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Abstract

Our understanding of the structure and evolution of the deep Earth is strongly linked to

knowledge of the thermodynamic properties of rocky materials at extreme temperatures

and pressures. In this thesis, I present work that helps constrain the equation of state prop-

erties of iron-bearing Mg-silicate perovskite as well as oxide-silicate melts. I use a mixture

of experimental, statistical, and theoretical techniques to obtain knowledge about these

phases. These include laser-heated diamond anvil cell experiments, Bayesian statistical

analysis of powder diffraction data, and the development of a new simplified model for

understanding oxide and silicate melts at mantle conditions. By shedding light on the ther-

modynamic properties of such ubiquitous Earth-forming materials, I hope to aid our com-

munity’s progress toward understanding the large-scale processes operating in the Earth’s

mantle, both in the modern day and early in Earth’s history.
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Chapter 1

Introduction

To attempt to understand our planet’s origin and subsequent evolution, we must look below

the thin skin of the Earth’s surface into its deep interior. Comprising over 99% of our

planet’s mass, the Earth’s mantle and core have been actively redistributing heat and matter

for the last four and a half billion years, as they respond to and help shape conditions

at the surface. The evolutionary path traced by the Earth’s interior is strongly linked to

the behavior of the rocky material from which it is made. Understanding the physical

properties of mantle rocks over a wide range of extreme conditions is therefore crucial

to the goal of building a coherent picture of the Earth, both as it is today and as it once

was in the distant past. Peering into the deep Earth is no easy task, as it requires that we

probe through thousands of kilometers of opaque rock to a region that is both visually and

physically inaccessible—instead, we must rely on more indirect methods. In this thesis,

I present experimental and theoretical work which helps to expand our understanding of

the thermodynamic properties of rocky material at extreme temperatures and pressures,

relevant to both the modern-day mantle and to the mantle as it was early in Earth’s history.

The Earth is composed primarily of a large thick shell of solid silicate rocks surrounding

a liquid iron core. The core is just under half the Earth’s radius, leaving almost 85% of the
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volume to the Earth’s mantle. The mantle is in turn split between the upper and lower

mantle, where the distinction reflects the different mineral assemblages that comprise each

region. The Earth’s lower mantle is composed primarily of a mixture of roughly 80%

(Mg,Fe)(Si,Al)O3 perovskite and the remaining 20% is mostly (Mg,Fe)O ferropericlase.

As perovskite dominates the largest volumetric region of the Earth, this mineral likely

represents the single most common material in the entire Earth. It also lies in a particularly

dynamic region that is actively convecting, carrying heat up and out of the Earth’s interior.

If we could choose to understand only a single material in the hopes of shedding light on

the evolutionary processes that shaped the Earth, silicate perovskite would undoubtedly be

the best choice.

Our understanding of the Earth’s mantle depends on direct seismic observations of how

waves propagate at depth, combined with our knowledge of how terrestrial rocks behave at

extreme conditions. Constraining the high-pressure thermal properties of mantle minerals

is therefore one of the outstanding challenges in mineral physics, and helps to inform us

about the structure and evolution of the deep Earth. The core-mantle boundary region is

marked by numerous seismically observed heterogeneities spanning a wide range of length

scales, the largest of which are the Large Low Shear Velocity Provinces (LLSVPs) that lie

beneath Africa and the Pacific. These ∼1000 km-tall structures are made visible by their

distinct shear and bulk sound speeds, density contrasts, and seismically sharp boundaries,

which are generally interpreted as evidence of combined thermal and compositional differ-

ences from the bulk mantle. Likely compositionally distinct and lying at the base of the

Earth’s mantle, these large intriguing structures prompt many questions. How could such a
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vast compositional heterogeneity remain chemically isolated from the convecting mantle?

What is the cause of their extreme topographic relief and how does this relate to their ap-

parent longevity? What process is capable of forming such large compositionally distinct

reservoirs and implanting them at the base of the mantle?

There are a number of geodynamic theories that potentially explain how such vast

chemical reservoirs could resist mixing with the bulk mantle, a situation further compli-

cated by the large vertical length scales involved. These theories generally fall into two

broad categories: dynamically lifted passive piles and self-supporting metastable domes

(Tan and Gurnis, 2007). Passive piles are made of material that is everywhere denser than

the ambient mantle, causing it to pool on the core-mantle boundary (CMB), where exter-

nally imposed forces like down-going slabs dynamically sweep the piles upward giving

them their observed morphology. Metastable domes, on the other hand, are less dense than

average mantle at the CMB, causing them to internally convect and propping themselves

up with a height determined by the height of neutral buoyancy. As these behaviors are a

consequence of the material properties of the pile, they can be directly tested by experi-

ments that determine the compression behavior of mantle minerals at high pressures and

temperatures.

In Chapters 2 and 3, I report the results of laser-heated diamond anvil cell experiments

that are analyzed to constrain the thermal properties of (Mg,Fe)SiO3 perovskite, the dom-

inant phase in the Earth’s lower mantle and therefore a large likely component of LLSVPs.

Unlike previous equation of state studies, we investigate the effect of iron (13%) on both the

ambient and thermal properties of perovskite in a quasi-hydrostatic neon pressure medium.
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We further employ a simplified mixture model in order to estimate the physical proper-

ties of perovskite for a wide range of iron compositions and compare these values to bulk

mantle properties at a range of P-T conditions. Using the apparent contrast in density and

bulk modulus relative to average lower mantle values, we assess the relative likelihood of

passive pile and metastable dome theories for perovskite-dominated LLSVPs.

The evolutionary theories of how such chemical piles could have been generated in the

first place is another important line of inquiry, one that connects us with the deep history of

our planet. As is often the case, finding answers to the question of “why?” are even more

challenging than the question of “what?”. Generally speaking, the mechanistic hypothe-

ses for the generation of LLSVPs fall either into the camp of slow accumulative processes

or the remnant of a primordial event. The favored class of long-timescale explanation is

that these chemical piles represent the residue of billions of years oceanic crust genera-

tion and subduction as a consequence of plate tectonics (Tackley, 2011). Oceanic crust is

chemically dense relative to the ambient mantle and order of magnitude estimates of the

total amount of crust generated over the Earth’s lifetime are sufficient to explain the in-

ferred volumes of these reservoirs (Xie and Tackley, 2004). The major poorly constrained

aspect of the problem is how efficiently the basaltic component of oceanic plates can be

de-laminated and segregated from the bulk of the plate to avoid being carried back upward

by convective mantle flow. In contrast to this slow and gradual formation mechanism, the

leading primordial remnant theories propose a link between the generation of these chem-

ical reservoirs and the evolutionary processes that operated in the magma ocean present

early in Earth’s history. The magma ocean theory states that the large accretional energies
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delivered to the Earth in the form of giant impacts resulted in melting of significant por-

tions of the mantle (discussed in greater detail below). The cooling of the mantle from this

initially molten state is accompanied by complex crystallization processes that have the

potential to generate and gravitationally segregate the bulk mantle into multiple chemically

separated constituents. Great uncertainty exists about the cooling pathways available to

the early molten Earth, but likely potential processes that could generate chemically dis-

tinct reservoirs include fractional crystallization (Solomatov and Stevenson, 1993) and the

longer-lived evolution of an insulated and isolated basal magma ocean (Labrosse et al.,

2007). Though our understanding of magma ocean processes are fraught with uncertainty,

it is an attractive focus of study due to its potential for fundamentally altering the course of

deep Earth evolution.

As magma ocean evolution likely represents one of the primary forces that shaped the

early development of the mantle, understanding the behavior of silicate liquids at man-

tle pressures is crucial to reconstructing the early evolution of Earth and other terrestrial

planets. While molten silicates play a minor role in the deep mantle today, their mate-

rial properties directly determined the Earth’s evolutionary path as it cooled from a nearly

whole-mantle magma ocean to its present-day solid state. Earth’s early history was marked

by a series a giant and traumatic events. Giant impacts of large planetary embryos were re-

sponsible for setting the initial thermal state of the mantle. Since the gravitational energy of

accretion for the Earth exceeds the threshold for complete melting by many orders of mag-

nitude (Stevenson, 2007), the degree of melting actually experienced was determined by a

balance between accretion and cooling timescales, which depend on how effectively energy
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was delivered to great depth by large impacts. Based on accretion simulations (e.g., Cham-

bers, 2004), we expect that the Earth suffered a series of a few to ten giant impacts during

formation, the largest of which probably formed the moon. A recent numerical investiga-

tion into the moon-forming impact suggests that the entire mantle is likely to have melted

(Nakajima and Stevenson, 2012); at the same time, new He and Xe isotopic evidence indi-

cates that the Earth must have experienced at least two magma ocean periods in its history

while simultaneously maintaining some primordial unmixed reservoirs (Mukhopadhyay,

2012; Mukhopadhyay et al., 2012). These isotopic studies underscore the potential links

that exist between very early Earth processes and the structures that we can seismically

observe today residing in the deep mantle.

Our understanding of magma ocean crystallization and evolution is currently undergo-

ing significant changes, linked directly to new insights on the behavior of silicate melts.

Recent experimental and theoretical works (Mosenfelder et al., 2007; Stixrude et al., 2009)

show that the thermal properties of silicate liquids upon compression differ significantly

from our previous understanding, causing adiabatic thermal profiles that are much steeper

than previously assumed—steeper even than the solidus (or melting curve for simple sys-

tems) at the base of the mantle. The cooling liquid adiabat adopted by the rapidly convect-

ing magma ocean therefore likely first encounters the solidus at mid mantle depths, rather

than at the base of the mantle, indicating a complex center-outwards style of crystallization

rather than the classic bottom-up solidification that has dominated our thinking in magma

ocean studies (e.g., Solomatov and Stevenson, 1993).

Considering these recent advancements in our general understanding of high-pressure
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silicate liquids and the serious qualitative implications they have for magma ocean evo-

lution, it is clear that we need to take a deeper mechanistic look into the compression

behavior of silicate melts. In Chapter 4, I present the development of a general simplified

model for oxide liquids. The Coordinated HArd Sphere Model (CHASM) provides a sim-

plified framework for predicting the behavior of oxide and silicate liquids at high pressures

and temperatures. This model builds upon the analytic hard sphere liquid model, applied

to silicates by Jing and Karato (2011), which captures the dominant entropy source for liq-

uids, stemming from structural freedom due to lack of long-range order. On top of the basic

hard sphere model backbone, CHASM incorporates an explicit accounting of the variable

oxygen coordination states available to each cation in the liquid. The addition of a range of

coordination states that are populated according to free energy minimization is crucial to

representing gradual coordination evolution, which is the primary compression mechanism

of silicate and oxide melts. In addition to presenting the general model framework, we

also show how the CHASM approach can be adapted to any chemical system of interest by

training its parameters on the energy compression curves for a variety of different crystal

structures. We demonstrate this training method and the subsequent calculated results for

the MgO system, showing strong agreement with first-principles calculations over a wide

range of pressures and temperatures.

Throughout this thesis, I have endeavored to demonstrate the tight links that exist be-

tween our knowledge of the thermodynamic properties of rocky materials and our under-

standing of the Earth’s interior. Using a mixture of experimental and theoretical techniques,

I have studied the high-pressure and -temperature properties of silicate perovskite and gen-
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eral oxide-silicate melts. Together, these represent the dominant phases of the Earth’s man-

tle, now and in the distant past. Through the work presented in this thesis, I have added to

our understanding of the behavior of these important phases under extreme conditions, and

thus contributed to our growing knowledge of the deep Earth.
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Chapter 2

The Thermal Properties of Iron-bearing
Silicate Perovskite and the Implications
for Lower Mantle Structures

Abstract

The high-temperature and -pressure equations of state of 0% and 13% Fe-bearing Mg-

silicate perovskite are measured using powder diffraction in the diamond anvil cell. The

derived equation of state properties are broadly consistent with previous work, though the

Mg-endmember shows slightly larger volumes at high pressure than previous studies. The

derived equations of state are incorporated into an ideal mixing model used to probe the

density stability of perovskite material at a range of temperatures and compositions. This

stability analysis shows that the metastable dome theory for Large Low Shear Velocity

Provinces (LLSVPs) is possible but unlikely, with a probability of less than roughly 10%,

given the narrow range of compositions values consistent with metastability.
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2.1 Introduction

The Earth’s lower mantle is thought to be composed of primarily aluminous (Mg,Fe)SiO3

perovskite coexisting with (Mg,Fe)O ferropericlase. While the exact phase proportions

depend on the assumed compositional model for the lower mantle, e.g., pyrolytic vs. pi-

critic, iron-bearing silicate perovskite is thought to dominate making it the most common

mineral in the silicate Earth (Kesson et al. 1998, Mattern et al. 2005). As the primary

lower mantle phase, it plays a major role in determining the physical properties of lower

mantle material, thereby exerting large control over mantle dynamics and evolution. Char-

acterizing its temperature-dependent equation of state is therefore vital to both interpreting

seismic observations and providing accurate input to geodynamics calculations.

Most previous high-pressure experimental studies of silicate perovskite have either fo-

cused on the Mg-endmember and neglected the role of Fe (Fiquet et al., 2000), or they

have studied a range of Fe compositions but were restricted to ambient temperature (Lundin

et al., 2008; Dorfman et al., 2013). There are also numerous studies that have examined

natural compositions, including ferric iron and aluminum, which can also have an important

impact on the equation of state behavior of perovskite (Catalli et al., 2011). While clearly

crucial to our understanding of the deep Earth, such natural compositions add significant

complication to interpreting results, and thus it is important to couple them with studies

the focus on simpler systems where it is easier to gain an understanding of systematic

behavior. The majority of these previously mentioned studies have also used strongly non-

hydrostatic pressure media, including NaCl and Ar. Recent work, however, has shown that

non-hydrostatic stress states may alter a mineral’s compression behavior (e.g., Takemura,
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2007; You Shu-Jie and Chang-Qing, 2009; Iizuka et al., 2010), rendering such experiments

perhaps less representative of conditions within the Earth. In this study, we seek to help

provide a more complete picture of perovskite by studying a simplified chemical system in

great detail, examining iron-bearing and iron-free synthetic samples at both high pressures

and temperatures.

In this work, we report the temperature-dependent equation of state for polycrystalline

perovskite-structured (Mg1−x,Fex)SiO3 samples with two different iron compositions rel-

evant to the lower mantle (x = 0% and 13%). These samples where probed with x-rays

under a wide range of conditions between 30 and 130 GPa and room temperature up to

2500K. These results are then compared to assess the effect of iron composition on silicate

perovskite’s high-temperature compression behavior. Finally, we assess the plausibility of

different competing models to explain perovskite-rich lower mantle structures.

2.2 Methods

Our perovskite samples were made from synthetic (Mg1−x,Fex)SiO3 pyroxene starting

materials with iron compositions of x = 0% and 13%. These compositions were verified

using micro-probe analysis, and Mössbauer spectroscopy on the Fe-bearing sample showed

it to contain undetectable levels of ferric iron, constraining it to less than 3% Fe 3+ (Jackson

et al., 2009; Zhang et al., 2011). The iron-free MgSiO3 glass starting sample was mixed

with roughly 10 wt% Au, which served as an infrared absorber, ensuring good coupling

with the laser. To minimize contamination of the sample, the grinding and mixing was

performed between two pristine tungsten-carbide cubes. Since their Fe content is sufficient
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to couple with the laser, the iron-bearing samples were not mixed with gold, avoiding

any potential Fe−Au alloy formation which might affect experimental results; All samples

were then loaded into symmetric diamond anvil cells using pre-indented Re gaskets and 250

micron culets. The samples were placed on top of ∼10 micron thick insulating dehydrated

NaCl plates, which are crucial for reducing thermal gradients within the sample during

laser heating. Each sample was also loaded with a few synthetic ruby spheres for offline

pressure determination using the ruby fluorescence method (e.g., Jacobsen et al., 2008;

Silvera et al., 2007; Mao et al., 1986). The cells were loaded with a Ne pressure medium

using the GSECARS gas-loading system at the Advanced Photon Source (APS) of Argonne

National Laboratory (Rivers et al., 2008). The samples were pressurized to∼30 GPa where

they were then laser annealed within the stability field of perovskite.

Powder diffraction measurements were taken at the Sector 13-ID-D GSE-CARS beam-

line at the APS. Diffraction spectra were taken in roughly 2 to 4 GPa steps between 35 and

110 GPa for each sample. The pressure for each spectrum was determined using the Ne

pressure medium as the primary pressure marker, Dewaele et al. (2008), together with the

offline ruby fluorescence measurements. As discussed in Section 2.3.2, great care is taken

in the analysis of the neon diffraction lines to assess the effect of deviatoric stress on the

measured pressure. In roughly 5 to 10 GPa steps, the samples were laser heated in stages

up to a maximum temperature of 2500 K. These temperatures were determined from ther-

mal emission spectra by fitting them to a blackbody curve (Heinz and Jeanloz, 1987; Shen

et al., 2001).

The raw powder diffraction images were converted to one-dimensional spectra using
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a suite of routines written in MATLAB. In these routines, the observing geometry is first

determined from calibration spectra using an automated statistical method. This has the

advantage over the standard ‘click-based’ method employed in FIT2D that it requires little

user input and generates a reproducible result that is determined by the maximum likelihood

configuration given the data. Using the derived geometric calibration, it is straightforward

to calculate the observed diffraction angle (2θ) corresponding to each pixel on the CCD.

The diffraction angle can then be converted into the more physically relevant inverse d-

spacing (1/d), which describes the spacing between a set of coherently reflecting crystal

planes, by simply applying Bragg’s law for first-order reflections, 1/d = 2 sin(2θ/2)/λ,

where λ is the wavelength of the monochromatic x-rays used to probe the sample. Each

raw image is then ‘integrated’ assuming Poisson statistics for the uncertainties in number

of photons hitting each pixel. For some of the diffraction images, which contain over-

exposed pixels, a further preprocessing step is required to produce accurate 1D spectra

(for more details on our data reduction pipeline see 2.A). The final step in the integration

process is to subtract off a decent guess of the background spectrum so that data sets can be

easily examined and fit. We employ the Bayesian background identification and subtraction

method presented in David and Sivia (2001), which automatically determines a reasonable

polynomial background curve assuming the potential presence of large positive deviations

due to the presence of as-yet unmodeled diffraction peaks.

After these processing steps, we obtain a set of 1D powder diffraction spectra for a

range of pressures and temperatures for both the 13% Fe-bearing perovskite sample and

the pure Mg-endmember sample. To gain a good overview of the room temperature data,
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we construct interpolated cold-compression maps shown in Figures 2.1 and 2.2. To best

highlight all aspects of the data, we plot the intensity using a geometric color-scale 1, ren-

dering every line visible to the eye even though their amplitudes vary over many orders of

magnitude. In each figure, we also overplot the fitted line positions for each phase, showing

that dozens of perovskite peaks are visible in the spectra as well as the high-intensity peaks

from neon which are used as in situ pressure markers, as described in Section 2.3.2.

2.3 Analysis

The analysis of the 1D integrated spectra is broken into four parts, each of which are each

discussed below. First is the process of peak-fitting, which transforms the continuous spec-

trum into a discrete set of measured peak positions and associated uncertainties. The next

task is to determine the pressure–temperature conditions inside the diamond anvil cell. In

this section, particular care is taken to determine the deviatoric stress contribution to the

pressure. Thirdly, the set of peak positions corresponding to perovskite in each spectrum

are transformed into estimates of the unit cell parameters along with uncertainties. Fi-

nally, the estimated volumes, temperatures and pressures are all combined to retrieve the

confidence regions for the overall equation of state of each sample.

1We use the inverse hyperbolic sin transformation to visualize the background subtracted intensities,
which generates a roughly geometric color-scale. This transformation is well suited to values that vary over
orders of magnitude, since it reduces to a simple log-transformation for large values, while still allowing for
negative values that result from background subtraction (Burbidge et al., 1988). Note that this transform is
only used for visualization and plays no role in the actual data fitting.
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Figure 2.1: Cold compression data map for 13% Fe-bearing perovskite sample showing in-
tensity as a function of pressure and inverse d-spacing. The upper panel shows the raw in-
terpolated intensities, while the lower panel overplots the fitted line positions for the entire
data set. Diffraction intensities are shown using a geometric (or roughly logarithmic) scale,
allowing even lines of very small amplitude to be visible. The phases with lines apparent
in at least some spectra are the perovskite sample (pv), neon(ne), gold (au), the rhenium
gasket (re), stishovite (stish), and the post-stishovite CaCl2 structure of silica (sio2).
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Figure 2.2: Cold compression data map for pure endmember Mg-perovskite sample show-
ing intensity as a function of pressure and inverse d-spacing. The upper panel shows the
raw interpolated intensities, while the lower panel overplots the fitted line positions for the
entire data set. Diffraction intensities are shown using a geometric (or roughly logarithmic)
scale, allowing even lines of very small amplitude to be visible. The phases with lines
apparent in at least some spectra are the perovskite sample (pv), neon(ne), gold (au), B2-
structured NaCl (nacl), the rhenium gasket (re), stishovite (stish), and the post-stishovite
CaCl2 structure of silica (sio2).
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2.3.1 Peak Fitting

The process of obtaining unit cell parameters from a set of integrated 1D diffraction spectra

usually follows one of two main strategies: whole pattern refinement or individual peak-

fitting. The first method, officially called Rietveld refinement, is carried out by modeling

the entire spectrum as a whole, and is thus often referred to as whole pattern refinement.

Using this method, every crystal phase that is present in the spectrum is assumed to have

a predetermined crystal structure, which dictates the relative line amplitudes. This global

model is simultaneously fitted to the entire spectrum, where the free parameters are taken to

be the unit cell parameters for each phase (which determine the line positions), the apparent

phase fraction determining the relative amplitude of the lines from different phases, and a

set of parameters that control the line widths and shapes as a function of diffraction angle.

The fitting method follows the standard weighted least-squares, or chi-square minimization

approach, which is appropriate to independent normally distributed data as derived using

the Bayesian framework in Chapter 3. There exist numerous codes that perform this type

of fitting and have graphical user interfaces (GUIs) improving ease of use, including the

program GSAS (General Structure Analysis System) with its EXPGUI interface (Toby,

2001).

While whole pattern refinement can be quite convenient, it has a number of limitations.

As it is typically applied, the user constructs a complete model of the crystal system, which

allows the calculation of the entire diffraction pattern including the relative amplitudes of

each line in the profile, which are tied to both the overall structure and the relative atomic

positions. This is an excellent approach when the data are well represented by an ideal pow-
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der diffraction model. In many high-pressure diamond anvil cell experiments, however, the

diffraction pattern is seen to evolve with increasing pressure and temperature, causing the

relative amplitudes of each line to shift away from their default values expected at ambient

conditions. There are many possible explanations for this behavior, including: incomplete

sampling of randomly oriented crystallites resulting from small number statistics for crys-

tallites in the diffraction condition; crystal preferred orientation (due perhaps to deviatoric

stress in the sample chamber); or perhaps systematic shifts of the atomic positions with

increasing pressure. While all of these effects can potentially be directly modeled, they

require large amounts of very precise—usually single crystal—diffraction data, making it

impractical for the vast majority of experiments.

In the face of this large set of unmodeled physical processes, the whole pattern refine-

ment method is often incapable of accurately representing the relative line intensities in

high-pressure experiments. We may choose to ignore such systematic errors in our model,

dismissing them as minor effects, but we do so at the risk of inducing strong biases in our

results. Therefore, when applying the whole pattern refinement method to high-pressure

data, one must be very careful to ensure that the relative amplitudes are well described by

the model to within the observational Poisson noise. If they are not, then the best-fit model

curves, which may look generally reasonable to the eye, are likely to be heavily weighted

toward only a few diffraction peaks within spectrum. In particular, the fit will be depend

almost exclusively on only the smallest subset of intense diffraction lines that can constrain

the unit cell parameters (representing a range of hkl values). All of the information con-

tained in the clearly visible but low intensity lines can easily be ignored in favor of small
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yet meaningless improvements to the fit quality for the most intense peaks.

One of the typical ways to deal with this issues is to employ the LeBail fitting method,

as implemented in GSAS (Toby, 2001). This is an iterative algorithm that allows the rela-

tive peak intensities to adjust away from their expected ideal values. It accomplishes this by

approximately apportioning the observed intensities amongst the diffraction peaks present

at each portion of the spectrum. The problem with this method is that it can often lead

to unstable or “runaway solutions”, where the fitting procedure must be artificially halted

early on, prior to convergence, otherwise the line intensities change so drastically that all

of the model parameters, including the dimensions of the unit cell, begin to undertake unre-

alistically large excursions from reasonable values. This reflects a general property of data

fitting in situations where the model parameters are under-constrained—when too many de-

grees of freedom are given to the model, the fitting algorithm will take advantage of those

parameters, adjusting them to reduce the misfit, even if those adjustments are not sensible

and lead to unphysical results. The LeBail method is therefore a good choice when the

data quality is extremely high and thus there is little potential for bias resulting from over-

fitting. Unfortunately, this is often not the case for multiphase high-pressure diffraction

spectra, especially when the spectra include low symmetry phases like perovskite.

It is for these reasons that we favor the second method of individual peak fitting. In this

approach, the spectrum is split up into different sections that contain diffraction lines of

interest. These lines are then fit individually, or in small clustered groups where the peaks

are seen to overlap one another. Using this approach, it is simple to leave the relative peak

intensities unconstrained, and thus avoid the issues outlined above. This advantage comes
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with the extra cost of needing to identify each peak in the spectrum to be modeled, which

can be fairly time consuming. Of course obtaining reasonably good fits is also correspond-

ingly easier when breaking the spectrum up into smaller sections as compared to fitting the

spectrum as a whole. This is typically done by assuming a reasonable baseline model in

terms of the unit cell parameters for each spectrum and then locating the diffraction lines

that appear to best line up with the predicted peak positions. The major downside to this

approach is that some amount of line misidentification is inevitable when observed peaks in

the spectrum happen to occur in the expected region of diffraction angle space. In Chapter

3, we discuss in great detail the process of obtaining good estimates of unit cell parameters

while avoiding the systematically biasing effects of misidentified peaks.

