PALLADIUM-CATALYZED ASYMMETRIC ALLYLIC ALKYLATION: INSIGHTS, APPLICATION TOWARD CYCLOPENTANOID AND CYCLOHEPTANOID MOLECULES, AND THE TOTAL SYNTHESIS OF SEVERAL DAUCANE SESQUITERPENES

Thesis by

Nathan Bruce Bennett

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2013

(Defended June 7, 2013)

Nathan Bruce Bennett

All Rights Reserved

To my wife, Chanel, and my son, Eli

ACKNOWLEDGEMENTS

Brian frequently refers to the graduate school experience as "a marathon and not a sprint." While this sentiment expresses the exhaustive nature of the effort that necessitates pacing oneself, the metaphor also suggests a reward is achieved upon completion of the task. Ultimately, my graduate experience has been immensely rewarding, and one of the greatest aspects of that is finally seeing my last five years of work condensed into this volume. Gratefully, the "race" that encompasses this pursuit was not run alone and I have many to thank for inspiring, encouraging, and helping me to attain my doctorate.

First, I would like to thank Brian Stoltz for being my advisor. When I was accepted to Caltech, Brian allowed me to begin my research early, before classes started in the fall. This arrangement was made with the understanding that I may ultimately join another lab. I have always been very grateful to him for supporting me as I adjusted to graduate life over that summer, since I know this time was more beneficial for me than for him. Close to the end of my graduate experience, Brian also arranged postgraduate funding for me before my postdoc was set to begin. I really appreciate how he has helped me provide for my family.

In the lab, Brian has granted a fair amount of flexibility on my projects, encouraging me to focus on the problems I found exciting and to even explore reactions outside of my main pursuits. This freedom has allowed me to try a variety of transformations and learn multiple techniques. In these efforts, Brian has provided numerous ideas on how to overcome difficult obstacles, and I quickly learned that the reactions he suggests almost always work and usually helped me get past the problem I was facing. I also enjoyed the time I spent in his office crafting my research into the outline of a paper, working side by side as everything came together.

Brian is also an excellent instructor. I have had the privilege to not only take a class from him, but have also served as his teaching assistant while he lectured the undergraduate organic series. He teaches his courses with great depth and clarity, and I know his students appreciate him.

My committee members have also been very helpful during my time at Caltech. Professor Sarah Reisman began teaching at Caltech at the start of my program, and we incidentally had our sons around the same time. From a number of experiences, I have come to think of Sarah as a friend. She has been especially supportive over the last few months and has served as somewhat of a surrogate advisor while Brian has been away. Sarah has offered a lot of advice on my most recent research, and I am particularly appreciative of her insight into samarium diiodide reductions. Most importantly, I am very grateful for her willingness to have acted as my committee chairman.

Professor Linda Hsieh-Wilson is kind and has provided helpful suggestions at my yearly committee meetings. In my third year meeting, she gave me some of the best advice that I have received while at Caltech with regards to the direction of my project.

Dr. Scott Virgil has an expansive knowledge of chemistry and will find an answer to any question you have. In addition to serving on my committee, Scott has assisted me in the laboratory on numerous occasions. The high-throughput screen that is discussed in Chapter 1 of my thesis would not have been realized without him. I would also like to thank Scott for his help with a difficult hydrogenation I had in my daucane sesquiterpene project. His wife, Silva, has also been extremely kind to my family and me. We had a wonderful time at their home one evening and enjoy seeing her at department and holiday parties. They are warm and generous people that I am so happy to have come to know.

I ambushed Professor Greg Fu to ask him to be the final member of my committee while he was visiting from MIT for a recruiting weekend prior to his move to Caltech. He had never met me before, but did not hesitate to accept. I am grateful for the time he has taken to offer advice on my research, proposals, and a publication we were preparing for submission.

While at Caltech, I have been blessed to work with numerous graduate students and postdocs. When I began my graduate studies, we were located in the Crellin building and my first baymate was Jenn Stockdill. As I was a young and inexperienced graduate student, Jenn taught me a lot of laboratory techniques and helped me set up my first LDA reaction; I have since run many. I credit Jenn for introducing me to "Wait, Wait Don't Tell Me" and Billy Joel, both of which I now listen to frequently. Jenn is currently a professor at Wayne State University and I wish her the best.

With our move to the Schlinger laboratory, I shared a hood with Allen Hong. Allen is a persistent and detail-oriented scientist. He is always positive, even when things are not going as expected. We have worked on several projects together that have resulted in a number of publications; our joint efforts encompass Chapter 2 of my thesis. Allen is now a postdoc at UC Irvine with Prof. Chris Vanderwal. When Brian heard that we would both be moving to Irvine for our postdocs, he jokingly suggested that we find some way to continue our collaborative efforts. I am really grateful for Allen's friendship and for all of the projects we have worked on together. I have had a number of other baymates over the last five years. Dr. Chris Henry taught me a lot about laboratory technique and NMR analysis. He likely looked at every spectra during my first year and helped me figure out coupling constants on several occasions. I am grateful for his friendship in the lab and on the basketball court. Nat Sherden taught me so much about the mechanistic aspects of the Tsuji allylation and Futurama. Max Loewinger is a good friend with an infectious excitement for chemistry. Seojung Han is one of the most diligent chemists I have met. Dr. Wen-Bo (Boger) Liu was a great collaborator on the allylic alkylation research; our joint work is discussed in Chapter 1 of my thesis. I also appreciate all of the things he has proofread for me.

Chris Gilmore and Pam Tadross became great friends to my wife and I. Chris and his hoodmate, Dr. Florian Vogt, kept things lively in our bay. Flo instituted weekly Queen and ABBA nights, and I credit him for my interest in classic music. Between the two, there was always an interesting conversation or podcast coming from their hood. Although not my baymate, Pam was particularly helpful in sculpting my development as a chemist. She read almost everything I wrote before she graduated, and I always appreciated her straightforward comments and insights. She will make an excellent professor one day because she cares about others and works tirelessly to see them succeed. I appreciate how Pam and Chris always talked with my wife at group parties and kept her involved, and how they were so excited for the birth of our son. We are so happy they found each other and got married. It was also great to meet Chris' parents upon their move to Pasadena. They are awesome people, and we've enjoyed visiting with them at their home and various group parties. Thomas Jensen is one of the best examples of an organic chemist I have seen. He set up so many reactions on a daily basis and was extremely diligent at getting things done. I remember one day when his hoodmate thought he had run more reactions than Thomas only to discover Thomas had actually set up a robotic screen that crushed the hoodmate's number. My goal everyday was to strive to be a little more like Thomas.

The research presented in Chapter 1 was performed in conjunction with Doug Duquette. While I wrote the paper, Doug finished collecting the laboratory data we needed. I was really impressed with how quickly he took care of everything and how fast we got that paper out. Doug is a great scientist and I am happy to have worked with him. I am also grateful to Drs. Jimin Kim, Wen-Bo (Boger) Liu, Alex Marziale, and Doug Behenna for contributing to these efforts.

Although not discussed in my thesis, I recently began working with Kelvin Bates on a collaborative project with Professors Paul Wennberg and John Seinfeld where we are making compounds that are hypothesized to exist in the atmosphere. Kelvin had no prior synthesis experience, but he has learned quickly and I know he will do well.

There have been many people in our lab during my time here. In my year, Alex Goldberg, Jonny Gordon, and Boram Hong have been great. Early on, Alex, Jonny, and I played basketball weekly. A number of students who preceded me had good advice and helped in my development including Mike Krout, Kevin Allan, and John Enquist. I know that I have inevitably neglected many that I have interacted with, and I greatly apologize for this. So many have contributed to my graduate experience, and it has been a great pleasure to work with my fellow Stoltz group members.

I must also thank several others for editing my proposals and thesis. Doug Duquette, Christopher Haley, Dr. Alex Marziale, Nick O'Connor, Gloria Sheng, and Ximena De Silva Tavares Bongoll each read one of my proposals. They provided invaluable perspective on the chemistry I proposed and caught all of the mistakes I made. I am also extremely grateful to Jeff Holder, Kelly Kim, Katerina Korch, Dr. Wen-Bo (Boger) Liu, Yiyang Liu, Nick O'Connor, and Beau Pritchett for reading and editing portions of my thesis.

In addition to the awesome students and postdocs at Caltech, we have the highest quality of staff. Agnes Tong is very understanding and really takes the time to listen. She was always willing to work out teaching assignments and other things to accommodate my schedule. Agnes does so much for the department and still finds time to care about each of the students individually. This is extremely challenging, but she juggles it all beautifully.

On the scientific side, Dr. David VanderVelde has helped me obtain and analyze numerous NMR spectra. He has taught me a lot about the experiments that are available and showed me how to run and interpret them. I really enjoyed the variable temperature experiment we performed to resolve atropisomers that is discussed in Chapter 2. Dr. Mona Shahgoli and Naseem Torian have provided a mass for every compound that I submitted. This has often proved somewhat challenging, as many of the molecules I made toward daucene are greasy and hard to ionize.

Assistant Dean Natalie Gilmore has also been amazing and has helped my family immensely. She listened to our needs, especially as we were preparing for the birth of our son, and has helped us in so many ways. We are indebted to her for her many kindnesses, especially for my appointment as an ARCS foundation scholar.

The ARCS foundation is a wonderful organization that recognizes and supports both undergraduate and graduate students who are pursuing degrees in science. My wife and I are so grateful for the fellowship they provided us. I have always enjoyed meeting with the different members during our yearly luncheon. They are kind people who care about our country's future and are striving to promote American innovation by funding scientific research.

I would not have arrived at Caltech without the guidance and direction of several professors from my undergraduate experience. The most influential of these was Prof. Steven Fleming. I worked for "Doc" during my junior and senior years performing research on a photochemical rearrangement. Doc believes in his students and pushes them to be their best. He met with us late in the evening every week where we went through countless organic chemistry problems. I learned so much from these sessions and from his physical organic chemistry course. Ultimately, Doc taught me to think like an organic chemist. Our weekly group meetings and the parties at his home are some of the best memories from my time at BYU.

While at BYU, I also performed research jointly under Professors Noel Owen and Steven Wood. Dr. Owen took a chance accepting me into his lab since my only previous interaction with him had been as a student in a religion class he taught. My time spent isolating bioactive metabolites from plant endophytes contributed greatly to my interest in the total synthesis of natural products. One of the experiences I enjoyed with Professor Wood was the trip that several students and I took with him to an ACS regional meeting in Nevada where we presented a poster on our research.

Although I never performed research in his lab, I am also deeply indebted to Professor Steven Castle. Professor Castle taught my advanced organic chemistry laboratory course, which helped cement my desire to pursue graduate studies in organic synthesis. I learned to solve and love NMR problems in this class, and to this day, 2D NMR spectra are one of my favorite aspects of research. I also served as a teaching assistant to Dr. Castle for the same course and learned a lot under his guidance. I am especially grateful for the many times he has written letters of recommendation on my behalf.

Finally and most importantly, I would like to thank my family. My parents have been so supportive of my education. When I was little, my mother and father set a wonderful example on the importance of learning and pushed me to perform. I loved school and wanted to do well because of them. I remember my mother staying up with me in fifth grade to help finish my state report the night before it was due. In high school, she taught me how to write and edited all of my papers. While growing up, my father helped me figure out math and science. I appreciated how he would discuss with me what college classes I should take. His guidance on my career has been so helpful. I am so grateful for their interest in my undergraduate education and that they encouraged me to pursue my doctorate. Chanel's family has been equally supportive and accepted me as one of their own from the start. They have kept me well fed and provided numerous sweets. I love being in their home and have so many memories from time spent there. I first met my wife, Chanel, at the beginning of my graduate studies and we were married shortly thereafter. It was good we met when we did, as I do not know how I would have gotten through everything without her. The timing of our meeting and courtship likely helped her deal with my long hours in the lab since this is the only life we have known together. She is a fabulous wife and mother. Our son, Eli, is so much fun. I love how he would wave and say, "bye-bye" from the front door as I headed off to the lab every morning, and I was always so happy to see his smiling face when I returned. I love them both so much and am so grateful for their love and support.

