)UN ġ], which is accurate up to

corrections of order g · Ḣ. This relationship can be found by applying Eq. (2.6b) once and (2.6d)

twice, in combination with elementary vector-calculus identities. The statement of Newtonian energy

conservation then depends only upon the Newtonian potential and its gradient and time derivative:

[
ρ∗(1 + Π +

1

2
v2 + 3UN )− 7

8π
g · g

]
,t

+∇ ·
[
ρ∗v(1 + Π +

P

ρ
+

1

2
v2 − UN )

+
3

4π
U̇Ng +

1

π
UN ġ

]
= 0 . (2.20)

Notice that going from Eq. (2.19) to Eq. (2.20) involves adding a divergence-free piece to the energy

flux, so it entails changing how the energy flux is localized — a change that strictly speaking takes

the energy flux out of harmonic gauge.

If the coefficients of the gravitational terms in Eq. (2.20) look unfamiliar, it is because even at

Newtonian order, the density and flux of gravitational energy are gauge-dependent. In some other

gauge, they will be different; see Box 12.3 of [32].

2.6 Gravitational Potentials in the Vacuum of a System of

Compact, Spinning Bodies

For a system of compact, spinning bodies (neutron stars or black holes), the gravitational potentials

UN , U , wi and χ in the vacuum between the bodies take the following forms (in a slightly different
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harmonic gauge than the one used in Sec. 2.3 for fluids):

UN =
∑
A

MA

rA
, (2.21a)

U =
∑
A

MA

rA

1 + 3
2v

2
A −

∑
B 6=A

MB

rAB


+2
∑
A

εijkv
i
AS

j
An

k
A

rA2
, (2.21b)

χ = −
∑
A

MArA , (2.21c)

w = U − 1

2
χ̈ , (2.21d)

wi =
∑
A

MAv
i
A

rA
+

1

2

∑
A

εijkS
j
An

k
A

rA2
, (2.21e)

Here the notation is that of Sec. IV of Thorne and Hartle [26]: the sum is over the compact bodies

labeled by capital Latin letters A,B; MA, SjA and vjA are the mass, spin angular momentum and

coordinate velocity of body A; rA is the coordinate distance from the field point to the center of

mass of body A; rAB is the coordinate distance between the centers of mass of bodies A and B;

njA is the unit vector pointing from the center of mass of body A to the field point; and εijk is the

Levi-Civita tensor.

Equations (2.21) for the potentials can be deduced by comparing our 1PN spacetime metric

coefficients [Eqs. (2.1), (2.11)] with those in Eqs. (2.4), (5.11) and (5.14) of Racine and Flanagan

[19] or in Eqs. (4.4) of Thorne and Hartle [26].4

2.7 Conclusion

In our Maxwell-like formulation of the 1PN approximation to general relativity for fluid bodies, the

evolution of the fluid and gravitational fields is governed by: (i) the law of momentum conservation

(2.17), (2.18) (which can be thought of as evolving the fluid velocity vj); (ii) the law of mass

conservation (2.13) (which can be thought of as evolving the mass density ρo); (iii) the equation of

state P (ρo) and first law of thermodynamics dΠ = −Pd(1/ρo) (which determine P and Π once ρo

is known); Eqs. (2.9), (2.12), (2.10) for the gravitational potentials U , χ, and wj ; and Eqs. (2.5) or

(2.6) for the gravitoelectric and gravitomagnetic fields g, H.

4Racine and Flanagan specialize DSX to a system of compact bodies with a complete set of nonzero multipole
moments. We neglect all moments except the bodies’ masses and spins (see fifth paragraph of Sec. 2.1). Our notation
is related to that of Racine and Flanagan by UN = −Φ, w = U − 1

2
χ̈ = −(Φ + ψ), wi = − 1

4
ζi. The Racine-Flanagan

derivation of Eqs. (2.21) avoids considering the internal structures of the bodies and it therefore is directly valid for
black holes. The Thorne-Hartle derivation relies on the pioneering analysis of Einstein, Infeld and Hoffman [33] which
uses a fluid description of the bodies’ interiors. Thorne and Hartle extend Eqs. (2.21) to black holes by the equivalent
of Damour’s “effacement” considerations, Sec. 6.4 of [25].
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When specialized to a system of compact bodies, e.g. a binary made of black holes or neutron

stars, the system is governed by: (i) 1PN equations of motion and precession for the binary (not

given in this paper; see, e.g., Eqs. (4.10), (4.11) and (4.14) of [26]); (ii) momentum flow within the

binary as described by the Landau-Lifshitz pseudotensor (2.15) and its conservation law (2.16), in

which the gravitoelectric and gravitomagnetic fields are expressed as sums over the bodies via Eqs.

(2.21) and (2.5); and (iii) other tools developed by Landau and Lifshitz (Sec. 100 of [30]). We are

finding this formalism powerful in gaining insight into compact binaries [20].
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Chapter 3

Frame-Dragging Vortexes and
Tidal Tendexes Attached to
Colliding Black Holes:
Visualizing the Curvature of
Spacetime

When one splits spacetime into space plus time, the spacetime curvature (Weyl tensor)

gets split into an “electric” part Ejk that describes tidal gravity and a “magnetic” part

Bjk that describes differential dragging of inertial frames. We introduce tools for visu-

alizing Bjk (frame-drag vortex lines, their vorticity, and vortexes) and Ejk (tidal tendex

lines, their tendicity, and tendexes), and also visualizations of a black-hole horizon’s

(scalar) vorticity and tendicity. We use these tools to elucidate the nonlinear dynamics

of curved spacetime in merging black-hole binaries.

Originally published as Robert Owen, Jeandrew Brink, Yanbei Chen, Jeffrey D. Kaplan,

Geoffrey Lovelace, Keith D. Matthews, David A. Nichols, Mark A. Scheel, Fan Zhang,

Aaron Zimmerman, and Kip S. Thorne. Phys. Rev. Lett. 106, 151101 (2011)

3.1 Introduction

When one foliates spacetime with spacelike hypersurfaces, the Weyl curvature tensor Cαβγδ (same as

Riemann in vacuum) splits into “electric” and “magnetic” parts Ejk = C0̂j0̂k and Bjk = 1
2εjpqC

pq
k0̂

(see e.g. [1] and references therein); both Ejk and Bjk are spatial, symmetric, and trace-free. Here

the indices are in the reference frame of “orthogonal observers” who move orthogonal to the space

slices; 0̂ is their time component, εjpq is their spatial Levi-Civita tensor, and throughout we use
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units with c = G = 1.

Because two orthogonal observers separated by a tiny spatial vector ξ experience a relative tidal

acceleration ∆aj = −Ejkξk, Ejk is called the tidal field. And because a gyroscope at the tip of ξ

precesses due to frame dragging with an angular velocity ∆Ωj = Bjkξk relative to inertial frames at

the tail of ξ, we call Bjk the frame-drag field.

3.2 Vortexes and Tendexes in Black-Hole Horizons

For a binary black hole, our space slices intersect the 3-dimensional (3D) event horizon in a 2D

horizon with inward unit normal N; so BNN is the rate the frame-drag angular velocity around N

increases as one moves inward through the horizon. Because of the connection between rotation and

vorticity, we call BNN the horizon’s frame-drag vorticity, or simply its vorticity.

Because BNN is boost-invariant along N [2], the horizon’s vorticity is independent of how fast

the orthogonal observers fall through the horizon, and is even unchanged if the observers hover

immediately above the horizon (the FIDOs of the “black-hole membrane paradigm” [3]).

Figure 3.1 shows snapshots of the horizon for two identical black holes with transverse, oppositely

directed spins S, colliding head on. Before the collision, each horizon has a negative-vorticity region

(red) centered on S, and a positive-vorticity region (blue) on the other side. We call these regions of

concentrated vorticity horizon vortexes. Our numerical simulation [4] shows the four vortexes being

transferred to the merged horizon (Fig. 3.1b), then retaining their identities, but sloshing between

positive and negative vorticity and gradually dying, as the hole settles into its final Schwarzschild

state; see the movie in Ref. [5].

Because ENN measures the strength of the tidal-stretching acceleration felt by orthogonal ob-

servers as they fall through (or hover above) the horizon, we call it the horizon’s tendicity (a word

coined by David Nichols from the Latin tendere, “to stretch”). On the two ends of the merged

horizon in Fig. 3.1b there are regions of strongly enhanced tendicity, called tendexes; cf. Fig. 3.5

Figure 3.1: Vortexes (with positive vorticity blue, negative vorticity red) on the 2D event horizons
of spinning, colliding black holes, just before and just after merger. (From the simulation reported
in [4].)
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below.

An orthogonal observer falling through the horizon carries an orthonormal tetrad consisting of

her 4-velocity U, the horizon’s inward normal N, and transverse vectors e2 and e3. In the null

tetrad l = (U−N)/
√

2 (tangent to horizon generators), n = (U + N)/
√

2, m = (e2 + ie3)/
√

2, and

m∗, the Newman-Penrose Weyl scalar Ψ2 [6] is Ψ2 = (ENN +iBNN )/2. Here we use sign conventions

of [7], appropriate for our (- +++) signature.

Penrose and Rindler [8] define a complex scalar curvature K = R/4+iX/4 of the 2D horizon, with

R its intrinsic (Ricci) scalar curvature (which characterizes the horizon’s shape) and X proportional

to the 2D curl of its Háj́ıček field [9] (the space-time part of the 3D horizon’s extrinsic curvature).

Penrose and Rindler show that K = −Ψ2 +µρ−λσ, where ρ, σ, µ, and λ are spin coefficients related

to the expansion and shear of the null vectors l and n, respectively. In the limit of a shear- and

expansion-free horizon (e.g. a quiescent black hole; Fig. 3.2a,b,c), µρ − λσ vanishes, so K = −Ψ2,

whence R = −2ENN and X = −2BNN . As the dimensionless spin parameter a/M of a quiescent

(Kerr) black hole is increased, the scalar curvature R = −2ENN at its poles decreases, becoming

negative for a/M >
√

3/2; see the blue spots on the poles in Fig. 3.2b compared to solid red for

the nonrotating hole in Fig. 3.2a. In our binary-black-hole simulations, the contributions of the

spin coefficients to K on the apparent horizons are small [L2-norm . 1%] so R ' −2ENN and

X ' −2BNN , except for a time interval ∼ 5Mtot near merger. Here Mtot is the binary’s total mass.

On the event horizon, the duration of spin-coefficient contributions > 1% is somewhat longer, but

we do not yet have a good measure of it.

Because X is the 2D curl of a 2D vector, its integral over the 2D horizon vanishes. Therefore,

positive-vorticity regions must be balanced by negative-vorticity regions; it is impossible to have

a horizon with just one vortex. By contrast, the Gauss-Bonnet theorem says the integral of R
over the 2D horizon is 8π (assuming S2 topology), which implies the horizon tendicity ENN is

predominantly negative (because ENN ' −R/2 and R is predominantly positive). Many black holes

have negative horizon tendicity everywhere (an exception is Fig. 3.2b), so their horizon tendexes

must be distinguished by deviations of ENN from a horizon-averaged value.

3.3 3D vortex and tendex lines

The frame-drag field Bjk is symmetric and trace free and therefore is fully characterized by its three

orthonormal eigenvectors ej̃ and their eigenvalues B1̃1̃, B2̃2̃ and B3̃3̃. We call the integral curves

along ej̃ vortex lines, and their eigenvalue Bj̃j̃ those lines’ vorticity, and we call a concentration of

vortex lines with large vorticity a vortex. For the tidal field Ejk the analogous quantities are tendex

lines, tendicity and tendexes. For a nonrotating (Schwarzschild) black hole, we show a few tendex

lines in Fig. 3.2a; and for a rapidly-spinning black hole (Kerr metric with a/M = 0.95) we show
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tendex lines in Fig. 3.2b and vortex lines in Fig. 3.2c.

If a person’s body (with length `) is oriented along a positive-tendicity tendex line (blue in Fig.

3.2a), she feels a head-to-foot compressional acceleration ∆a = |tendicity|`; for negative tendicity

(red) it is a stretch. If her body is oriented along a positive-vorticity vortex line (blue in Fig. 3.2c),

her head sees a gyroscope at her feet precess clockwise with angular speed ∆Ω = |vorticity|`, and

her feet see a gyroscope at her head also precess clockwise at the same rate. For negative vorticity

(red) the precessions are counterclockwise.

For a nonrotating black hole, the stretching tendex lines are radial, and the squeezing ones lie

on spheres (Fig. 3.2a). When the hole is spun up to a/M = 0.95 (Fig. 3.2b), its toroidal tendex

lines acquire a spiral, and its poloidal tendex lines, when emerging from one polar region, return

to the other polar region. For any spinning Kerr hole (e.g. Fig. 3.2c), the vortex lines from each

polar region reach around the hole and return to the same region. The red vortex lines from the red

north polar region constitute a counterclockwise vortex: the blue ones from the south polar region

constitute a clockwise vortex.

As a dynamical example, consider a Schwarzschild black hole’s fundamental odd-parity l = m = 2

quasinormal mode of pulsation, which is governed by Regge-Wheeler perturbation theory [10] and has

angular eigenfrequency ω = (0.74734− 0.17792i)/2M , with M the hole’s mass. From the perturba-

tion equations, we have deduced the mode’s horizon vorticity: BNN = <{9 sin2 θ/(2iωM3) exp[2iφ−
iω(t̃+ 2M)]}. (Here t̃ is the ingoing Eddington-Finklestein time coordinate, and the mode’s Regge-

Wheeler radial eigenfunction Q(r) is normalized to unity near the horizon.) At time t̃ = 0,

this BNN exhibits four horizon vortexes [red and blue in Fig. 3.2d], centered on the equator at

(θ, φ) = (π/2, 1.159+kπ/2) (k = 0, 1, 2, 3), and with central vorticities BNN = −(−1)k39.22/(2M)2.

From analytic formulae for Bjk and a numerical Q(r), we have deduced the equatorial-plane red vor-

tex lines and vorticities shown in Fig. 3.2d. As time t̃ passes, the vortexes rotate counterclockwise,

so they resemble water splayed out from a turning sprinkler. The transition from near zone to wave

zone is at r ∼ 4M (near the outermost part of the second contour line). As one moves into the wave

zone, each of the red vortexes is smoothly transformed into a gravitational-wave trough and the 3D

vortexes that emerge from the blue horizon vortexes (concentrated in the dark region of this figure)

are transformed into gravitational-wave crests.

3.4 Vortex and Tendex Evolutions in Binary Black Holes

We have explored the evolution of frame-drag vortexes and tidal tendexes in numerical simulations

of three binary black holes (BBHs) that differ greatly from each other.

Our first simulation (documented in Ref. [4]; movies in Ref. [5]) is the head-on, transverse-spin

merger depicted in Fig. 3.1 above, with spin magnitudes a/M = 0.5. As the holes approach each
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S

S

(c) (d)

Figure 3.2: Four different black holes, with horizons colored by their tendicity (upper two panels)
or vorticity (lower two panels), ranging from most negative (red) to most positive (blue); and with
a Kerr-Schild horizon-penetrating foliation (Exercise 33.8 of Ref. [18]). (a) A nonrotating black hole
and its tendex lines; negative-tendicity lines are red, and positive blue. (b) A rapidly rotating (Kerr)
black hole, with spin a/M = 0.95, and its tendex lines. (c) The same Kerr black hole and its vortex
lines. (d) Equatorial plane of a nonrotating black hole that is oscillating in an odd-parity l = m = 2
quasinormal mode, with negative-vorticity vortex lines emerging from red horizon vortexes. The
lines’ vorticities are indicated by contours and colors; the contour lines, in units (2M)−2 and going
outward from the hole, are -10, -8, -6, -4, -2.

other then merge, their 3D vortex lines, which originally link a horizon vortex to itself on a single

hole (Fig. 3.2c), reconnect so on the merged hole they link one horizon vortex to the other of the same

polarity (Fig. 3.3a). After merger, the near-zone 3D vortexes slosh (their vorticity oscillates between

positive and negative), generating vortex loops (Fig. 3.3b) that travel outward as gravitational waves.

Our second simulation (documented in Ref. [? ]; movies in Ref. [11]) is the inspiral and merger
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Figure 3.3: Head-on, transverse-spin simulation: (a) Shortly after merger, vortex lines link horizon
vortexes of same polarity (red to red; blue to blue). Lines are color coded by vorticity (different
scale from horizon). (b) Sloshing of near-zone vortexes generates vortex loops traveling outward as
gravitational waves; thick and thin lines are orthogonal vortex lines.
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Figure 3.4: Insets: snapshots of the common apparent horizon for the a/M = 0.95 anti-aligned
simulation, color coded with the horizon vorticity BNN . Graphs: BNN as a function of polar angle
θ at the azimuthal angle φ that bisects the four vortexes (along the black curves in snapshots).
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of two identical, fast-spinning holes (a/M = 0.95) with spins antialigned to the orbital angular

momentum. Figure 3.4 shows the evolution of the vorticity BNN on the common apparent horizon

beginning just after merger (at time t/Mtot = 3483), as seen in a frame that co-rotates with the small

horizon vortexes. In that frame, the small vortexes (which arise from the initial holes’ spins) appear

to diffuse into the two large central vortexes (which arise from the initial holes’ orbital angular

momentum), annihilating some of their vorticity. (This is similar to the diffusion and annihilation of

magnetic field lines with opposite polarity threading a horizon [3].) Making this heuristic description

quantitative, or disproving it, is an important challenge.

Our third simulation (see movies in Ref. [12]) is a variant of the “extreme-kick” merger studied

by Campanelli et al. [13] and others [14, 15]: two identical holes, merging from an initially circular

orbit, with oppositely directed spins a/M = 0.5 lying in the orbital (x, y) plane. In this case, the

vortexes and tendexes in the merged hole’s (x, y) plane rotate as shown in Fig. 3.2d. We have

tuned the initial conditions to make the final hole’s kick (nearly) maximal, in the +z direction. The

following considerations explain the origin of this maximized kick:

In a plane gravitational wave, all the vortex and tendex lines with nonzero eigenvalues lie in the

wave fronts and make angles of 45 degrees to each other (bottom inset of Fig. 3.5.) For vectors E

(parallel to solid, positive-tendicity tendex line) and B (parallel to dashed, positive-vorticity vortex

line), E ×B is in the wave’s propagation direction.

Now, during and after merger, the black hole’s near-zone rotating tendex lines (top left inset in

Fig. 3.5) acquire accompanying vortex lines as they travel outward into the wave zone and become

gravitational waves; and the rotating near-zone vortex lines acquire accompanying tendex lines.

Because of the evolution-equation duality between Eij and Bij , the details of this wave formation

are essentially the same for the rotating tendex and vortex lines. Now, in the near zone, the vectors

E and B along the tendex and vortex lines (Fig. 3.5) make the same angle with respect to each

other as in a gravitational wave (45 degrees) and have E ×B in the −z direction. This means that

the gravitational waves produced by the rotating near-zone tendex lines and those produced by the

rotating near-zone vortex lines will superpose constructively in the −z direction and destructively

in the +z direction, leading to a maximized gravitational-wave momentum flow in the −z direction

and maximized black-hole kick in the +z direction. An extension of this reasoning shows that the

black-hole kick velocity is sinusoidal in twice the angle between the merged hole’s near-zone rotating

vortexes and tendexes, in accord with simulations.

3.5 Conclusions

In our BBH simulations, the nonlinear dynamics of curved spacetime appears to be dominated by (i)

the transfer of spin-induced frame-drag vortexes from the initial holes to the final merged hole, (ii)
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Figure 3.5: Bottom inset: tendex and vortex lines for a plane gravitational wave; E ×B is in the
propagation direction. Upper two insets: for the “extreme-kick simulation”, as seen looking down
the merged hole’s rotation axis (−z direction): the apparent horizon color coded with the horizon
tendicity (left inset) and vorticity (right inset), and with 3D vortex lines and tendex lines emerging
from the horizon. The tendexes with the most positive tendicity (blue; E) lead the positive-vorticity
vortexes (blue, B) by about 45o as they rotate counterclockwise. This 45o lead is verified in the
oscillating curves, which show the rotating BNN and ENN projected onto a nonrotating ` = 2, m = 2
spherical harmonic.

the creation of two large vortexes on the merged hole associated with the orbital angular momentum,

(iii) the subsequent sloshing, diffusion, and/or rotational motion of the spin-induced vortexes, (iv)

the formation of strong negative ENN poloidal tendexes on the merged horizon at the locations of the

original two holes, associated with the horizon’s elongation, and a positive ENN tendex at the neck

where merger occurs, and (v) the oscillation, diffusion, and/or circulatory motion of these tendexes.

We conjecture that there is no other important dynamics in the merger and ringdown of BBHs. If

so, there are important consequences: (i) This could account for the surprising simplicity of the BBH

gravitational waveforms predicted by simulations. (ii) A systematic study of frame-drag vortexes

and tidal tendexes in BBH simulations may produce improved understanding of BBHs, including

their waveforms and kicks. The new waveform insights may lead to improved functional forms for

waveforms that are tuned via simulations to serve as templates in LIGO/VIRGO data analysis.
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(iii) Approximation techniques that aim to smoothly cover the full spacetime of BBH mergers (e.g.

the combined Post-Newtonian and black-hole-perturbation theory method [16]) might be made to

capture accurately the structure and dynamics of frame-drag vortexes and tidal tendexes. If so,

these approximations may become powerful and accurate tools for generating BBH waveforms.
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Chapter 4

On Toroidal Horizons in Binary
Black Hole Inspirals

We examine the structure of the event horizon for numerical simulations of two black

holes that begin in a quasicircular orbit, inspiral, and finally merge. We find that the

spatial cross section of the merged event horizon has spherical topology (to the limit of

our resolution), despite the expectation that generic binary black hole mergers in the

absence of symmetries should result in an event horizon that briefly has a toroidal cross

section. Using insight gained from our numerical simulations, we investigate how the

choice of time slicing affects both the spatial cross section of the event horizon and the

locus of points at which generators of the event horizon cross. To ensure the robustness

of our conclusions, our results are checked at multiple numerical resolutions. 3D visual-

ization data for these resolutions are available for public access online. We find that the

structure of the horizon generators in our simulations is consistent with expectations,

and the lack of toroidal horizons in our simulations is due to our choice of time slicing.

Originally published as Michael I. Cohen, Jeffrey D. Kaplan, and Mark A. Scheel.

Toroidal horizons in binary black hole inspirals, Phys. Rev. D 85, 024031 (2012)

4.1 Introduction

It has long been known that a stationary black hole must have spherical topology [1]. For a non-

stationary black hole, that is, one undergoing dynamical evolution, the situation is more complicated:

the intersection of the event horizon and a given spatial hypersurface may be toroidal instead of

spherical [2]; In fact, Siino has shown that event horizons may have topology of arbitrary genus [3, 4].

Event horizons with initially-toroidal topologies have been observed in numerical simulations of the

collapse of rotating star clusters [5, 6].
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A number of theorems restrict the conditions under which horizons can have toroidal topology;

for instance, the torus must close up fast enough so that no light ray from past null infinity can pass

through the torus and reach future null infinity [7, 8]. Additionally, it has been conjectured that for

all toroidal horizons, a new spacetime foliation can be chosen so that the intersection of the horizon

with each slice of the foliation has spherical topology [8].

The recent ability of numerical relativity to simulate the merger of two black holes (see refs. [9, 10]

for recent reviews) provides a laboratory for studying the structure of event horizons that are far from

stationary. Husa and Winicour predicted [11] that a brief toroidal phase should occur generically

in binary black hole mergers, but until recently most numerical investigations of event horizons

utilized some degree of symmetry. Diener [12] investigated event horizons in non-symmetric black

hole collisions, including those of three black holes, but he did not have sufficient numerical resolution

to determine whether a toroidal phase occurs in his simulations. More recently, Ponce [13] et. al.

examined the merger of ring of eight black holes initially at rest and also found no evidence of a

toroidal event horizon.

In this paper, we investigate the event horizons from two numerical simulations run with the

SpEC [14] code by building on the work presented in the thesis of Michael Cohen [15]. The first

simulation follows two black holes of (initially) zero spin and equal mass from a quasicircular orbit,

through merger and ringdown [16, 17]. The second simulation is similar, but fully generic: the mass

ratio is 2:1, and the initial spins of magnitude a/M ' 0.4 are not aligned with each other or with the

initial orbital plane [18]. Table 4.1 lists parameters of these two simulations, and also parameters of

two previous simulations for which the detailed shape of the event horizon was discussed in earlier

works [19, 20].

For all of these simulations, we find the event horizon by the method described in Ref. [19]: we

choose a set of outgoing null geodesics that lie on the apparent horizon of the remnant black hole at

the end of the simulation when the spacetime is nearly stationary, and we integrate these geodesics

backwards in time. These geodesics exponentially converge onto the event horizon, so we will refer

to them as generators of the horizon even though they are only (very good) approximations to the

true generators.

It is important to note that the event horizon is only a subset of the surface generated by

these generators. Under subsequent evolution backwards in time, some of the generators leave the

horizon at points where they meet other generators[21, 22]. These meeting points have been studied

extensively [6, 11, 23] and can be separated into two types: caustics, at which neighboring generators

focus and converge, and crossover points, at which non-neighboring generators cross. Much of the

work in studying the structure of the event horizon in numerical simulations involves identifying the

crossover and caustic points, so as to determine when the generators are on or off the horizon. In

this work we make an effort to clarify the structure of event horizon caustics and crossovers for the
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cases of spatial slices with and without a toroidal event horizon surface.

Of course, any numerical study of event horizons is limited by several different sources of numeri-

cal error. Consequently, the identification of caustic and crossover points must be carefully analyzed

to ensure that one’s conclusions are not tainted by discretization errors. Discretization error could

arise from, for example, both the 3+1 spacetime resolution of the underlying black hole simulation,

and/or the 2+1 spacetime resolution of the event horizon hypersurface. Accordingly, one important

goal of this work is to investigate whether our conclusions are robust when we change the (relatively

high) spatial and temporal resolution of our event horizons.

We note that it is not always easy to visualize the event horizon’s topological structure from the

two-dimensional screenshots we can include in this work. Therefore, we make our event horizon data

for the generic merger, Run 2 from Table 4.1, available online for the reader to explore at http:

//www.black-holes.org/onToroidalHorizonsData.html. Included are detailed instructions on

how to visualize and compare the event horizon data for different resolutions using freely available

3D visualization software [24]. Also included there are saved state and camera view files allowing

the reader to jump to the views displayed in this work, providing the ability for the reader to see

the event horizons as they are featured in this paper’s figures [25].

The organization of this paper is as follows: In Section 4.2 we present modifications to our event-

horizon finder [19] that allow us to detect crossover points, i.e. intersections of non-neighboring

horizon generators. In Section 4.3 we apply this method to find the event horizon of two binary

black hole simulations in which the black holes merge after inspiraling from an initially quasicircular

orbit. We find that the merged horizon has spherical topology to the limit of our numerical accuracy.

In Section 4.4 we review the structure of crossover points and caustics in binary black hole collisions.

We show how toroidal horizon cross sections are possible in black hole collisions without symmetry,

and how the existence of toroidal cross sections depends on the choice of time slicing. In Section 4.5

we identify the crossover points and caustics of the horizon generators for our numerical simulations,

and show that they are consistent with expectations for generic binary black hole mergers. In

particular, we infer that there should exist a different slicing of our numerical spacetime such that

a toroidal horizon is present for a finite coordinate time. We summarize our findings and conclude

in Section 4.6.

4.2 Identification of Crossover Points

A key challenge in computing an event horizon is to accurately determine when each of the gener-

ators being tracked merges onto the horizon. The set of merger points can be classified into two

types: caustics, which occur when neighboring generators focus and converge, and crossovers, which

occur when non-neighboring generators cross. The set of crossover points generically forms a two-

http://www.black-holes.org/onToroidalHorizonsData.html
http://www.black-holes.org/onToroidalHorizonsData.html
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Run MA/MB
~SA/M

2
A

~SB/M
2
B Type Ref

1 1 0 0 orbit [16, 17]

2 2 −0.4(ẑ + ŷ)/
√

2 0.2(ẑ − x̂)/
√

2 orbit [18]
3 1 0 0 head-on [19]
4 1 0.5ẑ −0.5ẑ head-on [20]

Table 4.1: Binary black hole simulations for which we have investigated the topology of the event
horizon. Listed are mass ratios, initial spins, and whether the black holes are colliding head-on or
are initially in quasicircular orbit. The first two simulations are discussed in the present paper, and
for these the ẑ direction is parallel to the initial orbital angular momentum; the last two simulations
are head-on collisions along the x̂ direction, and are discussed in refs [19] and [20].

dimensional subset of the three-dimensional event horizon hypersurface, (see Figure 4.3 right panel),

and the set of caustics generically forms the boundary of the set of crossovers [11, 23].

In previous applications of our event-horizon finder it sufficed to search only for caustics and not

for crossover points. Ref. [19] treated only axisymmetric head-on black hole collisions, for which

all crossovers are also caustics (cf. Run 3 of Table 4.1). Interestingly, we found that for spinning,

head-on black hole collisions (cf. Run 4 of Table 4.1) [20], despite the lack of pure axisymmetry, the

set of crossover points is also composed entirely of caustics. However, for finding the event horizon of

a binary black hole system that inspirals and merges, we find it is necessary to develop a technique

for detecting crossover points.

On any given spacelike slice, the set of generators forms a smooth, closed two-dimensional surface

that may self-intersect (at crossover points and/or caustics). We detect caustics by monitoring the

local area element on this surface [19]; the area element vanishes at caustics. In order to detect

crossover points, we model this surface as a set of triangles, and we check whether each generator

has passed through each triangle between the current and the previous time step.

To define these triangles, we note that the surface of generators can be mapped to a two-sphere

with standard polar coordinates u ∈ [0, π], v ∈ [0, 2π) in such a way so that each generator is tied to

a specific value of u and v for all time. The generators are placed on a grid in (u, v) space, and the

triangles are defined on this grid. Thus the property “neighbor-ness” (i.e. knowing which geodesics

are to the left/right/above/below any given geodesic) is maintained throughout the simulation. We

choose the grid points in (u, v) space to be the collocation points of a pseudospectral expansion

in spherical harmonics of order L, and we use this L to describe the numerical resolution of the

event horizon finder. There are no geodesics at the poles u = 0 and u = π, so for the purpose of

defining triangles we place artificial points there (the simulation coordinates x, y, z of such a pole

point are defined as the mean of the x, y, z coordinates of the nearest neighboring geodesics). Thus

each triangle near the pole is formed from the artificial pole point plus two points that represent

geodesics. The number of geodesics in a surface of resolution L is 2(L + 1)2, and the number of

triangles in the surface is 4(L + 1)2. The algorithm compares every triangle with every geodesic
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Figure 4.1: Crossover-detection algorithm illustrated by a geodesic crossing a moving triangle. Points
p0, q0, and r0 form the triangle at time t0, and points p1, q1, and r1 form the triangle at time t1.
Likewise points a0 and a1 represent the geodesic at times t0 and t1.

point, to determine whether the geodesic has passed through that triangle between the current and

previous time step. Therefore, if the number of geodesics on the horizon is N , the number of triangles

is 2N , and the computational cost of the algorithm scales as O(N2) = O(L4).

