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ABSTRACT

The non-stationary lift and moment of an oscillating
propeller blade element are determined. The solutions are
obtained in the form of double definite integrals which are eval-
uated for one numerical example in Appendix A.

The three-dimensional nature of the problem is ac-
counted for by determination of the induced velocity field
due to an approximate vorticity distribution in the propeller

‘wake. The corresponding blade element circulation is calcu-~
lated by means of the classical Munk integral theorem. The
two dimensional results for non-stationary lift and moment,
expressed in terms of the circulation, are then used to obtain
the results of this paper. Derivations of the lift and moment
equations are included.

The resultant forces on the blade element are resolved
into thrust and torque. Also, a qualitative discussion of the
effects of compressibility is made based upon the Prandtl-
Glauert transformation.

Finally, the results are compared with two dimensional
theory and a discussion of the application to problems of flutter
and forced oscillations of propellers is made. The discussion

is illustrated by means of the numerical example.



TABLE OF CONTENTS

Page
Definition of Symbols.
I. Introduction. 1
II. The Approximate Vortex Distribution.
2.1 The propeller wake in non-steady motion. 10
2.2 The assumed vortex distribution. 11
III. Calculation of Induced Downwash at the Propeller
Blades.
3.1 The Biot-Savart Law. 17
3.2 Downwash due to the tip trailing vorticity 17
3.3 Downwash due to the root trailing vorticity 30
3.4 Downwash due to the shed vorticity. 30
3.5 Blade element oscillatory motion expressed
as an equivalent downwash. 34
IV. Blade Element Circulation Calculations.
4.1 The Munk Integral Theorem. 36
4.2 Blade element circulation due to:
a. Tip trailing vorticity. 38
b. Root trailing vorticity. 39
c. Shed vorticity. 40
d. Blade element oscillation. 40
4.3 Resultant blade element circulation. 40

V. Derivation of the Lift Equation for a Thin Airfoil in
Two-Dimensional Non-Stationary Motion.

5.1 Impulse of a vortex system. 42
5.2 The lift equation. 49
5.3 An alternate form of the expression for

lift due to additional apparent mass. 51



TABLE OF CONTENTS (Continued)

VI. Lift on a Propeller Blade Element in Non-
Stationary Motion.

6.1 The total lift equation.

6.2 Lift due to translational and rotational
oscillations.

6.3 Corresponding two-dimensional lift equations

VII. Thrust and Torque on a Propeller Blade Element
in Non-~Stationary Motion.

7.1 Resolution of the instantaneous lift vector.
7.2 Existence of induced drag in oscillating
systems.

VIII. Derivation of the Moment Equation for a Thin Air-
foil in Two Dimensional Non-Stationary Motion.

8.1 Moment of momentum of a vortex system.
8.2 The moment equation.

IX. Moment on a Propeller Blade Element in Non-
Stationary Motion.

9.1 The total moment equation.

9.2 Moment due to translational and rotational
oscillations.

9.3 Corresponding two-dimensional moment
equations.

X. The Effect of Compressibility.

10.1 The Prandtl-Glauert rule.

10.2 The Biot-Savart relation for compressible
flow.

10.3 Application of the Biot-Savart relation for
compressible, subsonic, flow to a lightly
loaded propeller.

XI. Results and Discussion

Page

53

54
55

57

57

61
62

67
69

69

71

72

73

76



TABLE OF CONTENTS (Continued)

Appendix A. Evaluation of the Circulation Integrals
of Part IV..

A-1 Calculation of integrals Iy and 1,'.
A-2 Calculation of integrals I3 and I3'.
A-3 Calculation of integrals I, and 14'.
A-4 Summary of results for the numerical
example .
Appendix B. Mechanical Cubature.
Bibliography

Graphs and Figures

Page

81
82
85
86
94
97

104

106



DEFINITION OF SYMBOLS

Numbers in parentheses directly after the symbols give the page

on which the symbol is introduced.

a (18) Non-dimensional coordinate of the reference station.
(AR)! (39) Modified ratio of chord to radius.
B ( 2) Number of blades.
c ( 2) Propeller blade chord at reference station.
Gy 2 (55) Factor containing circulation integrals.
G1 (55) Factor containing apparent mass integrals.
G 69) Factor containing moment integrals.
2 g g
I, (39) Circulation integrals due to: tip trailing
13 (39) vorticity, root trailing vorticity, shed
Iy (40) vorticity.
IZ'
L (53) Additional apparent mass integrals.
I f
4
IZ”
I (68) Moment integrals.
I ft
4
J (17) Advance ratio calculated at blade tip.
Ja (15) Advance ratio calculated at reference station.
L (54) Total lift(per unit length) on the blade element.
L, ( 9) Quasi-steady lift, per unit length of blade.
Ll ( 9) Lift due to additional apparent mass, per unit
length of blade.
L, ( 9) Lift correction due to wake, per unit length

of blade.
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R)

(69)

(69)

(29)

(18)

Lift on blade element, per unit length of blade,
due to translational oscillations.

Lift on blade element, per unit length, due to
rotational oscillations.

Total moment on blade element about midchord,
per unit length of blade.

Quasi-steady moment, per unit length of blade.

Moment due to additional apparent mass, per
unit length of blade.

Moment correction due to wake, per unit length
of blade.

Moment on blade element, per unit length of
blade, due to translational oscillations.

Moment on blade element, per unit length of
blade, due to rotational oscillations.

Factor determining the phase of the circulation
of the jth propeller blade relative to the other
blades.

Induced velocity at a point on the blade element
due to tip trailing vorticity.

Induced velocity at a point on the blade element
due to root trailing vorticity.

Induced velocity at a point on the blade element
due to shed vorticity.

Resultant torque on the blade element per unit
length of blade.

Propeller blade radius.

Resultant thrust of the blade element per unit
length of blade.

Translational speed of the propeller.



(13)

(13)

(13)

(22)

(35)

(22)

(30)

(33)

(13)

(14)

(14)

Velocity of translatory oscillations of the
blade element.

Velocity of rotational oscillations of the
blade element.

Velocity resultant of rotational and transla-
tional speed of the propeller blade element.

Component of induced velocity perpendicular
to the tangent plane of the helical surface at

the reference section.

"Equivalent'' downwash component due to
blade element motion.

Downwash component due to tip trailing vor-
ticity.

Downwash component due to root trailing
vorticity.

Downwash component due to shed vorticity.

Coordinate along the blade element chord.
Origin at midchord.

Secondary coordinate system to describe
the blade element chord.

Cylindrical coordinate system to describe
the wake.

Shed vorticity strength.
Tip and root trailing vorticity strengths.
Total circulation per unit length of blade,

Blade element circulation due to blade motion,
per unit length of blade.

Blade element circulation due to tip trailing
vorticity, per unit length of blade.



Blade element circulation due to root trailing
vorticity, per unit length of blade.

Blade element circulation due to shed vorticity,
per unit length of blade.

Reduced frequency based upon blade radius.
Related to coordinate along blade element
chord by x = ¢ cos 8.

2

Ratio of rotational to translational speed of
propeller.

Ratio of blade element oscillatory frequency
to velocity of translation of the propeller.

Reduced frequency based upon blade element
chord.

Geometrical variables in the Biot-Savart
relation.

Factor determining the helix associated with
the jth propeller blade in the system of B blades.

Non-dimensional coordinate in the translatory
direction.

Propeller advance angle at the blade tip.
Propeller advance angle at the reference station.
Rotational speed of the propeller.

Frequency of the blade element oscillation.



I. INTRODUCTION

In this paper a method is developed for determining the
magnitude and phase of forces exerted upon a propeller operating
in a field of non-uniform flow. One can easily suggest situations
where such motions will occur.

For example, when a pusher propeller acts in the wake
of the wing each propeller blade must pass twice through the bound-
ary layer wake during each propeller revolution. The air in the
boundary layer wake will be traveling at a velocity lower than
that encountered by the propeller at its vertical position. In fact,
there will be a steep gradient in the relative blade velocity as it
passes through the position parallel to the wing. More important
than the change in magnitude of the relative velocity is the fact
that since its rotation speed is constant the blade undergoes a
large change in angle of attack as it enters and leaves the regions
of diminished translational velocity.

Tractor propellers are also subjected to the same type of
motion. If the propeller is located near the leading edge of the
wing, as it is in submerged installations, then it is operating in
the portion of the flow which is distorted by the wing circulation.
That is, when the wing is operating at positive C;p, there is an up-
wash ahead of the wing to prepare the air for passage over the
wing. This upwash diminishes rapidly with distance from the

wing section in the vertical plane. Exactly in the vertical
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direction the propeller is, of course, unaffected and flow along the
blade is determined by the forward speed, V, of the airplane, and
the rotational velocity, 1 , of the propeller. Therefore, in this
situation, the propeller also undergoes two complete cycles in
angle of attack during each propeller revolution.

The effect on a stationary airfoil in a non-uniform flow
field is approximately equivalent to that of an oscillating airfoil
in a uniform flow field. This consideration simplifies somewhat
the task of describing the motion analytically. Hence, if a solu-
tion can be h:)btained for a propeller blade performing harmonic
bending and torsional o:cillations then any motion can be solved
through superposition by means of harmonic analysis.

Therefore, in this paper the following problem is posed.
The given data includes the forward velocity of the airplane, V,
and the rotational velocity of the propeller, fl , assumed to be
constant at all times. It is assumed that each propeller blade
element is undergoing periodic translational oscillations normal
to the chord and periodic rotational oscillations about the mid-
chord point. Certain physical characteristics of the propeller
are given: for example, the blade radius R, the blade chord c,
and the number of blades B. However, for purposes of analysis

these values may remain arbitrary and the solution will contain

them in the parameters. With these facts in hand the problem
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is to determine the forces which are exerted upon the propeller
from such a motion and to determine the phase difference be-
iween the forces and the periodic motion§ of the blade.

Throughout this discussion it will be assumed that a lin-
earized theory is to be utilized. This assures the validity of the
superposition principle and allows the entire analysis to be dev-
eloped upon the basis that each propeller blade element is a thin,
flat airfoil. After the essential results are obtained any effect
of thickness and camber can be included by simply superimpos-
ing them upon the solution obtained for the flat airfoil. The linear
theory also requires that the amplitude of blade element oscilla~-
tions be small. However, since such a linearized theory will
yield the predominant effects, this is not a serious restriction.

Many investigators have worked on problems associated
with non-stationary airfoil motion. The most important contri-
butors will be noted here. Efforts to date may be divided into
two general categories, those dealing with the two dimensional
problems and those with the three dimensional, or finite aspect
ratio problems. There is the further subdivision between solu-
tions for an incompressible and a compressible fluid.

Among the earliest contributors who established the funda-
mentals were Birnbaum(l), Wagner(z), Glauert(3), and K&ssner(4).

(5.6)

In papers by von Karman(s) , and Sears , general
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relations for lift and moment have been determined. These re-
lations have been applied to specific two-dimensional problems
such as a rigid airfoil passing through a vertical gust and forces
upon an oscillating airfoil. The principal contribution, beyond the
fundamental theory, is the presentation of the results in a vector-
ial graphical form which is extremely convenient and informative.
This form of representation of non-stationary forces was also em-
ployed by Kassner and Fingado.

Theodorsen( -8) derived the fundamental equations for
lift and moment on an oscillating airfoil previous to the work of
von Karman and Sears but upon a less physical basis. Of interest
in Theodorsen's work is the correlation between the two dimensional
incompressible theory and three dimensional experimental results
as applied to the flutter phenomenon.

Biot(g) has developed a simple theory of thin airfoils by
means of the acceleration potential which is also applicable to the
case of non-stationary motion. In the reference this method is
used to obtain the chordwise lift distribution over an airfoil
which undergoes vertical translatory oscillations.

BiO’C(10 1) and his followers at Brown University have also
surveyed the problem of two-dimensional non-stationary motion

in a compressible fluid. These references are of especial value

since they represent a digest of efforts upon this problem made
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in Europe during the war years, The references include an ex-
tensive bibliography a large part of which is either classified or
unavailable at the present time. The problem, as dealt with in
these papers, is concerned with thin airfoils of infinite aspect
ratio in non-stationary motion which is either subsonic or super-
sonic. The integral equations which are obtained in reference
(10) are solved in certain cases and the computations tabulated
in reference (11),.

When one surveys the work on three dimensional non-
stationary motion the material available is scant and inconclu~
sive. Kussner(lz) has obtained an integral equation which he
characterizes as the '""most general integral equation of airfoil
theory for small disturbances that can be used for computing the
pressure jump for a given downwash'. He reduces the integral
equation to several known forms and gives methods for solving
these équations. However, the reference does not contain an
attempt to apply the theory to the case of an airfoil of finite span
in a non-stationary motion. Inspection of the integral equation
indicates that such a solution would be very laborious in that it
would involve a large amount of additional analytical development
and numericai computation.

Reissner(13 -14) and Ste:vens(1 have developed a linear

theory for the airfoil of finite span in non-stationary motion in

an incompressible fluid. There is the restriction that the aspect
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ratio should not be too low and the authors offer the opinion that
their results are valid within the limits of the lifting line theory
for a non-oscillating wing. Results are obtained for spanwise lift
distribution, moment, and hinge moment on a wing which is under-
going bending, torsion, and aileron deflection. In this method
the evaluation of the three dimensional effect also depends upon
the solution of an integral equation. The second paper, reference
(14), contains numerical data necessary for this solution and the
amount of labor represented by that paper is considerable.

(15

Biot ) and Boehnlien(15) have developed a theory which
utilizes the Biot-Savart law connecting induced downwash with the
distribution of vorticity in space. The method closely follows an
outline laid down previously by Sears(l6) . An approximate vortic-
ity distribution is assumed which simplifies the analysis to a large
extent. Integrals which are obtained are evaluated only approxi-
mately. However, not withstanding the approximations and simp-
lifications in this reférence, the results compare very well with
the more rigourous but much more complicated method of Reiss-
ner and Stevens. Thé principal objection to the method of refer-
ence (15) is the lack of rigor. However, its basic simplicity and
close connection with the physical aspects of the problem are fav-
orable and upon these bases it was decided to extend it to the case

of the propeller operating in an incompressible flow field in non~

stationary motion. Therefore, the principal acknowledgement
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for the results that are to be obtained in this paper must be made
to the authors of references (15) and (16).

A brief outline of the method to be used in solving this prob-
lem will now be indicated. Since this approach bears a close re-
semblance to the lifting line theory for finite wings in uniform
flow the similarities will be noted.

To begin, this will be a "'strip" theory. That is, a blade
element will be considered as though it were a part of an infinite
cylinder with certain corrections introduced to account for the
three dimensional aspects of the problem. In the lifting line
theory it is customary to account for the three dimensional ef-
fects by computing the induced downwash at the quarter chord
point due to the three dimensional vorticity pattern and then to
consider the angle of attack corrected by an amount tan_l(w/V) ,
w being the downwash and V the velocity of translation. The ef-
fect of change in magnitude in the velocity vector is neglected
since by reason of linearization of the problem w is necessarily
much smaller than V. The situation is similar in the problem
at hand with the exception of changes which must be made to ac~
count for the fact that the motion is non-stationary. There will
be a definite distribution of vorticity in the wake of the propeller.
Each blade element can be represented by bound vorticity dis-

tributed along the chord. By the fundamental theorem of
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conservation of vorticity the strengths of the bound vorticity dis-
tribution and the wake vorticity can be related analytically. Then
if one computes the downwash induced along the chord by the vor=-
ticity distributed in the wake this downwash is a function of the
bound vorticity distribution.