ABSTRACT

The asymmetric construction of quaternary stereocenters is a topic of great interest in the organic chemistry community given their prevalence in natural products and biologically active molecules. Over the last decade, the Stoltz group has pursued the synthesis of this challenging motif via a palladium-catalyzed allylic alkylation using chiral phosphinooxazoline (PHOX) ligands. Recent results indicate that the alkylation of lactams and imides consistently proceeds with enantioselectivities substantially higher than any other substrate class previously examined in this system. This observation prompted exploration of the characteristics that distinguish these molecules as superior alkylation substrates, resulting in newfound insights and marked improvements in the allylic alkylation of carbocyclic compounds.

General routes to cyclopentanoid and cycloheptanoid core structures have been developed that incorporate the palladium-catalyzed allylic alkylation as a key transformation. The unique reactivity of α -quaternary vinylogous esters upon addition of hydride or organometallic reagents enables divergent access to γ -quaternary acylcyclopentenes or cycloheptenones through respective ring contraction or carbonyl transposition pathways. Derivatization of the resulting molecules provides a series of mono-, bi-, and tricyclic systems that can serve as valuable intermediates for the total synthesis of complex natural products.

The allylic alkylation and ring contraction methodology has been employed to prepare variably functionalized bicyclo[5.3.0]decane molecules and enables the enantioselective total syntheses of daucene, daucenal, epoxydaucenal B, and 14-*p*-anisoyloxydauc-4,8-diene. This route overcomes the challenge of accessing β -substituted acylcyclopentenes by employing a siloxyenone to effect the Grignard addition and ring opening in a single step. Subsequent ring-closing metathesis and aldol reactions form the hydroazulene core of these targets. Derivatization of a key enone intermediate allows access to either the daucane sesquiterpene or sphenobolane diterpene carbon skeletons, as well as other oxygenated scaffolds.

TABLE OF CONTENTS

Dedication	iii
Acknowledgements	iv
Abstract	xiii
Table of Contents	xiv
List of Figures	xix
List of Schemes	xxxviii
List of Tables	xli
List of Abbreviations	xliv

CHAPTER 1

1

Expanding Insight into the Asymmetric Palladium-Catalyzed Allylic Alkylation of N-Heterocyclic Molecules and Cyclic Ketones

Introduction and Background	1
Pd-Catalyzed Asymmetric Allylic Alkylation Background	3
Results and Discussion	7
Electronically Variable Substrates	7
Other Reports of Allylic Alkylation on Vinylogous Molecules	13
α'-Functionalized Substrates	17
Concluding Remarks	21
Experimental Section	23
Materials and Methods	23
Preparative Procedures	25
Preparation of Compounds Related to Enaminone Screen	25
Enaminone Allylic Alkylation Precursors	25
General Procedure for Screening Reactions	40
Enaminone Allylic Alkylation Products	42
Preparation of 2,3-Dihydropyridin-4-ones	51
2,3-Dihydropyridin-4-ones Allylic Alkylation Precursors	51
2,3-Dihydropyridin-4-ones Allylic Alkylation Products	59
Preparation of Lactams	64
Lactam Allylic Alkylation Precursors	64
	Introduction and Background Pd-Catalyzed Asymmetric Allylic Alkylation Background Results and Discussion Electronically Variable Substrates Other Reports of Allylic Alkylation on Vinylogous Molecules \u03c8'-Functionalized Substrates Concluding Remarks Experimental Section Materials and Methods Preparative Procedures Preparation of Compounds Related to Enaminone Screen Enaminone Allylic Alkylation Precursors General Procedure for Screening Reactions Enaminone Allylic Alkylation Products Preparation of 2,3-Dihydropyridin-4-ones 2,3-Dihydropyridin-4-ones Allylic Alkylation Precursors 2,3-Dihydropyridin-4-ones Allylic Alkylation Products Preparation of Lactams Lactam Allylic Alkylation Precursors

	1.4.2.3.2	Lactam Allylic Alkylation Products	66
	1.4.2.4	Preparation of Imides	69
	1.4.2.4.1	Imide Allylic Alkylation Precursors	69
	1.4.2.4.2	Imide Allylic Alkylation Products	74
	1.4.2.5	Preparation of Enones and Diosphenol Ethers	77
	1.4.2.5.1	Enone and Diosphenol Ether Allylic Alkylation Precursors	77
	1.4.2.5.2	Enone and Diosphenol Ether Allylic Alkylation Products	87
	1.4.2.6	Determination of Enantiomeric Excess	91
1.5		Notes and References	94

XV

103

208

APPENDIX 1

Spectra Relevant to Chapter 1

CHAPTER 2

Palladium-Catalyzed Asymmetric Alkylation in the Synthesis of Cyclopentanoid and Cycloheptanoid Core Structures

2.1	Introduction and Background
2.2	β -Ketoester Synthesis and Pd-Catalyzed Asymmetric Alkylation
	Reactions210
2.3	Unusual Reactivity of β-Hydroxycycloheptanones215
2.4	Ring Contraction Strategy for Preparing γ -Quaternary Acylcyclopentenes218
2.5	Synthesis of Acylcyclopentene Derivatives Using Site-Selective
	Transformations
2.5.1	Application of Ring Contraction Toward (-)-9-epi-Presilphiperfolan-1-ol
	and (–)-Presilphiperfolan-1-ol
2.6	Carbonyl Transposition Approach to γ -Quaternary Cycloheptenones233
2.7	Synthesis of Cycloheptenone Derivatives Using Transition Metal-Catalyzed
	Cyclizations238
2.8	Unified Strategy for the Synthesis of Complex Polycyclic Natural
	Products
2.9	Concluding Remarks

2.10	Experimental Section	245
2.10.1	Materials and Methods	245
2.10.2	Preparative Procedures	248
2.10.2.1	Preparation of Parent Vinylogous Ester 66	248
2.10.2.2	Preparation of β -Ketoester 24	250
2.10.2.3	Synthesis of PHOX Ligands	277
2.10.2.4	Enantioselective Pd-Catalyzed Decarboxylative Alkylation Screening	
	Protocol	284
2.10.2.5	Preparation of Chiral Vinylogous Ester 27	285
2.10.2.6	Synthetic Studies on the Reduction/Rearrangement of Six- and Seven-	
	Membered Vinylogous Esters	303
2.10.2.7	Ring Contraction Screening Protocol	311
2.10.2.8	Preparation of β -Hydroxyketones and Acylcyclopentenes	313
2.10.2.9	Large Scale Synthesis of Acylcyclopentene 53a	338
2.10.2.10	Initial Synthetic Studies on the Organometallic Addition/	
	Rearrangement of 27a	340
2.10.2.11	Preparation of Acylcyclopentene Derivatives	345
2.10.2.12	Revised Approach to the Reduction/Rearrangement and Organometallic	
	Addition/Rearrangement of 27a	372
2.10.2.13	Grignard and Organolithium Reagents	377
2.10.2.14	Carbonyl Transposition of γ-Quaternary Cycloheptenones	381
2.10.2.15	Preparation of Polycyclic Cycloheptenone Derivatives by Ring-Closing	
	Metathesis	403
2.10.2.16	Preparation of Polycyclic Cycloheptenone Derivatives by Other	
	Methods	415
2.10.2.17	Determination of Enantiomeric Excess	420
2.11	Notes and References	423

APPENDIX 2

Spectra Relevant to Chapter 2

434

APPENDIX 3		686
X-Ray Crystallog	raphy Reports Relevant to Chapter 2	
A3.1	Crystal Structure Analysis of 81	687

CHAPTER 3

xvii

Unified Approach to Daucane and Sphenolobane Bicyclo[5.3.0]decane core: Enantioselective Synthesis of Four Daucane Sesquiterpenes and Related Molecule

3.1 3.1.1 3.1.2	Introduction and Background Isolation, Structural Determination, and Bioactivity of Relevant Daucane Sesquiterpenes Biosynthetic Studies Previous Total Syntheses of Daucene	698 700 702 704
3.1.1 3.1.2	Isolation, Structural Determination, and Bioactivity of Relevant Daucane Sesquiterpenes Biosynthetic Studies Previous Total Syntheses of Daucene	700 702 704
3.1.2	Sesquiterpenes Biosynthetic Studies Previous Total Syntheses of Daucene	700 702 704
3.1.2	Biosynthetic Studies Previous Total Syntheses of Daucene	702
	Previous Total Syntheses of Daucene	704
3.2		
3.3	Enantioselective Synthesis of Bicyclo[5.3.0]decane Carbocyclic Core	
	and Daucane Sesquiterpenes	713
3.3.1	Retrosynthetic Analysis	713
3.3.2	Challenges with Initial Approach	714
3.3.3	Efforts to Resolve Grignard Addition Selectivity and Siloxyenone	
	Solution	715
3.3.4	Completion of Key Intermediate Enone 223	721
3.3.5	Urones' Synthetic Route to Dione 235 and Enone 223	722
3.3.6	Alternative Routes to Enone 223 from Cycloheptenone 55w	723
3.3.7	Derivatization of Enone 223 and Pursuit of Oxygenated Molecules	725
3.3.8	Endgame for Total Syntheses of Daucene, Daucenal, and	
	14-p-Anisoyloxydauc-4,8-diene	728
3.4	Concluding Remarks	730
3.5	Experimental Section	732
3.5.1	Materials and Methods	732
3.5.2	Preparative Procedures	734
3.5.2.1	Procedures Associated with Initial Approach	734
3.5.2.2	Siloxyenone Efforts Toward Acyclic Dione 72w	737
3.5.2.3	Routes to Key Intermediate Enone 223	746
3.5.2.4	Routes to Reincorporate Cycloheptenone 55w into Synthetic Efforts	750
3.5.2.5	Derivatization of Enone 223 and Synthesis of (–)-Epoxydaucenal B (114b)
	and Δ^{11} -Carotol (259)	756

3.5.2.6	Synthesis of (–)-Daucene (142), (+)-Daucenal (143), and	
	(+)-14-p-Anisoyloxydauc-4,8-diene (145)770	
3.5.3	Comparison of Data for Synthetic and Reported Natural Products779	
3.6	Notes and References	

APPENDIX 4	796
Synthetic Summary for Daucane Natural Products	

APPENDIX 5	799
Spectra Relevant to Chapter 3	

APPENDIX	6	861
X-Ray Crysta	allography Reports Relevant to Chapter 3	
A6.1	Crystal Structure Analysis of 262	862

APPENDIX 7

Notebook Cross-Reference

Comprehensive Bibliography	
Index	
About the Author	914

872

LIST OF FIGURES

CHAPTER 1

Figure 1.1	Ketone and lactam enantioselectivity divergence as inspiration for
	investigation of enolate electronics using vinylogous systems7