Determining whether the point has passed through the triangle proceeds as follows (see Figure 4.1

for a diagram): Suppose that the positions of the three geodesics that comprise the vertexes of the

triangle at time t0 are p0, q0, r0, and the position of the potentially intersecting geodesic is a0. At

time t1 , one time step later, these positions are p1, q1, r1 and a1. We assume that the geodesics move

linearly in space during the short interval between time t0 and t1. Thus p(t) = p0+t(p1−p0) = p0+tp̄,

and similarly for q, p and a. We now define the normal of the triangle at time t0

n0 = (q0 − p0)× (r0 − p0), (4.1)

where we have assumed that the orientation of the triangle points is anti-clockwise. As a function

of time, the normal is

n(t) = (q(t)− p(t))× (r(t)− p(t))

= (q0 − p0 + t(q̄ − p̄))× (r0 − p0 + t(r̄ − p̄))

= (q0 − p0)× (r0 − p0) + t[(q̄ − p̄)× (r0 − p0) +

(q0 − p0)× (r̄ − p̄)] + t2(q̄ − p̄)× (r̄ − p̄). (4.2)
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Since p0, q0, r0, p̄, q̄, r̄ are known quantities, we can write Equation 4.2 as

n(t) = n0 + αt+ βt2. (4.3)

Now, any given plane P has the property that

∀i ∈ P, i · nP = D, (4.4)

where D is a constant, and nP is the normal of the plane. Now, D(t) = p(t) ·n(t), a cubic equation,

so our geodesic a(t) and the triangle {p, q, r}(t) are coplanar at times t that satisfy the equation

p(t) · n(t)− a(t) · n(t) = n(t) · (p(t)− a(t)) = 0. (4.5)

Equation 4.5 is a cubic with algebraic roots, which can be solved for analytically. For every root

found between t0 < t ≤ t1, it is a simple matter to check whether a(troot) is within the triangle

{p, q, r}(troot), rather than merely being co-planar.

There are a few special cases to be checked, such as ensuring that the geodesic being tested

for intersection is not one of the geodesics that make up the triangle, or cases for which the cubic

equation is degenerate, but the algorithm itself is quite robust and effective. Although the algorithm

is, as mentioned above, O(N2), the expense of the algorithm is mitigated by two factors. Firstly,

since the algorithm involves analytically solving an at most cubic equation, the run time of each

individual instance is very small, on the order of microseconds. Secondly, the looping condition

is sufficiently simple that it can be parallelized over multiple cores without any significant CPU

overhead. In practice, with typical resolutions of between 30, 000 & 60, 000 geodesics, the run time

is not prohibitive.

4.3 Event horizons from numerical simulations of binary black

hole mergers

Husa and Winicour [11] posit that mergers of binary black holes in a non-axisymmetric configuration

generically result in an intermediate toroidal state of the event horizon. Previously (cf. Runs 3 and

4 of Table 4.1) we have found that merger occurs at a single point in not only the axisymmetric

head-on merger [19], but also the head-on spinning merger [20] (where axisymmetry is broken).

Therefore, we were strongly motivated to determine the topological behavior of the event horizon

for mergers of black holes that inspirals from an initially quasicircular orbit, where axisymmetry is

broken in no uncertain terms.

Figure 4.2 shows the event horizons from two numerical simulations of binary black hole coales-
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Figure 4.2: Color online. Slices through the event horizon at the exact point of merger to within
numerical accuracy. Upper panel: Equal-mass non-spinning 16-orbit inspiral, Run 1 of Table 4.1,
at t/M = 3902.897; the point of merger is tmerger/M = 3902.897± 0.006. Here M is the sum of the
ADM masses. Lower panel: Generic merger, Run 2 of Table 4.1, at t/M = 117.145; the point of
merger is tmerger/M = 117.145 ± 0.005. The error estimates come from the time resolution of our
event horizon finder (i.e. our EH finder time step is ∼ 0.005M); note that the merger occurs at the
same time (within this error bound) for both medium and high resolutions of the numerical relativity
simulations. At earlier times the two black hole horizons are disjoint. No toroids are evident in the
limit of our accuracy.
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cence, at the time of merger. In the top panel, the two black holes start in a quasicircular orbit, and

have equal masses and initially zero spins; details of this simulation were published in Ref. [16]. The

bottom panel shows a fully generic situation: again the black holes start in a quasicircular orbit, but

the mass ratio is 2:1, and the initial spins have magnitude a/M ' 0.4 and are not aligned with each

other or with the initial orbital plane. This simulation is “case F” of Ref. [18]. For both of these

simulations, we find the generators of the event horizon using the “geodesic method” of [19]. We

integrate generators backwards in time, and when we find that generators leave the event horizon,

either through caustics (as determined by the vanishing of the local area element of the surface of

generators [19]) or through crossover points (as determined by the method described in Section 4.2)

we flag them as having left the horizon. Figure 4.2 plots only those generators that are on the

horizon at the time of merger. In both the equal-mass and generic cases, our results show that the

event horizons merge at a point, with no intermediate toroidal phase to the limit of our numerical

accuracy.

4.4 Topological structure of the Event Horizon for inspiral-

ing and merging black holes

In order to understand why no toroidal intermediate stage is found in our simulations, we need to

further understand the topological structure of the event horizon null hypersurface in the case of a

binary inspiral and merger. In [11], Husa and Winicour consider two sets of points. One set, labeled

C, is the set of all caustic points in the spacetime where neighboring event horizon geodesics cross.

The other set of points, X , is the set of all crossover points in the spacetime, where non-neighboring

event horizon geodesics cross. They show that the set of points X is an open 2-surface on the event

horizon null hypersurface N , and that this set is bounded by the caustic set C. They further show

that the behavior of this 2-surface of caustic/crossover points is governed by the topology of the

merger. In an axisymmetric prolate merger (such as our headon case), the 2-surface is reduced by

the symmetry, resulting in the single boundary line of caustic points we see as being the “inseam”

of the “pair of pants,” as shown in the left panel of Figure 4.3. In the non-axisymmetric case, the

set of caustic and crossover points is a 2-surface on the event horizon, as shown in the case of a

binary black hole inspiral in the right panel of Figure 4.3 (where we show the merger in a corotating

frame).

The question of whether toroidal horizons can be found in the intermediate stages of binary

black hole merger can be answered by considering the various ways in which these “pair of pants”

diagrams can be sliced. The fact that the set caustic/crossover points C ∪X is a spacelike 2-surface

on a non-axisymmetric event horizon hypersurface (and, for an axisymmetric case, the line of points

C is a spacelike line) provides some freedom in the allowed spacelike slicings of this surface.
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Figure 4.3: Diagrams of the event horizon null hypersurface, N , in axisymmetric and non-
axisymmetric mergers. The merger is along the z-axis. In both panels, the regions C ∪ X are
spacelike. Left panel: In the axisymmetric case, the caustic/crossover set is reduced to a single
line of caustic points, the “inseam” of the “pair of pants,” labeled C. The x direction is suppressed
but, since the x and y directions are identical for axisymmetry, the diagram would be unchanged
if we were to suppress y in favor of x. Right panel: In the non-axisymmetric case, such as an
inspiral (where we have “unwound” the legs of the “pair of pants” by going to a corotating frame),
the set of crossover points X is two-dimensional, bounded on both sides by “inseams” C. Unlike
the axisymmetric case, here the x and y directions are not identical. Since the caustic/crossover
set of points is a 2-surface, the diagram we would obtain by suppressing y in favor of x would look
identical to the left panel, except that the single “inseam” would be composed of crossover points.
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Figure 4.4: A 2-dimensional slice through the event horizon null hypersurface, N , in an axisymmetric
merger. The horizontal direction in the right panel could be either x or y. We attempt to construct
a slice S1 in x (or y) from point P that intersects the black hole. This slice is clearly not spacelike.
Since N is spacelike only at C, only a slice such as S0 that does not intersect the black hole can be
both spacelike and pass through P.



40

t

z

y

 

!!

"

t

y

���� ��

N

t

S
1

y

X
CC

P
S0

S
2

Figure 4.5: A 2-dimensional slice through the event horizon null hypersurface, N , in a non-
axisymmetric merger. Unlike the previous figure, the horizontal direction in the right panel is
not interchangeable between x and y. We construct three slices S0,S1,S2 from the starting point
P. These slices intersect the event horizon in different ways. Since C ∪X is spacelike, all these slices
are spacelike. Although exaggerated for effect, the tangent to X in the t-y plane becomes null at C
(see [6]).

Let us first consider whether a nontrivial topology might be obtained in the axisymmetric case.

In order to do so, we need to consider how such a slice may be constructed. Clearly, if we were to

construct “horizontal” spatial slices of the null hypersurface in the left panel of Figure 4.3, we would

produce a slicing in which the merger occurred at a point. However, we can attempt to construct

slices in which the lapse is somewhat retarded near the “crotch.” In Figure 4.4 we examine a 2-

dimensional slice in {t, y} through the center of the hypersurface. It is clear that if we choose a

central point for the slice before the merger of the black holes, we cannot extend a spacelike slice

from this central point in either the x or y directions in such a way as to encounter the black holes.

Only in the z direction can we encounter the black holes.

This changes however, when we consider the non-axisymmetric case. In this case, the x and y

directions are different, as shown in the right panel of Figure 4.3. In Figure 4.5 we show a {t, y}
2-slice of the event horizon. The event horizon, N , is spacelike both at C, and along the line X .

Thus, given a point P below the “crotch” of the event horizon, we can construct three distinct slices,

each with different behavior. Slice S0 does not encounter the event horizon at all in the y direction.

Slice S1 encounters the event horizon four times: twice in the null region, and twice in the spacelike

region. Finally, slice S2 encounters the event horizon four times in the spacelike region. Note that

in the x direction, the slice through the event horizon is identical to slice S0 of Figure 4.4 (except

that the “inseam” is part of the crossover set X instead of the caustic set C). Therefore, if we slice

our spacetime using slices S1 or S2, our slice encounters the event horizon four times in the z and

y directions, and not at all in the x direction. This is precisely a toroidal intermediate stage. Such
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slices can be seen in three dimensions {t, y, z} in Figure 4.6.

We now consider what the event horizon looks like in three spatial dimensions {x, y, z} on each

of the slices S0, S1, or S2 of Figures 4.5 and 4.6. The top panel of Figure 4.7 shows the intersection

of the event horizon with the slice S0. Compare with Figure 4.6, which shows the same slice in the

dimensions {t, y, z}. The slice S0 does not encounter the event horizon in the x− y plane; this plane

lies between the two black holes. On each black hole, the slice S0 encounters the two-dimensional

crossover set X along a one-dimensional curve, and this curve is bounded by two caustic points from

the set C.
In contrast, the intersection of the event horizon with the slice S1 is shown in the middle panel

of Figure 4.7. Compare with Figure 4.6, which shows the same slice in the dimensions {t, y, z}. This

is a toroidal cross section of the horizon. Slice S1 intersects the event horizon four times along the

y axis: the outer two points are in the null region of the horizon N and the inner two are in the

spacelike crossover set X . Note that the inner edge of the torus is made up entirely of crossover

points from the set X and does not include caustic points nor points in the set N . The existence

of an isolated set of crossovers that cannot be connected to caustics is a key signature of a toroidal

horizon.

The bottom panel of Figure 4.7 shows the intersection of the event horizon with the slice S2,

which is shown in the {t, y} directions in Figure 4.5. This slice also produces a torus. Slice S2

intersects the event horizon four times along the y axis, and each of these intersections is a crossover

point in X . As was the case for slice S1, the inner edge of the torus for slice S2 also consists entirely

of crossover points. The outer edge of the event horizon intersects the two-dimensional crossover set

X along two one-dimensional curves, and each of these curves is bounded by caustic points on each

end.

It is important to note another distinction between the behavior of slices S1 and S2 in Figures 4.5

and 4.7. When a slice intersects the event horizon at a point that is a member of C ∪ X , that point

is the point where two generators of the event horizon pass through each other as they merge onto

the event horizon. Consequently, that point is not a smooth part of the event horizon. If instead

the slice intersects the event horizon at a point not in C ∪ X , that point is a smooth part of the

event horizon. Therefore, S1 corresponds to a toroidal intermediate stage where the torus has a

non-smooth (i.e. sharp) inner edge and a smooth outer edge, and S2 corresponds to a stage where

both the outside and the inside of the torus are sharp-edged. There also exists the possibility of a

slice that looks like S1 in the positive y direction and looks like S2 in the negative y direction or vice

versa; on such a slice the outer edge of the torus will be sharp on one side and smooth on the other.
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Figure 4.6: A 3-dimensional representation of slices S0 and S1 from Figure 4.5. Here we see the
continuation of each slice in the z direction. The event horizon is toroidal on slice S1; the center of
the torus is P. The toroidal region is the part of S1 that has dipped through the crossover region
X .
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Figure 4.7: Color online. Cartoon illustrations of spatial slices S0, S1, and S2 of Figures 4.5 and 4.6.
Null generators currently on the horizon are in red; linear sets of crossovers merging onto the horizon
are indicated by black lines, and the location of caustic points are denoted by blue Xs.
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4.5 Topological Structure of Simulated Event Horizons

Having shown how an appropriate choice of slicing yield spatial slices in which the event horizon is

toroidal, we now hope to convince the reader that, up to the limit of our numerical resolution, we

see no signs of a toroidal event horizon in the slicing of our simulations. In greater generality, we

would like to answer the following question: What is the structure of caustic and crossover points

for the simulations we have performed, and how do those results relate to the structure discussed in

the previous section?

We can use Figure 4.6 to predict the structure of caustic and crossover points for an early slice

through the event horizon of a non-axisymmetric merger. Unlike the axisymmetric case, where all

geodesics merge onto the event horizon at a point, an early slice of the non-axisymmetric merger,

say slice S0 in Figure 4.6, should show each black hole with a linear cusp on its surface, through

which geodesics merge onto the horizon. The cusp should be composed of crossover points, except

that the boundaries of the cusp should be caustic points. At a later time, the two black holes will

merge, and whether or not a torus is formed depends on how the slice intersects the set of caustics

and crossovers, as seen in Figure 4.7.

To clarify let us first state a precise condition for the presence or absence of a toroidal event

horizon: A slice without a toroidal event horizon has the following property: For every crossover

point on the horizon, there exists a path from that crossover point to a caustic point, such that the

path passes through only crossover points (cf. Figure 4.7). For a slice with a toroidal event horizon,

there exist crossover points on the horizon that are disconnected from all caustics, in the sense that

no path can be drawn along crossovers that reaches a caustic. For example, in slices S1 and S2 of

Figure 4.7, the crossover points on the inner edge of the torus are disconnected from all caustics.

A slicing of spacetime where the event horizon is never toroidal will appear like slice S0 at early

times. Approaching merger, the two disjoint crossover sets will extend into “duck bill” shapes and

then meet at a point, forming an “X” shape at the exact point of merger. After merger, the crossover

set will then disconnect and will look like the outer edges of the horizon of slice S2 (with no torus

in the middle). At even later times, each disjoint crossover set on the outer edge of the horizon will

shrink to a single caustic point and then disappear.

A slicing of spacetime in which the event horizon is toroidal will also look like slice S0 at early

times. But at times approaching merger, the disjoint crossover sets will meet at two (or more) points

instead of one. If these meeting points are the caustics, then just after merger these caustics will

disappear, leaving a ring of crossovers, and the horizon will look like slice S1 of Figure 4.7. If instead

these meeting points are crossover points, then the crossover set will form a double “X” shape at

merger, and after merger, the crossovers in the middle will form a ring, and the horizon will look

like slice S2 of Figure 4.7. In this latter case, each disjoint crossover set on the outer edge of the
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Figure 4.8: Color online. A snapshot of the geodesics being followed by the event horizon finder at
time t/M = tmerger/M − 0.067, for the equal-mass inspiral. The small dots are geodesics currently
on the event horizon. The larger points, either crosses or circles, represent geodesics in the process
of merging onto the event horizon. Crosses represent points merging through caustic points, while
circles represent points merging through crossovers. In this slice, the cusp on the black hole is linear,
and composed of crossover points with caustics at the end points.

horizon will eventually shrink to a single caustic point and then disappear. Furthermore, the central

ring of crossovers will eventually shrink to a single point and disappear. If the disappearance of the

crossovers on the horizon edge occurs before the disappearance of the central ring of crossovers, then

for some time the horizon will look like slice S1 of Figure 4.7.

Comparing these predictions with the results of a simulation of finite numerical resolution requires

care, since single points (such as the point of merger or the single caustic points that bound the

crossover sets) cannot be found with infinite precision. We will discuss these limitations in the

concluding paragraphs of this section. Let us now analyze the two numerical simulations studied

here in detail.

4.5.1 Equal-mass non-spinning merger

In Figures 4.8–4.10,1 we examine our simulation of the coalescence of two equal-mass non-spinning

black holes. This simulation clearly displays the characteristics of a non-axisymmetric merger: the

black holes do indeed have linear cusps on their surfaces, and we find caustic points occuring at the

edges of the cusps.

Figure 4.8 shows generators before the point of merger. At this time, our slicing is consistent

1The axes in all snapshots are not the same as the axes denoted in Figures 4.3–4.7. They correspond to the
coordinate axes of the binary black hole merger simulations and illustrate the relative camera angle between snapshots.
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Figure 4.9: Color online. A snapshot of the geodesics being followed by the event horizon finder
at time t/M = tmerger/M , the exact point of merger (to within numerical error) in the equal-mass
inspiral simulation. Labels are the same as in Figure 4.8. Although finding the exact point of merger
is difficult given limited numerical time accuracy, we can extrapolate the “X” shape of the cusps to
see that the merger point is clearly a crossover point.

with slices parallel to S0 in Figure 4.5. These slices correspond to late enough times that they have

encountered the horizon’s linear cusps but early enough times that they have not yet encountered

points C in Figure 4.5. The event horizon slices show a “bridge” extending partway between the

black holes, with cusps along each side. Each cusp is a line of crossover points on one of the black

holes, anchored at each end by a caustic point.

At the precise point of merger (Figure 4.9) our slicing remains consistent with slices parallel to

S0 in Figure 4.5. In this figure, slices parallel to S0 encounter the crossover region at slightly earlier

times than they encounter the caustic lines. Therefore, at merger, the slice will intersect the horizon

at one point (a crossover point) in the y direction, and this point is where the linear cusps on the

individual black holes meet. Consequently, the slice at the point of merger is expected to have a

rough “X” shape of crossover points, meeting at the merger point, and anchored at the edges of the

black hole cusps by caustic points. In Figure 4.9, we see that this is indeed the case. Note that if our

slicing were similar to slice S1 in Figure 4.5 rather than slice S0, the linear cusps of the individual

black holes would meet at two points rather than one, and these two points would be the caustic

points at the boundary of the cusps. Similarly, if our slicing were similar to slice S2 in Figure 4.5,

the cusps on the individual black holes would again meet at two points, and these would be crossover

points. According to Figure 4.5, presumably there should exist slicings in which the two black holes

would first touch at multiple points and form horizons of arbitrary genus.

After merger, the “X” shape of the merger has disconnected, resulting in two line segments of
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Figure 4.10: Color online. A snapshot of the geodesics being followed by the event horizon finder
at time t/M = tmerger/M + 0.039, shortly after merger, for the equal-mass inspiral. Labels are the
same as in Figure 4.8. The “bridge” between the two black holes has two lines of merger points
running on either side of it, with the majority being crossover points anchored by caustics at either
end.

crossover points still bounded by caustics. This is clearly visible in Figure 4.10.

Note that in Figures 4.8–4.10, we sometimes find multiple caustic points at the edge of the

crossover set, rather than a single caustic point; this appears to be an effect of the finite tolerance of

the algorithm that we use to identify caustic points. Similarly, we sometimes find caustic points that

are slightly outside the crossover set, as in Figure 4.10. This too appears to be a finite-resolution

effect. For the generic run below, we will present horizon figures computed with different number of

geodesics in order to better understand this effect.

4.5.2 2:1 mass ratio with ‘randomly’ oriented spins

Here we examine in detail the topological structure of a generic binary black hole merger, Run 2

of Table 4.1. As noted earlier, this simulation corresponds to “case F” of Ref. [18]. We use the

term ‘generic’ to highlight the fact that this simulation lacks degeneracies in the parameter space of

possible binary black hole mergers. While the equal-mass non-spinning simulation is symmetric in

the masses and spin parameters of the black hole, and therefore has a few spatial symmetries, this

generic simulation possesses no such symmetries. Even though the Kerr parameter a/M of both

holes is the same, their spin angular momenta differ by a factor of 4 due to their mass difference.

The lack of symmetries for the generic binary black hole configuration make it more difficult to

detect or exclude the presence of a torus. To see this, consider one of the symmetries of the equal-

mass merger: a rotation by π about the direction of the orbital angular momentum. Because of this
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symmetry, the horizon finder needs to use only half the number of geodesics that would be required

for a generic run: for every geodesic that is integrated backwards in time, another geodesic (with a

position rotated by π along the direction of the orbital angular momentum) is effectively obtained

‘for free’. Conversely, for a run without symmetries, it is necessary to use far more geodesics in the

event horizon finder.

We will now examine the event horizon of the ‘generic’ merger at several spacetime locations that

are important to the topological structure of the event horizon. Again, contrast this to the equal-

mass merger, where there is only one spacetime region of interest to the topology of the horizon:

the region and location where the common event horizon is first formed, and the associated cusp on

the individual horizons.

For each of these spacetime locations we have investigated the consistency of the observed topo-

logical structure for several different numerical resolutions; specifically, we have run our event horizon

finder using different spatial and temporal resolutions for the 2 + 1 event horizon hypersurface, as

well as on two of the different resolutions used to evolve the 3 + 1 generic binary black hole merger

simulation. We find no qualitative differences between the resolutions. In particular, though there

appear to be features where a crossover point exists beyond the boundary or ‘anchor’ of a caustic,

these features are not convergent with resolution. That is, upon going from a lower to higher res-

olution, it is possible to find an ‘anchoring’ caustic point for the apparently anomalous crossover.

See Figure 4.12 for a clear demonstration of this phenomenon.

In the following sections, we examine the effect of two different spatial resolutions of our EH

finder using a fine time resolution with a ∆t of 0.005M∗: one resolution with 2(119 + 1)2 geodesics

(L = 119), and a higher spatial resolution using 2(191 + 1)2 geodesics (L = 191). Here M∗ is nearly

the total mass of the black holes on our evolution grid, M ; M∗ = M/1.06157 where M is the the

sum of the Christodoulou masses of the black holes; we use this notation here as all detailed event

horizon calculations are done before scaling with the Christodoulou masses. Though we do not show

them here, the results from the event horizon finding using a different time step, and from using a

different background simulation resolution can be found online at http://www.black-holes.org/

onToroidalHorizonsData.html. Also included at that location are detailed instructions on how to

visualize the data in the same way in which we present it in this paper [25].

4.5.2.1 Pre-merger: t = 124.200M∗

First, we examine the structure of the cusps on each black hole’s individual event horizons at a

time before merger2. Figure 4.11 displays a screenshot of this for two spatial resolutions used,

focusing on the cusp on the larger black hole. Note that the resolution displayed here is much higher

than in the equal-mass non-spinning case, and that we need to plot a much smaller region than

2Where merger is defined by the earliest time for which there is a common event horizon

http://www.black-holes.org/onToroidalHorizonsData.html
http://www.black-holes.org/onToroidalHorizonsData.html
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Figure 4.11: Color online. Generators of the event horizon at t = 124.200M∗ . Current generators
are shown as red points, and generators that are in the process of merging onto the event horizon are
shown either as blue crosses (caustics), or larger black dots (crossovers). The left panel is computed
using an apparent horizon finder resolution of of L = 119, and the right panel uses a resolution of
L = 191. The lower panels are successive enlargements of the upper panels, focusing on the cusp
near the larger black hole.
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in Figures 4.8–4.10 in order to visualize the structure of the cusp. Unfortunately, the topological

structure of the event horizon is not as clearly discernible as in the equal-mass non-spinning case.

A close examination of the data in 3D using the free visualization software ParaView [24] reveals

that there do not appear to be any ‘isolated sets’ of crossovers, i.e. crossovers not anchored by

caustics. It is very difficult to make this clear using static screenshots in a standard article, and so

we have made the visualization data available publicly for inspection at http://www.black-holes.

org/onToroidalHorizonsData.html, and encourage the curious reader to view the cusp in 3D [25].

Figure 4.12 displays the cusp on the smaller black hole at the same time. Here, one can clearly

see an example of the limits of our current method of discretization of the event horizon surface:

while we cannot see proper ‘anchoring’ caustics using a resolution of L = 119 (left), we find the

expected ‘anchoring’ caustics using higher resolution (L = 191, right). To the limit of the 2 + 1

resolution of our event horizon surface, we find only one connected set of crossovers on each black

hole near their respective cusps.

4.5.2.2 Merger: t = 124.355M∗

Our second time of interest occurs at the merger of the individual event horizons. Figure 4.13

illustrates the merger by showing screenshots of the coalescing bridge at three consecutive time

steps. At merger, the black points indicating crossovers appear to form a “fat X” with finite width

at the center, however this is likely a limitation of our finite temporal resolution; crossover points

can only be flagged as as such if they join the horizon sometime between two time steps. In the

limit of infinite spatial and temporal resolution, we would expect the same merger behavior as in

the equal-mass non-spinning merger; i.e., the crossovers will be topologically one dimensional and

form an “X” shape at merger (albeit a horizontally squished “X”). As in the equal-mass case, the

point of merger occurs at a crossover.

4.5.2.3 Post-merger: t = 124.400M∗

Finally, we focus at a time after merger: when the final geodesics join horizon (or, in the backwards-

in-time language of event horizon finding, when the first geodesics leave the horizon). Figure 4.14

shows the common bridge between horizons, along with two linear cusps anchored by caustics. The

asymmetry of the simulation is clear here: the cusp to the right of the bridge is closing faster than

the cusp on the left. The cusp on the left is closing in the direction along the bridge because caustics

on either side are approaching each other, and it is closing in the transverse direction because the

locus of crossovers is shrinking and moving out from the center of the bridge. As we follow this

picture further in time, the cusp on the right displays the same qualitative behavior.

http://www.black-holes.org/onToroidalHorizonsData.html
http://www.black-holes.org/onToroidalHorizonsData.html
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Figure 4.12: Color online. Same as the lower panels of Figure 4.11, except focusing on cusp on the
smaller black hole.
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t=124.355M*

t=124.350M*

t=124.355M*

t=124.360M*

Figure 4.13: Color online. Same color coding and resolutions as in Figure 4.11, except shown at
times very close to and surrounding the merger. Merger is localized to between times t = 124.355M∗

and t = 124.360M∗ (bottom row). The left side of each frame displays resolution L = 119, and the
right side of each frame shows resolution L = 191.
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Figure 4.14: Color online. Same as Figure 4.11 but at time t = 124.400M∗. The crossover set on
the left side of the bridge connecting the holes extends past the extents of the lower screenshot and
is bounded by caustics that are outside the view of the frame. Also, on the right edge of the bridge,
note the extended line of caustics and the presence of crossovers between the caustics. This appears
to be the effect of finite resolution in the event horizon finder, since the appearance is different in
the right and left panels. Such numerical phenomena suggest the need for advanced techniques such
as adaptive refinement of geodesic placement if we wish to completely resolve event horizon features
at a reasonable computational cost.
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4.5.3 Discussion on the numerical analysis of topological features

Figures 4.11–4.14 illustrate why it is difficult to formulate a precise numerical condition that tells

us the scale to which we can exclude the presence of a toroidal structure; in the generic case, it is

difficult at times to say that we have even identified all connected components of the set of crossovers

and caustics visually and qualitatively. In particular, though the distribution of geodesics is well

spaced on the spherical apparent horizon at late times (which serves as the initial data for our

event horizon finder), this does not ensure a uniform distribution of geodesics on the event horizon

surface at earlier times. Thus, as one can see in Figure 4.14, the crossover points are not uniformly

distributed along the line of the cusp. How do we know these crossover points are of the same

connected component? Remember, if the crossover points in this region are members of at least two

distinct connected components, and there are no “anchoring” caustic points in their neighborhood,

it would indicate the presence of a toroidal event horizon! Runs at different resolutions indicate that

our visual and qualitative identification of the crossover and caustic structure is consistent with a

single linear cusp, but the structure is still only resolved up to the largest separation of crossover

points in the cusp. We note that the implementation of adaptive geodesic placement in our event

horizon finder is likely necessary to resolve these sorts of issues. We therefore choose to postpone

the issue of a quantitative and precise bound on the scale to which we can exclude a toroidal event

horizon to future work.

It is clear, however, from these results that our simulation is consistent with the topological

structure discussed by Husa and Winicour in [11], and outlined in Section 4.4 above. Our slicing

corresponds to slices parallel to S0 in Figures 4.4–4.6 through the structure of the event horizon,

but this does not preclude the possibility of other spacelike slicings producing toroidal intermediate

stages during merger.

4.6 Conclusion

In this work, we have taken the first steps in examining the topological structure of event horizons

in generic binary black hole merger simulations. We focus on determining the topology of the two

dimensional event horizon surface as it appears on spacelike slices of numerical relativity simulations.

In particular, we concentrate on the presence or absence of a toroidal event horizon, as previous

work [3, 4, 11] has suggested that the existence of a toroidal horizon should appear generically in

non-axisymmetric mergers of black holes. In order to sharpen the discussion on toroidal horizons,

we examine the caustic and crossover structure of the event horizon from a theoretical (Sec 4.4) and

numerical (Sec 4.5) point of view. Following Husa and Winicour [11], we emphasize the distinction

between caustic points, where neighboring (infinitesimally separated) geodesics cross and join the

horizon, and crossover points, where geodesics separated by a finite angle cross and join the horizon.
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Note that the union of caustics and crossovers are the ‘crease set’ discussed in the work of Siino [3, 4].

We now would like to recount the main topics we have discussed:

1. First, in Sections 4.1–4.3 we have described improvements in our event horizon finding code

and summarized the topological results for event horizons found from SpEC binary black hole

mergers. We describe our algorithm (which scales like O(N2) where N is the number of

horizon generators) to detect crossover points, and we find that the computational cost is not

prohibitive for finding the event horizons of binary black hole mergers.

2. In Section 4.4, we reviewed the caustic and crossover structure of the event horizons of binary

black hole mergers for the axisymmetric and generic cases. Concentrating on spatial slicings

that result in toroidal event horizons, we diagram slices of the event horizon in multiple spatial

and temporal directions in order to elucidate the caustic and crossover structure present in the

cases of toroidal and non-toroidal event horizons.

3. Subsequently, in our introduction to Section 4.5, we have discussed a necessary condition

for a spatial slice of the event horizon surface to be toroidal: the existence of a maximally

path-connected set of crossover points that is disconnected from all caustic points.

4. Finally, we presented a detailed analysis of the event horizons found numerically from two

inspiraling binary black hole simulations. We find in all cases that the intersection of the

event horizon with any of our constant-time spatial hypersurfaces is topologically spherical

rather than toroidal. Despite the lack of toroids, the structure of caustics and crossovers in

our simulations are consistent with Husa & Winicour [11]. We paid particular attention to

analyzing the generic merger for consistency when varying several different numerical reso-

lutions. Though only two resolutions are compared in this paper, we have made public the

visualization data for all four resolutions of the generic merger that we examined [25]. We

encourage the reader to view at least one of our data sets in 3D, as this is perhaps the most

powerful way to gain insight into the behavior of the event horizons from our simulations.

For the simulations presented here, it is difficult to compute a precise upper limit on the size of any

tori that might exist in the exact solution but are too small for us to detect in the simulations. The

main reason for this difficulty is that our ability to resolve features of the event horizon depends not

only on the numerical resolution used to solve Einstein’s equations, but also on the resolution of the

algorithm used to find and classify event horizon generators. The latter resolution dominates in the

examples presented here. This is because in our current method, the geodesics are located on a fixed

computational mesh that is chosen at the beginning of the backwards-in-time geodesic integration

(i.e. at late times). We suggest that the best way to tackle this issue would be to devise an event

horizon finding algorithm with iterative or adaptive geodesic resolution and placement. Thus, one



55

could build into the adaptive method a target precision with which to resolve caustic and crossover

sets. Though challenging, such an approach would allow one to investigate the topological structure

of numerical event horizons to a much higher precision, while also providing a solid quantitative

measure of the precision to which features are resolved.