After obtaining estimates and uncertainties for the crystal dimensions from each spec-

trum (see Chapter 3), we carry out a careful study of the observed neon diffraction peak

positions to determine the pressure inside the diamond anvil cell, account for deviatoric

stress effects. Combining the estimates of pressure, temperature, and crystal volume, we

estimate the equation of state parameters by fitting the derived unit cell dimensions for each

spectrum. Rather than merely reporting the ‘best-fit’ parameter values as is quite common

throughout the literature, we present the correlated uncertainties in our model parameters

and demonstrate how important these correlations are crucial to interpreting the difference

between different equations of state.
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2.3.2 Determining P-T Conditions

Determination of the externally imposed environmental conditions, pressure and tempera-

ture, experienced during diamond anvil cell experiments is obviously one of the most im-

portant tasks for obtaining accurate and unbiased material properties measurements. Un-

fortunately, this task is significantly more complicated than one might naively guess. In

this section, we discuss how we employ careful statistical methods together with detailed

physical models to retrieve the temperature and pressure conditions for each measurement.

In situ temperatures during laser-heating are obtained from measurements of the ther-

mal emission of the sample. The laser heating system at the Sector 13 IDD beamline of

GSECARS is equipped with a set of mirrors that simultaneously focus a laser-heating spot

on the sample, while carrying the thermally radiated light from the sample back to two

independently calibrated spectrometers. The sample’s thermal radiation spectrum is then

fit at the beamline assuming a gray-body spectrum, enabling estimation of the temperature

for both the upstream and downstream sides of the sample. Since the spectrometers on ei-

ther side are independently calibrated, they provide two independent measurements of the

same quantity, assuming small axial thermal gradients. One issue that should be addressed,

however, is that the calibration process necessarily leads to some degree of systematic dis-

agreement between the upstream and downstream measurements; as seen in Figures 2.3

and 2.4, the raw temperature measurements for the upstream and downstream sides are

systematically shifted from the one-to-one line. This calibration error is readily corrected

by plotting the histogram of the difference between the upstream and downstream measure-

ments, which yields a distribution that is reasonably approximated as normal, as shown in
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the insets in Figures 2.3 and 2.4. The mean and standard deviation of the best-fit normal

distribution therefore give the systematic temperature bias and approximate temperature er-

ror for each dataset. We subsequently correct the upstream and downstream measurements

toward more realistic values by shifting them each by half the typical measurement differ-

ence, thereby accounting for any systematic biases in the spectral temperature calibration.

Improving determination of in situ pressures inside the diamond anvil cell has received

considerable attention over the past decade, as many workers have focused on increasing

the internal consistency amongst the equations of state for numerous pressure markers as

well as increasing the absolute accuracy by accounting for deviatoric stresses. Deviatoric

stress, which describes the non-hydrostatic component of the stress tensor, arises primarily

in response to the uniaxial nature of the compression imposed by the standard diamond

anvil cell design, which squeezes the sample only along the axial beam-path direction. The

pressure medium surrounding the sample, in this case neon, is therefore relied upon to-

gether with the rhenium gasket that forms the walls of the sample chamber, to translate this

entirely uniaxial imposed stress into a nearly hydrostatic stress field appropriate to under-

standing the state of minerals in the deep mantle. The effectiveness of this transformation

depends on strength of the pressure medium, hence the preference for ultra-soft media like

neon to other harder materials like NaCl.

Based on the uniaxial compression design, it is generally assumed for diamond anvil

cell experiments that the dominant part of the deviatoric stress tensor is an excess normal

component along the axial direction relative to the two radial directions (Singh, 1993), and

all other non-hydrostatic contributions are neglected as small high-order corrections. The
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Figure 2.3: Measured spectral temperatures for Fe-bearing sample during laser heating.
The main figure plots upstream and downstream measurements against each other together
with the one-to-one line in red, with the raw measurements in black crosses and the cor-
rected measurements in red circles. The inset figure shows the distribution of measured
temperature differences, consistent with an absolute calibration difference of 150 K be-
tween the upstream and downstream spectrometers and a random measurement error for
each spectrum of 130 K. This calibration difference is used to correct the raw measure-
ments to their most likely value, shifting the red corrected points toward the one-to-one
line.
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Figure 2.4: Measured spectral temperatures for Mg-endmember sample during laser heat-
ing. The main figure plots upstream and downstream measurements against each other
together with the one-to-one line in red, with the raw measurements in black crosses and
the corrected measurements in red circles. The inset figure shows the distribution of mea-
sured temperature differences, consistent with an absolute calibration difference of 125 K
between the upstream and downstream spectrometers and a random measurement error for
each spectrum of 190 K. This calibration difference is used to correct the raw measure-
ments to their most likely value, shifting the red corrected points toward the one-to-one
line.
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deviatoric stress experienced inside the sample chamber is bounded above by the yield

strength of the pressure medium, which marks the point at which the material will begin

to plastically deform and flow, generally allowing the sample chamber to thin along the

axial direction, attempting to equalize the stresses along the axial direction (imposed by

the diamond anvil surfaces) and along the radial direction (imposed by the edges of the

gasket hole).

In this study, we rely primarily on the diffraction lines of the neon pressure medium

to determine in situ pressures. While multiple pressure markers were placed inside the

sample chamber, including NaCl and Au, the majority of the powder diffraction spectra

show relatively weak signals from those markers, making their pressure determinations

highly uncertain. In contrast, the diffraction lines from neon represent the most intense

reflections in every spectrum.

Using the peak-fitting procedure described above and in Chapter 3, we are able to ac-

curately retrieve peak positions for both the neon 111 and 200 lines in every diffraction

spectrum, as well as the neon 220 line in most of the Mg-endmember sample spectra. For

a cubic crystal under hydrostatic stress, the crystal plane spacing is given simply as

dP (hkl)−1 = a−1
P

√
h2 + k2 + l2 (2.1)

where dP (hkl) is the d-spacing under purely hydrostatic stress and aP = V
1
3 is the unit

cell length. An estimate for the in situ pressure can then be determined by obtaining the

apparent unit cell length for each diffraction line and converting the corresponding vol-

ume into a pressure using the well-determined equation of state for the pressure standard
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in question. In our case, we use the neon equation of state reported in Dewaele et al.

(2008), which provides a carefully constrained Debye-Grüneisen equation of state using

high-cadence room-pressure compression data up to 200 GPa and precise resistive heat-

ing high-temperature measurements between 300K and 1000K. We find that the measured

neon line positions imply apparent unit cell sizes, and corresponding pressure values, that

are systematically shifted relative to one another, reflecting the presence of non-negligible

deviatoric strain. By assuming that excess uniaxial stress dominates the deviatoric stress

tensor, Singh (2009) provide the equations that describe the effect that deviatoric strain has

on the measured lattice plane spacings from powder diffraction experiments:

dm(hkl) = dP (hkl)[1 + (1− 3 sin2 θ)Q(hkl)]

Q(hkl) =
t

6GX(hkl)

(2.2)

where dm(hkl) is the measured d-spacing of the hkl line and Q(hkl) is a scaled ratio of the

deviatoric stress t to the “diffraction” shear modulus, GX(hkl).

The diffraction shear modulus expresses the average value for a polycrystalline ag-

gregate averaged over the subset of crystallites that contribute to the measured diffraction

intensity. Since only crystallites in certain orientations satisfy the diffraction condition and

contribute to the measured diffraction peaks, the diffraction shear modulus varies depend-

ing on the set of crystal planes, and is therefore a function of the hkl values. Following the

typical approach, the average aggregate elasticity is assumed to be a weighted harmonic

mean of the Voigt limit (derived assuming stress continuity along grain boundaries) and the

Reuss limit (derived assuming strain continuity along grain boundaries). Accordingly, the
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diffraction shear modulus is assumed to follow the empirical form:

[GX(hkl)]−1 = α[GX
R (hkl)]−1 + (1− α)G−1

V (2.3)

where GX
R (hkl) is the Reuss limit for the diffraction shear modulus, GV is the Voigt limit

for the shear modulus, and α is the weighting factor typically assumed to fall between 0.5

(equal weighting of Voigt and Reuss bounds) and 1 (the Reuss limit). Note that α = 0.5

is not the Voigt-Reuss-Hill average, which is simply the arithmetic mean of the Voigt and

Reuss bounds, since Equation (2.3) uses a harmonic mean. Nevertheless, Hill (1952) points

out that the choice of averaging scheme is arbitrary and should be chosen empirically. For

diffraction measurements of shear moduli, the harmonic mean has been shown to effec-

tively capture the elastic state of polycrystalline aggregates (Singh, 2009). The expressions

of these limits for a cubic material are given by Singh (2009) as:

GV = [C11 − C12 + 3C44]/5

[GX
R (hkl)]−1 = 2[S11 − S12 − 3SΓ(hkl)]

Γ(hkl) = (h2k2 + k2l2 + l2h2)/(h2 + k2 + l2)2

(2.4)

where S ≡ S11 − S12 − S44/2 is the elastic anisotropy, Sij are the elastic compliances,

and Cij are the elastic stiffnesses, which are just related by a matrix inversion (C = S−1).

When written in this form, it is clear how stress continuity implies simple additivity of stiff-

nesses, which have units of pressure, whereas strain continuity implies simple additivity of

compliances.
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In order to evaluate the diffraction shear modulus, we must be able to estimate the elas-

tic moduli for each spectrum. A theoretical study of the elastic properties of noble gas

solids by Tsuchiya and Kawamura (2002) showed that the normalized elastic constants,

C ′ij = Cij/K, of Ne, Ar, Kr, and Xe are all nearly constant over a wide pressure range

between 0 and 200 GPa. Shimizu et al. (2005) performed Brillouin spectroscopy measure-

ments of solid neon between 5 and 7 GPa and verified that the normalized elastic constants

are approximately independent of pressure, though the measured values are systematically

shifted from the theoretical calculations. As discussed by Tsuchiya and Kawamura (2002),

this is likely the result of inadequately accounting for many-body interactions at finite tem-

peratures. We therefore estimate the elastic properties of neon by assuming that the relative

elastic constants are independent of pressure and given by the values measured by Shimizu

et al. (2005): C ′11 = 1.13, C ′12 = 0.93, and C ′44 = 0.40. It is important to note that while

vibrational measurements are sensitive to the adiabatic elastic constants, due to the high

frequencies involved, deviatoric strain measurements are sensitive to the isothermal elastic

constants. Therefore, we can obtain the appropriate unnormalized elastic constants using

Cij = C ′ijKT and KT = (C11 + 2C12)/3.

The approach adopted by most workers—including Singh (1993); Takemura and De-

waele (2008); Dorfman et al. (2012)—is to make a number of approximations in order to

render Equations (2.2) to (2.4) in a convenient linear form. These involve dropping what

are assumed to be small correction terms. We note, however, that such approximations

are potentially undesirable, as well as unnecessary. Instead, we recognize that Bragg’s law

gives the direct relation between the diffraction angle and inverse d-spacing for each line,
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sin θm = 0.5λd−1
m . Substituting this into Equation (2.2) and algebraic manipulation results

in a simple cubic equation for the modeled inverse d-spacing, d−1
M , of each line:

0 =
λ2t

8GX(hkl)
d−3
M +

(
1 +

t

6GX(hkl)

)
d−1
M −

√
h2 + k2 + l2

ap
(2.5)

recalling that GX(hkl) depends on the value of α and is given by Equations (2.3) and (2.4).

Since this is just a simple cubic equation, it can be solved trivially using any standard

polynomial root-finding method, yielding the modeled inverse d-spacing d−1
M as a function

of the unknown axial deviatoric stress t and unit cell length aP .2

It is now just a simple matter of fitting the deviatoric stress and neon volumes to each set

of measured lines. Since each spectrum contains only 2 or 3 neon lines, fitting these values

without imposing further constraints leads to a rather large scatter amongst the determined

deviatoric stress values, due to the large correlations between the fitted deviatoric stress

and unit cell size. Figure 2.5 shows the unconstrained coupled determinations of deviatoric

stress and pressure (evaluated using the determined unit cell size together with the equation

of state from Dewaele et al. (2008)). While there is large apparent scatter, it is clear that

the deviatoric stress is confined to low values of less than a few GPa. Further constraints

can be imposed on the stress state retrieval by noting that the relative deviatoric stress

fraction, stress over pressure, shows a clearly preferred value of around 0.5%, as indicated

in the inset histogram in Figure 2.5. Assuming such a model where the axial deviatoric

stress is linearly proportional to pressure is also reasonable given that deviatoric stress

2It should be noted that while there are 3 potential solutions to any cubic equation, only one of them
gives a reasonable value for d−1

M , while the other two solutions are unphysical having either extremely large,
negative, or imaginary values and are thus easily identified.
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typically scales roughly with bulk modulus, which is itself roughly linear in pressure. We

therefore employ this model as a prior constraint on the deviatoric stress and refit the set

of neon line positions to obtain the best constant for the deviatoric stress fraction for each

dataset, yielding values of 0.5% and 0.6% for the Mg-endmember and Fe-bearing samples,

respectively, in agreement with the central peaks of the apparent deviatoric stress fraction

histograms. Through this analysis, we obtain final determinations of the pressure and its

error, accounting for deviatoric stress.

2.3.3 Extracting Crystal Volumes and Cell Dimensions

After obtaining line position estimates and errors from the powder diffraction spectra, the

next step is to fit these positions with a crystal reflection model to estimate unit cell dimen-

sions and volumes. We use the Pbnm crystal structure determination for Mg-perovskite

from Sugahara et al. (2006) to model the line positions for our sample. From this struc-

tural refinement, we obtain a list of the hkl values for the reflections expected to be present

in the perovskite spectrum3. For an orthorhombic crystal symmetry, it is then trivial to

calculate line positions from the reflection list using the following equation:

(
1

d

)2

=

(
h

a

)2

+

(
k

b

)2

+

(
l

c

)2

(2.6)

where hkl are the reflection order parameters, abc are the crystal unit cell parameters, and

d is the atomic plane spacing.

By applying the Bayesian mixture model presented in Chapter 3, we obtain reason-
3We also obtain a list of relative peak intensities at ambient pressure that can be used as a rough order-of-

magnitude guide for the high-pressure data, which is helpful in line identification
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Figure 2.5: The apparent deviatoric stress is plotted against the neon pressure and color
coded by temperature, obtained by analyzing the 111, 200, and 220 lines of neon. By
fitting the two or three neon lines apparent in each spectrum, we obtain unconstrained
simultaneous estimates of the axial deviatoric stress and the neon unit cell size, which are
converted into pressure estimates using the neon equation of state from Dewaele et al.
(2008). While there is large apparent scatter, the relative deviatoric stress, as a fraction
of total pressure, shows a preferred value of roughly 0.5%, as seen in the inset histogram.
The Mg-endmember sample is shown in solid black and filled symbols, while the 13% Fe
sample is shown in dashed red and open symbols.
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able estimates for the unit cell dimensions of the perovskite sample for each spectrum. As

mentioned in Chapter 3, the choice of parameterization for any statistical analysis problem

is important in order to ensure reasonable retrievals, since the parameterization is linked

to the prior probabilities. The parameters we choose to fit are the volume of the unit cell

V = abc, and the normalized axial ratios (c/a)∗ = c/
√

2a and (b/a)∗ = b/a. Given this pa-

rameterization, it is simple to extract the pressure-volume curve as well as track the change

in the axial ratios with compression, which are limited to the few percent level. Using

the standard uncertainty estimation method, also described in 3, we can obtain reasonable

estimates for the measurement errors on volume and the axial ratios.

2.3.4 Obtaining the Equation of State from P-V-T Measurements

Having determined the sample volume for a range of pressure conditions both at ambient

and elevated temperatures, we are now prepared to evaluate the high-temperature equation

of state by fitting the P-V-T data. This process is performed in two steps: first we obtain

the cold portion of the equation of state using only ambient temperature measurements.

We then fit the remaining laser-heated data to estimate the uncertainty bounds on the hot

parameters. In the following section, we present the method we use to fit these data and

obtain rigorous uncertainty bounds on the parameters.

In order to convert measured volumes sampled at a discrete set of pressures and temper-

atures into a form useful for interpolation and extrapolation, we must have a theory-based

description of the equation of state. We use the simple thermal pressure approximation,

which says that the free energy of a material can be divided into cold and hot compo-
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nents, which lead to separate cold and hot contributions to the pressure since P (V, T ) =

∂F (V, T )/∂V T . For convenience, the cold contribution to the pressure is often defined with

reference to ambient temperature conditions, T0 = 300K, rather than absolute zero. This

requires that we subtract off the nonzero thermal contribution at the reference temperature,

as indicated below:

P (V, T ) = Pc(V ) + Pth(V, T )− Pth(V, 300K) (2.7)

where Pc is the “cold” portion of the total pressure defined at 300K, described below, and

Pth is an expression for the thermal contribution, for which we use a Mie-Grüneisen-Debye

formulation.

At ambient temperature conditions, and in the absence of phase transitions, most solid

materials are well described by a Vinet equation of state (Vinet et al., 1989). In particular,

for data spanning a large pressure range, Cohen et al. (2000) showed that the Vinet equation

of state yields more accurate extrapolation behavior over a large compression range as

compared to the more commonly used third-order Birch-Murnaghan equation of state. The

Vinet equation is derived from an approximate universal representation of the shape of the

inter-particle energy well, which yields the following expression for the “cold” contribution

to the pressure as a function of volume:

Pc(x) = 3K0(1− x)x−2 exp [ν(1− x)]

where x = (V/V0)
1
3 and ν =

3

2
(K ′0 − 1)

(2.8)

where x is the average axial strain, V0 is the zero-pressure volume, K0 is the zero-pressure
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bulk modulus, and K ′0 is the pressure derivative of the bulk modulus at zero pressure

(K ′ ≡ ∂K/∂P ).

Somewhat more complex is the representation of the thermal component of pressure,

which relies upon the simplified Debye crystal model to approximate the energetic contri-

bution of thermal vibrations in a crystalline solid. The Mie-Grüneisen-Debye expression

for the thermal pressure is given below:

Pth(V, T ) =
Cvmγ

V
TD

(
Θ

T

)
(2.9)

where Cvm = 3RNcell is the Dulong-Petit high-temperature limit for the volumetric heat

capacity of the unit cell, γ is the thermodynamic Grüneisen parameter, and Θ is the Debye

temperature. The function D(x) is the Debye integral, which together with the Debye tem-

perature determines how rapidly the heat capacity approaches its high-temperature limit,

and is defined as

D(x) =
3

x3

∫ x

0

y3dy

ey − 1
(2.10)

where this integral must be evaluated numerically. What remains is an expression for the

Grüneisen parameter, as well as a corresponding expression for the Debye temperature.

A common expression for the Grüneisen parameter is in the form of a power law in vol-

ume, reflecting the fact that it is roughly independent of temperature, sensitive primarily to
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compactness of the crystal lattice:

γ(V ) ≡ −d ln Θ

d lnV
= γ0(V/V0)q

Θ(V ) = Θ(V0) exp

[
−
∫ V

V0

γ(ν)

ν
dν

]
= Θ0 exp

[
γ0

q

(
1−

(
V

V0

)q)] (2.11)

where γ0 is the Gruneisen parameter at zero pressure, Θ0 is the Debye temperature at zero

pressure, and q is the power law exponent.

Given the complete equation of state formulation described above, we can determine the

parameter values by fitting the measured perovskite volumes for each spectrum. It should

be noted that the errors associated with this fitting procedure appear on both dependent and

independent variables P , T , and V . This situation only adds a minor complication to the

fitting process, since we can use the “effective variance method” to estimate effective error

bars appropriate for use in the standard least-squares method (Orear, 1982). This method

is based on the assumptions that the model being fit to data behaves reasonably linearly

with respect to the model parameters over the “high probability” region of parameter space

(i.e., a first-order Taylor expansion of the model about the best fit is a good local approxi-

mation). The result of this method (which is derived using a Bayesian maximum likelihood

estimation procedure) is a simple and intuitive expression for the effective variance, which

can be used in place of the measurement error in a standard least-squares analysis:

σ2
Tot ≈ σ2

P +

(
∂P

∂T

)2

σ2
T +

(
∂P

∂V

)2

σ2
V (2.12)
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where ∂P/∂T and ∂P/∂V are simply model derivatives evaluated at the location of the

best fit. For the effective variance method, we have the freedom to choose for the depen-

dent variable whichever variable is most convenient, since all possible choices result in

expressions that are identical to first order. We chose to consider P as the dependent vari-

able, as it is much more convenient given that the EOS models are written with pressure as

functions of volume and temperature, and these functions cannot be analytically inverted.

The form of the effective variance is also quite attractive, as it is identical to the expres-

sion for the propagation of independent error sources, a rather intuitive way of viewing the

combination of these different error contributions.

We combine this procedure for determining total effective errors, with the analysis

method described in Chapter 3 to obtain the best-fit equation of state parameter values,

along with the associated confidence regions. The best-fit values of the parameters, to-

gether with one-dimensional marginalized uncertainties are found in Table 2.1—while the

precise values presented in that Table correspond to the global fit to all ambient and heated

data, the hot data contain little extra information on the cold parameters and therefore alter

their best-fit values by less than the 1-σ uncertainties. The cold compression data are plotted

together with the 68% confidence interval on the equations of state in Figure 2.6. From that

figure, it is clear from the narrower confidence bounds on the compression curve that the

Fe-bearing data has reasonably higher accuracy than the Fe-free data. Nevertheless, these

two compression curves are extremely similar to one another, with the Fe-bearing curve

showing only slightly greater compressibility, which is reflected in the slightly smaller val-

ues of both K0 and K ′0. It is important not to overstress this difference, as the data clouds



38

Table 2.1: Vinet and Mie-Gruneisen-Debye Equation of State Parameters
XFe 0% 13%

V0 162.51(19) 163.23(18)
K0 259.0(56) 254.0(38)
K ′0 4.28(17) 4.060(85)
γ0 3.19(25) 1.579(93)
q 2.16(43) 0.63(27)

We fix the zero-pressure Debye temperature to the value from Anderson (1998), Θ0 = 1100K, since our
high-temperature data all significantly exceed this value and are thus largely insensitive to it.

strongly overlap one another, reflecting only small changes to the “cold” equation of state

parameters. Discussion of the comparison with previous equation of state measurements,

as shown in the inset figure, is deferred to the Discussion section.

The thermal equation of state parameters are obtained by fitting the laser-heated mea-

surements including the thermal pressure contribution, given by the Mie-Grüneisen for-

mulation in Equation 2.9. This method introduces three additional “hot” EOS parameters,

Θ0, γ0, and q. However, the sample behavior is insensitive to the zero-pressure Debye

temperature, Θ0, for very high temperatures well above its value, where the heat capacity

is well approximated by the Dulong-Petit high-temperature limit. Since all laser-heated

measurements exceed its nominal value of Θ0 = 1100K (Anderson, 1998), we fix it to this

value throughout this investigation. Note that this is fundamentally different from fixing

data sensitive parameters like K ′0, since they have a clear effect on the equation of state

over the region of interest, whereas Θ0 has almost no effect over the temperature ranges

of either the data or the lower mantle, and therefore negligible correlation with the other

equation of state parameters.

The proper method for incorporating the results from the cold parameter fit uses the
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Figure 2.6: The cold compression curves for 0% and 13% Fe-bearing perovskite samples in
black and red, respectively. The pressure and volume error bars reflect the 1-σ uncertainties
as determined from the measurement errors. The pale shaded regions indicate the 68%
confidence bounds on the equation of state, showing the somewhat higher confidence in
the Fe-bearing equation of state. The inset figure compares the highly correlated 68%
confidence bounds on K0 and K ′0 with past investigations. The 0%, 9%, and 13-15% Fe-
contents are shown in black, orange, and red. The uncertainties from this work are shown
in heavy solid lines, (Lundin et al., 2008) fits are shown in dashed lines, and (Fiquet et al.,
2000) in dot-dashed lines. (It should be noted that this comparison mixes third-order Birch-
Murnaghan and Vinet equations of state. Also the confidence regions for previous work are
estimated assuming similar parameter correlations across studies).
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Table 2.2: Equation of State Parameter Correlations
0%

V0 K0 K ′0 γ0 q

V0 +1.00 −0.72 +0.43 −0.02 −0.07
K0 −0.72 +1.00 −0.93 −0.24 −0.14
K ′0 +0.43 −0.93 +1.00 +0.34 +0.26
γ0 −0.02 −0.24 +0.34 +1.00 +0.96
q −0.07 −0.14 +0.26 +0.96 +1.00

13%
V0 K0 K ′0 γ0 q

V0 +1.00 −0.92 +0.75 +0.06 +0.06
K0 −0.92 +1.00 −0.94 −0.27 −0.27
K ′0 +0.75 −0.94 +1.00 +0.42 +0.45
γ0 +0.06 −0.27 +0.42 +1.00 +0.97
q +0.06 −0.27 +0.45 +0.97 +1.00

For those unfamiliar, the correlation matrix is just a convenient scaled form of the covariance matrix which
enables easy interpretation, where Σ is the covariance matrix and the correlation coefficient is simply ρij =

Σij√
ΣiiΣjj

Bayesian concept of a prior, which is discussed thoroughly in Chapter 3. The prior simply

expresses the probability distribution for the parameters prior to any particular step of the

analysis. Thus, we can use the output probabilities from fitting the ambient temperature

data as the input to the heated data modeling step. Note that many investigators will fix

the cold parameters to their best-fit values when fitting the hot parameters. This is both un-

necessary and undesirable, since it underestimates the uncertainties in the hot parameters

by neglecting potential covariances between the cold and hot parameters. Instead, we fit

the heated data points with a full thermal model, recognizing that nearly all of the informa-

tion about the cold parameters comes from the cold parameter posterior (converted into a

prior for the hot data analysis). As far as the prior on the hot data is concerned, we choose

to use uninformed flat priors since we have significantly more simultaneous high-pressure
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high-temperature data than any previous studies Fiquet et al. (2000), and all previous stud-

ies chose to fix one or more significant parameters, biasing their uncertainty estimates to

unrealistically small values.