Figure A1.1.1	¹ H NMR (500 MHz, CDCl ₃) of compound 17	104
Figure A1.1.2	Infrared spectrum (thin film/NaCl) of compound 17	105
Figure A1.1.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 17	105
Figure A1.2.1	¹ H NMR (500 MHz, CDCl ₃) of compound 16a	
Figure A1.2.2	Infrared spectrum (thin film/NaCl) of compound 16a	
Figure A1.2.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 16a	
Figure A1.3.1	¹ H NMR (500 MHz, CDCl ₃) of compound 16b	
Figure A1.3.2	Infrared spectrum (thin film/NaCl) of compound 16b	
Figure A1.3.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 16b	
Figure A1.4.1	¹ H NMR (500 MHz, CDCl ₃) of compound 16c	110
Figure A1.4.2	Infrared spectrum (thin film/NaCl) of compound 16c	111
Figure A1.4.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 16c	111
Figure A1.5.1	¹ H NMR (500 MHz, CDCl ₃) of compound 18	112
Figure A1.5.2	Infrared spectrum (thin film/NaCl) of compound 18	113
Figure A1.5.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 18	113
Figure A1.6.1	¹ H NMR (500 MHz, CDCl ₃) of compound 16f	114
Figure A1.6.2	Infrared spectrum (thin film/NaCl) of compound 16f	115
Figure A1.6.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 16f	115
Figure A1.7.1	¹ H NMR (500 MHz, CDCl ₃) of compound 16g	116
Figure A1.7.2	Infrared spectrum (thin film/NaCl) of compound 16g	117
Figure A1.7.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 16g	117
Figure A1.8.1	¹ H NMR (500 MHz, CDCl ₃) of compound 20	118
Figure A1.8.2	Infrared spectrum (thin film/NaCl) of compound 20	119
Figure A1.8.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 20	119

Figure A1.9.1	¹ H NMR (500 MHz, CDCl ₃) of compound 16h	120
Figure A1.9.2	Infrared spectrum (thin film/NaCl) of compound 16h	121
Figure A1.9.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 16h	121
Figure A1.10.1	¹ H NMR (500 MHz, CDCl ₃) of compound 16d	
Figure A1.10.2	Infrared spectrum (thin film/NaCl) of compound 16d	
Figure A1.10.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 16d	
Figure A1.11.1	¹ H NMR (500 MHz, CDCl ₃) of compound 16i	124
Figure A1.11.2	Infrared spectrum (thin film/NaCl) of compound 16i	
Figure A1.11.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 16i	
Figure A1.12.1	¹ H NMR (500 MHz, CDCl ₃) of compound 16e	126
Figure A1.12.2	Infrared spectrum (thin film/NaCl) of compound 16e	
Figure A1.12.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 16e	
Figure A1.13.1	¹ H NMR (500 MHz, CDCl ₃) of compound 16j	
Figure A1.13.2	Infrared spectrum (thin film/NaCl) of compound 16j	129
Figure A1.13.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 16j	
Figure A1.14.1	¹ H NMR (500 MHz, CDCl ₃) of compound 23a	130
Figure A1.14.2	Infrared spectrum (thin film/NaCl) of compound 23a	131
Figure A1.14.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 23a	131
Figure A1.15.1	¹ H NMR (500 MHz, CDCl ₃) of compound 23b	132
Figure A1.15.2	Infrared spectrum (thin film/NaCl) of compound 23b	133
Figure A1.15.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 23b	
Figure A1.16.1	¹ H NMR (500 MHz, CDCl ₃) of compound 23d	134
Figure A1.16.2	Infrared spectrum (thin film/NaCl) of compound 23d	135
Figure A1.16.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 23d	135
Figure A1.17.1	¹ H NMR (500 MHz, CDCl ₃) of compound 23e	136
Figure A1.17.2	Infrared spectrum (thin film/NaCl) of compound 23e	
Figure A1.17.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 23e	
Figure A1.18.1	¹ H NMR (500 MHz, CDCl ₃) of compound 23f	138
Figure A1.18.2	Infrared spectrum (thin film/NaCl) of compound 23f	139
Figure A1.18.3	13 C NMR (125 MHz, CDCl ₃) of compound 23f	139
Figure A1.19.1	¹ H NMR (500 MHz, CDCl ₃) of compound 23g	140
Figure A1.19.2	Infrared spectrum (thin film/NaCl) of compound 23g	141
Figure A1.19.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 23g	141
Figure A1.20.1	¹ H NMR (500 MHz, CDCl ₃) of compound 29a	142
Figure A1.20.2	Infrared spectrum (thin film/NaCl) of compound 29a	143

Figure A1.20.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 29a	143
Figure A1.21.1	¹ H NMR (500 MHz, CDCl ₃) of compound 48b	144
Figure A1.21.2	Infrared spectrum (thin film/NaCl) of compound 48b	145
Figure A1.21.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 48b	145
Figure A1.22.1	¹ H NMR (500 MHz, CDCl ₃) of compound 29b	146
Figure A1.22.2	Infrared spectrum (thin film/NaCl) of compound 29b	147
Figure A1.22.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 29b	147
Figure A1.23.1	¹ H NMR (500 MHz, CDCl ₃) of compound 48c	148
Figure A1.23.2	Infrared spectrum (thin film/NaCl) of compound 48c	149
Figure A1.23.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 48c	149
Figure A1.24.1	¹ H NMR (500 MHz, CDCl ₃) of compound 29c	150
Figure A1.24.2	Infrared spectrum (thin film/NaCl) of compound 29c	151
Figure A1.24.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 29c	151
Figure A1.25.1	¹ H NMR (500 MHz, CDCl ₃) of compound 48d	152
Figure A1.25.2	¹³ C NMR (125 MHz, CDCl ₃) of compound 48d	153
Figure A1.26.1	¹ H NMR (500 MHz, CDCl ₃) of compound 29d	154
Figure A1.26.2	Infrared spectrum (thin film/NaCl) of compound 29d	155
Figure A1.26.3	13 C NMR (125 MHz, CDCl ₃) of compound 29d	155
Figure A1.27.1	¹ H NMR (500 MHz, CDCl ₃) of compound 30a	156
Figure A1.27.2	Infrared spectrum (thin film/NaCl) of compound 30a	157
Figure A1.27.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 30a	157
Figure A1.28.1	¹ H NMR (500 MHz, CDCl ₃) of compound 30b	158
Figure A1.28.2	Infrared spectrum (thin film/NaCl) of compound 30b	159
Figure A1.28.3	13 C NMR (125 MHz, CDCl ₃) of compound 30b	159
Figure A1.29.1	¹ H NMR (500 MHz, CDCl ₃) of compound 30c	160
Figure A1.29.2	Infrared spectrum (thin film/NaCl) of compound 30c	161
Figure A1.29.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 30c	161
Figure A1.30.1	¹ H NMR (500 MHz, CDCl ₃) of compound 30d	162
Figure A1.30.2	Infrared spectrum (thin film/NaCl) of compound 30d	163
Figure A1.30.3	13 C NMR (125 MHz, CDCl ₃) of compound 30d	163
Figure A1.31.1	¹ H NMR (500 MHz, CDCl ₃) of compound 4i	164
Figure A1.31.2	Infrared spectrum (thin film/NaCl) of compound 4i	165
Figure A1.31.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 4i	165
Figure A1.32.1	¹ H NMR (500 MHz, CDCl ₃) of compound 4j	166
Figure A1.32.2	Infrared spectrum (thin film/NaCl) of compound 4j	

xxi

Figure A1.32.3	13 C NMR (125 MHz, CDCl ₃) of compound 4j	
Figure A1.33.1	¹ H NMR (500 MHz, CDCl ₃) of compound 5i	
Figure A1.33.2	Infrared spectrum (thin film/NaCl) of compound 5i	
Figure A1.33.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 5i	
Figure A1.34.1	¹ H NMR (500 MHz, CDCl ₃) of compound 5j	
Figure A1.34.2	Infrared spectrum (thin film/NaCl) of compound 5j	171
Figure A1.34.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 5j	171
Figure A1.35.1	¹ H NMR (500 MHz, CDCl ₃) of compound 6c	172
Figure A1.35.2	Infrared spectrum (thin film/NaCl) of compound 6c	
Figure A1.35.3	13 C NMR (125 MHz, CDCl ₃) of compound 6c	
Figure A1.36.1	¹ H NMR (500 MHz, CDCl ₃) of compound 50	174
Figure A1.36.2	Infrared spectrum (thin film/NaCl) of compound 50	175
Figure A1.36.3	13 C NMR (125 MHz, CDCl ₃) of compound 50	
Figure A1.37.1	¹ H NMR (500 MHz, CDCl ₃) of compound 6d	176
Figure A1.37.2	Infrared spectrum (thin film/NaCl) of compound 6d	
Figure A1.37.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 6d	
Figure A1.38.1	¹ H NMR (500 MHz, CDCl ₃) of compound 6e	178
Figure A1.38.2	Infrared spectrum (thin film/NaCl) of compound 6e	
Figure A1.38.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 6e	
Figure A1.39.1	¹ H NMR (500 MHz, CDCl ₃) of compound $7c$	
Figure A1.39.2	Infrared spectrum (thin film/NaCl) of compound 7c	
Figure A1.39.3	13 C NMR (125 MHz, CDCl ₃) of compound 7c	
Figure A1.40.1	¹ H NMR (500 MHz, CDCl ₃) of compound $7d$	
Figure A1.40.2	Infrared spectrum (thin film/NaCl) of compound 7d	
Figure A1.40.3	¹³ C NMR (125 MHz, CDCl ₃) of compound $7d$	
Figure A1.41.1	¹ H NMR (500 MHz, CDCl ₃) of compound 7e	
Figure A1.41.2	Infrared spectrum (thin film/NaCl) of compound 7e	
Figure A1.41.3	¹³ C NMR (125 MHz, CDCl ₃) of compound $7e$	
Figure A1.42.1	¹ H NMR (500 MHz, CDCl ₃) of compound 44	
Figure A1.42.2	Infrared spectrum (thin film/NaCl) of compound 44	
Figure A1.43.1	¹ H NMR (500 MHz, C_6D_6) of compound 13b	
Figure A1.43.2	Infrared spectrum (thin film/NaCl) of compound 13b	
Figure A1.43.3	¹³ C NMR (125 MHz, C_6D_6) of compound 13b	
Figure A1.44.1	¹ H NMR (500 MHz, CDCl ₃) of compound 41	190
Figure A1.44.2	Infrared spectrum (thin film/NaCl) of compound 41	

xxii

Figure A1.44.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 41	191
Figure A1.45.1	¹ H NMR (500 MHz, CDCl ₃) of compound 13c	
Figure A1.45.2	Infrared spectrum (thin film/NaCl) of compound 13c	
Figure A1.45.3	13 C NMR (125 MHz, CDCl ₃) of compound 13c	
Figure A1.46.1	¹ H NMR (500 MHz, CDCl ₃) of compound 13d	194
Figure A1.46.2	Infrared spectrum (thin film/NaCl) of compound 13d	195
Figure A1.46.3	^{13}C NMR (125 MHz, CDCl ₃) of compound 13d	195
Figure A1.47.1	¹ H NMR (500 MHz, CDCl ₃) of compound 45a	196
Figure A1.47.2	Infrared spectrum (thin film/NaCl) of compound 45a	197
Figure A1.47.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 45a	197
Figure A1.48.1	¹ H NMR (500 MHz, CDCl ₃) of compound 45b	198
Figure A1.48.2	Infrared spectrum (thin film/NaCl) of compound 45b	199
Figure A1.48.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 45b	199
Figure A1.49.1	¹ H NMR (500 MHz, CDCl ₃) of compound 21c	200
Figure A1.49.2	Infrared spectrum (thin film/NaCl) of compound 21c	201
Figure A1.49.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 21c	201
Figure A1.50.1	¹ H NMR (500 MHz, CDCl ₃) of compound 21d	202
Figure A1.50.2	Infrared spectrum (thin film/NaCl) of compound 21d	203
Figure A1.50.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 21d	203
Figure A1.51.1	¹ H NMR (500 MHz, CDCl ₃) of compound 46a	204
Figure A1.51.2	Infrared spectrum (thin film/NaCl) of compound 46a	205
Figure A1.51.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 46a	205
Figure A1.52.1	¹ H NMR (500 MHz, CDCl ₃) of compound 46b	206
Figure A1.52.2	Infrared spectrum (thin film/NaCl) of compound 46b	207
Figure A1.52.3	13 C NMR (125 MHz, CDCl ₃) of compound 46b	