Before we conclude, we would like to discuss a few important open questions about how the

slicing condition used in our numerical simulations relates to the topological structure of the observed

spatial cross sections of the event horizon: 1) Can an existing simulation be re-sliced to produce

a toroidal cross section of the event horizon? 2) Alternatively, could the gauge conditions of our

generalized harmonic evolution code be modified in order to produce a binary black hole merger

in a spatial slicing with a toroidal event horizon? 3) Why have recent numerical simulations of

merging black holes not produced slicings with a toroidal horizon when it has been thought that an

intermediate toroidal phase should be relatively generic? The answer to the first question is clearly

‘yes’. Previous work in the literature [3, 4, 6, 11] shows that it is possible to have a spacelike slicing

of a dynamical event horizon with a toroidal topology, and that the question of whether the horizon

is toroidal depends on how the spacelike slice intersects the spacelike crossover set X , as we review

in Section 4.4.

Questions 2) & 3), however, are far more mysterious and are ripe for future investigation. Is the

lack of toroids in our simulations endemic to the types of foliations used in numerical relativity as a

whole, or just to the generalized harmonic [18, 26, 27] gauge conditions we currently use in the SpEC

code? It would be interesting to see if a toroidal event horizon phase could be produced from the

same initial data used in our current simulations by modifying gauge conditions in such a way as

to retard the lapse function near the merger point of the black holes. So far our attempts to do so

have been unsuccessful. Hence, it has been speculated that some property of those numerical gauge

choices that yield stable binary black hole evolutions also avoids slicings in which the event horizon

is toroidal.
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Part II

Work with [that] matter[s]
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Chapter 5

Behavior of Pseudospectral
Coefficients in the Presence of a
Non-smoothness

First publication. Jeffrey D. Kaplan (2013)

5.1 Motivation

In the SpEC code, the metric fields ψab near a neutron star or black-hole (or in general any geometry

with a spherical configuration), are represented in terms of basis functions which are the product

of scalar spherical harmonics (representing the angular dependence) with Chebyshev polynomials

(representing the radial dependence). As mentioned in [2], the fields which describe the matter in

general relativistic binaries are not smooth. In general, any strong shocks in the flows represent

points where the density is discontinuous. Even in the quasi-stationary inspiral of the binary where

there are no shocks, the stellar surface will be a point where dρ/dr, the derivative of the density in

the radial direction as measured from the center of the star, will not be continuous.1 Therefore the

spectral convergence of the radial dependence of the metric fields will be disturbed the most by a

lack of smoothness. In this chapter we examine the convergence behavior of the radial dependence of

the metric functions in the presence of a stellar surface by considering the toy problem of expanding

a non-smooth function (defined on the interval x ∈ [−1, 1]) in a pseudospectral expansion on a

Chebyshev basis.

The analysis of our toy problem focuses on showing why, for a function which is non-smooth (a

term short for ‘not infinitely differentiable’), a small increase in the number of terms of the spectral

expansion (one or two) can result in an increase of the error of the approximation. This behavior

1In the case of a realistic neutron star, the presence of a solid crust will make the surface even less smooth and the
density ρ itself will be discontinuous.
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was relatively foreign to those who worked exclusively on simulating binary black holes with SpEC.

The evolution system employed in SpEC was carefully formulated as to preserve the smoothness

of evolutions beginning from smooth initial data [7], which allows SpEC’s vacuum code takes full

advantage of the spectral convergence of infinitely differentiable functions. We hypothesize that the

unexpected behavior of the truncation error has to do with the change in the location of the stellar

surface (non-smoothness) relative to the location of the collocation points. While the location of

the surface does not change with resolution, the location of the collocation points do. We illustrate

that a shift along the x axis does not change the ordering of errors with resolution for infinitely

differentiable functions, but does change the ordering of errors in the presence of a non-smooth

point.

5.2 Preliminaries and theoretical background

5.2.1 Expected convergence of the metric at the stellar surface

Let us introduce a few formal definitions necessary to discuss the smoothness of the metric fields,

which are spectrally represented in the SpEC code, in the presence of matter. A function f(x) is

said to be Ck (short for “of differentiability class Ck”) at a point x if its derivatives up to f (k)(x)

exist at the point x (and where the notation f super k denotes the k’th derivative of f with respect

to x). We will generally use the Ck to refer to functions which are Ck for all points in its domain

but not Ck+1; that is, we will will say a function is Ck to indicate that it is k, but not k + 1 times

differentiable at at least one point in its domain. A function f(x) is said to be ‘smooth’ if it is

infinitely differentiable at all points in its domain; in this case we may say the function is C∞.

As discussed in Sec. 5.1, the stellar surface is only C0 in density in the radial direction. What

does this imply about the differentiability of the metric fields? Einstein’s equation relates the metric

fields to the matter fields by,

Rab = 8π(Tab −
1

2
ψabT ), (5.1)

where Rab is the Ricci tensor, and Tab is the stress energy tensor. For a perfect fluid,

Tab = ρbhuaub + Pψab, (5.2)

with ρb the baryon density, h the specific enthalpy, ua the fluid 4-velocity, and P the pressure. We

use Eqs. 5.1 & 5.2 to relate the differentiability of the density, to the differentiability of the metric

schematically in the following way:

R ∼ ∂ψ + ∂∂ψ ∼ T ∼ ρb. (5.3)
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That is, a combination of first and second derivatives of the metric, ψ, are directly proportional

to the density ρb. Thus, since the density at the star’s surface is C0, in general, we would not expect

the metric at this stellar surface to be any more differentiable than C1.

The lure of spectral methods is that they exhibit geometric, (aka. “exponential” or spectral)

convergence; the series coefficients, an, decrease faster than 1/n` for any finite power of ` for C∞

(infinitely differentiable) functions. Here, ` is known as the algebraic order of convergence. However,

if the function expanded is only Ck, how will the order of convergence of a Chebyshev series differ?

The answer may be deduced from the “Fourier Asymptotic Coefficient Expansion” (FACE) explained

in Sec. 2.9 of Boyd (2009)[1]. For a Ck function, the algebraic order of convergence ` of the spectral

coefficients will be:

` = k + 2. (5.4)

That is, the spectral coefficients, an for a Ck function will converge as O(1/nk+2). Consequently,

for the radial basis coefficients of the metric fields in SpEC, we should expect no better than O(1/n3)

convergence in the presence of a stellar surface.

However, if a function is C∞ over the domain of its expansion, Eq. 5.4 tells us that its coefficients

will converge geometrically: the order of magnitude of the coefficients will decrease exponentially

with increasing coefficient number, n.

5.2.2 The ‘pseudo’ in pseudospectral methods

SpEC uses a particular brand of spectral methods called the pseudospectral method.2 In the pseu-

dospectral method, the spectral basis set has an associated set of gridpoints known as “collocation”

points. The spectral coefficients of a function f(x) in the pseudospectral method are determined by

requiring that the truncated series equal f(x) at each collocation point. The collocation points for

the Chebyshev basis may be one of two choices: (i) the ‘Roots’ (aka. the “Gauss-Chebyshev” points)

or (ii) the ‘Extrema-plus-Endpoints’ (aka. the “Gauss-Lobatto” points). In SpEC, we commonly use

the ‘Extrema-plus-Endpoints’ gridpoints which, for an expansion of order N (of N + 1 terms), are

defined by,

xi = − cos
πi

N
i = 0, . . . , N. (5.5)

Note that this means that, for expansions of different order, a different set of collocation points will

be employed. We shall see in Sec. 5.4 that this feature is intimately involved with the convergence

phenomena we are studying.

2This discussion of pseudospectral methods relies heavily on Boyd (2001) [1]. It is a concise, entertaining and
accessible work which I highly recommend to anyone working with a pseudospectral code. In addition to being quite
inexpensive to purchase as a hard copy, it is also available as a PDF for no cost on the web.
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In the absence of any a-priori knowledge of the geometry of the problem being studied, the

Chebyshev basis is essentially the optimal basis set for describing non-periodic smooth functions

on ‘the interval x ∈ [−1, 1]’ (hereafter referred to as simply “the interval”). Any function which

is defined on a different, finite, domain may be mapped to the interval to facilitate the spectral

expansion.

5.2.3 Measures of the truncation error

Now we need some way of quantifying the error incurred when we discretize the function f(x) by

representing it as a truncated series of Chebyshev polynomials of N ’th order. If the N ’th partial

sum of the Chebyshev series approximating the function f(x) with coefficients an (n = 0, . . . , N) is

denoted fN (x; an), then we write the residual of the expansion as,

R(x; an) = f(x)− fN (x; an). (5.6)

In the following section, we examine two different measures of the truncation error calculated

from the residual. The first is the L2 norm of the residual calculated as,

L2||R(x; an)|| =
√∫ 1

−1

R(x; an)2dx. (5.7)

It in some sense represents the ‘root-mean-squared error’ incurred by truncation. The second is

maximum difference between the function and its N ’th order expansion:

L∞||R(x; an)|| = max |R(x; an)|. (5.8)

This is the L∞ norm of the residual. We examine both of these error measures as the formal

properties of the two norms may differ significantly. Recall, for example, the presence of “Gibb’s

phenomena” oscillations in the Fourier series of a step function; in this example, the L∞ norm

of the error diverges as N →∞, while the L2 norm converges to zero. Both of these two norms

are commonly used in SpEC evolutions to measure the magnitude of the violation in the Einstein

constraint equations.

5.3 Methods

We would like to test the hypothesis that the shifting location of the collocation points is responsible

for lack of strict convergence in the truncation error with resolution for non-smooth functions. To

accomplish this, we have constructed a toy code to expand 1D functions on the interval in terms of

a Chebyshev series via the pseudospectral method. It is designed to match the behavior of SpEC
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as closely as possible. We therefore have followed Kidder et al. (2000) [6] in our calculation of the

spectral coefficients, an (n = 0, . . . , N where N is the order of the expansion), at the ‘Extrema-plus-

Endpoints’ (“Gauss-Lobatto”) collocation points given in Eq. 5.5.

We examine the pseudospectral expansions of consecutive orders N = 9, 10, & 11 for three func-

tions 3: An arbitrary C∞ function,

fC∞(x) = tanh(x2)

[
sin

(
2πx

3

)]13/9

. (5.9)

The Heaviside lambda (‘triangle’) function, which is not differentiable at x = 0 and thus C0,

fC0(x) =

 1 + x : x ≤ 0,

1− x : x > 0,
(5.10)

and a function whose derivative is (essentially) the Heaviside lambda function and is consequently

C1,

fC1(x) =

 x2 : x ≤ 0,

−x2 : x > 0.
(5.11)

We then ‘sweep’ the functions along the interval by applying a horizontal shift s ∈ [−1, 1]. This

offsets the location of the non-smooth point (for fC1(x)&fC0(x)) from x = 0 to x = s. For each

expansion order N = 9, 10, & 11, we calculate the L2 and L∞ norms of the residual and plot them

vs. the offset s. Also on these plots, we use vertical lines to indicate the location of the collocation

points for each expansion order allowing one to observe the effects of the relative difference between

the location of the ‘kink’ (the non-smooth point) and the collocation points.

The author has made the toy code used in this study publicly available as a piece of experi-

mental python routines at https://github.com/jeffdk/PySpEx. It uses the numpy, scipy and

matplotlib [5] libraries. To run the code, execute ‘python ExplorePsuedospectralExpansions.py’.

Absolutely no warranty is provided.

5.4 Results

First in Fig. 5.1 we plot a representation of the smooth function, Eq. 5.9, in spectral and physical

space for an offset value, s = −0.26. One may observe from the right hand panel showing the

physical space of the function that the function and its truncated approximations are virtually

indistinguishable. Figure 5.2 shows the L2 (left panel) and L∞ (right panel) norms of the residual

for this smooth function. We may observe that no matter what the value of the horizontal shift,

3We choose these orders as they are in the range of commonly used orders for the radial Chebyshev basis functions
in SpEC.

https://github.com/jeffdk/PySpEx
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Figure 5.1: Spectral (left panel) and physical (right panel) representations of the truncated
expansions for the smooth function Eq. 5.9. Note that the values of the spectral coefficients agree
until about the n = 7 coefficient.
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Figure 5.2: Integral norms over x for truncated expansion residuals of the C∞ function Eq. 5.9 vs.
the horizontal shift parameter s. The left panel shows the L2 norm and right panel displays
the L∞ norm. The collocation points for the N = 9, 10, & 11 order expansions are show as black
dashed, red dash-dotted, and green dotted vertical lines respectively. There is some variation in the
error as a function of s, but overall the geometric convergence of the series may be observed; the
curves are, on average, offset by a constant multiplicative factor.
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Figure 5.3: The same as Fig.5.2 but for the residuals of the truncated expansions of the C0 function
Eq. 5.10. The ‘kink’ limits the series coefficients to O(1/n2) convergence and results in closely spaced
curves. Additionally there is significant variation in the values of the curves as a function of s; we
note that the features of this variation are closely related to the positions of the collocation points.

s, is, there is always strict convergence observed. That is, the errors are consistently lower as the

resolution is increased.

One may correspondingly see that in Figs. 5.4 & 5.3, that strict convergence is not observed for

the non-smooth functions fC1(x)&fC0(x). Particularly, we note that the ordering of (both L2 and

L∞) errors with resolution is lost for all three expansion orders for the C0 function. While we do

see significant variation in the errors due to the position of collocation points for these non-smooth

functions, the magnitude of the variation at a fixed resolution does not seem to be significantly

different from the variation in the smooth function. The major difference is that the average error

levels for the different resolutions is significantly closer due to the algebraic orders of convergence.

These results do show that increasing the order of the Chebyshev expansion for a non-smooth

function may increase rather than reduce the error, and that in some sense this variation is necessarily

because of the change of collocation points used in the expansion. Technically, our hypothesis that

the lack of strict convergence for the metric fields in the SpEC code in the presence of a stellar surface

can result from the change in collocation points between resolutions may be considered confirmed.

However, the heart of the issue is that the order of convergence of the Chebyshev series is severely

reduced (from geometric to algebraic) once a ‘kink’ of any order is introduced. Once this happens,

an increase in resolution by a few points (i.e. increasing the order of expansion by 1-3), will have a

negligible effect on the error for moderate to large resolutions.

5.5 Discussion and concluding remarks

The results illustrated in Sec. 5.4 have several implications for the evolution of stellar surfaces in

the SpEC code. First, it emphasizes that the spectral grid (on which the metric is evolved) must be
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Figure 5.4: The same as Fig. 5.2 but for the residuals of the truncated expansions of the C1 function
Eq. 5.11. Compared to the truncation errors of the expansions for the C0 function show in Fig. 5.3,
there is better convergence, and less variation in the errors. However we note there is still enough
variation to prevent a strict convergence of the L∞ error with resolution for many offsets s.

‘specially configured’ for subdomains containing the stellar surface. By this we mean that change in

number of gridpoints with resolution level must be by a multiplicative factor in these subdomains,

instead of an additive factor which is the norm in binary black hole vacuum simulations. Otherwise,

the truncation error will not converge at a fast enough rate to ensure robust convergence of the

simulation with resolution level. This has proven to be much more difficult to implement in practice

than it would first seem. First, it requires knowing which subdomain contains the stellar surface.

This may change with time if a star undergoes gravitational collapse, or if coordinate mappings used

to track a binary inspiral shrink the grid significantly in the star’s inertial frame. In theory, this could

be accomplished using the spectral adaptive mesh refinement routine (AMR) implemented in SpEC.

To ensure robust behavior of the AMR routine, we suggest a specialized AMR driver be designed

for adjusting the resolution for this purpose. Second, it is found in practice that having significantly

different grid resolutions in adjacent subdomains can result in large constraint violations at the

subdomain boundaries which can become the dominant source of error in a simulation. This effect

could be mitigated by gradually reducing the resolution in subdomains further and further from the

stellar surface, but such a strategy adds significant computational cost to the simulation. Finally,

since SpEC uses an explicit time-stepping scheme, increasing the resolution, (and hence decreasing the

grid spacing) significantly anywhere on the grid will decrease the time-stepping rate via the Courant

condition. Perhaps this limitation may be mitigated by employing the Kosloff/Tal-Ezer mapping

which relaxes the clustering of Chebyshev collocation points near the subdomain boundaries (see

Sec 16.9 of Boyd (2001)[1]).

Another technique which is employed when spectral methods are used to solve elliptic equations

for the initial data used in the simulations of compact objects is to fix the location of the stellar
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Figure 5.5: Same as Fig. 5.1, but for the C0 (top) and C1 functions (bottom). Note the spectral
coefficients start differing after the n = 3 coefficient (C0 top left) and the n = 5 coefficient (C1

bottom left) respectively.
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surface (the non-smooth point) to a subdomain boundary [3, 8]. This works effectively in the

iterative solutions where one of the steps in the solution procedure does this explicitly. However,

this is more challenging in a dynamical simulation where the location of the stellar surface may

constantly change. In theory, this could be done with the combination of coordinate mappings and

control systems which are employed in SpEC to control the excised region of the grid in binary black

hole mergers [4]. Though originally this seemed to be the ideal solution to the issue raised in this

work, the author is less bullish than he first was for this technique. One reason is illustrated by

the right hand panels of Figs. 5.4 & 5.3. One can see that the L∞ error of the expansion can

diverge when the non-smooth point is located between the boundary and first interior collocation

point. Although this particular case is likely related to the fact that the component pieces of the

non-smooth functions fC1(x) & fC0(x) are simple polynomials (and thus exactly represented by a

low order expansion), it illustrates the fact that small errors, or even noise in the values of a field at

any collocation point can easily contaminate the expansion and reduce accuracy across the domain.

The author recommends that better diagnostic tools designed to specifically examine numerical

effects that result from the coupling of multiple numerical methods. Chapter 6 of Boyd (2001) [1]

begins with the quote, “One must watch the convergence of a numerical code as carefully as a father

watching his four year old play near a busy road.” If the dual-grid method employed by the SpEC

hydrodynamics code is ever to be robust, I recommend the collaboration take the time to develop

the tools necessary to follow Boyd’s advice.
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Chapter 6

Simulations of neutron
star-neutron star inspirals with
SpEC

First publication. Jeffrey D. Kaplan (2013).

This work relied on the use of the SpEC-hydro code, and thus all the members of the

SXS collaboration. In particular Curran Muhlberger, Matt Duez, Francois Foucart, Mark

Scheel, Béla Szilágyi and Roland Haas made significant contributions to this work.

6.1 Introduction

6.1.1 NSNS coalescence and gravitational waves

The discovery of the first binary system consisting of two neutron stars represented and important

landmark in the study of compact objects, close binary systems and general relativity [26]. Often

called the Hulse-Taylor binary after its discoverers, the system has provided some of the most

compelling evidence to date for the existence of gravitational waves and accuracy of Einstein’s

general relativity; the orbital separation of the binary has decayed over time at the precise rate

predicted by general relativity [43, 44]. To date, at least ten [28] binary neutron star systems1 have

been discovered. Many of these systems have small enough orbital separations that neutron stars

are expected to coalesce on timescales less than 1Gyr due to orbital decay from the emission of

gravitational waves. The closest NSNS binary is PSR J0737-3039 which has an orbital period of less

than 3 hours and has an expected time until merger of 85 million years [8].

1Astronomers generally refer to any binary star system with one neutron star component as a neutron-star binary;
neutron-star neutron-star (NSNS) systems are referred to as ‘binary neutron stars’ or ‘double neutron star’ systems.
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Gravitational waves from the coalescence of compact binaries represent the most promising can-

didates for the first direct observation of gravitational waves from the Laser Gravitational-Wave

Observatory or LIGO [1, 3]. Close NSNS binary systems are the only compact object binaries

which have been identified observationally; while the existence of black hole-neutron star (BHNS)

and binary black hole (BBH) system is almost certain given our current picture of the evolution

of binary star systems, they have yet to be identified in the field. Consequently, the rate of NSNS

coalescences detectable by Advanced LIGO is the least uncertain (though BBH coalescences may

have higher detection rates due to their being stronger sources at frequencies to which LIGO is the

most sensitive) [2]. In addition, providing a strong field test of general relativity, a LIGO detection

of a clean waveform from the inspiral and merger of two neutron stars has the potential to constrain

the neutron star equation of state (EOS). As neutron stars have densities on the same order as that

of an atomic nucleus2, a more precise constraint on the neutron star EOS would yield a fascinating

probe of fundamental physics. An excellent review of our current constraints and understanding of

the neutron star EOS may be found in a recent review by Jim Lattimer [28].

A first order, quantitative, measurement of the neutron star equation of state may be determined

from the gravitational wave signal of a NSNS coalescence in two ways. First, in the final phase of the

inspiral, each neutron star will obtain a tidal deformation due to its companion which, to leading

order, will result in an induced quadrupole moment. The ratio of the applied tidal field to the

resulting quadrupole deformation of a NS is called the tidal deformability and is closely related to

a parameter known as the tidal Love number ; given a fixed NS mass, this parameter provides a

quantitative measurement of the NS EOS’s ‘stiffness’. Hinderer and Flanagan have shown that the

evolution of the orbital phase for the coalescing NSNS system is altered by an amount which is

directly dependent on the tidal deformability of the NSs [15, 23, 24]. Thus the direct measurement

of the progression of the orbital phase from the gravitational waveform of a NSNS coalescence can

directly measure the tidal Love number of the component NSs and therefore the ‘stiffness’ of the NS

EOS. Secondly, a NSNS merger which does not immediately collapse to a black hole will leave behind

a differentially rotating, highly excited hypermassive neutron star (HMNS) remnant (cf. Ch. 8). As

the HMNS remnant oscillates and settles down, it emits high frequency (2-4KHz) gravitational

waves which produce a pronounced peak in the GW frequency spectrum. A comprehensive study by

Bauswein et al. was able to find a relation between the value of this frequency peak and the radius

of a 1.6M� that is remarkably uniform over 38 different candidate neutron star EOSs [4]. Since the

radius of a NS for a fixed mass is directly dependent on the ‘stiffness’ of the NS EOS, this yields

a second way in which a quantitative measurement of the NS EOS may be accomplished via the

gravitational wave signal from the merger of two neutron stars.

Although the latter (HMNS oscillation modes) result is more easily calculated by simulations,

2This density is called nuclear saturation density and has a value of 2.7 × 1014 g cm−3.
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Tidal Deformations

Postmerger HMNS
Oscillation Modes

Figure 6.1: Plot courtesy of Sarah Gossan. Shows the amplitude spectral density of the design
sensitivity noise floor,

√
S(f), for the advanced LIGO, KAGRA, and advanced VIRGO gravitational

wave detectors as black lines. Plotted as colored lines are the scaled frequency spectra, |h̃(f)|√f ,
of the gravitational waves from the inspiral and merger of neutron stars from the simulations by
Sekiguchi et. al. [38], with the amplitude scaled for a distance to the source of 50 Mpc. The inspiral
portion of the spectra are calculated via hybridization with the simulation data. As the binary
inspirals and its frequency increases, it gets closer and closer to merger; the frequency at several
times before merger are noted on the plot.

the former (tidal Love numbers) is more likely to be distinguished by a LIGO observation. This

becomes clear when examining in Fig. 6.1 the gravitational wave frequency spectrum from a NSNS

coalescence compared to the advanced LIGO noise curve. It is clear that the integral of the difference

between the signal (colored lines) and the noise (black lines) is far greater for the inspiral portion

where tidal deformations may be measured via the phase evolution. However, the differences in the

phase evolution of the binary is more subtle than is able to be observed on this frequency plot. A

NSNS binary simulation must run for many orbits and achieve high precision in the binary’s orbital

phase in order to measure the tidal Love numbers. This can take up to 100ms of physical evolution

time, compared to ∼20ms for measuring the postmerger HMNS oscillation frequency. Bernuzzi et.

al. has done an impressive study which carefully examines the precision of the inspiral and merger

of an NSNS binary over 10 orbits [5]. In order to measure higher order effects beyond the tidal Love

numbers from an NSNS inspiral, similar studies will have to be done which consist of more orbits

and even greater phase accuracy. The initiation of such a study using the SpEC code is what we

describe in this chapter.
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6.1.2 Short gamma-ray bursts and other electromagnetic counterparts

Though gamma-ray bursts (GRBs) are the most powerful explosions observed in the universe, our

understanding of their origin has only recently started to take shape [32]. GRBS are roughly divided

via the duration of their light curves into two sub-populations with (very likely) different progenitors:

short GRBs (SGRBs) with T < 2s and long GRBs with T > 2s 3. In the past decade, observations

have revealed that the long GRBs are often coincident with type Ic supernovae and that they likely

originate from the core collapse of very massive stars [20, 25, 39]. The origin of the short subclass

of GRBs however remains uncertain. Perhaps the leading candidate for the central engine powering

SGRBs is the rapid accretion of matter onto a black hole resulting from a NSNS or BHNS merger [32].

The method of energy extraction for such a central engine is uncertain, but it is thought to be the

result of magnetohydrodynamic processes or perhaps νν̄ annihilation [34, 35].

6.1.3 SpEC

The Spectral Einstein Code, or SpEC, is a amalgamation of software libraries, support infrastructure

and scripts for simulating compact objects (neutron stars and black holes) in full general relativity

consisting of (at the time of writing) over 1.69 million lines of code. It has been in development since

2001, and currently has dozens of active collaborators across more than five universities. Over the

past several years, binary black hole (BBH) merger simulations using SpEC have reached maturity

and produced the highest precision evolutions of BBH inspiral and merger available to date [10, 31,

36, 40].

The high precision and impressive efficiency of the SpEC vacuum code 4 is due to its use of mul-

tidomain spectral methods. Spectral methods achieve exponential (geometric) convergence numerical

resolution for smooth problems (cf. Ch. 5) and are thus ideal for numerical evolutions of black hole

binaries with which have their singularities excised. Excision is a technique of numerically handling

the black hole’s singularity by excising the region interior to the black hole from horizon the com-

putational domain. This works because “nothing can escape from a black hole;” one may treat the

black hole’s horizon as a boundary in the computational grid with an outflow boundary condition

(i.e. nothing may flow into the numerical grid out of the black hole across its horizon).

The use of multidomain spectral methods with excision, however, comes at a large cost in the

complexity of the code. Fundamentally, this is due to the fact that the computational domain

must be broken up into subdomains which must roughly match the geometry of the fields being

numerically evolved. In order to accomplish this, a general framework of coordinate mappings and

3However, recent work by Bromberg, Nakar, Piran & Sari has noted that the use of this heuristic to determine the
progenitor of the GRB can easily result in an incorrect classification. [7]

4Vacuum code, or ‘vacuum evolution’ is commonly used as a synonym for solving Einstein’s equations where
the stress energy tensor vanishes; this is the case everywhere in the computational domain for evolutions of BBH
coalescence.
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control systems which dynamically adjust certain coordinate mappings needed to be employed [37].

In its simplest form, these mappings make the numerical grid corotate with the black holes as they

orbit and inspiral. This not only facilitates the spectral convergence of the evolutions, but it is

required in order to employ the excision technique since the black hole horizon is set as a boundary

of the numerical grid. However, as researchers have pushed BBH simulations to higher spins [29],

precessing orbits, and general mass ratios, the coordinate mappings and control systems required

significant development and tuning [22].

SpEC has also been used to evolve matter fields and simulate the coalescence of black-hole

neutron-star binaries [11–14, 16, 17, 19, 30]. The SpEC + hydrodynamics arm of the codebase

(which we will refer to as SpEC-hydro ), employs a ‘dual-grid’ method5; in the ‘dual-grid’ method,

the metric fields are solved using pseudospectral methods on a multidomain spectral grid, and the

matter fields are solved using high-resolution shock-capturing (HRSC) finite volume schemes on a

Cartesian finite-difference grid. With this technique, the metric and matter fields must be commu-

nicated to the other (finite difference and spectral) grids via interpolation. The HRSC schemes of

the matter grid have an algebraic order of convergence of, at maximum, fifth order (O(1/n5) for the

WENO5 scheme in smooth flows), and thus require a much larger number of gridpoints to obtain the

same truncation error as the geometrically converging metric fields on the spectral grid. The costly

interpolation step is mitigated by the fact that the dense finite-difference grid only need cover the

region of the domain where the neutron star and accretion flows exist, while the rest of the domain,

including the gravitational wave ‘wave-zone’ need only be covered by the efficient spectral grid.

6.2 Methods and initial data

6.2.1 Code details

As the state of the SpEC code has and continues to be in constant development, there are yet no

‘release’ versions of the code. We therefore in Tab. 6.2.1 list the code revision used for this simulation.

Unfortunately it is very difficult to describe the numerical resolution of SpEC-hydro simulations for

three reasons: (i) The spacing of the gridpoints on the spectral grid are non-uniform and change from

subdomain to subdomain. (ii) The coordinate mappings applied to the grid continually change the

physical distances between gridpoints; this applies even for the finite-difference grid used to evolve

the matter. (iii) The finite-difference grid extents are changed at discrete, dynamically determined

intervals using the ‘regridder’ method of the code. This is designed to keep the resolution of the

simulation high, but also not lose track of dynamically important matter that would otherwise flow

out of the grid. Consequently, for simulations employing the SpEC code, the grid resolution in often

5also known as the “Mariage des Maillages” or “grid wedding” technique used in the CoCoNuT code http://www.

mpa-garching.mpg.de/hydro/COCONUT/intro.php (see e.g. [9])

http://www.mpa-garching.mpg.de/hydro/COCONUT/intro.php
http://www.mpa-garching.mpg.de/hydro/COCONUT/intro.php
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Figure 6.2: Evolution grid for the simulation (low resolution, Lev0 shown). Spectral grid is in black,
and extends out ∼ 10 times the size shown here into the wave-zone. The finite difference (matter)
grid is shown in blue on the right. There is an identical finite difference grid for the neutron star on
the left, but we have hidden it so that one may see the spectral grid inside the neutron star.

reported terms of the total number of grid-points to the one third power, N1/3, as this measure

should be approximately inverse to the linear grid spacing. We have conducted the NSNS inspiral

simulation at three resolution ‘levels’ which we will refer to as Lev0, Lev1 and Lev2 corresponding

to low, medium and high resolutions respectively. The grid resolution measures, N1/3, for both the

finite-difference matter grid and the spectral metric grid are reported for each resolution level in

Tab. 6.2.1. For illustration, we show a slice in the XY of the spectral (black) and finite difference

grids (blue, shown only for one neutron star) in Fig. 6.2.

Git revision: 5f76c3b4b2192f1be8d398bee36ffcf2d2acae19

Date linked: Thu May 24 15:20:40 PDT 2012
Executable: EvolveGRHydro

Machine: zwicky
Grid resolutions: Lev0, Lev1, Lev2

Matter grid N1/3: 111, 135, 168
Spectral grid N1/3: 42, 49, 56

Table 6.1: Code and resolution parameters
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Description Quantity Value Value
[code units] [physical units]

Coordinate separation between centers of mass d 55.0 81.2 km
Baryon masses of each NS Mb 1.779 1.779 M�
Circumferential radii of each NS re 8.271 12.21 km
Dimensionless compaction C 0.16 0.16 –
Initial radial decay rate ȧ −1.222× 10−5

Initial orbital velocity ω 0.00412 133.1 Hz
Initial eccentricity e 7× 10−4 7× 10−4 –
Polytropic EOS scaling constant κ 123.6
Polytropic EOS exponent Γ 2 2 –

Table 6.2: Initial data parameters for the simulation

6.2.2 Initial data

The initial data used for the simulation was generated within SpEC using the infrastructure de-

veloped for BHNS initial data [18]. In particular, the NSNS initial data routines were written by

Curran Muhlberger at Cornell and were calibrated against the work of Gourgoulhon, Taniguchi,

et al. [21, 41, 42]. These initial configurations are solved by making the approximation that the

neutron stars are in quasiequilibrium; this approximation neglects the radiation-reaction from gravi-

tational waves and therefore assumes the neutron stars are stationary in the corotating frame. Such

configurations are quasicircular, that is the orbit has zero eccentricity in the quasiequilibrium ap-

proximation. Finally, the neutron stars are assumed to be irrotational ; formally this means that

the neutron star matter has zero vorticity and are non-rotating. This is a good approximation

astrophysically because the internal viscosity and tidal forces on the neutron stars is too small to

synchronize them to corotation as they inspiral [27].