The resulting best-fit parameters, with their marginal 1-σ uncertainties, are reported in

Table 2.1. To summarize all the information for the posterior, we also report the correlation

matrix for both samples in Table 2.2. The residual volumes due to thermal expansion are

shown for each sample in Figure 2.7, where the best-fit cold equation of state has been

subtracted off for the purpose of visual inspection, leaving only the residual thermal expan-

sion signal. Data are shown with effective error bars in volume, allowing for simple visual

inspection, and are determined using the effective variance method with volume as the

dependent variable. The volumetric measurement error is determined using the Bayesian

method discussed in Ch. 3 and the pressure and temperature contributions to the effective

error are derived in Section 2.3.2. Since both panels in Figure 2.7 are show with the same

axis limits, its plainly visible that the effect of iron is to dramatically reduce the thermal

expansion at high pressures. This observation is directly reflected in the best-fit estimates

for the thermal parameters γ0 and q, which relate to the overall scale for the thermal expan-

sion and its compression (or Volume) dependence. Comparing the figure with the retrieved

values, we can see that the Fe-free sample has both a greater average thermal expansion

(larger γ0), yielding wider spacing between isotherms, and a greater compression depen-

dence (larger q), resulting in steeper isotherm slopes. We can therefore see that while the

addition of Fe has only a minor effect on the cold equation of state parameters, it has a huge

impact on the thermal properties of silicate perovskite.
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Fe-bearing samples color coded by temperature, together with the best-fit isotherms. The
strong decrease in the apparent thermal expansion due to the addition of iron is clearly
visible in the noticeably smaller envelope for the elevated temperature isotherms.



43

2.4 Discussion

Given the posteriors estimated for both Fe-free and 13% Fe-bearing perovskite, we are now

ready to compare our results with previous investigations. Most importantly, we evaluate

how apparent differences across studies compare with the correlated uncertainties asso-

ciated with each study. After that, we then use our posterior estimates to determine the

variation of important physical quantities like density, bulk modulus, and thermal expan-

sion for a range of pressures and temperatures. Finally, we incorporate the equation of state

determinations into an ideal mixing model in order to evaluate the plausibility of different

perovskite-rich compositional models for deep mantle structures.

2.4.1 Equation of State Comparison and Uncertainties

Using the general Bayesian approach of estimating covariance matrices from the curvature

of the posterior in log-space, we obtain the 1D uncertainty bounds for each parameter to-

gether with the correlation matrix presented in Tables 2.1 and 2.2. These results can be

directly visualized using a “stair-step” plot, which is presented in Chapter 3, Figure 3.5,

which shows the correlated uncertainty bounds on each pair of parameters by plotting ev-

ery parameter against every other parameter. The stair-step plot is just a way of visualizing

the information conveyed by the best-fit and covariance matrix. Looking at the elements

of the correlation matrix in Table 2.2, we can get much of the same information, noting

in particular the highest correlation of any two parameters exists between the thermal pa-

rameters γ0 and q, reflecting how difficult it is to independently constrain their values. In

spite of that difficulty, the large quantity of thermal data for the Fe-bearing sample has very
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effectively constrained the thermal parameters to a correlated but small region of parameter

space, as plainly shown in the lower-right-hand corner of Figure 3.5;

These results should then be compared directly to previous investigations of the per-

ovskite equation of state. Unfortunately, this task is made rather difficult for two reasons.

Firstly, none of the previous investigations report the full covariance matrix (or equivalent

correlation matrix) for their equation of state parameters. Second, and more important, is

the fact that all previous investigations fixed a number of important equation of state pa-

rameters in order to improve the apparent constraints on the remaining parameters. The

issues with this common but incorrect practices are discussed thoroughly in Chapter 3.

Therefore, we must settle for the rough comparison shown in the inset of Figure 2.6 where

the correlated 68% confidence regions on the bulk modulus K0 and its pressure derivative

K ′0 are shown for this study in solid lines as well as Fiquet et al. (2000) in dot-dashed lines

and Dewaele et al. (2008) in dashed lines. All of the perovskite samples are color coded

according to composition as before, with 0% Fe in black, 9% Fe in orange, and 13-15% Fe

in red. As the figure indicates, all studies are consistent with bulk moduli near 255 GPa for

a wide range of iron contents up to 15%. To give the previous studies reasonable correla-

tions between the parameters (they do not report covariance matrices), we simply apply the

average correlation coefficient from this study. Unfortunately, the effect of previous studies

fixing parameters remains, where the ellipse sizes are likely significantly smaller than they

should be. As a result of the large correlated uncertainties in previous studies, trends of K ′0

with iron content are obscured. In this study, we do find a discernible decrease in K ′0 with

increasing iron, but the magnitude of the change is rather small, as the cold compression
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data still largely overlap one another.

While considerable attention is always given to comparing EOS parameters, in real-

ity, we are most interested in the behavior at mantle-relevant pressures, rather than the

ambient-pressure properties expressed by the equation of state parameters. For this reason,

we propagate our posterior uncertainties in order to predict the behavior at lower mantle

conditions, by drawing randomly from the posterior and calculating properties at elevated

pressure states. In Figure 2.8, we plot the 68% correlated confidence regions for this study,

along with rough estimates of the same for previous studies. In that figure, we can see how

previous studies have not uncovered any strong evidence for systematics that may exist

for perovskite as a function of iron content, If anything, they find hints that the addition

of iron causes the high pressure volume of perovskite to increase (shifting the curve up-

ward), but has no discernible effect on bulk modulus—in contrast, we find the opposite,

that adding iron can slightly reduce high pressure volumes, though volumes at ambient

pressure increase. It should also be noted, however, that true confidence ellipses are larger

than depicted for these other studies, implying that their true scatter could be larger than

appears.

While these results were obtained using reasonable priors on the zero-pressure volume

data, it is important to realize that they inherently rely on the assumption that metastable

volume measurements of perovskite are relevant to its behavior within in stability region. It

has not been well established how similar the behavior of perovskite is inside and outside its

stability range, but there are some indications that the axial ratios may undergo anomalous

deviations near the edge of stability. It is also common for minerals to undergo softening as
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they approach a stability limit, and therefore it is reasonable to expect that metastable mea-

surements provide, at best, only a rough idea of the compression behavior. For this reason,

we also refit the non-laser-heated data in order to test how the apparent core-mantle bound-

ary properties of perovskite depend on the usage of metastable data. In the thick dashed

lines in Figure 2.8, we plot the 68% confidence regions resulting from uniformed priors

on V0, thereby removing all influence of metastable data. Under this alternate hypothesis,

we can clearly see a 5% to 10% increase in the apparent bulk modulus of perovskite at the

core-mantle boundary, though there is little change in the volume. Additionally, there is

a large inflation of the uncertainties, resulting from the reduced constraint on the equation

of state model, resulting in a reduction of the CMB differences between iron-bearing and

iron-free samples allowing the confidence regions to partially overlap. This result matches

our intuition from Figure 2.6, in which the two data clouds are seen to largely overlap one

another. Unlike for the cold parameters discussed here, however, the usage or absence of

the metastable data has little effect on the thermal equation of state parameters.

As investigated by other authors, we also compare the evolution of the crystal axial

ratios with increasing pressure. Past work (Lundin et al., 2008; Dorfman et al., 2013)

have found that the addition of iron causes a noticeable change in the normalized axial

ratios, which are generally observed to grow roughly linearly with pressure. The nor-

malized unit cell parameters derived by Andrault et al. (2007) are: a∗ = a(V/
√

2)−1/3,

b∗ = b(V/
√

2)−1/3, and c∗ = c(2V )−1/3. They are constructed to yield values of exactly

one for an ideal cubic perovskite, and deviate progressively with increasing distortion. As

discussed in Chapter 3, the use of average crystal length scale in place of pressure for plots
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like these greatly improves them, by enabling the simultaneous consideration of a range of

temperatures, as well as providing a space that is often more closely linear.

In the upper panel of Figure 2.9, we show the normalized axial ratios measured at

ambient temperature for both perovskite samples over the entire pressure range. The Fe-

bearing sample is shown in solid symbols and the Fe-free sample is shown in open symbols.

Furthermore, these axial ratios can be converted into an estimate of the octahedral tilt angle

of the corner-sharing silica octahedra within the perovskite structure. It is the progressive

tilting of these octahedra with increasing pressure that accommodates the gradual distortion

of the unit cell induced by compression. From O’Keeffe et al. (1979), we can calculate the

octahedral tilt angle as a function of the unit cell parameters:

φ = cos−1

(√
2a2

cb

)
= cos−1

(
1

(c/a)∗(b/a)∗

)
(2.13)

where (c/a)∗ and (b/a)∗ are the normalized axial ratios. In the lower panel of Figure

2.9, we show the linear evolution of the octahedral tilt angle with compression for the

two samples. For both the normalized axial ratios and the octahedral tilt angles, there is

such a strong similarity between the two samples that we find the past reported resolvable

differences as a function of iron content somewhat doubtful, at least for our samples.

2.4.2 Physical Property Profiles

The most scientifically interesting questions that can be addressed using the perovskite

equation of state depend on the pressure profiles of various physical properties like thermal

expansion and bulk modulus. In order to evaluate these profiles, we must obtain the expres-
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Figure 2.8: Comparison of 68% confidence bounds on local properties at core-mantle
boundary pressure conditions are shown for Fe-bearing and Fe-free perovskite. All lines
are color coded with Fe-free samples in black, intermediate ∼9% Fe samples in orange,
and ∼13–15% Fe-rich samples in red. The thick lines show the results from this study: the
solid lines display the results when metastable ambient-pressure measurements are used to
constrain V0, whereas the dashed lines represent the results assuming the metastable behav-
ior of perovskite is a poor predictor high-pressure properties. The thin dashed lines show
the three compositions studied by Lundin et al. (2008) and the thin dash-dotted line shows
the results from Fiquet et al. (1998).
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sions for the relevant thermodynamic parameters. Below we derive the expressions for the

isothermal bulk modulus by taking derivatives of the pressure, with both a “cold” contri-

bution from the Vinet equation of state and a “hot” contribution from the Mie-Gruneisen-

Debye thermal correction:

KT (V, T ) = Kc(V ) +Kth(V, T )−Kth(V, 300)

Kc(V ) = −K0x
−2{x[1− ν(1− x)]− 2} exp [ν(1− x)]

Kth(V, T ) =
CvmγT

V

[
3γΘ/T

eΘ/T − 1
−D

(
Θ

T

)
(q − 1 + 3γ)

] (2.14)

where ν = 3/2(K ′0 − 1) and x = (V/V0)
1
3 is the average axial strain, and recalling that

the Debye temperature Θ and the Grüneisen parameter γ are given by Equation (2.11).

Combined with the expression for the heat capacity of a Debye solid, a thermodynamic

identity can be used to obtain the thermal expansion parameter at any desired volume and

temperature:

CV (V, T ) = Cvm

[
4D

(
Θ

T

)
− 3Θ/T

eΘ/T − 1

]
α(V, T ) =

γ(V )CV (V, T )

V KT (V, T )

(2.15)

Using these expressions, we determine the isothermal profiles of thermal expansion,

bulk modulus and volume for the two perovskite samples. In Figure 2.10, we show the

propagated 68% confidence intervals for these material properties evaluated at 300K, shown

in the light shaded regions, and at 3000K, shown in the dark shaded regions. From these

profiles, it is clear that the largest difference between the two perovskite compositions is
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the sizable affect that the addition of iron has on the thermal expansion. By adding 13%

Fe to perovskite, we see a roughly 50% drop in the thermal expansion at the core-mantle

boundary, as seen in the top panel. Additionally, we can see that because of this drastic dif-

ference in thermal behavior, the bulk modulus and volume see a much reduced change upon

increasing temperature for the iron-bearing sample as compared to the Mg-endmember.

It should be noted that we obtain a significantly different thermal behavior for the Fe-

free endmember sample than Fiquet et al. (2000). A previous investigation by Mosenfelder

et al. (2009), however, pointed out the none of the previous work on the thermal expansion

of MgSiO3 perovskite is consistent to better than a factor of about two at mantle conditions,

and therefore we do not find this level of disagreement particularly surprising. Furthermore,

the difference in thermal expansion between the two samples is plainly visible to the eye in

the raw data shown in Figure 2.7, further bolstering the robustness of this result.

2.4.3 Perovskite-Dominated Chemical Piles

With a well characterized equation of state model in hand for both Fe-free and 13% Fe-

bearing perovskite, we are able to quantitatively assess the behavior of perovskite-dominated

lower mantle structures. In this section, we develop a thermodynamic model of Mg-Fe

perovskites at arbitrary compositions using an ideal mixing model for combining the equa-

tion of state results from our two perovskite samples. We then apply this simple per-

ovskite model to determine the physical properties of perovskite at core-mantle boundary

pressure-temperature conditions. Comparison with seismic estimates of bulk mantle phys-

ical properties allows us to compare the relative merits of different possible explanations
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Figure 2.10: Shaded regions show 68% confidence intervals for 300K (light shading) and
3000K (dark shading) isothermal properties of Fe-free perovskite in black and 13% Fe-
containing perovskite in red. The effect of additional iron is rather small at room tempera-
tures, with nearly identical volumes and thermal expansions and only slight differences in
bulk modulus. The distinctions becomes quite pronounced at elevated temperatures, how-
ever, due to the significant difference in thermal expansion. The low-pressure region for
the Fe-free sample is rather poorly constrained by the data, but this appears to have little
effect on the high-pressure behavior, which retains narrow uncertainty bounds.
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for seismically observed core-mantle boundary structures.

Large Low Shear Velocity Provinces (LLSVPs) represent one of the most important

first-order features of the lower mantle and may represent the oldest structures in the Earth.

It has been proposed that the seismically distinct LLSVPs are likely to represent both chem-

ically and thermally distinct structures on the core-mantle boundary (Tackley, 2011). The

two LLSVPs, beneath Africa and the Pacific, present a particular challenge for explanation

as they appear to have sharp and often steep-walled boundaries and stand roughly 1000 km

high off the CMB. Residing at the base of a convecting system, it is a challenge to under-

stand how such structures might remain for geologic time without mixing away through

the process of entrainment. The general interpretation of the sharp seismic reflector at the

top of the structure is that these features cannot be explained solely by thermal anomalies

(Tackley, 2011), which would tend to have more diffuse edges, though there is still some

disagreement in the literature on this point (Davies et al., 2012). The viewpoint of a chem-

ically distinct pile is further bolstered by an apparent anticorrelation between shear-wave

velocity anomalies and both bulk sound velocity and density anomalies within the struc-

tures relative to bulk mantle, contrary to the general trends of most heated material (Ishii

and Tromp, 1999).

Under the umbrella of chemically distinct explanations for these lower mantle struc-

tures, there are two broad endmember theories that account for their large topographic

relief relative to the CMB, as discussed in Tan and Gurnis (2007). The domes can either be

explained as passive chemically dense piles that are dynamically propped up by external

convective stresses or as free-standing and internally convecting metastable piles. The pas-
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sive pile explanation is the more intuitive of the two, in which the piles reside at the base

of the mantle since their constituent material is denser than bulk mantle material. Fighting

their tendency to spread out and pool as thin shallow layers on the CMB, some external

force must be invoked to sweep them into domed piles, which is often attributed to cold

dense plates descending to the CMB and pinching the sides of these structures in order to

dynamically prop them up. This story of course assumes that a sufficient flux and geometry

of down-going plates is available at the core-mantle boundary in order to achieve the requi-

site force to counteract the negative chemical buoyancy of the piles. Under the competing

scenario, no external force is required, but rather the chemically distinct piles are made of a

material that is less dense that the surrounding mantle at the base, but experiences a density

crossover, or height of neutral buoyancy, near the top of the pile about 1000 km above the

CMB. Under this explanation, the pile is undergoing slow internal convection, where light

material at the base rises to the neutral buoyancy point and then cools and falls back to the

CMB, thereby enabling the pile to prop itself up without the help of external stresses. To

achieve this behavior, the pile material must be less dense than bulk mantle (on account of

elevated temperatures that result from the thermal boundary layer separating the pile from

the rest of the mantle) as well as being very stiff compared to the average mantle, enabling

a density crossover point. These properties are a function of both the unknown composi-

tion and poorly constrained excess temperature of the pile material. Nevertheless, they are

a direct consequence of the equation of state properties of the material, and can therefore

be directly probed given a thermodynamic model.

While we know very little about the detailed composition of these distinct structures
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in the deep Earth, one possible model for such structures is in terms of an iron-enriched

and perovskite-dominated pile. As perovskite is the primary phase in the lower mantle and

given the sizes of the structures, it is also likely the primary component of the LLSVPs.

With the equation of state information obtained in this study, we are perfectly positioned to

investigate such a possibility. In order to probe a range of iron compositions, we construct

an ideal mixing model of the 0% and 13% Fe composition perovskite samples. The ideal

mixing model is based simply on the assumption that at constant environmental conditions,

temperature and pressure, the behavior of a mixture of two components is given simply as-

suming that volumes and internal energies mix in proportion to the relative amount of each

component, and also that the entropies are also additive together with an additional term

that describes the ideal entropy of mixing. Under these assumptions, it is straightforward to

derive the combination of thermodynamic parameters that can be simply averaged together

in proportion to the quantity of each component. Using this method, we are able to take

known or assumed equations of state for two different compositions and mix them under

the assumptions of ideality, to obtain the approximate physical properties of a mixture of

any desired composition. Since it relies on the assumption of linear additivity, there are

clearly limits to this method. We therefore restrict ourselves to examining compositions

for the mantle structures that are less than twice the difference between the two mixing

members, and thus we consider composition up to 25 mole % Fe.

The results of this mixture model comparison are given in Figure 2.11. In this exercise,

use the above described mixture model to calculate the material properties of the mixture

at the core-mantle boundary. Imagining that both the iron composition and the excess tem-
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Figure 2.11: The ideal mixture model is used to sample the behavior of perovskite under
a range of temperatures and compositions, corresponding to the potential conditions in a
perovskite dominated LLSVP. The densities and bulk moduli are compared to the core-
mantle boundary values from PREM. This yields the percent contrast maps between the
perovskite chemical pile and the bulk mantle shown in the left-hand and central panels.
The differences in the local properties are combined in a local linear expansion to estimate
the height of the density crossover, which is transformed into the pile stability map shown
in the right-hand panel. Densities greater than PREM yield stable passive piles, but excess
densities greater than about 1.5% are generally excluded as they would be visible in seismic
observations. A small region of space allows for metastable domes between 600 and 1200
km tall, and everything taller is regarded as initially in conflict with observations, and for
low enough densities, entirely unstable at the core-mantle boundary.
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perature of the LLSVP are unknown, we search a grid over those variables to determine

the possible densities and bulk moduli of the mixture. In the left-hand and central panels

of the figure, we show the percentage contrast between the mixture model (as a function of

composition and temperature) and the bulk mantle as represented by PREM (Dziewonski

and Anderson, 1981). Using a simple linear expansion of the density and bulk modulus

difference at the core-mantle boundary, we can obtain rough estimates for the height of

the density crossover. Comparing those predicted heights to a generous range of values

corresponding to reasonable estimations for the observed heights of the actual LLSVPs,

lying somewhere between 600 and 1200 km above the CMB, we can map out the param-

eter space by noting the relative stability of the structure as a function of composition and

temperature. This result is shown in the right-hand panel of Figure 2.11. In the figure,

the dark dashed line represents the equal density line, where to the right of that line, the

chemical pile material is denser than ambient mantle and thus stable. At very large iron

compositions, however, the excess density becomes so high that it should be plainly visible

in seismic observations, especially normal mode inversions like those done by Ishii and

Tromp (1999). We therefore restrict the allowable compositions to those with excess den-

sity contrasts of less than 1.5%, which is a somewhat conservative estimate. Immediately to

the left of the equal density line is material that is slightly buoyant and thus the red shaded

sliver represents material with a height of neutral buoyancy lying within the reasonable lim-

its of 600 and 1200 km above the CMB, representing solutions consistent with a metastable

dome explanation for the LLSVPs. For lower iron compositions, the pile material becomes

even less dense until it is entirely unstable escaping from the base of the mantle. As is ob-
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vious from the figure, there is only a tiny sliver of allowable phase space that corresponds

to the delicate balance required by the metastable dome hypothesis. In contrast, passive

piles are extremely insensitive to composition and temperature. We can thus assess the rel-

ative plausibility of the passive pile and metastable dome explanations by calculating the

fraction of allowable parameter space occupied by material behaviors consistent with the

two theories—this is given simply by the relative area of the red shaded region as com-

pared to the white region. This fraction is just below 10%, indicating that while metastable

domes are possibly consistent with our current understanding of the perovskite equation of

state, they imply very constraints on the temperature-dependent composition of the LLSVP

material and are thus not very likely.

2.5 Conclusion

A series of high-pressure and -temperature laser-heated diamond anvil cell experiments

were performed in a nearly hydrostatic neon pressure medium to determine the equations

of state of 0% and 13% Fe-bearing Mg-perovskite. Using neon as the primary pressure

indicator, we develop a new statistical technique for estimating deviatoric stresses in the

diamond anvil cell. These stresses are confined throughout the experiments to values of

about half a percent of the pressure. Using a series of Bayesian data analysis techniques

that are detailed in Chapter 3, we obtain estimates of the unit cell volumes which are then

fit with thermal equations of state.

The equation of state parameters found for the Fe-bearing and Fe-free samples are gen-

erally consistent with previous measurements perovskite measurements, the Fe-free sample
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exhibits slightly elevated volumes at high pressure as compared to previous values. The

derived equation of state parameters for the Fe-bearing sample are significantly more pre-

cise than any previous perovskite measurements, providing tight constraints on both the

ambient-temperature and high-temperature properties. The most dramatic results are the

large thermal expansions measured for the Mg-endmember sample, corresponding to the

high values determined for the thermal equation of state properties.

Finally, we incorporate the pair of equation of state determinations into an ideal mixture

model enabling the calculation of approximate equation of state properties for any arbitrary

iron composition. Using this mixture model, we examine the range of plausible values

in temperature-composition space to explain the presence of LLSVPs. Using plausibility

arguments, we show that metastable perovskite domes are possible, given our knowledge

of the equation of state, but represent a very precise balance between the iron content and

temperature of the chemical piles on the CMB, and are not therefore particularly likely. We

instead find the passive pile explanation more compelling, as it does not require that the

Earth occupy a special narrow region of parameter space merely by chance.

— Appendices —

2.A Data Reduction Pipeline

Our data pipeline, written in MATLAB, transforms raw powder diffraction images into

properly normalized one-dimensional spectra. This data processing procedure involves

first obtaining the observation geometry from a diffraction image of a known calibration
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standard. If necessary, the data image is corrected for saturation effects due to CCD pixel

blooming. Intensity weighting factors, determined by the geometry, are applied to the

data transforming them to idealized detector measurements. These transformed data are

integrated producing a 1-D spectrum with error bars resulting from counting statistics.

Finally, the background signal is estimated and subtracted from each spectrum, preparing

it for convenient spectrum comparison or fitting.

We determine the detector geometry using a method similar to that reported in (Hinrich-

sen, 2006). After determining an approximate beam-center location, the diffraction data for

a known calibration standard–such as CeO2 or LaB6–is sliced radially using bi-cubic in-

terpolation to obtain a set of 1-D radial spectra. Peak fitting with pseudo-Voigt profiles is

then used to extract the 2θ locations of every line in each radial slice. These calibration line

positions (with associated uncertainties) are then fit by varying the experimental geome-

try parameters controlling the orientation and position of the detector: detector distance,

beam-center location, and detector tilt and rotation. The geometric calibration parameters

are chosen as the values with the maximum likelihood given the measured line positions us-

ing the standard least-squares method (as is appropriate to simple data fitting with Gaussian

uncertainties and in the absence of strong prior information).

For diffraction images containing both strong and weak x-ray scatterers, it is often im-

possible to obtain high quality spectra that do not suffer from over-exposure in certain

regions of the image. Due to the basic properties of CCD detectors, exposure of a pixel

beyond its full-well depth causes ’blooming’ in the final image, where electrons spill over

into neighboring pixel wells causing full-intensity streaks to emanate from the excessively
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bright points in the image The typical approach to this problem is to adjust exposure times

to limit its occurrence. Unfortunately, in many cases this method is either ineffective (e.g.,

in the presence of very weak scatterers) or impractical (e.g., during high-temperature mea-

surements). It would be highly advantageous to be able to use these data while minimizing

the impact of the erroneous intensities caused by blooming–such an approach is made pos-

sible by the conservation of electrons within the affected region. Since the total number

of electrons, equal to the number of photons registered by the CCD, remains constant as

electrons spill into neighboring pixel bins, simple summation in an overexposed region will

give an approximate total intensity for that region. In order to determine how to reasonably

distribute this total amongst the affected pixels, we leverage the angular symmetry inherent

to powder diffraction by setting the relative intensity of each pixel to the values from in-

tegrated 1-D spectrum. Iterating this procedure then results in reasonable pixel intensities

which will no longer induce wild bias into the final integrated spectrum.

The final data reductions step is the integration procedure itself, which operates on the

powder diffraction images (pre-corrected for saturation if necessary) using the geometric

parameters derived from the calibration image. Using the equations presented in Hinrich-

sen et al. (2008), we determine the proper intensity weighting factors required to transform

each measured pixel value into an equivalent ideal pixel intensity for a perpendicular and

hemispherical detector. This factor is combined with the standard 2-D Lorentz and po-

larization correction factors (see, e.g., Hinrichsen et al. (2008)), forming a single overall

weighting factor for each pixel on the detector. Since this intensity weighting map is inde-

pendent of the data collected, it need only be calculated once for each detector configura-
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tion. To obtain a reasonably smooth one-dimensional spectrum, as remarked by Hammers-

ley et al. (1996), measured pixel intensities are divided amongst sub-pixel regions according

to standard bi-cubic interpolation. These sub-pixels are then sorted into bins according to

their diffraction angle 2θ. The sub-pixel intensities are combined together as weighted ob-

servations of a Poisson process, using the intensity weight map described above, resulting

in a one-dimensional spectrum of intensity as a function of diffraction angle. As a final

post-processing step, the method derived by David and Sivia (2001) is used to estimate

and subtract a robust Chebyshev polynomial background from the spectrum. This acts as a

good initial guess of the background, which can later be refined, and provides a simple flat

spectrum ready for analysis and visualization.
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Chapter 3

A Bayesian Approach to Determining
Equations of State in the Diamond Anvil
Cell

Abstract

In this work, we apply the general Bayesian statistical approach to analyzing powder

diffraction data from diamond anvil cell experiments. Statistical problems over a wide

range of complexities arise in this effort, and we show how the Bayesian statistical frame-

work provides all of the tools necessary to adeptly meet these challenges. In particular, we

demonstrate how this method for data analysis naturally leads to probabilistically rigorous

solutions that can range from standard least-squares methods, which are fully consistent

with non-Bayesian methods, to uniquely Bayesian solutions to problems that require a more

sophisticated application of Bayesian priors. This proves especially useful in cases where

the data do not fully constrain important physical parameters, but where outside knowl-

edge provides the necessary information to yield reasonably well-constrained solutions.

