
Situation Awareness Application

Thesis by

Judy Mou

Computer Science, Caltech

Advisors: Prof. K. Mani Chandy

 Dr. Julian Bunn

In Partial Fulfillment of the Requirements for the degree

of

Master of Science

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2013

(Submitted July 5, 2013)

 ii

 2013

Judy Mou

All Rights Reserved

iii

Abstract
This thesis describes the design and implementation of a situation awareness application. The

application gathers data from sensors including accelerometers for monitoring earthquakes,

carbon monoxide sensors for monitoring fires, radiation detectors, and dust sensors. The

application also gathers Internet data sources including data about traffic congestion on daily

commute routes, information about hazards, news relevant to the user of the application, and

weather. The application sends the data to a Cloud computing service which aggregates data

streams from multiple sites and detects anomalies. Information from the Cloud service is then

displayed by the application on a tablet, computer monitor, or television screen. The situation

awareness application enables almost all members of a community to remain aware of critical

changes in their environments.

iv

Contents
Abstract
Introduction
Motivation
Goal
System Requirements
System Overview

I. A client for CSN.
II. Data process platform

Design Consideration
System Architecture
Design Detail

Application initialization flow
Application components

Services
Data Centers
CloudClient
Fragments
MainActivity
Additional components

System Behavior
Platform Example Usage
Future Directions
Conclusion
References

1

Introduction

In natural or manmade disasters, preemptive hazard detection is critical for minimizing damage.
In instances such as earthquakes, fires, floods, and gas leaks, we need to promptly provide real-
time information to nearby residents and emergency responders in case of any impending
disaster. Unfortunately, deploying quality sensors that produce high resolution environmental
data is both difficult and expensive. With the improving accuracy of low cost sensors, we can
combine existing sensors with cheaper sensors to improve the accuracy and reliability of hazard
detection.

The Community Seismic Network (CSN) is an open seismic network that allows low cost sensors
to contribute to a cloud-based server for aggregation. It analyzes incoming data to determine
environmental changes, and thus provides alert of hazardous emergency situations. For example,
during an earthquake, the CSN can deliver a map of peak acceleration within seconds of the first
tremor [Clayton et al. 738]. Previously, CSN focused on earthquake detection, but with an
improved cloud backend, it now accepts data from many types of sensors, such as temperature
sensors, humidity sensors, and gas sensors. With a more versatile set of sensors, the CSN can
make more powerful inferences. For example, a rising temperature coupled with a high
concentration of carbon monoxide may indicate the presence of a fire.

Through the use of low cost sensors, residents can provide data to the CSN backend to help
contribute to disaster detection in their neighborhood. At the same time, they can quickly be
notified when an emergency is detected by the CSN. As more sensors are used to collect data, the
CSN has access to more information and thus can detect an emergency faster. Additionally, data
stored on the cloud can be used to study natural disasters and further improve our system.

Motivation

Accuracy of hazard detection relies on a dense network of sensors. Many affordable and accurate
sensors are available, but they are not being used. For instance, Android phones contain motion
sensors, environmental sensors, and position sensors that can provide raw data with high
precision and accuracy. A Caltech student designed and prototyped a compact home weather
station that contains cheap (albeit less accurate) sensors, such as gas, light, radiation, and position
sensors. There are many readily obtainable options that can contribute to hazard detection.

Previously, there was an effort to distribute cheap accelerometers (Phidgets) to volunteers (mostly
students). When the Phidget is connected to a computer, a software client sends collected data to
the CSN cloud backend. However, only 33% of distributed Phidgets are active, introducing the
challenge of maintaining a consistent data stream. Although individuals were initially willing to
use them, some data streams stopped due to network problems, power loss, or accidental

2
powering off by users. By the time users realized that a sensor has stopped working, valuable
information had already been lost.

Goal

Crowdsourcing data for hazard detection is a valuable approach to minimize damage during
environmental disasters. With the robust CSN backend built to handle impulsive emergency
events and the increasing availability of cheap sensors, the missing link is a platform that can
collect various types of sensor data, send them to the backend server, and display alerts and
dynamic information tailored to the users, such as weather forecasts and traffic updates. The
primary goal is to raise user awareness of potential dangers. In addition to sending data to the
server, the platform described in this thesis provides relevant and reliable information that
benefits all users.