The analogy with the lifting line theory now appears. An
arbitrary blade element at which the downwash has been computed
is isolated from the system and treated as a two dimensional
problem. For such a two dimensional section the strength of the
bound vorticity can be determined as an integral of the downwash
distribution over the section. This is the classical Munk integral.
So far only the induced downwash has been noted. However, it is
clear that the blade element motion itself constitutes an "equiva-
lent'" downwash. Thus if the motion of a point on the blade chord
has a normal velocity component, T, this is equivalent to a down-
wash at that point whose magnitude and direction is given by -u.
Therefore, the total downwash at a point on the blade element
chord is the sum of the induced downwash and the "equivalent"
downwash at that point. It is the total downwash which is substi-
tuted into the Munk integral. Then when the integration is per-
formed an equation is obtained which relates the total bound
circulation at that blade element to the motion of the blade ele-
ment. In particular, in the linear theory, if a periodic motion

is assumed the bound vorticity will also be periodic and the
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relation obtained from the Munk integral will permit the eval-
uation of the magnitude of the vorticity and its phase with the
blade element motion.

However, the problem is not completed as yet since it
still remains to determine the lift and moment on the arbitrary
blade element. From the two-dimensional results it is possible
to write the necessary expressions in terms of the bound vorticity,
or blade element circulation. This gives three comp onents for
both the lift and moment which are described as the

a) quasi-steady lift and moment, L, and M,,

b) lift and moment correction due to wake, L, and M,,

c) and the lift and moment due to the additional appar-

ent mass, Lj and M; .

Of these components only the lift and moment due to the wake de-
pend explicitly upon the vorticity distribution in the propeller wake.
It is apparent that the quasi-steady lift and moment are in phase
with the blade element motion. The apparent mass effect depends
upon the blade element acﬂzcei’eration.

With the lift and moment of an arbitrary blade element
determined it is a simple matter to resolve these into thrust and
torque. Then by considering the entire blade as comprised of a
finite number of such blade elements the total thrust and torque
are easily obtained by a simple summation.

The following sections contain the detailed calculations

as outlined in the above discussion.
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II. THE APPROXIMATE VORTICITY DISTRIBUTION

2.1 The propeller wake in non-steady motion. In the case

of non-steady motion the circulation at each station along the blade
will be a function of the time, t, and the blade station. To pro-
vide for the conservation of vorticity each propeller blade in such
a flow will shed vorticity along its helical wake. Therefore, the
distribution of shed vorticity will also be a function of the time
and blade station. In addition, for other than light loading of the
propeller there will be a contraction of the wake due to pressure
variation within the wake. Since the shed vorticity lies within the
wake, its motion relative to the propeller, in the direction of the
axis of the propeller hub, is the same as that of the wake of the
propeller. \f‘rom momentum theory the forward velocity and the

axial wake velocities are related by,
U = 1
- 'g(u'i + v) (2'1)

where u is the velocity at the propeller disc and Uy the velocity in
the wake far behind the propeller. V is the translational speed of
the propeller. In order to determine the forces upon the propeller
blade it is necessary to calculate the induced velocities at the
blade surface due to the vorticity distribution in the wake. It is
evident that this will be very complicated if the solution is based
upon the vorticity distribution described above. Application of the

Biot-Savart law in such a case will involve integration in three
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variables r, t, and 5 and determination of distances and angles
in an extremely complicated distribution of vorticity. Clearly,
the problem in this generality is excessively complicated and it
will be necessary to assume a less general, but more tractable
distribution of vorticity.

2.2 The assumed vorticity distribution. This hypothecated

vorticity distribution will be based upon three principal assump-
tions.

a) The oscillations of the propeller blades
from normal steady operation will be
assumed small.

b) The bound vorticity due to the oscillatory
motion will be assumed constant along the
blades except at the root and tips where
it must be zero.

c) All shed vorticity will be assumed to re-
main fixed in space.

The following inferences are to be drawn from the above
assumptions., Assumption (a) implies linearization, hence the
principle of superposition will hold. All of the steady forces on
the blade can be neglected in the course of this analysis with the
understanding that they can be superimposed at any convenient
point in the calculations. Also this assumption will permit

neglect of the contraction of the wake and the velocity of the
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wake will be the same far aft of the propeller as at the propeller
disc and will have the value,
w = Ll1 =V (2.2)

Assumption (b) is a great simplification but does not vio~
late the ph;’sical facts to a large degree since the principal grad-
ient in the circulation with respect to the radius will always occur
near the root and tips. This is analogous to the large gradient of
circulation near wing tips.

Assumption (c) is commonly made in the two-dimensional
theory of non-stationary motion. This assumption is justified so
long as the strength of the individual shed vortices is so small as
to have a negligible effect upon neighboring vortices.

Based upon the above assumptions one can define the fol-

lowing vorticity distribution of a propeller operating in non-station-
ary motion. (See figure 2.1).
(1)
a) Tip trailing vortices of strength Yz
extending along a helical path from each
blade tip.
b) A root trailing vortex extending along
the hub center line having the combined

(J)
strength ZY2 of all the bound vor-

J
tices at the roots of the blades.
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c) A ladder of shed vorticity of strength ‘(iJ)
lying in the helical surfaces swept out by
the individual propeller blades. The ele-
ments of this vorticity are parallel upon
separation.to the trailing edges of the blades.

It is convenient at this point to restrict the motion of the
individual blade elements. The effect of two periodic motions will

be investigated. That is, assume that the blade element is under-

going a translatory oscillation with velocity given by,

= lot 2.3
v, = A We (2.3)

where v, is the velocity normal to the chord line, positive down-
wards. Also, assume that the blade element is undergoing a ro-

tational oscillation about the midchord point with velocity given by,

iot

= 2.4
v, = 2a We cos © (2.4)

W is the resultant of the airpla;ne forward v;elocity and the propecller
rotational velocity, and if x is the coordinate measured along the
chord of the blade element with origin at the midchord the variable
© is relatedtox by % = % cos @, A, and Ar are constants which
can be chosen so as to give any desired magnitude to vy and v,..
Under the linearized theory, the bound vorticity will be of the

same form and can be written,

r(t) = /;ei"’t (2.5)
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Following the principle of conservation of vo:ticity,
the wake will be a continuous field of vorticity and each of the
elements will be a function of the variation of bound vorticity, or
propeller blade circulation. The next step will be to determine
the analytical expressions connecting the vorticity elements. But
first a coordinate system must be introduced.

Suppose a propeller of B blades fixed in space from which
a helical wake travels downstream with translational velocity V
feet per second and rotational velocity {L radians per second. To
describe the wake a polar cylindrical coordinate system is used,
4 is the axial distance downstream measured from the trailing
edge of the blade. 2 is the angle between the horizontal and a
line in the wake measured positive in the counter clockwise direc-
tion, hence opposite to the direction of rotation of a right handed
propeller. r measures the radial distance from the § axis to a
point in the wake. To measure points relative to the blade a rec-
tangular cartesian system is used with origin at the trailing edge.
y measures the distance along the blade chord in the plane of the
2 axis positive towards the leading edge =z is the distance per-
pendicular to the horizontal plane being positive in the positive 22
direction. (See figure 2.2). In these coordinate systems it is

apparent that the equation of the helical wake will be,

ﬁ—%:Oorﬂ (2.6)
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Equation (2.6) applies in the case of a two bladed propeller.

In general, for the jth blade in a system having B blades,
. Qa
&—A;:ﬂé}-g-—»jz?-": g where /\=v— (2.7)

As a result of the assumption that all shed and trailing
vorticity remains fixed in space, the strength of the tip trailing
vortices at any point corresponding to a coordinate S along the
flight path is,

Gy (i) () _
Y, =1 glolt = 2/V) _ P =1 (2.8)
o
Here again the superscript refers to the jth blade. And in equation

(2.8),
A=/ (2.
(J)

In addition, the shed vorticity, Yi , 1s related to the trail-

o)
o

ing vorticity by,

(4)
(J) 1 ar, 1 2.2
Y, = o= where =Ar (2.10)
1 T2
\/ i+ 1/3'3 dé Jg e
Hence, |
. (J) (J) —1h3
(J)_ 1AY, 9 W AR 2.11)

‘\/1-:—1/]2 -\/1+1/Ja2

Note that Yé") is a vorticity strength per unit length.

Finally, the root trailing vortices have the strength,

fY;J) = f‘ [‘(J )3‘17\5 (2.12)

Jj=i 1=
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The next step in the analysis involves the calculation of
the downwash at any blade element induced by the above described

distribution of vorticity.
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III. CALCULATION OF INDUCED DOWNWASH AT THE PROPELLER
BLADES.

3.1 The Biot-Savart Law. The fundamental law relating the

induced velocity at a point with the distribution of vorticity in space
which induces the motion is due to Biot and Savart. It is of the form,
[
dq_;-r-r?sin5d8 (3.1)

where dq is the induced velocity at a point P in space due to a vortex
line of strength [7. The quantities in equation (3.1)are indicated in
figure 3.1. EEI is perpendicular to Fand ar. Equation (3.) is derived
upon the assumption of an incompressible fluid.

The computations are most easily carried out by considering
each of the elements of the wake in turn and computing the downwash
due to each separately.

3.2 Downwash due to the tip trailing vorticity. In using the

Biot-Savart law for this calculation note that the element of vortic-

ity is geometrically an element of a helical line. To a first order,

az = (® a® + (a3)? (3.2)

where R is the radius of the propeller blade. Also, the advance

angle of the propeller is given by,
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so that the components of dl can also be obtained from figure 3.2
as dl cos ¢ in the rotational direction and a1 sint in the transla-
tional direction. It then follows that,

R &z

g

]

d¢ cos y

d¢ sin ¢ (3.4)

But previously it has been stated that

ﬂ'—_/\_f = ij
so that,

a2 =_Ads

Therefore, in the Biot-Savart law it will always be possible to per-
form the integration with respect to ¥ .

Sind and p in equation (3.1) are functions of §, R, 2%, and
the radial location of the arbitrarily chosen blade station which can
be expressed non-dimensionally in terms of R. Z* can be eliminated
from these relations by using equation (2.7) so that sin 8 and p can
be expressed in terms of § alone and a constant, a, to signify the
blade element under consideration.

Computation of the downwash due to the tip trailing vorticity
is simplified if the effects of the rotational and translational com-
ponents are considered separately. First the velocity induced at
an arbitrary blade element due to the translational components of

(J)

vorticity, th

, will be computed. It is necessary to integrate

equation (3.1) in the form,

(3.5)
4‘“(92% ) ’
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. . . (3) ) (N
The immediate problem is to determine Py and (sin S)zt where
)
Pg't is the distance between a point on the trailing vorticity line
o))
and a point on the arbitrary blade element and 52.1: is the angle be-

tween .P;:) and the translational component of trailing vorticity.

These quantities are indicated in figure 3.3. From the figure,

(1)
lpg, 1° = [3+71° +R%[1+ 8] =&

2

3.6

232{[;+y] +[i+a2]-—2a cos&} ( )
R

2& cos S

The dimension P:t, applies to the trailing vorticity of the particu-
lar blade element at which the downwash is to be computed. The
analogous distance from the tip trailing vortex elements of the

other blades is given by

i 2
J)
[Pét ]2 = r® {[%’; y] + [1 + azl = 28 cos [J% q]}(3.7)

Note that equation(3.7 reduces to(3.6) when j = 1, hence includes

that distance also. Also, from equation(2.7),
T = A_§

when ¥ is measured to the wake of the first blade. Therefore,
cos[#+ g;] = cos[A§+ o;] (3.8)

. i . . .
Hence, the expression for ?2: can be written in the final form,
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(J) 2
[po, 17 = RZL(EET) + (1 + a%) = 25 cos(hi+ o)1 (3.9)
(sin 5);;) is also obtained from figure 3.3. In particular,
(1) — '
(1) ky R\/(i + a?') - 28 CcOS8 S
[sin 6]2t = =T = )
Pog Pog
(2) N
(2) K B (1 + a®) + 28 coss
[sin 612‘&: T = el
Pot Pag
Or, in general,
. (J) ‘
(J) ky R\/ (2 + az) - 2a cos(As+ o))
[sin 8], = ==y = ) . (3.10)
P2t P2y (4)

Before completing the expression for [dq ]Q%t is necessary to

note thattan ¢ = Illrﬁ’ so that,

sin @ = L) = 1 (3.11)

v vE+ n®gr® vi+ 1/]2

Then, after making the proper substitutions in equation (3.5),
(J)
{dalo,

{J) ‘ ‘
roe M1 4 112 (1 + a®) = 22 cos(As+ o) a7 (3.12)

52
4R [(i.rl) + (1 +a )-2a cos(A¢+ o;)] /

() ()
[dq ]2t is normal to the plane of k( ) and p2t atr =aR. It

can be resolved into components which are parallel to the blade
chord, parallel to the propeller blade axis, and perpendicular to
the blade chord. These components are denoted by u, v, and w

respectively. It is necessary to determine which of these components
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contribute to the forces acting upon the propeller blade element.

It is clear that the component v can create no forces upon
the blade if boundary layer effects are neglected. Hence, the
component v need not-be considered.

To ascertain the effects of the induced velocities u and v
one can consider the quasi-steady lift on a blade element subjected
to these velocities superimposed upon a resultant velocity of
translation W. If the blade element is oscillating about an angle
of attack @, the quasi-steady lift per unit length on the blade ele-

ment 18 s
0

Then, neglecting the component of lift which is due to the steady

motion alone one obtains,

a pcW
L = (2au + - W)
Q 2 W
u'2
The lift determined by the term is negligible and one then has,
e pciw Sau

Under normal operation the angle of attack @ is of the order
of 0.1 radians. Hence, if the lift due to the velocity component u

is to be negligible it must be true that
w/w<<3
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This condition is obviously not satisfied if the forward velocity V of
the propeller blade element is much less than the rotational speed
{Lr. However, under design operating conditions, V and {)r are
generally of the same order when r = R and V is correspondingly greater
than {lr over the inner portions of the blade. The curvature of the vor-
tex wake is such that the direction of the induced downwash at the
blade element is determined by the vortex elements which lie near
the trailing edge of the blade element and accordingly are nearly in
the plane of the blade element chord. |

In this analysis, therefore, only the effect of the downwash
component w will be considered. It must be borne in mind that these
results will, accordingly, not apply to cases when V<<R.