These include situations such as the use of previous studies of the composition-dependence

of zero-pressure crystal volumes as well as the usage of smoothness criteria for the com-
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pression evolution of axial ratios. In this chapter, we therefore demonstrate through many

examples the flexibility and power of Bayesian data analysis as applied to experimental

measurements in mineral physics.

3.1 Introduction

Fitting models to data is one of the most common and routines tasks in scientific investi-

gations. It is nevertheless extremely common for model-fitting to be carried out in ad-hoc

manner. In this chapter, we present the Bayesian approach to data analysis and specifically

apply it to the interpretation of x-ray diffraction data. We hope to show that rather than

giving a compendium of specific recipes for analyzing numerical data, Bayesian statistics

instead provides a general framework for data inversion problems which transform infor-

mation, in the form of noisy data, into useful knowledge. Once absorbed, this enables

practitioners to develop data processing methods that are grounded in the rules of probabil-

ity.

3.2 Intro to Bayesian Statistics

The Bayesian approach to statistics essentially boils down to the idea that every data analy-

sis problem can be cast in terms of evaluating the probability of each data point given some

model of reality. Any description of Bayesian statistics must start with Bayes’ theorem,



65

which is the basic foundational principle that underlies everything else:

prob( ~M |{d}) ∝ prob({d}| ~M)prob( ~M)

posterior ∝ likelihood × prior

(3.1)

which can be read as: The probability of the model values ~M given the data, called the

posterior, is proportional to the probability of the data {d} given the model values, called

the likelihood, times the initial probability of the model values to begin with, called the

prior.1

The derivation of Bayes’ theorem is deceptively simple, relying only on the rule of con-

ditional probability prob(A,B) = prob(A|B)prob(B), which states that the probability of

two things both being true, prob(A,B), is equal to the probability of one alone being true

prob(B) times the conditional probability of the other given that the first is true prob(A|B).

But the choice of which variable to condition on is arbitrary, so we can write an equivalent

expression for prob(B,A). Simple algebraic manipulation then leads directly to Bayes’

theorem. The real power of Bayes’ theorem is not the expression itself, which is an ir-

refutable expression of basic probability, but the willingness to interpret A and B as the

model and data sets vectors. Once this is accepted, however it leads to countless insights—

it is not unreasonable to think of it as the equivalent of Newton’s second law for probability

studies, where at some level it represents an assertion that if accepted has almost boundless

explanatory power.

As we will refer regularly to each of these terms throughout this chapter, and they can

1The missing constant of proportionality is often called the evidence, but it is unimportant for parameter
estimation problems and therefore we will not discuss it here.
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often be confused, we will attempt to make their meanings plain. The posterior is the final

answer of any statistical data analysis problem and is often quoted as a best-fit along with

associated errors on the best-fit parameters. While perfectly correct, this statement of the

results can be somewhat misleading. In actuality, the end result of parameter estimation is

not a single answer, but rather a probability distribution, describing the relative probability

of different combinations of parameter values after analyzing the data. In this way, the

posterior summarizes our final belief about the parameter values after performing our anal-

ysis. The practice of quoting best-fit values with associated uncertainties is a concise way

of conveying this information for posteriors which are approximately described by normal

(Gaussian) distributions. We will discuss this point further in Section 3.3.3 when we obtain

the posterior covariances for the powder diffraction analysis.

The likelihood is the most familiar of the three terms in Bayes’ theorem, conveying

the relative “goodness-of-fit” of the data to a particular set of model parameters. As we

will show later, the most familiar form of the likelihood uses weighted least-squares or

“chi-square” minimization, which seeks to minimize the difference between the data and

a model. Since the prerequisite of any data analysis problem presupposes that we can

generate a model for any particular set of model parameters ~M , the likelihood then uses

probability distributions for the data points {d} to determine the probability of the data

given the model values. The likelihood can therefore be thought of as asking the data,

“What is the probability of this datum?”2, and then combining the probability of every data

point into an overall probability factor.

2These words are taken directly from John Johnson. They succinctly convey the root question that the
likelihood addresses, and so we quote them here.
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Lastly, the prior is simply the term that encapsulates our knowledge about the system

before performing the analysis. This term is unfortunately the one that people tend to have

the most difficulty with accepting, but it is actually rather straightforward. The prior sim-

ply mathematically encodes our “belief” about the model parameter values before the data

is analyzed, just as the posterior conveys our belief after the data is analyzed. The prior

therefore explicitly acknowledges that we usually have some previous or outside knowledge

about a problem that is influencing our analysis. The most straightforward prior is just the

posterior from a previous investigation, though we must be careful that we are comparing

two directly analogous studies and be sure that the previous investigator properly reported

their final uncertainties. Oftentimes, when lacking a directly applicable previous investi-

gation, we might choose to use weakly informed priors, typically in the form of very wide

normal distributions for each parameter. In some cases, we may choose to disregard all

outside knowledge and therefore favor totally “uninformed” priors, which are wide and en-

tirely flat. This option seems attractive to many at first, as they deem it the most “objective”;

it is easy to recognize that this is the result of flawed thinking, however, since the choice of

model parameterization is largely arbitrary and a flat prior for one parameterization can be

a very biased prior in another. Assuming a total lack of prior knowledge—which is almost

never the case—there is no “objective” method available to choose which parameterization

is best. Therefore, it is always important to make informed choices about the combination

of parameterization and prior, since together they directly affect the posterior. That said,

we needn’t worry too much about such issues given enough good quality data, since the

likelihood will always win out over the prior because its affect grows as more data is added
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while the prior remains fixed.

Bayes’ theorem is the very heart of the inversion method, allowing us to transform

data into knowledge about model parameter values. This process is not at all trivial, since

the causal arrow points in the opposite direction: we start with some underlying physical

process, as represented by a model, and through that process, the data is generated. In the

Bayesian framework, we are required at this point to somewhat broaden our definition of

“model”, to include both the physical picture that dictates the “ideal” noise-free values of

the data coupled with a representation of how noise or observational error are introduced

to the data. Therefore, a generic expression for the observed data values is given by:

{d}obs = {y}phys-mod + {ε}noise-mod (3.2)

where the observed data values, {d}obs, result from the combination of both a physical

model, generating values of {y}phys-mod, and outside noise source, represented by {ε}noise-mod.

In this way, we can see that the overall “data model” necessarily includes all terms that con-

tribute to the measured values.3 In fact, it is often the case that the noise model term is taken

as a collection of all of the unmodeled physics in a particular analysis problem. Viewed in

this way, we are given the freedom to adjust our representation of both the physical model

and the error model in order to best represent the data in hand, together parameterized by

the model vector ~M .

As mentioned above, the most common method of data analysis uses “chi-square” mini-

mization, which it is easy to show is a direct outcome of Bayes’ theorem for straightforward

3It is usually, but not always the case, that the unpolluted signal and the noise are additive. In cases when
they are not, the form of Equation 3.2 is simply adjusted to reflect their true relationship.
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analysis problems. Also known as least-squares regression, chi-square minimization relies

on the use of a normally distributed error model:

dobs
i = ymod(xi, ~M) + εnoise

i

with εnoise
i ∼ N (0, σ2

i )

(3.3)

where the physical model ymod is a function of both an independent variable xi and the

model parameters ~M , and the observational noise is normally distributed about the physical

model value, ∼ N (0, σ2
i ), with a standard deviation corresponding to the known observa-

tional errors σi. We can evaluate the total likelihood, L, as simply the product of a set of

normal distributions:

L =
∏
i

N (di − ymod
i , σ2

i ) (3.4)

where the data points are assumed to be independent of one another, giving a total proba-

bility that is just the product of the individual probabilities for each data point. Taking the

log of both sides and substituting in the expression for a normal probability distribution,

we can immediately see the relation to least-squares minimization:

logL = log

{∏
i

1√
2πσi

exp

[
−0.5

(
di − ymod

i

σi

)2
]}

= −1

2

∑
i

(
di − ymod

i

σi

)2

−
∑
i

log
√

2πσi

= −1

2
χ2 + const, with χ2 ≡

∑
i

(
di − ymod

i

σi

)2

(3.5)

where we introduce here the concept of χ2, which represents error-weighted sum-square
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residuals. From this equation, it is clear that minimizing χ2 yields the maximum for the

value of the likelihood, and is hence referred to as the Maximum Likelihood Estimate

(MLE). If we choose to adopt wide and flat priors, then the prior is just a multiplicative

constant for the posterior that combines with the second term in the log-likelihood. Ac-

cording to Bayes’ theorem, the posterior is proportional to the product of likelihood and

prior, and therefore constants have no effect on the final answer and can thus be dropped.

Therefore, we can clearly see that the use of standard weighted least squares fitting is ex-

actly equivalent to the case of fitting data with normally distributed errors and wide and flat

priors. Additionally, we can easily include the effect of normally distributed priors under

the same framework by merely adding on an additional “prior penalty” term for each model

parameter:

χ2
tot = χ2 +

∑
j

(
Mj −Mprior

j

δM prior
j

)2

(3.6)

where Mj is the j th model parameter value, and Mprior
j and δM prior

j give the mean and stan-

dard deviation of the prior for that parameter. We can thus easily see that this “workhorse”

of frequentist statistics, which describes the more common standard statistical viewpoint,

is in fact just a simple application of Bayesian statistics given a few common simplifying

assumptions. By remaining in the Bayesian mindset, however, we have the flexibility to

adjust this generic data model as needed to tailor the analysis to the specific properties of

the data we wish to analyze.

Of course, we cannot stop at obtaining a best fit, since the posterior is actually a proba-

bility distribution, summarizing our final knowledge of the model parameters. We therefore

must obtain the shape of the posterior to go along with the location in parameter space ex-
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pressed by the best fit. We will find here, just as before, that the standard method is nothing

more than the application of Bayes’ theorem under the assumption of Normality. In this

case, we must also assume that not just the data errors, but the posterior itself adopts a

normal distribution. This is often a good assumption, especially in the presence of large

quantities of good data, and depends on how non-linear the physical model is with respect

to the model parameters. We can imagine constructing a local first-order Taylor expansion

of the physical model in the region of parameter space near the best fit. As long as the

physical model behaves approximately linearly over the highly probable region of parame-

ter space, closely matching the Taylor expansion, the posterior will then be well described

by a normal distribution Sivia and Skilling (2006)4.

This method of estimating a normal posterior distribution is often called Optimal Es-

timation, since it uses function evaluations only in the local region around the best fit to

approximate the posterior (Sivia and Skilling, 2006). In general, a normal posterior is de-

scribed by a multivariate normal distribution (in multidimensional parameter space):

logP( ~M) = −1

2
χ2 + const ≈ −1

2
( ~M − ~µM)TΣM

−1( ~M − ~µM) + const (3.7)

where logP is the log-posterior, and ~µM and ΣM are the mean and covariance of the

multivariate normal distribution, corresponding to the best-fit and shape of the posterior

distribution for the model parameters M . As before, additive constants are unimportant

for the log-posterior, since they merely represent the normalization constant. Though we

4It is important to recognize that such a nearly normal posterior only behaves normally over the approx-
imately linear region of parameter space, and thus we will be unable to accurately capture the “tails” of the
distribution. This is rarely an issue for parameter estimation, since we are usually interested in where the bulk
of the probability lies.
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must use matrix notation, since the posterior exists in multidimensional parameter space,

this is merely the expression of a quadratic function in many dimensions, analogous to

logP ≈ const − 1
2
(M − µM)2/σ2 in one dimension. Given the derivative properties of

a quadratic, we can relate obtain the covariance matrix ΣM by evaluating the curvature of

log-posterior space:

Σ−1
M,ij ≈ −

∂2 logP
∂Mi∂Mj

(3.8)

where Σ−1
M is the inverse of the covariance matrix. We will discuss how to interpret the

covariance matrix in greater detail later, but for now it should be noted that it can be rep-

resented by an “confidence-ellipsoid”, which contains the most probable parameter values

and has a particular size and orientation. The orientation relates the correlation that exists

between different pairs of parameters, indicating how well we can independently constrain

their values, and the width scales the size of the region of high confidence. This is again an

example of Bayesian methods directly corresponding to standard frequentist results under

certain simplifying assumptions. Throughout this chapter, we will assume roughly normal

posterior distributions, as the nonlinearities in our models remain rather small over the re-

gions of high confidence. We thus do not make use of the many useful, yet complex and

time-consuming, Bayesian methods that can handle non-normal posteriors.

3.3 Bayesian Analysis of Powder Diffraction Data

In applying the general Bayesian approach to analyzing powder diffraction data from di-

amond anvil cell experiments, a wide range of statistical problems arise of varying com-
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plexity. In this and following sections, we show how the flexible Bayesian framework is

particularly well suited to developing individualized analysis routines that are well suited

to the task. We also demonstrate how while always remaining within the Bayesian frame-

work, we arrive at solutions that range from standard methods, directly equivalent to the

more familiar frequentist approaches, to entirely Bayesian approaches that lie outside the

bounds of the standard frequentist statistical toolbox.

The primary goal of many high-pressure powder diffraction studies is to obtain the

equation of state of the material of interest. This thermodynamic function describes how

the volume of the crystal unit cell varies as a function of some or all of the thermodynamic

state variables: pressure, temperature, and composition. Furthermore, for non-cubic crys-

tals, it is also important to obtain the variation of the unit cell dimensions with changing

environmental conditions. In order to accomplish this task, the investigator must carry out a

large, many-step inversion process, that converts powder diffraction spectra into estimates

of the thermodynamic properties. In this study, we develop and present a number of general

data analysis techniques for high-pressure (and high-temperature) diffraction experiments.

These methods are demonstrated on powder diffraction data for pure endmember and 13%

Fe-bearing Mg-silicate perovskite, obtained in the study presented in Chapter 2.

3.3.1 Estimating Peak Positions and Uncertainties

We begin with the task of obtaining unit cell parameters from a set of integrated 1D diffrac-

tion spectra. These integrated spectra were obtained using the technique described in Chap-

ter 2. As discussed in the previous chapter, due to its greater insensitivity to spectral irreg-
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ularities, which often arise in high-pressure multiphase experiments, we favor the use of

individual peak identification and fitting over the whole pattern refinement method. In the

process of peak fitting, the spectrum is split up into different sections that each contain sam-

ple diffraction lines. These lines are then fit individually, or in small clustered groups where

the peaks are seen to overlap one another. For the peak-fitting step, we employ a standard

least-squares fitting approach to obtain the positions of each peak from the integrated 1D

diffraction profile (e.g., Press et al., 2007). As discussed in the previous section, this least-

squares method is entirely consistent with the Bayesian framework under the assumptions

of normally distributed errors.

Each spectral peak is assumed to be well described by a pseudo-Voigt line profile, which

is generally considered the standard for most powder diffraction applications (e.g., Toby,

2001).

ymod
i =

Nline∑
j

Aj

(1− sj) exp

(
− ln 2

(
xi − pj
wj

)2
)

+
sj

1 +
(
xi−pj
wj

)2


+ fbkg(xi,~cbkg)

(3.9)

where the modeled intensity, ymod
i , is a function of the observed inverse d-spacing values

xi [Å−1]. This equation represents the total intensity as a sum of contributions from a set of

Nline profiles together with an added polynomial background function, fbkg, described by a

vector of roughly 3 to 5 background coefficients ~cbkg. The attributes of each line profile are

described by its position pj , half-width wj , amplitude Aj , and shape sj (which smoothly

transforms the profile between a perfect Gaussian line shape at sj = 0 to a perfect Voigt
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line shape at sj = 1).

We start the fitting process with an initial guess for the peak positions, based on the

positions of a few of the most intense and easily identified lines (prior knowledge from

previous investigations is also useful to obtain a reasonable initial guess). After obtaining

an initial guess for the peak position model, the peaks are fit with an iterative procedure,

where the identification of each additional line helps to better constrain the model, thereby

increasing the ability to identify further lines. This is particularly important for data with

many phases visible within each spectrum as well as data that contains a low symmetry

phase like perovskite, which has a significant number of partially overlapping peaks. Once

the peaks are generally identified, they are fit using the pseudo-Voigt profile model given

in Equation 3.9 assuming that the error bars are given by simple photon counting statis-

tics, which is approximately normally distributed for large photon counts. The spectrum

fitting is carried using a combined user-driven and automated minimization routine writ-

ten in MATLAB, finding the set of parameters that maximizes the posterior probability by

minimizing chi-square. The resulting individual best-fit peak positions for the Fe-free and

Fe-bearing datasets are shown in Figures 3.1 and 3.2.

Once each region has been well modeled to extract the best-fit line positions, the next

challenge is to obtain errors for these line measurements, as it is those line position un-

certainties that propagate into the errors on the extracted crystal volumes and unit cell

dimensions (and eventually into the equation of state parameters). As there are potentially

many unmodeled physical effects present in the spectra, it is not practical to use optimal

estimation to obtain errors in the peak positions, and thus we seek an alternate way to assess
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Figure 3.1: Peak positions for 0% Fe perovskite sample are plotted against pressure in the
top panel and against V −1/3 in the bottom panel. Plotting against pressure is difficult to
interpret since it includes effects from the equation of state; in contrast, the purely geo-
metric space leads to linear trends with minimal scatter and no systematic offsets due to
temperature. The hkl value of each line is labeled at the top and in pale gray and pale red,
the best-fit model peak positions are shown for the cold and heated data points.
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Figure 3.2: Peak positions for 13% Fe perovskite sample are plotted against pressure in
the top panel and against V −1/3 in the bottom panel. Plotting against pressure is difficult
to interpret since it includes effects from the equation of state; in contrast, the purely ge-
ometric space leads to linear trends with minimal scatter and no systematic offsets due to
temperature. The hkl value of each line is labeled at the top and in pale gray and pale red,
the best-fit model peak positions are shown for the cold and heated data points.
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reasonable uncertainties. Thinking back to the peak parameters, we note that the primary

variable controlling the ability to determine the location of a peak is its width assuming

the amplitude is sufficient to make it clearly visible. This reflects the fact that the peak

width directly controls the relative curvature of the spectrum in the region of the peak. We

therefore suppose that the line position error can be modeled as roughly proportional to

the peak width, where the constant of proportionality is specific to each line. If we can

identify this constant of proportionality by examining the observed scatter in the measured

line positions, we will then have a straightforward way or assigning uncertainties to each

position measurement.

The most obvious space in which to characterize the scatter is simply pressure vs in-

verse d-spacing, since the peak positions should follow a systematic trend with increasing

pressure. This choice is not ideal, however, since the peak positions are sensitive to both

pressure and temperature, where thermal pressure causes the heated data points to “lift” up

off of the 300K curves, making it impossible to define a single curve that the data points

are scattering about. This effect is plainly visible in the upper panels of Figures 3.1 and 3.2.

In addition, by plotting against pressure, whose value is uncertain, we inadvertently add an

additional source of scatter. In searching for a better alternative, we note that the evolution

of the relative axial ratios is primarily a geometric phenomenon, and is thus only a function

of volume. The planar spacings within the crystal, which are determined by the crystal

geometry, should also therefore be nearly independent of temperature. Furthermore, since

the cube root of the volume roughly sets the overall length-scale for the crystal, inverse

d-spacings for each line should be roughly linear in V −1/3. The lower panels of Figures 3.2
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and 3.1 show the evolution of the line positions with changing inverse crystal length-scale,

where the symbols are color coded by temperature. The inverse length scale can be thought

of as a proxy for pressure, where the line positions are found to be conveniently nearly

linear in this variable and independent of temperature.

We can therefore use the observed scatter relative to a best-fit linear trend as a way

to obtain the line position uncertainty constants. For simple normally distributed data, it is

well known that the sample standard deviation is a good estimate of the width of the normal

distribution—it is in fact the Maximum Likelihood Estimator. This familiar result comes

from the fact that the expectation value of the error-weighted square residuals is simply

equal to one for a normal distribution,〈(∆xi/σi)2〉 = 1. Thus we can trivially determine

the approximate error on each measured position, σi, by substituting in our assumption

that the error is proportional to the line width and solving for the proportionality constant

yielding:

σi = αwi, where α ≈
√
〈(∆xi/wi)2〉 (3.10)

Using this method, we can easily obtain accurate estimations of the uncertainties of each

peak position measurement, completing the first stage of the statistical analysis.

3.3.2 Estimating Unit Cell Parameters and Accounting for Misidenti-

fied Lines

After each spectrum is reduced into a list of measured peak positions and uncertainties, the

next step in the analysis is to fit these peak lists with a crystal reflection model. The details

of this method are given in the previous chapter. Here it is only important to note that for
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orthogonal perovskite, we have a model that is a function of three parameters, the lengths

of the three crystal axes a, b, and c. These three parameters must then be fit to the 10 to 25

measured peak positions.

If every line in a powder diffraction spectrum is correctly identified, we could simply

apply the standard least-squares approach given by Equation 3.5. Unfortunately, this is

extremely unlikely when fitting lower symmetry phases like perovskite—which have many

potentially visible and overlapping reflections—or when many different phases are present

in the diamond anvil cell resulting in overlapping peaks—which frustrate accurate peak

identification and fitting. Since the primary criterion used for peak identification is that the

observed line appears at a position reasonably close to where it is expected, we must con-

cede that misidentified peaks are bound to exist within our peak position list. To decrease

the incidence of misidentified peaks, we should first examine the linear peak position maps

in Figures 3.1 and 3.2. In addition to plotting the measured peak positions in dark colors,

we also show the best-fit model positions for each line in pale gray and red for the cold and

hot spectra. By showing the measured and modeled positions together in this well-behaved

linear space, it is often easy to pick out strong outliers that are otherwise difficult to iden-

tify. We can then go back to the original spectrum to see if there was a simple and obvious

mix-up between neighboring peaks, which are readily rectified. In other cases, it can be

plainly seen that not just one, but all of the lines identified with a particular peak deviate

systematically from the modeled position, indicating that the observed peak must belong to

a different mineral phase. Worst of all identification errors are the lines that coincidentally

lie near an expected peak position, but never deviate sufficiently far to draw attention to the
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mistake. These lines will therefore remain within the fitted data set, quietly and systemat-

ically biasing the measurements. In order to address this issue, we use a simple Bayesian

mixture model approach which is robust against moderate degrees of contamination by

peak identification errors.

A Bayesian Mixture Model is a general statistical tool that is useful in analyzing “pol-

luted” datasets, where there are a number of different data models from which each data

point can be generated. We start with the general data model description given by Equation

3.3. In writing that simple expression, we implicitly assumed that every data point was

generated by the same physical process. When our dataset contains data from a variety of

sources, such as correctly identified perovskite peaks and misidentified peaks, that expres-

sion is no longer appropriate. We therefore need to generalize Equation (3.5) to account

for some fraction of misidentified peaks, which can be done by adding an additional term

to the likelihood that accounts for the different possible sources of each data point. To sim-

plify this process, we assume that each position measurement is drawn at random from one

of two possible populations: either it is properly identified and drawn from the true sample

line population or it is misidentified and draw from a population of confused lines. Just as

before, the sample line population is represented merely by a normal distribution about the

measured value. Based on how lines are identified, we expect that the confused line popu-

lation is reasonably modeled by a simple flat distribution centered on the expected position

value with a width of ∆p, where the value of the width corresponds to how close an ob-

served line must be to the expected position in order to be counted as an identified peak. We

estimate a reasonable value for the width of ∆p ≈ 0.02, which is roughly a few times larger
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the typical uncertainties on line position determined from Equation (3.10). Therefore, the

total likelihood for each data point is just a “mixture”, or a weighted average, of these two

distributions (Sivia and Skilling, 2006): L =
∏

i

(
(1− f)N(pi − pmod

i , σi) + f
∆p

)
, where

f is just the expected fraction of the data points that are incorrectly identified. When there

are no misidentified peaks, f = 0 and we recover the standard least-squares approach de-

scribed above. Taking the log of both sides as before, we obtain the final expression for the

Bayesian mixture model:

logL = log

{∏
i

(
(1− f)√

2πσi
exp

[
−0.5

(
pi − pmod

i

σi

)2
]

+
f

∆p

)}

=
∑
i

log

(
(1− f)√

2πσi
exp

[
−0.5

(
pi − pmod

i

σi

)2
]

+
f

∆p

)
(3.11)

In order to use this expression, we need only choose reasonable values for the width of the

line identification window and the line fraction like f ≈ 0.1. In truth, we can generally use

values as large as f = 0.5 with the only downside being that we will increase the uncer-

tainty in our determined best-fit values. In deriving this generalization of the least-squares

method in so few steps, we can see the general power behind the Bayesian framework,

which reduces everything to the evaluation of probabilities.

We apply this Bayesian mixture model to obtain reasonable estimates for the unit cell

dimensions of the perovskite samples for each spectrum. The results of the crystal model

fits are summarized in Figure 3.3, showing the variation of the normalized axial ratios

with compression. These normalized axial ratios, defined in the figure caption, represent a

simple scaling of the unit cell parameters by the average crystal length scale V −1/3. Just
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as before, we plot these against inverse length scale, rather than pressure, since it reveals

the purely geometric behavior of the crystal, rendering the plots essentially independent of

temperature. In the left panel of the figure are the results for the 13% Fe-bearing sample.

These are obtained using a direct application of the mixture model described above. Notice

that the normalized axial ratios appear to evolve nearly linearly with compression, and

show relatively small amplitude scatter that remains roughly constant over the compression

range. In contrast, the modeling results for the 0% Fe sample is shown in the right panel of

the figure. In light “plus” symbols, we show the modeling results using the same method as

for the Fe-bearing sample. As can be clearly seen at the left end of the figure, the fitted axial

ratios diverge from their expected trends rather dramatically at for a number of spectra,

especially at low compressions. Unfortunately, the Fe-free sample has a rather limited

number of fitted peak positions, due to poorer spectrum quality resulting from small sample

size. While there are enough peaks to fit a model, the reduced number is significantly

more susceptible to the deleterious effects of peak misidentification. Examination of the

peak position map in Figure 3.1 does not show any obvious trends indicating poor peak

identification, however. In order to deal with the issue, we therefore turn to the use of

priors, which can provide useful outside constraints to any statistical analysis problem.

