Probing the Thermodynamic Properties of Mantle Rocks in Solid and Liquid States

Thesis by

Aaron S. Wolf

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2013

(Defended May 29th, 2013)

© 2013

Aaron S. Wolf

All Rights Reserved

"Science has achieved some wonderful things, of course, but I'd far rather be happy than

right any day." —The Hitchhiker's Guide to the Galaxy

Acknowledgements

Completing my PhD is an accomplishment that I'm lucky to share with a large group of supportive people. I first wish to acknowledge my Advisors Paul Asimow and Jennifer Jackson. They have always allowed me great freedom in my studies and encouraged me to pursue interesting scientific problems, even if they lie somewhat further afield from the core of my work. In particular, Paul showed great faith and patience as I searched for a simplified liquid model. There were many iterations and dead ends, but he stuck with me through it all, providing a crucial sounding board until we made it through to the other side. Jennifer has always indulged my curiosity about research that grew out of the primary study while helping to keep the main project moving toward completion. When I arrived at Caltech, I began my primary work with Dave Stevenson, which focused on studying the interior structure of extrasolar planets. Over time, however, my attentions turned increasingly downward to the interior of our own planet. Nevertheless, Dave has provided invaluable guidance over the years, primarily in the form of off-handed comments or asides that would result in fundamental shifts in my thinking, significantly altering my strategy for solving the problem at hand. I will seriously miss these guiding nudges when I leave Caltech. I am also thankful for the time I have spent with John Johnson, who taught the Bayesian Data Analysis course that solidified my love of the Bayesian approach. I sincerely appreciate

the responsibility that John gave me as a teaching assistant for that class in my final year, encouraging me to develop and give numerous lectures and homework sets. I can happily report that I will be taking this course with me as I continue the tradition of preaching the Bayesian gospel to all who have not yet heard it.

I feel truly fortunate to have had the best graduate peer group imaginable. This allowed me to collaborate on many projects with fellow graduate students, typically providing the statistical expertise necessary to attack the interesting problems that research has presented. This began with a project with my officemate Darin Ragozzine, looking into measuring the core properties of extrasolar hot Jupiters through changes in transit light curves. Later, I also collaborated with Alex Hayes using radar observations to constrain lake depths on Titan and Mike Line developing accurate methods for retrieving atmospheric gases and thermal profiles in the extrasolar planetary atmospheres. These side projects have shown me how much fun it is to collaborate with others and how lucky I have been to be in an environment that allows and encourages such things. I also want to thank the three more senior graduate students who were my officemates through much of graduate school: Darin Ragozzine, Alejandro Soto, and Margarita Marinova. You guys were amazing and I learned so much just talking with you about research, homework, life, and politics. Getting assigned to you as an officemate was an amazingly lucky draw, and I feel so fortunate to have been able to spend those years chatting with and working alongside you. More recently, I began having regular lunches with a few fellow students across the division whose interests all overlapped in thinking about the deep earth: June Wicks, Dan Bower, Miki Nakajima, and Claire Waller-Thomas. You guys were as important as my professors

in providing support and encouragement in the final year as I wrapped up my thesis work! And of course, there are many other friends that I've had, both within Caltech and outside of it, who made my time in graduate school great. Thanks especially to Steve Chemtob, Brian Cornelius, Meg Rosenberg, Jon Wolfe, and to everyone else that I fail to mention individually.

Finally, but most importantly, I want to thank my family. To my parents Daryl and Linda Wolf, I couldn't ask for more supportive, encouraging, and understanding people to have raised me. Now we know that all those science experiments over the years growing up have clearly amounted to more than the messes they made. Thanks to my brother Josh Wolf, who is hilarious and incredibly talented, and who I know will always have my back. I was also fortunate that both my parents grew up in Los Angeles, and so most of my extended family lives here. Thanks to my grandparents Estelle and Mel Brunetti and Fred and Pauline Wolf. I have really appreciated all the encouragement you've always been willing to give and it was great to be able to visit you more often over the last few years. A special thanks to my grandfather Marty Bolhower, who unfortunately died early during my time at Caltech. We all miss you so much and I just feel lucky that I got to spend what time I did with you in my first year here at Caltech. Also, many thanks to my aunts and uncles who live nearby and have hosted many Thanksgiving and Passover dinners. I will miss you when I've moved away! The biggest thanks of all goes to my wife Gretchen Keppel-Aleks. She went through this whole process two years ago when she got her PhD, and I hope that I was even a tiny fraction as supportive as she has been for me, especially over the last year. More than the degree that Caltech will give me, I am most thankful to Caltech for bringing

me together with Gretchen. We met here, have vacationed to escape here, and subsequently got married here. I look forward to the coming decades with Gretchen and making them as exciting and adventure-filled as the last five years have been.

Abstract

Our understanding of the structure and evolution of the deep Earth is strongly linked to knowledge of the thermodynamic properties of rocky materials at extreme temperatures and pressures. In this thesis, I present work that helps constrain the equation of state properties of iron-bearing Mg-silicate perovskite as well as oxide-silicate melts. I use a mixture of experimental, statistical, and theoretical techniques to obtain knowledge about these phases. These include laser-heated diamond anvil cell experiments, Bayesian statistical analysis of powder diffraction data, and the development of a new simplified model for understanding oxide and silicate melts at mantle conditions. By shedding light on the thermodynamic properties of such ubiquitous Earth-forming materials, I hope to aid our community's progress toward understanding the large-scale processes operating in the Earth's mantle, both in the modern day and early in Earth's history.

