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“Science has achieved some wonderful things, of course, but I’d far rather be happy than

right any day.” —The Hitchhiker’s Guide to the Galaxy
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Abstract

Our understanding of the structure and evolution of the deep Earth is strongly linked to

knowledge of the thermodynamic properties of rocky materials at extreme temperatures

and pressures. In this thesis, I present work that helps constrain the equation of state prop-

erties of iron-bearing Mg-silicate perovskite as well as oxide-silicate melts. I use a mixture

of experimental, statistical, and theoretical techniques to obtain knowledge about these

phases. These include laser-heated diamond anvil cell experiments, Bayesian statistical

analysis of powder diffraction data, and the development of a new simplified model for

understanding oxide and silicate melts at mantle conditions. By shedding light on the ther-

modynamic properties of such ubiquitous Earth-forming materials, I hope to aid our com-

munity’s progress toward understanding the large-scale processes operating in the Earth’s

mantle, both in the modern day and early in Earth’s history.



ix

Contents

Acknowledgements iv

Abstract viii

List of Figures xi

List of Tables xiii

1 Introduction 2

2 The Thermal Properties of Iron-bearing Silicate Perovskite and the Implica-

tions for Lower Mantle Structures 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Peak Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Determining P-T Conditions . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Extracting Crystal Volumes and Cell Dimensions . . . . . . . . . . 31

2.3.4 Obtaining the Equation of State from P-V-T Measurements . . . . . 33

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Equation of State Comparison and Uncertainties . . . . . . . . . . 43

2.4.2 Physical Property Profiles . . . . . . . . . . . . . . . . . . . . . . 47

2.4.3 Perovskite-Dominated Chemical Piles . . . . . . . . . . . . . . . . 51

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.A Data Reduction Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



x

3 A Bayesian Approach to Determining Equations of State in the Diamond Anvil

Cell 63

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Intro to Bayesian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Bayesian Analysis of Powder Diffraction Data . . . . . . . . . . . . . . . . 72

3.3.1 Estimating Peak Positions and Uncertainties . . . . . . . . . . . . . 73

3.3.2 Estimating Unit Cell Parameters and Accounting for Misidentified

Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.3 Obtaining Unbiased Estimates and Uncertainties for Equation of

State parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 Coordinated HArd Sphere Model (CHASM): A simplified model for oxide

liquids at mantle conditions 94

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.1 Ideal Mixing Models for Experimental Data . . . . . . . . . . . . . 97

4.2.2 Atomic Simulation Using Molecular Dynamics . . . . . . . . . . . 99

4.2.3 Basic Hard Sphere Model . . . . . . . . . . . . . . . . . . . . . . 102

4.2.4 Previous Application of Hard Spheres to Silicate Liquids . . . . . . 108

4.2.5 Local Liquid Structure . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3 Coordinated HArd Sphere Model (CHASM) . . . . . . . . . . . . . . . . 119

4.3.1 A Qualitative Picture of Liquid Compression . . . . . . . . . . . . 120

4.3.2 Perturbing the Hard Sphere Mixture Model . . . . . . . . . . . . . 126

4.3.3 Training Pair Potentials on Solid Structures . . . . . . . . . . . . . 134

4.3.4 Determining Liquid Properties using CHASM . . . . . . . . . . . 147

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.A Generalized Hard Sphere Mixture . . . . . . . . . . . . . . . . . . . . . . 160

4.B Hard Spheres with Structural Perturbation . . . . . . . . . . . . . . . . . . 161

4.C Representing Variable Coordination . . . . . . . . . . . . . . . . . . . . . 163



xi

4.D Free Energy Contribution of Bond-Angle Deviations . . . . . . . . . . . . 163

Bibliography 166



xii

List of Figures

2.1 Cold compression data map for 13% Fe-bearing perovskite . . . . . . . . . . 16

2.2 Cold compression data map for Mg-perovskite . . . . . . . . . . . . . . . . 17

2.3 Measured spectral temperatures for 13% Fe-bearing perovskite . . . . . . . . 24

2.4 Measured spectral temperatures for Mg-perovskite . . . . . . . . . . . . . . 25

2.5 Apparent deviatoric stress experienced by perovskite samples as determined

from neon diffraction lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Cold compression curves with equation of state confidence regions for 0%

and 13% Fe-bearing perovskite samples. . . . . . . . . . . . . . . . . . . . . 39

2.7 Excess volumes due to thermal expansion with best-fit isothermal equation

of state curves for 0% and 13% Fe-bearing perovskite . . . . . . . . . . . . . 42

2.8 Joint confidence regions for core-mantle boundary volumes and bulk moduli

of Mg-Fe perovskite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.9 Normalized axial ratios and octahedral tilt angles for 0% and 13% Fe-bearing

perovskite samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.10 Isothermal profiles with confidence regions for the physical properties of 0%

and 13% Fe-bearing perovskite samples . . . . . . . . . . . . . . . . . . . . 52

2.11 Buoyant stability of a perovskite-dominated LLSVP determined for a range

of Fe contents and temperatures using an ideal mixture model . . . . . . . . 56

3.1 Compression evolution of peak positions for Mg-perovskite sample . . . . . 76

3.2 Compression evolution of peak positions for 13% Fe-bearing perovskite sample 76

3.3 Compression evolution of normalized axial ratios for 0% and 13% Fe-bearing

perovskite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



xiii

3.4 Composition dependence of the zero-pressure volume for Fe-bearing per-

ovkiste from previous studies . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5 Stair-step plot showing correlation between equation of state parameters for

0% and 13% Fe-bearing perovskite samples . . . . . . . . . . . . . . . . . . 92

4.1 Snapshots of simple hard sphere model for a range of packing fractions . . . 105

4.2 Snapshots of hard sphere model showing packing fraction dependence of

free volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3 Typical radial distribution function for simple monatomic fluid . . . . . . . . 114

4.4 Compression evolution of oxygen coordination number for SiO
2

liquid shown

using coordination polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.5 Cartoon showing the range of compression mechanisms available to oxide

liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.6 Potential crystal structures of MgO sampling a range of oxygen coordination

numbers between 4 and 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.7 Energy well shape described by the Generalized Morse Potential, shown in

normalized units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.8 Energy-Volume curves for MgO structures determined using first principles

calculation are fit using coordination-dependent pair potentials . . . . . . . . 145

4.9 Best-fit coordination-dependent pair potential values for MgO . . . . . . . . 146

4.10 Energy wells for MgO shown for a range of coordination numbers, as deter-

mined by the best-fit pair potential values . . . . . . . . . . . . . . . . . . . 148

4.11 Free energy compression curves and hard sphere sizes for MgO liquid at a

range of fixed oxygen coordination numbers . . . . . . . . . . . . . . . . . . 151

4.12 Compression evolution of coordination number populations of MgO liquid

at 3000K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.13 Equation of state isotherms for MgO liquid, showing strong agreement with

first-principles calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



xiv

List of Tables

2.1 Vinet and Mie-Gruneisen-Debye Equation of State Parameters . . . . . . . . 38

2.2 Equation of State Parameter Correlations . . . . . . . . . . . . . . . . . . . 40


