(I) A COUPLED GEOCHEMICAL AND GEODYNAMICAL APPROACH TO SUBDUCTION ZONE MODELING & (II) DEVELOPMENT OF COLOR IN GREENISH QUARTZ

Thesis by

Laura Baker Hebert

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2008

(Defended February 15, 2008)

© 2008

Laura Baker Hebert

All Rights Reserved

ACKNOWLEDGMENTS

I would like firstly to thank my advisors. Paul Asimow and Mike Gurnis have provided support, guidance, patience, and have great ability to teach as well as to inspire. Their excitement and willingness to explore the gray areas of interdisciplinary geoscience have allowed this work to be done. George Rossman, whose love of science and deep sense of curiosity have been an incredible inspiration, demonstrates every day why teaching is the best job there is.

Secondly, and equally importantly, I would like to thank Paula Antoshechkina, mentor and friend. She and I have worked very closely for over three years in the development of the GyPSM model, and she has provided guidance, advice, and a strict attention to detail that were essential not only to this project, but to my learning how to be a scientist. She was always willing to share her considerable expertise, whether it be regarding geochemistry or a wide range of programming languages, and is an excellent and patient teacher.

Thanks to Chad Hall, who was heavily involved in the early stages of the GyPSM-S project, and to Eh Tan, who provided excellent help with ConMan whenever asked. Thank you to Elizabeth Miura Boyd and to Chi Ma for analytical help. Mike Baker and Jed Mosenfelder were very helpful in the lab with my early work in high-pressure experimental geochemistry.

I am appreciative of the chance to have been a teaching assistant for both George Rossman and John Eiler, both excellent instructors. Additional thanks to John for acting as academic advisor.

iii

I am indebted to my friends: Laura, Julie, Nicole, Brandy, Ryan, Charlie, Sarah, Chris, Lydia, Elisabeth, Liz J., Nathan, Cody, Rhea, and Kris. Thank you to Tessa and Saffie for always being there when I needed them. Thanks to my family for always supporting me on my unconventional higher educational path that started at Peabody Conservatory and is ending at Caltech.

And, finally, I thank Craig, my wonderful husband and best friend, for his sense of humor, for seeing me through all of this, and for always giving me unconditional support, encouragement, and confidence. I thank our son, for making things interesting. "Nothing is easy. Nothing good takes 5 minutes."

- GRR lab truisms

ABSTRACT

(I)

We couple a petrological model with a 2D thermal and variable viscosity flow model to describe and compare fundamental processes occurring within subduction zones. We study the thermal state and phase equilibria of the subducting oceanic slab and mantle wedge and constrain fluid flux, presenting model results spanning normal ranges in subduction parameters. Coupling between the chemistry and the dynamics results in the development of a stable slab-adjacent low-viscosity region defined by hydrous phases and higher concentrations of water in nominally anhydrous minerals, bounded by the watersaturated solidus.

Subduction parameters are significant to the position of dehydration reactions within the slab and the geochemistry of fluids initiating flux melting. Modeling of fluid transport mechanisms and potential melt migration processes based on coupled modeling with the addition of fluid-mobile trace elements was performed. There is a progression of geochemical characteristics described in previous studies of arc lava datasets that can be duplicated with these models.

A localized low-viscosity, low-density geometry within the wedge, predicted by coupled modeling of the Izu-Bonin system, is required to match observations of topography, gravity, and geoid anomalies. Based on this, predictions can be made as to specific low-viscosity geometries associated with geophysical signals for other subduction zones based on regional subduction parameters. Naturally occurring greenish quartz found within the context of amethyst-bearing deposits is not simply the result of the exposure of amethyst to thermal bleaching. Rather, it can represent a set of distinct color varieties resulting from the changing chemical and thermal nature of the precipitating solution. Greenish quartz occurs at the Thunder Bay Amethyst Mine Panorama, Thunder Bay, Ontario, Canada, in several distinct varieties. Spectroscopic, irradiation, and controlled heating studies show that changes in salinity and temperature of the hydrothermal system that produced the deposit and changes in quartz growth rate are reflected in coloration. As the system evolved, a minor ferric component appears to change position from interstitial to substitutional within specific growth sectors. Greenish colors within the quartz are consistently correlated with the speciation of hydrous components.