Though we have presented peak identification and crystal modeling in two separate

sections, in truth they exists large overlap between the two. As alluded to earlier, peak

identification and fitting is inherently an iterative process, where peak identification im-

proves as the model is refined with the addition of each new peak. At the same time,

however, the addition of an incorrect peak at such an early stage can be quite detrimental
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Figure 3.3: The normalized axial ratios are plotted in a purely geometric space against
V −1/3, where 13% Fe-bearing sample is on the left and the Fe-free sample on the right.
For the 13% Fe sample, the data appears just as it should, being nearly linear, without
temperature-dependent systematics, and with minimal scatter. The same unconstrained fit
to the peak positions of the 0% Fe sample shows strong deviations from expected physically
reasonable behavior, as shown in the “+” symbols. We therefore re-perform the analysis
constraining the axial parameters by applying an appropriate prior, thereby suppressing this
unphysical behavior, as show in the open circle symbols.

when using the standard least-squares approach. The Bayesian mixture model significantly

reduces the effect of the misidentified peaks on the overall fit, making it useful both for

obtaining final estimates as well as early on in the peak identification and fitting process.

As discussed initially in Section 3.2, it is common to use uninformed, or flat priors,

when in the data dominated regime. As just discussed, however, the Fe-free data set does

not contain enough visible spectral lines to yield fits that conform with our prior knowledge

about the system. We know that the large deviations from linear behavior exhibited in the

best-fit values at low pressure are not realistic, and therefore must result from an inability of

the data to properly constrain all the crystal dimensions simultaneously. We can reasonably

aide the fitting process that imposes the prior of linear behavior onto the crystal model. To
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do this, we simply fit the initial retrieved axial ratios with a line using a standard robust

polynomial-fitting routine in MATLAB (this method also uses a Bayesian technique, but

we will not discuss the details here). In doing so, we can estimate the expected linear

trend of each of the normalized axial ratios. The prior is then constructed as a normal

distribution centered on the robust-fitted line, whose width is chosen to be sufficiently

small as to constrain the retrieved axial ratios. Given the scale on the y-axis, it is not

unreasonable to expect that we should need to constrain the fit to variations of about half

a percent from the linear trend. The results from that prior-constrained fit are shown in

think circles over-plotted in the same figure. As is clearly visible, the problem has been

fixed using this outside constraint. Also, we can see that the axial values are still able

to vary from one spectrum to the next. This reflects how the prior can act as additional

pseudo-measurement, affecting the fitted results but without totally eliminating the freedom

necessary for the model to best explain the data. Though we do not show it here, it should

come as no surprise that the unphysical variations in unit cell dimensions also induced

large offsets in the apparent crystal volumes. Upon applying this prior-based method for

constraining the crystal dimensions, all of these large deviations were seen to disappear,

also providing useful verification for the approach.

3.3.3 Obtaining Unbiased Estimates and Uncertainties for Equation

of State parameters

The last step of the inversion process is to obtain the equation of state (EOS) from the

measurements of the crystal volumes at each pressure and temperature. The EOS expresses
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the dependence of crystal volume on pressure and temperature. This is captured using a set

of parameters, including the zero-pressure volume, V0, the resistance to compression given

by the bulk modulus at zero pressure K0, the pressure dependence of the bulk modulus K ′0,

as well as parameters that relate to the thermal properties of the crystal. While the details

of the equation of the state model are given in Chapter 2, we focus here on the more general

aspects of the fitting procedure and interpretation of the resulting posterior distributions.

To start with, we should begin with a discussion of priors for the parameter values.

While we might wish to have enough data such that we needn’t rely on any outside infor-

mation, this is very often not the case. In fact, it is oftentimes not merely a question of the

quantity or quality of the data, but an issue of the diversity of the data. A physical model

for any complex system always relies on information about many aspects of that system’s

behavior. We are limited, however, in what types of data we can collect, and how directly

that data speaks to different properties of the system. There are always properties that are

poorly constrained, no matter how much data we collect of a particular type, and therefore

we must rely on outside or prior information to constrain those values. The equation of

state of perovskite is a perfect example of this. In thermodynamic equilibrium, perovskite

is stable over nearly the entire range of lower mantle pressures and temperatures, but it

becomes unstable at low pressures, (transforming back to pyroxene, a stable lower pressure

phase of the same composition). This means that within its stability field, it is impossi-

ble to directly measure zero-pressure properties for perovskite, since the transition occurs

between around 25 GPa. Unfortunately, the equation of state models rely explicitly on

the zero-pressure properties. Because of this, it is generally not practical to collect enough
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high-pressure measurements to provide strong independent constraints on the zero-pressure

properties. This makes intercomparison of the results of different studies particularly diffi-

cult, since there exist strong correlations between the zero-pressure parameters, especially

the values of the bulk modulus K0 and its pressure derivative K ′0 (Angel, 2000; Bass et al.,

1981).

A typical, but systematically biasing, approach is to fix some subset of the parameters

to particular values, and then fit the remaining parameters as normal. This is a logical, but

probabilistically incorrect step to take. A common example of this is, for data that constrain

the slope but not the curvature of the P-V compression curve is to fix the value of K ′0 to 4.

From a physics standpoint, there is nothing special about a value of 4—rather its special

nature is related to the particular details of a commonly used equation of state. If the desire

is merely to estimate the volume over the range of the data, there is nothing particularly

wrong with this approach, since we have already supposed that the curvature is so small in

the data region as to be non-noticeable. If, as is usually the case, we would like to take our

derived equation of state and then extrapolate to higher pressures, perhaps the core-mantle

boundary, then the practice of fixing parameters is a serious mistake. It will severely (and

artificially) limit the allowable range of volumes predicted outside the data region. This is

because uncertainties in K ′0 spill over into uncertainties in other correlated parameters, and

such correlated uncertainties are entirely ignored when parameters are fixed—we obtain

unrealistically narrow uncertainty regions that bear little relation to our true knowledge

about the system given the data. By ignoring the known trade-offs between K0 and K ′0 (the

slope and the curvature), we are doomed to wildly underestimate the uncertainties resulting
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from extrapolation.

Luckily, this challenge is very simple to address in Bayesian statistics, since it merely

reflects the desire on the part of the investigator to use outside knowledge or prior infor-

mation to help constrain the parameter estimation. While fixing parameters is generally

a poor idea for the reasons discussed above, applying a probability density function that

encodes a prior belief about the parameter values is a simple and explicit way to properly

constrain the fitting parameters without paying the heavy costs associated with fixing pa-

rameters. The simplest informative prior is a normal distribution for each model parameter,

which therefore suggests the range of reasonable parameter values without insisting on a

particular value. For example, we might replace the assumption that K ′0 = 4 with instead

a weakly informed prior of K ′0 = 4± 1. In order to incorporate this information, we turn

to Bayes’ theorem with says the that posterior probability is proportional to the product of

the likelihood and the prior (since independent probabilities multiply). Therefore the log-

posterior probability is just the sum of the two independent pieces log p = logL + log Π,

where a simple normally distributed prior adds a squared residual term for each parameter

log Π = −1

2

∑
i

(
Mi − M̄i

σMi

)2

(3.12)

where M̄i ± σMi
is the prior information about the ith model parameter Mi. Based on its

mathematical form, it is clear that such a normal prior distribution acts as an “apparent”

measurement of each model parameter.

For our study of perovskite, the issue of priors on the equation of state parameters

arises when considering the zero-pressure volume. While it is not possible to measure the
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equilibrium value of V0, since it does not exist, perovskite is metastable at ambient pressure

and temperature. The kinetics of the backward transition are so slow that the transformation

is inhibited, Thus, there are ambient measurements of metastable perovskite. It is an open

question as to how relevant the metastable behavior is to the behavior within the stability

field. Many phases undergo softening and changes in their axial ratios as they approach

a phase transition. It is usually assumed that these differences are negligible and thus we

can make use of metastable measurements. Presuming that is the case, we are faced with a

perfect opportunity to make use of priors.

In the absence of zero-pressure measurements of the sample volume, the proper way

to constrain the parameter values is to impose a reasonable composition-dependent prior

for V0. It has long been known that many crystals that exist as solid solutions show nearly

linear variation of the volume as a function of composition. Kudoh et al. (1990) showed

that the measurements of metastable perovskite volume are roughly linear in ferrous iron

composition. We use a similar analysis of the previous ambient pressure perovskite volume

measurements, shown in Figure 3.4, to obtain our prior on V0 as a function of composition.

Based on the large observed scatter in that figure, as compared to the small individual

measurement errors, it is clear that there is some source of additional scatter inducing large

sample-to-sample variation. We therefore fit these data with a straight line, also allowing

for an additional scatter term. The solid line shows the best-fit linear trend, while the dashed

lines show the 68% confidence intervals, which are dominated by the intrinsic scatter term.

We can summarize these results by representing them as a normal distribution whose mean

is linear in composition and whose standard deviation is nearly independent of composition.
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Figure 3.4: Examination of previous zero-pressure volume measurements as a function of
iron content, using a linear fit combined with an intrinsic scatter due to sample-to-sample
variation. 68% contours are shown.

We therefore use this curve, sampled at 0% and 13% Fe to provide the prior on V 0 for

our fit. As far as the priors on the other parameters, they are much less important and

unnecessary, as the combination of the data and the V0 prior are more than adequate to

provide constraints on the parameters values.

With a reasonable prior in hand, we can then fit both the ambient temperature and

laser-heated data to determine the equations of state of the two perovskite samples. The

details of that fitting procedure were already discussed in Chapter 2, and so we will fo-

cus here on interpreting the resulting posteriors. After obtaining the best-fit, we used the

general Bayesian approach of optimal estimation, calculating the covariance matrices from
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the curvature of the posterior in log-space, as expressed by Equations 3.7 and 3.8. These

results can be directly visualized using a “stair-step” plot, see Figure 3.5, which shows

the correlated uncertainty bounds on each pair of parameters by plotting every parameter

against every other parameter. The nested 68% and 95% confidence ellipses are shown

in the central region for each parameter pair, with the 0% and 13% Fe samples in black

and red lines, respectively. These plots show 2-D marginalized confidence regions, which

means that the variations in all other parameters (not the 2 being plotted) are integrated

over. This means that these are projections from a five-dimensional space down into a

two-dimensional space. Note that they are not slices, which would happen when certain

parameters are fixed, rather than marginalized over. The one-dimensional marginal proba-

bility distributions for each parameter are shown on the edges of the figure. These corre-

spond directly to the best-fit and 1-D uncertainties on each parameter. The subfigures are

color coded with cold parameters shaded blue and hot parameters shaded red. They are also

organized such that correlations amongst cold parameters are at the top, the correlations be-

tween the two hot parameters are at the bottom right, and the cross-correlations are shaded

gray in the lower central region. From these plots, it is clear that the correlations are strong

between purely hot and purely cold parameters, but nearly zero for mixtures. Additionally,

it is clear that the two different compositions have differences in their equations of state that

are statistically discernible (though not necessarily all physically relevant, see Discussion

in Chapter 2), where there is little to no overlap in the 2-D 95% confidence regions for any

of the parameter pairs. A final thing that must be pointed out is the ability of the stair-step

plot to reveal significant parameter combination differences that are poorly visible when
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looking at one dimension at a time, but plain to see in two dimensions. The best example

of this is shown by the correlation between K0 and K ′0, which initially appear largely con-

sistent for the two compositions, when looking at the 1D probability distributions, but can

be seen to be over inconsistent with one another at over the 3-σ level when viewed in two

dimensions.

These results should then be compared in exactly the same way with previous investi-

gations of perovskite equation of state. Unfortunately, this task is made rather difficult for

two reasons. Firstly, none of the previous investigations report the full covariance matrix

(or equivalent correlation matrix) for their equation of state parameters. Second, and more

important, is the fact that all previous investigations fixed a number of important equation

of state parameters in order to improve the apparent constraints on the parameters. Unfor-

tunately, this results in strongly underestimating the parameter uncertainties as discussed

in detail above. We are forced, therefore, to settle for the more qualitative comparisons

already presented in Chapter 2.

3.4 Conclusions

In this chapter, we have used the data analysis problems that arise in powder diffraction and

equation of state studies to demonstrate the power and flexibility of the Bayesian Statistics.

We have demonstrated how “standard” statistical techniques, such as least-squares regres-

sion, are in fact fully consistent the Bayesian framework. We also presented a number of

novel analysis methods that show how Bayesian thinking can allow for the development

bespoke statistical procedures that do not suffer from the use of ad-hoc assertions, but are
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Figure 3.5: Two-dimensional posterior plots show the correlations between the different
equation of state parameter uncertainties. The central plots show the nested 68% and 95%
confidence regions for the 0% Fe sample in black and the 13% Fe sample in red. The
marginalized one-dimensional probability distributions are shown for each parameter along
the edges. Additionally, the plots are organized with the cold EOS parameters shown with
a blue background, the hot parameters with a red background, and the cross-correlations
with a gray background. With this scheme, it is clear that the cross-correlations between
cold and hot parameters are rather small, nearly horizontal confidence ellipses, whereas the
correlations between hot or cold parameters are significant, as indicated by highly angled
confidence bounds.
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rather directly rooted in probability theory. It is our hope that this text will help to show

readers that there is no “black-magic” in Bayesian techniques, and adopting them does not

require the rejection of previous statistical understandings. In short, we hope to convert

others to the Bayesian way of thinking, by way of recognizing that all
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Chapter 4

Coordinated HArd Sphere Model
(CHASM): A simplified model for oxide
liquids at mantle conditions

Abstract

We develop a new simplified model to understand and predict the behavior of oxide and sil-

icate melts at extreme temperatures and pressures. The Coordinated HArd Sphere Model

(CHASM) is based on the extension of the hard sphere mixture model, accounting for

the range of oxygen coordination states available to each cation in the liquid. By utiliz-

ing approximate analytic expressions for the hard sphere model, this method is capable

of predicting complex liquid structure and thermodynamics while remaining computation-

ally efficient, requiring only minutes of calculation time on standard desktop computers.

We demonstrate how the parameters of the model can be obtained by training on equa-

tion of state data for a variety of crystal polymorphs, which discretely sample the range of

available coordination states. This method is applied to the MgO system and then used to

calculate the coordination evolution and equation of state of MgO liquid over a wide range

of pressures and temperatures. The results produced by CHASM are finally evaluated by
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comparison with predictions from published first-principles molecular dynamics calcula-

tions, indicating that CHASM is performing well and accurately capturing the dominant

physics controlling the behavior of MgO liquid.

4.1 Introduction

Understanding the behavior of silicate liquids at mantle pressures is crucial to reconstruct-

ing the early evolution of Earth and other terrestrial planets. While molten silicates play

a minor role in the deep mantle today, their material properties directly determined the

Earth’s evolutionary path as it cooled from a nearly whole-mantle magma ocean to its

present-day solid state.

Recent first-principles theoretical calculations (Stixrude et al., 2009) and experimen-

tal shock-wave investigations (Mosenfelder et al., 2009) indicate that melting perovskite

requires significantly less total energy than previously thought, supporting the idea of a

deep potentially whole-mantle magma ocean early in Earth’s history. The evolution of this

magma ocean as it cools and crystallizes is dominated by the poorly understood behavior

of silicates at extreme pressures and temperatures. Probing these conditions is difficult for

both theory and experiment, and further challenges are posed by the large relevant compo-

sitional space, including at least MgO, SiO2, and spin-dependent FeO. The primary tool

for theoretical work, first-principles molecular dynamics (FPMD), has been used to probe

the behavior of a variety of silicate liquids including MgO (Karki et al., 2006), SiO2 (Karki

et al., 2007), Mg2SiO4 (de Koker et al., 2008), MgSiO3 (Stixrude and Karki, 2005), and

Fe2SiO4 (Ramo and Stixrude, 2012). While extremely powerful, this approach has limi-
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tations including high computational cost, lower bounds on temperature due to relaxation

constraints, as well as restrictions to length scales and time scales that are many orders of

magnitude smaller than those relevant to the Earth or experimental methods.

As a compliment to accurate first-principles calculations, we have developed the

Coordinated HArd Sphere Model (CHASM), which represents oxide and silicate liquids

by directly tracking the relative populations of differently coordinated cation species as a

function of temperature and pressure. This model is based on extending the standard hard

sphere mixture model (Mansoori and Canfield, 1969), which was recently applied to sil-

icate liquids by Jing and Karato (2011). In order to reasonably represent compression-

induced changes to internal energy, we implement a perturbation to the standard hard

sphere model, in which the internal energy is represented by empirical pair potentials that

are coordination dependent. Using the principle of free energy minimization, we determine

the relative populations of the different coordination states. Since the hard sphere mixture

model is a well-developed theory with trusted long-standing analytic approximations (Man-

soori and Canfield, 1969), this minimization technique is computationally cheap, allowing

rapid determination of the energies and coordination populations on a modern laptop com-

puter, enabling in the near future complete mapping of the wide compositional spaces rele-

vant to early Earth evolution. We also demonstrate how the well-known equations of state

for a large set of solid structures can be used to determine appropriate values for the pair

potentials, thereby raising making CHASM a fully predictive model for oxide liquids that

does not require fitting liquid data.
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4.2 Background

Understanding the behavior of liquids has been a challenge that has puzzled researchers for

nearly a century. Since the need to understand and be able to predict liquid properties over

a range of conditions is pervasive, progress has generally been distributed across a number

of scientific disciplines, including thermodynamics and statistical mechanics, experimental

geochemistry, and computational mineral physics. The primary research goals in each of

these fields vary greatly, from gaining a mechanistic understanding of liquid properties,

to providing an empirical description of compositional effects, to gaining a first-principles

atomistic view of compression behavior for liquids with specific chemistries. Though each

method is focused on a subset of the overall problem, together they contribute useful and

complimentary insights to our understanding of liquids under a range of conditions. To

provide context for the new model development described here, we give a short review of

the existing approaches to modeling and measuring liquid properties from these different

fields.

4.2.1 Ideal Mixing Models for Experimental Data

We start with the simplest possible model for liquid thermodynamics, which considers a set

of endmember compositions that mix ideally. While this method is computationally sim-

ple, it relies on accurate and difficult to obtain experimental measurements of the properties

of a range of liquids of different compositions. Such experiments include ambient pressure

sound speed measurements, like those reported in Ai and Lange (2008), and measurements

of density and internal energy in ultra high-velocity shock-wave experiments, like those of
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Asimow and Ahrens (2010) and Thomas et al. (2012). Given a measurement of the vol-

umes and energies of liquids for a range of compositions at a particular P-T condition,

the ideal mixture model supposes that the volumes, entropies, and energies are additive

and depend linearly on the fraction of each end-member composition (Bottinga and Weill,

1970). This assumption supposes that the excess energy and excess volume of mixing are

both negligible and that the entropy of mixing is well described by simple ideal mixing of

end-members. While this method employs a strong assumption of ideality, it is shown to

perform fairly well under many conditions. One major difficulty with this method is that

it requires extensive data sets for liquids spanning large ranges in composition in order to

uniquely constrain the behavior of the endmembers. Additionally, it is fairly limited in its

ability to extrapolate beyond the experimental pressure and temperature conditions, pro-

viding instead a sensible method for interpolation between data points. Even so, the ideal

mixing model has found great success at describing the thermodynamics of complex many-

component oxide and silicate liquids, as presented in Ai and Lange (2008), for instance.

Despite extensive success, there are notable shortcomings to the straightforward appli-

cation of this approach, as explored by (Guo et al., 2013), in which they show evidence

for large changes in the partial molar volume of the iron oxide component as a function

of overall composition. In particular, this change is interpreted as a strong composition

dependence to the oxygen coordination number of iron, which thereby exerts large controls

over the volume of the solution since 6-coordinated iron is significantly more compact

than 4-coordinated iron. It is possible that the ideal mixing approach can remain useful

in such cases by including separate endmembers that explore the different dominant coor-
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dination states for each cation, though the simplicity and predictive power of the method

could suffer as a result. Preliminary results from shock-wave experiments on liquids in the

CaO−MgO−Al2O3−SiO2−FeO system show similar failures of the ideal mixture method

(Thomas et al., submitted 2013), though it is not yet clear whether the practical approach

of adding more end-members that sample the range of dominant coordination states is suf-

ficient to address shortcomings of the approximation.

4.2.2 Atomic Simulation Using Molecular Dynamics

An entirely different and theoretical approach is to perform molecular dynamics simula-

tions to directly track the motions of the atoms that make up the liquid. In this method,

the trajectories of a finite number of atoms are evolved within a simulation cell. Periodic

boundary conditions are imposed on the simulation, mimicking an effectively infinite tiled

domain composed of side-by-side repeated images of the simulated region. Using basic

Newtonian mechanics, the positions and velocities of each atom are updated in response

to the imposed forces, which result from complex electronic interactions. The method of

determining the forces at each time step separates this approach into two possible forms:

Empirical Potential Molecular Dynamics (EPMD) versus First-Principles Molecular Dy-

namics (FPMD).

In the empirical approach, the interactions amongst the atoms are parameterized in

terms of analytic potentials, typically using standard forms that capture the general features

of atomic interactions. In the simplest and most common form, only pairwise additive in-

teractions are considered, yielding pair potentials which are typically composed of a sum
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of repulsive and attractive terms. Since these equations are simple analytic expressions,

the evaluation of energies and forces at each time step is comparatively rapid, and there-

fore EPMD is typically capable of representing between 104 and 105 atoms per simulation

cell over relatively moderately long simulation times of order few nanoseconds. The major

challenge with EPMD relates to whether that the parameter values for the empirical po-

tentials are applicable outside the conditions under which they were trained and thus the

quality of the simulation results can vary widely, depending on the details of the system.

Improvements to accuracy can often be made by including many-body terms in the inter-

action energies, which can be important for determining bonding and coordination effects

in many liquids Daw et al. (1993). Despite the challenges involved in training atomic po-

tentials that are capable of remaining accurate over large compression ranges, there have

been a few studies that apply this method to high-pressure systems, though agreement with

experiment tends to break down at higher pressures (e.g., Spera et al., 2009).

First-Principles Molecular Dynamics (FPMD) avoids many of these issues surrounding

accuracy of the applied forces by determining them directly using first-principles quantum

mechanics calculations. This strategy has gained much popularity over the last decade, as

computational resources have become more powerful and affordable. In this approach, the

forces imposed by the electron cloud distributions at each time step are determined self-

consistently using Density Functional Theory, a practical quantum mechanical method that

can provide approximate solutions to Schrödinger’s equation. While accuracy is obviously

less of an issue, this approach imposes a significantly higher computational burden, requir-

ing long calculations times on parallel processor machines. Capable of handling only a
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handful of atoms (of order 102 to 103), it is limited to small simulation cells with length

scales of roughly 10 angstroms, short evolution times of the order of picoseconds, and

high temperatures above 3000K, in order to remain computationally feasible. This means

that liquid behavior can only be modeled for temperatures well above the liquidus, thereby

avoiding impossibly long equilibration times. In such analyses, it is implicitly presumed

that picosecond evolution times for at most 1000 atoms are sufficient for accurate thermo-

dynamic averaging. While this is likely adequate for equation of state properties of most

systems, any physical effects that rely on length scales approaching the size of the sim-

ulation cell will not be captured by this approach, making the determination of dynamic

material properties like diffusivity and viscosity potentially much more uncertain.

Despite these limitations, this method has been found to be extraordinarily useful, and

there have been numerous recent studies on high-pressure Mg-silicates using FPMD, cov-

ering a finite set of compositions across the MgO−SiO2 join (see, for instance, de Koker

et al., 2013). By focusing on a particular fixed composition and calculating the time-

averaged free energies for a small set of volumes and temperatures, investigators are able

to fit parametric equation of state forms to describe that liquid over a continuous pressure-

temperature region. Due to computational limitations, the FPMD approach is therefore

focused on simulating the detailed high-temperature behavior of a small set of particularly

interesting liquid compositions.
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4.2.3 Basic Hard Sphere Model

The search for a simple mechanistic model to describe liquids traces all the way back to

the birth of our understanding of the molecular nature of matter, to the work of Johannes

Diderik van der Waals in 1873. In his investigations of the behavior of fluids at very

high temperatures, he sought an explanation for the disappearance of the vapor to liquid

transition upon compression (for temperatures above the critical point). This led him to

develop an improved equation of state, the familiar van der Waals equation:

P =
RT

V − b
− a

V 2
(4.1)

In proposing this expression, van der Waals hypothesized that a fluid is composed of equiv-

alent discrete particles of matter (molecules). Due to their finite size and rigidity, the

molecules that make up the liquid are forced into non-overlapping configurations, which

therefore reduces the free volume, which describes the fraction of the volume available

for the molecules to occupy. In the first term of his equation, van der Waals replaced the

volume in the ideal gas equation with an effective free volume, which is just the total vol-

ume V less the excluded volume b due to the molecules, Vfree = V − b. The second term

represents weak attractive forces—now referred to as van der Waals forces—that help bind

the fluid together and can be represented to leading order as proportional to 1/V 2. With

this equation, van der Waals was able to represent the critical behavior of fluids, but more

importantly, he laid the groundwork for understanding liquid thermodynamics in terms of

effects resulting from the finite size of fluid particles.



103

Nearly a century later, the idea of representing a fluid as a collection of hard spheres

experienced a sudden renaissance with the advent of large computing resources. As hinted

by the early success of the van der Waals equation, the behavior of liquids is dominated by

strong short-range repulsive forces that prevent liquid particles from occupying the same

space. Therefore, the behavior of liquids can be represented using a simple hard-wall

potential function:

Φij (r) =


∞ ; r < Ri +Rj

0 ; r ≥ Ri +Rj

(4.2)

where the internal energy Φij of particles i and j is zero for all non-overlapping config-

urations. Particle overlap is expressly forbidden by a jump to infinite energy when their

separation distance is less than the sum of their radii r < Ri + Rj . This almost trivial

equation is the basis of the hard sphere model, which has been the source of a wealth

of information about the general properties of liquids. The initial investigations of hard

sphere fluids represented some of the first computer simulations ever performed. Later ef-

forts by many investigators provided analytic expressions that approximate the results of

these computational simulations to high degrees of accuracy. It is these analytic expres-

sions which make the hard sphere model so attractive, since they enable rapid calculation

of liquid properties many orders of magnitude faster than molecular dynamics simulations

and on standard personal computers rather than large super-clusters.