The process of binary inspiral via gravitational radiation tends to circularize (remove eccentricity)

from the binary orbit. Thus any astrophysical NSNS binaries near coalescence are expected to be

completely circular. However, quasicircular orbits generated by initial data codes generally have

non-zero eccentricity. This is because they do not account for the small amount of radial decay

of the orbit via gravitational radiation. Thus to obtain initial data which is as eccentricity-free as

possible, a small radial velocity may be specified in the initial data code to adjust the orbit. These

adjustments are determined iteratively via evolution of the initial data, measurement of the orbital

dynamics, and adjustment of the initial data parameters. The initial data we use has gone through

three iterations of this procedure based on the radial velocity adjustment technique [18, 33]. In

Table 6.2, we list the parameters describing the initial data used for the evolution. The values

listed have been adjusted via the iterative eccentricity reduction procedure; without adjustment, the

orbital eccentricity of the configuration would have been e = 0.028.
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6.3 Results

Here we present the inspiral portion of the binary evolution. This consists of the portion of the

simulation from the initial data, t = 0.0, up until a couple orbits before the neutron stars merge.

Practically, this point is simply when, during the simulation, we must switch from using two dis-

connected patches for the finite-difference matter grids, to a single grid; this is determined simply

by the point at which each individual NS’s matter grid touch. In our simulations this occurs after

almost 21.5 orbits at a simulation time of t = 0.11 seconds. Note that this is an extremely long time

when compared to NSNS simulations in the literature; for example Bernuzzi et al. [5] tracks their

simulation for nine orbits which is approximately 35 ms. For comparison, the dynamical timescale

for an individual neutron star is less than 0.5 ms. In Fig. 6.3 we plot the XY position of each

component neutron star as calculated via their center of mass. The pristine double spiral directly

illustrates the low initial eccentricity of the initial data, as well as the accelerating orbital decay

as the neutron stars approach each other. At the termination of the simulation at t = 0.11 s, the

orbital frequency of the binary has increased to 410 Hz.

Next we report on the precision with which we can measure the evolution of the orbital phase.

Since we expect the observable corresponding to the orbital phase to be the gravitational waveform of

the inspiral, we must analyze the phase evolution of our gravitational wave signal. The measurement

of gravitational waves in a numerical simulation is a delicate issue; they are only well defined (gauge

invariant) in the limit as they approach null infinity in an asymptotically flat spacetime [45]. In

these simulations, we measure the Newman-Penrose scalar, Ψ4, at several radii and extrapolate to

infinity using the procedure in [6]. The Newman-Penrose scalar is related to the gravitational wave

signal measured by a detector by,

Ψ4 =∼ (ḧ+ − iḧ×), (6.1)

where h+ and h× are the gravitational wave plus and cross polarizations (which are functions of

the retarded time), and a dot represents time derivatives. We include the ∼ to indicate that the

expression may vary by an overall sign and algebraic constant depending on the conventions one

uses. Then, Ψ4 is expanded in terms of spin-weighted spherical harmonics of weight -2. Since it will

be the mode dominating the gravitational waveform by a sizable margin (for inspiral), it is common

to study the (l,m) = (2, 2) mode; from here on this is what we shall mean when we refer to the

waveform.

After the expansion and extrapolation procedure, the phase of the waveform, and subsequently,

the difference in phase between resolutions (as a function of retarded time) may be calculated. We

plot the difference in orbital phase as a function of the simulation retarded time in Fig. 6.4. There

one can see that the absolute magnitude of the phase error begins to rise exponentially as the
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Figure 6.3: Shows orbital tracks of the center of mass of each neutron star. Shown for the high-
resolution (Lev2) simulation. The axes scale factor of 1.48 corresponds to the conversion factor
between lengths in G = c = M� = 1 units and kilometers.
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binary approaches merger. By the end of inspiral, the difference in phase between the medium and

low resolutions (Lev1 - Lev0) has reached 2 radians while the difference between medium and high

resolutions approaches 1 radian. While these could be expressed as a percentage difference over the

total orbit, it would be misleading to do so because the phase error accumulates much more rapidly

towards the end of inspiral. This phase error may be somewhere between on the same order to one

magnitude worse than that reported by Bernuzzi et al. [5].

6.4 Discussion and conclusions

While the length of the NSNS inspiral we have simulated is longer than publications in the literature,

we cannot claim to have achieved a precision which is better than that of Bernuzzi et al. [5]. However,

is a the phase error on the order of 1 radian in the gravitational waveform enough to measure the

tidal deformability of a neutron star? First, we may obtain an approximation for the tidal Love

number of our neutron stars from Fig. 1 of Flanagan (2008) [15]. Here we see that a neutron star

with a radius of 12.2 km and n=1 polytropic index (same as a Γ = 2 polytropic exponent) has a

Love number, λ of ∼ 5 × 1036 g cm2 s2. In Fig. 4 of Hinderer et. al. (2010) [24], we see that at a

gravitational wave frequency of 800 Hz6 there should be a 2 radian change gravitational wave phase

due to tidal effects at a Love number of 5 × 1036 g cm2 s2 and NS gravitational mass of 1.7 M�.

Thus we find that the presented numerical simulation can not make an accurate measurement of

the change in orbital phase due to tidal effects; a difference on the order of 2 radians would not be

distinguishable (statistically significant) given a numerical error floor on the order of 1 radian.

Consequently, there is much room for improvement on this work. First, improving the precision

in numerical phase by 2 - 3 orders of magnitude would allow for the study of effects of higher

order than the tidal deformation, including non-linear corrections to the orbital phase from general

relativity. Ideally, an improvement of at least one order of magnitude could be made, which would

allow a numerical calculation of the phase correction due to tidal deformations. Efforts to improve

the phase precision are currently underway by using newer SpEC technology, including the use of

adaptive mesh refinement for the spectral grid.

Additionally, work is ongoing on ensuring the robustness on the merger and post-merger phases

of evolution. Many infrastructure and grid changes must occur during this process and it is highly

non-trivial to automate and ensure the robustness of the SpEC-hydro code during this process.

While the merger, black hole formation, and ring down have been accomplished for this particular

simulation, the infrastructure has yet to be applied to other NSNS inspiral simulations. The issue

of black hole formation in SpEC-hydro was not attempted before the study of NSNS mergers was

initiated; black holes which existed in simulation initial data were simulated in BHNS studies with

6This corresponds to our binary at the end of our simulation since at that time, its orbital frequency is 410 Hz,
and there are two full gravitational wave cycles per orbit of a binary.
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of the dominant (l,m) = (2, 2) mode as a function of simulation time in seconds. The initial spike
corresponds to junk radiation created from the relaxation of the initial data on the grid. The persis-
tent low amplitude high-frequency oscillations of the curves are due to finite-difference derivatives
of the numerical data used in the extrapolation of the waveform and subsequent calculation of the
orbital phase.
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SpEC-hydro, but new black holes from gravitational collapse of matter had not yet been studied.

In the next chapter, we present work on ensuring the robust simulation of black hole formation in

SpEC-hydro, since the ability to capture gravitational collapse to a black hole is crucial in the merger

phase of a NSNS coalescence.
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Chapter 7

Black hole formation from isolated
neutron stars in SpEC

First publication. Jeffrey D. Kaplan (2013).

This work relied on the use of the SpEC-hydro code, and thus all the members of the

SXS collaboration. In particular Curran Muhlberger, Matt Duez, Francois Foucart, Mark

Scheel, Béla Szilágyi and Roland Haas made significant contributions to this work.

7.1 Literature review and introduction

The collapse of rotating neutron stars to black holes is a prime example of a astrophysical problem

which requires the full machinery of a robust numerical relativity code in order to capture. The first

3D simulations of collapsing neutron stars were done by Shibata, Baumgarte for uniformly rotating

stars [27]. Shibata & Shapiro also performed axisymmetric collapse simulations of uniformly rotating

supramassive neutron stars at the mass-shedding limit, finding that, for a wide range of polytropic

equations of state, almost no matter was left outside the resulting Kerr black hole (< 10−3 of the

initial mass remained)[26, 28].

Between 2003 and 2006, Duez et al. expanded on the work of Shibata et al. using an independent

code [11–13] for evolutions in axisymmetry and full 3+1 general relativity. Here Duez significantly

expanded the physical parameter space by exploring differentially rotating HMNS and their collapse,

including a 3D ‘supra-Kerr’ model; a model with angular momentum J , divided by gravitational

mass, M , squared greater than 1: J/M2 > 1. More recently, the collapse of differentially rotating

neutron stars has been revisited since first studied by Duez et al. The simulation of gravitational

collapse for differentially rotating HMNS models and the artificially induced collapse of a ‘supra-

Kerr’ model was repeated by by Giacomazzo et al. [16], and Saijo & Hawke examined the general
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relativistic dynamics after a black hole was formed[25].

Baiotti et al. [2–4] subsequently developed a 3+1 code, concentrating on studying the gravita-

tional physics of rotating neutron star collapse. They investigated measurements of the final Kerr

black hole mass and spin via both the apparent and event horizons along with the dynamical horizon

framework[2]. They also investigated the gravitational wave signal emitted from collapse via RWZ

wave extraction at finite radius[3, 4]. Additionally, they investigated the growth of non-axisymmetric,

high β = T/|W | instabilities (i.e. the dynamical bar-mode instability), and its gravitational wave

signal [5].

Also interesting in the context of rotating neutron stars is the ‘low T/|W |’ instability, first

discovered in Newtonian gravity by Centrella et al. [7] and further investigated by Saijo, Baumgarte

& Shapiro [24]. Ott et al. found this instability to be relevant in Newtonian simulations of supernova

stellar core collapse starting from astrophysically realistic initial data. Non-axisymmetric instabilities

are of great interest in the literature, and have been studied by numerous authors in fully general

relativistic simulations [9, 20, 33].

The main goal of this work is to develop and document the computational methods used to simu-

late the formation of a black hole from conventional matter in the generalized harmonic framework.

To our knowledge, dynamical evolution from before, through, and after black hole formation from

perfect fluid matter has not been well documented in the past literature of generalized harmonic

evolutions. We find that the results of Sorkin’s simulations in axisymmetry, that a damped-wave

gauge is particularly robust for black hole formation [30], are also true in 3+1 generalized harmonic

evolutions. 1

7.2 Methods and numerical setup

In this section we detail some of the numerical methods and evolution equations used for the collapse

simulations. Here we jump straight into the methods; an introduction to these methods and the

SpEC-hydro code can be found in Secs. 6.1.3 and 6.2.1.

7.2.1 Hydrodynamics grid

Our hydrodynamics grid consists of multiple overlapping unigrid blocks. In these simulation, the

total extents of the grid cover 1.50 times the surface of the star in each of the x, y, and z directions.

Our resolution is specified in terms of spacing of the gridpoints in meters. For the TOV simulations

starting from spherically symmetric initial data, we employ octant symmetry (reflection across the

x, y, and z axes to reduce the computational cost, and use low, medium and high resolutions of

1Also see Choptuik and Pretorius [8] who use a damped-harmonic gauge for ultrarelativistic collisions of complex
scalar fields.
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[200, 150, 100] meters. With rotating stars starting from axisymmetric initial data, we use reflection

symmetry about the z axis, and use resolutions of [300, 250, 200] meters. The entire grid is divided

into blocks of no larger than approximately 303 points per block for parallelization. The blocks

overlap for 3 points each to prevent the necessity of using one sided derivative stencils at internal

block boundaries (i.e. our number of ‘ghost zones’ is 3).

7.2.2 Spectral grid and methods

We evolve the metric variables using pseudospectral methods on what we call the spectral grid.

The spectral grid extends out to an (arbitrary but large) radius of 38 times the equatorial stellar

radius for and is divided into eighteen spectral subdomains. On each subdomain the metric variables

(each component of each tensor) are expanded in terms of a set of three-dimensional scalar basis

functions. The gridpoints of each subdomain are then chosen such that they lie on the zeros of

the basis functions, (or an equivalent set; cf. Ch. 5). For all subdomains except for the central

subdomain, we use a basis function consisting of the product of Chebyshev polynomials in the radial

direction, and scalar spherical harmonics for the angular directions. The central subdomain uses a

filled ball which avoids placing a point at the center point (which is singular in the angular directions)

by using a spectral expansion involving one-sided Jacobi polynomials [21]. For all subdomains we use

the same order of spherical harmonic L for the expansion, as this places the gridpoints at subdomain

boundaries in precisely the same location and therefore eliminates the need for interpolation when

communicating between subdomains. The angular grid has [L + 1, 2(L + 1)] points in the [θ,φ]

directions and is uniformly spaced in [cos θ,φ].

For the TOV simulations, we do not increase the angular resolution when increasing the resolution

level of the simulation, and keep it fixed at L = 6 (yielding a [θ,φ] resolution in terms of gridpoints

of [7,14]). This is because the simulation is physically spherically symmetric, and the addition of

extra modes tends to add extra numerical noise with no resolution benefit. In the rotating stellar

evolutions, we use angular resolutions with Ls of [10, 12, 14] for low, medium and high resolutions

respectively.

7.2.3 Time evolution and grid-to-grid communication

The metric and hydro variables time-stepped separately on their respective grids using a Runge-

Kutta method of order 3. Ideally, one would communicate the updated hydro variables to the metric

grid and vice-versa after each Runge-Kutta substep. However, we find that communication between

grids can result in grid-to-grid communication dominating the computational time of our simulations.

In order to reduce the amount of communication between grids required, we use previous time-step

data to do a linear, forwards-in-time extrapolation of the metric data on the hydrodynamics grid
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to calculate the values of the metric at intermediate Runge-Kutta steps on the hydrodynamics grid

(again, the same goes for determining values of the hydrodynamic variables on the spectral grid at

intermediate Runge-Kutta steps). The time stepper is an adaptive, dense stepper, which allows our

simulations to step as closely as possible to the Courant-limit (see, e.g. [22]).

7.2.4 Equation of state

We choose the analytic ‘gamma-law’ EOS for this study with a choice of Γ = 2. and polytropic

constant, κ = 100. The motivation for this choice was to use the same EOS and initial data as the

studies by Baiotti and Giacomazzo [3, 16]. The details of evolution for the EOS can be found in Sec

2.B of Duez et al. [10].

7.2.5 Hydrodynamic evolution equations

We use code described in Duez et. al. [10], for which the hydro evolution equations can be found in

Shibata. et al. [29] (hereafter STU). Hydro conservative variables (evolved variables, from [10] Sec.

2.B):

ρ∗ = α
√
gu0ρb, (7.1)

τ = α2√gT 00 − ρ∗, (7.2)

Sk = α
√
gT 0

k , (7.3)

where α is the lapse, g is the determinant of the spatial metric, ρb is the baryon (rest mass) density,

u0 is the time component of the fluid 4-velocity, and T is the stress energy tensor. Note that in

Duez et. al. [10] and other works the symbol D is used for the conservative density, here referred to

as ρ∗. The evolution equations are Eqs. 2.8-2.10 of STU [29]:

∂tρ∗ + ∂i
(
ρ∗v

i
)

= 0,

∂t (ρ∗e
∗) + ∂i

[
ρ∗e
∗vi + P

√
g
(
vi + βi

)]
=

α
√
gPK +

ρ∗
u0h

huihujK
ij − ρ∗huigij∇jα

∂t (ρ∗huj) + ∂i
(
ρ∗v

ihuj + Pα
√
gδij
)

=

−ρ∗
[
wh∂jα− hui∂jβi +

1

2u0h
hukhul∂jg

kl

]
+P∂j (α

√
g) .
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Here P is pressure, h is the specific enthalpy,

h = 1 + ε+ P/ρb, (7.4)

with ε the specific internal energy, vi is the 3-velocity of the fluid, e∗ is a relativistic specific mass-

energy density,

e∗ = hw − P

ρbw
, (7.5)

with w the Lorentz factor of the fluid,

w = αu0, (7.6)

βi is the shift vector, Kij the extrinsic curvature with trace K, and ∇j is the covariant derivative

with respect to the three metric, gij .

Our implementation of these equations is slightly different than in STU as our energy variable

τ (Eq. 7.2) differs from STU by a subtraction of the conserved density, ρ∗. Thus our evolution

equation for the energy differs from STU by a subtraction of the equation of mass conservation. Our

evolution equations as they are written in the code are:

∂tρ∗ = −∂jF jρ∗ , (7.7)

∂tτ =− ∂jF jτ + αP
√
gK

+ gijSi∂jα+
α

ρ∗wh
SiSjg

ingjlKnl,
(7.8)

∂tSi = −∂jF jSi
+ P
√
g

(
∂iα+ α

∂i
√
g

√
g

)
−ρ∗wh∂iα+ Sj∂iβ

j − 1

2

α

ρ∗wh
SjSk∂ig

jk.

(7.9)

Here we have explicitly separated the flux terms, ∂jF
j , from the source terms, as the divergence of

the sources are solved for using a HLL Riemann solver [1]. The flux terms are as follows:

F jρ∗ = w
√
gρbv

j , (7.10)

F jτ = w
√
gρbv

j (wh− 1) +
√
gPβj , (7.11)
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F jSi
= w
√
gρbhuiv

j + δjiPα. (7.12)

7.2.6 Generalized harmonic equations

We evolve Einstein’s equations with the generalized harmonic evolution system as presented in

Lindblom et al. 2006 [18]. Our four-metric is, ψab and we denote it’s derivatives as Φiab = ∂iψab

and Πab = −tc∂cψab. The first-order representation which includes terms for constraint damping

are Eqs. (35-37) of Ref [18] (which uses {N,N i} instead of {α, βi} for the lapse and shift functions):

∂tψab − (1 + γ1)βk∂kψab = −αΠab − γ1β
iΦiab, (7.13)

∂tΠab−βk∂kΠab + αgik∂kΦiab − γ1γ2β
k∂kψab

=2αψcd
(
gijΦicaΦjdb −ΠcaΠdb − ψefΓaceΓbdf

)
− 2α∇(aHb) −

1

2
αtctdΠcdΠab − αtcΠcig

ijΦiab

+ αγ0

[
2δc(atb) − ψabtc

]
(Hc + Γc)− γ1γ2β

iΦiab

− 2α

(
Tab −

1

2
ψabT

cdψcd

)
,

(7.14)

∂tΦiab−βk∂kΦiab + α∂iΠab − αγ2∂iψab

=
1

2
αtctdΦicdΠab + αgjktcΦijcΦkab − αγ2Φiab,

(7.15)

where γ0, γ1, and γ2 are constraint damping parameters. The parameter γ0 is the same as used by

Pretorius [23] and damps the two-index constraint (i.e., violations of Eq. 7.14). The parameter γ2

serves the same purpose for the three-index constraint (i.e., it damps violations of Eq. 7.15). Finally,

the parameter γ1 controls the characteristic speed of certain constraint violating modes; in certain

situations it is beneficial to set it to values deviating slightly from unity, causing the constraint

violating modes to propagate off the grid. Here ta denotes the unit timelike normal vector to the

spatial slice (often denoted na in ADM literature). Note our Eq. 7.14 also includes the matter source

terms which are not included in Eq. (36) of [18].

7.2.7 Excision of nascent black hole

Once an apparent horizon pops into existence on the spatial slice, we excise the region inside the

horizon before the code crashes due to the impending formation of a singularity. We use the same
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set of scripts and methods used in SpEC binary black hole evolutions in order to perform the excision

and transition to a black hole evolution. This method relies on locating the apparent horizon at

several timesteps. The kinematics of the apparent horizon over these several steps provides enough

information to initialize the coordinate mappings necessary to lock the grid boundary onto the

rapidly expanding horizon. For our evolutions, we choose 8 steps with a ∆t = 0.25 (except for the

H3 model, where we must use ∆t = 0.10 to avoid the code crashing before enough horizon finds

occur). Since we do not know precisely when an apparent horizon can first be found, we choose to

start looking for an apparent horizon when ρb,max/ρb,max|t=0 = 20. In practice, we could search for

an apparent horizon at all points during the simulation, however the apparent horizon finder can

be computationally expensive (especially when it does not converge, which will always occur when

there is no horizon), and thus we employ the stated density threshold.

7.3 Gauge equations, conditions, and methods

While the choice of gauge conditions and methods may be considered a part of the numerical

methods, we have chosen to dedicate a separate section to it, as it is a crucial part of our study.

The gauge freedom associated with general relativity corresponds to the invariance of physics under

coordinate transformations. Since the meaning of coordinates in general relativity is determined by

the metric, the meaning of the coordinates labeling the gridpoints in a numerical relativity simulation

may be constantly changing as the simulation evolves. Consequently, for a numerical relativity

simulation, the choice of coordinates and some choice about their evolution in time corresponds to

a choice of gauge. Finding a suitable ‘gauge condition’ has proven to be one of the most challenging

aspects for numerical relativists to work out in their simulations of black holes.

7.3.1 Harmonic and generalized harmonic gauge

The harmonic gauge is so named because it imposes the condition that each coordinate xa, satisfies

the covariant scalar wave equation:

∇c∇cxa = 0. (7.16)

This coordinate condition has been widely used in the literature for analytical studies of relativity2.

The generalized harmonic coordinate condition was first studied by Garfinkle in 2002 [15]. In

generalized harmonic coordinates, an arbitrary gauge source function Ha is specified:

∇c∇cxa = Ha. (7.17)

2It is employed, for example, in Ch.2 of this thesis.
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Then, a specification for Ha in terms of coordinate and metric variables corresponds to a choice

of gauge. This is the basis for the ‘generalized harmonic evolution system’ employed in SpEC[18].

Additionally, Lindblom et al. [17, 19] have developed numerical gauge ‘drivers’ which allow one to

specify the gauge source function in a manner which corresponds to gauge choices commonly used

in other formulations of general relativity (see Ch.4 of the text by Baumgarte & Shapiro[6] for a

discussion of common gauge choices).

7.3.2 Damped harmonic gauge for numerical evolutions

We find that a ‘damped’ harmonic gauge condition is necessary for robust collapse. We use the same

prescription as in Szilágyi, Lindblom & Scheel [31] (hereafter as SLS) for the damped harmonic gauge.

The spatial part of a generalized harmonic gauge can be written as:

∇c∇cxi = Hi, (7.18)

where Hi is the spatial part of Ha. The coordinate dynamics are ‘damped’ by choosing Hi such

that it represents a damping term for the above equation. In SLS, they choose:

Hi = µst
i = −µSβi/α, (7.19)

where 1/µS is the time scale of the damping. Equation 7.19 governs the evolution of the spatial

coordinates and we refer to it as the damped harmonic shift condition.

For the time component of the generalized harmonic gauge, SLS note the gauge constraint yields

the equation (that is, expanding the LHS of Eq. 7.17 in terms of 3+1 metric variables one obtains):

taHa = ta∂a log

(√
g

α

)
− α−1∂kβ

k. (7.20)

As with the spatial part of the generalized harmonic gauge source function, the time component of

the gauge source function may be chosen as a damping term, this time for
√
g/α:

taHa = −µL log

(√
g

α

)
, (7.21)

where again, µL is a damping factor. As Eq. 7.21 determines the temporal evolution of the coordi-

nates; we refer to it as the damped harmonic slicing condition. SLS find that for highly dynamical

spacetimes, that choosing:

µS = µL = µ0

[
log

(√
g

α

)]2

, (7.22)

is effective for their binary black hole evolutions. Here µ0 is a smooth order-unity function of time
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which may be specified as a function of space and/or time to adjust the strength of the damping.

Equations 7.19 and 7.21 correspond to a complete choice of coordinates by fixing the spatial and

time components of the gauge source function, Ha, respectively. We will refer to a gauge source

function chosen in this manner as Ha
D where the ‘D’ denotes it is a damped and therefore a dynamical

gauge source function.

7.3.3 Imposing damped harmonic gauge in SpEC simulations

For an arbitrary choice of initial data, the gauge source function, Ha, is fully determined by the

coordinates of the initial data and thus has some initial value, which we will refer to as Ha
I . When

the initial data is interpolated to the evolution grid and the evolution is started, the gauge source

function Ha must not change discontinuously from its initial value. Therefore, our specification of

the gauge (which corresponds to prescribing Ha analytically) must take into account the initial value

of the gauge source function Ha
I . This is done in SpEC simulations by specifying the gauge in the

following way:

Ha(t) = Ha
I e
−(t/τoff )

4

+Ha
D

(
1− e−(t/τon)4

)
, (7.23)

where Ha
D is the dynamical damped harmonic gauge condition defined by Eqs. 7.19-7.22 and τoff

& τon are damping timescales chosen for the physical problem at hand. Note that τoff controls the

rate at which the initial gauge is ‘rolled off’ to zero, and τon controls the rate at which the damped

gauge condition is ‘rolled on’.

We may decompose Eq. 7.23 into its time and space components:

Hi(t) = Hi
Ie
−(t/τs,off )

4

+Hi
D

(
1− e−(t/τs,on)4

)
, (7.24)

taHa(t) = taHIa e
−(t/τt,off )

4

+ taHDa

(
1− e−(t/τt,on)4

)
. (7.25)

This allows us to independently specify the ‘roll-on’ and ‘roll-off’ timescales for the damped harmonic

shift, and damped harmonic slicing conditions, Eqs. 7.19 and 7.21 respectively.

We have investigated a series of five different gauge conditions in order to investigate the coordi-

nate dynamics during gravitational collapse and attempt to determine what condition will be lead

to the most robust simulation of black hole formation. The conditions are denoted: ‘froze’ for a

frozen gauge where Ha(t) = Ha
I , ‘harm’ for a pure harmonic gauge (i.e Ha = 0), ‘shift’ for a gauge

where only the damped harmonic shift condition Eq. 7.19 is rolled on, ‘slice’ for a gauge where

only the damped harmonic slicing condition Eq. 7.21 is rolled on, and ‘full’ for a fully harmonic

gauge in which both the damped harmonic shift and slicing conditions are used. These gauges are
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Gauge Roll-off timescale Roll-on timescale
τs,off τt,off τs,on τt,on

froze ∞ ∞ ∞ ∞
harm 10 10 ∞ ∞
shift 10 10 25 ∞
slice 10 10 ∞ 25
full 10 10 25 25

Table 7.1: List of gauge conditions examined. Timescales are are from Eqs. 7.24 & 7.25 and are
specified in code units. A value of ∞ corresponds to setting the exponential term corresponding
to the timescale equal to unity. The subscript s stands for the spatial (shift) condition, and the
subscript t stands for the temporal (slicing) condition.

listed in Tab. 7.1 In all cases but the frozen gauge, the initial gauge is rolled off by choosing a value

for τs,off = τt,off = 10.0 (in coordinate time). This results in Ha
I being rolled off to zero within

roundoff precision after t = 30.0.3 For the shift only, slicing only, and fully damped harmonic gauge

conditions, we use a τon of 25.0 code units which is about half of the time to black hole formation,

so that our damped harmonic gauge condition has fully ‘kicked in’ by the time of collapse and black

hole formation.

7.4 Initial Models and physical setup

7.4.1 Methods

Initial data for our simulations are spherically symmetric TOV, and axisymmetric CST equilibrium

models constructed as in Sec. 8.2.3 & 8.2.4. In general, if an unstable equilibrium model is evolved,

the numerical truncation error will manifest as a small perturbation that will result an evolution

away from the unstable equilibria. This evolution will either take the stellar model to another,

stable equilibria, or proceed towards gravitational collapse to a black hole. For our study, we wish

to induce a resolved evolution towards gravitational collapse to a black hole; that is, we do not

wish our evolution to be dependent on the nature of the truncation error. The stellar models we

construct, which are close to the parameter space of unstable equilibria, are ‘tweaked’ by depleting

their pressure by a constant factor, fd. However, an arbitrary change to the pressure, without

modifying any of the other fluid or metric variables, may result in a configuration which violates

the Einstein constraint equations. In particular, it may violate the gauge constraint equation Ha =

−Γa, which has the effect of polluting the gauge prescription specified in Sec. 7.3.3.

Hence, we have investigated resolving the constraint equations after a depletion has been spec-

ified. Our first unsuccessful attempt at this was employing the SpEC elliptic solver to resolve the

metric variables given pressure depleted configuration. While this technique worked for TOV initial

3In our simulations, the initial gauge imprint must be fully rolled off by the time we excise and start the ringdown
portion of the run so that we may appropriately apply horizon tracking coordinate mappings at the start of ringdown.
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Model MADM Mb ρb,max Riso EOS Rot Ã rp/e
D0 1.636 1.770 3.325×10−3 7.54 Γ = 2 None 1.0
D2 1.728 1.913 3.189×10−3 8.21 Γ = 2 0.0 0.85
D4 1.861 2.059 3.116×10−3 9.65 Γ = 2 0.0 0.65
H3 2.427 2.693 2.420×10−3 8.08 Γ = 2 0.714 0.43

Table 7.2: Models evolved in this study. All units here are code units. MADM is the ADM (gravita-
tional mass), Mb is the baryonic mass, ρb,max is the maximum baryon density of the configuration,

Riso is the coordinate radius in isotropic coordinates, Rot Ã is differential rotation parameter, and
rp/e is the axis ratio of the model.

data, we found that the convergence of the elliptic solver was extremely sensitive to the position of

the stellar surface relative to the subdomain boundary chosen to be collocated with the surface. For

the non-spherical, rotating CST models, we attempted to fit the surface to the subdomain boundary

via a standard SpEC coordinate mapping. However we were never able to obtain any sort of con-

vergence for residuals in the SpEC elliptic solver for these rotating configurations. In particular, we

noted that the CST initial data itself without any modification did not satisfy the constraint equa-

tions to better than 1 part in 104. The constraint equations were computed on both initial data, and

evolution grids in SpEC , as well as in the zelmani code. Given this error floor, which we were not

able to eliminate, we were never able to have a clean system to further test the SpEC elliptic solver.

Subsequently, we developed a novel method of ‘tweaking’ the hydrodynamic variables which does

not modify the matter sources in the Einstein constraint equations and imitated a collapse inducing

pressure depletion. We detail this method in an Appendix, Sec. 7.C.

7.4.2 Models

We evolve 3 models chosen from Baiotti et al. [3]: a TOV model, and two uniformly rotating CST

models. In addition, we have obtained preliminary results with the hypermassive, differentially

rotating model which we denote H3. This model is chosen to have a similar mass to the A4 model

from Giacomazzo et al. 2011 [16]. The parameters specifying the models are listed in Tab. 7.2.

7.4.3 Code parameters

We document the version of SpEC used to run our simulations in Tab. 7.4.3. The input files used for

these evolutions are the same as found in the ‘InputFiles/SingleStarCollapse’ directory of the SpEC

repository for the git revision specified, except for the adjustment of a handful of run parameters.