CHAPTER 2

Figure 2.1	Application of cyclopentanoid, cyclohexanoid, and cycloheptanoid o	
	toward stereoselective natural product synthesis	.209
Figure 2.2	General access to enantioenriched cyclopentanoid and cyclohexanoid	
	cores	.210
Figure 2.3	Selective functionalizations on sites A-E of acylcyclopentenes (53)	.228

Figure 2.4	Chiral fused and spirocyclic structures prepared by asymmetric allylic	
	alkylation	242
Figure 2.5	Pd-catalyzed asymmetric allylic alkylation in the total synthesis of	
	cyclohexanoid natural products	243

APPENDIX 2

Figure A2.1.1	¹ H NMR (500 MHz, CDCl ₃) of compound 66	435
Figure A2.1.2	Infrared spectrum (thin film/NaCl) of compound 66	436
Figure A2.1.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 66	436
Figure A2.2.1	¹ H NMR (500 MHz, CDCl ₃) of compound 24a	
Figure A2.2.2	Infrared spectrum (thin film/NaCl) of compound 24a	
Figure A2.2.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 24a	
Figure A2.3.1	¹ H NMR (300 MHz, CDCl ₃) of compound 24b	439
Figure A2.3.2	Infrared spectrum (thin film/NaCl) of compound 24b	440
Figure A2.3.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 24b	440
Figure A2.4.1	¹ H NMR (300 MHz, CDCl ₃) of compound 24c	441
Figure A2.4.2	Infrared spectrum (thin film/NaCl) of compound 24c	
Figure A2.4.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 24c	
Figure A2.5.1	¹ H NMR (300 MHz, CDCl ₃) of compound 24d	
Figure A2.5.2	Infrared spectrum (thin film/NaCl) of compound 24d	
Figure A2.5.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 24d	
Figure A2.6.1	¹ H NMR (300 MHz, CDCl ₃) of compound 24e	445
Figure A2.6.2	Infrared spectrum (thin film/NaCl) of compound 24e	446
Figure A2.6.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 24e	446
Figure A2.7.1	¹ H NMR (300 MHz, CDCl ₃) of compound 24f	
Figure A2.7.2	Infrared spectrum (thin film/NaCl) of compound 24f	
Figure A2.7.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 24f	
Figure A2.8.1	¹ H NMR (300 MHz, CDCl ₃) of compound 24g	
Figure A2.8.2	Infrared spectrum (thin film/NaCl) of compound 24g	450
Figure A2.8.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 24g	450
Figure A2.9.1	¹ H NMR (300 MHz, CDCl ₃) of compound 24h	451
Figure A2.9.2	Infrared spectrum (thin film/NaCl) of compound 24h	452
Figure A2.9.3	13 C NMR (75 MHz, CDCl ₃) of compound 24h	452

xxiv

		XXV
Figure A2.10.1	¹ H NMR (300 MHz, CDCl ₃) of compound 24i	453
Figure A2.10.2	Infrared spectrum (thin film/NaCl) of compound 24i	454
Figure A2.10.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 24i	454
Figure A2.11.1	¹ H NMR (300 MHz, CDCl ₃) of compound 24ac	455
Figure A2.11.2	Infrared spectrum (thin film/NaCl) of compound 24ac	456
Figure A2.11.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 24ac	456
Figure A2.12.1	¹ H NMR (300 MHz, CDCl ₃) of compound 24j	457
Figure A2.12.2	Infrared spectrum (thin film/NaCl) of compound 24j	458
Figure A2.12.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 24j	458
Figure A2.13.1	¹ H NMR (300 MHz, CDCl ₃) of compound $24k$	459
Figure A2.13.2	Infrared spectrum (thin film/NaCl) of compound 24k	460
Figure A2.13.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 24k	460
Figure A2.14.1	¹ H NMR (300 MHz, CDCl ₃) of compound 241	461
Figure A2.14.2	Infrared spectrum (thin film/NaCl) of compound 241	462
Figure A2.14.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 241	462
Figure A2.15.1	¹ H NMR (300 MHz, CDCl ₃) of compound 24ad	463
Figure A2.15.2	Infrared spectrum (thin film/NaCl) of compound 24ad	464
Figure A2.15.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 24ad	464
Figure A2.16.1	¹ H NMR (300 MHz, CDCl ₃) of compound 24m	465
Figure A2.16.2	Infrared spectrum (thin film/NaCl) of compound 24m	466
Figure A2.16.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 24m	466
Figure A2.17.1	¹ H NMR (300 MHz, CDCl ₃) of compound 24n	467
Figure A2.17.2	Infrared spectrum (thin film/NaCl) of compound 24n	468
Figure A2.17.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 24n	468
Figure A2.18.1	¹ H NMR (500 MHz, CDCl ₃) of compound 127	469
Figure A2.18.2	Infrared spectrum (thin film/NaCl) of compound 127	470
Figure A2.18.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 127	470
Figure A2.19.1	¹ H NMR (500 MHz, CDCl ₃) of compound 128	471
Figure A2.19.2	Infrared spectrum (thin film/NaCl) of compound 128	472
Figure A2.19.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 128	472
Figure A2.20.1	¹ H NMR (300 MHz, CDCl ₃) of compound 129	473
Figure A2.20.2	Infrared spectrum (thin film/NaCl) of compound 129	474
Figure A2.20.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 129	474
Figure A2.21.1	¹ H NMR (500 MHz, CDCl ₃) of compound 67	475
Figure A2.21.2	Infrared spectrum (thin film/NaCl) of compound 67	476

Figure A2.21.3	13 C NMR (125 MHz, CDCl ₃) of compound 67	476
Figure A2.22.1	¹ H NMR (500 MHz, CDCl ₃) of compound 27a	477
Figure A2.22.2	Infrared spectrum (thin film/NaCl) of compound 27a	478
Figure A2.22.3	¹³ C NMR (125 MHz, CDCl ₃) of compound $27a$	478
Figure A2.23.1	¹ H NMR (300 MHz, $CDCI_3$) of compound 27b	479
Figure A2.23.2	Infrared spectrum (thin film/NaCl) of compound 27b	
Figure A2.23.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 27b	
Figure A2.24.1	¹ H NMR (300 MHz, CDCl ₃) of compound $27c$	481
Figure A2.24.2	Infrared spectrum (thin film/NaCl) of compound $\mathbf{27c}$	
Figure A2.24.3	¹³ C NMR (75 MHz, CDCl ₃) of compound $27c$	
Figure A2.25.1	¹ H NMR (300 MHz, CDCl ₃) of compound $27d$	
Figure A2.25.2	Infrared spectrum (thin film/NaCl) of compound 27d	
Figure A2.25.3	¹³ C NMR (75 MHz, CDCl ₃) of compound $27d$	
Figure A2.26.1	¹ H NMR (300 MHz, CDCl ₃) of compound 27e	
Figure A2.26.2	Infrared spectrum (thin film/NaCl) of compound 27e	
Figure A2.26.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 27e	486
Figure A2.27.1	¹ H NMR (300 MHz, CDCl ₃) of compound $27f$	
Figure A2.27.2	Infrared spectrum (thin film/NaCl) of compound 27f	488
Figure A2.27.3	¹³ C NMR (75 MHz, CDCl ₃) of compound $27f$	
Figure A2.28.1	¹ H NMR (300 MHz, CDCl ₃) of compound $27g$	
Figure A2.28.2	Infrared spectrum (thin film/NaCl) of compound 27g	
Figure A2.28.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 27g	
Figure A2.29.1	¹ H NMR (300 MHz, CDCl ₃) of compound $27h$	491
Figure A2.29.2	Infrared spectrum (thin film/NaCl) of compound 27h	
Figure A2.29.3	¹³ C NMR (75 MHz, CDCl ₃) of compound $\mathbf{27h}$	
Figure A2.30.1	¹ H NMR (300 MHz, CDCl ₃) of compound $27i$	
Figure A2.30.2	Infrared spectrum (thin film/NaCl) of compound 27i	494
Figure A2.30.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 27i	494
Figure A2.31.1	¹ H NMR (300 MHz, CDCl ₃) of compound $27j$	495
Figure A2.31.2	Infrared spectrum (thin film/NaCl) of compound 27j	496
Figure A2.31.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 27j	
Figure A2.32.1	¹ H NMR (300 MHz, CDCl ₃) of compound $27k$	497
Figure A2.32.2	Infrared spectrum (thin film/NaCl) of compound 27k	
Figure A2.32.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 27k	
Figure A2.33.1	¹ H NMR (300 MHz, CDCl ₃) of compound 271	

xxvi

		xxvii
Figure A2.33.2	Infrared spectrum (thin film/NaCl) of compound 271	500
Figure A2.33.3	13 C NMR (75 MHz, CDCl ₃) of compound 271	500
Figure A2.34.1	¹ H NMR (300 MHz, CDCl ₃) of compound 27m	501
Figure A2.34.2	Infrared spectrum (thin film/NaCl) of compound 27m	502
Figure A2.34.3	13 C NMR (75 MHz, CDCl ₃) of compound 27m	502
Figure A2.35.1	¹ H NMR (300 MHz, CDCl ₃) of compound 27n	503
Figure A2.35.2	Infrared spectrum (thin film/NaCl) of compound 27n	504
Figure A2.35.3	13 C NMR (75 MHz, CDCl ₃) of compound 27n	504
Figure A2.36.1	¹ H NMR (300 MHz, CDCl ₃) of compound 270	505
Figure A2.36.2	Infrared spectrum (thin film/NaCl) of compound 270	506
Figure A2.36.3	13 C NMR (75 MHz, CDCl ₃) of compound 270	506
Figure A2.37.1	¹ H NMR (300 MHz, CDCl ₃) of compound 27p	507
Figure A2.37.2	Infrared spectrum (thin film/NaCl) of compound 27p	508
Figure A2.37.3	13 C NMR (75 MHz, CDCl ₃) of compound 27p	508
Figure A2.38.1	¹ H NMR (300 MHz, CDCl ₃) of compound 27q	509
Figure A2.38.2	Infrared spectrum (thin film/NaCl) of compound 27q	510
Figure A2.38.3	13 C NMR (75 MHz, CDCl ₃) of compound 27q	510
Figure A2.39.1	¹ H NMR (300 MHz, CDCl ₃) of compound 14a	511
Figure A2.39.2	Infrared spectrum (thin film/NaCl) of compound 14a	512
Figure A2.39.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 14a	512
Figure A2.40.1	¹ H NMR (300 MHz, CDCl ₃) of compound 22a	513
Figure A2.40.2	Infrared spectrum (thin film/NaCl) of compound 22a	514
Figure A2.40.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 22a	514
Figure A2.41.1	¹ H NMR (300 MHz, CDCl ₃) of compound 68	515
Figure A2.41.2	Infrared spectrum (thin film/NaCl) of compound 68	516
Figure A2.41.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 68	516
Figure A2.42.1	¹ H NMR (500 MHz, CDCl ₃) of compound 77	517
Figure A2.42.2	Infrared spectrum (thin film/NaCl) of compound 77	518
Figure A2.42.3	^{13}C NMR (125 MHz, CDCl ₃) of compound 77	518
Figure A2.43.1	¹ H NMR (500 MHz, CDCl ₃) of compound 55a	519
Figure A2.43.2	Infrared spectrum (thin film/NaCl) of compound 55a	520
Figure A2.43.3	13 C NMR (125 MHz, CDCl ₃) of compound 55a	520
Figure A2.44.1	¹ H NMR (500 MHz, CDCl ₃) of compound 70a	521
Figure A2.44.2	Infrared spectrum (thin film/NaCl) of compound 70a	522
Figure A2.44.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 70a	522