The purpose of the platform is to

● Notify users of hazardous situations in the area. This includes local abnormality detection
and hazard detection delivered by the cloud.

● Collect and process sensor data
○ There is an abundance of cheap sensors available for gathering localized

environmental data.
○ To avoid sending unnecessary information to the cloud, the platform will process

the data beforehand, saving bandwidth and alleviating load on the backend.
● Display a collection of dynamic situation and environment information, such as weather,

traffic, and news feeds.
○ The application acts as a hub for all environment related data or news. While

users check their devices for situational changes happening around them and all
over the world, they will also contribute to hazard detection through the use of
cheap sensors. With more client data, hazard detection becomes more accurate.

System Requirements

● The application collects data from attached sensors. It locally detects abnormalities in the
collected data and sends them to the cloud.

● Notifications appear on the screen when abnormal activity is detected in order to draw
users attention to them.

● Additional dynamic situation/environment information is frequently refreshed.

3
System Overview

I. A client for CSN.

Process sensor data

● An algorithm detects anomalies locally from sensor data collected from a single client.
● The application maintains a connection with the CSN cloud. It sends data to the cloud

when an anomaly is detected and also sends a required heartbeat message every ten
minutes indicating it is active. CSN marks the client as inactive if a heartbeat message
was not received within last 30 minutes. Data from inactive clients is not included in
event detection in an area.

User interface

The UI has a sliding tiles format, which allows the application to display more information with a
limited screen size. Sensor data is displayed in a waveform format to represent the changing
values. The goal is a balance between displaying sensor data and other relevant environment
information on a limited screen size. The different UI tiles are discussed below.

Sensor data

There are multiple tiles dedicated for displaying sensors. One tile displays sensor data collected
from the Hazard Weather Station described above and is always visible. There are two other tiles
for accelerometer data, one for the Android phone and one for the Phidget, which are usually
hidden. When there is an anomaly detected from either device, the corresponding tile will slide in
and take over the central UI area. It will slide away after 20 seconds and the normal information
display will resume.

Recent earthquakes

There is another tile with a list of the two most recent earthquakes on the top. The rest of the tile
reveals a world map, with red circles representing earthquakes that have occurred in the past day;
the diameter of the circle is proportional to the magnitude of the quake. The map also auto scrolls
to show different parts of the world. Earthquake information is taken from the U.S. Geological
Survey(USGS) RSS feed. Using other RSS feed links (e.g. past 7 days quakes with magnitude
more than 2.5), we could potentially have the map display additional information.

CSN website

CSN publishes a website that is similar to a shakemap. When a client detects an anomaly and
sends the information to the CSN, it displays this event as a red block on the map.
http://apps.communityseismicnetwork.org/#picks

4
U.S. environment heatmaps

The platform retrieves weather related heatmaps, such as temperature, wind, precipitation, and
humidity, from www.wunderground.com. Two heatmaps are displayed on a tile at a time.

Weather reports and forecasts

Current weather information and forecasts for Los Angeles, San Francisco, Seattle, New York,
Chicago, and Texas, are presented in a list format with a 5-day forecast located at the lower
portion of the tile. The highlighted list item displays the name, temperature, precipitation,
humidity and other information for that city. When the next list item is highlighted, the forecast
potion slides to display information for the next city.

Traffic

The traffic tile is in sync with the weather tile and shows the current traffic in the city.

News feed

Google news is displayed on one tile. The news is configurable and currently set to local news,
world, technology, entertainment, health, and environment.

II. Data process platform

This is a platform for developers to process sensor data and display a collection of dynamic
information. The platform should allow the application’s functionality to be easily configurable.