7.5 Results and discussion

In Figures 7.1-7.2 we plot the dynamics of our collapse as a function of our gauge choice. Figures 7.1

shows the evolution of the maximum baryon density, ρb during the collapse simulations. One will



97

Git revision: f745013d32a48cacc4ed8ba842735693e7b07010

Date linked: Sat Jun 1 18:39:03 PDT 2013
Executable: EvolveGRHydro

Machine: zwicky

Table 7.3: Code and resolution parameters
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Figure 7.1: Left panel: Maximum baryon density for the TOV model D0. Compares runs using
the five different gauge prescriptions listed in Tab. 7.1. Plot shows medium resolution (level 3).
Right panel: L2 norm of the normalized generalized harmonic constraints (‘GhCe’) for evolutions
with with different gauges. Circles indicate runs which have terminated with successful apparent
horizon identification, while ×s indicated runs which terminated due to the condition ‘DataTooBig:
τ > 100’ (for the hydrodynamic conservative energy variable τ defined in Eq. 7.2). Plot shows high
resolution (level 4). Pressure depletion factor for these runs is fd = .85
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first notice that the value of maxρb as a function of coordinate time differs between gauges. This is

due to the change in slicing rate of the simulation (the lapse, α) for different gauge conditions. This

is directly illustrated in Fig.7.2. Since the minimum lapse occurs at the origin (center of the stars

and center of collapse), the integral of the lapse with respect to coordinate time represents the time

elapsed as experienced by a coordinate observer at rest at the origin. Qualitatively, one can see that

if the coordinate time is parametrized by values of the central baryon density ρb during collapse,

then the integral of the lapse from the start of the simulation to some value of ρb is the same for

different gauges. Another way of saying this is that it takes the same amount of proper time for the

central baryon density to reach a given value independent of gauge.

In Figure 7.2 we also plot the maximum value of the spatial volume element,
√
g. This quantity

determines how much physical volume is represented per unit of coordinate volume. Thus the

larger the value of
√
g the lower the effective resolution is, since a larger amount of physical volume

is represented by a unit of coordinate volume. To have a well resolved simulation,
√
g must not

increase drastically; otherwise, the coordinate evolution is de-resolving the simulation (effectively

the grid is being fatally stretched out and distorted in physical space). Note that one can see in Fig.

7.2 this grid stretching is exactly what happens during collapse in pure harmonic and frozen gauges.

However, the damped harmonic gauge is designed to dynamically damp log(
√
g/α) to zero, and thus

drive
√
g/α to order unity. This is what we see happening in Figure 7.2. It is interesting to note that

the damped harmonic shift condition (blue curve), has a lapse evolution the same as a harmonic or

frozen gauge, but a distinct evolution for
√
g. Apparently, the damping of the coordinate dynamics

imposed by this condition is enough to prevent the divergence of the volume element as the black

hole forms for this spherically symmetric test case.

Consequently, in practice we find that the damped harmonic gauge is robust for our black hole

formation runs. Figure 7.1 (right panel) illustrates the constraint violation in our TOV simulations

at high resolution. An apparent horizon is first found at coordinate time t = 48 for the evolution in

damped harmonic gauge. At coordinate time t = 50 after 8 successful apparent horizon finds, the

collapse evolution is terminated as we have collected enough information to properly excise the black

hole and initialize our ringdown simulations. By this time, the constraint violation has increased

only by a factor of 10. In contrast, by the time the constraints have increased by the same factor

in the harmonic gauge runs, an apparent horizon has yet to be found. This finding that damped

harmonic gauge is a successful way to capture black hole formation extends and confirms the results

of Sorkin [30], who found a damped harmonic gauge was particularly robust in the formation of

black holes from a complex scalar field in axisymmetric simulations.
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Figure 7.3: L2 norm of the normalized generalized harmonic constraints (‘GhCe’) for the TOV model
D0 (left panel) and the uniformly rotating model D2 (right panel). Note the strong ‘peak’ in the
constraints corresponds to the time of black hole formation. GhCe is the sum of the squares of the
components of the violations of the generalized harmonic equations Eqs. 7.13, 7.14, and 7.15.

7.A Plots documenting the robustness of the simulations

Here we show the robustness of the damped harmonic gauge by showing convergence in the con-

straints and waveforms of our simulations with resolution. Pressure depletion factor for these runs

is fd = .9

7.A.1 Convergence of simulations

In Figs. 7.3 and 7.4 we show plots which demonstrate the convergence of the simulations with

resolution.

7.A.2 Gravitational waves from collapse

In Figs. 7.5 and 7.6 we show the gravitational waves from the collapse illustrated via the (l,m) =

(2, 0) mode of the Newman-Penrose scalar Ψ4 at a finite radius.

7.B Definition of the 3-Velocity

There are often different definitions used for the fluid 3-velocity vector, vi, in the literature. Here

we clarify and compare these definitions. We use the ‘transport velocity’ (as denoted by Font in §
2.1.2 of [14]) definition for our 3-velocity, which can be written in terms of the fluid 4-velocity, u:

vi = ui/u0. (7.26)



100

0 100 200 300 400 500
t [code]

10−5

10−4

10−3

L 2
no

rm
of

G
hC

e
GrLev = 3, Gauge = full
GrLev = 4, Gauge = full
GrLev = 5, Gauge = full

D4

20 40 60 80 100 120 140 160
t [code]

10−3

10−2

10−1

L 2
no

rm
of

G
hC

e

GrLev = 3, Gauge = full
GrLev = 4, Gauge = full
GrLev = 5, Gauge = full

H3

Figure 7.4: L2 norm of the normalized generalized harmonic constraints (‘GhCe’) for the uniformly
rotating model D4 (left panel) and the differentially rotating model H3 (right panel). The low
resolution (Lev3) simulation for the differentially rotating model H3 was not well resolved enough to
capture at least 8 apparent horizon finds before the code crashed, and thus could not be continued
to ringdown. GhCe is the sum of the squares of the components of the violations of the generalized
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numerical noise from the relaxation of the neutron star on the grid. Initially unresolved, the effects
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The ‘transport velocity’ can be interpreted as the Newtonian velocity relative to a fixed coordinate

value; i.e., if a fluid element has transport velocity vi = 0, then its coordinate location will remain

fixed. However, this does not imply that the fluid element is ‘at rest’ in the slice (freely falling).

The ‘Eulerian 3-velocity’, V i, is the velocity measured by normal-to-the-slice moving Eulerian

observers [32]; that is, an Eulerian observer has n, the unit timelike normal, as its 4-velocity. This

yields the definition:

Vi =
u · ∂i
−u · n (7.27)

Note that an Eulerian observer is ‘at rest’ in the slice (is freely falling). By using the definition

of the Lorentz factor, w = αu0 (Eq. 7.6), this equation becomes,

Vi = ui/w. (7.28)

Furthermore, raising Vi with the ADM 3-metric, one can obtain,

V i =
ui

w
+
βi

α
. (7.29)

Finally, combining the definition of w, Eq. 7.26 and Eq. 7.29, we obtain an expression relating

the ‘Eulerian 3-velocity’, V i to the ‘transport velocity’, vi:

αV i = vi + βi. (7.30)
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7.C Resolving the constraint equations

Here we present our novel method of adjusting the initial data configuration to produce a pressure

depletion for inducing collapse without changing the constraints. The general procedure for this

method is the following:

1. Generate your initial data configuration.

2. Calculate the Hamiltonian and Momentum sources as they appear in the Einstein Constraint

equations.

3. Reduce the pressure terms contributing to the Hamiltonian and Momentum sources by some

depletion factor, fd < 1, where fd = 1 represents no pressure reduction.

4. Adjust the remaining primitive variables (ρ,T ,Ye) such so that the Hamiltonian and Momentum

sources obtain their original values.

5. Your new, pressure depleted configuration consists of the original fluid velocity, these adjusted

primitive variables, plus the pressure and enthalpy calculated from your equation of state given

the adjusted primitive variables.

Since we have adjusted the fluid configuration by hand (while fixing the metric variables) so that

the Hamiltonian and Momentum sources remain unchanged, the constraint violation of the initial

configuration will not change. Thus, if we started with constraint preserving initial data, our new

pressure depleted data will also be constraint preserving.

In practice, for this work our initial data is cold (T = 0) and of fixed composition, Ye. Thus, the

process of adjusting the primitive variables in Step 4 amounts to a one dimensional root solve for a

new adjusted density, ρ′, which we then use to calculate a new Lorentz factor and set of conservative

variables at each numerical grid-point to initialize our evolution. We derive the equation for this

root solve in the following way. The Hamiltonian and Momentum constraints are respectively:

R+K2 −KijK
ij = 16πGE, (7.31)

∇j
(
Kij − gijK

)
= 8πGji. (7.32)

We can then write the Hamiltonian source, E and the momentum source, ji, in terms of primitive

variables as:

E = ρhw2 − P, (7.33)
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ji = ρhwui. (7.34)

Now is a good time to note that the momentum source, ji differs from the evolved conservative

momentum density, Si (defined in Eq. 7.3), by a factor of
√
g: ji = Si/

√
g. We then solve Eq. 7.33

for the Lorentz factor and square Eq. 7.34 using |ui|2 = w2 − 1,

w2 =
E + P

ρh
, (7.35)

j2 = |ji|2 = ρ2h2w2(w2 − 1), (7.36)

Eliminating w from the latter Eq., we obtain,

j2 = (E + P ) (E + P − ρh) , (7.37)

which has derivative with respect to rho,

dj2

dρ
=
dP

dρ
(E + P − ρh) + (E + P )

(
dP

dρ
− hρ− dh

dρ

)
. (7.38)

In these equations P, h, dP/dρ, and dh/dρ are calculated via the equation of state given ρ.

Then, to achieve Step 3, we replace all the numerical values of P, h − 1, dP/dρ, and dh/dρ in

7.37 and 7.38 by their values multiplied by the depletion factor, fd. Now, we have an equation (Eq.

7.37) where we can solve for a new baryon density, ρ′, pointwise using a ‘rtsafe’[22] style root solver

(with the help of Eq. 7.38 ). We bracket the new ρ′ in the root solver with [0.1ρ, 10ρ] (except when

ρ = 0 where we set ρ′ = 0) which works well for moderate depletion factors. Completing the root

solve and obtaining ρ′ lets us calculate updated fluid variables where the configuration is adjusted in

a way which is constraint preserving (as long as our original initial data was constraint preserving)

and has a pressure depletion on the order of fd.
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[2] B. Baiotti, I. Hawke, P. J. Montero, F. Löffler, L. Rezzolla, N. Stergioulas, J. A. Font, and

E. Seidel. Three-dimensional relativistic simulations of rotating neutron star collapse to a Kerr

black hole. Phys. Rev. D, 71:024035, 2005.



104

[3] L. Baiotti, I. Hawke, and L. Rezzolla. On the gravitational radiation from the collapse of

neutron stars to rotating black holes. Class. Quantum Grav., 24:187, June 2007.

[4] L. Baiotti, I. Hawke, L. Rezzolla, and E. Schnetter. Gravitational-Wave Emission from Rotating

Gravitational Collapse in Three Dimensions. Phys. Rev. Lett., 94:131101, April 2005.

[5] L. Baiotti, R. D. Pietri, G. M. Manca, and L. Rezzolla. Accurate simulations of the dynamical

bar-mode instability in full general relativity. Phys. Rev. D, 75:044023, February 2007.

[6] T. W. Baumgarte and S. L. Shapiro. Numerical Relativity: Solving Einstein’s Equations on the

Computer. Cambridge University Press, Cambridge, UK, 2010.

[7] J. M. Centrella, K. C. B. New, L. L. Lowe, and J. D. Brown. Dynamical Rotational Instability

at Low T/W. Astrophys. J. Letters, 550:L193, April 2001.

[8] M. W. Choptuik and F. Pretorius. Ultrarelativistic Particle Collisions. Physical Review Letters,

104(11):111101, March 2010.

[9] G. Corvino, L. Rezzolla, S. Bernuzzi, R. De Pietri, and B. Giacomazzo. On the shear instability

in relativistic neutron stars. Class. Quantum Grav., 27(11):114104, June 2010.

[10] M. D. Duez, F. Foucart, L. E. Kidder, H. P. Pfeiffer, M. A. Scheel, and S. A. Teukolsky. Evolving

black hole-neutron star binaries in general relativity using pseudospectral and finite difference

methods. Phys. Rev. D, 78:104015, November 2008.

[11] M. D. Duez, Y. T. Liu, S. L. Shapiro, and B. C. Stephens. General relativistic hydrodynamics

with viscosity: Contraction, catastrophic collapse, and disk formation in hypermassive neutron

stars. Phys. Rev. D, 69:104030, May 2004.

[12] M. D. Duez, P. Marronetti, S. L. Shapiro, and T. W. Baumgarte. Hydrodynamic simulations

in 3+1 general relativity. Phys. Rev. D, 67:024004, January 2003.

[13] Matthew D. Duez, Stuart L. Shapiro, and Hwei-Jang Yo. Relativistic hydrodynamic evolutions

with black hole excision. Phys. Rev. D, 69:104016, May 2004.

[14] J. A. Font. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity. Liv.

Rev. Rel., 11:7, September 2008.

[15] D. Garfinkle. Harmonic coordinate method for simulating generic singularities. Phys. Rev. D,

65(4):044029, February 2002.

[16] B. Giacomazzo, L. Rezzolla, and N. Stergioulas. Collapse of differentially rotating neutron stars

and cosmic censorship. Phys. Rev. D, 84:024022, Jul 2011.



105

[17] L. Lindblom, K. D. Matthews, O. Rinne, and M. A. Scheel. Gauge drivers for the generalized

harmonic Einstein equations. Phys. Rev. D, 77(8):084001, April 2008.

[18] L. Lindblom, M. A. Scheel, L. E. Kidder, R. Owen, and O. Rinne. A new generalized harmonic

evolution system. Class. Quantum Grav., 23:447, August 2006.
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Chapter 8

The Influence of Thermal Pressure
on Hypermassive Neutron Star
Merger Remnants

The merger of two neutron stars leaves behind a rapidly spinning hypermassive object

whose survival is believed to depend on the maximum mass supported by the nuclear

equation of state, angular momentum redistribution by (magneto-)rotational instabili-

ties, and spindown by gravitational waves. The high temperatures (∼5 − 40 MeV) pre-

vailing in the merger remnant may provide thermal pressure support that could increase

its maximum mass and, thus, its life on a neutrino-cooling timescale. We investigate

the role of thermal pressure support in hypermassive merger remnants by computing

sequences of spherically-symmetric and axisymmetric uniformly and differentially rotat-

ing equilibrium solutions to the general-relativistic stellar structure equations. Using

a set of finite-temperature nuclear equations of state, we find that hot maximum-mass

critically spinning configurations generally do not support larger baryonic masses than

their cold counterparts. However, subcritically spinning configurations with mean den-

sity of less than a few times nuclear saturation density yield a significantly thermally

enhanced mass. Even without decreasing the maximum mass, cooling and other forms

of energy loss can drive the remnant to an unstable state. We infer secular instability

by identifying approximate energy turning points in equilibrium sequences of constant

baryonic mass parametrized by maximum density. Energy loss carries the remnant along

the direction of decreasing gravitational mass and higher density until instability triggers

collapse. Since configurations with more thermal pressure support are less compact and

thus begin their evolution at a lower maximum density, they remain stable for longer

periods after merger.
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8.1 Introduction

Coalescing double neutron stars (NSs) are prime candidate progenitors of short-hard gamma-ray

bursts (GRBs, e.g., [42] and references therein). The strong gravitational wave emission driv-

ing the coalescence makes NSNS systems the primary targets of the network of second-generation

gravitational-wave interferometers currently under construction (Advanced LIGO [[26]], Advanced

Virgo [[1]], and KAGRA [[59]]).

Until the last moments of inspiral, the constituent NSs may essentially be treated as cold neutron

stars. Tidal heating is mild and the NS crust may not fail until the NSs touch ([48], but see [68] and

[71]). Merger results in the formation of a shocked, extremely rapidly differentially spinning central

object, commonly referred to as a hypermassive NS (HMNS), since it comprises the vast majority of

the baryonic mass of the two premerger NSs and is thus expected to be more massive than the maxi-

mum mass supported by the nuclear equation of state (EOS) in the spherical and uniformly rotating

limits limit (see, e.g., [17] for a review of NSNS mergers). The subsequent evolution of the HMNS

has important ramifications for gravitational wave emission and the possible transition to a short-

hard GRB. If the HMNS survives for an extended period, nonaxisymmetric rotational instability

may enhance the high-frequency gravitational-wave emission, possibly allowing gravitational-wave

observers to constrain the nuclear EOS (e.g., [7]). On the other hand, the neutrino-driven wind

blown off a surviving HMNS, producing mass loss at a rate of order 10−4M� s−1, will lead to strong

baryon loading in polar regions [16], making the formation of the relativistic outflows needed for

a GRB more difficult, even if a black hole with an accretion disk forms eventually. If the HMNS

collapses to a black hole within milliseconds of merger, baryon loading will not hamper a GRB, but

strong gravitational-wave and neutrino emission would be shut off rapidly.

The long-term survival of the HMNS depends sensitively on the maximum mass of a nonrotating

cold neutron star supported by the nuclear EOS, which most certainly is above ∼ 2M� [3, 15] and

very likely below ∼ 3.2M� [38]. At its formation, the HMNS is rapidly and strongly differentially

rotating. Extreme differential rotation alone may increase the maximum HMNS mass by more than

100% [e.g., 6]. Angular momentum redistribution by (magneto-)rotational instabilities and spindown

by gravitational wave emission are expected to remove this additional support. This will ultimately

lead to black hole formation if the HMNS mass is above the maximum mass that can be supported

by the nuclear EOS and uniform rotation (.20% greater than the maximum in the nonrotating

limit; [6]).
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Recently, [53], [47], [8], and, in earlier work, [4], have argued that there may be a significant

enhancement of the HMNS maximum mass by thermal pressure support due to the moderately high

temperatures of ∼ 5−40 MeV [44, 53] prevailing in the shock-heated HMNS. If true, the HMNS may

survive on the neutrino cooling timescale provided that the combined premerger mass of the NSs

is sufficiently close to the thermally-enhanced maximum HMNS mass. These authors estimate the

neutrino cooling timescale to be comparable to or longer than the timescale for angular momentum

redistribution and spindown by gravitational waves.

The focus of this paper is on the role of thermal pressure support in hypermassive NS merger

remnants. Postmerger HMNS configurations that survive for multiple dynamical times quickly

assume dynamical equilibrium and, after the extremely dynamic merger phase, show only mild de-

viation from axisymmetry (e.g., [53, 58]). Hence, instead of performing computationally expensive

full merger simulations, we investigate the role of thermal effects by approximating HMNS config-

urations as sequences of rotational equilibrium solutions, which we compute with the relativistic

self-consistent field method [11, 33, 34]. We consider the spherical limit (Tolman-Oppenheimer-

Volkoff [TOV] solutions), uniform, and differential rotation. We employ multiple finite-temperature

microphysical nuclear EOS and, since the equilibrium solver requires a barotropic equation of state,

a range of temperature and composition parametrizations that are motivated by the merger sim-

ulations of [53]. An overall similar approach, though only considering isothermal and isentropic

configurations, has been used in the past to study thermal effects on uniformly and differentially

rotating proto-neutron stars [24, 25].

The key quantity relevant in the secular evolution of HMNSs is the baryonic mass (Mb; also called

“rest mass”) that can be supported by a given combination of EOS, thermal/compositional structure,

and rotational setup. The gravitational mass (Mg) is not conserved and is reduced by cooling and

angular momentum loss. Our results show that the maximum baryonic mass of TOV, uniformly ro-

tating, and differentially rotating configurations is essentially unaffected by thermal pressure support.

Thermal pressure support is negligible at supranuclear densities and becomes significant only at den-

sities below nuclear saturation density. Since maximum-mass configurations always have maximum

and mean densities above nuclear, thermal pressure support is minimal. The thermal contribution

to the stress-energy tensor (which sources curvature) may, depending on the EOS, even lead to a

net decrease of the Mmax
b with increasing temperature.

We find thermal enhancement of Mb for configurations with mean densities less than a few

times nuclear saturation density that are nonrotating or rotating subcritically (i.e., below the mass-

shedding limit). A hot configuration in this regime will support the same baryonic mass at a

lower mean (and maximum) density. However, hot rotating configurations are spatially more ex-

tended than their cold counterparts, and thus reach mass shedding at lower angular velocities. This

counteracts the thermal enhancement and results in Mmax
b that are within a few percent of cold
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configurations.

The secular evolution of a HMNS towards collapse is driven by energy losses to gravitational waves

and neutrinos, and, potentially, by loss of angular momentum transported to the surface by processes

such as the MRI. It proceeds along trajectories of constant (or nearly constant) baryonic mass and

in the direction of decreasing total energy (i.e., gravitational mass Mg) and increasing maximum

baryon density ρb,max (i.e., more compact configurations). We conjecture, based on established

results of the theory of rotating relativistic stars ([22]), that instability to collapse occurs when

the configuration reaches an unstable part of the parameter space and not necessarily because the

maximum supportable baryonic mass Mmax
b drops below Mb. We formalize this via an approximate

variant of the turning-point theorem (e.g., [22, 60]): The turning-point theorem states that for

uniformly rotating neutron stars, a local extremum in Mg at fixed angular momentum, entropy,

and baryonic mass constitutes a point at which secular instability to collapse must set in. We

argue that the turning point theorem carries over to differentially rotating hot HMNSs. The precise

turning points become approximate and are distributed over a narrow range of ρb,max and Mg for all

degrees of differential rotation and temperature prescriptions that we consider here. The regime of

instability is thus largely independent of HMNS temperature. However, a hotter configuration will

be less compact initially and, hence, will begin its secular evolution to its turning point at a lower

ρb,max than a colder one. It will thus have to evolve further until it reaches its turning point and,

at a fixed rate of energy loss, will survive for longer.

This paper is structured as follows. In §8.2, we introduce the set of EOS we employ and discuss the

relative importance of thermal pressure as a function of density. We also introduce the temperature

and composition parametrizations and the methods used for constructing equilibrium models without

and with rotation. In §8.3, we lay out our results for nonrotating NSs and then discuss uniformly

and differentially rotating configurations in §8.4.1 and §8.4.2, respectively. We consider evolutionary

sequences of HMNSs at constant baryonic mass in the context of an approximate turning point

theorem and compare with results from recent merger simulations in §8.5. Finally, in §8.6, we

summarize our results and conclude.

8.2 Methods and Equations of State

8.2.1 Equations of State

We use a set of 8 EOS in this study. All EOS produce cold neutron stars in β-equilibrium that can

have gravitational masses Mg above 2M�. These include two EOS from [39], the K0 = 220 MeV

and K0 = 375 MeV variants (where K0 is the nuclear compressibility modulus), denoted LS220

and LS375; the relativistic mean field (RMF) model EOS from [57], denoted HShen; two RMF

models based on the NL3 and the FSUGold parameter set [55, 56] denoted GShen-NL3 and GShen-
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Figure 8.1: Individual pressure contributions of baryons, electrons/positrons, photons, and trapped
neutrinos and the total pressure as a function of baryon density in the LS220 EOS for ν-full β-
equilibrium as described in the text and T = 0.5 MeV (dashed lines) and T = 20 MeV (solid
lines). The qualitative and quantitative behavior of the LS220 EOS with increasing temperature is
representative for all EOS considered in this study. Note that the baryon pressure becomes negative
at ρb . 1012 g cm−3, and dips around 1013.5 g cm−3 due to Coulomb effects at low temperatures [39].
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FSU2.1; an unpublished1 RMF model based on the DD2 interaction denoted HSDD2; and two

recent RMF model EOS fit to astrophysical measurements of neutron star masses and radii [61],

denoted SFHo and SFHx. All of these EOS are available in a common format for download from

http://www.stellarcollapse.org.

The EOS of finite-temperature nuclear matter in nuclear statistical equilibrium (NSE) has con-

tributions from a baryonic component (nucleons and nuclei), a relativistic electron/positron Fermi

gas, a photon gas, and, if neutrinos are trapped, a neutrino gas. The Helmholtz free energies of these

components add linearly, and the pressure is then the sum of the partial pressures and a function of

baryon density ρ, temperature T and electron fraction Ye,

P = Pbaryon + Pe + Pγ + Pν . (8.1)

While Pbaryon varies between the employed EOS, we add Pe and Pγ using the Timmes EOS [67]

available from http://cococubed.asu.edu. In hot HMNSs, like in protoneutron stars, neutrinos

are trapped and in equilibrium with matter. We include their pressure contribution to the EOS by

treating them as a non-interacting relativistic Fermi gas with chemical potential µνi . For a single

species of neutrinos and antineutrinos, the neutrino pressure in equilibrium is

Pνi =
4π(kBT )4

3(hc)3
[F3 (ηνi) + F3 (−ηνi)]× exp

(
−ρtrap

ρ

)
, (8.2)

where ηνi = µνi/(kBT ) is the neutrino degeneracy parameter. For HMNS conditions, all neutrino

species are present, but νµ and ντ have µνi = 0, since they appear only in particle–anti-particle pairs

that have equal and opposite chemical potentials. For electron neutrinos we use µνe = µe+µp−µn, for

electron antineutrinos we use µν̄e = −µνe . We include an attenuation factor exp(−ρtrap/ρ) to account

for the fact that neutrinos decouple from matter at low densities. We set ρtrap = 1012.5 g cm−3, which

is a fiducial trapping density for protoneutron stars (e.g., [40]). Taking the exact expression for the

difference of the Fermi integrals from [9], we have the total neutrino pressure summed over all three

species,

Pν =
4π(kBT )4

3(hc)3

[
21π4

60
+

1

2
η2
νe

(
π2 +

1

2
η2
νe

)]
× exp

(
−ρtrap

ρ

)
. (8.3)

We note that due to the neutrino statistical weight g = 1, for a single species of relativistic

non-degenerate ν − ν̄ pairs, the pressure is a factor of two lower than for e− − e+ pairs, since e−

and e+ have statistical weight (spin degeneracy) 2.

Figure 8.1 illustrates the contributions of the partial pressures to the total pressure as a function

of baryon density ρb for neutron-rich HMNS matter at two temperatures, 0.5 MeV (a representative

“cold” temperature) and 20 MeV (a representative “hot” temperature for HMNSs). For the 0.5 MeV

1Available from http://phys-merger.physik.unibas.ch/~hempel/eos.html, based on [27, 28].

http://www.stellarcollapse.org
http://cococubed.asu.edu
http://phys-merger.physik.unibas.ch/~hempel/eos.html
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Figure 8.2: Temperature (T , left panel) and electron fraction (Ye, right panel) as a function of baryon
density for the T and Ye prescriptions we explore in this work compared to 3D NSNS simulation
data of [53] (dashed brown graphs). The profiles are created by taking T , Ye, and ρb data along
the +x-axis from their low-mass (two 1.35-M� progenitor NSs) simulation at 12.1 ms after merger.
In the right panel, the dashed brown graph denotes the Ye obtained from the simulation, while the
solid and the dash-dotted graphs are Ye obtained from the simulation temperature profile for ν-full
and ν-less β-equilibrium, respectively.

EOS, we set the electron fraction Ye by solving for ν-less β-equilibrium (µνe = 0). The resulting

EOS describes ordinary cold neutron stars (at 0.5 MeV any thermal effects are negligible). For the

20 MeV case, we solve for Ye by assuming ν-full β-equilibrium. We do so by making the assumption

that any neutrinos produced during the merger are immediately trapped in the HMNS core, but

stream away from regions below trapping density. The procedure is discussed in the next section

8.2.2 and detailed in Appendix 8.B.

Near and above nuclear saturation density, ρnuc ' 2.6 × 1014 g cm−3 for the LS220 EOS, the

baryon pressure is due to the repulsive core of the nuclear force and dominates in both cold and

hot regimes. The thermal enhancement above ρnuc remains small even at 20 MeV. In the cold case,

relativistically degenerate electrons (Γ = (d lnP )(d ln ρ)−1 = 4/3) dominate below ρnuc. At 20 MeV,

relativistic non-degenerate electron/positron pairs and photons (for both, P ∝ T 4, independent of

ρb; see, e.g., [69]) are the primary contributors at low densities, while the baryon pressure is signifi-

cantly thermally enhanced below nuclear saturation density and dominates above ∼1012 g cm−3. The

neutrino pressure is comparable to the degenerate electron pressure between ∼1012.5 − 1014 g cm−3,

but still subdominant to the nuclear component. The contribution of pairs and photons gradually

becomes more important at all densities as the temperature increases. We note that for T = 0.5 MeV,

the neutrino chemical potentials are all zero and the pressure of trapped neutrinos is 3× (7/8)×Pγ ,

thermodynamically insignificant at T = 0.5 MeV.
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Figure 8.3: Effects of temperature and Ye parametrizations on the pressure and relevance of the
neutrino pressure component. Top panels: Fractional increase of the pressure over the cold ν-
less β-equilibrium pressure for the LS220 EOS (left panel) and the HShen EOS (right panel). The
different line styles correspond to Ye(ρ) obtained in ν-full β-equilibrium (solid), ν-less β-equilibrium
(dash-dotted), and constant Ye = 0.1 (dashed). Bottom panels: Relative contribution of the
neutrinos to the total pressure (cf. Eq. 8.3) in the five temperature and three Ye parametrizations
and the LS220 EOS (left panel) and the HShen EOS (right panel).
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8.2.2 Temperature and Composition Parametrizations

The hydrostatic and rotational equilibrium equations that we solve in this study assume a barotropic

EOS (P = P (ρ)) and do not provide constraints on thermal structure and composition (Ye is the

only relevant compositional variable in NSE). We must make some assumptions to be able to proceed

and obtain P = P (ρ, T (ρ), Ye(ρ)) for our general finite-temperature microphysical EOS. Old NSs

in isolation are nearly isothermal (e.g., [49]) and so are coalescing neutron stars until tidal heating

becomes significant (e.g., [32, 35]). During merger, the NS matter is shock-heated to tens of MeV

and results of the few merger simulations that have been carried out with temperature-dependent

EOS (e.g., [8, 44, 51–53]) indicate that the HMNS is far from being isothermal or isentropic. It has

a very hot dense core with T ∼ 20 − 40 MeV surrounded by a lower-density cooler envelope/torus

of 5− 20 MeV, which may also be almost Keplerian and, hence, centrifugally supported. This result

appears to be robust for equal-mass or near equal-mass NSNS systems (which may dominate the

population; e.g., [36] and references therein). Mergers of non-equal mass systems in which the

lower-mass NS is tidally wrapped around its more massive companion reach similar temperatures,

but generally tend to have more mass at lower densities in the disk/torus [44].

There is no unique model/EOS independent mapping T = T (ρ), thus we must explore a variety

of possibilities. In Fig. 8.2, we contrast our set of temperature parametrizations with a T (ρ) profile

obtained from a 1.35 − 1.35M� simulation using the HShen EOS by [53] at ∼12 ms after merger.

We consider very hot cores at 20, 30, and 40 MeV with cold envelopes (parametrizations c20p0,

c30p0, and c40p0) and two parametrizations with very hot cores at 30 MeV and cool envelopes at

10 MeV and 5 MeV, c30p10 and c30p5, respectively. Since low-density regions have shorter neutrino

cooling times, the c30p10 and c30p5 parametrization may represent early HMNSs, while the cold-

envelope parametrizations c20p0, c30p0, and c40p0 may correspond to late-time HMNSs. Note that

the c30p10 parametrization fits the temperature profile from the [53] simulation quite well. Details

on the functional forms of our parametrizations can be found in Appendix 8.A. For the TOV case

we also consider isothermal configurations as a limiting case.

The choice of Ye(ρ) is equally difficult. Before merger, the NSs are in ν-less β-equilibrium

(µν = µe+µp−µn = 0). After merger, neutrinos are present. They are trapped in hot dense matter

(µν 6= 0) and are streaming away from low-density regions. The equilibrium Ye will shift and mixing

due to non-linear hydrodynamics in the HMNS phase will distort any initial Ye(ρ) profile.

