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Abstract

Ultralow-velocity zones (ULVZs) are small structures at the base of the mantle characterized by

sound velocities up to 30% lower than those of surrounding mantle. In this thesis, we propose

that iron-rich (Mg,Fe)O plays a key role in the observed sound velocities, and argue that chemically

distinct, iron-enriched structures are consistent with both the low sound velocities and the measured

shapes of ULVZs.

We have determined the room temperature Debye sound velocity (VD) of (Mg0.16
57Fe0.84)O up

to 121 GPa using nuclear resonant inelastic X-ray scattering. Using an estimate of the equation

of state, the seismically relevant compressional (VP ) and shear (VS) wave velocities were calculated

from the VDs. We have also determined the room temperature VD at multiple pressure points of

(Mg0.06
57Fe0.94)O using nuclear resonant inelastic X-ray scattering and in-situ X-ray diffraction up

to 80 GPa. The effect of the electronic environment of the iron sites on the velocities of both of

these studies were tracked in-situ using synchrotron Mössbauer spectroscopy. We also present the

pressure-volume-temperature equation of state of (Mg0.06
57Fe0.94)O determined up to pressures of

120 GPa and temperatures of 2000 K. We combine these studies with a simple Voigt-Reuss-Hill

mixing model to predict the properties of a solid ULVZ and show that a small amount of iron-rich

(Mg,Fe)O can greatly reduce the average sound velocity of an aggregate assemblage. When combined

with a geodynamic model of a solid ULVZ (Bower et al., 2011), we can directly correlate inferred

sound velocities to mineralogy and predicted ULVZ shapes. Our combined geodynamic and mineral

physics model of a solid ULVZ can be used to explore the relationship between the observed sound

velocities and mineralogy of ULVZs with added insight into ULVZ morphology.
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3.7 In-situ synchrotron Mössbauer spectra of (Mg0.06Fe0.94)O at 300 K . . . . . . . . . . . 32



xi

3.8 Raw NRIXS spectra of (Mg0.06Fe0.94)O at 300 K . . . . . . . . . . . . . . . . . . . . . 33

3.9 PDOSs of (Mg0.06Fe0.94)O at 300 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.10 Debye velocity determination using psvl . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.11 Debye velocity (VD) of (Mg0.06Fe0.94)O at 300 K . . . . . . . . . . . . . . . . . . . . . 37

3.12 VD of (Mg0.06Fe0.94)O compared to FeO and (Mg0.65Fe0.35)O at 300 K, as a function

of density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.13 Compressional (VP ) and shear (VS) wave velocities of (Mg0.06Fe0.94)O at 300 K . . . . 39

4.1 Example XRD spectra at 85 GPa showing peak identifications for B2-NaCl, hcp-Fe,

Ne, and (Mg0.06Fe0.94)O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Phase identification of (Mg0.06Fe0.94)O in P–T space. . . . . . . . . . . . . . . . . . . 48

4.3 P -V -T data and isotherms of B1-structured (Mg0.06Fe0.94)O in the buffered experiment 50

4.4 P -V -T data and isotherms of B1-structured (Mg0.06Fe0.94)O in the unbuffered experi-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Overlay of data and equations of state of buffered and unbuffered (Mg0.06Fe0.94)O . . 53

4.6 Comparison of volume measurements and equations of state of (Mg0.06Fe0.94)O to B1-

FeO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 Thermal expansion of buffered (Mg0.06Fe0.94)O at 1900 K as a function of pressure,

compared to FeO, (Mg0.64Fe0.36)O and MgO. . . . . . . . . . . . . . . . . . . . . . . . 55

4.8 Evolution of d-spacings of (Mg0.06Fe0.94)O as a function of pressure . . . . . . . . . . 57

4.9 Evolution of c/a ratios of rhombohedral (Mg0.06Fe0.94)O as a function of pressure at

300 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.10 Pressure-volume data of quenched, rhombohedral (Mg0.06Fe0.94)O at 300 K . . . . . . 59

5.1 Debye velocity as a function of density of (Mg.16Fe.84)O, (Mg.06Fe.94)O, and FeO . . 62

5.2 Mixing models: VP , VS , and density of (Mg.16Fe.84)O+PREM . . . . . . . . . . . . . 64

5.3 Mixing models: VP , VS , and density of (Mg.16Fe.84)O+Pv . . . . . . . . . . . . . . . 66

5.4 Dynamic model interpretation of mixing models at 4000 K . . . . . . . . . . . . . . . 68



xii

A.1 Secondary electron image of (Mg0.06Fe0.94)O . . . . . . . . . . . . . . . . . . . . . . . 83

A.2 NRIXS spectra of FeO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.3 PDOS of FeO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



xiii

List of Tables

1.1 Summary of experiments presented in this thesis . . . . . . . . . . . . . . . . . . . . . 5

2.1 Summary of pressure, density, Debye sound velocity (VD), and compressional (VP ) and

shear (VS) wave speeds of (Mg.16Fe.84)O. . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Details of the (Mg0.06Fe0.94)O NRIXS experiment . . . . . . . . . . . . . . . . . . . . 26