Configurable tiles

● Size, orientation, and combination of tiles
● Display on each tile
● Tile animation

Alert triggered display

● Special events can trigger the main display to change, making the user interface center on
the event

Data processing

● Easily allows to incorporate additional sensors/data streams/RSS feeds for processing and
displaying

Cloud connection

● Dedicated activity to perform registration (upon installation of application)
● Maintain connection and post information to a remote backend server if desired

5
Design Consideration

Assumption and dependencies

Application users have the following on their Android devices
● Google Play Service
● Google Android Maps version v2
● Android version (4.0.3 Ice-Cream Sandwich or higher)

Constraints

● Application users should have internet access
○ Users may have bandwidth limits

● Mobile devices have limited battery power

System Architecture

Figure 1: High-Level System Architecture

The four main components of the application are Services, Data Centers, Fragments, and a cloud
communication client. A Service processes incoming data from sensors or other streams. Data
Centers store data provided by Services and surface them to Fragments, which render the user
interface with the information. The cloud communication client is responsible for communicating
with the backend server and encapsulates all the information and logic required for
communication. Other components use it to relay data to the cloud. In the current system,
Services are the only users of the cloud communication client. The goal is to make the
components loosely coupled to increase code readability, reusability, and maintainability.

6

In the system architecture for the Weather Station application, the dependencies between
components are minimized. There are no direct dependencies between data providers (Services)
and data consumers (Fragments). Decoupling them allows multiple services to provide data for
one fragment or multiple fragments to use one type of data.

The interfaces enforce the minimal communication requirements between components. For
example, the main activity requires Fragments to be refreshable and rotatable, and the Fragment
needs to check the availability of new data in Data Center. The interfaces will be discussed in
more detail in the section below.

Design Detail

Application initialization flow

When the application is started, a chain of Activities is executed. This makes it easy to define
dependencies between Activities. For example, the application requires the user to login or
register before main application screen will be shown. The Weather Station application currently
has the following chain of Activities.

● Activity 1 (SensorPermissionRequestActivity)
○ Prompts users to grant permissions for accessing attached sensors.

● Activity 2 (RegistrationActivity)
○ When the application is started for the very first time, it registers sensors on the

CSN server. CSN returns a client ID, a secret string, and sensor IDs for each of
the registered sensors. This information is required for sending data to the server,
and it is stored in persistent storage so that it is available the next time the
application is started.

○ With this information, it initializes a CloudClient instance, which is in
charge of sending and receiving messages from the server.

● Activity 3 (LoadingActivity)
○ The purpose of this activity is to prevent users from seeing a blank screen in the

next step. It starts the Services that take time to retrieve data. It will continue to
the next step when the data is ready, or it will stay in this activity for a maximum
of 10 seconds.

● Activity 4 (MainActivity)
○ It starts the main application, which consists of tiles.

7
Application components

Services

Figure 2: Service Component Diagram

A Service is an Android application component that performs long running background
operations, which is an ideal platform for data processing. All Services in the application have the
following responsibilities:

● At the startup stage, it connects to sensors or data streams.
● It periodically retrieves data, and the data rate is predetermined by the nature of the

information. For example, it processes weather information hourly whereas Phidget data
is processed whenever it becomes available, which is fifty times per second.

● It uses Data Center interfaces to store collected data.
● Anomaly detection is performed for each data point if necessary.

○ If an abnormality is detected, it sends an alert to MainActivity via an Intent
and then requests CloudClient to deliver the abnormal data to the server.

Many Services share common resources, so the platform defines and uses two abstract classes,
SensorService and StreamDownloaderService.

SensorService

This is the base class for the Service that processes sensor data. Since its task includes storing
data and sending abnormal data points to the cloud server, the abstract class contains a
SensorDataCenter instance and a CloudClient instance. This abstract class also includes
a Localizer instance because the device location is required when delivering data to the
server. Device opening, closing, and reporting anomalies steps vary across different sensor
devices, so they are defined as abstract methods.

8
StreamDownloaderService

This is the base class for the Service that downloads information from a data stream (e.g. weather
forecast and earthquake RSS feeds). In this case, instead of processing the data points as they
become available (usually via a data listener), a timer-triggered task downloads information from
a data stream periodically. This abstract class sets up the timer and leaves only the
refreshStreamHelper method to be implemented by children classes, so Services can
perform their own data processing strategy.