We deem the following prescription for Ye to be the physically most sensible: We assume that

the NSNS merger occurs so rapidly that the electron fraction Ye of the ν-less β-equilibrium in the

NSs becomes the trapped postmerger lepton fraction Ylep = Ye + Yνe − Yν̄e above ρtrap. Using the

β-equilibrium condition with nonzero µν , we solve for Ye. At densities below ρtrap we transition

to Ye given by ν-less β-equilibrium. Details of this procedure are given in Appendix 8.B. We refer

to this parametrization of Ye as ν-full β-equilibrium. In addition and for comparison, we consider
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choices of constant Ye = 0.1 and Ye set according to ν-less β-equilibrium. The right panel of Fig. 8.2

depicts Ye(ρ) as obtained from the simulation of [53] contrasted with Ye profiles computed under the

assumption of ν-less and ν-full β-equilibrium for various temperature parametrizations and for the

T (ρ) as given by the simulation. None of the prescriptions fit the simulation-Ye particularly well,

which indicates that mixing neutrino transport effects are important (but cannot be included here).

The Ye obtained using the temperature data from the simulation naturally fits best, in particular at

low densities where neutrinos have decoupled from the matter and ν-less β-equilibrium holds.

In the top panels of Fig. 8.3, we show the fractional pressure increase due to thermal effects as

a function of baryon density for our set of temperature parametrizations for the LS220 EOS (left

panel) and the HShen EOS (right panel) as two representative example EOS. We also distinguish

between the choices of Ye parametrization. For the parametrizations with cold “mantles” (cXp0),

thermal effects are most important at densities near ∼ρnuc and quickly lose significance at lower and

higher densities in both EOS. The thermal pressure enhancement is at most a factor of three (for

the HShen) to five (for the LS220 EOS) for these parametrizations. The situation is different for the

cases with hot plateaus, c30p10 and c30p5. For these, the thermal pressure is up to 20 times larger

at low densities than predicted by the cold EOS. The Ye parametrizations corresponding to ν-full

and ν-less β-equilibrium yield qualitatively and quantitatively very similar results for both EOS.

At low densities, the ν-full and ν-less β-equilibrium cases both lead to Ye > 0.1 (cf. Fig. 8.2).

As a consequence, the pressure in the unrealistic Ye = const. = 0.1, cXp0 parametrizations is lower

than in the cold ν-less case at ρb .1012.2 g cm−3. Due to the logarithmic scale of Fig. 8.3, the

graphs of cXp0 with Ye = 0.1 start only there and the predicted pressure enhancement is higher

than in the β-equilibrium cases, which lead to lower Ye above ∼1012.2 g cm−3 and below ∼ρnuc. In

the cases with hot plateau (c30p10 and c30p5), thermal effects dominate over differences in Ye at

low densities. Finally, at ρ > ρnuc, where temperature effects are smaller, differences in Ye become

important. Since the nuclear component dominates there, lower Ye corresponds to higher pressure

(e.g., [37]) and both β-equilibrium cases yield Ye > 0.1.

The lower panels of Fig. 8.3 depict the relative contribution of the neutrinos to the total (hot)

pressure in the HMNS temperature and Ye parametrizations considered in this study. While there

are clear temperature (see Eq. 8.3) and Ye (through µνe) dependences, neutrino pressure plays only

a minor role, making up at most ∼2% of the total pressure of the LS220 EOS. This is true also for

the HShen EOS with the exception of the unrealistic Ye = 0.1 case in which the neutrino pressure

contribution grows to &10% of the total pressure at supranuclear densities.

Finally, we note that the temperature and Ye prescriptions discussed here lead to regions that

may be unstable to convection if not stabilized by a positive specific angular momentum gradient

(e.g., [64]). The spherically and axially symmetric equilibrium models that we construct in this study

cannot account for convection and we leave an analysis of convective instability to future work.
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8.2.3 Spherically Symmetric Equilibrium Models

We solve the Tolman-Oppenheimer-Volkoff (TOV) equation (e.g., [54]),

dP

dr
= −G

r2

[
ρb

(
1 +

ε

c2
+

P

ρbc2

)][
Mg(r) + 4πr3 P

c2

][
1− 2GMg(r)

rc2

]−1

, (8.4)

where r is the areal (circumferential) radius, ρb is the baryon density, ε is the specific internal energy,

and Mg(r) is the gravitational mass enclosed by radius r, determined via

dMg

dr
= 4πr2ρb

[
1 +

ε

c2

]
. (8.5)

The baryonic mass is larger and given by

dMb

dr
= 4πr2ρb

(
1− 2GMg(r)

rc2

)−1/2

. (8.6)

We construct the TOV solutions using a standard fourth-order Runge-Kutta integrator on an

equidistant grid with δR = 102 cm zones. After each integration sub-step, the equation of state

P = P (ρb) is inverted to obtain ρb. We use a variety of P (ρb) parametrizations: (i) T = const.

(isothermal) with ν-full β-equilibrium above ρtrap and ν-less β-equilibrium below, (ii) T = const.

with ν-less β-equilibrium, (iii) T = const. with constant Ye = 0.1, and (iv) the phenomenological

cXpX temperature parametrizations with ν-full β-equilibrium above ρtrap and ν-less equilibrium

below. We compute TOV solutions for all EOS and define the surface of the neutron star as the

areal radius at which the pressure drops below ∼ 2× 1022 dyne cm−2, which is typically one part in

1011 of the central pressure.

Besides the EOS, temperature, and Ye prescription, the central baryon density ρb,c is the only

other free parameter. Since we are interested in the maximum mass that can be supported, we

compute sequences with varying ρb,c for each EOS, but limit ourselves to ρnuc < ρb,c ≤ ρmax,EOS,

where the latter is just the maximum density entry in the respective EOS table. HMNSs with central

densities below ρnuc are not realistic (cf. [53]).

We make our TOV solver, all P = P (ρb) tables, and the Python scripts used to create the results

in this paper available on http://www.stellarcollapse.org.

8.2.4 Axisymmetric Equilibrium Models

We generate axisymmetric equilibrium models using the code originally presented in [11] (hereafter

CST; see also [12, 13]), which is based on the relativistic self-consistent field method of Komatsu,

Eriguchi & Hachisu (1989a). The axisymmetric equilibrium equations are solved iteratively on a grid

in (s, µ), where s is a compactified radial coordinate and µ = cos θ, where θ is the usual spherical
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polar angle. Additionally, metric functions are solved using Green’s functions integrals expanded in

terms of Nl Legendre polynomials. Consequently, the total numerical resolution is specified via a

tuple of (Ns, Nµ, Nl), which we set to (500, 300, 16). The resolution is chosen so that the resulting

integral quantities of the equilibrium solution (e.g., its gravitational mass) are precise to about one

part in 103.

An axisymmetric HMNS equilibrium configuration is constructed by the CST code based on

choices of (i) a barotropic EOS, (ii) a rotation law, (iii) the rotation rate, and, (iv) the maximum

mass-energy density Emax = [ρb(1 + ε/c2)]max of the configuration.

In order to keep the size of the parameter space manageable, we restrict rotating configurations

to the LS220 and HShen EOS and set up barotropic versions using the temperature and composition

parametrizations described in §8.2.2. Since the EOS obtained with ν-full and ν-less β-equilibrium

differ only very mildly (cf. Fig. 8.3), we construct rotating configurations under the simple assump-

tion of ν-less β-equilibrium.

We employ the ‘j−const.’ rotation law (see, e.g., CST), which is commonly used in the literature

for HMNS models (e.g., [6]). The degree of differential rotation is parametrized by Ã 2. In the

Newtonian limit, this rotation law becomes Ω = Ωc/(1 + Ã2$2/r2
e), where $ is the cylindrical

radius (a coordinate), re is the equatorial radius of the star (a constant for a given model), and Ωc is

the central angular velocity. For Ã = 0, one recovers uniform rotation, while for large Ã, the specific

angular momentum becomes constant (i.e., Ω ∝ $−2 in the Newtonian limit). We explore values

of Ã between 0 and 1. The latter value of Ã corresponds to roughly a factor of two decrease of the

angular velocity from the center to the HMNS surface, which is in the ball park of what is found

in merger simulations (e.g., [58]). Once the rotation law is fixed, the rotation rate is determined by

specifying the axis ratio rp/e, defined as the ratio of the HMNS radius along the pole rp divided by

the radius at the equator re.

The final parameter to be chosen is the maximum energy density of the configuration. For

simplicity and consistency with the choice of variables for the TOV solutions discussed in §8.2.3, we

set Emax by choosing a maximum baryon density ρb,max and obtain E(ρb,max) from the EOS.

For each choice of EOS, ρb,max, and Ã, we compute a sequence of models with increasing rotation

rate, stepping down from rp/e = 1 (the nonrotating TOV case) until we reach mass shedding or until

the code fails to converge to an equilibrium solution. In the case of uniform rotation (Ã = 0) the

sequence always ends at mass shedding, the resulting rotating neutron star has spheroidal shape,

and the maximum and central density coincide (ρb,max = ρc). Differentially rotating sequences, on

the other hand, can bifurcate into two branches: one with ρb,max = ρc and spheroidal geometry

and one with an off-center location of ρb,max and quasitoroidal shape. For differentially rotating

models, the CST solver generally fails to converge to a solution at rp/e before mass shedding and,

2Note that Ã = 1/Â, where Â is the same Â as used in [6].
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therefore, possibly before the maximum mass for a given configuration is reached. This limitation

means that the maximum masses we state for differentially rotating models are to be interpreted

as lower bounds on the true maximum masses. The code developed by [2] is far more robust than

CST for such extreme configurations and these authors have argued that with increasing degree of

differential rotation, arbitrarily large masses could be supported in extremely extended tori, but

such configurations are unlikely to be astrophysically relevant.

8.3 Results: Spherically Symmetric Models

Our main interest is in how temperatures in the range encountered in HMNS of NSNS postmerger

simulations change the maximum mass that can be supported. Since baryonic mass is a conserved

quantity and can be related to the number of baryons present in the individual NSNS before merger

(modulo a small amount of potential ejecta), we treat it as a the most important variable and define

the maximum gravitational masses Mmax
g as the gravitational mass at which Mmax

b is maximal. We

consider the isothermal TOV solution as a limiting case of maximal thermal support but note that

such configurations with T & 5 − 8 MeV develop very large, non-degenerate envelopes at the low

end of the central baryon densities ρb,c considered here. With increasing temperature, degeneracy

is more and more lifted at those densities and the TOV model approaches an isothermal sphere

whose pressure is dominated by relativistic non-degenerate pairs and whose mass and radius become

infinite. We discard such solutions.

The results of our TOV calculations are summarized by Fig. 8.4 for all considered EOS. We

provide numerical results in Tab. 8.1 for fiducial isothermal cold (T = 0.5 MeV) and parametrized

temperature choices.

In the top panel of Fig. 8.4, we show the maximum gravitational mass (defined as Mg at Mmax
b ) as

a function of isothermal temperature for our three Ye prescriptions. The considered EOS show a great

degree of variation in their sensitivity to Ye prescriptions, but the overall trend is clear: increasing

temperature generally leads to increasingMmax
g . The fractional increase over the cold value, however,

is not large, as shown by the center panel. The HShen and GShen-FSU2.1 RMF TOV stars are

the most sensitive to temperature variations3, but even their maximum gravitational TOV mass

increases only by ∼12− 15% at isothermal T = 50 MeV. The cXpX temperature parametrizations,

shown as symbols in Fig. 8.4 located at their respective central temperatures, generally follow the

trend of the isothermal sequences for each EOS, but their Mmax
g enhancement is systematically

lower, since they are only centrally hot.

The lower panel of Fig. 8.4 depicts the change of the maximum baryonic TOV mass Mmax
b with

increasing temperature. For most EOS, Mmax
b stays roughly constant at low temperatures, but

3See, e.g., [27] for a discussion of EOS physics and temperature dependence of various EOS models.
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EOS T(ρ) Mmax
b Mmax

g R ρc
(M�) (M�) (km) (1015 g cm−3)

LS220, ν-less 0.5 MeV 2.406 2.042 10.63 1.863
LS220, ν-full c20p0 2.434 2.068 10.69 1.873

c30p0 2.433 2.078 10.89 1.840
c30p10 2.433 2.079 11.86 1.840
c30p5 2.433 2.078 11.23 1.840
c40p0 2.428 2.087 11.07 1.808

LS375, ν-less 0.5 MeV 3.349 2.715 12.34 1.243
LS375, ν-full c20p0 3.322 2.717 12.59 1.232

c30p0 3.294 2.717 12.68 1.221
c30p10 3.293 2.718 13.49 1.221
c30p5 3.293 2.717 12.95 1.221
c40p0 3.264 2.714 12.75 1.210

HShen, ν-less 0.5 MeV 2.560 2.214 12.59 1.357
HShen, ν-full c20p0 2.584 2.246 13.17 1.321

c30p0 2.601 2.273 13.48 1.276
c30p10 2.604 2.277 15.08 1.276
c30p5 2.603 2.275 14.01 1.276
c40p0 2.613 2.295 13.69 1.243

GShen-NL3, ν-less 0.5 MeV 3.353 2.765 13.34 1.115
GShen-NL3, ν-full c20p0 3.354 2.781 13.51 1.098

c30p0 3.344 2.791 13.70 1.081
c30p10 3.346 2.793 15.04 1.081
c30p5 3.345 2.792 14.30 1.081
c40p0 3.330 2.796 13.86 1.070

GShen-FSU2.1, ν-less 0.5 MeV 2.468 2.114 11.67 1.505
GShen-FSU2.1, ν-full c20p0 2.488 2.140 12.15 1.474

c30p0 2.497 2.159 12.40 1.428
c30p10 2.502 2.164 14.30 1.420
c30p5 2.497 2.160 12.44 1.428
c40p0 2.504 2.176 12.56 1.398

HSDD2, ν-less 0.5 MeV 2.896 2.419 11.92 1.395
HSDD2, ν-full c20p0 2.891 2.429 12.28 1.381

c30p0 2.883 2.436 12.43 1.367
c30p10 2.884 2.437 13.47 1.367
c30p5 2.883 2.436 12.79 1.367
c40p0 2.871 2.440 12.55 1.353

SFHo, ν-less 0.5 MeV 2.433 2.057 10.31 1.906
SFHo, ν-full c20p0 2.434 2.068 10.67 1.884

c30p0 2.433 2.078 10.86 1.862
c30p10 2.434 2.079 11.81 1.862
c30p5 2.433 2.078 11.21 1.851
c40p0 2.428 2.087 11.03 1.829

SFHx, ν-less 0.5 MeV 2.529 2.127 10.79 1.722
SFHx, ν-full c20p0 2.531 2.139 11.18 1.705

c30p0 2.530 2.150 11.37 1.688
c30p10 2.531 2.151 12.39 1.688
c30p5 2.531 2.150 11.72 1.688
c40p0 2.527 2.160 11.51 1.671

Table 8.1: “ν-less” indicates neutrino-less β-equilibrium, which we use only for the “cold” configura-
tions. “ν-full” indicates neutrino-full β-equilibrium with neutrino pressure. T (ρ) is the temperature
parametrization, Mmax

b is the maximum baryonic mass, Mmax
g is the gravitational mass at the max-

imum baryonic mass, R is the radius of the Mmax
b configuration, and ρc is the central baryon density

at which Mmax
b obtains.



122

1015

ρb,max [g cm−3]

0.5

1.0

1.5

2.0

2.5

M
b

[M
�

] LS220

TOV
c30p0
c20p0
c30p5
c40p0
c30p10
cold

1.2× 1015 1.5× 1015 1.8× 1015

2.3

2.4

2.5

2.6

2.7

1015

ρb,max [g cm−3]

0.5

1.0

1.5

2.0

2.5

3.0

M
b

[M
�

] HShen

TOV
c30p0
c20p0
c30p5
c40p0
c30p10
cold

9.0× 1014 1.2× 1015 1.5× 1015

2.6

2.7

2.8

2.9

3.0

Figure 8.5: Baryonic mass Mb as a function of maximum baryon density ρb,max of uniformly rotating

(Ã = 0) equilibrium models at the mass-shedding limit for different temperature prescriptions (solid
lines). We also plot the corresponding TOV sequences (dashed lines) and show results for the the
LS220 EOS (left panel) and HShen EOS (right panel). There is a large thermal enhancement of
Mb at low densities, but the sequences converge towards the cold supramassive limit as the maximum
density increases and the configurations become more compact.

decreases at high temperatures. This shows that the increase in Mmax
g in the TOV solutions is

primarily due to thermal contributions to the total mass-energy density. Since it is the mass-energy

density, and not just the baryonic mass, which sources curvature (the relativistic gravitational field),

the thermal effects lead to a decrease in Mmax
b with temperature even if Mmax

g is still increasing. The

HShen and GShen-FSU2.1 are the only two EOS that exhibit an increase of Mmax
b at intermediate to

high temperatures, but they too reverse this trend at isothermal T & 50 MeV. The LS375 EOS, on

the other hand, has monotonically decreasing Mmax
b with T , which was seen before by [43]. The more

realistic cXpX temperature parametrizations show a similar trend as their isothermal counterparts,

but for the HShen and GShen-FSU2.1 EOS, the increase in Mmax
b at intermediate T is smaller in

these only centrally-hot parametrized models.

It is interesting to compare our findings with the results of [43], who studied black hole formation

through protoneutron star collapse in failing core-collapse supernovae. These authors found much

larger maximum baryonic and gravitational masses of their protoneutron stars at the onset of collapse

than reported here. The collapsing protoneutron stars in their study have moderately-high central

temperatures T . 40 MeV. However, at ρ ≈ 4 × 1014 − 1015 g cm−3, a region of extremely hot

material with T & 80 − 100 MeV is present due to compression of multiple M� of accreted shock-

heated material. [43] demonstrated that this extremely hot region is responsible for the observed

thermal enhancement of the maximum protoneutron star mass. In NSNS mergers the situation is

quite different and fully dynamical NSNS merger simulations have not found such extremely hot

high-density regions [e.g., 44, 53]. It is thus unlikely that the findings of [43] apply to the merger

HMNS case.
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LS220 Ã = 0.0

Mg

Mb

c30p0
c20p0
c30p5
c40p0
c30p10
cold

2 3 4 5 6 7 8 9
Ωc [103 rad s−1]

2.5

2.6

2.7

2.8

2.9

3.0

M
b

[M
�

]

2.3

2.4

2.5

2.6

2.7

2.8

M
g

[M
�

]

ρb,max = 1.16× 1015 g cm−3

HShen Ã = 0.0
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Figure 8.6: The gravitational mass (Mg, solid lines, right ordinate) and baryonic mass (Mb, dashed
lines, left ordinate) as a function of angular velocity Ω for uniformly spinning models at a fixed
density near the density that yields the maximum Mb for the LS220 (left panel) and the HShen
EOS (right panel). The sequences terminate at the mass-shedding limit, which is the point with
the maximum angular velocity for a specific temperature prescription. Configurations with higher
temperatures and, in particular, the c30p5 and c30p10 models with high-temperature plateaus at
low densities, have larger radii than colder models and thus reach the mass-shedding limit at lower
angular velocities. Hence, such models have lower maximum masses at the supramassive limit than
colder models. Note that hotter models with the LS220 have lower baryonic masses than colder
models.

8.4 Results: Axisymmetric Models in Rotational Equilib-

rium

8.4.1 Uniformly Rotating Configurations

It has been widely recognized that uniform rotation can support a supramassive neutron star against

gravitational collapse (see, e.g. [19, 21]). A supramassive neutron star is defined as a stable neutron

star with a mass greater than the maximum mass of a TOV star with the same EOS (CST). At a

given central density, the mass that may be supported rises with increasing angular velocity until

the material on the NS’s equator becomes unbound (the mass-shedding limit). This leads to the

supramassive limit, a well defined maximum mass for uniformly rotating NSs with a specified EOS.

In Fig. 8.5, we plot the baryonic mass Mb as a function of maximum baryon density for TOV

and uniformly rotating mass-shedding sequences obtained with the LS220 EOS (left panel) and the

HShen EOS (right panel). Focusing first on the TOV sequences, one notes that at low central

densities (ρb . few × ρnuc), Mb is significantly increased by thermal effects. This is because the

mean density ρ̄b of such configurations is in the regime in which thermal pressure is of greatest

relevance (cf. Fig. 8.3) and can alter the structure of the bulk of the NS. This carries over to the

uniformly rotating case. The extended hot configurations reach mass shedding at lower angular

velocities than their cold counterparts, but the extended, low ρ̄b cores of hot configurations receive
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Model ρb,max Mmax
b Mmax

g re rp/e Ω T/|W |
(1015 g cm−3) (M�) (M�) (km) (103 rad s−1)

LS220 cold 1.653 2.823 2.419 14.429 0.566 10.096 0.118
LS220 c20p0 1.652 2.760 2.384 14.788 0.574 9.647 0.106
LS220 c30p0 1.652 2.737 2.382 15.000 0.576 9.441 0.103
LS220 c30p5 1.710 2.671 2.322 15.300 0.587 9.031 0.088
LS220 c30p10 1.769 2.587 2.247 16.130 0.599 8.215 0.066
LS220 c40p0 1.625 2.717 2.383 15.201 0.577 9.262 0.101

HShen cold 1.220 3.046 2.649 17.101 0.564 8.233 0.117
HShen c20p0 1.196 3.006 2.629 17.760 0.573 7.745 0.105
HShen c30p0 1.171 3.009 2.648 18.173 0.574 7.511 0.103
HShen c30p5 1.228 2.916 2.564 18.665 0.588 7.086 0.084
HShen c30p10 1.261 2.808 2.467 20.070 0.604 6.238 0.060
HShen c40p0 1.139 3.012 2.664 18.474 0.574 7.355 0.101

Table 8.2: Summary of mass-shedding uniformly rotating supramassive neutron star configurations
at the maximum mass for each EOS and temperature prescription. These models are in ν-less β-
equilibrium (see §8.2.2). ρb,max is the central density of the model with the maximum baryonic mass
Mmax

b . Mmax
g is the gravitational mass at the ρb,max at which Mmax

b occurs. re is the equatorial
radius, rp/e is the axis ratio, Ω is the angular velocity, and T/|W | is the ratio of rotating kinetic
energy T to gravitational energy |W |.

sufficient rotational support to yield a higher Mb. This, however, is the case only for centrally-hot

cXp0 configurations. Models with hot envelopes (with parametrizations c30p5 and c30p10) benefit

less from rotational support.

With increasing maximum density, the baryonic masses of the TOV models for different tem-

perature parametrizations converge for a given EOS. Near the density at which the maximum mass

is reached, the increase in Mb in hot configurations has turned into a slight decrease for models

computed with the LS220 EOS and has dropped to .5% for the HShen EOS (see also Fig. 8.4). The

mass-shedding sequences show a more complex behavior with increasing maximum density. As in

the TOV case, the mean density ρ̄b of the NSs increases and less material is experiencing enhanced

pressure support due to high temperatures in the cXp0 models. Hence, these models move towards

the Mmax
b of the cold supramassive limit (see the inset plots in Fig. 8.5). For both EOS, the Mmax

b of

hot configurations are all lower than the cold value. The cXp0 models reach supramassive limits that

are within less than 2% of the cold supramassive limit for both EOS. The c30p10 and c30p5 models,

on the other hand, have Mmax
b that are ∼5 − 10% lower than the cold supramassive limit for both

EOS. Table 8.2 summarizes key parameters of the hot and cold configurations at the supramassive

limit.

The systematics of the supramassive limit with temperature prescription becomes clear when

considering Fig. 8.6. This figure shows the baryonic mass Mb and gravitational mass Mg for uni-

formly rotating NSs as a function of angular velocity Ω for the LS220 and HShen EOS at fixed

densities near the maximum of Mb(ρb,max) (see Table 8.2). At fixed angular velocity below mass
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shedding, hotter configurations always yield higher Mg than their colder counterparts. For the LS220

EOS, as in the TOV case discussed in the previous section 8.3, hotter configurations have lower Mb.

In the case of the HShen EOS, which generally yields less compact equilibrium models, the opposite

is true, but the increase in Mb caused by thermal support is smaller than the increase in Mg.

With increasing Ω, the mass-shedding limit is approached and hotter configurations systemati-

cally reach the mass shedding limit at lower angular velocities. The reason for this is best illustrated

by comparing c30p0 models with c30p10 and c30p5 models, which have a high-temperature plateau

at low densities of 10 MeV and 5 MeV, respectively. At low angular velocities, all c30pX models show

the same thermal increase in Mg. However, the high pressure at low densities in the c30p10 and

c30p5 models leads to significantly larger radii compared to the model without temperature plateau.

Consequently, as Ω is increased, the configurations with plateau reach the mass-shedding limit at

lower Ω. For the LS220 EOS, the c30p10 sequence terminates at ∼8200 rad s−1, the c30p5 sequence

terminates at ∼9200 rad s−1, while the c30p0 sequence does not terminate before ∼9800 rad s−1. The

HShen model sequences show the same qualitative trends.

8.4.2 Differentially Rotating Configurations

Differential rotation can provide centrifugal support at small radii while allowing a NS configuration

to stay below the mass-shedding limit at its equatorial surface. Differentially rotating equilibrium

configurations have been shown to support masses well in excess of the supramassive limit [e.g., 6, 41,

45]. Such configurations are referred to as “hypermassive”. However, since there is (mathematically

speaking) an infinite number of possible differential rotation laws, it is impossible to define a formal

“hypermassive limit” for the maximum mass of HMNSs in the way it is possible for uniformly

rotating supramassive NSs. Nevertheless, we can study the systematics of the supported baryonic

(and gravitational) masses with variations in the HMNS temperature profile, maximum baryon

density, and degree and rate of differential rotation for the rotation law considered in this study,

which is not drastically different from what is found in merger simulations (e.g., [58]).

In Fig. 8.7, we show the supported baryonic mass Mb as a function of maximum baryon density

ρb,max for cold, c20p0, and c40p0 temperature prescriptions, both EOS, and for different choices

of Ã. The curves represent configurations with the minimum rp/e at which an equilibrium solution

is found by the CST solver (i.e., the most rapidly spinning setup). Note that the peaks of these

curves represent only lower limits on the maximum HMNS mass. In addition, we plot only solutions

with ratios T/|W | of rotational kinetic energy T to gravitational energy |W | below 25%, since more

rapidly spinning models would be dynamically nonaxisymmetrically unstable [5, 10]. It is this limit

which defines the rising branch of the Mb(ρb,max) curve at the lowest densities in Fig. 8.7 for Ã = 1.0.

Note that many of these configurations may still be unstable to secular rotational instabilities or

rotational shear instabilities (e.g., [14, 46, 70]).
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Figure 8.7: Maximum baryonic mass configurations for sequences of uniformly rotating (Ã = 0)
and differentially rotating (Ã = {0.4, 0.5, 1.0}) models with cold, c20p0, and c40p0 temperature
parametrizations and the LS220 EOS (left panel) and HShen EOS (right panel). We note that for
differentially rotating models these curves represent lower limits on the maximum baryonic mass.
We limit the sequences to models with T/|W | . 0.25 and this limit defines the rising part of the
graphs for Ã = 1 at low densities. We show the TOV case (thinnest and shortest dash-dotted lines)
for comparison. The raggedness of the curves with Ã & 0.4 is a consequence of finite resolution in
the parameter rp/e that is varied to find the maximum mass at a given ρb,max. Thermal effects are

most pronounced at low densities and for high Ã. For uniform and moderate differential rotation,
hotter models have lower global maximum Mb than colder models.

The overall shape of the Mb(ρb,max) curves in Fig. 8.7 is qualitatively similar to what is shown

in Fig. 1 of [6] for Γ = 2 polytropes and Fig. 2 of [41] for the cold FPS EOS [18]. The LS220 and

HShen EOS yield qualitatively very similar results, but the supported HMNS masses found by the

CST solver are, as expected, systematically higher for models with the HShen EOS than for those

using the LS220 EOS. One notes, however, interesting variations with temperature prescription.

At low ρb,max, thermal pressure support leads to increased Mb and more differentially rotating

configurations have higher Mb. Sequences with Ã . 0.5 show similar systematics with density and

temperature prescription as the uniformly spinning ones discussed in §8.4.1: As the density increases,

hot configurations converge towards the cold sequence and reach their maximum Mb near and below

the maximum of the cold sequence. Models with Ã & 0.5, on the other hand, have more steeply rising

curves with ρb,max and are discontinuous (i.e., exhibit a “kink”) at their global maxima. At these

points quasitoroidal solutions appear. Furthermore, the slope of the curve describing (as a function

of ρb,max) the axis ratios rp/e at which the solver stops converging discontinuously changes sign. We

attribute this behavior, which was also observed by [41], to a bifurcation of the sequence between

models, which continue shrinking in axis ratio until they become completely toroidal (rp/e = 0), and

less extreme models that stay quasitoroidal or spheroidal . Beyond the “kink” in Ã & 0.5 sequences,

thermal effects play little role.

The lower bounds of the range of ρb,max shown in the two panels of Fig. 8.7 (and also Fig. 8.8)
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Figure 8.8: Same as Fig. 8.7, but comparing cold configurations with models with the c30p5 and
c30p10 temperature prescriptions, which have a hot plateau at low densities. The overall systematics
are the same for the LS220 EOS (left panel) and the HShen EOS (right panel). In the TOV case, Mb

is thermally enhanced at low densities, but the global maximum of Mb of hot configurations is near
that of the cold TOV solution. Uniformly and moderately differentially rotating sequences of c30p10
and c30p5 models have systematically smaller maximum masses than cold models throughout the
considered density range. Only very differentially rotating models (Ã & 0.7; Ã = 1.0 shown here)
exhibit a thermal enhancement of the maximum mass at low to intermediate densities. The c30p10
sequence for Ã = 1.0 exhibits a discontinuous jump, which occurs when the sequence transitions
from spheroidal to quasitoroidal shape. See text for discussion.

are chosen for the following reason: Fully dynamical merger simulations by, e.g, [4, 7, 31, 53, 58, 65],

all suggest a rule of thumb that the postmerger maximum baryon density of the HMNS is typically

not less than ∼80% of the central density of the progenitor NSs. We can derive a rather solid

EOS-dependent lower limit on ρb,max for HMNS remnants from (equal mass) NSNS mergers in

the following way: In order to form a HMNS, constituent equal-mass NSs must at the very least

have a mass that is 50% of the maximum mass in the cold TOV limit. Hence, the premerger central

density must at least be that of a TOV solution with Mb = 0.5Mmax,TOV
b . Using the aforementioned

empirical result from merger simulations, we arrive at

ρb,min = 0.8ρb,TOV(Mb = Mb,max/2) . (8.7)

For the LS220 EOS, ρb,TOV(Mb = Mb,max/2) ∼ 5.8×1014 g cm−3 and occurs at Mb (Mg) of 1.19M�

(1.10M�). For the HShen EOS, ρb,TOV(Mb = Mb,max/2) ∼ 4.4 × 1014 g cm−3 and occurs at Mb

(Mg) of 1.28M� (1.20M�). Applying the density cut given by Eq. (8.7) excludes most dynamically

nonaxisymmetrically unstable configurations.