		xxviii
Figure A2.45.1	¹ H NMR (300 MHz, CDCl ₃) of compound 70b	523
Figure A2.45.2	Infrared spectrum (thin film/NaCl) of compound 70b	524
Figure A2.46.1	¹ H NMR (300 MHz, CDCl ₃) of compound 70c	525
Figure A2.46.2	Infrared spectrum (thin film/NaCl) of compound 70c	526
Figure A2.47.1	¹ H NMR (300 MHz, CDCl ₃) of compound 70d	527
Figure A2.47.2	Infrared spectrum (thin film/NaCl) of compound 70d	528
Figure A2.48.1	¹ H NMR (300 MHz, CDCl ₃) of compound 70e	529
Figure A2.48.2	Infrared spectrum (thin film/NaCl) of compound 70e	530
Figure A2.49.1	¹ H NMR (300 MHz, CDCl ₃) of compound 70f	531
Figure A2.49.2	Infrared spectrum (thin film/NaCl) of compound 70f	532
Figure A2.50.1	¹ H NMR (300 MHz, CDCl ₃) of compound 70g	533
Figure A2.50.2	Infrared spectrum (thin film/NaCl) of compound 70g	534
Figure A2.51.1	¹ H NMR (300 MHz, CDCl ₃) of compound 70h	535
Figure A2.51.2	Infrared spectrum (thin film/NaCl) of compound 70h	536
Figure A2.52.1	¹ H NMR (300 MHz, CDCl ₃) of compound 70i	537
Figure A2.52.2	Infrared spectrum (thin film/NaCl) of compound 70i	538
Figure A2.53.1	¹ H NMR (300 MHz, CDCl ₃) of compound 70j	539
Figure A2.53.2	Infrared spectrum (thin film/NaCl) of compound 70j	540
Figure A2.54.1	¹ H NMR (300 MHz, CDCl ₃) of compound 70m	541
Figure A2.54.2	Infrared spectrum (thin film/NaCl) of compound 70m	542
Figure A2.55.1	¹ H NMR (300 MHz, CDCl ₃) of compound 700	543
Figure A2.55.2	Infrared spectrum (thin film/NaCl) of compound 700	544
Figure A2.56.1	¹ H NMR (400 MHz, CDCl ₃) of compound 70p	545
Figure A2.56.2	Infrared spectrum (thin film/NaCl) of compound 70p	546
Figure A2.57.1	¹ H NMR (300 MHz, CDCl ₃) of compound 70q	547
Figure A2.57.2	Infrared spectrum (thin film/NaCl) of compound 70q	548
Figure A2.58.1	¹ H NMR (300 MHz, CDCl ₃) of compound 70n	549
Figure A2.58.2	Infrared spectrum (thin film/NaCl) of compound 70n	550
Figure A2.59.1	¹ H NMR (500 MHz, CDCl ₃) of compound 53a	551
Figure A2.59.2	Infrared spectrum (thin film/NaCl) of compound 53a	552
Figure A2.59.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 53a	552
Figure A2.60.1	¹ H NMR (300 MHz, CDCl ₃) of compound 53b	553
Figure A2.60.2	Infrared spectrum (thin film/NaCl) of compound 53b	554
Figure A2.60.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 53b	554
Figure A2.61.1	¹ H NMR (300 MHz, CDCl ₃) of compound 53c	555

		xxix
Figure A2.61.2	Infrared spectrum (thin film/NaCl) of compound 53c	556
Figure A2.61.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 53c	556
Figure A2.62.1	¹ H NMR (300 MHz, CDCl ₃) of compound 53d	557
Figure A2.62.2	Infrared spectrum (thin film/NaCl) of compound 53d	558
Figure A2.62.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 53d	558
Figure A2.63.1	¹ H NMR (300 MHz, CDCl ₃) of compound 53e	559
Figure A2.63.2	Infrared spectrum (thin film/NaCl) of compound 53e	560
Figure A2.63.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 53e	560
Figure A2.64.1	¹ H NMR (300 MHz, CDCl ₃) of compound 53f	561
Figure A2.64.2	Infrared spectrum (thin film/NaCl) of compound 53f	562
Figure A2.64.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 53f	562
Figure A2.65.1	¹ H NMR (300 MHz, CDCl ₃) of compound $53g$	563
Figure A2.65.2	Infrared spectrum (thin film/NaCl) of compound 53g	564
Figure A2.65.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 53g	564
Figure A2.66.1	¹ H NMR (300 MHz, CDCl ₃) of compound $53h$	565
Figure A2.66.2	Infrared spectrum (thin film/NaCl) of compound 53h	566
Figure A2.66.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 53h	566
Figure A2.67.1	¹ H NMR (300 MHz, CDCl ₃) of compound 53i	567
Figure A2.67.2	Infrared spectrum (thin film/NaCl) of compound 53i	568
Figure A2.67.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 53i	568
Figure A2.68.1	¹ H NMR (300 MHz, CDCl ₃) of compound 53j	569
Figure A2.68.2	Infrared spectrum (thin film/NaCl) of compound 53j	570
Figure A2.68.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 53j	570
Figure A2.69.1	¹ H NMR (300 MHz, CDCl ₃) of compound $53m$	571
Figure A2.69.2	Infrared spectrum (thin film/NaCl) of compound 53m	572
Figure A2.69.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 53m	572
Figure A2.70.1	¹ H NMR (300 MHz, CDCl ₃) of compound 530	573
Figure A2.70.2	Infrared spectrum (thin film/NaCl) of compound 530	574
Figure A2.70.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 530	574
Figure A2.71.1	¹ H NMR (400 MHz, CDCl ₃) of compound $53p$	575
Figure A2.71.2	Infrared spectrum (thin film/NaCl) of compound 53p	576
Figure A2.71.3	¹³ C NMR (100 MHz, CDCl ₃) of compound 53p	576
Figure A2.72.1	¹ H NMR (300 MHz, CDCl ₃) of compound $53q$	577
Figure A2.72.2	Infrared spectrum (thin film/NaCl) of compound 53q	578
Figure A2.72.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 53q	578

Figure A2.73.1	¹ H NMR (500 MHz, CDCl ₃) of compound 53n	
Figure A2.73.2	Infrared spectrum (thin film/NaCl) of compound 53n	
Figure A2.73.3	13 C NMR (125 MHz, CDCl ₃) of compound 53n	
Figure A2.74.1	¹ H NMR (500 MHz, CDCl ₃) of compound 79	
Figure A2.74.2	Infrared spectrum (thin film/NaCl) of compound 79	
Figure A2.74.3	13 C NMR (125 MHz, CDCl ₃) of compound 79	
Figure A2.75.1	¹ H NMR (500 MHz, CDCl ₃) of compound 55r	
Figure A2.75.2	Infrared spectrum (thin film/NaCl) of compound 55r	
Figure A2.75.3	13 C NMR (125 MHz, CDCl ₃) of compound 55r	
Figure A2.76.1	¹ H NMR (500 MHz, CDCl ₃) of compound 70r	
Figure A2.76.2	Infrared spectrum (thin film/NaCl) of compound 70r	
Figure A2.77.1	¹ H NMR (500 MHz, CDCl ₃) of compound 72r	
Figure A2.77.2	Infrared spectrum (thin film/NaCl) of compound 72r	
Figure A2.77.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 72r	
Figure A2.78.1	¹ H NMR (500 MHz, CDCl ₃) of compound 53r	
Figure A2.78.2	Infrared spectrum (thin film/NaCl) of compound 53r	
Figure A2.78.3	13 C NMR (125 MHz, CDCl ₃) of compound 53r	
Figure A2.79.1	¹ H NMR (300 MHz, CDCl ₃) of compound 80	
Figure A2.79.2	Infrared spectrum (thin film/NaCl) of compound 80	
Figure A2.79.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 80	
Figure A2.80.1	¹ H NMR (500 MHz, CDCl ₃) of compound 81	
Figure A2.80.2	Infrared spectrum (thin film/NaCl) of compound 81	
Figure A2.80.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 81	
Figure A2.81.1	¹ H NMR (400 MHz, CDCl ₃) of compound 82	
Figure A2.81.2	Infrared spectrum (thin film/NaCl) of compound 82	
Figure A2.81.3	¹³ C NMR (100 MHz, CDCl ₃) of compound 82	
Figure A2.82.1	¹ H NMR (300 MHz, CDCl ₃) of compound 83	
Figure A2.82.2	Infrared spectrum (thin film/NaCl) of compound 83	
Figure A2.82.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 83	
Figure A2.83.1	¹ H NMR (300 MHz, CDCl ₃) of compound 84	
Figure A2.83.2	Infrared spectrum (thin film/NaCl) of compound 84	600
Figure A2.83.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 84	600
Figure A2.84.1	¹ H NMR (300 MHz, CDCl ₃) of compound 130	601
Figure A2.84.2	Infrared spectrum (thin film/NaCl) of compound 130	602
Figure A2.84.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 130	

XXX

		xxxi
Figure A2.85.1	¹ H NMR (300 MHz, CDCl ₃) of compound 85	603
Figure A2.85.2	Infrared spectrum (thin film/NaCl) of compound 85	604
Figure A2.85.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 85	604
Figure A2.86.1	¹ H NMR (300 MHz, CDCl ₃) of compound 131	605
Figure A2.86.2	Infrared spectrum (thin film/NaCl) of compound 131	606
Figure A2.86.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 131	606
Figure A2.87.1	¹ H NMR (300 MHz, CDCl ₃) of compound 86	607
Figure A2.87.2	Infrared spectrum (thin film/NaCl) of compound 86	608
Figure A2.87.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 86	608
Figure A2.88.1	¹ H NMR (300 MHz, CDCl ₃) of compound 132	609
Figure A2.88.2	Infrared spectrum (thin film/NaCl) of compound 132	610
Figure A2.88.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 132	610
Figure A2.89.1	¹ H NMR (300 MHz, CDCl ₃) of compound 88	611
Figure A2.89.2	Infrared spectrum (thin film/NaCl) of compound 88	612
Figure A2.89.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 88	612
Figure A2.90.1	¹ H NMR (300 MHz, CDCl ₃) of compound 89	613
Figure A2.90.2	Infrared spectrum (thin film/NaCl) of compound 89	614
Figure A2.90.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 89	614
Figure A2.91.1	¹ H NMR (400 MHz, CDCl ₃) of compound 90	615
Figure A2.91.2	Infrared spectrum (thin film/NaCl) of compound 90	616
Figure A2.91.3	¹³ C NMR (100 MHz, CDCl ₃) of compound 90	616
Figure A2.92.1	¹ H NMR (500 MHz, CDCl ₃) of compound 91	617
Figure A2.92.2	Infrared spectrum (thin film/NaCl) of compound 91	618
Figure A2.92.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 91	618
Figure A2.93.1	¹ H NMR (500 MHz, CDCl ₃) of compound 92	619
Figure A2.93.2	Infrared spectrum (thin film/NaCl) of compound 92	620
Figure A2.93.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 92	620
Figure A2.94.1	¹ H NMR (500 MHz, $CDCl_3$) of compound 93	621
Figure A2.94.2	Infrared spectrum (thin film/NaCl) of compound 93	622
Figure A2.94.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 93	622
Figure A2.95.1	¹ H NMR (500 MHz, CDCl ₃) of compound 95	
Figure A2.95.2	Infrared spectrum (thin film/NaCl) of compound 95	624
Figure A2.95.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 95	624
Figure A2.96.1	¹ H NMR (300 MHz, CDCl ₃) of compound 97	625
Figure A2.96.2	Infrared spectrum (thin film/NaCl) of compound 97	626