(II)

vii

TABLE OF CONTENTS

Acknowledgments	iii
Abstract	vi
Table of Contents	viii
List of Figures and Tables	xi
Chapter I: Introduction	I-1

PART I: A COUPLED GEOCHEMICAL AND GEODYNAMICAL APPROACH TO SUBDUCTION ZONE MODELING

Chapter II: Emergence of a Low-Viscosity Channel in Subduction Zones Through t	he
Coupling of Mantle Flow and Thermodynamics	II-1
Abstract	II-2
Introduction	II-3
Model Formulation	II-6
Component programs	II-6
Code coupling and tracer particles	II-13
Water migration	II-17
Model input parameters	II-19
Model Results	II-21
Development of the low-viscosity channel and controls on its shape	II-21
Model comparison	II-24
Discussion	II-28
The low-viscosity channel (LVC)	II-29
Water mobility: recycling to deep mantle and timing of transport to a	ctive
melting region	II-34
Melting	II-37
Impact of LVC on seismic wave propagation	II-39
Conclusions	II-41
Acknowledgments	II-42
References	II-42
Chapter III: Fluid Source-based Modeling of Melt Initiation within the Subduction	Zone
Mantle Wedge: Implications for Geochemical Trends in Arc Lavas	
Abstract	III-2
Introduction	
Model Parameters and Regional Significance	
Method	111-9
Initial GyPSM-S calculation of shallow hydrated wedge	111-9
Construction of calculation columns	III-9
Slab dehydration and fluid release	III-11
Trace element compositions of migrating hydrous fluids	III-12

Melt transport	III-15
Results	III-16
Dehydration patterns as a function of subduction parameters	III-16
Time-dependent consequences of dehydration patterns	III-18
Melt characteristics	III-19
Changing bulk composition-melt depletion trends within the wedg	e flow
field	III-20
Melt chemistry	III-22
Simple models for melt extraction	III-24
Discussion	III-26
Fluid transport within the LVC and potential consequences	
of a lack of sediment	III-26
Comparison of model results with regional datasets	III-28
Costa Rica	III-28
Izu-Bonin	III-30
End-member results for vertical melt transport	III-32
Implications for slab-component transport rates	III-33
Implications for back-arc basin basalt (BABB) sources	III-34
Direct delivery of fluids to the shallow mantle wedge	III-35
Diapirism	III-35
Transport of enriched material along solid flow streamlin	esIII-36
Conclusions	III-36
Acknowledgments	III-37
References	III-37

Chapter IV: Geophysical Implications of Izu Bonin Mantle Wedge Hydration	
From Chemical Geodynamic Modeling	IV-1
Abstract	IV-2
Introduction	IV-3
Method	IV-7
Initial GyPSM-S calculation of the shallow hydrated wedge	IV-7
Extension of model domain for calculation of geophysical signals	IV-8
Internal density variations and background radial viscosity	IV-10
Calculation of geophysical surface observables	IV-12
Modeling Results	IV-14
GyPSM-S modeling of NIB shallow wedge structure	IV-14
Topography	IV-16
Gravity anomalies and geoid height	IV-18
Discussion	IV-20
Subduction parameters and LV zone geometry	IV-20
Comparison with previous regional models of subduction zones	IV-23
Conclusions	IV-23
Acknowledgments	IV-24
References	IV-24

PART II: DEVELOPMENT OF COLOR IN GREENISH QUARTZ

Chapter V: Greenish Quartz from the Thunder Bay Amethyst Mine Panorama,	Thunder
Bay, Ontario, Canada	V-1
Abstract	V-2
Introduction	V-3
Background Information	V-4
TBAMP Geological Setting and Sample Description	V-5
Descriptions of Samples from Other Localities	V-8
Experimental Methods	V-9
Spectroscopy	V-9
Radiation and thermal experiments	V-10
Results	V-10
Optical spectroscopy	V-10
Chemical analysis of TBAMP samples	V-12
Heating experiments on TBAMP samples	V-13
Radiation experiments on TBAMP samples	V-14
Discussion	V-15
The greenish color in quartz: A radiation-induced color center	
involving aluminum?	V-15
The importance of H_2O to the development of greenish color	V-17
The role of iron in the development of color	V-19
Color as an indicator of the dynamic state of the early	
TBAMP system	V-22
Conclusions	V-24
Acknowledgments	V-25
References	V-26