We can intuitively understand some of the basic properties of the hard sphere model

and liquids in general by examining snapshots of hard sphere fluids at different packing

fractions. At ambient conditions, the internal energy of a liquid plays only a very minor

role in determining liquid thermodynamics—instead, the dominant term in the free energy
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of the system comes from the configurational entropy resulting from the freedom of liquids

to adopt nearly any structure that avoids particle overlap. In particular, quantities like the

expected particle separation distance and pressure for a given volume are primarily depen-

dent on the number of available microstates or configurations that exist for a particular set

of macroscopic variables (e.g., volume and temperature). This structural freedom is cast in

terms of the free volume available for each particle to move through. At the relatively low

densities near vapor equilibrium considered by van der Waals, the free volume is shared

by all liquid particles and is thus simply the total volume less the excluded volume, as re-

flected in the van der Waals’ equation. It is important to note that the excluded volume

is larger than the volume occupied by liquid particles. For low density configurations of

hard spheres, the closest two particle centers can get to one another is the sum of their

radii. This results in an excluded region for a pair of particles that has a radius of twice

the sphere radius, and thus eight times the volume. On a per particle basis, the excluded

volume is therefore four times the particle volume for disperse particles, as was noted by

van der Waals. This approximation breaks down, however, for dense packings, where each

liquid particle can have multiple nearby neighbors. In such tightly packed configurations,

the excluded volume regions of neighboring particles overlap one another, resulting in a

total excluded volume that is only a fraction of van der Waals’ upper limit.

To visualize the effect of packing density on the excluded volume, Figure 4.1 shows a

snapshot of a 2D hard sphere fluid at a range of liquid densities. The relative liquid density
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Figure 4.1: Snapshots of the simple hard sphere model for a range of packing fractions.
Each hard sphere particle is show in black and the gray halo around it represents the ex-
cluded volume region that other particle centers are prevented from occupying. Panels a–c
span the range of packing fractions from nearly ideal non-interacting fluids to extremely
dense liquids. Panel d shows a variety particle configurations at fixed density.
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is expressed in terms of the packing fraction

η ≡ 〈VHS〉
V

=
1

V

4π

3N

N∑
i

R3
i (4.3)

which is just the average hard sphere volume VHS scaled by the volume of the liquid per

particle, V . In the single component hard sphere fluid, the expression simplifies since all

particles have the same fixed size. 1 Each sphere is shown in black with a gray halo around

it representing the potential excluded volume region. In the disperse (gas-phase) limit,

shown in panel a of Figure 4.1, particles generally lie far from one another interacting

through collisions only rarely. In this case, the finite particle volume is negligible, and

therefore particles can be treated as point-like, resulting in ideal gas behavior. For moderate

packing fractions (low density liquid phase), particles regularly interact with one another

revealing the importance of the excluded volume. As shown in Figure 4.1 panel b, particles

at these moderate densities tend to have only one or two immediate neighbors, and therefore

the excluded volume is approximately additive. For high packing fractions (high-density

liquid phase), particles are forced to significantly crowd together, causing their excluded

volume regions to strongly overlap, as seen in panel c of Figure 4.1.

A crucial attribute of liquids that relates directly to the excluded volume effect is the

dependence of excluded volume on configuration. To demonstrate this, a number of ran-

dom snapshots at constant packing fraction are shown in panel d. From these images, it

can be seen that the evolving random liquid structure leads to fluctuations in the total ex-

1It should also be noted that all of the figures depicting snapshots of hard sphere configurations are shown
for explanatory purposes, created from calculations of 2D hard sphere liquids. All of the equation of state
calculations are carried out properly in three dimensions using the analytic approximate methods reviewed in
the Appendix.
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a b

Figure 4.2: Snapshots of a hard sphere fluid at moderate (a) and high (b) packing fractions.
These configurations are identical to panels (b) and (c) of Figure 4.1, but a single particle,
outlined in red, has been removed. The light red shaded region shows the free volume
available to the reference particle. At low packing fractions (a), particles all share the same
free volume, whereas at high packing fractions (b), each particle is trapped by its neighbors.

cluded volume as well as the locally available free volume, shown in white. As the particles

bounce around in the fluid, the degree of overlap between their excluded volume regions

evolves as a function of configuration, resulting in complex sub-additive behavior for the

total excluded volume of the liquid. Another consequence of tightly packed configurations

is that particles no longer share the same free volume. In Figure 4.2, we repeat two of the

same configurations from the previous figure, but in this case, one of the particles has been

removed to display the local instantaneous free volume available for it to explore. The lo-

cation of the removed particle is shown with a red outline near the center of the simulation

cell, and its local free volume region is shaded in light red. In the low density case, the

particle can access nearly the entire free volume of the liquid. In the high density case,

however, the particle is confined within an instantaneous “cage” formed by its neighbors.

This leads to equations of state and average liquid structures that have complex dependen-

cies on the packing fraction. It is quite remarkable that such complex behaviors such as the
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sub-additivity of excluded volumes and the evolution of particle-specific free volumes can

be well represented by the simple hard sphere fluid.

4.2.4 Previous Application of Hard Spheres to Silicate Liquids

The hard sphere model has been investigated through both computer simulation and an-

alytic theoretical development over the last half-century. This has resulted in a rich and

mature body of literature that is readily available for applications to any particular problem

of interest. For the sake of brevity and readability, we will wait to present these classic

results for hard spheres until it becomes relevant to our modeling efforts. We do want to

draw attention, however, to the wealth of analytic approximations that are now available

to describe many different aspects of the hard sphere model. These include fundamental

thermodynamic relations like the equation of state, which relates the volume and the tem-

perature to the pressure. The time-averaged structure of hard sphere fluids is also known

analytically. Unlike crystalline solids that have fixed and periodic structures, liquids present

a time evolving continuum of relative atomic positions. In order to handle this ambiguity,

the average liquid structure is usually described in terms of the radial distribution function

(RDF), which expresses the average local density of particles at a given separation distance

relative to the density of the liquid as a whole. Most important for real-world applications

is the fact that these properties are also known for random mixtures of hard spheres of

varying sizes.

Given that most of the primary thermodynamic results for hard spheres have been in

place for almost 40 years, it is rather surprising that hard sphere theory is rather new to
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the study of silicate melts. The first notable application of hard spheres to silicate liquids

was presented by Guillot and Sarda (2006), in which they modeled the compression of

particular fixed composition silicate liquids in order to investigate the solubility behavior

of noble gases. In this first application of hard sphere theory to geologically relevant mate-

rials, Guillot and Sarda (2006) obtained the compression behavior for MORB, silica, and

olivine composition liquids up to 10 GPa. This was accomplished by determining a single

effective hard sphere size for each liquid that best matched a measurement of the 1 bar

density at a reference temperature. It is important to note that this method yields only a

very approximate description since it relies on representing each liquid as a collection of

identical hard spheres, where it is unclear which structural aspects of a multicomponent liq-

uid this physically represents. Even more important is the fact that this method is limited

only to describing liquids at particular fixed compositions for which data already exists,

and is therefore incapable of producing a predictive theory for liquids with unmeasured

compositions. Nevertheless, this approach was reasonably successful at fitting low degree

compression data with only a single free parameter.

More recently, Jing and Karato (2011) made considerable progress in the hard sphere

description of silicate melts by fitting a set of hard sphere diameters to a collection of

liquid density measurements in the CaO–MgO–Al2O3–SiO2–FeO system. To accomplish

this, they utilized an analytic approximate result for describing mixtures of hard spheres

of different sizes (Lebowitz, 1964). (This classic work derived a generalized expression

for the Percus-Yevick equation, which describes the radial distribution function for hard

spheres, to allow for a random mixture of differently sized spheres.) Unlike the previous
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geological application, it is somewhat easier to draw a tie between the hard spheres of Jing

and Karato (2011) and the physical aspect of the liquid they represent. They obtained a

set of best-fit sphere sizes, where each sphere stands for a particular oxide component, like

SiO2 or MgO. Since the spheres are meant to represent the relatively incompressible local

units of the liquid, and they are specific to each oxide component, we can think of them

as the region surrounding a cation and including a fraction of the shared oxygens that are

directly bonded to that cation.

In order to obtain the oxide sphere sizes, Jing and Karato (2011) fit a large data catalog

of liquid densities and bulk moduli (from sound speed measurements) for a range of tem-

peratures and compositions at ambient pressure. Initially, they found the fixed hard sphere

diameters that best matched the liquid data in the least-squares sense. Later in the paper,

they also added in a physically motivated correction for temperature, which has often been

applied in the hard sphere literature with moderate success, and an entirely empirical cor-

rection for pressure, to attempt to better match high-pressure shock-wave measurements.

By including the temperature correction, they were able to demonstrate quite compellingly

that they were able to reproduce the generally observed trends in density and compress-

ibility for a large chemical system at ambient pressures. Using the empirical correction to

allow the spheres to be slightly deformable with increasing pressure, they were also able

to match low-pressure data up to 25 GPa from sink/float experiments. By adding a further

empirical term to the pressure-dependent deformability of the spheres, they could better

describe a small set of shock-wave measurements up to 135 GPa, but as all of these cor-

rection factors are no physically motivated, they can only provide modest improvements
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without adding significant insight. As the authors remark themselves, it would be better to

be able to directly represent the compression-induced structural changes that are physically

occurring within the liquid in order to have a theory with greater predictive and explanatory

power.

4.2.5 Local Liquid Structure

As discussed in the previous section, efforts to adapt hard sphere theory to silicate melts

up till now have focused on empirical determination of hard sphere parameters. Using this

method, Guillot and Sarda (2006) and Jing and Karato (2011) were able to lean on the for-

malism of hard spheres to act as a physically motivated “averaging kernel”, allowing them

to effectively interpolate within the data set upon which the hard sphere sizes were trained.

Extrapolation outside the training set, however, was fairly limited, as the hard spheres were

not strongly connected with physically meaningful aspects of the liquid structure. It is for

this reason that neither model was capable of accurately representing large compression

ranges, with pressures over 30 GPa being generally inaccessible. Furthermore, any com-

positionally induced structure changes in liquids would also fall outside the capabilities of

this approach. In the process of developing a more physically rooted application of the

hard sphere model, we therefore have strong motivation to consider the structural attributes

of dense silicate melts with a focus on how they are affected by changes in pressure and

composition.

While studying atomic structure in melts is more difficult than in crystalline solids,

there exist a number of methods that can be brought to bear in this effort. We start by
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describing the method that is the most directly sensitive to atomic structure, and is thus

the primary tool for probing crystalline solids: x-ray or neutron diffraction. Each atom

in the material acts as a scattering center for incoming high energy particles (typically

photons or neutrons). Due to its wave-like nature, the phase of the incoming radiation is

retained upon scattering, allowing the radiation from the collection of atoms in the material

to add constructively or destructively. The general condition for constructive interference

is that the path length traveled by a set of scattered rays is equal to an integer number of

wavelengths. When considering a periodic crystalline structure, this is typically stated in

terms of the spacing between adjacent crystal planes, d, in terms of Bragg’s Law:

nλ = 2d sin θ (4.4)

where λ is the wavelength of radiation used to probe the structure, n is the order of the

reflection (typically n = 1 for most diffraction data since higher order reflections have

negligible intensity), and 2θ is the scattering angle, defined as the angle between incoming

and diffracted rays. From this equation, it is clear that radiation is scattered at high intensity

into only a finite set of preferred directions which are characteristic of the crystal structure.

Liquids, on the other hand, are significantly more complex than crystalline solids since

they lack periodicity. They, therefore, do not have large sets of atoms at precise locations

from which coherent scattering can lead to sharp and intense diffraction peaks. Rather, they

contain a collection of disordered atoms which lie at random absolute locations in space, re-

flecting a lack of long-range order. Nevertheless, the atoms occupy characteristic locations

relative to one another, reflecting their considerable short-range order. As briefly mentioned
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above, the probabilistic nature of the structure of liquids is best-described in terms of the

Radial Distribution Function (RDF), g(r), which is proportional to the probability, P (r)dr,

of finding two atoms a given distance apart:

g(r) ≡ ρ(r)

〈ρ〉
and P (r)dr = 4πr2〈ρ〉g(r)dr (4.5)

The RDF therefore gives the typical particle density a distance r away from a reference

particle, normalized by the average density 〈ρ〉. The RDF is easily calculated from atomic

simulations by counting the number of particles inside a set of thin spherical shells of vary-

ing sizes and averaging over the all particles and time-steps. Figure 4.3 shows a typical

RDF for a simple monatomic liquid depicting the two primary features of average liquid

structure: a sharp inner edge to the particle density and decaying density oscillations with

increasing distance. The inner edge is roughly equal to the sum of particle radii and simply

results from finite particle size and the corresponding tendency of particles to avoid over-

lapping one another. The decaying density oscillations about the average value reflect the

limited short-range order in the liquid, where each subsequent maximum corresponds to the

next-nearest-neighbor shell of particles, and at sufficient distance, all ordering tendency is

lost yielding the average density value.

While the radial distribution function is not a direct observable for real-world liquids

like it is for atomic simulations, it is nevertheless closely related to the data produced by

x-ray or neutron diffraction. By replacing periodic lattices with a tendency toward local

ordering, diffraction experiments for liquids result in a characteristic broad, low intensity

pattern referred to as “diffuse scattering”, which displays azimuthal symmetry and slow os-
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Figure 4.3: Depiction of the radial distribution function (RDF) of a simple model liquid (in
this case the Lennard-Jones fluid). The primary features of the RDF are its primary peak,
indicating the average nearest-neighbor particle distance, and its decaying oscillations, re-
flecting successive shells of neighboring atoms which become less distinct with distance as
long-range disorder comes to dominate. [image credit: wikipedia.org]

cillations in intensities as a function of the scattering angle. The integrated 1D diffraction

pattern can be straightforwardly transformed into the structure factor, which is a normal-

ization of the scattered intensity giving the absolute scattering per atom as a function of

the scattering vector ~q = ~kscat − ~kinc (the difference between the scattered and incident

wavevectors). The structure factor for a liquid bears a strong resemblance to its radial dis-

tribution function, reflecting the fact that they are Fourier transforms of one another. The

basic structural depiction of liquids can therefore be obtained with minimal processing of

diffraction data.

Challenges arise from the fact that, unlike its crystalline counterpart, the diffuse scat-

tering pattern is inherently broad and low intensity, making it easily confused with the sim-

ilarly broad yet unconstrained background pattern. It is therefore only with great difficulty,

taking care to minimize background signal using large samples and careful experimental
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designs, that reliable liquid structure factors are obtained. It is with even greater difficulty

that structure factors can be measured for high-temperature, high-pressure liquids like sili-

cate melts (Funamori et al., 2004). It is for this very reason that much of our knowledge of

liquid structure relies on insights gained from quenched glasses.

Glasses are strongly preferred to melts for most analytic techniques since they can be

measured at ambient conditions on large stable samples. Glasses form as a result of rapid

cooling of the liquid, where the cooling timescale is shorter than the kinetic relaxation

timescale, forcing the liquid to fall out of equilibrium and thereby freezing its structure. By

imposing a range of cooling rates, experimentalists can obtain a set of snapshots of the liq-

uid structure at different temperatures, where the effective temperature at which the liquid

structure is frozen into a glass is called the “fictive temperature”. These different cooling

rates are achieved using a variety of cooling methods, which include (in order of increas-

ing cooling rate): slow controlled cooling by reducing furnace power over time, air cooling

where the melt is removed from the furnace, water cooling where it is submersed in a water-

bath, and splat quenching where melt is squirted at high speed onto freezing cold metal. By

varying the cooling rate over ten orders of magnitude through such techniques, the fictive

temperature can be adjusted by typically of order a few hundred degrees for silicate glasses.

Some of these techniques can also be adapted for use in a high-pressure, high-temperature

apparatus like a multi-anvil furnace to generate glasses from high-pressure silicate melts.

These glasses are then available for conventional measurements, like the diffraction deter-

mined Radial Distribution Functions described above.

There is also a broad set of spectroscopic techniques that can been used to probe the
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local environment of particular atoms in liquids and quenched glasses. These methods

rely on a variety of complex interactions between photons of different wavelengths and

the nuclei or electron distributions inside the material. Without going into the details, we

briefly mention some of the available techniques and the general insights they provide

about high-pressure silicate melts. Nuclear magnetic resonance spectroscopy is one of the

most successful techniques for probing the local environment around certain target atoms

within a material. This term is actually used to describe a wide set of methods that exploit

the properties of certain nuclei and their tendency to couple with and react to externally

imposed strong magnetic fields. For particular set of atoms, it is possible to observe emit-

ted photons that are characteristic of different properties of the local environment about

the nucleus, using a variety of specially designed magnetic fields that may vary in space,

time and orientation. For Earth scientists, measurements of silicate materials using 17O-,

27Al-, and 25Mg-NMR have proved particularly useful in studying the evolution of coor-

dination state (number of bonded nearest neighbors) as a function of both pressure and

composition. There have been numerous studies over the last two decades that have ex-

amined the evolution of oxygen coordination of the Al cation increasing smoothly with

increasing pressure (see, e.g., Lee, 2011). Typically these studies rely on measurements of

quenched glasses rather than in situ high-temperature melts, but it is quite clear that the

smooth shift in coordination populations to higher values with increasing pressure is the

dominant compression mechanism of most oxide liquids over mantle pressure ranges. In

particular, 27Al-NMR studies of Al-silicate glasses are particularly useful since aluminum

often substitutes in for silicon within the polymerized network of the silicate structure. By
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Figure 4.4: Evolution of Si−O coordination polyhedra with increasing compression. Snap-
shots are shown for a range of volumes, relative to the initial reference volume, (1.0, 0.8,
0.6, 0.4) and a range of temperatures (3000K, 4000K, 5000K, 6000K). Dominantly 4-
coordinated Si gives way gradually to 6-coordinated Si with compression. [image credit:
Karki et al. (2007)]

examining the shift from dominantly 4-coordinated aluminum at ambient conditions up

to 5- and 6-coordinated Al, we can gain insights about the general shifts occurring in the

liquid’s silica framework.

The last primary way in which local liquid structure is probed is through molecular dy-

namics simulations like those discussed in Section 4.2.2. By turning to FPMD techniques,

researchers can obtain reasonable predictions of both liquid structure and thermodynamics

at extreme temperatures (above∼ 3000 K) and high pressures that are unattainable in most

experimental setups. Such high temperatures pose great difficulties for in situ measure-

ments and quenched glasses are restricted to fictive temperatures with a theoretical max-

imum at the liquidus ranging down to a few hundred degrees below. Additionally, rapid
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quenching is made more difficult inside high-pressure apparatuses like multi-anvil presses

or diamond anvil cells. Atomic simulation, with its direct knowledge of the exact posi-

tion of each atom in the fluid, therefore, has a large role to play in the evaluation of liquid

structure. The general results from FPMD studies of terrestrial liquids at mantle conditions

support the same general conclusions of the diffraction experiments and spectroscopy stud-

ies. For visualization purposes, we reproduce a figure from Karki et al. (2007) shown in

Figure 4.4, which shows the evolution of the different Si−O coordination polyhedra with

increasing compression. As can be seen in the first panel, at a volume VX corresponding to

ambient pressure at 3000K, the Si cations lie predominantly in a tetrahedral 4-coordinated

state, and as pressure is increased they gradually shift toward higher coordination numbers,

occupying primarily octahedral 6-coordination state at 6000K and V = 0.4VX . It should

also be noted that the variety of simultaneously occupied coordination states increases with

increasing temperature, as expected from simple Boltzmann-like statistical considerations.

In fact, not only is coordination evolution the primary compression mechanism for pure

silica, it is found to actually fight against bond length changes, where the nearest-neighbor

silicon-oxygen bond length is seen paradoxically to initially increase on compression, in-

dicating just how strong the energetic benefit to increasing coordination actually is. Sim-

ilar coordination behavior has been seen across many different compositions relevant to

rock-forming liquids including MgO (Karki et al., 2006), all along the MgO—SiO2 binary

(de Koker et al., 2013), and Fe2SiO4 (Ramo and Stixrude, 2012).
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4.3 Coordinated HArd Sphere Model (CHASM)

Given the combined evidence from diffraction studies, NMR spectroscopy, and FPMD sim-

ulations, it appears that oxygen coordination evolution is a common compression mecha-

nism across all high-pressure oxide and silicate melts. Despite this fact, there does not cur-

rently exist a simplified theory for oxide melts which accounts for the coordination effects

that dominate compression throughout the Earth’s mantle. We therefore develop a simpli-

fied model to represent high-pressure oxide liquids that explicitly accounts for the range

of available coordination states for each cation, and thereby predicts the evolution of co-

ordination with changing pressure, temperature, and composition. The Coordinated HArd

Sphere Model (CHASM) provides a general framework for representing the compression

behavior of silicate and oxide liquids in terms of evolving the relative populations of differ-

ent oxygen coordination states for each cation in the liquid, using a perturbation to the hard

sphere mixture model. Furthermore, by exploiting the analytic expressions for mixtures

of hard spheres from the physics and statistical mechanics literature, we construct a model

that captures the basic physical mechanisms while remaining computationally efficient, be-

ing easily run on a standard personal computer in minutes, rather than taking months on

multi-node supercomputers. Following the classic approach of training empirical poten-

tials, this is a model that relies on parameters that are determined from the comparatively

well-understood behavior of solid polymorphs, and can thus be fully predictive for silicate

liquids.
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4.3.1 A Qualitative Picture of Liquid Compression

To introduce the basic concepts important to constructing such a model, we first examine

the essential differences between compression in solids and liquids and how this relates to

their respective equations of state. In Figure 4.5, we show a two-dimensional cartoon rep-

resentation of the compression of materials along a continuum from solid-like to liquid-like

behavior. (It should be noted that while this diagram is only meant to illustrate the impor-

tant concepts, it has been constructed properly using a Monte Carlo hard sphere model to

represent liquid particles of different sizes.) Each panel of the figure show two snapshots of

the particle structure in the material at particle densities relevant to low- and high-pressure

states in light and dark gray, respectively.

Up to this point, we have used a variety of terms, including atom, molecule, or “par-

ticle”, to refer to the matter making up the liquid. Generally speaking, a liquid particle

should be thought of as the smallest structural unit that can be used to describe the liq-

uid. Oftentimes, these are simply atoms or molecules. In the case of ionic liquids, like the

silicates and oxides that are the focus of this study, the particles should be thought of as

cation-anion groupings. In order to minimize the Coulombic energy, the large oxygen an-

ions remain grouped around each central cation even in the liquid state, where the number

of nearest-neighbor oxygens about each cation is expressed through the coordination num-

ber of that cation. As time progresses, the cations and oxygens both move through space,

causing both the coordination number and the identity of the coordinated oxygens to evolve

with time. Nevertheless, the energy penalties for segregating the oxygens and cations are

so high that each cation is always surrounded by an ever-changing local shell of oxygens
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Figure 4.5: Compression mechanism cartoon for oxide liquids showing the different con-
ceptual steps involved in getting from solid-like compression to liquid-like compression.
We start with simple ordered solid compression, where all volume changes are taken up
by changing bond lengths. The addition of considerable entropy upon melting leads to
a simple disordered liquid that can be described with the hard sphere model. Including
dependence of the internal energy on packing fraction results in a perturbed hard sphere
model, where the sphere sizes adjust with compression. Finally, allowing for varying coor-
dination states with populations that depend on packing fraction yields a reasonable picture
of a coordination depend liquid. In the final panel, high and low coordination are shown
in red and black, respectively, and the liquid adjust the coordination populations toward
higher coordination states with increased compression.
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and can be usefully described as evolving through a series of coordination states. (In re-

ality, the oxygens also undergo some coordination evolution, increasingly being shared by

3 instead of only 2 cations, but this has a less major impact on the overall liquid thermo-

dynamics.) In this way we can adapt the hard sphere model to ionic liquids by thinking

of the spheres as representative of coordinated ionic complexes, where each is centered on

a single cation. The interactions of each sphere with its neighbors is therefore governed

primarily by its coordination state, which affects both the size of the complex and the way

in which it is connected to its neighbors through the background field of oxygens that are

implicitly present and surrounding each cation.

Keeping this understanding of liquid particles in mind, we can look to Figure 4.5 to gain

an intuitive grasp of the mechanisms that operate in liquids to accommodate compression

and how they differ from compression in solids. In the upper left of the figure, we start

with the orderly compression of solids, which is dominated by changes in bond length.

With atoms fixed in their relative positions within the unit cell, compression in solids is

marked by only small changes in disorder associated with the decreasing volume available

for thermal atomic vibrations. Upon melting, materials gain a significant bump in entropy,

associated with the loss of long-range order. As discussed above, liquids still maintain

short-range order, which can be approximately represented using the basic hard sphere

model. This simple disordered liquid is depicted in the second panel of Figure 4.5, where

the changes in the liquid structure are controlled by the packing fraction. It is important to

note that in this case, the hard sphere radius is assumed to be fixed and independent of both

temperature and compression. A simple hard sphere model such as this is the type utilized
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by Jing and Karato (2011) to describe low-pressure silicate liquids.

A further refinement to the physical picture can be made by including the feedback

effect of compression on the excluded volume. In the third panel, we show how a more

realistic liquid picture allows the sizes of the hard spheres particles change as a function of

pressure (or temperature). This can be achieved in one of two major ways: most simplistic

is the application of empirical rules for how the hard sphere sizes compress with increasing

pressure or temperature. This class of method was extremely popular for many years due

to its computational simplicity and resulted in many applications of the hard sphere model

to simple liquids, and is also the approach taken by Jing and Karato (2011) to improve

the accuracy of extensions to elevated pressures and temperatures. While simple to im-

plement, this empirical method suffers from its lack of strong physical grounding, where

the rules governing the compressibility of the hard spheres are fairly arbitrary and chosen

only to match the generally observed trends in liquid behavior. They therefore rely on

fitting liquid data and have only limited capability for extrapolation and interpolation in

pressure–temperature–composition space.