Figure 8.8, like Fig. 8.7, shows baryonic mass as a function of maximum baryon density for both

EOS and a variety of Ã, but contrasts models c30p5 and c30p10, which have hot plateaus at low

densities, with cold models. The qualitative features discussed in the following are identical for

both EOS. In the TOV case and at low densities, Mb is enhanced primarily by the hot core, since
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Model ρb,max Mmax
b Mmax

g re rp/e Ã Ωc T/|W |
(1015 g cm−3) (M�) (M�) (km) (103 rad s−1)

LS220 cold 0.993 3.648 3.140 17.258 0.376 0.5 15.476 0.244
LS220 c20p0 0.852 3.573 3.124 18.538 0.364 0.6 15.047 0.243
LS220 c30p0 0.706 3.568 3.167 19.611 0.344 0.7 14.888 0.249
LS220 c30p5 0.600 3.413 3.064 21.870 0.320 0.9 14.461 0.250
LS220 c30p10 0.990 3.090 2.723 19.208 0.421 0.9 16.330 0.187
LS220 c40p0 0.692 3.597 3.211 19.931 0.344 0.7 14.677 0.249

HShen cold 0.766 4.101 3.562 19.800 0.372 0.5 13.450 0.245
HShen c20p0 0.641 4.076 3.585 21.352 0.360 0.6 13.042 0.245
HShen c30p0 0.532 4.099 3.650 22.305 0.344 0.7 13.131 0.249
HShen c30p5 0.517 3.942 3.527 24.371 0.340 0.8 12.426 0.243
HShen c30p10 0.646 3.529 3.141 23.521 0.400 1.0 13.934 0.196
HShen c40p0 0.514 4.148 3.708 22.701 0.344 0.7 12.888 0.249

Table 8.3: Summary of the differentially rotating HMNS configurations with the largest baryonic
masses for each EOS and temperature prescription. These configurations are obtained in a sequence
from Ã = 0 to Ã = 1 with spacing δÃ = 0.1 and are to be seen as lower bounds on the maxi-
mum achievable masses. The sequences considered here exclude dynamically nonaxisymmetrically
unstable models with ratio of rotational kinetic energy to gravitational energy T/|W | > 0.25. The
quantities listed in the table are the following: ρb,max is the baryon density at which the maximum
baryonic mass Mmax

b occurs, Mmax
g is the gravitational mass at that density, re is the equatorial

radius of the configuration, rp/e is its axis ratio, Ã is the differential rotation parameter at which
Mmax

b obtains. Ωc is the central angular velocity of the configuration and T/|W | is its ratio of
rotational kinetic energy to gravitational energy. We note that the accuracy of the results listed in
this table is set by the step size in rp/e, which we set to δrp/e = 0.004.

nonrotating solutions are compact and dominated by ρb & 1014 g cm−3, where the high-temperature

plateaus play no role. At higher densities, the Mb curves of hot models converge to near or below

the cold TOV maximum Mb. The situation is different for uniformly and moderately differentially

rotating models (Ã . 0.5). Rotation shifts these configurations to lower mean densities and the

hot plateaus lead to equatorially bloated solutions. These reach their minimum rp/e for which a

solution can be found at lower angular velocities. Hence, centrifugal support is weaker and the

configuration with the hottest plateau has the lowest Mb,max. The behavior is different at high

degrees of differential rotation (Ã = 1). The cold and the c30p5 models are HMNSs and quasitoroidal

already at the lowest densities shown in Fig. 8.8. The c30p5 sequence has slightly larger Mb than the

cold sequence. The c30p10 sequence, however, is spheroidal at low ρb,max and then discontinuously

transitions to the quasitoroidal branch, which is marked by a large jump in Mb.

In order to illustrate this discontinuous behavior further, we plot in Fig. 8.9 the equatorial radius

of equilibrium solutions as a function of central angular velocity at Ã = 1 and for three different fixed

ρb,max. We show curves obtained with the LS220 EOS for the cold, c30p5, and c30p10 temperature

prescriptions. The curves are parametrized by decreasing rp/e and terminate at the smallest value

at which the solver converges. The three densities are chosen so that the first two are below and the

third is above the jump of the c30p10 curve in Fig. 8.8. At all ρb,max, the hot configurations have
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Figure 8.9: Equatorial radii re vs. central angular velocity Ωc in sequences parametrized by the
axis ratio rp/e for models using the LS220 EOS, differential rotation parameter Ã = 1.0, and cold,
c30p5, and c30p10 temperature parametrizations. We show curves for three densities, two below
the discontinuous jump of the c30p10 curve in Fig. 8.8 and one above. At the same density, hotter
configurations have larger radii and transition to quasitoroidal shape (marked by dots) at higher
Ωc. The transition between spheroidal and quasitoroidal shape is discontinuous in ρb,max for critical
models at the minimum rp/e that can be found (shown in Figs. 8.7 and 8.8), but smooth in rp/e at
fixed ρb,max. The low-density sequences with the c30p10 temperature prescription (10-MeV plateau
at low densities; see §8.2.2) become double valued in Ωc with increasing rp/e, stay spheroidal and
have very large re.
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Figure 8.10: Baryonic mass Mb and gravitational mass Mg vs. central angular velocity Ωc
parametrized by the axis ratio rp/e at fixed degree of differential rotation Ã = 1, and fixed maxi-
mum density of ρb,max = 9.21×1014 g cm−3. Curves for all temperature parametrizations are shown
for the LS220 EOS. Quasitoroidal configurations are marked by symbols and the transitions be-
tween spheroidal and quasitoroidal solutions are smooth. The end points of all graphs correspond
to the values plotted in Figs. 8.7 and 8.8 for the various temperature prescriptions at Ã = 1.0 and
the ρb,max chosen here. Sequences with hot plateaus (using temperature prescriptions c30p5 and
c30p10) exhibit significant thermal enhancements of Mb and Mg at rapid rotation rates, but have
lower maximum rotation rates due to their larger radii.
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significantly larger radii than the cold models, but decreasing rp/e leads to increasing Ωc and only

modest radius changes for cold and c30p5 models. This is very different for the c30p10 sequence.

At ρb,max = 7.11× 1014 g cm−3 these models do not become quasitoroidal and the re −Ωc mapping

becomes double-valued as the decrease in rp/e turns from a decrease of rp at nearly fixed re and

increasing Ωc into a steep increase of re and a decrease of Ωc. As ρb,max increases, less material is

at low densities where thermal pressure support is strong in the c30p10 models. Consequently, the

solutions are more compact and stay so to smaller rp/e. ρb,max = 8.16 × 1014 g cm−3 is the critical

density at which the very last point in the sequence of decreasing rp/e (the one shown in Fig. 8.8)

jumps discontinuously to large re. At ρb,max = 9.21×1014 g cm−3, which is above the critical density

for c30p10 in Fig. 8.8, the c30p10 models become quasitoroidal as rp/e decreases and Ωc increases.

They exhibit the same systematics as the c30p5 and cold models. We note that what we have

described for the c30p10 models also occurs for the c30p5 models, although at significantly lower

densities ρb,max . 5× 1014 g cm−3 and even the cold models show similar trends at low densities.

The sequences shown in Figs. 8.7 and 8.8 are extreme configurations in the sense that models

with smaller rp/e cannot be found by the CST solver and may not exist for the rotation law that

we consider here. Real HMNS may not by such critical rotators. In Fig. 8.10, we plot Mb and

Mg for the LS220 EOS as a function of central angular velocity Ωc and temperature prescription.

We fix the degree of differential rotation to Ã = 1 and show sequences in Ωc for a fixed maximum

density ρb,max = 9.21× 1014 g cm−3, which is the highest density shown in Fig. 8.9. The transition

to quasitoroidal shape is smooth and quasitoroidal configurations are marked with symbols. The

end points of the Mb curves shown in Fig. 8.10 and in Fig. 8.9 correspond to the Mb values of the

Ã = 1 curves in Figs. 8.7 and 8.8 at 9.21× 1014 g cm−3.

Fig. 8.10 shows that, as in the case of uniform rotation (cf. Fig. 8.6), hotter subcritically differ-

entially spinning configurations have higher Mg. At the density chosen for this plot, they also have

higher Mb, but at the higher densities at which the masses of uniformly spinning models peak, the

Mb of hotter configurations are smaller than those of colder ones. It is particularly remarkable that

the models with the hot plateau at low densities show the greatest thermal enhancement. They

also transition to a quasitoroidal shape last but terminate the earliest in Ωc. Nevertheless, for the

ρb,max chosen here, they can support slightly more mass at critical rotation than their counterparts

without low-density temperature plateau.

8.5 Discussion and comparison with 3D NSNS simulations

8.5.1 The Stability of HMNS Equilibrium Sequences

The existence of a maximum mass for equilibrium sequences of nonrotating (TOV) neutron stars is

one of the most important astrophysical consequences of general relativity and, hence, is well known
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in the study of compact objects. The parameter space of hot differentially rotating HMNS models

studied here is vast and complex. In the following, we briefly review the classical results on the

stability of stationary neutron stars and formulate how one may reason regarding the stability of

HMNS equilibrium models.

The equilibrium models we generate in this study are extrema of the total mass-energy, Mg,

with respect to adiabatic perturbations to the metric and fluid quantities ([22]). If perturbed, a

particular equilibrium model will oscillate around its initial state (or diverge from its initial state) if

it is stable (unstable). In this case, the extremum of the mass-energy of the model is at a minimum

(maximum if unstable). A particular useful approach to the stability problem is the turning-point

method of [60]. The turning-point method allows one to reason about the stability of sequences

of equilibrium solutions solely by examining the parameter space of equilibrium models without

dynamical simulations or linear perturbation analysis. The turning-point method has been used

extensively in previous work on the stability of cold and uniformly rotating neutron stars (e.g.,

CST, [20, 50, 62]).

An equilibrium sequence is a one dimensional slice from the space of equilibrium models indexed

by some parameter. Here we use ρb,max as our sequence parameter. A model in the space of

equilibrium models may be defined by the following conserved quantities: the gravitational mass

Mg, baryonic mass Mb, total angular momentum J , and total entropy S. Generally, as one changes

the sequence parameter, ρb,max, the quantities (Mg, Mb, J , S) will vary. A turning point in the

sequence occurs when 3 out of 4 of the derivatives d/dρb,max of (Mg, Mb,J , S) vanish. For this

point in ρb,max, the turning point theorem shows (i) that the derivative of the fourth quantity in the

tuple also vanishes, and (ii) that the sequence must have transitioned from stable to unstable ([60]

and [30]). This characterization of the space of equilibrium models relies on the assumption that

the change in Mg depends to first order only on the total changes in baryonic mass Mb, angular

momentum J , and entropy S, and not on changes to their higher moments. That is, changes in the

distribution of entropy, baryonic mass and angular momentum. In nature, this will generally not be

the case, since cooling and angular momentum redistribution will change the entropy and angular

momentum distributions, respectively. However, these changes will be slow and not drastic so that

changes to the total energy due to changes in these higher order moments will be small. We account

for such changes approximately by considering different degrees of differential rotation and a range

of temperature prescriptions in the following.

If we are considering the special case of zero-temperature configurations, then the entropy S is no

longer relevant to the equilibrium’s stability, since the change to the configuration’s energy due to a

change in entropy is also zero. In this case, a turning point may be identified when two out of three of

the set d/dρb,max(Mg,Mb, J) are zero. Zero temperature is a very good approximation for our cold

equilibrium models. In Fig. 8.11, we plot Mg along constant Mb sequences with Mb = 2.9M� for the
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HShen EOS (Mb = 2.9M� corresponds to Mb of a HMNS formed from two NSs of Mg = 1.35M�,

assuming no mass loss). All of these curves have a minimum located at ρb,max & 1× 1015g cm−3.

For the cold sequences, these minima are turning points because dMg/dρb,max and dMb/dρb,max

are both zero. Any models along those curves at densities in excess of ρb,max at the minima are

secularly unstable to collapse. For the hot temperature parametrizations4, the minima are only

approximations to the turning point (which we shall call approximate turning points) because only

two out of four (dMg/dρb,max and dMb/dρb,max) of the derivatives of (Mg, Mb, J , S) are zero. We

argue that these approximate turning points are good indicators of the onset of instability for the

equilibrium sequences for several reasons. (i) We find that the approximate turning points for all

considered temperature parametrizations and measures of differential rotation (Ã = 0 to Ã = 1.1

with spacing δÃ = 0.1) lie within the same ∼ 25% range in ρb,max indicated by the blue lines in

Fig. 8.11 (similarly within a∼ 25% range in ρb,max for the LS220 EOS). (ii) In cold uniformly rotating

NS models, approximate turning points occur where one out of three of d/dρb,max(Mg,Mb, J) vanish.

The study of such models shows that the actual turning point density is within only ∼ 1% of the

approximate turning point density (where dMg/dρb,max = 0 along the mass-shed sequence; cf.

Fig. 10 of [62]). (iii) The turning-point condition is a sufficient, but not necessary, criterion for

secular instability. Thus instability must set in at ρb,max greater than the turning-point ρb,max, but

may set in already at lower densities (see, e.g., [63] for an example). It is thus conservative to use

the approximate turning point located at the highest ρb,max over all sequences for a given EOS as

an upper bound for the maximum stable ρb,max of HMNS models for that EOS.

8.5.2 The Secular Evolution of HMNS from Mergers

A HMNS remnant resulting from the merger of two NSs that does not promptly collapse into a

black hole will settle to a quasiequilibrium state. More precisely, this is a state in which the HMNS

is no longer in dynamical evolution, measured, for example, by oscillations in the HMNS maximum

density. This should occur several dynamical times after merger. From this point on, the HMNS will

evolve secularly along some sequence of equilibrium models. A secular evolution is, by definition, a

dissipative process that may involve energy loss from the system. Consequently, we may parametrize

the secular evolution of the HMNS towards a turning point via the change in its total mass-energy,

which, in our case, is the change in gravitational mass of the equilibrium model. This occurs in

HMNSs via neutrino cooling and the emission of gravitational radiation. In addition, the rotational

energy of the HMNS may be reduced by angular momentum redistribution via the MRI, provided

this occurs sufficiently slowly to be characterized as as secular process. This can lead to a build up

of magnetic field, or dissipation of the free energy of differential rotation as heat (see, e.g., [66] for

4We show only the c40p0 and cold temperature parametrizations in Fig. 8.11, because we find them to be the
limiting cases. All other parametrizations have minima at intermediate locations in the (Mg, ρb,max) plane.
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a detailed discussion), which may lead to increased neutrino cooling. Furthermore, specific angular

momentum transported to the HMNS surface may unbind surface material, leading to a decrease in

J and Mb.

A secularly evolving HMNS will, in general, evolve in the direction of decreasing gravitational

mass Mg while conserving its total baryonic mass Mb. This results in an increasing density and

compactness of the star. Figure 8.11 shows, for a fixed temperature prescription and differential

rotation parameter, that the gravitational mass Mg of a sequence with fixed baryonic mass Mb =

2.9M� (using the HShen EOS; we find qualitatively the same for the LS220) is decreasing with

increasing density. This continues until, Mg reaches a minimum at an approximate turning point

for ρb,max & 1 × 1015 g cm−3. Here, δMg = 0, and δMb vanishes by our choice of a constant Mb

sequence.

The curves in Fig. 8.11 are shown for constant differential rotation parameter Ã. However,

a HMNS of Mb = 2.9M� is not necessarily constrained to a specific curve. One would expect

the HMNS to evolve to neighboring curves of less extreme differential rotation (decreasing Ã), in

accordance with its loss of angular momentum due to gravitational waves and its redistribution

of angular momentum due to other secular processes. Nevertheless, consider the limit in which

the HMNS is constrained to a curve of constant Ã. Then it would evolve secularly until reaching

the curve’s minimum. At this point, any further energy loss implies that the HMNS must either

(a) secularly evolve to a nearby equilibrium sequence with lower temperature or lower degree of

differential rotation and higher density (another curve on the plot) or (b) undergo collapse to a

black hole. Note that the densities at which the minimum occurs for different Ã and temperatures

are remarkably close to each other. For the sequences using the HShen EOS shown in Fig. 8.11,

the approximate turning points lie in the range 1.05 × 1015 g cm−3 < ρb,max < 1.30 × 1015 g cm−3

for all considered Ã and both shown temperature prescriptions. The constant-Mb curves for other

temperature parametrizations (c20p0, c30p0, c30p5, c30p10) are all located in-between the curves

for the c40p0 and cold cases shown. Thus, we expect that the point of collapse for a HMNS will

be marked by its evolution to this density regime regardless of the temperature distribution of the

model.

From the above findings, we conclude that thermal effects have little influence on the stability of

HMNSs in rotational equilibrium against gravitational collapse. However, our results do imply that

thermal support will affect at what density the HMNS first settles to its quasiequilibrium state. The

discussion in §8.4.2 and, in particular, Fig. 8.10, illustrates that at subcritical rotation rates and

densities significantly below those of the approximate turning points, models with hot temperature

profiles have a larger Mb compared to models with cooler temperatures at the same ρb,max. Thus a

HMNS with greater thermal support will reach a quasiequilibrium at a lower ρb,max, and thus have

more energy to lose before it can evolve to the critical density regime for collapse.
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Ã = 1.1

c40p0
cold

Figure 8.11: Gravitational mass Mg as a function of maximum baryon density ρb,max for models

with Mb = 2.9M�. Each curve is for a fixed degree of differential rotation Ã, with the axis ratios
rp/e chosen such that Mb = 2.9M�. Symbols mark equilibrium solutions at the minimum rp/e for

which a solution can be found for a Mb = 2.9 and a given Ã. The local minima of these curves
are approximate turning points of the sequences. For the cold (c40p0) models, we have noted the
range in Mg and ρb,max across models with different amounts of differential rotation with dashed
(solid) blue lines. Consequently, ρb,max = 1.30 × 1015g cm−3 represents the upper limit for the
baryon density of a stable HMNS with the HShen EOS. Note also that the difference in Mg of
the approximate turning points between sequences with the same temperature prescription is only
∼ 0.005M�

While thermal effects may be important in setting the initial conditions for the secular evolution

of a HMNS, they appear to be of little consequence to the stability of a HMNS in quasiequilibrium.

Once in a quasiequilibrium state, the energy lost by a HMNS during its secular evolution is the most

robust indicator for its progress towards instability and collapse. Fig. 8.11 shows that this is true

regardless of the degree of differential rotation of the HMNS. For a fixed temperature parametriza-

tion, the difference in Mg between different degrees of differential rotation is at most ∼0.005M�,

corresponding to . 10% of the total energy lost during the HMNS’s secular evolution.

8.5.3 Comparison with NSNS Merger Simulations

[53] conducted simulations of NSNS mergers using the HShen EOS and included neutrino cooling

via an approximate leakage scheme. They considered three equal-mass binaries with component NS

gravitational (baryonic) masses of 1.35M� (1.45M�), 1.50M� (1.64M�), 1.60M� (1.77M�) denoted

as L, M, and H, respectively. The HMNS formed from their high-mass binary collapses to a black

hole within . 9 ms of merger. The low-mass and the intermediate-mass binaries, however, form hot
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(T ∼ 5 − 30 MeV) spheroidal quasiequilibrium HMNSs that remain stable for at least 25 ms, the

duration of their postmerger simulations.

[53] argue that thermal pressure support could increase the maximum mass of HMNSs with

T & 20 MeV by 20−30%. The results that we lay out in §8.3 and §8.4 of our study suggest that it is

not straightforward to disentangle centrifugal and thermal effects for differentially rotating HMNS.

Our findings show that critically spinning configurations (i.e., configurations at which the maximum

Mb is obtained for a given Ã) of hot models do not lead to an increase in the maximum supported

baryonic mass by more than a few percent and in most cases predict a lower maximum mass than in

the cold case. We find it more useful to consider the results of [53] in the context of the evolutionary

scenario outlined in §8.5.2.

In Fig. 8.12, we plot Mb as a function of ρb,max for select sequences of uniformly and differentially

rotating models obtained with the HShen EOS with the cold and c40p0 temperature prescriptions.

We also mark the immediate postmerger densities of the L, M, and H models of [53] and their

evolutionary tracks (in ρb,max). The high-mass model H never settles to a quasiequilibrium and

collapses to a black hole during the dynamical early postmerger phase. Its ρb,max evolves within

∼9 ms from 0.58×1015 g cm−3 to values beyond the range of the plot. Our secular-evolution approach

cannot be applied to this model since it never reaches a quasiequilibrium state. The lower-mass M

and L models enter Fig. 8.12 at successively lower densities. Their “ring-down” oscillations are

damped by ∼9 ms after which the HMNSs evolve secularly with ρb,max that increase roughly at the

same rate in both models, suggesting that their rate of energy loss is comparable. At such early

times, gravitational waves are most likely dominating energy loss (cf. the discussion of timescales

in [47]), and, indeed, model M and L exhibit similar gravitational wave amplitudes and frequencies

([53], Fig. 4). Focusing on model L, we now consider Fig. 8.11, which shows sequences of constant

Mb (for model L with Mb ∼ 2.9M�). As the HMNS loses energy, Mg decreases and the HMNS

evolves to the right (towards higher ρb,max). Model L enters its secular evolution at a central

density of ∼0.56× 1015 g cm−3 and evolves secularly to ∼0.68× 1015 g cm−3 within ∼16 ms. Largely

independent of its specific angular momentum distribution and thermal structure, Fig. 8.11 suggests

that this model will reach its global minimum Mg and, thus, instability in a small density range of

∼ 1.05 − 1.30 × 1015 g cm−3. Linearly extrapolating the density evolution of model L in [53], we

expect a possible onset of collapse at t & 58 ms after merger (and &49 ms after the start of the secular

evolution). However, depending on its angular momentum when entering its secular evolution, its

cooling rate, angular momentum redistribution and loss, this model may evolve into a long-term

stable supramassive neutron star, since a baryonic mass of ∼2.9M� can in principle be supported

by the HShen EOS at the supramassive limit (cf. Table 8.2).

The role of thermal effects in all of the above is relatively minor (cf. the very similar ρb,max

locations of the Mg minima in hot and cold configurations shown in Fig. 8.11). However, when
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Figure 8.12: Similar to Fig. 8.7 but for the HShen EOS and showing the evolution of HMNSs from
[53]. We show the evolution of maximum density of the HMNS for the low, medium and high
mass configurations (thick lines L, M and H) starting from the premerger density (noted by circles),
and ending at the simulation termination densities (squares, or, in the H configuration, an arrow
indicating collapse to a black hole). After approximately 9 ms (noted with diamonds), the L and
M models show negligible dynamical oscillations and have settled to a quasiequilibrium state. From
there until the end of the simulation, the L and M HMNS are evolving secularly (indicated by thick
dotted lines).

first entering the secular regime as a subcritical HMNS, a configuration with higher temperature

and stronger thermal pressure support will be less compact and will have a lower ρb,max at a fixed

Mb than a colder one. Hence, in the picture of secular HMNS evolution discussed in §8.5.2, such

a configuration would have to evolve “farther” in ρb,max to reach criticality and, thus, can survive

longer at fixed energy loss rates.

[47] performed NSNS merger simulations of Γ = 2 polytropes in which they approximated a

thermal pressure component with a Γ = 2 Γ-law. Their postmerger HMNS enters its secular evolution

in a quasitoroidal configuration with two high-density, low-entropy cores, a central, lower-density, hot

region and a high-entropy low-density envelope. The total mass of their model can be arbitrarily

rescaled, but in order to estimate temperatures and thermal pressure contributions, the authors

scaled their HMNS remnant to a gravitational mass of 2.69M�. With this, they estimated in their

quasitoroidal HMNS peak and rms temperatures of ∼20 MeV and ∼5 MeV, respectively. [47] studied

the effect of neutrino cooling on the HMNS evolution by introducing an ad-hoc cooling function

that removes energy proportional to the thermal internal energy (neglecting the stiff temperature

dependence of neutrino cooling). In order to capture effects of cooling during the limited simulated
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physical postmerger time, they drained energy from their HMNS at rates ∼100− 200 times higher

than realistic cooling by neutrinos.

The authors considered cases without cooling and with two different accelerated cooling timescales.

As cooling is turned on in their simulations, the slope of the maximum baryon density ρb,max(t) of

the HMNS increases discontinuously and the higher the cooling rate, the faster the evolution to

higher ρb,max(t). The HMNSs in both cases with cooling become unstable at different times, but

roughly at the same ρb,max. This is consistent with the secular HMNS evolution picture laid out in

§8.5.2. Cooling reduces the total energy of the system (Mg) and drives the HMNS to higher ρb,max

at fixed Mb until the (approximate) turning point is reached and collapse ensues. However, losses

due to gravitational wave emission and angular momentum redistribution and shedding will have

the same effect and may dominate in nature, since they are likely to operate more rapidly than

neutrino cooling (cf. the discussion of timescales by [47]).

[8] carried out smoothed-particle hydrodynamics simulations of HMNSs in the conformal-flatness

approximation to general relativity. They compared simulations using the full temperature depen-

dence of the HShen and LS180 EOS5 with an approximate treatment of thermal pressure via a Γ-law,

Pth = (Γth−1)εthρb. Although [8] do not provide a figure showing the evolution of maximum baryon

density, they show (in their Fig. 5) graphs of cumulative mass as a function of distance from the

center of the LS180-EOS HMNS at 8 ms after merger, roughly the time when the dynamical early

postmerger phase is over and the secular HMNS evolution begins. From this, it may be observed

that the HMNS with the lower thermal gamma (Γth = 1.5) is more compact than the model with

Γth = 2. The HMNS evolved with the fully temperature-dependent LS180 EOS is in between the

two, but closer to the Γth = 2 model. [8] found that the more compact HMNS with Γth = 1.5

collapses after 10 ms, while the less compact Γth = 2.0 and full-LS180 cases collapse after ∼20 ms.

This is consistent with the picture of secular HMNS evolution drawn in §8.5.2: Given a fixed num-

ber of baryons, a less compact configuration has a lower maximum baryon density after merger and,

therefore, begins its secular evolution (in the sense of Figs. 8.11 and 8.12) at a lower density than

a more compact configuration. Consequently, it must lose more energy before reaching the critical

density for collapse.

The above illustrates how thermal pressure effects may increase the lifetime of a HMNS by

affecting the initial conditions for its secular evolution. From §8.4 one notes that hot configurations,

at densities below . 1015 g cm−3 (the exact value being EOS dependent), may support significantly

larger masses than their cold counterparts at the same ρb,max. Thus, during the dynamical settle-

down of two merging neutron stars to a secularly-evolving HMNS remnant, a configuration with

lower thermal pressure will need to evolve to higher ρb,max to reach an equilibrium configuration.

5The LS180 is the variant of the [39] EOS with nuclear compressibility modulus K0 = 180 MeV.
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8.6 Summary and Conclusions

The merger of double neutron stars with component masses in the most commonly observed mass

range (∼1.3 − 1.4M�; [36]) is most likely to result in a hot, differentially spinning hypermassive

neutron star (HMNS) remnant that is stable against collapse on a dynamical timescale, but likely

secularly evolving towards instability, driven by energy loss. While a number of merger simulations

in approximate or full general-relativity with the necessary microphysics are now available, the role

of thermal pressure support on the postmerger HMNS and its stability is not well understood.

In this study, we have attempted to gain insight into the role of thermal pressure support by

constructing nonrotating, uniformly rotating and differentially rotating axisymmetric equilibrium

solutions with multiple microphysical, fully temperature and composition dependent equations of

state (EOS) and parametrized temperature distributions motivated by results from full merger sim-

ulations. Such axisymmetric equilibrium models are acceptable approximations to merger remnants

that have survived the initial highly dynamical and strongly nonaxisymmetric postmerger evolution

and have settled down into longer-term stable quasiequilibrium.

In the secular postmerger phase, the baryonic mass Mb of the hypermassive merger remnant

is conserved. Thus the dependence of the maximum of Mb on temperature is the most interesting

quantity to study. In spherical symmetry (the TOV case), we find that at densities significantly lower

than the density at which the maximum mass configuration occurs, thermal enhancement of the NS

mass can be strong. Generally, hotter configurations yield the same Mb at lower central densities

than their colder counterparts. However, when considering compact maximum-Mb configurations,

thermal effects are small. For reasonable temperature prescriptions, hot temperatures lead to a

small (. 1%) decrease of Mmax
b for five out of the seven EOS that we consider. The two other EOS,

the HShen EOS and the GShen-FSU2.1 EOS, show up to ∼2% thermal enhancement of Mb. As

expected, none of the considered EOS could support a remnant of the merger of a canonical double

NS system with typical masses.

Rapidly uniformly spinning configurations can support supramassive NSs. We have studied

uniformly spinning sequences generated with the LS220 and HShen EOS. As in the TOV case, we

find significant thermal enhancement of Mb at low central densities and rotation rates up to mass

shedding. At high densities, however, thermal pressure is much less important for the support of the

inner NS core, but bloats the envelope. This results in hotter configurations reaching mass shedding

at lower angular velocities than colder configurations. Hence, at the mass-shedding supramassive

limit, Mb and Mg decrease with increasing temperature for uniformly spinning NSs. For the LS220

EOS (HShen EOS), the cold supramassive Mb limit is ∼2.823M� (∼3.046M�). This corresponds

to component gravitational masses in an equal-mass progenitor binary of Mg ∼ 1.287M� (Mg ∼
1.403M�). On the other hand, a supramassive LS220 (HShen) NS with a 30-MeV core and a 10-
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MeV envelope has a supramassive limit Mb ∼ 2.587M� (Mb ∼ 2.808M�), which corresponds to

binary component Mg ∼ 1.185M� (Mb ∼ 1.300M�). Hence, cold maximally uniformly rotating

configurations of LS220 and HShen NSs may barely support the merger remnant of canonical double

NS binaries, but hot ones might not.

Differential rotation adds yet another layer of complexity, but is the most interesting scenario,

since hypermassive merger remnants are born with differential rotation. The notion of a maximum

mass of a differentially rotating HMNS is somewhat misleading, since different rotation laws will

give different masses and different solvers may converge to different branches in the solution space.

Hence, all “maximum” masses quoted are lower limits. For the commonly used j − const. rotation-

law, parametrized by the dimensionless parameter Ã, we find Mb up to ∼ 3.65M� and ∼ 4.10M�,

for the LS220 EOS and the HShen EOS, respectively. These high-mass configurations generally occur

at densities that are up to a factor of two lower than those of maximum-Mb TOV and uniformly

rotating models. Even higher masses could be found, but such configurations would be dynamically

nonaxisymmetrically unstable.

Our results indicate that the role of thermal effects depends very much on the degree of differential

rotation in addition to maximum density and (central) angular velocity. All qualitative findings are

identical for the LS220 EOS and the HShen EOS. For critically rotating models (with minimum axis

ratio rp/e for which a solution is found) the dependence on differential rotation is as follows: (i)

For a low degree of differential rotation (Ã . 0.4), the same systematics as found for the uniformly

rotating case hold. (ii) In models with intermediate degree of differential rotation (Ã ∼ 0.5 − 0.7),

hot configurations have systematically lower “maximum” Mb than colder ones. (iii) Models with

high degree of differential rotation (Ã & 0.7) are mostly quasitoroidal and the “maximum” Mb

occurs at low densities (. 5 × 1014 g cm−3) and is mildly enhanced by thermal pressure support

for models with hot cores, but cold envelopes. Models with high-temperature envelopes remain

spheroidal until higher densities and have lower “maximum” Mb. The situation is yet different for

differentially rotating configurations that are rotating rapidly, but subcritically. For example, for

LS220 EOS configurations with Ã = 1, models with thermally supported envelopes have the highest

Mb at subcritical rotation, but their sequences terminate at lower angular velocities (higher rp/e)

than the cold configuration, which ultimately catches up in Mb at critical rotation.

To summarize all of the above: The forecast is mixed – the role of thermal effects on the baryonic

mass that is supported by a given configuration depends sensitively and in a complicated way on its

details, that is, central/mean baryon density, temperature distribution, degree of differential rotation

and rotation rate, to name the most important parameters. Configurations that yield “maximum”

Mb are essentially unaffected by thermal effects. Beyond that, no simple general statements can be

made.