Chap	ter	VI:	Conclusio	ons	VI	-1	
------	-----	-----	-----------	-----	----	----	--

FIGURES AND TABLES

Chapter	II:	
---------	-----	--

Figure Captions	II-52
Figure 1: GvPSM-S range of model solid viscosities	II-57
Figure 2: Initial and boundary conditions of GyPSM-S model	II-58
Figure 3: Flow diagram showing GyPSM-S model operation	II-60
Figure 4: Particle distribution.	II-61
Figure 5: Development of LVC	II-62
Figure 6: Composition and truncation of the LVC	II-63
Figure 7: Effect of slab age and velocity on LVC	II-64
Figure 8: Effect of slab dip angle on LVC	II-65
Figure 9: Melting and fluid release	II-66
Figure 10: LVC thickness	II-68
Figure 11: LVC cartoon for model case NIB	II-69
Figure 12: P-T paths for slab-wedge interface	II-70
Figure 13: Solidus relations for model peridotite composition	II-71
Table 1: Model parameters	II-72
Table 2: pHMELTS starting composition	II-73
Table 3: AOC starting composition	II-74
Table 4: Subduction zone model parameters	II-75

Chapter III:

Figure Captions	III-46
Figure 1: Schematic of model calculation space and columns	III-50
Figure 2: Phase diagrams for slab dehydration reactions	III-52
Figure 3: Fluid releases for GyPSM-S models	III-53
Figure 4: Initial fluid chemistry from different slab sources	III-56
Figure 5: F as a function of distance from slab	III-57
Figure 6: <i>a</i> _{H2O} as function of distance from slab	III-58
Figure 7: General cross-arc geochemical trends and LVC cartoon	III-59
Figure 8: Trace-element geochemistry	III-60
Figure 9: Trace-element geochemistry	III-62
Figure 10: Results of melting column calculations	III-64
Figure 11: Major element fractionation trends of calculated primary Miy	vakejima
magma composition	
Figure 12: Implications for back-arc basin basalt genesis	III-67
Table 1: pHMELTS starting composition	III-68
Table 2: Column calculation	III-69
Table 3: Subduction zone model parameters	III-70

Table 4: Major eleme	nt chemistry of initial i	melts	III-71
Table 5: Calculated	orimary Miyakejima m	agma composition	III-72

Chapter IV:

Figure Captions	IV-31
Figure 1: The Northern Izu-Bonin region	IV-34
Figure 2: GyPSM-S model result for NIB region	IV-35
Figure 3: Schematic of model setup	IV-36
Figure 4: Imposed low-viscosity regions	IV-38
Figure 5: Results of model calculations for changing LV geometry	IV-39
Figure 6: Independently-varied model parameters	IV-40
Figure 7: Best-fit to model parameters tested	IV-41
Table 1: Model parameters	IV-42
Table 2: NIB model subduction parameters	IV-42
Table 3: Summary of LV model cases tested	IV-43
Table 4: Summary of benchmark cases	IV-44

Chapter V:

Figure Captions	V-29
Figure 1: TBAMP gradational color sequence	V-32
Figure 2: Greenish samples from Brazil and Namibia	V-33
Figure 3: Optical spectra for TBAMP greenish gray sample	V-34
Figure 4: Optical spectra for TBAMP yellowish green sample	V-35
Figure 5: Optical spectra for Brazilian dark-green sample	V-36
Figure 6: Optical spectra for Namibian greenish gray sample	V-37
Figure 7: IR spectra for TBAMP samples	V-38
Figure 8: IR spectra for TBAMP sample 006	V-39
Figure 9: IR spectra for Namibian and Brazilian samples	V-40
Table 1: LA-ICP-MS results for TBAMP samples	V-42
Table 2: Experimental results summary for TBAMP samples	V-43