- (J)

It will be necessary to determine the component of [dg ]Zt
which is perpendicular to the helical surface aty, r = a, and 2= 0.
Precisely, & is a function of y on the blade. However, for blades
with radius of the order of six feet and advance angle at the tip of
forty-five degrees, the maximum value of & on the blade is approx-
imately three degrees for a tip chord of one foot. Thus, for the
purpose of determining the downwash component of induced velocity
it is sufficiently accurate to use &= 0 in this calculation. This com-

. (J)

ponent of downwash is denoted by [w ]21‘; and is taken positive in
the negative z direction. The direction cosines of the unit vector

__ (4)
[W]2t / ‘[w JZt l are determined as follows. From figure 3.4
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_.(J) v
it is seen that [w]zﬂmakes the angle tan tfag ——- with the § axis
Nr

direction, and [g— - (pa Jwith the negative z axis. Denoting 1, m, n,
as the direction cosines in the r, z, ¥ directions respectively, by

inspection of the figure it can be seen that they have the values,

£ =0
m == sin ¢,
n = cos ¢
~ (V)
In addition, the direction cosines of [dg ]2t must be deter-

~) (V)

mined. This vector is perpendicular to the plane of ¥ and Pot
as previously stated. Now refer these lines to an r!, z', ;‘ coor -
dinate system and write the equation of the plane. From figure 3.5
one can write the coordinates of three points of this plane as,

(1): 0 Qo 0

(2): 0 o §

(3): (3 +y) RlcosP—a] R sin

Then the equation of the plane is given by,

r' z! E i
0 0 i
0 =0 (3.13)
0 0 (3 +y) 1
Rlcos#=a] R sinz* (§+7y) 1
Now equation (3.13) is of the form,
Ar?' + Bzt + C¢t' =0 (3.14)
where,
A==R(y+7y) sind®
B =R(§ +y) [cos@=1a]

¢ =0
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Therefore, the direction cosines of the normal to the plane are

given by,

3(1) - A =T sin &
i\/Az + B’2 + 02 \/[1 + a?'] - 28 cos

e B e = fcos $ = a] : (3.15)
:y@z + B + ¢° v«l + 32] - 2a cos &

n(i) =0

This result can be generalized to give the direction cosines of
—~{J)
dq2'b by merely substituting [A;«&-q’] for &, so that in general the

direction cosines are,

) 2 sinlAg + g ]
V&i +8°] = 2a cos[AN$ + o; ]
m(j) - 8 — cos[A2 + g; ] (3.16)
) v&i + ag] - 28 cos[AE& + o; ]
2 =0
By inspection of the case when j = 1 it is seen that the positive sign
(V) ()
is to be taken for £ and the negative sign for m . It now follows
~ ()
that the desired component of downwash in the dWZt direction is
given by (J)
dwo . E&(J)
U et
dw2t
or, (J')

ri)g=irs [y 1/7° {cos[Af+ o ] = el az (3.17).3 /2
2 < ’
s 1+ 1/77 {[(g + DR + (4 + %] - 2 coslAp gl
If it is assumed that the motion has been going forward for a

sufficient length of time, the wake can be considered as extending to

& =060 . Then,
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(J)
1+ 1/3’2 e_u't { cos{t/T+0;) =—a] dg
i 1+ :I./JE J [z + y/R)2 + (1 + az) — 2a cos(t/T + ) ]37?
(3.18)
where,
(t=5R) (X=m) (], =7%) (3.19)
()

The next step in the computation is to determine w

2ar
the downwash due to the rotational component of the tip trailing vor-
(J)

ticity. The appropriate expression for dqz_” is,

Gy A )

&, = I 1A ( sin. B )21' R 4% (3.20)
1y
2N
J) =iAg 4m (pg, )7 cos ¢
/'S & is the rotational component Y by equation (2.8). Then from

equation (3.4) one can write,

wl) - P Sy 118 (sin 6)21, ax
2r

(J) 2 (3.21)

4 (pg,
(J) (J)

Values of (sin 5)2rand pzr are determined from figure 3.6. It

is apparent that,

(J) (J) 2
[poy P = (poy 1? Rz[(-{{-z% (1 +a®) (3.22)
- 28 cos(Ai+ 0;)]

(5) ()
tho, 1° = (5+ 9% + [k, 17

Also,

5 ] 2 (3.23)
T [(%l) + {1 = a cos(A3+ o )} ]
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Then, (J) (1) (9)
[sin ﬁ}gr = h2‘.’t‘ f pgr

(ﬁ'?"l + [1 -2 cos(!\;-*- 0-)]2
.i.ﬁ.l) + (1 + a%) = 2a cos{At+ o))

And, upon substitution of (3.24) and (3.22) into (3.21),

(3.24)

-

D 2y 2
dq(J) oA A, 1/] ('Rf“““) [L -8 cos(Ai+ %2%_@&43.25)

2 /
? amR” E(%l—) + (1 +a ) - 22 cos(A3+ o)l

As before it is necessary to determine the component of

() - W)
dqgr in the direction of the unit dw vector. qur is normal to

(J) (4)

the plane of and h . Thus one can write the general equa-

tion of this plane and reduce it to the normal form as before. In
the case where j = 1 the coordinates of the points 1, 2, and 3, are,
- (1): 0 0 0
(2): R{(1/coss- a) 0 (& +7) (3.26)
(3): R(cos#—a) R sin# (§ +7y)

Then the equation of the plane is given by,

rt z! E 1

o 0 8] i
R{1/cos# = a) 0 (#+3) 1| % ° (3.27)
R{cos# = a) R sin 2 (3 +y) 1

Hence,

A ==R($ +7) sm;}—
B = R(; +7) sin zﬁ/cos;ﬁ—
C =R (1 - 8 cos?) sinP/cos2 (3.28)
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and,
~ . e '
P < e _ 2 sin.,9 + - 2
i\/A + B +C7 = 4R o5 5 (%.l) + (1 & cos#)° (3.29)

Then from equations (3.28) and (3.29) the direction cosines of the

normal to the plane are given by,

(1) ((F +3)/R] cos &
P LG ry)Rlcosd
2r " F MG + 3R] XA

+1

+ (1 -~ a cosd

i
i+

( [(;+I)ég[ sin &
e S : R s
2 T2 TGt /RIS + (L—8 cos )2 (3.30)
n(i) . 1 =2 cosd .
2t "= JT; +7 R + (L-a cos#)2

Or, in general, for the jth blade in a system of B blades,

MG s g)fR) cosiis o) _
21,' \/[(§+y)/R] + [4 -1 cos(.IL§+cJJ-)J2
(J)= _ [(2 + y)/R] sin(A3+ o) ,
m‘Z}:.' \/[(§+ y)ﬁz + [ 1 —a cos(A3+ g ) 12 (3.31)
nJ)=+ 1 -8 cos(Az+0;)
Vi R ¢ [ 1 -8 cos(Ag+ o))
—{J) e
By taking thej ?ot product of dqér and the unit dw vector one obtains,
dw(J)z [ Ja+1/1° Q.-_-EM
—3;;23— 4mR”

[G+ y)/Rlsin g sin(As+ g) + [t=acos(A$+ g) Jcos P,
fliz+ Y)/RJTZ (1 +8°) = 2a cos(Az+ ;) }375

And, introducing the proper limits,
- B, (J)
W(J )= Z r 1 + j_/;)"2
er J= 4R V1 +1/T: (3.32)
X g—1LT {(¢ + y/Rlisin(t/r + o) +1/7 [1 = a cos('c/3'+ gl i)d,c
{(t + y/’Rjg + (1 + a®) - 2a cos(t/T + c) ]3/2

o
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Now, one can superimpose equations (3.18) and (3.32) to
obtain the expression for the downwash due to trailing vorticity in
the form,

() =B
Wg =

= amVa o+ a7
i1 83,33)
o {(m + y/R)sin(¢/T + g} + (1 - &/3§}@@5{%%&+ gl + {

X - S -

E
5

[{z + y/h)g + {1 +ma2} - Zg ces(%/& + %)]3/2

The significance of the superscript j should be explained.

(o]

As mentioned previously, it denotes the jth blade in a system qf

B blades. F(J then infers that the bound vorticity of the several
blades is distinct. To obtain the total downwash due to the trailing
vorticity one would have to sum the right hand side of equation (3.33)
ovér j. The specific form for the bound vorticity has been assumed
to be,

(v) (J) +
eiwu

r=r,
and it will become clear later that this analysis reduces to a homo-
geneous equation in /-:@ However , if different values of " for
each blade are permitted, the problem will consist of a set of si-
multaneous equations equal in number to the number of blades.

The essential results can be obtained if one assumes that
the magnitude of the circulation, /T@, of the several blades is the
same but that the phases of the circulation differ in some reason-
able fashion. One such assumption is that as each of the blades

passes through a fixed value of the angular coordinate their cir-

culations at that point are the same. And a more tractable

~3
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problem is obtained if one assumes that the variation of circula-
tion with time, hence with angular coordinate, is determined by
specifying the value of circulation for one blade and imposing that
every other blade have the circulation which the one particular
blade would have at the positions occupied by the remaining blades.

Thus, in a system of B blades the j'® blade will have the

circulation
p(J)z [oelwlt + 2(j - 1)w/Bn] =P
o] J
where
P, = olw2() = 1)n/BR _ _ido; /A
and
’) ol

The above phase relationship is the most reasonable as-
sumption for application to the problem of cyclic pitch change (see
discussion on forced vibrations). However, to treat problems of
flutter it may be necessary to consider phase relations of a differ-
ent nature. For example, if a two bladed propeller is susceptible
to flutter in the antisymmetric mode it would be logical to assume
that the circulations of the two blades were equal in magnitude but
of opposite sign. Or, for flutter in the symmetric mode the circu-
lation of the two blades could be assumed equal both in magnitude
and sign. Only the phase relationship given above will be treated

in detail here. Then equation (3.33) becomes,
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r 2 g
W, = 1+ 1/{2 B; (3.34)
4RV 1 + :‘l../Zl'a =

[0 o)
—iYT T a T 1
. e ﬂx + %)sin(? + q) + (1 —v?a)cosbi + g} + Eigf a}}dm

[(T + %)2 + (1 +2a%) =20 COS{_'TE + 55)35/2

3.3 Downwash due to root trailing vorticity. From the as-

sumption of equal bound vorticity for all blades, the simple result
is obtained that the strength of the root trailing vorticity is given

by Fe_ix;i‘ B. The vortex element lies along a straight line in

j=1
this case and the downwash is given by,
re™*™ sin 5, &
dqs = § Pj df (3.35)

4Hp§

J=1

The quantities in equation (3.35) are obtained from figure 3.8 as,

p§ = (& + y)2 + a2R2
a

gin &6, = e
3 =4 Pyl
/(%_z) + a®
so that,
o0
B
-iX7t
- [ ' e dt
9z = I7R ZPJ (3.36)

C 3/2
A S+ y/R% 4 e /
Now —q_; is in the negative z direction. Therefore when the

dot product is taken with the unit E.TG& vector,

@x
s o117 go
5 am \/4 1+ 1/3-a %4 J![(T . y/R)z N 32]5/2

3.4 Downwash due to the shed vorticity. The strength of

the shed vorticity is related to the bound vorticity by equation (2 .11)

as,
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() )__: 1?\Fe-1)‘§P,~

Y
1 / )
1+ :L/J'a

It is necessary to calculate the downwash at a point on the blade due

(3.38)

to an elemental strip of width dl, where dl is taken in the helical
surface; then to integrate the effect of all such strips throughout

the entire wake. From equations (3.2) and (3.4),

gz =1 +1/° & (3.39)

Therefore,

(J)

Yy

- —iA
a¢ = 12 e M ag (3.40)

The downwash due to shed vorticity can now be derived with
the aid of figure 3.9 and the simplified Biot-Savart law for a straight

vortex element. Taking first the case when j =1,

(1)_ﬂ i?\l‘Ple-i)‘g (cos 2y = cos 2,) &

3.41
41Th4
Quantities in equation (3.41) are indicated in the figure. Then
(1) 2 .2 2
[hy ? = (g +3)7 +R a® sin“s (3.42)

The length of line (1) is,

\/(; + y)2 + Rzaz‘
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Hence,

cos 2, = 8_Ccos 5 (3.43)
Vi + 7R + 0
And the length of line (2) is,
(1) o
\/[h4 ]2 + R2(1 - 8 COS &)2
so that,
cos 2. = 8 cosd =~ 1 ,
2 2 (3.44)
\/[(§+Y)/R] + (1 +a”) = 22 cos#

Equations (3.44), (3.43), and (3.42) are now substituted into (3.41)

and immediately written in terms of the Jth blade, thus,

(J : iAle "'n§P a cos{Az+ g;)
dq4 > {
4mR \/[(g+ PR +a Esin® (A3+ o) \/[(§+ 7IRIP + a(3 o)
1=-0a cos(Ag+ o; ) 15;
\/l(€+ ¥I/R1P + (1 +8°) = 22 cos(Az+ 0 )j
Again the component of dq in the direction of dw must be ob-
tained.

The coordinates of points 1, 2, and 3 are

(1): 0 0 0
(2): =R 8 0 (é-l- v) (3.46)
(3 R(cos# =1a) R sind G+ )
Hence the equation of the plane is,
t z I 1
o 0 0 il = ¢
- Ra 0 G+y) 1 (3.47)
R{cos* —a) R sinzt G+y) 1
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so that when the equation of the plane is written in the form,
Ar® + Bz! + C' =0 (3.48)

the coefficients are,

A ==R@E+y) sins
B =R@+ y) coss
¢ =-R2a sin

(3.49)

The direction cosines of the normal to the plane are accordingly,

+
g(-'.): A _. iﬁ—l sin(A s+ o; )
4 w22 + B2 + o2 2 ‘
AT+ B +C \/(%l) + a%sin® (A3 + c; )
(J) B fﬁ;l cos(\g + o; )
m = _ s
4 2 2 2 2 ' (3.50)
_-x_-_\/A + BY + C \/(%.l) +32 sinz(/\.g+oj)
(J) c a sin(AZ+ o;)
n4 = = 4

+\/sz+ =2 . o2 \/(%1)2 ¥ 2%s10 (A3 + ;)

‘ —
And, taking the dot product with the unit dw vector,
-]

iAr 1 -8 cos('§+c}

Vé"'i/Ja j=1 \/("3 +I) + (1"'32)"2& °°3("+°)

(3.51)
a cos(:ca-_. + 0‘.) “{ 8—11”5[('5 + %)cos(::-& + oj) + %asin(ff + cJ.)]

‘/m + 37+ A (s &)? + a%s1n®(2 + o)) ]

dg
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3.5 Blade element oscillatory motion expressed as an

equivalent downwash. To complete the description of the

velocity component which acts normal to the blade element, one
must take into account the oscillatory mation of the element itself.
From the principle of relative motion it follows that a pure trans-
latory velocity of the blade element in the positive z direction can
also be expressed as a positive downwash since W is taken to be
positive in the negative z dif'ection, A similar argument holds
when the blade element is undergoing a pure rotational oscillation
but here the downwash is a function of the position along the chord.
In section 2.2 it was assumed that the blade element was

undergoing a translatory oscillation with velocity given by,

and a rotational oscillation about the midchord point with the vel-
ocity given by,

_ ot
vr = &rWe cos 6

Accordingly, the downwash will be,

wy = =(v, + v, - We ) (3.52)

where,

@:—W‘n (3.53)
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The last term in equation (3.52) arises from the fact that
the rotational oscillation of the blade element causes an angle of
attack change with respect to the relative wind. Hence for the
blade element located at r/R = a, the expression for the downwash

from this cause becomes,

1ot 1wt

(2 cos 8 =21 ) 3 (3.54)

== [ A _We
"1 t X(aR)?