It is strongly preferable to use a physically based perturbation method, which uses hard

spheres as the reference system to which higher-order corrections are made. The physi-

cal phenomenon that slightly compressible hard spheres seek to represent is the gradual

decrease of the minimum particle spacing experienced by liquid particles with compres-

sion. This behavior reflects the limits of the hard sphere model, which approximates the

steep Fermi repulsive energy barrier for particles at small separation distances with a step-

function, or infinitely sloped hard wall. Of course, such a rough approximation was only
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ever appropriate over a limited range of conditions. As temperature increases, the liq-

uid particles gain thermal energy allowing them to “climb” further up the repulsive slope,

shrinking the effective hard sphere size. Similarly, increasing pressure confines liquid par-

ticles into ever smaller regions, balancing the energy penalty associated with climbing the

repulsive barrier as particle sizes shrink against the energy benefit resulting from the in-

creased free volume available to each particle. For this reason, it is energetically advanta-

geous to steadily reduce the hard sphere size of each particle with compression, as depicted

by the shrinking hard spheres in the third panel of Figure 4.5. By altering particle size,

the liquid is able to maintain large configurational entropies in spite of decreasing volume,

which helps to offset its increasing internal energy. This trade-off between the internal en-

ergy (associated with the packing of liquid particles) and the free energy (associated with

the dependence of configurational entropy on free volume) is at the core of the “variational

method” for hard spheres, which seeks an optimum hard sphere size through total free en-

ergy minimization. We will discuss the details of this method below, but for now, it is

important to recognize how it relates to the evolving structure and energetics of the liquids

upon compression and heating.

As indicated in the previous section, the final and most important aspect of oxide melt

structure for the purposes of understanding compression is the availability of a variety of

different oxygen coordination states for each cation. In the last panel of Figure 4.5, we

show a snapshot of a simple liquid that has two different coordination states available to it,

a large low coordination state in black and a compact high coordination state in red. The

liquid is free to populate these states in whatever manner minimizes the total free energy.
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This results in low coordinations dominating at low pressures and high coordinations at

high pressure, as depicted in the figure by the increased presence of red particles in the

high-pressure state. Both the populations of coordination states, shown as red and black in

the figure, and the effective particle sizes for each state respond to changes in pressure and

temperature, seeking to minimize the total free energy.

At this point, we must briefly digress to discuss the issue of coordination number.

Cations in crystalline solids exist in a small finite number of coordination environments

depending on the crystal structure. Typically, these coordination states are thought of as

being restricted to integer values, corresponding to the number of oxygens bonded to the

cation. This is a sensible notion for “ideal” structures, in which all nearest-neighbor oxy-

gens lie at equal distance from the central cation. Many crystal structures, however, contain

cation sites that are highly distorted, where the nearest-neighbor oxygens lie at a discrete set

of unequal distances, making it more difficult to define which oxygens are directly bonded

to the cation and which are shared unequally with neighboring cations. This complica-

tion reveals the need to define the “effective coordination number”, which gives higher

coordination weight to nearer neighbors and less to more distant ones. While there are

many possible definitions of effective coordination number, we use that put forward by van

Meel et al. (2012), since it is straightforward, using a sensible solid-angle-based weighting

scheme, and does a good job reflecting the differences between different distorted crystal

structures. 2

2A more commonly used definition was introduced by Hoppe (1979), who used an exponential averaging
scheme to give greater weight to closer neighbors. Hoppe (1979) fully admitted that the form of the weighting
scheme is fairly arbitrary, and can only be judged on its ability to recover the correct values for ideal structures
while providing useful insight into more distorted ones. Accordingly, we have tested this scheme against the
more recent one by van Meel et al. (2012), and have found van Meel et al. (2012) to return more sensible
values. Additionally, this new method results in coordination weights that are constrained to values less than
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Like distorted solids, liquids also place cations inside geometrically non-ideal sites.

While we depicted only two coordination states in Figure 4.5 for the purposes of clarity,

liquids actually contains a spectrum of local coordination environments. Released from the

constraints of periodicity, the distances and angles between cations and oxygens in liquids

are dynamically evolving, causing the nearest-neighbor oxygens to sample a continuous

distribution of bond distances, further emphasizing the need to consider fractional coordi-

nation states. While the concept of fractional coordination may be unfamiliar to many, it is

crucial to understanding the structure and resulting thermodynamics of silicate and oxide

melts.

Using this qualitative picture of liquid structure and thermodynamics as our guide, we

are now prepared to consider the development of a quantitative model that captures these

important behaviors.

4.3.2 Perturbing the Hard Sphere Mixture Model

Unlike dynamical models, such as first-principles molecular dynamics, which seek to di-

rectly simulate the motions of particles in a system, statistical mechanical models only

attempt to represent the behaviors of a system probabilistically. The advantages to this

alternative approach are that it produces models that are many orders of magnitude faster—

the difference between desktop computers and super-computers, minutes and months of

calculation time—and it also leads to models that are inherently scale independent, and so

they do not suffer from simulation size or evolution time effects.

or equal to one for each neighboring particle, whereas the method of Hoppe (1979) frequently gives weights
considerably greater than one for close-by neighbors. We find this to be fairly unphysical, since an atom
cannot be said to have a bonding weight of more than 100%.



127

At the root of statistical mechanics is the recognition that each macroscopic state of the

system, described by the state variables of volume, temperature, and composition, actually

corresponds to a huge number of combined microscopic states. A macroscopic system

(with of order at least Avogadro’s number ∼ 1024 of particles) can only be completely

described by its microscopic configuration, a list of the position and velocity vectors for

every particle at every time step. Clearly, a “macroscopic dynamical model” would require

an impossible amount of computing power. Instead, statistical mechanical models consider

the range of available microstates, and assign relative populations to these states according

to the rules of thermodynamics. For a closed system at constant temperature T , volume V ,

and composition ~X , the second law of thermodynamics states that the system will achieve

equilibrium when its Helmholtz free energy F is minimized, which is given by the sum of

independent contributions F =
∑
Fi =

∑
(Ei − TSi), where E is the internal energy and

S is the entropy. Therefore, the microstates of the system are populated in such a way as

to minimize the total free energy. 3 This provides us with a simple recipe for constructing

a statistical mechanical model, where we need only write down an expression for the free

energy and minimize it.

Using the hard sphere mixture model as a guide, we can think of silicate and oxide

melts as a collection of coordination-specific hard spheres, where each sphere represents

a particular oxygen bonding environment about a cation lying at its center. By explicitly

considering the range of available coordination states, we are able to capture how the con-

tribution of each cation to the overall liquid structure depends on the oxygen coordination

3The simplest example of this is the familiar Boltzmann distribution, which describes the population of a
set of independent states with different energy levels.
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number, which controls the local connectivity between the cations. Given this physical pic-

ture, we have developed the Coordinated HArd Sphere Model (CHASM), which applies

a perturbation to the standard hard sphere mixture by both accounting for multiple coor-

dination states for each oxide component and estimating how the average liquid structure

affects the internal energy of the liquid. The total free energy of the CHASM liquid can

thus be divided into its major components:

FTot ≈ Fideal + ∆FHS + Estruc + Finternal (4.6)

where Fideal is the ideal gas contribution, ∆FHS is the configurational free energy con-

tribution as calculated by the hard sphere mixture model, Estruc is the dependence of the

internal energy on the average liquid structure, and Finternal captures the additional free en-

ergy contribution caused by the internal degrees of freedom available to each hard sphere

particle, primarily associated with the freedom of movement of the bonded oxygens. Given

the dependencies of each term, the total free energy can be written:

FTot = FTot(V, T, ~X,pcn,dcn) (4.7)

where the free energy is a function of the thermodynamic state variables (V, T, ~X), as well

as the model parameters describing the hard sphere attributes (dcn,pcn), which are the

diameters and populations of the hard spheres as a function of coordination number for

each oxide component of the liquid.4 We now give a brief description of each term in

4The coordination populations are defined separately for each component such that pcnij gives the frac-
tion of cations of type i that are in coordination state j and therefore

∑
j pcnij = 1 for each component.
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the total free energy expression. While, for the purpose of clarity, we save most of the

details for the Appendix, it is important to recognize that all terms can be evaluated using

a combination of straightforward analytic expressions and simple 1-D numerical integrals.

The first term in the free energy captures the contribution associated with a mixture of

ideal gases. This captures the momentum carried by each particle, given by the standard

expression for a single component ideal gas Fid-gas, combined with the ideal entropy of

mixing for completely randomized particles Sid-mix:

Fideal =
∑
i

XiFid-gas(V, T,mi)− TSid-mix

Sid-mix =− kB
∑
i,j

xij log xij (where xij ≡ Xipcnij)

(4.8)

Note that these contributions are evaluated for the hard sphere particles rather than the indi-

vidual atoms, and thus mi and Xi are the mass and mole fraction of each oxide component

(in a per cation basis). The mole fraction of oxide component i in the j th coordination

state is given by xij , which is equal to the relative population of that coordination state

times the absolute abundance of that component. The occupation of multiple local coordi-

nation states leads to a significant increase in the entropy of mixing for liquids, reflecting

the increase in the number of distinguishable randomized microstates. This fact is well

known, and was found to adequately explain the high entropy of mixing observed across

the MgO-SiO2 binary in FPMD calculations (de Koker et al., 2013).

The next term in the free energy is the adjustment resulting from a mixture of hard

spheres. This analytic equation was derived using an approximate solution for the radial

distribution function, referred to as the Percus-Yevick equation, and was first extended to
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hard sphere mixtures by Lebowitz (1964). Subsequent work improved the approximation

(Mansoori et al., 1971), yielding an expression that can be thought of as a standard black

box for calculating the free energy of hard sphere mixtures. While this expression is shown

in its entirety in Appendix 4.A, we note here that it takes the form:

∆FHS = kT × fHS(V, ~X,pcn,dcn) (4.9)

where the free energy difference is a purely geometric function of the volume, hard sphere

sizes and populations. The dependence on temperature is only as a multiplicative pre-

factor, in effect setting the overall energy scale. Together, the ideal and hard sphere terms

represent the pieces of the standard hard sphere mixture model.

While generally useful, the standard hard sphere model lacks any contributions to the

internal energy, which are crucial for describing large degrees of compression. As pre-

sented in Figure 4.5 and in the subsequent discussion, there exists a trade-off between the

configurational free energy (captured by the hard sphere model) and the internal energy

cost associated with the average liquid structure. This balance enables the particles to ad-

just their effective sizes to respond to changes in volume or temperature in order to maintain

the minimum free energy. We therefore need an expression for the energy cost associated

with a particular liquid structure. The simplest possible approach is to approximate the total

structural energy as resulting from the sum over pairwise interactions—through an effec-

tive “pair potential” Epair—of every particle with every other particle. This is achieved by

considering interactions between a central reference particle of type c and the surrounding
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particles of type s:

Ecs
struc =

1

2
xc

∫ ∞
0

Ecs
pair(r) Pr cs(r)dr and Estruc =

∑
c,s

Ecs
struc (4.10)

where the total energy is given by integrating the probability-weighted energy cost (Pr×Epair),

which depends on the separation distance r, over all possible separation distances. Addi-

tionally, xc, the mole fraction of c particles, gives the probability of choosing a c particle at

random, and the factor of 1
2

exists to prevent double counting (since each particle is counted

once as the central particle, c, and once as the surrounding particle, s). This expression is

then evaluated for every possible pairing of distinguishable particles and summed over,

cycling through each coordination state for every component.

The probability of finding particles at each distance is tied directly to the structure of

the liquid through the radial distribution function g(r), and thus we can rewrite the above

equation:

Ecs
struc =

1

2
V ρc

∫ ∞
0

Ecs
pair(r)4πr

2ρsgcs(r)dr

=2πV ρcρs

∫ ∞
0

r2Ecs
pair(r)gcs(r)dr

(4.11)

where the number densities of the central and surrounding particles are given by ρc and

ρs. The key point is that the approximate RDF for the liquid is a direct output of the hard

sphere mixture model, and therefore we need only impose a reasonable pair potential in

order to calculate the structural perturbation. Determining the empirical pair potentials for

the coordinated hard spheres is therefore at the heart of applying the CHASM method and
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requires significant attention. We defer that discussion until Section 4.3.3, where we detail

how to determine liquid-appropriate pair potentials solely from data on the solid structures.

For the meantime, we assume that such a determination has been made and that Equations

(4.10) and (4.11) can be evaluated.

Finally we come to the last term in the free energy expression, which captures the

effects of the internal degrees of freedom of each hard sphere particle. Thus far, every

term has relied entirely on thinking of the hard spheres as indivisible particles—at this

point we consider corrections that account for the limitations of this description. Each

particle is composed of a central cation surrounded by a set of coordinated oxygens that are

shared between neighboring particles. The oxide particle picture reflects how much cations

and oxygens resist separating from one another, but it ignores the freedom of independent

motion that the oxygens retain. We thus split the internal free energy contribution into its

two major parts:

Finternal ≈ Fbond ang + Fbond len = Finternal(V, ~X,pcn) (4.12)

where Fbond ang expresses the free energy resulting from the positional freedom that is cou-

pled with bond-angle distortion, and Fbond len expresses the contribution due to the variabil-

ity in bond length about the average value.

We have derived an expression for the first term in Equation (4.12), using elemen-

tary quantum mechanics, but to avoid distraction, we relegate that derivation to Appendix

4.D. The results show that the bond-angle freedom term relates to the cation-oxygen bond

length, which is unsurprising since the oxygens can be thought of as lying on the surface of
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a “bonding sphere” with radius equal to the bond length. Most of the extra dynamics relate

to motions of the oxygens along the surface of this sphere. There must, of course, be some

motion of the oxygens along the radial direction causing bond length distortions, as repre-

sented by the second term in Equation 4.12, though we currently neglect any contributions

from motion of this type. As we show in the next section, we can empirically relate oxygen

bond length for a particular cation to the overall volume by examining a variety of solid

structures. Additionally, the coordination number directly controls how many oxygens lie

on the surface of the bonding sphere, determining the typical bond angles, and thus the

coordination populations are also important to calculating the contribution from internal

degrees of freedom. Notice, however, that there is no direct dependence upon either hard

sphere sizes or temperature, as indicated by the right-hand side of Equation (4.12).

By combining the equations above with those in Appendix 4.A-4.D, we now have the

ability to evaluate the total CHASM free energy. This relies specifically on providing the

coordinated hard sphere pair potentials, which is discussed in detail in the next section. As

alluded to previously, the final step is to apply the principle of energy minimization:

Fliq(V, T, ~X) = min
pcn,dcn

{FTot} (4.13)

where the state of the system is that which minimizes the total free energy. Thus, for a par-

ticular set of state variables V , T , and ~X , we can obtain self-consistent thermodynamically

derived values by minimizing the total free energy with respect to the hard sphere parame-

ters. This generic method of determining the model-dependent parameters is also called the
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“variational method” for hard spheres, due to its connections to the calculus of variations5,

and was developed by Mansoori and Canfield (1969). In that and subsequent works, the

authors developed improvements to the description of compositional hard sphere mixtures,

but remained limited to any considering the added effect of liquid structure. We have thus

extended the same technique to directly tracking the evolution of coordination state. To

simplify and speed up calculations, the dependence of the hard sphere sizes and popula-

tions on coordination number can be parameterized with simple smooth functions, thereby

enforcing the expected systematic behavior while also reducing the number of parameters

that must be varied (details are presented in Section 4.3.4). Because all of the expressions

involved in evaluating the total free energy are either analytic or simple 1D numerical inte-

grals, evaluating the free energy is a trivially fast operation, taking less than a second on a

modern personal computer. We are therefore able to use a standard numerical minimization

routine in MATLAB, allowing the solution for each state point to be calculated in only a

few minutes, in contrast to the weeks or months necessary on multiprocessor machines in

dynamical simulations.

4.3.3 Training Pair Potentials on Solid Structures

Now that we have presented the general framework of the CHASM approach, we will

discuss the details of how to obtain reasonable values for the pair potentials by training on

the equations of state of solid polymorphs. This step is critical, since the pair potentials

represent the primary input to this model, determining the structural energy perturbation

5The liquid free energy in equilibrium can be thought of as a functional of the total free energy, which is
subject to a minimization constraint. We imagine using a series of trial expressions for the free energy, and
vary the hard sphere parameters until the minimum energy state is achieved.
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that is at the heart of the variational method. Additionally, we must also determine the

relationship between oxygen bond length and volume, which is provided by the empirical

trends apparent in the solid crystal structure data. While bond lengths are not an explicit

part of the general CHASM framework—since oxygens are only represented in terms of

coordination number—they are required to estimate the bond-angle correction to the free

energy.

As discussed at length in the previous section, liquids populate a continuous spectrum

of local atomic structures, while crystalline solids are restricted to the small subset that are

both periodic and minimal energy configurations. Though the range of available options is

much narrower, differently structured crystals of constant composition (called crystal poly-

morphs) can be thought of as discretely sampling the same continuum that is available to

the less highly-constrained liquids. This implies that we can gain considerable insight into

the energetics of particular atomic arrangements by studying the solid structures. Ideally,

we would have a computational tool that could rapidly determine the internal energy of

any arbitrary ionic arrangement, but such a tool would need to solve Schrödinger’s equa-

tion and therefore require first-principles methods like density functional theory, which are

inherently both iterative and extremely computationally intensive. Instead, we look to the

well-studied energetics of the solid structures to develop a set of empirical pair potentials

that can approximately capture the dependence of internal energy on atomic configuration.

When applied to the atoms themselves, this strategy represents a fairly standard approach

for determining potential functions that can be used in empirical molecular dynamics sim-

ulations. Though we are not performing MD simulations, we do benefit from the general
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knowledge such studies provide about the features and limitations of pair potentials.

Empirical potentials represent the internal energy as a sum over either pairwise or

many-body particle interactions using a suitably flexible and simple functional form. The

most well-known example is the Lennard-Jones potential, which is appropriate when weak

van der Waals attractive forces dominate at large separation distances:

ELJ(r) = 4ε[(σ/r)12 − (σ/r)6], where ε and σ are the energy and distance scales. A more

flexible potential form is given by the generalized Morse potential, which represents the

repulsive and attractive parts using exponential decay functions:

Eexp-exp(r) ≈ εR exp

(
− r

σR

)
− εA exp

(
− r

σA

)
(4.14)

where εR & εA are the energy scales and σR & σA are the length scales for repulsion and at-

traction, respectively. In order to remain physical, with an asymmetric energy well that has

a steep repulsive barrier at short distances, the parameters must take values with εR >> εA

and σR < σA. When applied to ionic particles, it is also necessary to add a Coulombic term

to the interaction energy. While functions of this type are loosely motivated by physical

considerations, they can only be expected to capture the observed energetic variation over

a limited range of conditions. Accordingly, it is common to develop pair potentials that

are appropriate for small deviations from a particular configurational environment, such as

atomic vibrations within a particular crystal structure.

In order to extend the suitability of the potentials, it is usually necessary to add more

and more corrective terms, which add angular dependence for dipole fields, impose bond-

angle restrictions, or account for 3-body interactions, significantly reducing the simplicity
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of the approach and increasing the care required for obtaining reasonable parameter val-

ues. The most common downside to using pairwise-only atomic potentials, like Equation

(4.14), arises from the fact that such expressions are forced to represent total bonding ener-

gies as strictly proportional to coordination number, since each bond contributes the same

energetic weight. This tends to impose an unrealistic preference for high coordination

numbers, since the total energy can be lowered by surrounding each cation with as many

oxygens as possible. In reality, there is an increasing cost to placing more particles in a

confined area, caused by the increase in local electron density (Daw et al., 1993). Each

subsequent particle actually sees a reduced energy benefit for bonding, compelling the ions

to adopt less extreme coordination numbers.6

It is important to recognize that our goal is quite different from MD studies—we are

not seeking to directly model the individual positions of cations and oxygens. Instead, we

need only capture the average relative placement of effective hard sphere particles, which

represent the basic structural units from which each liquid or crystal configuration is built.

This simplification affords significant advantages over the standard pair potential approach

by sidestepping the issue of suitability. Rather than developing complicated atomic po-

tentials that are capable of representing vastly different local configurations, we instead

restrict ourselves to only representing the interactions of hard sphere particles that are in-

herently coordination specific. By imposing the constraint that the pair potential values

must be smooth and slowly varying functions of coordination number, we ensure that the

6The embedded atom method is a very successful many-body potential theory which accounts for this
effect when directional bonding remains unimportant (Daw and Baskes, 1984; Daw et al., 1993), though
there is a significant added cost in terms of both complexity and the number of additional parameters whose
values must be determined in order to apply the technique.
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Figure 4.6: Representation of the unit cell structures and oxygen coordination polyhedra
for the six theoretically realizable polymorphs of MgO. Each structure is displayed along
an axis representing the effective coordination number. In reality, only the NaCl structure
(periclase) is stable under terrestrial conditions. Nevertheless, the other structures are the-
oretically possible and can provide great insight into the energetics of oxygen-coordinated
Mg.

resulting potentials are well behaved and improve the interpolation behavior of the derived

potentials. This is particularly important since the solid polymorphs only sample a small

set of coordination states and thus reasonable interpolation properties are an absolute re-

quirement of potentials that are used for liquid calculations. Most importantly, as the local

coordination is a prescribed attribute of each particle rather than a derived quantity based

on model output, we no longer suffer from the common issue of improperly favoring high

oxygen coordination states. Additionally, since each particle is neutrally charged, there is

no need for additional Coulomb terms. By specifying pair potentials for the effective par-

ticles, rather than the atoms themselves, we are able to retain a simple functional form, as

in Equation (4.14), without sacrificing the flexibility necessary to represent the changing

nature of atomic interactions that results from evolving coordination states.

Having motivated and developed a general strategy for representing hard sphere po-

tentials, we now demonstrate how to train the potential parameter values using equation
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of state data for the MgO polymorphs. MgO is chosen because it represents the simplest

possible oxide and yet is extremely important to our understanding of the Earth. In the

pressure range experienced in the silicate Earth, pure MgO exists only as the mineral peri-

clase, which has the B1 or NaCl “rock-salt” structure, with an oxygen coordination number

of 6. Depending on the packing efficiency of the unit cell, MgO could potentially adopt a

range of structures, which are shown in Figure 4.6 ordered along an effective oxygen coor-

dination line. This figure indicates the range of periodic structural options available MgO

and other “AB” crystals, including CsCl, ZnS, ZnO, CaO, and BN. Whether a particular

chemical system will actually adopt a given structure depends on the energetics of that con-

figuration as dictated by quantum mechanics. So stable is the NaCl structure for MgO that

density functional theory calculations have placed the pressure-induced phase transition to

the denser CsCl (or B2) structure at somewhere between 400 and 500 GPa (Karki, 1997;

Jaffe et al., 2000; Joshi et al., 2012). Looking to other analog AB crystal systems, we know

that MgO should be able to theoretically adopt the low coordination zinc-blende (B3) and

wurtzite (B4) structures, though at unrealizable “negative pressures”. Though no structures

other than NaCl have ever been observed for MgO in the lab, there are numerous studies

that have examined both the high and low (negative) pressure polymorphs using density

functional theory (see, for example, Karki et al. (2007); Joshi et al. (2012); Jaffe et al.

(2000); Oganov and Dorogokupets (2003)). These studies provide energy-volume curves,

which when coupled with known atomic positions, can form the basis of a training dataset

for simple coordinated pair potentials.

For training our MgO pair potentials, we rely on the dataset produced by Joshi et al.
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(2012), as it examined all six of the available structures shown in Figure 4.6. The fact

that all energy curves were calculated self-consistently within a single study is important,

since each study necessarily introduces an arbitrary energy offset parameter By using a

self-consistent training set, we need only allow for a single global offset term, rather than

one for each study which could amplify degeneracies in the fitted parameters. The calcu-

lated equations of state from Joshi et al. (2012) for the six theoretical structures of MgO

are shown in Figure 4.8. In addition to the four previously mentioned structures, these

also include two non-ideal distorted structures: the NiAs structure is six coordinated like

periclase, but has a highly inefficient packing scheme for the cations resulting in large dis-

tortions of the nearest-neighbor cation distances, while the hMgO structure is a buckled

boro-nitride variant that provides nearly 5-coordination for the cations. Together, these six

structures with their computed effective coordination numbers and relative cation positions

provide sufficient information to train the coordination-dependent pair potentials.

In order to obtain a simple parameterization that describes the total internal energy of

each atomic configuration in terms of the pairwise interactions of cations alone, we must

first select a form for the pair potential. The attributes of the pair potential are assumed to

vary systematically with coordination number, thereby providing a simple way to capture

how local bonding environment in turn affects the energy. For both its familiarity and flex-

ibility, we choose the generalized Morse potential, which can be described most simply as

the difference of two exponential decay functions (see Equation 4.14). While this parame-

terization has the simplest mathematical form, it is not very useful for fitting. The potential
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142

is thus recast into the following “normalized Morse potential” form, depicted in Figure 4.7:

E∗pair(r
∗) =

1

α2 − 1

{
exp

[
−α(r∗ − 1)

∆r∗

]
− α2 exp

[
− 1

α

(r∗ − 1)

∆r∗

]}
with, E∗ = E/ED and r∗ = r/re

(4.15)

where the energy and length scales defining the depth and position of the energy well are

given by ED and re, and the relative width of the energy well is defined by ∆r∗. Together,

these 3 parameters scale the position and dimensions of the energy well, as depicted in

Figure 4.7. Lastly, the overall shape of the well is given by the value of α, which primarily

controls the curvature of the distant half of the well as shown in Figure 4.7. This parameter-

ization, equivalent to Equation 4.14 with 4 free parameters, can be reduced to the standard

Morse potential by fixing α =
√

2. While fixing α removes flexibility from the function,

we employ this strategy to avoid overfitting since the six compression curves do not sample

a sufficient variety of cation distances to independently constrain the precise well shape.