		xxxii
Figure A2.96.3	¹³ C NMR (75 MHz, CDCl ₃) of compound 97	.626
Figure A2.97.1	¹ H NMR (300 MHz, CDCl ₃) of compound 87	.627
Figure A2.97.2	Infrared spectrum (thin film/NaCl) of compound 87	.628
Figure A2.97.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 87	.628
Figure A2.98.1	¹ H NMR (500 MHz, CDCl ₃) of compound 100	.629
Figure A2.98.2	Infrared spectrum (thin film/NaCl) of compound 100	.630
Figure A2.98.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 100	.630
Figure A2.99.1	¹ H NMR (500 MHz, CDCl ₃) of compound 102	.631
Figure A2.99.2	Infrared spectrum (thin film/NaCl) of compound 102	.632
Figure A2.99.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 102	.632
Figure A2.100.1	¹ H NMR (500 MHz, CDCl ₃) of compound 110	.633
Figure A2.100.2	Infrared spectrum (thin film/NaCl) of compound 110	.634
Figure A2.100.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 110	.634
Figure A2.101.1	¹ H NMR (500 MHz, CDCl ₃) of compound 55t	.635
Figure A2.101.2	Infrared spectrum (thin film/NaCl) of compound 55t	.636
Figure A2.101.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 55t	.636
Figure A2.102.1	¹ H NMR (500 MHz, CDCl ₃) of compound 55u	.637
Figure A2.102.2	Infrared spectrum (thin film/NaCl) of compound 55u	.638
Figure A2.102.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 55u	.638
Figure A2.103.1	¹ H NMR (500 MHz, CDCl ₃) of compound $55v$.639
Figure A2.103.2	Infrared spectrum (thin film/NaCl) of compound 55v	.640
Figure A2.103.3	13 C NMR (125 MHz, CDCl ₃) of compound 55v	.640
Figure A2.104.1	¹ H NMR (500 MHz, CDCl ₃) of compound $55w$.641
Figure A2.104.2	Infrared spectrum (thin film/NaCl) of compound 55w	.642
Figure A2.104.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 55w	.642
Figure A2.105.1	¹ H NMR (500 MHz, CDCl ₃) of compound $55x$.643
Figure A2.105.2	Infrared spectrum (thin film/NaCl) of compound 55x	.644
Figure A2.105.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 55x	.644
Figure A2.106.1	¹ H NMR (500 MHz, CDCl ₃) of compound 55y	.645
Figure A2.106.2	Infrared spectrum (thin film/NaCl) of compound 55y	.646
Figure A2.106.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 55y	.646
Figure A2.107.1	¹ H NMR (500 MHz, CDCl ₃) of compound 55z	.647
Figure A2.107.2	Infrared spectrum (thin film/NaCl) of compound 55z	.648
Figure A2.107.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 55z	.648
Figure A2.108.1	¹ H NMR (500 MHz, CDCl ₃) of compound 55aa	.649
	 Figure A2.96.3 Figure A2.97.1 Figure A2.97.2 Figure A2.97.3 Figure A2.98.1 Figure A2.98.2 Figure A2.98.3 Figure A2.99.3 Figure A2.99.3 Figure A2.100.1 Figure A2.100.3 Figure A2.101.3 Figure A2.101.3 Figure A2.102.1 Figure A2.102.3 Figure A2.102.3 Figure A2.103.3 Figure A2.103.3 Figure A2.103.3 Figure A2.103.3 Figure A2.104.3 Figure A2.105.3 Figure A2.105.3 Figure A2.105.3 Figure A2.105.4 Figure A2.105.4 Figure A2.106.3 Figure A2.106.3 Figure A2.107.3 Figure A2.106.3 Figure A2.107.4 Figure A2.107.4 Figure A2.107.4 Figure A2.107.4 Figure A2.107.3 Figure A2.107.4 	Figure A2.96.3 ¹³ C NMR (75 MHz, CDCl ₃) of compound 87 Figure A2.97.1 ¹⁴ H NMR (300 MHz, CDCl ₃) of compound 87 Figure A2.97.2 Infrared spectrum (thin film/NaCl) of compound 87 Figure A2.97.3 ¹³ C NMR (125 MHz, CDCl ₃) of compound 100 Figure A2.98.1 ¹⁴ H NMR (500 MHz, CDCl ₃) of compound 100 Figure A2.98.2 Infrared spectrum (thin film/NaCl) of compound 100 Figure A2.99.3 ¹³ C NMR (125 MHz, CDCl ₃) of compound 102 Figure A2.99.1 ¹⁴ H NMR (500 MHz, CDCl ₃) of compound 102 Figure A2.99.2 Infrared spectrum (thin film/NaCl) of compound 102 Figure A2.99.3 ¹³ C NMR (125 MHz, CDCl ₃) of compound 102 Figure A2.100.1 ¹⁴ H NMR (500 MHz, CDCl ₃) of compound 110 Figure A2.100.2 Infrared spectrum (thin film/NaCl) of compound 110 Figure A2.101.3 ¹³ C NMR (125 MHz, CDCl ₃) of compound 551 Figure A2.101.4 ¹⁴ H NMR (500 MHz, CDCl ₃) of compound 551 Figure A2.102.1 Infrared spectrum (thin film/NaCl) of compound 551 Figure A2.102.2 Infrared spectrum (thin film/NaCl) of compound 551 Figure A2.102.3 ¹⁴ C NMR (125 MHz, CDCl ₃) of compound 551 Figure A2.103.3 ¹⁵ C NMR (125 MHz, CDCl ₃) of compound 551 </td

	X	xxiii
Figure A2.108.2	Infrared spectrum (thin film/NaCl) of compound 55aa 6	50
Figure A2.108.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 55aa 6	50
Figure A2.108.4	Variable Temperature ¹ H NMR (500 MHz, DMSO-d ₆) of	
	compound 55aa 6	51
Figure A2.109.1	¹ H NMR (500 MHz, CDCl ₃) of compound 55ab 6	52
Figure A2.109.2	Infrared spectrum (thin film/NaCl) of compound 55ab 6	53
Figure A2.109.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 55ab 6	53
Figure A2.110.1	¹ H NMR (500 MHz, CDCl ₃) of compound 55ac 6	54
Figure A2.110.2	Infrared spectrum (thin film/NaCl) of compound 55ac 6	55
Figure A2.110.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 55ac 6	55
Figure A2.111.1	¹ H NMR (500 MHz, CDCl ₃) of compound 133 6	56
Figure A2.111.2	Infrared spectrum (thin film/NaCl) of compound 133 6	57
Figure A2.111.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 133 6	57
Figure A2.112.1	¹ H NMR (500 MHz, CDCl ₃) of compound 111y 6	58
Figure A2.112.2	Infrared spectrum (thin film/NaCl) of compound 111y 6	59
Figure A2.112.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 111y 6	59
Figure A2.113.1	¹ H NMR (500 MHz, CDCl ₃) of compound 111z 6	60
Figure A2.113.2	Infrared spectrum (thin film/NaCl) of compound 111z 6	61
Figure A2.113.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 111z 6	61
Figure A2.114.1	¹ H NMR (500 MHz, C ₆ D ₆) of compound 111t 6	62
Figure A2.114.2	Infrared spectrum (thin film/NaCl) of compound 111t 6	63
Figure A2.114.3	13 C NMR (125 MHz, C ₆ D ₆) of compound 111t 6	63
Figure A2.115.1	¹ H NMR (500 MHz, CDCl ₃) of compound 111u 6	64
Figure A2.115.2	Infrared spectrum (thin film/NaCl) of compound 111u 6	65
Figure A2.115.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 111u 6	65
Figure A2.116.1	¹ H NMR (500 MHz, CDCl ₃) of compound 111v 6	66
Figure A2.116.2	Infrared spectrum (thin film/NaCl) of compound 111v 6	67
Figure A2.116.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 111v 6	67
Figure A2.117.1	¹ H NMR (500 MHz, CDCl ₃) of compound 111w 6	68
Figure A2.117.2	Infrared spectrum (thin film/NaCl) of compound 111w 6	69
Figure A2.117.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 111w 6	69
Figure A2.118.1	¹ H NMR (500 MHz, CDCl ₃) of compound 111aa 6	70
Figure A2.118.2	Infrared spectrum (thin film/NaCl) of compound 111aa 6	571
Figure A2.118.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 111aa 6	571
Figure A2.119.1	¹ H NMR (500 MHz, CDCl ₃) of compound 111x 6	572

Figure A2.119.2	Infrared spectrum (thin film/NaCl) of compound 111x	
Figure A2.119.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 111x	
Figure A2.120.1	¹ H NMR (500 MHz, CDCl ₃) of compound 114	674
Figure A2.120.2	Infrared spectrum (thin film/NaCl) of compound 114	675
Figure A2.120.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 114	675
Figure A2.121.1	¹ H NMR (500 MHz, CDCl ₃) of compound 115	676
Figure A2.121.2	Infrared spectrum (thin film/NaCl) of compound 115	677
Figure A2.121.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 115	677
Figure A2.122.1	¹ H NMR (500 MHz, CDCl ₃) of compound 116	678
Figure A2.122.2	Infrared spectrum (thin film/NaCl) of compound 116	679
Figure A2.122.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 116	679
Figure A2.123.1	¹ H NMR (500 MHz, CDCl ₃) of compound 117a	
Figure A2.123.2	Infrared spectrum (thin film/NaCl) of compound 117a	681
Figure A2.123.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 117a	681
Figure A2.123.4	NOESY (500 MHz, CDCl ₃) of compound 117a	
Figure A2.124.1	¹ H NMR (500 MHz, CDCl ₃) of compound 117b	
Figure A2.124.2	Infrared spectrum (thin film/NaCl) of compound 117b	
Figure A2.124.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 117b	684
Figure A2.124.4	NOESY (500 MHz, $CDCl_3$) of compound 117b	685

xxxiv

APPENDIX 3

Figure 3.1	Semicarbazone 81 is shown with 50% probability ellipsoid	.688
Figure 3.2	Semicarbazone 81 (CCDC 686849)	.692

CHAPTER 3

Figure 3.1	Bicyclo[5.3.0]decane skeletons linked to acylcyclopentene 53 and	
	examples of hydroazulene natural products	.699