+ ArWe



-36-

IV. BLADE ELEMENT CIRCULATION CALCULATIONS.

4.1 The Munk Integral Theorem. This theorem relates

the circulation about a two dimensional section with the downwash
at that section. In applying it to this problem two assumptions
are made.

a. There is no component of the downwash in
the direction of W in the r'-z plan’e .

b. The radial velocity component is very small
with respect to w and has a negligible effect
upon forces produced by the blade element.

These are the assumptions commonly made in determining the
spanwise lift distribution corresponding to a given wing shape.
Accordingly, the only effective velocities at the blade section are
the rectilinear velociéy W and the downwash W. The force on the
blade element is assumed to be the same as if it were a section
of an infinite cylinder in the r direction in a two-dimensional flow
given by W and w.

Suppose that the two dimensional thin airfoil lies along
the % axis in a z-3 plane (say). Then if the airfoil is oscillating
a fluid particle passing over the airfoil will follow a path given by
F(%,t). This is the same as though the section had an instantan-
eous camber given by z = F(¥£).

Now the classical Munk integral for a cambered thin air-

foil at zero angle of attack is,
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c/2
c. =8 F(f) af

“Losp (&= 28fe) 1~ (28/c)

When written in terms of the circulation equation (4.1) is,

c/2
[[= &0 Ff) af (4.2)

° [ofe (1 - 22/c)V 1 = (28/e)%

The aim is to associate some factor in this equation with the down-

wash at the blade section. From physical reasoning it is apparent
that at the airfoil the flow must be parallel to the blade surface.
Also, since this is a linearized theory, §<<W so that the absolute
magnitude of the resultant of w and W is very nearly equal to | WI .

Then,

dF _ w
7= T (4.3)

This leads to an integration by parts in equation (4.2). But, first,

the following change in variable is introduced.

4=7 cos @ (4.4)
Equation (4.2) then is,
o C
F(—z- cos 6) 4o
[(= = 2W (4.5)
1 ~-cos ®

o

Integration by parts yields,
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[[= - 2w —F(§ cos 9) 1 +1gos J g(i + cos ©)46]
0

(4.6)
At the leading edge © = wand,

Lim 1 + cos 9, _
e»n[ sin 1 =0

and since the Kutta condition must hold at the trailing edge, the

first term in equation (4.6) vanishes. Therefore,

U
[ = ch %—%(1 + cos ©) a6 (4.7)
O

Then when equation (4.3) is substituted into (4.7), the relation

for ’—' is obtained in the form,

ul
I_'=_c,f w(i + cos ©) 4o (4.8)
0

The next step in the analysis consists in writing down the
expressions for the circulation due to trailing vorticity, shed vor-
ticity, and the section oscillation.

4.2 Blade element circulation due to:

(a) tip trailing vorticity. One more relation between var-

iables must be pointed out. In deriving the relations for the down-
wash a coordinate y parallel to § was taken to describe points
along the chord of the blade section. Actually, due to the twist

of the blade y does not lie parallel to the chord but rather it is as
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shown in figure 4.2. Since the chord is parallel to the resultant

velocityW the coordinates y and @ are related by,

- € i = ¢os e = 2 2 9/2) 4
%-'gﬁ (AR)* sin“( (4.9)
Vi+1/88

Substituting equation (4.9) into (3.34) and then that equation

into (4.8) yields,

2 ©
[+ + 1/12
~TARNY L 1/3 Z‘P o117 o 2

4,10
(< +(AR)'s1n29)sin(1‘; +a) + (1 = J}a)cOS(" +g) + %—Q- a() Jd )de
X ' T
[(t +@R'sin®6)° + (1 + a°) — 2a cos(— + 0; )]372
where,
B Ry
vi+ 1/3;

Equation (4.10) can accordingly be written in the form,

/ 2
| _ TARMY 1 + 1/7
o == I, (4.11)

14

Evaluation of this, and the following circulation integrals
is performed in Appendix A.

(b) Root trailing vorticity. wj, the downwash due to root

trailing vorticity, is given in equation (3.37). The corresponding

circulation integral is,

B n/2 o
[ - feam —LIT 55%0 ade (4.12)
3 2.0 2.5/2 ’
[(fc + AR Sin"8)” + &% ]
or,

[_' - _f_‘_g(AR)' I
3 3
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(c) Shed vorticity. w,, the downwash due to shed vorticity

is given in equation (3.51). The corresponding circulation integral

is B w/2 o
f‘:_ir(AR)'IZ;J' J a cos(% + o)

4 b
i=L O -\/-[¢+(AR)'si 61" + a

1-a cos(-I-+oj)

‘1 (4.13
\/ [t + (AR)'sin26]2 + (1 + a2) - 28 cos(-'E + oj) ( )

o117 {[q; - (AR)tsin elcos( + g) + sin(’c + c)} 2
cos © dxde

X

[t + (aR)?sin e] + a s.’m (-’% + cj)
or,

=_MI4
ki

4

(d) Blade element oscillation. K the downwash equivalent

to the blade element oscillation is given in equation (3.54). The

corresponding circulation integral is,

1 = c j[A Wei“’t(z cos 8 = "THﬂ'T)

+ AtWei('Ot](i + cos 06)ds

which integrates immediately to,

it iwt 431
r, = cufa, We + A_We (1 = e ] (4.14)

4.3 Resultant blade element circulation. The circulation

at an arbitrary blade element station for any blade in a system of
B blades has been expressed in terms of four components: namely,
the circulation due to,

a) tip trailing vorticity, [, ,

2
b) root trailing vorticity, Fs ,
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c) shed vorticity, F@’ and

d) blade element motion, [

9
The resultant circulation has been denoted by '. The resultant,
and each component of ciréulation, is periodic. Then, since the
total blade element circulation is the resultant of the components
of circulation, and since each of the components has been expressed

in terms of the resultant circulation with the exception of Fl , one

can write an equation for ['. It is of the form,

_ _  T(aRr)¢ 2
r=r+f + 0 + 0 =- .wﬁ,a.vf2‘1f27§“ I,

_ 1l(aR) MY (4.15)
il

[a (4R)! 10t 41

o 3

Therefore, the instantaneous blade element circulation is given by,

lot int

41
_ cﬂ[AtWe + ArWe (3‘ - IIAR“)] (4.16)
- gﬁi)vh/m/?? I, +al, + 111,]

Having determined the circulation it is now possible to de-

termine the blade element lift and moment, hence the thrust and
torque on each element. To accomplish this it is necessary to ob-
tain these quantities in terms of the instantaneous circulation.

The necessary equations are derived in the next section.



-d? -

V. DERIVATION OF THE LIFT EQUATION FOR A THIN AIRFOIL

IN TWO-DIMENSIONAL NON-STATIONARY MOTION.,

5.1 Impulse of a vortex system. The lift on a thin airfoil

in two-dimensional non-stationary motion can be determined by
utilizing the following general theorem from incompressible fluid
flow theory.
"The impulse of the flow produced by a
closed, plane vortex element has only
a normal component and is proportion-
al to the strength of the element and
the area enclosed by it."

In proving the above theorem it is not necessary to impose
that the vortex distribution be plane and a much more general re-
sult can be obtained. The essentials of the proof to be given below
are presented in reference 19.

Consider a vortex system contained in a closéd surface S
in an infinite, incompressible fluid which is at rest at infinity.

It is desired to find a distribution of impulsive forces, per unit

mass of fluid, X', Y', Z', defined to be in the x, y, z, directions
respectively, which will generate the actual u, v, w, components
of velocity in the fluid. That is, a volume of fluid S is subjected

to a system of dirac forces,

"
Limit
Ft! = p— .(})‘F dt (5,1)
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an infinite force acting for an infinitesimal time and then one
studies the development of fluid velocities and determines the
ensuing impulse resultants arising from the vortex system.

Denote by S the surface containing the vorticity and imbed
the origin of an x, y, z, coordinate system in S. The impulsive
forces X'i acting on the volume of fluid S will, in general, give
rise to a vortex motion and an irrotational motion defining a
finite potential &t all points within S. The vortex motion within
S in turn induces a potential motion outside of S, the potential of
which will be single valued since the domain outside of S is free
of singularities. Denote by & the single valued velocity poten-
tial outside of S and by <§1 the velocity potential inside of S,

which must have the following properties,

a) tI>1 finite within S.

b) q:i satisfies Laplace's equation V2<I?1 =0
within S.

c) & and ¢, must be continuous on S.
That is,é1 = ¢ on8S.

Then éi is the velocity potential of the motion which would be pro-
duced within S by a system of impulsive pressures p@ acting over

the surface. Impulsive pressures are defined by

: T
Limit ! dt

w= "
’COO
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By using the momentum equation one can show that p$ is

function of the impulsive pressures on the fluid and that any ir-

rotational motion can be created by impulsive pressures.

Accordingly, assume that the impulsive forces are of the

form,

2%, |
oX

v +H¢)<I>1 within

3y f s
a@i
32 )

]

Xt =u +

VA

it

Al w +

Note that from the definition of impulsive force, equation (5.1),

0

outside S

that X', Y', Z' have the dimensions of momentum.

The distribution of impulsive pressures is given by p

within S and p§ outside of S.

Now it can be shown from considerations of conservation

of momentum that the motion of a fluid element that was origin-

ally at rest arising from application of impulsive forces will be

ow 1
= | SR . At
u=X'-523

ow 1

Y! CMND  CEmmE  goEe

oy P

_ oW 1
w=2l-3%%

given by

v

oW

(5.3)

where w 3:- == is5 the resultant impulsive pressure in the direc-

D ox

tion of the impulsive force X' and so forth. Then since,

m’=p§>1

within S, and

(5.4)
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w = pd (5.5)
outside S, it is seen that the proposed system of impulsive forces
in equation (5.2) will give rise to a motion in the fluid possessing
velocity components u, v, w.
Also, from equations (5.2) it is clear that the forces Xt
are discontinuous on S. However, this discontinuity must occur
only in the normal component of the X', forces since §

i

This is equivalent to stating that the only forces acting on the sur-

=@ on S.

face S must be impulsive pressures. One, therefore, can derive
a series of relations which must hold for the distribution of X'j%.
at the surface S.

Denote by 1, m, n, the direction cosines of the inward
normal n to the surface S and let ?, T, and X be unit vectors
in the x, y, z, directions respectively. At the surface S it has
been shown that the impulsive force resultant must be in the n

direction. Writing

F=X'1T+¥!'] +2'% (5.6)

F and ; will be parallel if their vector product vanishes, that is,

. —
if X

=g

= 0. Performing this operation one obtains

3

Fxn=(m2' = nY")i + (nX' = 21)] + (&Y' = uX")k (5.7)
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which can only vanish if each of the terms in brackets vanishes.

Therefore on S, the impulsive forces are related by,

mZ?! «= nYt =0

nX! — ¢21 =0 (5.8)
gy = mXt =0

Now recall that the vorticity in an incompressible fluid
is defined by

_ ow A

23 "3?"3'5’
en = Y3 oxX ( )

oV _ 2u

2£ ox ay

and form a surface integral of the sort,

2[]}(% - zq)av = ff [y(-g-;i - .;l%) - 2(3% - ;‘;—;’-)Jdv (5.10)
v v

Equation (5.10) can be expressed in terms of the impulsive forces

by using equations (5.2). These give,

oxX .55'. E_JE oy (5011)
ou oW oXt JZ1?

2z ~ 3x 9z ~ ax

so that

2Hf(yg-zn)dv fff[ (&'~ "X' -z~ £2') Jav

,_”fg%z*) a(;zx*)]dv fffla@” a%‘ﬁ')ldv (5.12)
\'

e fffxr
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Now one can apply the Gauss theorem in the form,

”J'Vx,ﬁ&“v= ”B‘x?da (5.13)
S
In equation (5.13) let,

il zyX'—i' +yY'T+yZ'—IE

Then,
i ] X
= _ 2 2 & |
” Vx F! av = f” 2 S | (5.14)
v

(yX') (y¥t) (yz!

and, T ']E
”‘Hx F! da = jj ¢ m n da (5.15)
S S lyxn) (y¥7) (y2!

So, if the * components of the vector equation (5.13) are equated,

one obtain.s,
”j[ﬂg"‘)‘ - ﬂ%“u‘]dv = ”y(ﬂ' — X ')da (5.16)
v S

And, if in a similar fashion one writes

FIt = 2X' 1 + z¥'] + 22! &k

then,

J‘Jf[a(le) d(zz')]dv IIZ(UX' - 221)dn (5.17)
S
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Therefore, substituting equations (5.16) and (5.17) into equation

(5.12),

2 j\ﬂwg- 2n)dv = g[y(zY' - 1X1) = z(nX? — £2') Jaa

(5.18)
+ 2 II Xt av
v
and the surface integral vanishes by equations (5.8) so that the
remaining expression becomes
H (72 = zn)av = UX' av (5.19)
' A
In a similar fashion,
[[[tz5 = xgrav = [[[vr av
v v
(5.20)

i

gf(xn - yi)av J!I 21 av

Introducing the fluid density p and denoting the resultant
force~resultants of the impulse of the vortex system by P, Q, R

in the x, y, z, directions respectively,

P=p JU(yﬁ— zn)av
v

p fﬂ(z; - x$)av (5.21)

P fyﬁxn - y$lav

Therefore, it is immediately seen that if the vortex system is

O
"

R

planar (lying in the x-y plane) with vorticity components $,m in

the x,y directions respectively, the impulse is in the z direction
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and is given by

R =p U (X = y$)da (5.22)
S
where da = dx dy and S is the portion of the x-y plane which

contains the vorticity. The theorem has accordingly been proven.

5.2 The lift equation. The results of part 5.1 can now be

applied to compute the lift on a thin airfoil in two dimensional non-
stationary motion.

Let the airfoil be placed in the x-y plane with the origin
of coordinates at the midchord. Let the chord of the airfoil be c.
Denote the velocity of the airfoil by W. The airfoil element is
represented by vorticity lying on the x axis between x = + c/2.
The strength per unit length of this vorticity is denoted by Yy(x) .
The integrated strength of this vorticity is | which is a function
of time. All changes in r appear as free vorticity in the wake
assumed to lie on the x-axis at the point in space at which it was
created. The vorticity strength per unit length in the wake is de-
noted by ¥ _(x).

7

Under the assumption of two dimensional motion there

are no vortex filaments parallel to the x-axis. Therefore, in

this case, equation (5.22) for the impulsive force on the fluid

becomes,

c/2 e

pl fx“(y(x)dx + fon(x)dx] (5.23)
—-C/2 c/2

R
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where it is assumed that the motion has been going on for a suf-
ficient length of time such that the wake can be considered to ex-
tend to infinity.
Now the instantaneous lift on the wing is the negative time

derivative of R. Therefore,

+c/2 e
= dR _ d _ d
L=eogr==03¢ xYX(x)dx- P T JxYn(x)dx (5.24)
—02/2 ’ -i-C'/Z
where
*%-5 f?;Yn(x)dx =W [Yﬂ(x)dx + -gﬁ Yn(%) (5.25)
c/2 c/2

As has been stated before, the change in the total circu-
lation, I' , about the airfoil appears as free vorticity with location

at the instantaneous coordinate of the trailing edge. It is therefore

7

possible to write

€

Y (5) =Y (§) =—%%§ (5.26)

Also, the combined vortex strength in the space must remain un-

altered so that

o

f‘fn(x)dx = -/ (5.27)
c/2

Therefore, if equations (5.27), (5.26), and (5.25) are
introduced into equation (5.24), one obtains the equation for the

lift in the {f orm,
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c/2
L=w=p %E J.x‘ry(x)d.x + pWl + P-% g-g (5.28)
=C /2

The first term on the right hand side of equation (5.28) is
the contribution of the additional apparent mass to the lift. In
the integral, the vorticity Yy(x) can be written in terms of the
downwash, w, at the airfoil by methods outlined in reference 17.