Contents

Acknowledgements								
A	Abstract viii							
Li	List of Figures xi							
Li	List of Tables xiii							
1	1 Introduction							
2	The Thermal Properties of Iron-bearing Silicate Perovskite and the Implica-							
	tions for Lower Mantle Structures 1		10					
	2.1	Introd	uction	11				
	2.2	Methods		12				
	2.3	Analys	Analysis					
		2.3.1	Peak Fitting	18				
		2.3.2	Determining P-T Conditions	22				
		2.3.3	Extracting Crystal Volumes and Cell Dimensions	31				
		2.3.4	Obtaining the Equation of State from P-V-T Measurements	33				
	2.4	Discussion		43				
		2.4.1	Equation of State Comparison and Uncertainties	43				
		2.4.2	Physical Property Profiles	47				
		2.4.3	Perovskite-Dominated Chemical Piles	51				
	2.5	Conclu	usion	58				
	2.A	Data R	Reduction Pipeline	59				

3	A Bayesian Approach to Determining Equations of State in the Diamond Anvil				
	Cell		63		
	3.1	Introduction	64		
3.2 Intro to Bayesian Statistics			64		
	3.3	3 Bayesian Analysis of Powder Diffraction Data			
		3.3.1 Estimating Peak Positions and Uncertainties	73		
		3.3.2 Estimating Unit Cell Parameters and Accounting for Misidentifie	d		
		Lines			
		3.3.3 Obtaining Unbiased Estimates and Uncertainties for Equation of	of		
		State parameters	84		
	3.4	Conclusions	91		
4 Coordinated HArd Sphere Model (CHASM): A simplified model for					
	liqui	ds at mantle conditions	94		
	4.1	Introduction	95		
	4.2	Background	97		
		4.2.1 Ideal Mixing Models for Experimental Data	97		
		4.2.2 Atomic Simulation Using Molecular Dynamics	99		
		4.2.3 Basic Hard Sphere Model	102		
		4.2.4 Previous Application of Hard Spheres to Silicate Liquids	108		
		4.2.5 Local Liquid Structure	111		
	4.3	Coordinated HArd Sphere Model (CHASM)	119		
		4.3.1 A Qualitative Picture of Liquid Compression	120		
		4.3.2 Perturbing the Hard Sphere Mixture Model	126		
		4.3.3 Training Pair Potentials on Solid Structures	134		
		4.3.4 Determining Liquid Properties using CHASM	147		
	4.4	Conclusions	156		
	4.A	Generalized Hard Sphere Mixture	160		
	4.B	Hard Spheres with Structural Perturbation	161		
	4.C	4.C Representing Variable Coordination			

List of Figures

2.1	Cold compression data map for 13% Fe-bearing perovskite	16
2.2	Cold compression data map for Mg-perovskite	17
2.3	Measured spectral temperatures for 13% Fe-bearing perovskite	24
2.4	Measured spectral temperatures for Mg-perovskite	25
2.5	Apparent deviatoric stress experienced by perovskite samples as determined	
	from neon diffraction lines	32
2.6	Cold compression curves with equation of state confidence regions for 0%	
	and 13% Fe-bearing perovskite samples	39
2.7	Excess volumes due to thermal expansion with best-fit isothermal equation	
	of state curves for 0% and 13% Fe-bearing perovskite	42
2.8	Joint confidence regions for core-mantle boundary volumes and bulk moduli	
	of Mg-Fe perovskite	48
2.9	Normalized axial ratios and octahedral tilt angles for 0% and 13% Fe-bearing	
	perovskite samples	49
2.10	Isothermal profiles with confidence regions for the physical properties of 0%	
	and 13% Fe-bearing perovskite samples	52
2.11	Buoyant stability of a perovskite-dominated LLSVP determined for a range	
	of Fe contents and temperatures using an ideal mixture model	56
3.1	Compression evolution of peak positions for Mg-perovskite sample	76
3.2	Compression evolution of peak positions for 13% Fe-bearing perovskite sample	76
3.3	Compression evolution of normalized axial ratios for 0% and 13% Fe-bearing	
	perovskite	83

Composition dependence of the zero-pressure volume for Fe-bearing per-
ovkiste from previous studies
Stair-step plot showing correlation between equation of state parameters for
0% and 13% Fe-bearing perovskite samples
Snapshots of simple hard sphere model for a range of packing fractions 105
Snapshots of hard sphere model showing packing fraction dependence of
free volume
Typical radial distribution function for simple monatomic fluid
Compression evolution of oxygen coordination number for SiO_2 liquid shown
using coordination polyhedra
Cartoon showing the range of compression mechanisms available to oxide
liquids
Potential crystal structures of $\rm MgO$ sampling a range of oxygen coordination
numbers between 4 and 8
Energy well shape described by the Generalized Morse Potential, shown in
normalized units
Energy-Volume curves for MgO structures determined using first principles
calculation are fit using coordination-dependent pair potentials
Best-fit coordination-dependent pair potential values for MgO
Energy wells for MgO shown for a range of coordination numbers, as deter-
mined by the best-fit pair potential values
Free energy compression curves and hard sphere sizes for MgO liquid at a
range of fixed oxygen coordination numbers
Compression evolution of coordination number populations of MgO liquid
at 3000K
Equation of state isotherms for MgO liquid, showing strong agreement with
first-principles calculations

List of Tables

2.1	Vinet and Mie-Gruneisen-Debye Equation of State Parameters	38
2.2	Equation of State Parameter Correlations	40