A more useful way to reason about the role of thermal pressure support is to consider evolutionary
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sequences of equilibrium models representing the secular quasiequilibrium evolution of a HMNS.

This evolution occurs along tracks of constant baryonic mass Mb parametrized by maximum baryon

density ρb,max. Since energy is lost by gravitational wave and neutrino emission, a configuration

always evolves into the direction of decreasing total energy (i.e. decreasing gravitational mass Mg

and increasing ρb,max). The turning point theorem [22, 60] says that an extremum in Mg may mark

the point at which the sequence becomes secularly unstable to collapse. While this can be proven

rigorously only for uniformly rotating (or nonrotating) configurations, we conjecture that it also

holds at least approximately for the much more complex HMNS case. Provided this is true, we can

define approximate turning points using constant-Mb sequences with different degrees of differential

rotation and temperature parametrizations. With this, we find that the approximate turning points

for a given Mb always lie in narrow ranges of ρb,max and Mg, which define the Mg − ρb,max space in

which collapse to a black hole occurs. Furthermore, the approximate turning point density at which

collapse must set in depends only very weakly on temperature. Finally, we note that all approximate

turning points found in this work are at baryon densities below the cricial value for stable TOV stars.

This may suggest that HMNS with maximum densities at or higher than the critical TOV central

density could always be unstable to collapse. This possibility should be investigated further in future

work.

The secular evolution of a HMNS can then be described by the progressive decrease of its gravi-

tational mass Mg and increase of its maximum density ρb,max. Our results show that a HMNS with

more thermal pressure support will enter its secular evolution at a higher Mg and lower ρb,max than

a colder one (with the same rotational setup). Hence, the hot HMNS will have to evolve further in

ρb,max until reaching its approximate turning point. This explains the effects of thermal pressure

observed in merger simulations (e.g., [8, 53]). We note that the same argument may also be applied

to differences in HMNS spin: a more rapidly spinning HMNS will enter its secular evolution at

lower ρb,max and higher total energy and, hence, will have to evolve further in ρb,max to reach its

approximate turning point.

The goal of the work presented in this paper was to elucidate the role of thermal pressure

support in hypermassive NSNS merger remnants on the basis of stationary spherically symmetric

and axisymmetric equilibrium solutions of the Einstein-Euler equations. While yielding new insights,

our present approach is limited in multiple ways: (i) Even in the secular quasiequilibrium evolution

phase, HMNS are not exactly axisymmetric. The CST solver used in this study does not support

nonaxisymmetric configurations, which makes it impossible for us to test how sensitive our results are

to symmetry assumptions. (ii) The equilibrium sequences considered here rely on an ad-hoc rotation

law and ad-hoc temperature and composition parametrizations motivated by the simulations of [53].

In general, the angular velocity distribution will be more complex (see, e.g., [23]) and the thermal

and compositional structure of a HMNS will not be a single-parameter function of density. (iii) The
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CST solver has difficulties converging for configurations with a high degree of differential rotation

and it is not clear if the terminating axis ratio rp/e is set by the formulation and implementation

of the equations by the CST solver or if the termination occurs for physical reasons. This could

be checked only by a comparison study with a more robust solver, e.g., the one of [2]. (iv) The

approximate turning point theorem that we have used to reason about the evolution and stability

of HMNSs is heuristic and lacks rigorous foundation. Fully reliable statements about the stability

of differentially rotating HMNSs with complex temperature and compositional distributions will

require at least perturbative stability analysis or direct non-linear simulation.

Future work should address the above limitations (i -iv) and should also consider rotating con-

figurations constructed with a broader set of finite-temperature microphysical equations of state.
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8.A Temperature Parametrizations

We consider temperature prescriptions with only a hot core at and above nuclear density and with

a hot core and a more extended high-density plateau at lower densities. We emphasize that these

prescriptions are rather ad-hoc and motivated primarily by the data from the simulations of [53].

All high-temperature regions are smoothly tapered-off (“rolled-off”) using tanh functions.
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Model Tmax Midpoint m Scale s Plateau Temperature Tp
[MeV] log10(ρb[g cm−3]) log10(ρb[g cm−3]) [MeV]

cold − − − −
c20p0 20 14.0 − 0.07 0.25 0
c30p0 30 14.125 − 0.07 0.375 0
c30p5 30 14.1875− 0.07 0.3125 5
c30p10 30 14.25 − 0.07 0.25 10
c40p0 40 14.25 − 0.07 0.5 0

Table 8.4: Parameters used for the temperature parametrizations used in this study. The notation
is c¡core temperature¿p¡plateau temperature¿. All low-density temperature plateaus are tapered off
at densities below ∼1012 g cm−3 with a tanh function with a midpoint at log10(ρb[g cm−3]) = 11.5
and an e-folding width of log10(ρb[g cm−3]) = 0.25. All minimum temperatures are 0.01 MeV. See
Fig. 8.2 for a comparison of the various temperature prescriptions. The functional form of the
prescriptions is given by (8.8) and (8.10).

The prescriptions with only a hot core (i.e. prescriptions cXp0) are given by the

Troll(ρb;T1, T2,m, s) = T2 +
(T1 − T2)

2

(
tanh

(log10(ρb)−m)

s
+ 1

)
, (8.8)

where m is the roll-off midpoint (in log10(ρb[g cm−3]) and s is the roll-off e-folding scale (also in

log10(ρb[g cm−3]). For prescriptions that only have hot cores, T1 is set to the peak temperature

Tmax and T2 is set to Tmin = 0.01 MeV. The prescriptions with a high-temperature plateau at lower

densities, i.e. c30p5 and c30p10, are constructed as the sum of two of the above functions as follows:

T (ρb;Tmax, Tmin, Tp,m
′, s′) = Tmin + Troll(ρb;T1 = Tp, T2 = 0,m = 11.5, s = 0.25)

+Troll(ρb;T1 = Tmax − Tp, T2 = 0,m′, s′), (8.9)

where m′ is the roll-off midpoint, s′ is the roll-off scale, and Tp is the plateau temperature. Writing

this out more explicitly, we have:

T (ρb;Tmax, Tmin, Tp,m, s) = Tmin +
Tp
2

(
tanh

(log10(ρb)− 11.5)

0.25
+ 1

)
+
Tmax − Tp

2

(
tanh

(log 10(ρb)−m)

s
+ 1

)
. (8.10)

Table 8.4 summarizes the parameters for generating the temperature prescriptions used in this

study.



143

8.B Solving for the Electron Fraction

For a given EOS and temperature prescription, we find the electron fraction Ye by first solving for

Ye assuming neutrino-less β-equilibrium for the cold case (T = 0.01 MeV or the lowest temperature

point available in the EOS table), using the condition

µν = 0 = µn + µp − µe , (8.11)

for the chemical potentials. In the absence of neutrinos, the lepton fraction Ylep = Ye. In the hot

case, neutrinos are trapped in the HMNS matter above ρ = ρtrap ≈ 1012.5 g cm−3 and Ylep = Ye+Yν ,

where Yν = Yνe − Yν̄e .

We then take Ylep and solve for Ye in the hot case with neutrinos by treating the latter as

a relativistic Fermi gas in equilibrium for which Yν can be calculated from the neutrino number

density nν = nνe − nν̄e via

Yν =
nν
ρNA

. (8.12)

The neutrino number density is

nν = 4π

(
kBT

hc

)3

[F2(ην)− F2(−ην)] , (8.13)

where ην = µν/(kBT ) is the neutrino degeneracy parameter [9]. Note that in equilibrium, νe and ν̄e

have equal and opposite chemical potentials. F2 is a Fermi integral given by

Fk(η) =

∫ ∞
0

xkdx

ex−η + 1
. (8.14)

In practice, we use

F2(η)− F2(−η) =
1

3
η(η2 + π2) , (8.15)

which is given in [9] and is exact for any degeneracy parameter η.

We find Ye by finding the root

0 = Ylep − (Ye + Yν) . (8.16)

Ylep is a fixed input. We set Ye = Ylep as an initial guess and Yν is calculated using Eqs. (8.12),

(8.13), and (8.15), with µν = µn + µp − µe obtained from the EOS. Ye is then adjusted and we

iterate until convergence.

Since neutrinos begin to stream freely below ρtrap, we also compute Ye using the ν-less β-
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equilibrium condition (Eq. 8.11). We then compute a final effective Ye using

Ye,eff(ρ, T [ρ]) = Ye,ν−less β(ρ, T [ρ]) × (1− e−ρtrap/ρ) + Ye,β(ρ, T [ρ]) × e−ρtrap/ρ . (8.17)
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Chapter 9

Supplements to The Influence of
Thermal Pressure on
Hypermassive Neutron Star
Merger Remnants

First publication. Jeffrey D. Kaplan (2013).

9.1 Expanded discussion on the stability of HMNS

equilibrium sequences

The existence of a maximum mass for equilibrium sequences of stationary neutron stars is one of

the most important astrophysical consequences of general relativity and, hence, is well known in the

study of compact objects. However we find that the intuition gleaned through studying the stability

of spherically symmetric neutron stars can be misleading when studying the vastly larger and more

general parameter space of hot, differentially rotating HMNS models. Thus, we review here the

classic results on the stability of stationary neutron stars and formulate how we may reason about

the stability of our HMNS equilibrium models.

9.1.1 Review on established applications of the turning-point

method to neutron star stability

Cold, non-rotating TOV models form a one-dimensional sequence of equilibrium models parametrized

by the model’s central baryon density (which is the same as the maximum baryon density ρb,max in

NSs without differential rotation); it is well known that neutron stars correspond to stable models
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of this sequence with densities on the order of 1014-1015 g cm−3 (e.g., see [5]). It can be shown via

the turning-point method, that the extrema in Mg along this one-dimensional sequence are sufficient

indicators of a change in the stability of equilibrium models; it is this result which proves that, for

a given EOS, the neutron star with the maximum mass is marginally unstable and any equilibrium

models at higher central densities are unstable.

When expanding configuration space of equilibrium models to two dimensions by including cold

uniformly-rotating neutron stars, it is tempting to locate the equilibrium model with the global

maximum in Mg and declare it the maximum stable mass for cold uniformly rotating neutron stars.

However, it is possible for the equilibrium model with the maximum Mg to be secularly unstable (e.g.,

see Fig 10. of [9]). While practically the difference in Mg (and ρb,max) between the global maximum

in Mg for all equilibrium models and the maximum Mg (ρb,max) for the subset of stable models is

∼ 0.1% ( ∼ 1%), the two models no longer precisely coincide. To diagnose secular instability in this

two-dimensional configuration space, one must use the turning point theorem as written by [2] (or

the corollary in CST; see also Sec. 9.2 of [3]) that identifies specific one-dimensional sequences (here,

sequences of constant total angular momentum J) sliced from the two-dimensional configuration

space along which an extremum of Mg implies a change in stability of the equilibrium models. In

the case above, the equilibrium model with the global extremum in mass lies along the mass-shedding

sequence. We coin the term “approximate turning point” to denote such extrema, that is, extrema

along sequences which formally do not prove the onset of instability but are expected to be close to

the actual onset of instability in the parameter space.

Since we wish to understand which areas of the parameter space of HMNS models we study

exhibit the onset of instability, we must examine the intuition which underlies the turning-point

method in greater detail. Equilibrium models in general relativity are solutions of the Einstein-

Euler system, which are an extrema of the gravitational mass, Mg at fixed total baryon mass Mb,

total angular momentum J , and total entropy S ([3]). A specific equilibrium configuration is stable

if the extremum in Mg is a local minimum with respect to linear dynamical perturbations (i.e., with

respect to variations of the action which conserve Mb, J , and S). Consider that we now have some

sequence of equilibrium models parametrized by an arbitrary parameter λ.1 Usually, for different

values of λ, the equilibria must represent distinct stellar configurations since the values of Mb, J and

S will vary with λ. However, if one can demonstrate that there exist two equilibrium models with

the same Mb, J and S, but different Mg, separated by an infinitesimal separation dλ, then the model

with the greater Mg cannot be at a local minimum (since the other model in its neighborhood has

a lower Mg); thus the model with the greater Mg must be secularly unstable. Such a demonstration

is how the turning-point method identifies the onset of instability along a sequence of equilibrium

1Here we assume the functions Mb, J , S, and Mg of the equilibrium models are sufficiently smooth so that we
may take first and second derivatives of the functions with respect to the parameter λ.
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models ([3, 8]).

The turning-point method requires a ‘thermodynamic like’ relationship on the configuration

space of equilibrium models relating the change in mass-energy for an infinitesimal change to the

dynamically conserved quantities, i.e., a relationship of the form,

δMb = βαδE
α, (9.1)

where α is an index running over the conserved quantities of the model, Eα represent the ‘conserved

quantities’ and the βα are sometimes called the ‘conjugate functions’ to the conserved quantities. A

general relation which is nearly in this form is provided by The ‘First Law of Thermodynamics for

Relativistic Stars’ (see [1, 3]), which relates the infinitesimal change in gravitational mass δMg, to

the change in conserved quantities of a rotating relativistic equilibrium model by,

δMg =

∫
g

ut
δdMb +

∫
T

ut
δdS +

∫
ΩδdJ, (9.2)

where the notation
∫
δdMb means the integral over the star of changes to Mb in each infinitesimal

element dMb, and where g is the specific Gibbs energy per unit baryon mass, ut is the t component

of the fluid’s 4-velocity, S is entropy, T is the temperature, Ω is the angular velocity and J is angular

momentum.2 However, if the integrands (i.e. the conjugate functions) in the first law are constant

over the star, then we may write it as,

δMg =
g

ut
δMb +

T

ut
δS + ΩδJ, (9.3)

where δMb, δS and δJ are defined as the change in the total value of the conserved quantities for

the star:

δMb =

∫
δdMb, δJ =

∫
δdJ, δS =

∫
δdS. (9.4)

Note, our Eq. 9.3 is the same as Eq. (8) of [4]. Although it limits one to equilibrium models where

the conjugate functions are constant over the star, Eq.9.3 is a relation of the kind required to use

the turning-point method.

Since the core of the turning-point method works by identifying infinitesimally separated equi-

librium models of the same Mb, J , S, the theorem can only be applied to a point on a sequence

where the derivatives (with respect to the sequence parameter) of the conserved quantities, dMb/dλ,

dJ/dλ, dS/dλ, vanish. Thus it is often employed in multidimensional configuration spaces by ex-

amining sequences of models where all but one of the dynamically conserved quantities (Mb, J ,

S) are fixed ([2], CST). Then, the first law in the form of Eq. 9.3 yields the vanishing of the final

conserved quantity at an extremum of the gravitational mass along the sequence, and this point

2In this section, we use geometric units which set G = c = 1.
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on the sequence is a turning point. This is how the turning-point method is employed to show the

classic criterion that the one dimensional sequence of cold TOV equilibrium models transitions from

stable to unstable at a maximum in Mg. Note that it is the limited dimensionality of the sequence

(the vanishing of J and S) that leads to the coincidence between the model with maximum mass

and the transition to instability of the sequence.

9.1.2 Applying the turning-point method in more general cases

In “The influence of thermal pressure on hypermassive neutron star merger remnants” (Chapter 8),

we invoke the turning-point method to reason about the stability of our equilibrium sequences. There

we make two important approximations which prevent us from using the turning-point theorem for

a formal proof of instability for the sequences in Fig. 8.11.3

The first approximation made is where we note that our “characterization of the space of equilib-

rium models relies on the assumption that the change in Mg depends to first order only on the total

changes in baryonic mass Mb, angular momentum J , and entropy S, and not on changes to their

higher moments.” The mathematical embodiment of this statement is that we expect that Eq. 9.2

to be well approximated by Eq. 9.3. In general, this would be an extremely restrictive requirement.

Let us examine what is happening using the third term of Eq. 9.2 as a representative example. Here

we are replacing the infinite degrees of freedom in the integral, represented by the distribution of

changes to each angular momentum element δdJ , by a single degree of freedom, the total change

in angular momentum δJ . Note that each infinitesimal change δdJ that has a contribution to the

change in total energy (δMg) is weighted by the conjugate quantity Ω. When this ‘weight’ is con-

stant over the star, the infinite degrees of freedom represented by the distribution of changes to each

angular momentum element (δMg) collapses to a single degree of freedom represented by the total

change in angular momentum (δJ).

The full, relativistic version of the rotation law we use is,

r2
e

Ã2
(Ωc − Ω) = F (Ω) = utuφ, (9.5)

where Ã is our differential rotation parameter, re is the equatorial radius of the star, and ut and uφ

are the contravariant time component of the 4-velocity and uφ is the covariant azimuthal component

of the 4-velocity (cf. [3]). Solving for Ω, substituting the resulting expression into
∫

ΩδdJ , and

integrating the term with Ωc (which is a constant), we obtain,

∫
ΩδdJ = ΩcδJ −

Ã2

r2
e

∫
utuφδdJ. (9.6)

3with the exception of the Ã = 0 (uniformly rotating) sequence for the ‘cold’ temperature parametrization; in this
case the minima of Mg in the sequence, in fact, does satisfy all of the criteria necessary to be identified as a turning
point.
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In Eq. 9.6, note the second term on the RHS of the equation vanishes for Ã = 0. This term almost

achieves what we intend when we say “the higher moments” of
∫

ΩδdJ ; unfortunately, aside from

the factor of Ã, the above example, the integral on the RHS is on the same order of magnitude as

the first term on the RHS of the equation. This can be observed by rewriting it as,

Ã2

r2
e

∫
utuφδdJ = Ã2

∫
w2

α2
$̂2(Ω− ω)δdJ. (9.7)

Here, $̂ = $/re is the dimensionless cylindrical radius, w is the relativistic Lorentz factor of the

fluid, α is the ADM lapse, and ω is the metric frame dragging potential (again, cf. [3]). Though

the above expression only shows the obvious, that the term is only of “higher order” for Ã small,

the author notes this is because we are expanding about one of the extrema of the angular velocity,

that is, the value at the center which is the maximum value of the angular velocity.

One attempt at correcting this would be to expand around the average value of Ω weighted by

the perturbation to dJ :

Ω̄ =

∫
ΩδdJ∫
δdJ

=

∫
ΩδdJ

δJ
. (9.8)

Unfortunately, this is a bad idea for applications to the turning-point method, since the turning-

point method requires locating where δJ = 0! In fact, this suggests that attempting to expand the

integrals in the first law, Eq. 9.2, in a series of moments may be the wrong approach, or at least the

expansion must be done with careful consideration for its application to the turning-point method.

Although we have failed to write a formal proof “that the change in Mg depends to first order

only on the total changes in baryonic mass Mb, angular momentum J , and entropy S, and not

on changes to their higher moments,” we would like to convince the reader that the use of an

approximate turning point theorem is still appropriate for this application. In Sec. 8.5.1, we note

that a turning point occurs when 3 out of 4 of the derivatives of (Mg, Mb, J , S) vanish along a

sequence. This is formally only the case when Eq. 9.3 holds. However we note that by limiting our

angular momentum distribution to a fixed differential rotation law, we are essentially leaving fixed

the number of degrees of freedom in the configuration space (i.e. our 4-dimensional set of (Mg, Mb,

J , S)). This is because any change to the angular momentum distribution δdJ must be completely

specified by the rotation law. In practice, there will be an additional contribution to the energy,

which in our example of the rotational energy amounts to the second term in the RHS of Eq. 9.6,

which we deem THO with HO for ‘higher order.’ Now, a turning point will be where 4 of the 5 of

the derivatives along the sequence of (Mg, Mb, J , S, THO) vanish. While this effectively makes the

use of approximate turning points “more approximate”, we note that it still adheres to the method

underlying the turning point theorem; that is, we are locating the area of parameter space for which

the energy and conserved quantities are an extremum. Thus in this area, we must be in the vicinity

of models with the same conserved quantities, (Mg, Mb,J , S, THO), but different energies, and thus



155

0.50 1.05 1.30
ρb,max [1015 g cm−3]

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

T
[M
�

]

HShen

Mb = 2.9 M�

HShen

Mb = 2.9 M�
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Figure 9.1: Same as Fig. 8.11, except showing approximate turning points where d/dρb,max of (Mb,
T ) vanishes.

‘close’ in parameter space to the unstable models. We provide numerical evidence for this claim

by plotting the total rotational kinetic energy, T , versus ρb,max in Fig. 9.1. Here we see that the

approximate turning points for T & Mb also lie in the same small range of central densities close to

those as in Fig. 8.11.

Finally, the reader may object that a physical HMNS need not obey a specific rotation law or

maintain the same amount of differential rotation. We argree, this is true, however it is also true

that the distribution of angular momentum in the HMNS may not change arbitrarily; it will change

according to laws specified by the physical processes driving the secular evolution of the HMNS

remnant. This will similarly restrict the degrees of freedom of the equilibrium sequences along

which the HMNS will evolve. While this makes the astrophysical configuration space larger than

the 4-dimensional configuration space we study, it is still highly restricted in its dimensionality. Our

thorough analysis of approximate turning points should build confidence that we have ‘honed in’ on

region of parameter space in which HMNSs become unstable to gravitational collapse.

9.1.3 Approximate turning points for alternate tuples of

conserved quantities

Here we briefly address the second approximation made, that of using ‘approximate’ turning points

where only 2 (instead of 3 for a proper turning point) out of the 4 quantities (Mg, Mb, J , S) vanish

along a sequence. In Fig. 8.11, we show where the derivatives of Mg & Mb vanish; the choice of Mg,
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and Mb is particularly suited for discussing the secular stability of models. However we have also

checked (cf. Fig. 9.2) that the range of densities is nearly identical for approximate turning points

using both tuples of (Mg, J) and (Mb, J).

In Fig. 9.2, we see that the ρb,max of these approximate turning points are very close (within a few

percent) of the turning points in the (Mg, Mb) slice of parameter space. This shows that for ρb,max

values where the turning points occur, they are very nearly locations along the sequence where the

derivatives of Mg, Mb and J vanish. This directly verifies our assertion that these approximate

turning points are very good approximations to the true turning points of the sequence.

9.2 Properties of quasitoroidal models

Here we use the Newtonian approximation in spherical symmetry with a centrifugal force term to

show three properties of quasitoroidal equilibrium models. They are all concerned with the location

of the off-center density maxima, the presence of which is the technical requirement for classifying

the model as quasitoroidal.

9.2.1 Criterion which implies a model must be quasitoroidal

First, note that the mass shed limit provides the following restriction on the equatorial angular

velocity at the star’s surface, Ωe:

Ω2
e ≤

GM

R3
=

4π

3
Gρ̄. (9.9)

Now we write the equation of force balance (the Euler equation) in the following form,

1

rρ

dP

dr
= −Gm(r)

r3
+ Ω2, (9.10)

and examine the limit of this equation as r → 0. Here, Ω = Ωc, the central angular velocity, and

m(r) is very well approximated by m(r) = 4π/3 ρcr
3, where ρc is the central density. In this limit,

Eq 9.10 becomes: (
1

rρc

dP

dr

)
r→0

= −4π

3
Gρc + Ω2

c . (9.11)

Note that since r and ρc are always positive, the sign of dP/dr is determined by the sign of the

RHS of this equation. Usually one expects this dP/dr to be negative in a stellar model, however, if

Ω2
c >

4π

3
Gρc, (9.12)

then the sign of dP/dr at the star’s center is positive. Given any reasonable EOS (i.e. dP/dρ is

always positive) this means the density is initially increasing as one moves out towards the star’s

equator. This implies that the stellar model has its density maximum off-center and must be a
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Ã = 0.6
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Figure 9.2: Same as Fig. 8.11, except showing approximate turning points where d/dρb,max of (Mg,
J) vanishes (top panel), and where d/dρb,max of (Mb, J) vanishes (bottom panel). The top
panel plots Mg for a fixed value of the dimensionless angular momentum J = 3.9, which we see is
representative of the Mb = 2.9M� sequence by examining the bottom panel, where we plot the
dimensionless angular momentum, J , at fixed Mb = 2.9M�.
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quasi-toroid. If we combine Eqs. 9.9 and 9.12, then we obtain a condition which, if it is true,

indicates that the stellar model must be quasitoroidal:

ρ̄

(
Ωc
Ωe

)2

> ρc. (9.13)

Note that this equation contains the same terms as the RHS terms of Eq. (17) of [6].

9.2.2 The fluid element at ρb,max is freely falling.

A second closely related fact is the following statement in the equatorial plane of an axisymmetric

rotating stellar model:

The fluid element at the location of maximum density is freely falling.

This follows from the fact that at the location of maximum density ∇P = 0, which means that

centrifugal and gravitational forces must exactly balance. Technically, this fact is mathematically

true for both quasitoroidal and spheroidal models; however, it only is physically interesting for the

quasitoroidal case.

9.2.3 Maximum of the centrifugal support with differential rotation

Here we present a simple calculation which identifies (in the Newtonian limit) the location (as

a fraction of equatorial radius) at which the centrifugal force is maximized. The calculation is of

interest in providing an estimate of the amount of differential rotation necessary for the appearance of

quasitoroidal configurations. Note that for a uniformly rotating configuration, there is no maximum

in the centrifugal force; it simply increases without bound as one moves outward in the equatorial

plane. However, as one ‘dials up’ the differential rotation (in our case in terms of Ã), at some point,

we expect the maximum of the centrifugal force to be at some point inside the star. Here we answer

the question what is the critical value of Ã, Ãc such that for Ã > Ãc the maximum of the centrifugal

force lies within the star?

We write the Newtonian limit of the differential rotation law in its usual form,

Ω =
Ωc

1 + Ã2$2/r2
e

, (9.14)

with Ωc the angular velocity at the center of the model, Ã is the differential rotation parameter,

$ the cylindrical radius (a coordinate), and re is the equatorial radius of the model (a constant).

First, we rewrite this equation such that it is expressed in terms of the equatorial angular velocity,
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Ωe, instead of the central angular velocity:

Ω = Ωe
1 + Ã2

1 + Ã2$2/r2
e

. (9.15)

Next, we define $̂ = $/re as the dimensionless cylindrical radius and write the centrifugal force on

a mass element in terms of the Eq. 9.15 for Ω:

Fcent = Ω2
ere$̂

(
1 + Ã2

1 + Ã2$̂2

)2

. (9.16)

Now we maximize the above expression with respect to $̂. The derivative of Fcent with respect to

$̂ is,

dFcent

d$̂
= Ω2

ere

(
1− 4Ã2$̂2

1 + Ã2$̂2

)(
1 + Ã2

1 + Ã2$̂2

)2

, (9.17)

which we set equal to zero and solve for $̂max obtaining:

$̂max =
1√
3Ã

. (9.18)

For $̂max ≤ 1, the location of maximum centrifugal force is inside the star. Thus the critical

value for Ã, is Ãc = 1/
√

3 ' 0.577. It is interesting to note that, as we ‘dial up’ Ã in our equilibrium

solver, we indeed begin observe the appearance of quasitoroidal equilibrium configurations starting

at around Ã > Ãc.

9.3 Changes in energy and density of a configuration

In the text we claim that a decrease in total energy of a stellar configuration with a fixed number

of baryons necessarily results in the configuration becoming more compact; here we present our

argument to support this claim. First, this idea is firmly rooted in intuition. If one removes thermal

energy from a star, one would expect it to start to contract and hence increase its density (by density

here we mean both average and central density). Note we are careful to phrase this explicitly as

a loss of thermal energy and not as a ‘cooling’; as stars have an inverse heat capacity, a loss of

thermal energy is distinct from a decrease in temperature! Second, imagine a rotating star from

which rotational energy and angular momentum are extracted. Here we would expect the ellipticity

of the star to decrease, causing it to contract and increase its density.

In the Newtonian case, we may prove that the loss of thermal energy leads to an increase in

density of the star. From [7] Eqs. 3.2.10 and 3.2.11, the virial theorem lets us write the total energy
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of a polytropic stellar model in terms of its potential energy as:

E = −3Γ− 4

5Γ− 6

GM2

R
, (9.19)

where Γ is the adiabatic index in the polytropic equation of state P = KρΓ
b . Note that the energy of

a stable star is always negative, and so a decrease in energy at fixed M must result in a decrease in

R. With a fixed number of baryons, M is also fixed (in the Newtonian limit), and hence an energy

loss must increase the density of the star.

9.4 Relation of average density to mass-shed centrifugal sup-

port

High temperatures affect the baryonic mass Mb of supramassive NSs (with Mb > Mmax,TOV
b in two

competing ways: (i) an increase in Mb due to thermal pressure, and (ii) a decrease in Mb due to a

reduction in the mass-shedding angular velocity caused by an increase in radius. In order to estimate

the net result of these two effects, one may consider the Newtonian mass-shedding condition. Along

the equatorial plane, the Newtonian centrifugal force per unit mass is Ω2 ~$. The baryonic mass of

a spheroid with axis ratio rp/e and average baryonic density ρ̄b is given by:

Mb =
4π

3
r2
erpρ̄b =

4π

3
r3
erp/eρ̄b . (9.20)

We can then write the mass-shedding (Keplarian) Ω2
K as:

Ω2
K =

GMb

r3
e

=
4π

3
Grp/eρ̄b . (9.21)

Thus, for uniform rotation at mass shedding, the rotational support Ω2$ is directly proportional

to the average baryonic density ρ̄b. Consequently, one can understand the relative increase in

maximum Mb from the maximum-mass TOV solution to supramassive NSs between NS models

with different EOS and temperature prescriptions simply by measuring ρ̄b (see [6] for a similar

idea). This measure correlates well with our findings. Centrally-hot models with cXp0 temperature

prescriptions are slightly more extended than cold variants, thus have lower ρ̄b, resulting in slightly

lower maximum Mb. On the other hand, the models with high-temperature plateaus at low densities

(c30p10 and c30p5) have more extended low-density envelopes, but about the same thermal pressure

support in the bulk of the NS as the c30p0 model (cf. Fig. 8.6). This results in a lower ρ̄b, a lower

mass shedding angular velocity and, hence, a lower Mb at their supramassive limit.
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9.5 Newtonian estimate of angular momentum at coalescence

Here we use freshman physics to estimate the angular momentum of two equal mass neutron stars

at coalescence. A special thanks goes out to Aaron Zimmerman, who sketched this out for me in

about ∼ 5 minutes. The calculation is that of two sphere each with the same mass, M , radius, R,

and moment of inertia, I. The two spheres touch at a point; they rotate about this point at the

Keplarian frequency, and we wish to calculate the angular momentum of the configuration. First,

we may write the Keplarian frequency as:

Ωk =

√
GMtotal

a3
=

1

2

√
M

R3
, (9.22)

where we have set G = 1, Mtotal = 2M and the orbital separation a to a = 2R. Next, we calculate

the moment of inertia of the total configuration. The parallel axis theorem lets us calculate the

moment of inertia of a body rotating around an axis which is a perpendicular distance, r⊥ from its

center of mass, as Ir⊥ = Icm + Mr2
⊥. This is precisely what we have for each neutron star with

r⊥ = R, and thus the total moment of inertia is:

Itotal = 2I + 2MR2, (9.23)

where I sans-subscript is the moment of inertia of one of our neutron stars. The angular momentum

estimate of the configuration is then just ΩkItotal:

Jcorot
Newt =

√
M

R3

(
I +MR2

)
= M3/2R1/2

(
1 +

I

MR2

)
= C−1/2

(
1 +

I

MR2

)
M2, (9.24)

where in the final expression, we’ve substituted the compaction C = M/R for the radius.

Above we assumed that the two neutron stars were approximately in rigid rotation about the

center of mass; this is the corotating limit. If instead we assume the neutron stars are irrotational,

then we must correct our expression. We can do this by subtracting the spin angular momentum,

IΩk, for each neutron star. This yields:

J irrot
Newt =

√
M

R3

(
MR2

)
= M3/2R1/2 = C−1/2M2. (9.25)
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