3.2 XRD results of the (Mg0.06Fe0.94)O SMS experiment . . . . . . . . . . . . . . . . . . . 27

3.3 Equations of state fit to the (Mg0.06Fe0.94)O dataset. . . . . . . . . . . . . . . . . . . 29

3.4 Debye Velocity (VD) of (Mg0.06Fe0.94)O as a function of in-situ density . . . . . . . . 36

3.5 Summary of sound velocities of (Mg0.06Fe0.94)O as a function of pressure . . . . . . . 40

4.1 Pressure-volume-temperature data for the buffered experiment . . . . . . . . . . . . . 45

4.2 Pressure-volume-temperature data for the unbuffered experiment . . . . . . . . . . . . 46

4.3 3rd-order Birch-Murnaghan equation of state parameters for the buffered dataset using

hcp-Fe as a pressure marker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 3rd-order Birch-Murnahan equation of state parameters the both the buffered and

unbuffered dataset using B2-NaCl as a pressure marker . . . . . . . . . . . . . . . . . 50

4.5 Equation of state parameters using B2-NaCl as a pressure marker, with K0T fixed to

180 GPa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Pressure-volume data for the buffered experiment at 300 K. . . . . . . . . . . . . . . . 60

5.1 Model parameters for mixing model “Mw+PREM” . . . . . . . . . . . . . . . . . . . 64

5.2 Model parameters for mixing model “Mw+Pv” . . . . . . . . . . . . . . . . . . . . . . 66



xiv

5.3 Model parameters for mixing model “Mw+PREM” and “Mw+Pv” at 4000 K . . . . . 68

A.1 Thermodynamic parameters calculated directly from the PDOS of (Mg0.16Fe0.84)O. . 84

A.2 Thermodynamic parameters calculated directly from the PDOS of (Mg0.06Fe0.94)O . . 85

A.3 Summary of FeO density and Debye Velocities . . . . . . . . . . . . . . . . . . . . . . 86



1



2

Chapter 1

Introduction

Study of the interior of the earth is crucial to understanding both the processes by which a planet

was formed and the future impact of deep interior dynamics.

Much has been learned from seismic studies, probing the propagation of sound waves through

the earth. Seismic reflectors deep in the earth such as those located at 410, 660 and 2900 km below

the earth’s surface have been interpreted as chemical boundaries or phase changes, supported by

experimental studies of model compositions of primitive mantle material. The major discontinuities

in the mantle are believed to correspond to phase changes, where olivine transforms to the high

pressure polymorph wadsleyite at the 410 km discontinuity, then breaks down to form ferropericlase

and perovskite at the 660 discontinuity (e.g. Irifune, 1994, Figure 1.1).

The mantle layer between the core-mantle boundary and the D” discontinuity spans a depth

range in Earth’s lower mantle from up to 350 km above the liquid outer core to the outer core itself,

corresponding to a proposed temperature range of 3300-4300 K and 115 to 135 GPa. Intermittent

detection of this discontinuity suggests that the core-mantle boundary (CMB) layer is composition-

ally distinct and/or represents a different phase assemblage (e.g. Lay et al., 2008; Sidorin et al.,

1999).

1.1 Ultralow-Velocity Zones

At the base of the D” layer, 5-20 km thick patches have been observed in which the VP and VS

sound velocities are reduced by 5-10% and 10-30% (Thorne and Garnero, 2004). Reduced seismic
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Figure 1.1: Modal mineralogy of the earth’s mantle, assuming a pyrolite mantle. The upper man-
tle (0-440 km below the earth’s surface) is mostly comprised of olivine garnet, and pyroxenes
(Mg,Fe)2Si2O6. The lower mantle (660 to 2900 km below the earth’s surface) is comprised of Ca-
and (Mg,Fe)- silicate perovskite and (Mg,Fe)O. Highlighted in blue is ferropericlase, the Fe-poor
member of the MgO-FeO solid solution. Iron-rich members are named magnesiowüstite. Figure is
adapted from (Frost et al., 2004)

velocities in this ultra-low velocity zone, or ULVZ, were first attributed to partial melting due to

drastic velocity reductions, sharp upper boundaries, and a strong correlation with hot spots on the

surface (e.g. Williams and Garnero, 1996; Williams et al., 1998; Lay et al., 2004). A sound velocity

decrement ratio ∂VP /∂VS of 1:3 has been shown to be consistent with partial melt (Berryman,

2000).

Numerous seismic studies of the core-mantle boundary indicate that ULVZ distribution is patchy

and sometimes associated with edges or the interior of large low shear velocity provinces (McNamara

et al., 2010). Fine-scale one-dimensional structure of some ULVZs have been probed, finding a steep

positive velocity gradient with depth, implying complex interior morphology (Rost et al., 2006).