5.3 An alternate form of the expression for the lift due to

additional apparent mass. In the previous section, equation (5.28),

the lift on a two-dimensional thin airfoil in non-stationary motion
contributed by the additional apparent mass was obtained in the

form,

c/2

o!
L =-p % f x¥ (x)dx (5.29)
/27

In reference 17 equations are developed for the moment upon a

thin two-dimensional airfoil. The following identity is established.

c/2 5 2T :
c W
= ar(x) 2
f xTy(x)dx = —;—»—f —é’f—- sin”© de (5.30)
-C /2 0

where F(x) is the instantaneous '""camber' of the oscillating air-

foil as described in part 4.1 of this paper. From equation (4.3),

dF'éz) z_y_évgl (5.31)



-52-

W, as before, is the velocity of translation of the airfoil. There-~

fore,
c/2 2n
02 2
f ny(x)dx =7 j w(x) sin“e ae (5.32)
-C /2 0 '

Recall that the variables x and © are related by X = % cos © .
Thus w is even in © about © = W so that the expression for the

additional apparent mass lift can be written as,

L1
2
I, = - &5 %f f w(x) sin®6 @0 (5.33)
0

Equation (5.33) can be transformed further inte a form

which is convenient for computational purposes. Writing,

'sin®@ = (1 + cos 8)(1 = cos ©) (5.34)

and recalling from equation (4. 8) that,

w
M=o I“' (1 + cos ©) a6 (5.35)
0
equation (5.33) can then be written as,
, /2
Ly = pe %% +'4pcz %% j [w(20) cosze] 00829 de (5.36)

0
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VI. LIFT ON A PROPELLER BLADE ELEMENT IN NON-

STATIONARY MOTION.

6.1 The total lift equation. Applying the expression for

the circulation about a propeller blade element operating in non-
stationary motion to the two dimensional lift equation as derived
in section V, one can now proceed to write down an expression
for the lift on a propeller blade element in non-stationary motion.

First, equation (5.36) for the lift on the element due to
additional apparent mass will be written in another form. As in
the integrals for the circulation, Fi , W in equation (5.36) is the
total downwash at the airfoil comprised of the equivalent downwash
due to the airfoil motion itself plus the downwash induced at the
airfoil by the wake. Note that these integrals will vary from the
circulation integrals only by a factor of cosze multiplying the
entire integrand in each case. The induced circulation integrals
have been denoted by I, 13, and I The corresponding apparent
mass integrals will be denoted by 1'2, 1'3, and 1'4. Then, intro-
ducing equation (3.54) for w;, integrating and collecting terms,
the expression forl, becomes,

2 lot

L, =~ mpc i [ 24, Te - Tﬁ%"‘x’“”

+ peiol 1 + .(.13%2,1(1/1 + 1/12 11, + &I':s (6.1)

+ 111'4)3

+ ArWeMt(i
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Therefore, if equation (6.1) for the lift due to additional
apparent mass is introduced into equation (5.28) one obtains the
following expression for the lift per unit length on a propeller blade
element which is undergoing translational and rotational oscilla-

tions.

L = = mpcfinl 3 AtWei wt aWel®®

(1 - 31 )
TaR) T !
+ peloll 1 + (AR) (V' 1+ 1/12 I, + a:l‘:'S (6.2)

+ iII'4)J + pMw( 1 + % X(AR) t)

e D)

where, from equation (4.16),

- Lot int
cw[ A ge + A We™ (1 —
[= » IIAH) (6.3)

M[\/i-riﬂ I, +a13+1113

6.2 Lift due to translational and rotational oscillations.

For purposes of comparison with the two dimensional theory it is
convenient to express the lift as two components arising from the
translational and rotational modes of oscillation. Denoting the trans-
R) ,

lational component by L(T) and the rotational component by L(

from equations (6.2) and (6.3) one obtains

T

o = . = 2mf + .w(i t 5 5y1 (6.4)
%pWZeiwtcA L 1"""‘@“"‘ T““G“"“ q

t
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and,
(R SR {(1 v i) (1 - 2L
= = 2%
TWQ iwt L ‘
e cA i+ @G
7P r 0,2 (6.5)
1 +G
PEEY (Fr- Y - S R )
i+G
0,2

Zz) is the reduced frequency based on the blade element chord and

is given by,

2 = co/W
and
_ aR)? Tl :
140, 5 =1+ 388800/ 1 0 1771, 4 a1, v ar,)

)

1+6 = 1+ L*E%);L[ 1+ 1/”}2 I'z + aI‘3 + 111'4} (6-6)

Note that in equations (6.4) and (6.5) the first terms on the
right hand side of the equations are the net effect of the quasi-steady
lift and the induced lift. The remaining terms on the right hand side
of these equations contribute the lift due to the additional apparent
mass.

6.3 Corresponding two-dimensional lift equations. The

equations given in section 6.2 above, are analogous to the follow-
ing equations obtained from reference 5 for the lift on a two-dim-
ensional airfoil undergoing translatory and rotational oscillations.
The notation of the reference has been changed slightly to facil-

itate the comparison. Thus, for translational oscillations,
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(T (12
T Lmt = 2n [ 1K1 Z 5 +3§] (6.7)
ZoWe 0% o K (35) + K, ()

and for rotational oscillations,

L(R) Ki(‘;”z))
=2n [ 1 -4L) 41 (6.8)
T X R

where Ko and K1 are modified Bessel functions of the second kind

of order zero and one respectively.
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VII. THRUST AND TORQUE ON A PROPELLER BLADE ELEMENT

IN NON-STATIONARY MOTION.

7.1 Resolution of the instantaneous lift vector. As developed

in section VI, the instantaneous lift vector acts perpendicular to the
resultant direction of the blade element in steady motion. That is,

it acts perpendicular to the velocity vector W whose magnitude is

given bylWI: \/VZ + (L1 r)z.

The resolution of this lift vector into thrust and torque is

obtained frem figure 7.1. From there it is seen that,

L ‘ (7.1)

Vi +']E

T =1L coay =

and

& (7.2)
vVis+ IE

where T is the thrust, and Q is the torque, per unit length of blade.

Q =rL sing =

7.2 Existence of induced drag in oscillating systems. No

account has been taken of possible induced drag upon the blade ele-
ment. In deriving the expression for the instantaneous lift on a two
dimensional blade element- it was shown that the force exerted by a
planar system of vorticity acts perpendicular to the plane of the
vorticity. From this general result an explicit formula for the

lift on a two~dimensional airfoil in non-stationary motion was ob=-

tained in terms of the circulation about the airfoil and then in terms
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of the downwash at the airfoil. By this means an expression was
obtained which gave only the lift component acting upon the airfoil.
In three dimensional stationary wing theory the induced

drag is generally computed in the following way. One calculates
the induced downwash at a particular section of the wing due to
the wake vorticity distribution created by the wing. Then the
characteristics of this section are assumed to be those of a two
dimensional section subjected to the velocity of translation of the
wing on which is superimposed the induced downwash at the sec-
tion. The induced downwash,‘w, at the section has the effect of
rotating the velocity vector at the section, hence rotates the
force vector and gives rise to a component of the force vector
in the direction of the motion. This is designated as the induced
drag. See Figure 7.2. Using the differential Kutta-Joukowski
law, one finds that the forces per unit length on the airfoil ele-
ment are given in this case by,

Force = F' = pgl’

Lift = L' = pWI : (7.3)

Drag = D' = pwl"

It is clear that under the condition that w <«W one will have

W and |-<—i.l very nearly equal and that this will yield F! and L
equal to within the same approximation. With this assumption,

the expression for D' can be written,
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wF _w LY

D! =—a—W —-—Wvﬂw (7.4)

Expressions for the instantaneous lift on an airfoil ele-
ment in three dimensional non-stationary motion have been devel-
oped in the preceding sections. Thus one could, to a first approx-
imation, assume that the force distribution depicted in figure 7.2
is the instantaneous force distribution associated with the non-
stationary motion and utilize equation (7.4) to calculate the induced
drag on the lifting element. However, a difficully arises in attempt-
ing to determine the proper point on the airfoil at which to calculate
w. In non-stationary motion w varies greatly over the airfoil chord.
It is known that the three dimensional effect is equivalent to the
introduction of an effective camber of the airfoil element. From
two~dimensional theory it can be shown that for a two dimensional
thin airfoil having a camber line in the form of a parabola or a
circular arc, the effective angle of attack of the element is the
slope at the three quarter chord point. With this fact as a guide
it is reasonable to compute w at the three quarter chord point and
to use this value in equation (7.4) to determine the instantaneous
induced drag. Two points should be kept in mind. First, the
value of the lift as used in the equation for the drag takes into
account the distribution of w over the entire chord. Second, the

selection of the three quarter chord point as a coordinate at which
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to compute w has been made arbitrarily and is not justified in any
rigorous manner .

For most problems in which the non-stationary forces are
required it happens that the drag force is of little importance.
The drag force is directed against the greatest axis of inertia of
the airfoil section and, therefore, is of negligible importance in
flutter calculations. In computing the non-stationary forces on the
propeller, the drag force has its principal component directed in
the direction of the torque and,therefore, will effect the thrust of
the propeller very little. Also, the induced drag force is propor-
tional to the product of the induced velocity and the instantaneous
lift, which itself is linearly related to the induced velocity.
Therefore, the instantaneous drag force is of the order of the
square of a small quantity. Finally, at the high speeds at which
propeller blade elements operate, the induced drag is much small-
er than the profile drag of an actual propeller blade element.

From all of these considerations, it is reasonable to ne-
glect any consideration of the induced drag so that equations (7.1)
and (7.2) give the instantaneous thrust and torque upon the blade

element per unit length.
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VIII. DERIVATION OF THE MOMENT EQUATION FOR A THIN

AIRFOIL IN TWO DIMENSIONAL NON-STATIONARY MOTION.

8.1 Moment of momentum of a vortex system. Following an

analysis analogous to that of section 5.1 one can derive the expres=-
sions for the moment of momentum in an incompressible fluid, at
rest at infinity, about a fixed origin arising from the creation of
an arbitrary distribution of vorticity in the space.

As in section 5.1, let ¥, q , 4 , be the components of vor-
ticity in the x,y,z directions respectively and denote the correspond-

ing moments of moment a by JK ) 23? s 72 . It is then possible to show

(reference 19) that,

£

m
N

--gf(yg r 25)3 ax
T

_.E J(zz + xz)n ds
T

_.% f(x? + ¥ ax
T

il

i

where T is that portion of the space containing the vorticity.

In the case of a two-dimensional thin airfoil in non-stationary
motion translating in the direction of the x-axis, the only component
of vorticity is in the y-direction, the motion of the airfoil being in
the x-y plane. Then equations (8.1) reduce to a single equation ex-

pressing the moment of momentum about the y-axis. It is,

4 =-§fx2n(x) ax (8.2)
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8.2 The moment equation. Following the notation of

section 5.2, the equation for the moment of momentum on the

fluid arising from the non-stationary motion of a two dimensional

thin airfoil can be written as,

+c /2 on
n = - %E (x + P)ZYY(x)dx + J (x + p)zYn(x)dx](fm)
...c-./2 +c/2

where p is the distance of the midpoint of the airfoil from
a fixed origin on the x axis. It then follows that the moment
on the airfoil about the midchord is given by e %%ﬂ evaluated
. a . .
at p = 0. It is to be noted that 3% = - W where W is the velocity

of translation of the airfoil. Thus,

+c /2 co
_pd e P
M=5l | (x+p) Y lzlax + ) (x + p) Yo (xlax] o (8.4)
-t/2 +/2 p=0
Then, performing the indicated differentiation one obtains,
+¢ /2 oo +c /2 oo
—c /2 +o/2 -z /2 +c/2  (8.5)

The sign convention has been selected such that a diving moment
is positive.
Equation (8.5) can be simplified as follows. Performing

the differentiation of the second term one obtains,

oo o8

| 3
& fsz ax = 2W fondx + Wg.xn(c/z) (8.6)

+c/2 n +c /2
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And, since, from equation (5.26),

Yn(c/z) = Yy(c/z) = - % %-g (8.7)

it follows that the equation for the moment can be written,

+¢ /2 +c /2
=£4 % ax - pW dex—-egEdr (8-8)
=gy | Xy e y ;87 °
-C/2 - /2

The second integral in equation (8.8) also arose in de-
termining the lift due to additional apparent mass. It has been
expressed in terms of the downwash along the airfoil chord and
is given in that form in equation (5.32). It still remains to
express the first term of equation (8.8) in terms of the down-
wash along the chord.

The distribution of vorticity along the chord can be re=-
lated to the downwash there by means of a relation obtained in
reference 17. In deriving the Munk Integrals there for the lift
and moment on a thin airfoil it is shown that the vorticity can

be expressed by,

- W adF(x € = 7 er
Y‘y’(x) = md{ —E—leot——‘é-—— sin 7 &1 +

w sin ©
where x = ccos 6 The "instantaneous' camber has been ex-
pressed in terms of the downwash in equation (4.3) as

dF(x) _ _ w(x)
55 UQ )

Therefore, denoting the first term in equa-

tion (8.8) by I, it can be written,
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21
- ,‘(;w(x)co Ssin T At + F]cosze ae(8.10)

[
ll
O‘—"“*ﬂ

The second term in equation (8.10) can be integrated immediately

and the expression for I becomes,

T 2n
2

= - &‘ H'Ef[ fw(x)cct-—-gn;gsin T dt]cos™e ae® (8.11)
&

To simplify the first term one can utilize the identity,

O - T 2 8in 1

Cot—p— = o5 7 = Go5 © (8.12)

If equation (8.12) is substituted in equation (8.11) and the order

of 1ntegrat1on 1nterchanged I can be expressed by,

e
%.‘ = f[ j e goi Soge,c w(x)sin®t dt

s

The integral in terms of ©, here denoted by J, is an

(8.13)

improper integral as written above. It can be evaluated quite
simply by means of contour integration. Denote cos ¥ =d

. . 1e
and introduce the complex variable z = 8™ .