Figure A5.1.1	¹ H NMR (500 MHz, CDCl ₃) of compound 70w	800
Figure A5.1.2	Infrared spectrum (thin film/NaCl) of compound 70w	801
Figure A5.1.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 70w	801
Figure A5.2.1	¹ H NMR (500 MHz, CDCl ₃) of compound 53w	
Figure A5.2.2	Infrared spectrum (thin film/NaCl) of compound 53w	
Figure A5.2.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 53w	
Figure A5.3.1	¹ H NMR (500 MHz, CDCl ₃) of compound 72w	
Figure A5.3.2	Infrared spectrum (thin film/NaCl) of compound 72w	805
Figure A5.3.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 72w	805
Figure A5.4.1	¹ H NMR (500 MHz, C_6D_6) of compound 230a	
Figure A5.4.2	Infrared spectrum (thin film/NaCl) of compound 230a	
Figure A5.4.3	¹³ C NMR (125 MHz, C ₆ D ₆) of compound 230a	
Figure A5.5.1	¹ H NMR (500 MHz, C_6D_6) of compound 230b	808
Figure A5.5.2	Infrared spectrum (thin film/NaCl) of compound 230b	
Figure A5.5.3	¹³ C NMR (125 MHz, C ₆ D ₆) of compound 230b	
Figure A5.6.1	¹ H NMR (500 MHz, CDCl ₃) of compound 223	810
Figure A5.6.2	Infrared spectrum (thin film/NaCl) of compound 223	811
Figure A5.6.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 223	811
Figure A5.7.1	¹ H NMR (500 MHz, CDCl ₃) of compound 235	
Figure A5.7.2	Infrared spectrum (thin film/NaCl) of compound 235	
Figure A5.7.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 235	
Figure A5.8.1	¹ H NMR (500 MHz, C_6D_6) of compound 249	
Figure A5.8.2	Infrared spectrum (thin film/NaCl) of compound 249	815
Figure A5.9.1	¹ H NMR (500 MHz, C_6D_6) of compound 250	816
Figure A5.9.2	Infrared spectrum (thin film/NaCl) of compound 250	
Figure A5.9.3	¹³ C NMR (125 MHz, C ₆ D ₆) of compound 250	817
Figure A5.10.1	¹ H NMR (500 MHz, CDCl ₃) of compound 251	818
Figure A5.10.2	Infrared spectrum (thin film/NaCl) of compound 251	819
Figure A5.10.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 251	819
Figure A5.11.1	¹ H NMR (500 MHz, CDCl ₃) of compound 252	
Figure A5.11.2	Infrared spectrum (thin film/NaCl) of compound 252	
Figure A5.11.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 252	
Figure A5.12.1	¹ H NMR (500 MHz, CDCl ₃) of compound 253	

		xxxvi
Figure A5.12.2	Infrared spectrum (thin film/NaCl) of compound 253	823
Figure A5.13.1	¹ H NMR (500 MHz, C_6D_6) of compound 255	824
Figure A5.13.2	Infrared spectrum (thin film/NaCl) of compound 255	825
Figure A5.13.3	¹³ C NMR (125 MHz, C ₆ D ₆) of compound 255	825
Figure A5.13.4	NOESY NMR (500 MHz, C_6D_6) of compound 255	826
Figure A5.14.1	¹ H NMR (500 MHz, CDCl ₃) of compound 264	827
Figure A5.14.2	Infrared spectrum (thin film/NaCl) of compound 264	828
Figure A5.14.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 264	828
Figure A5.15.1	¹ H NMR (500 MHz, CDCl ₃) of compound 256	829
Figure A5.15.2	Infrared spectrum (thin film/NaCl) of compound 256	830
Figure A5.15.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 256	830
Figure A5.16.1	¹ H NMR (500 MHz, C ₆ D ₆) of compound 144b	831
Figure A5.16.2	Infrared spectrum (thin film/NaCl) of compound 144b	832
Figure A5.16.3	13 C NMR (125 MHz, C ₆ D ₆) of compound 144b	832
Figure A5.16.4	HSQC NMR (400 MHz, C_6D_6) of compound 144b	833
Figure A5.17.1	¹ H NMR (500 MHz, C_6D_6) of compound 257a	834
Figure A5.17.2	Infrared spectrum (thin film/NaCl) of compound 257a	835
Figure A5.17.3	¹³ C NMR (125 MHz, C_6D_6) of compound 257a	835
Figure A5.17.4	NOESY NMR (500 MHz, C_6D_6) of compound 257a	836
Figure A5.18.1	¹ H NMR (500 MHz, C_6D_6) of compound 257b	837
Figure A5.18.2	Infrared spectrum (thin film/NaCl) of compound 257b	838
Figure A5.18.3	^{13}C NMR (125 MHz, C ₆ D ₆) of compound 257b	838
Figure A5.18.4	NOESY NMR (500 MHz, C_6D_6) of compound 257b	839
Figure A5.19.1	¹ H NMR (500 MHz, CDCl ₃) of compound 259	840
Figure A5.19.2	Infrared spectrum (thin film/NaCl) of compound 259	841
Figure A5.19.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 259	841
Figure A5.19.4	NOESY NMR (500 MHz, CDCl ₃) of compound 259	842
Figure A5.20.1	¹ H NMR (500 MHz, CDCl ₃) of compound 260	843
Figure A5.20.2	Infrared spectrum (thin film/NaCl) of compound 260	844
Figure A5.20.3	13 C NMR (125 MHz, CDCl ₃) of compound 260	844
Figure A5.21.1	¹ H NMR (500 MHz, CDCl ₃) of compound 262	845
Figure A5.21.2	Infrared spectrum (thin film/NaCl) of compound 262	846
Figure A5.21.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 262	846
Figure A5.22.1	¹ H NMR (500 MHz, $CDCl_3$) of compound 142	847
Figure A5.22.2	Infrared spectrum (thin film/NaCl) of compound 142	848

Figure A5.22.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 142	848
Figure A5.22.4	HSQC NMR (500 MHz, CDCl ₃) of compound 142	849
Figure A5.23.1	¹ H NMR (500 MHz, CDCl ₃) of compound 261	850
Figure A5.23.2	Infrared spectrum (thin film/NaCl) of compound 261	851
Figure A5.24.1	¹ H NMR (500 MHz, C_6D_6) of compound 143	852
Figure A5.24.2	Infrared spectrum (thin film/NaCl) of compound 143	853
Figure A5.24.3	13 C NMR (125 MHz, C ₆ D ₆) of compound 143	853
Figure A5.24.4	HSQC NMR (500 MHz, C_6D_6) of compound 143	854
Figure A5.24.5	HSQC NMR (500 MHz, C_6D_6) of compound 143	855
Figure A5.24.6	HMBC NMR (500 MHz, C_6D_6) of compound 143	856
Figure A5.25.1	¹ H NMR (500 MHz, CDCl ₃) of compound 263	857
Figure A5.25.2	Infrared spectrum (thin film/NaCl) of compound 263	858
Figure A5.25.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 263	858
Figure A5.26.1	¹ H NMR (500 MHz, CDCl ₃) of compound 145	859
Figure A5.26.2	Infrared spectrum (thin film/NaCl) of compound 145	
Figure A5.26.3	¹³ C NMR (125 MHz, CDCl ₃) of compound 145	860

APPENDIX 6

Figure A6.1 Diol 262	
-----------------------------	--

xxxvii

LIST OF SCHEMES

CHAPTER 1

Scheme 1.1	Comparison of allylic alkylation of ketones, lactams, and imides3
Scheme 1.2	Various enolate precursors investigated in the Tsuji reaction4
Scheme 1.3	Pd-catalyzed asymmetric allylic alkylations performed by Stoltz and Trost5
Scheme 1.4	Preparation of enaminone alkylation precursors9
Scheme 1.5	Asymmetric allylic alkylation of vinylogous esters performed by Trost14
Scheme 1.6	Asymmetric allylic alkylation of vinylogous thioesters performed by $\ensuremath{Trost}\xspace$ 15
Scheme 1.7	Alkylation of carbazolone (Lupton, $R^1 = Boc$; Shao, $R^1 = Bn$) and indolone
	(Lupton) substrates reported in 201316
Scheme 1.8	Derivatization of cyanides ${\bf 35g}$ and ${\bf h}$ to alkaloid natural products16
Scheme 1.9	Impact of various sp ³ and sp ² acyl groups on allylic alkylation
	enantioselectivity for lactams17
Scheme 1.10	Allylic alkylation of cyclic imides
Scheme 1.11	Retrosynthetic approaches and successful route to benzoyl enone ${\bf 13b}$ 20
Scheme 1.12	Allylic alkylation of $\alpha^{\scriptscriptstyle \text{'}}\textsc{-}\ensuremath{functionalized}$ enones and diosphenol ethers21

CHAPTER 2

Scheme 2.1	Synthesis of parent vinylogous ester 66 and $\beta\text{-ketoester}$ substrates 24	.212
Scheme 2.2	Observation of the unusual reactivity of β -hydroxycycloheptanone 70a	.215
Scheme 2.3	Proposed ring contraction mechanism	.216
Scheme 2.4	Attempted Stork-Danheiser manipulations on unsubstituted rings	.217
Scheme 2.5	Organometallic addition to vinylogous ester 27a	.224
Scheme 2.6	Ring contraction screen on β -hydroxyketone $\textbf{70r}$.225
Scheme 2.7	Confirmation of absolute stereochemistry and multi-gram scale	
	reactions	.226
Scheme 2.8	Functionalization of multiple acylcyclopentene reactive sites	.230
Scheme 2.9	Route to (-)-9-epi-presilphiperfolan-1-ol (103) and	
	(-)-presilphiperfolan-1-ol (104)	.232
Scheme 2.10	Stepwise and one-pot formation of cycloheptenone 55a	.234

Scheme 2.11	Synthesis of β -substituted cycloheptenones	.235
Scheme 2.12	General reaction mechanism for carbonyl transposition	.235
Scheme 2.13	Different work-up conditions for carbonyl transposition employing sp ³	
	versus sp/sp ² carbon nucleophiles	.238
Scheme 2.14	Synthesis of additional [7–6] bicycles and [7–5–5] tricycles	.240

xxxix

CHAPTER 3

Scheme 3.1	¹⁴ C- and ¹³ C-labeled sodium acetate feeding experiments	702
Scheme 3.2	Biosynthetic route that rationalizes co-isolation of bisabolane (160),	
	acorane (163), and daucane sesquiterpenes	704
Scheme 3.3	Retrosynthetic analysis of previous routes to daucene	705
Scheme 3.4	First total synthesis by Naegeli and Kaiser in 1972	706
Scheme 3.5	Yamasaki's 1972 route to enantioenriched allylic alcohol 182 and	
	(–)-daucene (142)	707
Scheme 3.6	Mehta's 1988 acid-promoted cyclization approach to ()-daucene (142)	708
Scheme 3.7	Synthesis of (+)-daucene (142), (+)-carotol (153), and (–)-daucol (198) by	
	Levisalles in 1972	709
Scheme 3.8	Seto's 1985 total synthesis of racemic daucene (142)	710
Scheme 3.9	Retro-cycloaddition/aldol approach to (+)-daucene by Vandewalle	
	in 1987	711
Scheme 3.10	Little's 2008 synthesis of racemic daucene	713
Scheme 3.11	(a) Retrosynthetic analysis and (b) synthesis of enantioenriched	
	vinylogous ester 27a	714
Scheme 3.12	Challenges with early steps	715
Scheme 3.13	Acidic work-up screen	716
Scheme 3.14	Elimination pathways to undesired product, cycloheptenone 55	717
Scheme 3.15	Siloxyenone inspiration based on (a) previous results and (b) Kuwajima's	
	precedence with Grignard addition to five- and six-membered	
	siloxyenones	718
Scheme 3.16	New retrosynthetic analysis and challenges with acylation of	
	siloxyenone 232	719
Scheme 3.17	Synthesis and reactivity of siloxyenone 230a	720
Scheme 3.18	Two paths to [7–5] bicyclic enone 223	721

Scheme 3.19	Urones' various routes to dione 235 and enone 223	723
Scheme 3.20	Epoxidation routes to key intermediate enone 223	724
Scheme 3.21	Derivatization of enone 223 to sesquiterpene/diterpene cores and	
	conversion to (–)-epoxydaucenal B (144b)	726
Scheme 3.22	Efforts toward Δ^{11} -carotol (259)	727
Scheme 3.23	Olefination and hydrogenation steps toward ()-daucene (142)	729
Scheme 3.24	Endgame for (+)-daucenal (143) and (+)-14-p-anisoyloxydauc-4,8-diene	
	(145) and formal syntheses of epoxydaucenal A and B (144a and 144b)	730