Multiple concave-down ULVZs clustered together have been invoked to explain PKP precursors in
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a two-dimensional study, giving the first seismic insight into ULVZ shape (Wen and Helmberger ,

1998).

Partial melting of ambient mantle would require the fortuitous intersection of the mantle solidus

with the base of the core-mantle boundary. Recent work into the equations of state of fayalite

Fe2SiO4 liquid and subsequent analysis shows that partial melting of chondrite or peridotite liquid

is unlikely to be gravitationally stable at the base of the mantle (Thomas et al., 2012). It has been

proposed that enriched residues of a crystallizing mantle could be depleted in Si and enriched in

FeO enough to form ULVZs (Labrosse et al., 2007; Nomura et al., 2011).

Dynamic studies exploring the stability of partially-molten ULVZs show that the amounts of

liquid required to reduce the velocities of an assemblage would percolate and pool at the base of

the mantle rather than remain suspended in a ULVZ (Hernlund and Tackley , 2007). Partial melt

can be maintained km’s above the CMB if the ULVZ is stirred (Hernlund and Jellinek , 2010).

Further studies of melt geometry explore mechanisms to retain greater melt fraction (Wimert and

Hier-Majumder , 2012; Hier-Majumder and Abbott , 2010, e.g.). In the end, a seemingly simple

explanation is complicated by large unknowns in grain boundary properties, melt viscosity, and

melt sound velocities.

Solid ULVZs have also been considered in the literature, in the form of FeO/FeSi alloy (Manga

and Jeanloz , 1996) or iron-enriched post-perovskite (Mao et al., 2006), but are no longer considered

stable in the hot core-mantle boundary regions in which ULVZs are found. In this thesis, we introduce

and explore another alternative: iron-rich (Mg,Fe)O.

The partitioning behavior of iron between perovskite(Pv), post-perovskite(PPv), and (Mg,Fe)O

varies widely based on experimental conditions. Recently, it has been suggested that iron preferen-

tially partitions in (Mg,Fe)O in the presence of Pv and PPv based on analyses of quenched phase

assemblages from pressures and temperatures of 100 GPa and ∼1800 K (Auzende et al., 2008; Sin-

myo et al., 2008). An enhanced iron content and subsequent uptake by (Mg,Fe)O could result in a

composition much more iron-rich than previously considered. Therefore, it is of interest to study the

elasticity of iron-rich (Mg,Fe)O at core-mantle boundary conditions, as it may shed light on seismic
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observations in this region.

1.2 Thesis Overview

This thesis is divided into three studies of iron-rich oxide, the experiments for which are summarized

in Table 1.1. All of these studies are united by the use of X-ray scattering techniques using syn-

chrotron radiation to measure the elasticity of iron-rich (Mg,Fe)O. We synthesized our own samples

for this study, and describe the samples in Section A.1. Using a diamond anvil cell to create pres-

sures approaching those of the core-mantle boundary and occasionally in-situ laser heating to create

temperatures approaching those of the earth’s interior, we measured material properties relevant to

the study of the earth’s mantle, namely sound velocities and densities.

Chapter 2 is a study of (Mg.16Fe.84)O using nuclear resonant inelastic X-Ray scattering (NRIXS)

and synchrotron Mössbauer spectroscopy (SMS). Chapter 3 measured the sound velocities and mag-

netic state of (Mg.06Fe.94)O using the methods described in Chapter 2 with a few key differences,

including the use of in-situ X-ray diffraction to measure lattice spacing of the sample and map it

directly to a combined XRD/SMS study of the same material. Chapter 4 describes the P -V -T equa-

tion of state of (Mg.06Fe.94)O. Finally, we close in Chapter 5 with a mixing model that combines

the results of our work with dynamic calculations of a solid ULVZ.

Chapter beamlines beamtime dates information collected P -T conditions samples
2 APS 3-ID-B 10/08, 7/09 NRIXS, in-situ SMS 300 K, 0-121 GPa Mw84

ALS 12.2.2 4/09 XRD 300 K, 0 GPa Mw84
3 APS 3-ID-B 8/11, 10/12 NRIXS, in-situ SMS 300 K, 0-81 GPa Mw94

APS 3-ID-B 2/13 SMS with in-situ XRD 300 K, 8-52 GPa Mw94
4 APS 13-ID-D 7/11 XRD 300-1950 K, 32-120 GPa Mw94

APS 13-ID-D 2/12 XRD with Fe buffer 300-1800 K, 30-70 GPa Mw94
A.3 APS 3-ID-B 8/11, 3/12 NRIXS 300 K, 0-100 GPa FeO

ALS 12.2.2 5/11 XRD 300 K, 0 GPa FeO
APS 13-ID-D 2/12 XRD 300 K, 100 GPa FeO

Table 1.1: Summary of experiments presented in this thesis