Then J can be evaluated about the unit circle as contour

in the complex plane. In terms of z, J is given by,

22(z - z4)(z = 25)

where zj and z) are the roots of the quadratic equation
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+
~17 . It follows

2% - 2dz + 1= 0. They are given by 2 2= ®
that the singularities of the integrand are a double pole at the
origin and simple poles at z = z, and z = z, - It is to be noted
that the singularities at z, and z, lie on the contour of integra-
tion. However, the contour can be indented at those two points
and a theorem from complex integration utilized which states
that the contribution to a line integral at such an indentation
about a simple pole is 2%l times the residue of the integrand
at such a point times the angle turned through in going about
the indentation, divided by 2% .. Upon calculating the contri-
bution from the simple poles in this manner it is found that
they are equal and of opposite sign and hence cancel identically.
Therefore, the sole contribution to the integral comes from the

double pole at the origin. The residue there is calculated by

means of the formula,

e 2
R = RGS[ (Z + 1) ]
z=0 22(2 = Zl)(z — 22) %=0 (815)

- ILim 4 P (22+ 1)2 ]
T 200 Az (2~ 2,)(2 = zéT

and this yields,

iz it _
R,eg =€ + @ = 2 cos T (8.16)

Then, since the value of a contour integral is 2% i times the
sum of the residues o the integrand, it follows that J has the

value,

J =mwcos 1 (8.17)
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so that the expression for I can finally be written,

3 ., 0 2 .
= & J(;w(x)sinzecosze ae + £&- g{.;. (8.18)

Now if equation (5.32) and equation (8.18) are sub-
stituted in the expression for the moment on the airfoil,

equation (8.8), one obtalns,

2
= - £ g.g - ‘E'z— jw(-gcos 6)sin“6 a6

3
+ ng‘ '5.'1"3 (J)w(%cos e)sin 6cos © 48

Equation (8.19) then expresses the instantaneous moment on a

(8.19)

thin, two-dimensional airfoil in non-stationary motion in terms

of the instantaneous downwash along the airfoil chord.
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IX. MOMENT ON A PROPELLER BLADE ELEMENT IN NON-

STATIONARY MOTION.

9.1 The total moment equation. Here, as in the devel-

opment of the total lift equation, section 6.1, it is assumed that
a strip theory is applicable. Just as in first order three dimen-
sional stationary wing theory, the moment on a propeller blade
element in non-stationary motion is assumed to be that of a two
dimensional section in a resultant flow modified by the three
dimensional distribution of induced velocities. Thus the moment
on the propeller blade element is expressed by equation (8.19)

if one substitutes for w and [ the values given in sections III
and IV respectively. To perform these substitutions, it is con-
venient to express the moment in another form which will also
be simpler from the computational standpoint.

Comparing equations (8.19) and (5.33) and noting that
differentiation of the circulation integrals with respect to t
merely introduces a multiplicative factor, i , it is seen that
the second term of equation (8.19) can be expressed in terms
of the lift due to additional apparent mass. This then can be
expressed in terms of the airfoil motion and the apparent mass
integrals by means of equation (6.1). The relation between the

second term in the equation for the moment and L1 is,

2 u
we 2 _W
- 22_.“{) w(x)sin®e d@ = L=L, (9.1)
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Simplification of the first term in equation (8.19) is not
accomplished quite so easily. However, by means of elementary
trigonometric identities and the use of equations (5.35) and (5.36)

for ' and Ll, this term, here denoted by K, can be reduced to,

7/2

- 29@5 %Ej w(26)00366 ae (9.2)
o

= _ pc:giwf’ + Sely

K % Z

Note that the remaining integral is in the same form as the ad-
ditional apparent mass integrals except that the integrand is
multiplied by an additional cosze . Where these integrals ap-
pear in the resulting expressions for the moment they will be
designated by I''.

Upon substituting equations (9.1) and (9.2) into (8.19),

the moment upon the propeller blade element is given by,

M= - %pczmr + i% + %)Ll o

i
5 4 6
-2pC j w(20)cos" 0 40

dat 5

Next, the explicit integrals for the downwash compon=-
ent§ , as given in section III can be substituted into the above
relation. After integrating the term involving the ""equivalent "
downwash due to the blade element motion itself, the moment

is expressable as,

. 3

+ (E”% + %)11 - %pcgiwf’(l + Gz)

(9-4)
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In equation (9.4), the value of L, to be used is given as equa-
tion (6.1), and the value of ' to be used is given as equation

(6.3). The quantity (1 + G ) is,

;= 8(AR) A+ 1/7% It +allly + 1YIM, ] (g 5

9.2 Moment due to translational and rotational osc111ations .

1+G

The expression (9.4) for the total moment could be simplified some-
what but it is more convenient to express the moment in two com-

ponents , namely, that due to translational oscillations, denoted by

M(T) , and that due to rotational oscillations, denoted by M(R)
Splitting equation (9.4) in this mamer yields,
(T) (T) i1 +aG
T e = Oy = Bl-(3 + 1) - B
FeW e (o] At 0,2 (9.6)
i+ G
+ (Siz) + 4) mam]
and,
(R) (
R) 1 +6G
M i 161 i
= C [(16 + 312 = )
Igngemtcz% M "z 2 ' ITF Go’2 o
1+ Gy 12 _ 8iz) |

“9(1“%‘“)1‘?@;‘2‘*(“"" >

The expressions for (1 + Gy ,) and (1 + Gl) are given as equations
(6.6).

9.3 Corresponding two-dimensional moment equations.

The following equations, obtained from reference (5), refer to
the moment on a two dimensional thin-airfoil in non-stationary

motion. The notation of the reference has been changed to show
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the correspondence with the three dimensional equations, (9.6)
and (9.7), above. For translatinnal oscillations,

T i2
M( ) S Ky (55)
Towe™tE . T Bk (&) vk &)

(9-8)

and for rotational oscillations,

M(R) K (17)2) 41 i»
i )
. = o= 1+ =)+ 5] (9.9)

K0 and K1 are modified Bessel functions of the second kind of

order zero and one respectively.
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X. THE EFFECT OF COMPRESSIBILITY.

10.1 The Prandtl-Glauert rule. The major portion of a pro-

peller blade operates in a velocity field which is high subsonic. It,
therefore, is important to appraise any aerodynamic theory of the
propeller with the view towards corrections for the effect of compres-
sibility. A successful, approximate means for doing this is afforded
by the Prandtl-Glauert rule which, although proven inaccurate for

the higher subsonic Mach numbers, gives a very simple means of
determining the qualitative effect of compressibility.

The Prandtl-Glauert rule is formulated by considering the
combined continuity momentum equation for the steady flow of a com-
pressible fluid in linearized form. Thus, if u,v, and w are the per-
turbation velocities superimposed upon a uniform flow of velocity U
and Mach number M from infinity, the linearized equation of contin-

uity-momentum is,

du . 1 ov 1 ow _
-a-i-#?s-g-é—-i"gg'é;—-c (10.1)
where
8% = 1 - ¥°

Or, in terms of a perturbation potential defined by,

D

q= V& (10.2)

where ?is the resultant perturbation velocity, the governing differ-

ential equation is,

1 =
QXX + -g@w + ?@ZZ =0 (10.3)
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This differential equation can be reduced to the LaPlace's
equation, governing the velocity potential of an incompressible flow,

by means of the affine transformation,
£y =X
25 = Py (10.4)
s5 = P2

This transformation then yields the differential equation,

2 + @ + @ =0 (10.5)
33354 0 Tig¥p 213

If the same transformation is applied to the boundary condi-
tions, one has managed to transform the problem from the compres-
sible form where solution is difficult to the incompressible form

where the extensive knowledge of harmonic functions can be utilized.

10.2 The Biot-Savart relation for compressible flow. The

greatest utility of the Prandtl-Glauert rule, for application in this
paper, lies in the fact that it enables one to write the Biot-Savart
relation for a compressible fluid. The possibility of writing the Biot-
Savart relation in this form was recognized by Tsien and Lees and is
published in reference (20). There it is noted that since the Prandtl-
Glauert rule transforms the compressible problem to the incompres-
sible problem, one has merely to write the Biot-Savart relation in
the usual form. Then, upon inverting the Prandtl-Glauert transform-
ation, and denoting the velocity components in the compressible prob-
lem by q', one obtains,

dqt = 4F o x dé (10.6)
e
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where,

-

o=Vix =52 + Plz -T2+ (z = 2)?]

(10.7)

—_—

2=1d% + jdF + Xk dz
Equation (10.6) then is the Biot-Savart relation for a single vortex
filament in a compressible subsonic motion. [° is unchanged by
the transformation and has the same value in both the compressible
and incompressible motion.

In applying (10.6) it must be remembered that the velocity
components are also transformed by the Prandtl-Glauert transform-

ation. Thus the velocity components u', v', w', in the compressible

motion are given by,

du'(x,y,Z) = i F[(z — E)d:‘f -:; (y — i)d-z_l
P
dv!(x‘y‘z) = %2_{ r[(x - i)di ‘:’; (z cn E)dg (10.8)
e
2 =1 2= —\ a—
dw'(x)y'z) = %"ﬁ _EL‘J - F)aX g (X - x)dll
[

10.3 Application of the Biot-Savart relation for compressible,

- subsonic, flow to a lightly loaded propeller. In reference (20), the

authors apply the Biot-Savart relation for compressible, subsonic,
flow to the problem of calculating the induced velocities due to the
vorticity field of a lightly loaded propeller. They find that the ex-
pression for the axial velocity u' has one term which is independent

of Mach number effect. This term is just the quantity for the change
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in axial velocity through a propeller with an infinite number of blades.
The conclusion is, therefore, that the momentum change and hence
the thrust of a lightly loaded propeller having an infinite number of
blades is unaffected by compressibility in the first order.

The remaining terms in the expression for u' are modified
by the Mach number factor, ‘32 , and represent the compressibility
effect upon the correction due to the number of blades. These terms
are mathematically complicated and are presented by the authors
in representation form. Only an estimate can be made of the ef-
fect of compressibility upon these terms and it is seen that the cor-
rection for number of blades must be increased by a factor somewhat
larger than 1/3 .

The important fact is that the Mach number correction is,
itself, applied to a correction. In figure 62, page 264, of reference
(21) the optimum loading distribution, F(M), of a propeller is plotted
as a function of the advance ratio along the blades and is reproduced
in this paper as figure 10.1. This figure gives an immediate picture
of the correction due to a finite number of blades. It is seen that
when the advance ratio ,}%R- =7 , is large this correction is negli-
gible. In the case used as an example in this paper J has been given
the value 1/;r . Referring to figure 10.1 it is seen that for a two-
bladed propeller the effect of the number of blades is of the order

0f 10% . For a four bladed propeller the correction is much less.
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To a first order, therefore, the results obtained herein
also apply to the case of a propeller in non-stationary compressible
subsd;ic flow. Of course, as the operating speed of the propeller
blade element approaches near to M = 1 these results no longer apply.
However, since the compressibility correction only appears in the
blade number correction it is felt that the results can be applied
with confidence up to about M = 0.8. This is merely speculation

based upon the above qualitative discussion.
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XI. RESULTS AND DISCUSSION.

The results of this theory can be applied to at least two
distinct problems. These problems fall in the general categories
of forced vibrations and flutter. Since the application to the forced
vibration problem was the original aim of this paper that problem

will be discussed first.

Forced vibrations; cyclic pitch change.

In the particular type of forced vibration of interest here it
is assumed that changes in incidence during the blade cycle arise
fr om non-uniformity of 1l:he flow. Several instances in which such
a motion will occur have been described in the introduction. It
must be clearly understood that there is a distinction between the

problem of non~uniform flow on the one hand and non-stationary

motion on the other. The results of this paper have been obtained
upon the basis of non-stationary motion, that is, the problem of an
oscillating propeller blade in a uniform flow field has been treated.
Now, however, it is desired to apply these results to the case of a
non-oscillating propeller blade in a non-uniform flow field. This
latter problem is one in which potential theory is not applicable

and, accordingly, is quite difficult to treat. But, the effect of a
stationary airfoil in a non-uniform flow field is approximately equiv-
alent to that of an oscillating airfoil in a uniform flow field, if the

non-uniformity of the flow is slight such that one can assume small
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oscillations of the airfoil. Under such conditions the results of this
theory will be applied directly to the forced vibration problem with-
out further qualificatioﬁ.

In general, the frequency of the forcing function will be a
multiple of the rotational speed of the propeller measured in cycles
per second. For the large propellers the lowest multiple frequencies
are dangerously near the natural frequencies of the blades. This
suggests that some means be attempted to eliminate the forcing
function entirely. Since it is not possible to eliminate the non-uni-
formity of the flow two courses remain. Either the propeller in-
stallation can be designed so as to operate in a region where the
non-uniformity is negligible or, since this is usually not possible,
cyclic pitch change can be used to compensate for the non-uniformity
of flow.

If cyclic pitch change is used there arises the problem of
determining the required magnitudes of change of angle of attack
and the point in the cycle at which these changes should be made,
that is, the proper phase between the motion and the proposed
angle change must be known. The results of this paper afford a
means for determining this phase angle as a function of the re-
duced frequency of the forcing function. For example, in the part-
icular example computed here it is found that the forcing function

lags the rotational motion of the propeller by about 12.5 degrees.
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Two dimensional theory yields an angle of lag, in this case, of
only seven degrees. These numbers have been taken from figure
A.l1. For other values of reduced frequency the phase angle will
be quite different. The general relationship between phase angle
and reduced frequency as obtained from two dimensional theory
is illustrated in reference (5). See figure A.4.

Equations (J6 .4) and (6.5) for the lift due to translational
and rotational oscillations have been written in a form such that
the bracketed terms on the right hand side of these equations
represent the amplitude of the angle of attack. For a given non-
uniformity of the flow it is possible, therefore, to compute the
necessary angle of attack change to compensate for the non-uni-
formity of flow. This information, together with the knowledge
of the phase angle, permits one to treat the cyclic pitch change

problem completely.

Flutter.

To date, virtually all propeller flutter calculations have
been made by replacing the blade with a two dimensional section.
Representative values of the blade stiffness in torsion and bending
are assigned to this section and two dimensional aerodynamic char-
acteristics for non-stationary motion are used. Such calculations

always yield a flutter speed which is higher than that actually
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observed.

With three dimensional aerodynamic theory now available
it is possible, in principle, to extend the usual methods of flutter
calculation to account for the fact that the problem is actually a
three-dimensional one. Given sufficient computational facilities
such a project c?uld be undertaken. However, the most practical
procedure is to continue to assume a two dimensional section
mechanically and to replace the two dimensional aerodynamic char-
acteristics by the finite aspect ratio results obtained in this paper.
Such a course would entail a computational project to determine
the G functions in equations (6.4), (6.5), (9.8), and (9.9) for the
lift and moment for a sufficient range of the variables. Since only
mechanical integrations are involved this would not be difficult
although their evaluation by means of the ordinary calculating mach-
ine is quite lengthy. Once a sufficient range of these variables is
obtained the flutter calculations will be no more involved than
Theodorsen's procedure, reference (7), since the functions G
merely replace the aerodynamic variable ¥ = ¥ + i G in the Theo-
dorsen method. The G of this paper and that of Theodorsen are
unrelated.