APPENDIX 4

Scheme 4.1	Route to key intermediate enone 223	797
Scheme 4.2	Synthesis of (–)-epoxydaucenal B (144b)	797
Scheme 4.3	Synthesis of (+)-daucenal (142) and (+)-14-p-anisoyloxydauc-4,8-diene	
	(145) and formal syntheses of epoxydaucenal A and B (144a and 144b)	798

xl

LIST OF TABLES

CHAPTER 1

Table 1.1	Lactam allylic alkylation screen	6
Table 1.2	Enaminone allylic alkylation screen	10
Table 1.3	Alkylation of other vinylogous esters and thioesters	12
Table 1.4	Allylic alkylation of 2,3-dihydropyridin-4-ones	13
Table 1.5	Methods for the determination of enantiomeric excess (chiral HPLC	
	and SFC)	91

CHAPTER 2

Table 2.1	Solvent and ligand effects on enantioselective decarboxylative allylation	213
Table 2.2	Scope of the Pd-catalyzed enantioselective alkylation of cyclic vinylogous	
	esters	214
Table 2.3	Ring contraction optimization	219
Table 2.4	Ring contraction substrate scope	221
Table 2.5	Scope of organometallic addition/elimination	236
Table 2.6	Formation of bi- and tricyclic systems through ring-closing metathesis	239
Table 2.7	Sources of Grignard and organolithium reagents	377
Table 2.8	Methods for the determination of enantiomeric excess (Chiral HPLC	
	and SFC)	420
Table 2.9	Methods for the determination of enantiomeric excess (Chiral GC)	422

Table A3.1	Crystal data and structure refinement for semicarbazone 81 (CCDC	
	686849)	689
Table A3.2	Atomic coordinates (x 10^4) and equivalent isotropic displacement	
	parameters ($Å^2 x 10^3$) for semicarbazone 81 (CCDC 686849). U(eq) is	
	defined as the trace of the orthogonalized $\cup^{{\sf i}{\sf j}}$ tensor	692

Table A3.3	Bond lengths [Å] and angles [°] for semicarbazone $\boldsymbol{81}$ (CCDC 686849)694
Table A3.4	Anisotropic displacement parameters (Å $^2 \ge 10^4$) for semicarbazone 81
	(CCDC 686849). The anisotropic displacement factor exponent takes the
	form: –2p²[h²a*²U ¹¹ + + 2 h k a* b* U ¹²]696
Table A3.5	Hydrogen bonds for semicarbazone 81 (CCDC 686849) [Å and °]697

CHAPTER 3

Table 3.1	Samarium diiodide reduction of epoxide 250
Table 3.2	Comparison of ¹ H NMR data for synthetic and natural
	epoxydaucenal B (144b)779
Table 3.3	Comparison of ¹³ C NMR data for synthetic and natural
	epoxydaucenal B (144b)780
Table 3.4, Part 1	Comparison of ¹ H NMR Data for synthetic and reported daucene (142)781
Table 3.4, Part 2	Comparison of ¹ H NMR Data for synthetic and reported daucene (142)782
Table 3.5	Comparison of ¹³ C NMR data for synthetic and reported daucene (142)783
Table 3.6	Comparison of optical rotation data for synthetic and reported
	daucene (142)
Table 3.7	Comparison of ¹ H NMR data for synthetic and natural daucenal (143)
Table 3.8	Comparison of ¹³ C NMR data for synthetic and natural daucenal (143)785
Table 3.9	Comparison of ¹ H NMR data for synthetic and natural
	14- <i>p</i> -anisoyloxydauc-4,8-diene (145)

Table A6.1	Crystal data and structure analysis details for diol 2628	63
Table A6.2	Atomic coordinates (x 10^4) and equivalent isotropic displacement	
	parameters ($Å^2 x 10^3$) for diol 262 . U(eq) is defined as one third of the	
	trace of the orthogonalized \cup^{ij} tensor	65
Table A6.3	Bond lengths [Å] and angles [°] for diol 2628	66
Table A6.4	Anisotropic displacement parameters ($Å^2 \times 10^4$) for diol 262 . The	
	anisotropic displacement factor exponent takes the form:	
	$-2p^{2}[h^{2}a^{*2}U^{11} + + 2 h k a^{*} b^{*} U^{12}]8$	69

Table A6.5	Hydrogen coordinates (x 10^3) and isotropic displacement parameters	
	$(Å^2 \times 10^3)$ for diol 262	370
Table A6.6	Hydrogen bonds for diol 262 [Å and °]	371

Table A7.1	Notebook cross-reference for compounds in Chapter 1	873
Table A7.2	Notebook cross-reference for compounds in Chapter 2	877
Table A7.3	Notebook cross-reference for compounds in Chapter 3	887

LIST OF ABBREVIATIONS

$[\alpha]_{D}$	angle of optical rotation of plane-polarized light
Å	angstrom(s)
<i>p</i> -ABSA	para-acetamidobenzenesulfonyl azide
Ac	acetyl
AIBN	azobisisobutyronitrile
APCI	atmospheric pressure chemical ionization
app	apparent
aq	aqueous
Ar	aryl group
At	benztriazolyl
atm	atmosphere(s)
BHT	2,6-di- <i>tert</i> -butyl-4-methylphenol (" <u>b</u> utylated <u>h</u> ydroxy <u>t</u> oluene")
BINAP	(1,1'-binaphthalene-2,2'-diyl)bis(diphenylphosphine)
Bn	benzyl
Boc	tert-butoxycarbonyl
bp	boiling point
br	broad
Bu	butyl
<i>i</i> -Bu	iso-butyl
<i>n</i> -Bu	butyl or <i>norm</i> -butyl
<i>t</i> -Bu	tert-butyl
Bz	benzoyl

С	concentration of sample for measurement of optical rotation
¹³ C	carbon-13 isotope
¹⁴ C	carbon-14 isotope
/C	supported on activated carbon charcoal
°C	degrees Celcius
calc'd	calculated
CAN	ceric ammonium nitrate
Cbz	benzyloxycarbonyl
CCDC	Cambridge Crystallographic Data Centre
CDI	1,1'-carbonyldiimidazole
cf.	consult or compare to (Latin: confer)
cm^{-1}	wavenumber(s)
cod	1,5-cyclooctadiene
comp	complex
conc.	concentrated
Су	cyclohexyl
CSA	camphor sulfonic acid
d	doublet
d	dextrorotatory
D	deuterium
DABCO	1,4-diazabicyclo[2.2.2]octane
dba	dibenzylideneacetone
DBDMH	N,N'-dibromo-5,5-dimethylhydantoin

DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	dicyclohexyl carbodiimide
DCE	1,2-dichloroethane
DDQ	2,3-dichloro-5,6-dicyanobenzoquinone
de	diastereomeric excess
DIAD	diisopropyl azodicarboxylate
DIBAL	diisobutyl aluminum hydride
DMA	dimethylacetamide
DMAD	dimethyl acetylenedicarboxylate
DMAP	4-dimethylaminopyridine
DME	1,2-dimethoxyethane
DMF	N,N-dimethylformamide
DMP	Dess-Martin periodinane (1,1,1-Triacetoxy-1,1-dihydro-
	1,2-benziodoxol-3(1H)-one)
DMSO	dimethylsulfoxide
DMTS	dimethylthexylsilyl
DPPA	diphenylphosphorylazide
dppp	1,3-bis(diphenylphosphino)propane
dr	diastereomeric ratio
DTT	dithiothreitol
ee	enantiomeric excess
Е	methyl carboxylate (CO ₂ CH ₃)
E ⁺	electrophile

Ε	trans (entgegen) olefin geometry
EDCI	N-(3-Dimethylaminopropyl)- N -2-ethylcarbodiimide hydrochloride
e.g.	for example (Latin: <i>exempli gratia</i>)
EI	electron impact
eq	equation
equiv	equivalent(s)
ESI	electrospray ionization
Et	ethyl
et al.	and others (Latin: et alii)
FAB	fast atom bombardment
Fmoc	fluorenylmethyloxycarbonyl
g	gram(s)
h	hour(s)
¹ H	proton
² H	deuterium
³ H	tritium
[H]	reduction
HATU	2-(7-aza-1 <i>H</i> -benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
HMDS	hexamethyldisilamide or hexamethyldisilazide
HMPT	hexamethylphosphoramide
hv	light
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectrometry

xlvii

Hz	hertz
IBX	2-iodoxybenzoic acid
IC ₅₀	half maximal inhibitory concentration (50%)
i.e.	that is (Latin: <i>id est</i>)
IR	infrared spectroscopy
J	coupling constant
k	rate constant
kcal	kilocalorie(s)
kg	kilogram(s)
KHMDS	potassium bis(trimethylsilyl)amide
L	liter or neutral ligand
l	levorotatory
LA	Lewis acid
LD ₅₀	median lethal dose (50%)
LDA	lithium diisopropylamide
LHMDS	lithium bis(trimethylsilyl)amide
LICA	lithium isopropylcyclohexylamide
LTMP	lithium 2,2,6,6-tetramethylpiperidide
m	multiplet or meter(s)
М	molar or molecular ion
т	meta
μ	micro
<i>m</i> -CPBA	meta-chloroperbenzoic acid

Me	methyl
mg	milligram(s)
MHz	megahertz
MIC	minimum inhibitory concentration
min	minute(s)
mL	milliliter(s)
MM	mixed method
mol	mole(s)
MOM	methoxymethyl
mp	melting point
Ms	methanesulfonyl (mesyl)
MS	molecular seives
m/z	mass-to-charge ratio
Ν	normal or molar
NBS	N-bromosuccinimide
nm	nanometer(s)
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect
NOESY	nuclear Overhauser enhancement spectroscopy
Nu ⁻	nucleophile
0	ortho
[0]	oxidation
<i>t</i> -Oct	tert-octyl (1,1,3,3-tetramethylbutyl)

р	para
PCC	pyridinium chlorochromate
PDC	pyridinium dichromate
Ph	phenyl
рН	hydrogen ion concentration in aqueous solution
Piv	pivalate
pK _a	acid dissociation constant
PKS	polyketide synthase
РМВ	para-methoxybenzyl
pmdba	bis(4-methoxybenzylidene)acetone
ppm	parts per million
PPTS	pyridinium para-toluenesulfonate
Pr	propyl
<i>i</i> -Pr	isopropyl
<i>n</i> -Pr	propyl or <i>norm</i> -propyl
psi	pounds per square inch
ру	pyridine
q	quartet
R	alkyl group
R	rectus
RCM	ring-closing metathesis
REDAL	sodium bis(2-methoxyethoxy)aluminum hydride
ref.	reference

R_{f}	retention factor
S	singlet or seconds
S	sinister
sat.	saturated
SEM	2-(trimethylsilyl)ethoxymethyl
SOD	superoxide dismutase
t	triplet
TBAF	tetra- <i>n</i> -butylammonium fluoride
TBAT	tetra-n-butylammonium difluorotriphenylsilicate
TBDPS	tert-butyldiphenylsilyl
ТВНР	tert-butyl hydroperoxide
TBS	tert-butyldimethylsilyl
TCA	trichloroacetic acid
temp	temperature
TES	triethylsilyl
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
TFAA	trifluoroacetic anhydride
TFE	2,2,2-trifluoroethanol
THF	tetrahydrofuran
THIQ	tetrahydroisoquinoline
TIPS	triisopropylsilyl
TLC	thin layer chromatography

TMEDA	N,N,N',N'-tetramethylethylenediamine
TMP	2,2,6,6-tetramethylpiperidine
TMS	trimethylsilyl
TOF	time-of-flight
tol	tolyl
Tr	triphenylmethane (trityl)
Troc	2,2,2-trichloroethoxycarbonyl
Ts	para-toluenesulfonyl (tosyl)
UV	ultraviolet
w/v	weight per volume
v/v	volume per volume
Х	anionic ligand or halide
Ζ	cis (zusammen) olefin geometry