Data Centers

Figure 3: Data Center Component Diagram

Data Centers are a group of singleton classes that store data in memory, and provide interfaces for
storing and accessing the data. They also provide a Boolean variable indicating if there is new
information available that has not been accessed for display.

There are four data centers: SensorDataCenter, EarthquakeDataCenter,
WeatherDataCenter,and EnergyDataCenter. SensorDataCenter stores data from
all sensors using a hashmap with the sensor ID as the key and a list for data point storage as the
value. The amount of sensor data to keep in memory depends on the time window and resolution
(number of samples to be plotted per second).

The storage of different types of data is separated because they require different modification and
access mechanisms. For example, the earthquake data stream consists of duplicated quake
information, and weather data are refreshed hourly by a service that does not depend on a time
window.

All Data Centers implement the DataAvailabilityUpdater interface. Data providers can
use the interface to indicate availability of new data, while data consumers can check whether
new data is available for display. This interface allows consumers to check for changed data
before performing a UI refresh instead of wasting processing time on rerendering old information.

9

CloudClient

CloudClient is a singleton class that is responsible for communicating with the server. It
encapsulates client information and logic that are required for the communication. Other
components can send data to the server using a set of methods CloudClient provides. For
example, Service can report anomalies to the server by calling sendPick method, passing the
sensor type and the current value as arguments.

Fragments

Figure 4: Fragment Component Diagram

Fragments can be combined to form a multi-tile UI. A Fragment can also be hidden, removed, or
reused, which makes it a good candidate for a sliding tile UI. A Service saves data from a stream
in a Data Center, while a Fragment is responsible for rendering the UI with the information stored
in the Data Center.

RefreshableFragment

The consumers (e.g. MainActivity) of Fragments determine the frequency at which
information should be refreshed, whether it is 1 second or 10 minutes. Calling refreshView
on Fragments with the desired rate (currently every quarter of a second) triggers them to update
views if new information is available in Data Centers.

Some Fragments do not need Services to collect data, thus they do not access any Data Centers.
These Fragments collect data directly from the source of data to update their views. For example,
Fragments that load the CSN website, Google News, and Weather Heatmap images do not need

10
Services to preprocess data because new information is automatically loaded by accessing
URLs. In these cases, refreshView is a no-op.

RotatableFragment

This interface is useful for Fragments that are responsible for displaying large amounts of
information because it allows the Fragment to rotate between different portions of the view.
When rotateView is called on a Fragment, it updates its display but it will not refresh its data
from the Data Center. For example, a Map Fragment can move the map horizontally by 20
degrees longitude; a Weather List Fragment can rotate between weather reports for different
cities; a News Fragment can rotate between different news story headlines.

MainActivity

MainActivity handles the lifecycles of the Services and manages the UI. It has the following
responsibilities:

● It starts up services and stops them when the user quits the application.
● It refreshes views of Fragments using a timer that calls refreshView on all Fragments

every quarter of a second.
● It calls rotateView on the visible Fragments that implement the

RotatableFragment interface every 10 seconds, so different view portions can be
displayed.

● It determines the order Fragments are visible to users. A different Fragment slides in to
take over the central view every 10 seconds.

● It shows corresponding tiles when an alert is received.

Fragments are all optimized such that if no new information is available, refreshView does
not result in any work. An alternative would be to have different refresh timers for Fragments. It
could save function calls, but the code would be more complicated and harder to maintain.
MainActivity should not be responsible for tracking when new information becomes
available for each Fragment.

Additional components

Ksigma

This class implements an anomaly detection algorithm that uses the ratio of short-term-average to
long-term-average of data samples [Clayton et al. 743]. Services that perform anomaly detection
on incoming data points retrieve a Ksigma instance for each dimension of data. An abnormal
value in a stream of data is called a pick. A Ksigma instance also counts the number of picks in
a certain time frame. For example, a 3-axis accelerometer requires three Kisgma instances, and a
data point is considered to be abnormal if one of the dimensions generates a pick.