The principal value to be obtained from the use of the three
dimensional aerodynamic characteristics is that the calculated

flutter speed will be nearer the true flutter speed. Referring to
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figure A-3 it is seen that the aerodynamic force lags the motion
in a larger amount as predicted by the three dimensional theory
over that given by the two dimensional theory. The three dimen-
sional theory will therefore lead to a more accurate determination
of the flutter speed.  The extent of this improved accuracy can

only be determined by the calculation of an actual case which is

then checked by experiment.
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APPENDIX A

Evaluation of the Circulation Integrals of Part IV

In order to obtain the results of tI-nis theory it is necessary to
evaluate the integrals set forth in Part IV. The integrals are com-
plicated and difficult to express in closed form. It is, therefore,
necessary to resort to numerical integration. The procedure will
be outlined here along with limiting values of the integrals which
can be determined analytically. Since numerical integration re-
quires that values of the parameters be assumed, each such eval-
uation represents a given problem and a series of such calculations
will be required in order to determine the behavior of the results
with respect to the various parameters. One such example will be
carried out in detail. Based upon design specifications given by a
propeller rpm of 1260, an airplane velocity of 300 miles per hour,
a propeller radius of 10 feet, and a forcing frequency which is twice
the propeller rpm, the following values are assumed for the para-

meters.

a. J=V/QR

1/11'

2m

"

b. L =9 R/V

1

c. a=r/R 0.6
d. No. of blades =B = 2

e. c/R =blade chord-radius ratio = 0.1

1

constant along the entire blade.

Then, with the above values assumed for the fundamental parame-

ters, one can compute the following:
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f. J,=1/0.67w =V/r

g. AR' = C/R\A-l-i/\]':: O.l/\/i + 0.361T2

h. \/1 + 1/I2 =\/1 + 0

A-1. Calculation of Integrals I; and L.

For a two bladed propeller the integral IZ becomes,

TJ{/QC f:-il'tj [v + (&R) tsinze]sin%;_ + (1 = .‘:‘J.a)cosfj + % -
5 lv+ eR)1sin®e)® + (1 + a®) - 22 cost] 5T

0 J
s (a-1)
-[7 + (AR)'sinzelsin% - (1 --%-. )cOSEI +% -2 o
+ s 23 % 575 cos @ dzde
{[fc + (AR)'sin"0)° + (1 + a“}) + 2a cos-f}
and the corresponding I‘Z integral is

n/E e 1y, [ LT+ (AR) 'sin®6Jsint + (1 — & )cosl + %g Y

f je— T s T . T T ,,3/2

) 0 {[fs + (AR)*sin“81” + (1 + a“) -~ 28 cos:;} (a=2)

-{t + (AR}'sinzelsin-'-;-, - (1 ‘_% Jeos= + i e

- W I —3—3771 cos46 d5de
{['c, + (AR)'sin26]2 + (1 + aE) + 28 coszj } }

Now for large values of T , equation (a-1) reduces to,

+

/2 oo
K ——~ COs8 8 4440 K = constant (a-3)
) %

where the lower limit § of the integration with respect to © must

be determined such that the integrand of equation (a-1) is closely rep-
resented by the approximation indicated in equation (a-3) when 1 is
large. The integrands of equations (a-1) and (a-3) agree within 0.6%

if the lower limit & is taken to be 20. Therefore the integral of
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equation (a- 3) will be evaluated in the form,

/2 @
K cos © ——x— d1d0 (a-4)
0 g0 T

Equation (a-4) integrates to,
/2 _401x —4017
I {é’ i1e
K 25— = g
‘0 (a-5)
RS 2ﬂ2[01(40n) + 1&%*- 81(40ﬁ)}]}00526 a8

where Ci and Si are the cosine and sine integrals* as defined by,

X X
si(x) = Ji’i’%ﬁ at ci(x) =J 209 L gy (a=6)
O o)

In the range above x = 10 the asymptotic formulae for these functions

are sufficiently accurate.

Si{x) ~ % - P(x)cos x = Q(x)sin x

a=-"7)
Ci{(x) ~ P(x)sin x = Q(x)cos x
where
1 21 43 61
P(X) B o o + — + esesee
x z %0 =l s
1 31 5% 71 a-8
Q,X)z - + — + eesenn
W ETETE

And, since in an asymptotic expansion the error committed in using

st
n terms of the series is given by the (n + 1)— term, it is seen to be
sufficient to take no more than two terms of P(x) and Q(x) when &= 20.

Then,

¥ Tabulated in WPA Tables of Sine » Cosine and Exponential Integrals.
Vol. I, Fed. Works Agency, WPA for City of N.Y., 1940
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1 24 . p 33
S1(40m) = 3 — + 22y L CL(40T) X - +
2T (o) (40m)%  (s0m)*
(9.9
so, equation (a.5) becomes,
/2
1 in 1 in 31 24 2
X J\ - - + + ry — lcos®™® 4@

2 ' — 20 ~ 500 * o 800(40w)°  800{40w) 010
‘ ' 9.10

Hence, the contribution to I2 and I', is negligible in this case for
all § = 20. These integrals will accordingly be evaluated numer-

ically with the limits in T taken to be zero and twenty. With all

constants computed to five significant figures these integrals become,

w/2 20
I, = I J é'zwiqcosze
0 0

o [l + L04686551n°6) sinmt = .13097costt + 1.2850)
[(T + .04686551n°0)° + 1.3600 — 1.,2000c0sm7 ]

_ [z + .04686551n°0)sinmt = ,13097cosTT = 1,2850 1}
[(T + +0468655In°6)° + 1.3600 + 1.,2000c0smT ] (a-11)

/2 20
0 0

[(t + +046865s8in 6)siﬁr¢ — ¢13097cosnt + 1. 2850]
[(T + +0468655in°6)° + 13600 — 1,2000¢0sT ]

_ [(% + +0468658in°0)sintt = 413097cosnt = 1,2850 } 40
[(T + +046865sIn°8)° + 1.3600 + 1.2000cosT ]

The numerical method used in evaluating the above integrals
and the other integrals contained in this theory is outlined in Appendix

B. After carrying out the integration it is found that
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12 = 1331 — 1,121 1 (a-12)
I’z = 16131 = 00,8299 1
A-2. Calculation of Integrals 13 and I'; .
For a t\;vo bladed propeller the integrals I3 and 1'3 are,
Tf (oo}
J‘ f cosze
—T—d’tde
5 [m + (aR)'sin eJ + az} e
Tr/2 © (a-13)
LYt 4
I""f 2 2O 0
3 0 0O ﬁm + (AR)'sin"©@1%+ a } /
For large values of © I3 becomes
/2 oo
f f 208 %0 4va0 (a-14)

This equation is then in the form of equation (a-4) which was shown
to be negligible for & 2 20. These integrals will accordingly be
evaluated numerically with the limits in 4 taken to be zero and
twenty. With all constants computed to five significant figures the

integrals 13 and I'; become,
w/2 20

é'zﬂi? c0326 d1de

| e, ‘
3 { T(v+ .046865sin76)° + ,360001°72  (a.15)

/2 20
- f I e~2M7T ;.50 azae
[(1 + 04686551n°8)° + ,36000 ]°/%

0
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After carrying out the integration it is found that

I, = Cel377 — 0,6546 1

3
(a~-16)

115 = 0,06283 — 00,5161 1

A-3. Calculation of Integrals I4 and 1'4.,

For a two bladed propeller the integrals 14 and I'y become,

n/2 wlg=11t {[n: + (aR}'sin‘?e]cos-? + %,- sin:g-}
2.

4 & 0 [t + (AR)'sinzejz + azsinz(T/I)
1 — acos(t/7)

X AS
{\/ [t + (AR)'sm?"GJZ + (1 + az) - 2a cos{t/T)

1 + acos(t/7)
- Y (a-—l?)

\/{fc + (AR)'smzejz + (1 + a2) + 2a cos(t/3)

. 2a cos{t/T) , ‘}cgsze aae
N 2, .2 2
\/[fz; + (aRj'sin"0]" + &
w/2 oo

it = I J Saeme as terms in I cos

Note that for large values of © , the terms in the brackets reduce

4 aae
to,

28 cos(t/y) 1t —=8 cos(x/T) _ 1 + & cos(x/T) (a-18)
T T T

=0
Because the integrand is singular at the origin, the value of
the integrals for small values of the variables will be determined

analytically. For® £ ¢ and ¢ £ 1 , where both ¢ and 7} are

small compared with one, the integrals for 14 and I', both become,
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2 dtde

} ft + (»R)? 82]+ a’r/J‘aJ’
o

[v + (aR)! 6°7° 4 a.’tz/faf

(a=19)
dtdeoe

€n v A2
t [t + (aR)' © j+afx:/1a3'
- 112 sy 5
o0 [t + (AR)? 8°]° + ax /IaJ'

Denoting the first integral in (a~19) by R and the second by S,
the integration in R with respect to T can be carried out immed-

iately to give,
€

2
1, 2.2, an®) .o _ o 2y 4
R=5% ggoé{}n + {(AR)16°]° + JaI}de i togl(sR)16"%] d?a_zo)

The integrations in equation (a-20) will be carried out next.

Consider,

o
T = J 8og(ax4 + bx2 + ¢) &x (a-22)
0
which after an integration by parts can be written,
o 2
T =4log(att + 4% 4 o) = 44 + f ghx _ *_4c
o #X +DbxT + ¢

ax (a-23)

The remaining integral in equation (a-23) can be evaluated with
sufficient accuracy by expanding the denominator of the integrand

as follows,

i 1 2 b a, 4
&X4 + bxz + & ¢ :g ¢

(a-24)

3 .
& {21)& %}xo + (-(-;2 —w-g-ﬂ —z)x + eeve)
c
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For small values of x the expansion can be terminated after only

a few terms and the integral, equation (a-23), can then be written

as,
"
2 2
2bx™ + 4dc¢ b _2 o] a, 4. -25
|t sy s - B - ity o (a-25)
0

Equation (a-25) then integrates to,

' 2 5 3 7
lleos = 28 + (B )t - \?»:-g - 2ty (a-26)

The integrals in R can now be completely evaluated by ap-

plying equations (a-22) and (a-26) where,

a = (AR')2
b=2 1 AR
c= p2@+a/17)
4= ¢
The double integral R then become52
2.2 & =
[n + (aR) 1) + F 1 o
R = ¢ 308{ - _Ig.:l + 2¢ Z(Aa)a £
(aR) te” n(t + 55
8
-27)
2 a - 3 a (a
. 2(aR) (1 —‘3-;3:') R . Z(AR)J V(3 = ) %’i
< TRy 5 73 a .
1 + een) (1 + =
T} ( J'aJ' n J’aJ‘

The integral in equation (a-19) which has been denoted by

S will be evaluated next. The integrand is an improper fraction.

However, after applying long division and collecting terms, the



-89-

integral S becomes,

g ! o .
s = [ __J (aR)197x + (AR) 1 e | }de 29
0 (1 + )'c + 2(aR)19°¢ +(gg)2%

Now if F(x) and f(x) are two polynomials in x, with f(x) of higher
degree than F(x) and having only simple roots, a, then the proper

fraction F(x)/f(x) can be resolved into partial fractions as follows,

?-é-——y ZF(:.) x_i_'a where $la) = {i—}z—-)-]x::a (a-29)

Therefore, if the integrand of the integral with respect to ¢ in
equation (a-28) is denoted by F(g )/f(t ) and the roots of f(g) by T

and T, these roots are given by,

2’
2
¢1=‘(AR)6 1—1/ w)s Ty = M(1+1 %) (a-30)
1+—-— 1 4 e a
Tgd

Equation (a-29) can then be applied to the integration in (a-28) with

respect to ¢ to give,

& 2 2
(AR)'116 + (AR}t Ty -1
S = { - éog

’l:i — 1:2 1:1 (a-31)

0

(AR)'G + (AR)'G T fc -1
2 2 ‘
T - T:L ’fz
Equation (a-31) can be further simplified to,

(1 4 = Ty = 17)
S = {n - m»«»«g—é\-« ['ci + (AR) 'ezleog 11 (a=32)
o) 21 v 1

7

’c —n
— [, + (AR)16°Jgog—2 a6
2 7
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Only the real part of equation (a-32) is required. This is

determined by usual methods to be,

> 2 a
{‘n + (AR) 'e ] 4 ﬁ-ﬂ
S - |6
i{n g(ﬁR) Log- ’2 Z &

2

(AR) 33

3/2 64 ’
RS o }ae
8% + (1 + a/7,7)/(aR)?

It accordingly becomes necessary to carry out the indicated
integrations in equation (a-33). Denoting the second integral in
equation (a=33) by T and the last by U, they can be evaluated as

follows. After an integration by parts, the integral T is reduced to,

3
= £ 1,242 g 2
T reog{['q+ {aR)1e"] +—--JaIn}

(a-34)
g R)? J‘ [n + (AR)'ez] ot .
[n + (&R) 16° 17 nz/Ia:r
The denominator of the integrand of the remaining integral in
equation (a-34) is now expanded in the following form.
i — 1 2(aR)? 2
Ze 8 2 gl = AR
' R o] L esvgiiin. —eud
a a
(a=-35)
+L41’1_-1-8./I T)(aR)2g ]
2 [ 2 K
(1 + a/T J’)
This expansion can then be substituted in the equation (a-34) for
T and the integration carried out to give,
5] 5
g 2.2 a 2 4({AR)? e
T = £oa{[n+(AR)'8 ] ‘*""““‘"]}" =
Vo ‘T&I 3(1 + I&J )nz 5]
& (a=36)

1—a/r7 7 (AR)'Z(3 + 3a/TT — 4n) 9
—~ (AR)? : —— : '3—]
T+e/ig T (1 +a/17)%
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The integrand of the integral denoted by U in equation
(a-33) is an improper fraction. After applying long division

the integration can be made directly and yields,

a 8
> J.J J. T €
U= - P 813/ Rt e (a-37)
(4R)? (4R} (1 + =2
JnJ
{(AR)!

The evaluation of the integral is now complete. Substi-
tuting equations (a-36) and (a-37) into equation (a-33), and re-

ducing to simplest terms, the expression for S is,

3 3 o
S =me + (AR)'(a/IaI)S/z z- "'S%{‘)‘i[gi“*)g [ty + (R)1e2)%

2 4{AR)? e':=
Tt - [ - R)?
+ an /Ta} 3(1 + a/TaJ)ﬂgD.g— .

—ey
(1 + a/J'aJ') 0]

The calculation of the integrals I, and 1'4 for the range of

_ (AR)'2(;’> + 38 /7T = 47) _SE}

the variables T and @ near the origin has now been completed

and it is found that both of these integrals are given by,

I, =1°¢

4 = 2(R = 1YS) (T end @ << 1) (a-39)

4

where R is given in equation (a-27) and S in equation (a~38).

It is necessary to select values of 1} and ¢ which are com-
patible with the approximations made to obtain equation (a-39) for
I, and 1'4. It was assumed that sin ¥t £ YT and cos Yt = 1.

In this numerical example Y =21 . Hence the approximation
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~

requires that sin 2wt = 27 and cos 2wt = 1. If ¢ = .05/% ,
the approximation sin 2777 = 21T is in error by one part in
one thousand and the approximation cos 2%t = lis in error
by five parts in one thousand. The approximation was also made
that sin® = © and cos® = 1. If 6 = 3.75 degrees this approx-

imation is better than that for < . Finally it was assumed that
1 e = 1
Vit + (aR) 1017 + 42

£

With T = .054t and ©® = 3.75 degrees = .065445 radians,

[t + (AR)'9% 7%

= 0,0002538
In the numerical example, gZ = .16, .36, and 2.56. Taking

the smallest value,

i
y/ﬁm + (AR)'62]2 + £2‘

The value of this factor has been taken to be 1/0.4 = 2.500 so that

= 2.498

the approximation is in error by two parts in 2500. Therefore,
it is seen that sufficient accuracy is obtained by taking = .05/
and g = 3.75 degrees.