The fitting procedure itself is fairly straightforward. First the atomic positions for the

periodic crystals are calculated up to some large cutoff radius, which is many times larger

than the nearest-neighbor cation distance. Then the total pairwise interaction energy is

determined by evaluating Equation 4.15 at each separation distance and summing over all

cation pairs. Finally, we also include a “tail correction”, which roughly accounts for the

effect of truncating the sum at a finite cutoff radius. The form of this correction term is

exactly the same as Equation 4.11, where beyond the cutoff radius, we neglect the effect

of small fluctuations in particle density setting gcs(r > rcut) = 1. This results in a trivial
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exponential integral for the Morse potential that is performed analytically.7

In addition to the direct interaction energy reflecting the positions of each cation, we

must introduce a correction to account for the strong distortions present in some of the

structures like NiAs and hMgO. This correction counteracts the excessive repulsive ener-

gies predicted by the pair potential in the case of distorted closely-spaced cations. The pair

potentials are designed to capture the general energetic dependence of coordinated cations,

and can therefore be thought of as describing the energy cost of “ideal” atomic arrange-

ments. Distorted structures, however, have the freedom to rotate oxygen positions to move

them out of the way and make room for the closely spaced cations, thereby reducing the

effective energy cost of such an arrangement. This effect depends almost exclusively on the

separation distances of the nearest-neighbor cation pairs, which induce the largest repulsive

energies. To account for this difference, we apply a simple additive corrective term based

on the concept of the effective coordination number:

∆Ecorr = −
∑
i

wi(Epair(di)− Epair(deff)) (4.16)

wherewi is the coordination weight of the ith nearest-neighbor cation and deff is the effective

cation separation distance considering all neighboring cations, both calculated using the

method of van Meel et al. (2012). Applying this expression to each cation, we can imagine

that we are determining the energy impact of moving all of the nearest-neighbor cations

from their actual positions to their average effective separation distance, which are more

reflective of the energetic cost of the atomic arrangement. This corrective term is only

7The inclusion of this tail correction causes the total pairwise energy to converge much more rapidly,
enabling smaller values of the cutoff radius.
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important for distorted structures like NiAs, where it is large and negative. For ideal atomic

arrangements, the actual and effective distances are equal, and thus the correction term is

zero.

Using the calculation outlined above, we can calculate a model energy compression

curve for any chosen set of pair potential parameters re, ED, and ∆r∗ (where α =
√

2

is fixed in this case to avoid overfitting). Since each parameter represents a scale factor

that could potentially vary over orders of magnitude and is constrained to be positive, we

use log re, logED and log ∆r∗ as our fitting parameters. Each compression curve is first

fit individually. Since we seek a model that merely captures the general behavior of coor-

dinated cations, it is not to important assign error bars to each measurement as we know

that inadequacies of the model, not errors in the DFT data, will dominate the residuals.

Therefore we apply the standard method of unweighted least-squares regression. In this

case, the goodness of fit is described in terms of the explained fraction of the variance

or R2 = 1 − Var(Eresid)/Var(Edata), with a value of 1 corresponding to a “perfect” fit.

After fitting each curve individually, we construct a global model that enforces smooth

dependence on coordination by asserting that each potential parameters is described by a

low-order polynomial in coordination number. To get an initial guess to the final global

model, we fit the individual best-fit parameters with a quadratic, after which the entire col-

lection of energy-volume curves are fit jointly. The final results of this global fit are shown

in Figures 4.8 and 4.9. As seen in Figure 4.8, the general quality of the fit reasonably

good with R2 = 0.986. The largest residuals belong to the two highly distorted structures,

NiAs and hMgO, where the corrective term given by Equation 4.16 is able to account for
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Figure 4.8: The first-principles energy-volume curves for the six polymorphs of MgO
(Joshi et al., 2012), are plotted together with the results of the global fit for the coordi-
nated pair potentials. This fit assumed quadratic dependence of the three Morse potential
scale parameters on coordination number, and kept the shape parameter fixed to α =

√
2,

the value corresponding to the standard Morse potential. Thus, using 9 free parameters, we
obtain a good fit to the data with a goodness of fit (explained fraction of the variance) of
R2 = 0.986. Residuals are higher for more distorted structures, like NiAs and hMgO, as
expected. The inset shows the smooth dependence of the oxygen bond–length scale ratio
on coordination number, and is fit with a quadratic. This dependence is only important as
a higher order correction to the free energy, in terms of the bond-angle contribution.
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Figure 4.9: The best-fit trends for the pair potential scale parameters are plotted against
coordination number. These trends correspond to the global best fit, shown in Figure 4.8.
Panel (a) shows the variation of the equilibrium radius, (b) shows the energy well depth,
and (c) shows the width of the energy well. Also plotted in panel (a) is the cation separation
distances for each crystal structure at ambient pressure. The relationship between them and
the equilibrium radius can plainly be seen, where the equilibrium radii are approximately
given by scaling up the cation separation distance.

much, but not all, of the distortion effect. Also shown in the inset of Figure 4.8, is the

systematic relationship between coordination number and the oxygen bond length in terms

of the ratio of bond length to unit cell parameter, where acell = V 1/3. This nearly linear

trend reflects the ability to more efficiently pack space with higher coordination numbers.

Approximate values for the oxygen bond length, given by the quadratic fit shown in Figure

4.8, are needed for evaluating the internal degrees of freedom term to the free energy, which

reflects the added internal states of each hard sphere caused by the motions of the oxygens.
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The polynomials corresponding to the global best fit are shown in Figure 4.9. In panel

a, the systematic decrease in the equilibrium radius with increasing coordination is plainly

seen. Also plotted are the effective nearest-neighbor cation distances for each structure at

ambient pressure. It is unsurprising that the equilibrium distance is related to the actually

observed separation distances, though they are larger by roughly 20%, reflecting the con-

straints that periodicity places on the atomic positions. Panels b and c show the variation

of the energy well depth and width with coordination number. To visualize what these

polynomials mean, Figure 4.10 shows the pair potential energy wells calculated for a range

of coordination numbers. The systematic changes in the pair potential parameters has the

effect of shifting the energy wells toward smaller radii with increasing coordination. The

depths of the wells also vary, causing six-coordinated pairs to have the lowest equilibrium

energy, related to the stability of the 6-coordinated periclase structure. From this figure,

we can see that the lowest energy curve at each separation distance shifts from low to high

coordination as the separation distance decreases. It is primarily this trend that induces the

gradual evolution of coordination number in oxide liquids with increasing compression.

4.3.4 Determining Liquid Properties using CHASM

With the coordination-dependent pair potentials in hand, we are now ready to apply the

CHASM to determine the average liquid structure and thermodynamics. In this section,

we demonstrate how to use the free energy minimization framework, described in Section

4.3.2, to calculate the thermodynamic properties of oxide liquids, specifically applying

them to the MgO system.
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Figure 4.10: Results from the pair potential global fit, showing the energy well correspond-
ing to each fractional coordination number along a continuum between 3 and 10. The inset
figure shows a zoomed view of the minimum, which occurs for a coordination number near
6.
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We begin by thinking of a complex coordinated liquid as being composed of an ideal

mixture of liquids different oxygen coordination states. While this model neglects the in-

teractions between different coordination states, which can play an important role in both

the energy and entropy of the liquid, it represents a first order approximation to the liquid’s

properties. The variational method for hard spheres dictates that for a simple single compo-

nent liquid, the correct value for the hard sphere size is simply the one that minimizes the

free energy, represented by the sum of terms in Equation 4.6. The basic meaning of each

term is described in Section 4.3.2 and the details of the calculation are given in the Ap-

pendix. The most important term to recall at this point is the structural energy perturbation

term, which approximates the configurational internal energy using pair potentials. In the

previous section, we developed a simple polynomial description of the pair potential terms

as a function of coordination number, as shown in Figure 4.8. Using that model description,

we obtain the pair potential parameters describing a range of coordination states, as shown

in Fig. 4.10, for use in calculating the total free energy. It is important that coordination

spectrum is sampled with sufficiently high resolution to adequately represent the continu-

ous nature of coordination number for liquids. A sampling frequency of 0.25 coordination

number is used in this study and deemed accurate based on the energetic differences be-

tween adjacent states as compared to kT .

At this point, we treat the total free energy function as a black box, which due to its

primary reliance on analytic expressions, provides rapid function evaluations (each lasting

only a fraction of a second). To determine the hard sphere size for each fixed coordination

liquid, it is simply a matter of using standard function minimization routines8. At a range of

8The code developed in this investigation is implemented in MATLAB, and thus uses the library functions
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sample volumes, the appropriate hard sphere size is thus determined for each coordination

state along with the associated liquid free energy. The resulting set of free energy curves

for the sampled coordination states of MgO are shown in Figure 4.11. Focusing on indi-

vidual curves, each color-coded by their coordination state, we can see the overall trend

that increasing coordination state simultaneously increases the zero-pressure free energy

(shifting it upward), decreases the zero-pressure volume (shifting it left), and decreases the

typical bulk modulus (reducing the curvature). This results in the expected behavior that

the lowest energy coordination state changes gradually from low to high coordination as the

liquid is compressed. Also shown in the inset of the same figure is the variation of the de-

termined hard sphere diameters with compression. While this is an internal model variable

that does not provide direct physical insight, we show it here to note that over much of the

high compression region, the hard sphere sizes are nearly linear in log-volume. This sup-

ports the empirical deformability correction imposed by Jing and Karato (2011) to roughly

account for compression effects. Unfortunately, there is non-negligible curvature at low

pressures, and the shift of coordination states with compression will also induce added cur-

vature. Nevertheless, this indicates that such a correction is not unreasonable for extending

the applicability of the standard hard sphere model to slightly higher pressures.

After determining the compression behavior of independent coordination states, we

obtain a rough first-order approximation of the liquid by treating each coordination as a

quasi-independent state. Thinking of them as a set of non-interacting states that range

in energy, Boltzmann’s constants can be used to estimate the population distribution that

minimizes the free energy: pi ∝ exp(−Fi), where Fi is the free energy and pi is the pop-

fminunc and fminbnd, though any multidimensional nonlinear minimization routine should work.
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Figure 4.11: The free energy compression curves for a set of hypothetical MgO liquids
each composed of a single fixed coordination number. An approximate set of coordination
populations can be determined using Boltzmann factors at each volume. Thus, we can
see that coordination state with the minimum free energy at a particular volume should lie
near the peak of the coordination population distribution. The inset shows the variation of
hard sphere sizes with increasing log-volume. The near linearity of these curves provides
support for the empirical hard sphere deformability correction used in Jing and Karato
(2011).
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ulation of the ith coordination state. This results in a population distribution that is a good

initial guess for the true distribution, which accounts for interactions between the differ-

ently coordinated hard spheres. To enable the efficient calculation of the global free energy

minimum, we parameterize the variations in population and hard sphere size, relying on

low-order polynomials to capture smooth trends with a simple functional form. The hard

sphere diameters are relatively straightforward, with a polynomial dependence of the di-

ameter on log-coordination number capable of representing the observed variations with

only a few degrees of freedom (3 to 5). The population distributions are somewhat trickier,

adopting typical Gaussian-like peaks. To retain the flexibility afforded by polynomials, we

model the log-population values as having polynomial dependence on coordination num-

ber; the choice of a second-order polynomial would restrict the model to a standard normal

distribution (or Gaussian peak), which is not adequate to describe the observed shapes. We

therefore choose a fourth-order polynomial, which is sufficient to capture the shapes of the

initial population distributions over a range of volumes.9

Together, these parameterizations vastly reduce the size of phase space that must be

searched to minimize the free energy, reducing the number of variables from over 50 to

between 5 to 10, depending on the chosen polynomial degree. Given this simple parame-

terization, it is only a matter of using a standard minimization algorithm to locate the set

of hard sphere size and population parameters that yields the lowest total free energies. We

found that the best general procedure is to start by evaluating the hard sphere sizes (and free

9It should be mentioned that we restrict allowable solutions to those that result in only a single peak in the
population distribution over the modeled coordination number range.. Therefore, only parameter combina-
tions that result in monotonic increasing and decreasing behavior to the left and right of the peak are allowed.
This condition is crucial to prevent unphysical minor peaks from appearing at either very high or very low
coordination number, which occur as an artifact of trying to match the shape of the primary peak.
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energies) individually for each coordination state. From there, the Boltzmann distribution

is used to obtain a population estimate, which is represented using the polynomial formal-

ism described above. Alternating between the two groups of parameters, fitting one set

while the other remains fixed, appears to yield the most rapid convergence. In practice, we

find that only a single additional iteration step is generally necessary to reach convergence

for the free energy values. While the total free energy convergence fairly rapidly, after only

tens to hundreds of function evaluations, the details of the populations distributions them-

selves can take more time, as seen by the fluctuations in the population curves in Figure

4.12.

Using the procedure described above, we calculate a set of isothermal compression

curves over a range of temperatures and volumes. As stressed throughout the development

of CHASM, obtaining the stable minimum free energy configuration is quite rapid requir-

ing only a few minutes of time on a modern processor. Furthermore, each state point is

entirely independent of the others, and thus the code can be run simultaneously on multiple

processors if fine sampling of large compositional spaces is required. From the output of a

set of equilibrium calculations, we can immediately examine the evolution of coordination

number without any further processing. Figure 4.12 shows the evolution of the coordination

state populations as a function of compression for MgO liquid at 3000K. In the main panel

of the figure, the calculated populations of each coordination state are colored according to

their relative probability values. From this figure, we can see the smooth evolution of the

average coordination number with compression from values near 4 at 30 Å3 up to roughly

7.5 at 10 Å3, which is in strong agreement with the findings of the variation of average
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coordination number with compression presented by Karki et al. (2006). This plot also

indicates the width of the distribution over coordinations states at a given volume. That

width responds directly to temperature in a Boltzmann-like fashion, populating a wider

range of more energetically costly states at higher temperatures. The inset to the same

figure displays the same information in a different way, now showing the evolution of the

occupation of each coordination state as a function of compression. For viewing purposes,

we have binned the fractional coordination states together into integer width bins. When

viewed in this way, we can highlight the contribution of each coordination state to the over-

all changing structure of the liquid. While Karki et al. (2006) does not show any plots

like this tracking the distribution of coordination states, a later paper on silica (Karki et al.,

2007) does show the evolving populations of each coordination number, which shows the

same qualitative behaviors as seen here, and are likely to be rather similar since the average

coordination number are in agreement.

Finally, we can obtain the equation of state curves for a set of isotherms calculated

using CHASM and compare with first-principles results. In Figure 4.13, we show the

derived pressure-volume curves for a set of MgO liquid isotherms. The direct output of the

CHASM are a set of free energy curves, which are generally of less interest to most people.

In order to convert each curve into a pressure volume curve, we use the same strategy as that

used by the FPMD practitioners (see, e.g., de Koker and Stixrude, 2009), which is simply

to fit a finite strain equation of state to each isothermal curve. The finite strain model is also

known as the Birch-Murnaghan equation of state. We find that a standard third-order model,

with 4 parameters, V0, F0, K0, and K ′0 is perfectly adequate to represent the free energy
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Figure 4.12: Evolution of the coordination populations for MgO liquid at 3000K. The main
figure shows probability distribution, indicated by the darkness of the colormap, amongst
the coordination states at each volume. The general trend of increasing coordination num-
ber with compression can be seen, as can a slight reduction in the width of the distribution
with increasing compression. The inset figure shows binned coordination populations as
a function of volume, showing dominantly 4-coordinated Mg transforming smoothly to
dominantly 7 and 8-coordinated Mg at the highest pressures.
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curves. Using this fit to each isotherm, it is then simple to calculate the pressure for a range

of volumes, as shown in Figure 4.13. Also shown in the inset of the same figure is plot

of the free energy curves against a normalized volume, VX , which is taken to be the zero-

pressure volume at 3000 K. We find a 3000K volume scale of VX = 25.4Å3, which falls

short of the first-principles result of VX = 27.4Å3 (Karki et al., 2006). In all likelihood,

the fact that we are underestimating the zero-pressure volume is tied to some inadequacies

in the internal degrees of freedom correction, probably related to the as-yet unaccounted

for freedom of varying oxygen bond length. Nevertheless, if we plot the scaled free energy

curves, we can see that we are doing quite an excellent job of matching the behavior in the

first-principles calculations. This is our strongest indicator that the CHASM formalism is

capable of accurately capturing the behavior of oxide melts.

4.4 Conclusions

We have developed a new simplified model to model the structure and thermodynamics

of oxide and silicate melts. The Coordinated HArd Sphere Model (CHASM) is based on

an extension to the standard hard sphere mixture model which accounts for the range of

local oxygen coordination state about each cation, which appears to be the key to com-

pression mechanisms in oxide melts. In this formalism, a coordinated hard sphere is taken

to represent a single cation surrounded by a bonded shell of coordinated oxygens, where

the coordination number represents the local connectivity and bonding relations between

each cation and its neighbors. The CHASM is based on the principle of free energy min-

imization, using it to determine sizes and populations of the hard sphere oxides. In this
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Figure 4.13: Resulting equation of state curves for MgO liquid over a range of tempera-
tures. The curves are obtained by fitting third-order Birch-Murnaghan equations to the free
energy curves determined by CHASM, from which the pressure curves are readily deter-
mined. The inset figure shows the same curves replotted against a relative volume, where
the volume scale is given by the 3000K zero-pressure volume. Also plotted are the first-
principles results from Karki et al. (2006), which our calculation is in strong agreement
with, except for the value of our volume scale, which is 25.4 Å3 as opposed to 27.4 Å3

from Karki et al. (2006).
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way the evolution of coordination populations is a direct prediction of the model, where

the coordination states are chosen so as to minimize the free energy.

In addition to representing coordination states, the CHASM also account for internal

energy variations that depend on the average structure of the liquid. This is incorporated

through the use of coordinated cation pair potentials. The pair potentials actually represent

nearly the only input to the model that is unique to the liquid being calculated—all remain-

ing differences are derived from these all important potentials. We also demonstrate for the

first-ever CHASM represented liquid, MgO melt, how the pair potentials can be obtained

by training their values on the known energy-volume curves for a variety of solid structures,

which discretely sample periodic examples from generally disordered structural continuum

that is available to the liquid. By obtaining all of the input variables for the CHASM from

solid structures, we have therefore generated a model that is fully predictive for liquid

structure and thermodynamics, not requiring any input from liquid measurements (though

it will be possible, but not necessary, to incorporate information from liquid experiments to

adjust the pair potentials and improve the model).

Finally we demonstrate the use of the CHASM to calculate equations of state using

MgO as an example. By design, the CHASM relies entirely on analytic function evalua-

tions and simple 1D integrals, and thus computation remains rapid. The CHASM can obtain

a converged calculation for a single state point (with a particular volume, temperature, and

composition) in roughly one to a few minutes on a standard desktop processor. We show

how the resulting prediction of coordination state evolution compares favorably with the

orders of magnitude more time-consuming first-principles calculations. We also produce a
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set of predicted equation of state isotherms which match the first-principles results nearly

perfectly after accounting for a shift in the zero-pressure volume scale.

In future work, we plan to apply this framework to the silica system, and then use it

to explore thermodynamic properties along the MgO–SiO2 binary. Given that we have a

method for describing the free energy surface of the liquid, we should also be able to look

into the possibilities of making melting curve calculations, when combined with models for

the solid free energies. Once multiple oxide components are introduced to the calculation,

it may be important to improve the method of training pair potentials to allow for directly

fitting the intermediate composition structures, rather than relying solely on the endmember

description. Additional work should be put in to improving the internal degrees of freedom

term in the free energy. There are also gains that can be made in implementation, poten-

tially decreasing calculation times by a further factor of 3 to 10. Finally, we expect in the

near future to begin the challenging process of incorporating FeO as a component, as it is

much more complex than the other oxides, but crucial to our understanding of early Earth

evolution. With its multiple internal spin state that can drastically effect local volumes,

the Fe cations will have an added dimension to the available states, populating a range of

oxygen coordination numbers while simultaneously populating a few discrete spin states.
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— Appendices —

4.A Generalized Hard Sphere Mixture

The complete set of expressions for the equation of state of a hard sphere mixture is pre-

sented in Mansoori et al. (1971). For completeness, we include these expressions here,

which represent the configurational free energy contribution ∆FHS to the total free energy.

We start with the expression for the packing fraction:

ηi ≡
VHS,i

V
= xi

4π

3V
R3

HS,i where η =
∑
i

ηi (4.17)

The compressibility Z is expressed as a function of the packing fraction:

Z =
PV

kT
≈ [1 + η + η2 − 3η(y1 + y2η)− η3y3](1− η)−3 (4.18)

where the needed additional relations are:

y1 =
∑
i=1

∑
j>i

∆ij(Ri +Rj)(RiRj)
−1/2

y2 =
∑
i=1

∑
j>i

∆ij

N∑
k=1

(
ηk
η

)
(RiRj)

1/2

Rk

y3 =

[∑
i=1

(
ηi
η

)2/3

x
1/3
i

]3

∆ij =

[
(ηiηj)

1
2

η

] [
(Ri −Rj)

2

RiRj

]
(xixj)

1
2

(4.19)

These are all combined to express the contribution to the free energy and entropy of the
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liquid:

∆FHS
kT

=
Fid
kT
− 3

2
(1− y1 + y2 + y3) + (3y2 + 2y3)(1− η)−1+

3

2
(1− y1 − y2 −

1

3
y3)(1− η)−2 + (y3 − 1) log(1− η)

(4.20)

∆SHS = k logZ − (FHS − Fid)
T

(4.21)

4.B Hard Spheres with Structural Perturbation

The variational approach to hard spheres allows the incorporation of a structural perturba-

tion into the free energy expression, which captures the dependence of the internal energy

on the structure of the liquid. This perturbation method was developed by Mansoori and

Canfield (1969), and the resulting expressions are shown here.

We begin by approximating the structural energy contribution using the radial distribu-

tion function g(r), together with pair potentials u(r):

F ≈ FHS + Fstruc = FHS +

∫ ∞
0

P (r)u(r)dr

≈ FHS + 4πρ

∫ ∞
Rmin

r2u(r)g(r)dr

(4.22)

Mansoori and Canfield (1969) showed that the above integral for the structural pertur-

bation energy Estruc can be transformed using a Laplace transformation, yielding:

F ≈ FHS + 4πρR3
HS

∫ ∞
0

U(s)G(s)ds (4.23)



162

It turns out that while expressing the radial distribution function directly is quite challeng-

ing, relatively simple analytic approximations exist for its Laplace transform (which is an

exponential integral transform similar to a Fourier transform, but one where the exponen-

tial weighting function is real valued and thus imposes a decaying rather than oscillatory

envelope). We can understand this on an intuitive level, since the radial distribution func-

tion is a function that inherently decays to an asymptotic constant value of one. Therefore,

by expressing the RDF in terms of its Laplace transform, it is ensured that the RDF will

necessarily possess the required asymptotic behavior for large separation distances.

G(s) is the Laplace transform of the hard sphere radial distribution function and U(s)

is the inverse Laplace transform of the pairwise potential energy function, defined by:

G(s) =

∫ ∞
1

exp(−sx)g0(x)xdx (4.24)

xu(x) =

∫ ∞
0

exp(−sx)U(s)ds (4.25)

These expression forG(s) has a simple functional form given by Percus-Yevick theory, and

can be found in any standard text on the hard sphere model. (One easily readable account

is given by Yuste et al. (1998). The inverse Laplace transform is a standard integral, and

thus we can obtain the expression for an exponential, appropriate for the generalized Morse

potential, using simple integral tables or Mathematica.
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4.C Representing Variable Coordination

In order to carry out the structure perturbation calculation, we must have an expression for

the pair potential between every possible pair of particles. This is not generally practical

because the solid structures generally sample only a single coordination state, and thus

do not constrain the energetic cost of two different coordination states interacting. To

handle this challenge, the empirical molecular dynamics community long ago developed

the practice of obtaining rules for “mixing” the pair potentials of two different particles

to estimate an effective cross-pair-potential. The most accurate of the available mixing

rules are given by Kong (1973), and we summarize the results of the mixing rules below,

considering interactions between particles of type 1 and 2:

attractive mixing:
1

σ12
A

=
1

σ11
A

+
1

σ22
A

, ε12
A =

√
ε11
A ε

22
A

repulsive mixing: σ12
R =

1

2

(
σ11
R + σ22

R

)
,

(
ε12
R

σ12
R

)σ12
R

=

√(
ε11
R

σ11
R

)σ11
R
(
ε22
R

σ22
R

)σ22
R

simple mixing terms: σ−1
A , log(εA), σR, σR log(εR/σR)

(4.26)

the simple mixing terms therefore represent the quantities that can be mixed through simple

arithmetic means.

4.D Free Energy Contribution of Bond-Angle Deviations

The free energy contribution due to the freedom of bond-angle is approximately determined

using elementary quantum mechanics. We think of the oxygens as being constrained to lie
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on the surface of a sphere whose radius is the bond length. The oxygens are not allowed to

freely wander along the full surface of the sphere, but are rather confined to a portion of it

defined by the average locations of the neighboring bonded oxygens. Thus we can imagine

each oxygen as being confined to portion of the bonding sphere whose area is just the total

area divided by the coordination number:

Aoxy =
4πl2

Ncn

= 2πl2(1− cosφoxy) (4.27)

Neglecting the detailed shape of the confinement area, we can approximate this area on the

sphere as a spherical cap, whose opening angle is φoxy, given above.

When considering the true confinement area, we must recognize that the neighboring

bonded oxygens will avoid overlapping one another which effectively reduces the size of

the confinement area. The expression for this is given by:

φoxy = cos−1(1− 2/Ncn) and ∆φNN = sin−1(roxy/l) (4.28)

Thus the adjusted confinement area for each bonded oxygen is just:

Aconf = 2πl2(1− cosφconf) and φconf = φoxy −∆φNN (4.29)

Now that we have an estimate of the confinement region, we can calculate the free en-

ergy contribution by approximating this as a particle in a two-dimensional box. Neglecting
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the effect of the curved surface, the 2D single particle in a box expression is:

F 1
bond Ang = −kT log

(
mkTAconf

2π~2

)
(4.30)

where the value for the confinement area is given above. The total free energy is given by

the sum over each particle (coordinated oxygen), but we must also account for the fact that

the oxygens are shared between neighboring cations. Therefore, to avoid over-counting, we

also multiply by the factor f = noxy/Ncn, yielding the final expression for the bond-angle

freedom:

Fbond Ang = fNcnF
1
bond Ang = noxyF

1
bond Ang (4.31)
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