11
Network time protocol thread

CSN only accepts messages that are time-stamped within 10 seconds of receipt time. The
application uses NTP Thread to synchronize time in an Android device. Although syncing with
one of the standard public NTP servers would be preferable, better results (increasing consistency
between sensor times) are obtained when using a dedicated Caltech NTP server [Clayton et al.
743].

Cloud heartbeat Service

Data from inactive clients do not contribute to event detection. This service sends a heartbeat
message to CSN server every 10 minutes to ensure the client is marked as active.

Weather Station Application class

The Android system creates an instance of the WeatherStationApplication class upon
starting, which can be accessed by all activities. It is a good place to store preset configurations. It
includes the following information:

● All supporting sensor names and their types. Sensor name is unique across sensors. Each
sensor processing Service is associated with a sensor name.

● CSN shakemap website link
● Google news URLs
● City zip codes and locations (Latitude and Longitude)

System Behavior

The screen is split into three columns. The central portion displays earthquake, CSN shakemap,
and weather heatmaps one at a time. Every ten seconds, it slides to the next display. The left
portion display cities’ current weather report, forecast, and traffic. It keeps rotating between five
chosen cities. The right portion displays the Google News and sensor data from the weather
station box. If an anomaly is detected, the notification appears in the central portion. Figures 5-8
are examples of the application’s UI.

Currently, earthquake data are refreshed every 15 minutes, and weather data are refreshed hourly.
Sensor data displays are refreshed every quarter of a second.

Platform Example Usage

Chai Energy monitors home energy consumption. They want users to visualize and be aware of
the energy they are consuming every day. A new tile is added to display this information. This is
an example of incorporating an additional data stream into the platform. Figure 9 contains a
display of this Fragment in the center, and Figures 10-12 are code snippets.

12

Step 1: Create an EnergyDataCenter that stores energy data.
Step 2: Create a Service that retrieves data from Chai Energy server and stores them in the
EnergyDataCenter. This Service extends the StreamDownloaderService abstract
class.
Step 3: Create a Fragment that reads from the EnergyDataCenter and displays the
information. It implements RotatableFragment and RefreshableFragment.
Step 4: In MainActivity class, add this Fragment to the list to be refreshed and rotated.

Future Directions

Configurable settings

Instead of having preset cities and news feeds, users should be able to configure these settings to
their preferences.

Caltech building monitoring

Energy data for some Caltech buildings are available, which can be incorporated into additional
tiles. Most Caltech buildings have screens near their entrances that display preconfigured
slideshows. It will be useful to utilize those screens to display more dynamic environmental
information that is more relevant to the building’s occupants.

CSN alert

The application should listen for CSN alerts and display them on the screen. This alerts users of
emergency events, minimizing damages during disasters.

Conclusion

With this platform, users receive notifications of emergency events and utilize inexpensive
sensors to contribute to the hazard detection on a large scale. The sliding tile design provides a
way to display dynamic information with limited screen size. This platform also defines useful
interfaces and abstract classes so that developers can easily incorporate additional data streams
into the existing functionalities and UI. Additionally, the platform provides numerous examples
of using Services, Fragments, Intents, AysncTasks, Protocol Buffers, Threads, and Timers to aid
future developers.

As more and more users begin to use this application, the emergency event detection receives
more input and in return, provides more reliable results to the users. This data processing
platform is a critical step in crowdsourcing data to create a reliable hazard detection system in a
community.

13
References

1. R. Clayton, T. Heaton, et al. Community seismic network. Annals of Geophysics, 54(6), 2012.

Figure 5: Recent Earthquake View

Figure 6: CSN Shakemap View

14

Figure 7: Heatmap View

 Figure 8: Event Triggered Android Accelerometer Sensor Waveform View

Figure 9: Chai Energy House Monitor View

15

Figure 10: EneryDataCenter Code Snippet

16

Figure 11: EnergyService Code Snippet

Figure 12: EnergyFragment Code Snippet

	mou_2013_thesis_temp.pdf