Introducing the above values for the limits into equation
(a=39), and using the numerical values of the parameters chosen

for this example equation (a-39) yields,

I, =1t

4 = 0493352 — 0,21726 1 (a-40)

4
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Equations (a-17) for I, and I'y have now been integrated
over the range of variables near the origin. It was previously
shown that the contribution to the integrals from the region in
which g and®© are large is negligible. It therefore remains to
evaluate the intermediate region in order to complete the inte-
gration for the purposes of the numerical example. With the
numerical values of the limits introduced and the integrands
suppressed for the time being, one can write the integrals which

are to be evaluated numerically in the following way.

3,75 20 w/e 20
J _f [ Jazdo + J ‘f [ Ja=ao (a-41)
) 05 /u 3.75° 0

The integrand, indicated in the above by square brackets, and
with the numerical values of the parameters introduced is, in

the case of 14,
—2nil¢ (T + «046865sin G)Poswm + o38TMsinntT
(T + .046865sin 9) + .36Sin2ﬂT
X{ 1 = ,5cosmt

ST —n

(7 + 202686551n°0)° + 1,36 = 1,200S7T (a-42)
1+ .OvOSﬁ¢ -

V(T + »046865sin e) + 1.36 + 1420087T

+ , le2c0smT } c0526
V(T + 00268655in°8)° + o35

and in the case of I'g,
é_znilq (T + ¢046865sin 8)00571 + ¢383inmT

(T + «0468653in 8) + .5bsin2n¢
1l = ¢Bc03NT

{\/('C + 00468653i712-é—)2 + 136 = 1.200317':‘ (a_43)
1 + 46cos8n%

T + +04686551n°8)° + 1.36 + 1.2c0s7T
1.2cosut cos4e

oo s

(7 + ,04686581n°6)° + ¢35

e
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Then, after carrying out the integrations outlined in

equation (a-41) and adding the values in (a-40) it is found that,

-4
i

(a-44)
= 660391 = 1,6968 1

o]
)
i

A-4 Summary of results for the numerical example.

With the numerical integrations completed it is now pos-
sible to substitute the values into the equations for the lift and to
form comparisons with the two dimensional theory. Thus, for
this particular case, the terms in equations (6.4) and (6.5) have

the following values,

l+iz /2=1.000+0.1472 i

1+ GO,Z

L+ Gy =1.216 + 0.5160 i

1

1.253 + 0.5993 i

2 =0.29446

and in equations (6.7) and (6.8), the ratio of the Bessel func-
tions has the value

Kl(iu/.é)
Ko(w/z) + Ki(iz)/z)

= = 0.775 - 0.186 i

Using the above values, the results can be tabulated in
the form below. Lo, LZ’ and L1 refer to the quasi-steady, in-

duced, and apparent mass lift as described on page 9.
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Two Dimensions Three Dimensions

1, (7 (T) 775 - .186 i 6952 - .2150 i
-ZT-{( bLo + CLg = . - i 6952 - . i
1 (T) Q
=l CI"l ] = .073621 01251 + .05886 i
1 C(T) 775 - .11241  .7077 - .1561 i
= . -, 1 . - 1
BT Ly b
1t C(R) C(R) 1.752 - 10.71 2.225 659
+ = = 1. -10.711 -2. - 9.659 i
2 Ul Lo
1 (B .
5=l cL1 ] = 1.000 8118 + .1847 i
1 { C(R) 52 - 10.71 1.41 474
= -.752-10.71i -1.413-9.4741
T "Ligtas

The quasi-steady component of the 1lift, LO, is in phase with
the motion. Therefore, it is convenient to express the components

Ll and L2 in ratio with Lo. For the two dimensional case,

1 C(T) 1,000
= °
= to (a-45)
L B
2 Ly -

Therefore, the desired ratios have the following values for this

numerical example.
Two Dimensions Three Dimensions

(r) C(T) C(T) 775 - .186 6952 - .2150
C + = . - . i . - . i
Lo Lo Lo
{ n(T) 1/ C(T) 07362 i 01251 + .05886 i
s = . 1 . + . 1
Ly Lo
(T) (T)
(¢, 1/ c = .775- .1124i .7077 - .1561 i
tota é 0
{ (=) C(R) / C(R) 775 - .186 6952 - .2150
C + = ) - .186i  .6952 - . i
Ly Ly, Lo
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Two Dimensions Three Dimensions

(R) (R)
(¢, 1/ ¢ = .00542 + .07361 i =-.00920 + .06076 i
] Lo
(R) (R)
Cp, Cp, = .7804 - .1024 i 6860 - .1542 i
tota ¢ 4]

The above results are indicated in figures A-1 and A-2 in
graphical form. The angle which the vectors make with the hori-
zontal axis is the phase angle between the particular lift component

and the blade element motion.
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APPENDIX B

MECHANICAL QUADRATURE

In applying the methods of numerical integration to a
double definite integral it is found to be unnecessary to develop
a special method, or formula, for handling such a problem and
that the rules'of Simpson and Weddle are adequate.

The analysis for reaching the above conclusion is given
in reference (18) and will be outlined here.

Suppose that one wishes to integrate a function, z = f(x,y)
of the two independent variables x and y over a rectangular do-
main. It is first possible to develop a double interpolation form-
ula for application in this problem. It is clear that the develop-
ment of a double interpolation formula must be preceded by a
tractable definition of double differences. To this end let z=f(x,y)
be any function and let z.g = f(x, ,ys) . The z__ then represent
the elements of a rectangular array each element of which cor-
responds to a preassigned value of x and a preassigned value of
y. Or, graphically, the z,.  are the elevations of the funct:@on
surface described by the function z = f(x,y) above the x-y plane.
Every regular surface can then be described as closely as one
pleases by taking a sufficient number of the elements z__. Double

rs

differences in the array can then be defined by,
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A Zps T szrs = zr+1,s rs
AO+1zrs = 85%ps T Zp s+l ~ Zps
A2+Ozrs = Azzrs = Zr+2,s 2zr+1,s T Zpg
AO+22rs = A?rzrs =% o542 7 22r,s+1 * Zhg
A2+1 g = A2+Ozr,s+1 _ A2+Ozrs
A1+22rs - AO+2 il = AO+2zrs
AS+Ozrs = Aizrs = fny3,s T szr+2,s N 32r+1,s = Zys
AO+3zrs = Agzrs = Zn 843~ 5zr,s+2 * 3%, 541~ Zpg
A3+1zrs _ A3+Ozr aed A5+O s
A1+Szrs _ AO+5 rids AO+SZPS
Aé+ozrs=A§zrs=zr+4,s 4zr+5,s * 62r+2,s - 4zr+1,s T Zps
A0+4zrs=A§zrs=zr,s+4 —'4zr,s+3 ¥ 6zr,s+2 - 4zr,s+1 * Zng
A2+2zrs = A2+Ozr,s+2 - 2A2+Ozr,s+1 * Az+ozrs
= Ao+2zr+2,s - 2AO+2zr+1,s + AO+2zrs
And, in general,
Am*nzrs = Am+ozr,n - nAmﬁOzr,n—l + n<n—1)Amﬁozr,n—2
tenast A.""“Lozrs
= AO‘mzm,s - mﬁcmzm—i,s * EZS‘XZ}-:}!;‘)"&Oiﬂnzm—z,:s:
tessst Ao+nz |

rs
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The significance of the above double differences is best
seen by analogy with single differences. For example, if Yoo
‘Yl’ ....... ¥, denote a set of values of any function y = f(x) then
the single diagonal differences are constructed as follows. By def-
inition, V= Vor Y2 = Viseven- cos Y- ¥,_,are called the first
differences of the function y = f(x). These first differences are

then denoted in general by,

8Yp = Vpa1 = Tr
The second differences of the function y are formed by taking the

difference of the first differences. Thus,

2 _ -
A Ip = Ayr+1 =AY, = Vpeo — Vpsg ¥ Ip

And, similarly, the third differences are

5. _ .2 2 _ _
ATp = 8 Tpag = 8T = Vpaz = pup * SVpag — T

and so forth.
A general formula for double interpolation is derived in
O. Biermann's, Mathematische Naherungsmethoden, and in terms

of the above definitions of the double differences is,

KommiX. ¥~y
_ _ 0,1+0 0,0+1

h 00

2 (KmeX N y=5 ~ )
+ %_r[(x-mai(x—xl_)_bzmzoc + r?)ky To A1+1%O .
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(y_yo) (y.._ yi) 0+2 1 (X—XO) (x—xi) se (x—x:m__i)

+ > 8772061 oot E!'{ e

m(xexy ) (Fty )0 (X% ) (Y—YO)A(m_i )41,
hmrlk 00

-+

m(md) (%=x ) (x=xg J oo (x5 (7=7) (y=y4 ) (m—2)+2
A z

+
h™ 'k

(y=y0) (7=y1 ) ¢ (3=Vp1? Oum
= ——4"""2z4,5] + R(x4,50)

+000+

where h and k are the equidistant intervals in x and y respectively
and R(xq,yq) is the remainder term.
The above equation can be written more simply by making

the following changes of variable. Let,

W = 0 _ 0

From these definitions of u and v it follows that,

KmeX =3
m=-1 _ m=1 _
—_F_. -u_(m—i) _—.E.__- = v (m—i)

Then, in terms of the new variables u and v, the formula

for double interpolation becomes,

z2 = £(x,y) = f(xg+rhu,yo+kv) = Zgo + uA1+OzOO

vAO+1 2+Oz

+ + 2uv61+1z

Zog + é-r[u(u—i)A
+ v(v—i)A0+2

+ 3u&u-1)vA2+1zOO + 5uv(v—1)A1+2zoo
0+3

00
Zo0 1+ %-r[u(u-i, ) (u-2)A3+°z 00

00

+ v(v=1) (v-2)8%%% 0] & Trlu(u-1) (u-2) (u-3)s%*%

5*1200 + éu&u—i)v(v—l)b2+2zoo

1+3z O+4

00
+ 4u(u~1) (u—_)va

+ 4uv(ved ) (v=2)A 00 *+ v(v=l) (v=2) (v=3)A

2003

Feseceace

Am+oz

00
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Now the result théit is to be obtained, as indicated in the
©
first paragraph of this appendix, is made evident if one inte-

grates the above interpolation formula over two intervals in the

x direction and two in the y direction. Thus,

X +2h yo+2K 2 2
I= j j f(x,y)axdy = hk f,f f(uw,v)dudv
X5 Yo 00

It is seen that, over the above limited ranges of integration, the

3+9AO+3 4+?A3+1

terms involving the differences A A s e e e . Will
not enter. Then,
.. hk 1+0 O+1 o~ ad+d
I = —5[56200 + 364 Zoo * 364 Z50 *+ 364 Zgo
240 C+2 2+1 i+2 2+2
+ 6A Zgp * 64 Zgo *t 64 Zoo * 68 Zog * A 200]

which, upon substituting the values for the differences becomes,

_ hx
I = _§[ZOO + 2o + Zgp * Zog * 4(zOl + 240

+ 2oy * Zyq) + 16244
The similarity between this expression and the Simpson's
rule for a function of a single independent variable should be

noted. Also, note that the formula for I can be written in either

of the following ways,

_ hek 4k
I =xlxlzgy + 425y + 255) + x(z54 + 4244 + 255)
X
+ g(zzo + 4z21 + 222)]
or,
X h
I = Flg(zg0 + 4240 + 2g) + 2(zgy + 42,4 + 204 )
h

+ 3(202 + 4212 + 222)]

Then it is apparent that + 4201 + z

3 (ZOO is Simpson's rule

02)

) . b
applied to the first column of the array, _ (z + 4z, + = is
3 00 10 20)
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Simpson's rule applied to the first row of the array, and similarly
for the other such terms in the expressions for I. Therefore, if
one designates the results of applying Simpson's rule to the col-
umns by AO’ Al AZ; and the results of applying the rule to the
rows by BO , Bl’ B2 , it is clear that the expressioﬁs for I can be

written,

_ h

or,

I==:‘§[ B, + 4B, + By)

Since the above analysis can be extended to rectangular
arrays of an arbitrary number of elements, the conclusion is
that a function of two independent variables can be numerically

integrated over a rectangular domain by means of the formulae,

:-:O-mh y0+nk
j f(x,y)axdy = -Q{AO + 4Ay + 28, + Ag]
*0 Yo
or,
xo-mh yo«mk
£(x,y)dxdy = £[B, + 4B, + 2B, + By
%o Jo
where,

_x
8o = glzgg + 4(2gy + 2gz teest Zg pg) + 2(zZgg

+ 2o, teeet zO,m—Z) + zg, ]
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_k
by = Bz + 42y * 2y teee 2y mg) * 2(3gp
+ Zg, teset Zl,m—2) 2]+ {250 + (25 + Zaz

+tosot zS,m-:L) + 2(2.32 + Zz, +eooot Zs } o+ z5m]

, =2

+oset {zn—i o + 4(21’1_1,1 + Zn_i,s +tooot Zn—i,l’ﬂ—i)

9
+ 2(zn_1’2 + zn_1,4 +esot Zn—i,m-Q) + zn—l,mj}

_k
ag = 5{lago + 4lagy + 255 +euur 3p 1) ¥ 2(agy
+ Zg, teeet zz,m_z} + 250+ (2,5 + 4(z4q + 2,4
J

+teost z4,m--1) + 2(2 0 * 2y, teest 24,m_2) + 2,

+osot [zﬂ.__z’o + tL(zn___z’1 tZy o3 teest 2
+ 2(z

n—-2, m=1 )

n-2,2 + zn—2,4 teoot zn--2,m-2) + zn—Z,m]}

. K
Ag = w {zno + 4(Zn1 + 22 teeot zn,m-d.) + 2(zn2 tzo,

+eset Z + 2

n m—2) nm}

)

The formulae for BO, Bl’ B_, and B

5 3 are completely

analogous so that the integration can be carried out in either

order first by columns or first by rows.
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FIG. 2.1
APPROXIMATE VORTEX DISTRIBUTION
OF A TWO BLADED PROPELLER IN
NON-STATIONARY MOTION

FIG. 2.2
COORDINATE SYSTEMS
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FIG. 3.3

GEOMETRY OF INDUCED DOWNWASH
DUE TO TRAILING VORTICITY
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ROTATIONAL ELEMENT
OF VORTIGITY

FIG.3.6
GEOMETRY OF INDUCED DOWNWASH -

DUE TO ROTATIONAL GOMPONENT
OF TRAILING VORTICGITY

FIG.3.7
DIREGTION COSINES OF q
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FIG. 3.8
GEOMETRY OF THE ROOT

TRAILING VORTICITY

FIG. 3.9

GEOMETRY OF THE INDUCED DOWNWASH
DUE TO SHED VORTICITY.
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FIG. 4.1
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FIG. 4.2

RELATION BETWEEN
COORDINATES Y AND ©

FIG. 7.1

RESOLUTION OF LIFT
INTO THRUSTAND TORQUE

FIG. 7.2
FORCES ON AN AIRFOIL
ELEMENT IN THREE
DIMENSIONAL MOTION
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