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Chapter 5

Low-rank approximation with
subsampled unitary transformations

5.1 Introduction

In this chapter, we analyze the theoretical performance of a randomized low-rank approximation

algorithm introduced in [WLRT08] and analyzed in [WLRT08, HMT11, NDT09]. Our analysis

often provides sharper approximation bounds than those in [WLRT08, HMT11, NDT09]. We

provide bounds on the residual and forward errors of this approximation algorithm in the spectral

and Frobenius norms, and provide experimental evidence that this low-rank approximation

algorithm performs as well as a more expensive low-rank approximation algorithm based upon

projections onto uniformly distributed random subspaces1. Further, we provide approximation

bounds for a variant of the algorithm that returns approximations with even lower rank.

The setting is as follows: fix A ∈ Rm×n and a target rank k ≤min{m, n}. We would like to

approximate A with a matrix X that has rank close to k, and we would like ‖A−X‖ξ to be within

a small multiplicative factor of the smallest error achievable when approximating Ak with a

rank-k matrix, for ξ= 2, F.

It is well-known that the rank-k matrix Ak that minimizes both the Frobenius and the

1The content of this chapter is adapted from the article [GB12] co-authored with Christos Boutsidis.
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spectral-norm approximation errors can be calculated using the singular value decomposition

(SVD) in O(mn min{m, n}) arithmetic operations, using classical so-called direct algorithms such

as QR iteration or Jacobi iteration [GV96]. Computing the full SVD is expensive when A is a

large matrix. In this case, it is often more efficient to use iterative projection methods (e.g. Krylov

subspace methods) to obtain approximations to Ak. It is difficult to state a precise guarantee

for the number of arithmetic operations carried out by Krylov methods, but one iteration of a

Krylov method requires Ω(mnk) operations (assuming A has no special structure which can be

exploited to speed up the computation of matrix–vector products). To obtain even an accurate

rank-1 approximation requires O(log n) iterations [KW92]. Thus, an optimistic estimate for the

number of operations required to compute approximate rank-k truncated SVDs using a Krylov

method is Ω(mnk log n).

Our discussion thus far has concerned only the arithmetic cost of computing truncated SVDs,

but an equally or more important issue is that of the communication costs: bandwidth costs

(proportional to the amount of times storage is accessed) and latency costs (proportional to

the cost of transferring the information over a network or through the levels of a hierarchical

memory system) [BDHS11]. If the algorithm is to be parallelized, then the complexity of the

required information interchange must also be taken into account.

The randomized algorithms considered in this chapter, Algorithms 5.1 and 5.2, are of

interest because they yield low-rank approximations after Ω(mnk max{log n, log k}) arithmetic

operations and have low communication costs. In particular, each element of A is accessed

only twice, and the algorithms are simple enough that they are amenable to straightforward

parallelization. The guarantees provided are probabilistic, and allow one to trade off between the

operation count of the algorithms and the accuracy and failure probabilities of the algorithms.

Both of the algorithms considered in this chapter are based on the intuition that, when
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Algorithm 5.1: Randomized approximate truncated SVD
Input: an m× n matrix A and an n× ` matrix S, where ` is an integer in [1, n].
Output: matrices Ũ, Σ̃, Ṽ constituting the SVD of PASA= ŨΣ̃ṼT .

1: Let Y= AS.
2: Compute the QR decomposition Y= QR.
3: Compute the SVD of QT A=WΣ̃ṼT .
4: Set Ũ= QW.

Algorithm 5.2: Rank-k randomized approximate truncated SVD
Input: an m× n matrix A, integers ` and k that satisfy ` > k and k ∈ [1, n], and an n× ` matrix

S.
Output: matrices Ũ, Σ̃, Ṽ constituting the SVD of ΠF

AS,k(A) = ŨΣ̃ṼT .

1: Let Y= AS.
2: Compute the QR decomposition Y= QR.
3: Compute the rank-k truncated SVD of QT A to obtain (QT A)k =WΣ̃ṼT .
4: Set Ũ= QW.

S ∈ Rn×` is randomly selected and ` is sufficiently larger than k, the range of the matrix AS

“captures” the top k-dimensional left singular space of A. When this phenomenon occurs, the

low-rank matrix formed by projecting A onto the range of AS should be almost as accurate an

approximation of A as is the optimal approximation Ak :

‖A− PASA‖ξ ≈ ‖A−Ak‖ξ for ξ= 2,F.

Algorithm 5.1 computes exactly this approximation, PASA. Note that this approximation may have

rank up to `, which may be much larger than k. Algorithm 5.2 instead returns the approximation

ΠF
AS,k(A), which is guaranteed to have rank at most k.

Unlike classical iterative methods for approximating the trucated SVD, which use as many

iterations as necessary to satisfy some convergence condition, Algorithms 5.1 and 5.2 use only

one matrix–matrix product AS to generate an approximate basis for the top left singular space

of A. Accordingly, the quality of approximations obtained using either of these algorithms is
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more dependent on the properties of A itself and the sampling matrix S than is the quality

of approximations derived from classical iterative methods. Thus it is important to supply

theoretical guarantees on the errors of the algorithms that identify which properties of A affect

the quality of the approximations, as well as to carry to empirical studies investigating the

influence of the choice of S.

Recent years have produced a large body of research on designing random sampling matrices

S. Some proposals for S include: (i) every entry of S takes the values +1,−1 with equal

probability [CW09, MZ11]; (ii) the entries of S are i.i.d. Gaussian random variables with zero

mean and unit variance [HMT11]; (iii) the columns of S are chosen independently from the

columns of the m×m identity matrix with probabilities that are proportional to the Euclidean

length of the columns of A [FKV98, DKM06b]; and (iv) S is designed carefully such that AS can

be computed in at most O(nnz(A)) arithmetic operations, where nnz(A) denotes the number of

non-zero entries in A [CW12].

In this chapter we take S to be a subsampled randomized Hadamard transform (SRHT)

matrix, i.e. S comprises a subset of the columns of a randomized Hadamard matrix (see

Definitions 5.1 and 5.2 below). This choice for S was introduced in [AC06].

Definition 5.1 (Normalized Walsh–Hadamard Matrix). Fix an integer n= 2p, for p = 1, 2, 3, ....

The (non-normalized) n× n matrix of the Hadamard-Walsh transform is defined recursively as,

Hn =











Hn/2 Hn/2

Hn/2 −Hn/2











, with H2 =











+1 +1

+1 −1











.

The n× n normalized matrix of the Walsh–Hadamard transform is equal to H= n−
1
2 Hn ∈ Rn×n.

Definition 5.2 (Subsampled Randomized Hadamard Transform (SRHT) matrix). Fix integers `



109

and n= 2p with ` < n and p = 1,2, 3, .... An SRHT matrix is an `× n matrix of the form

Θ=
Ç

n

`
·RHD;

• D ∈ Rn×n is a random diagonal matrix whose entries are independent random signs, i.e.

random variables uniformly distributed on {±1}.

• H ∈ Rn×n is a normalized Walsh–Hadamard matrix.

• R ∈ R`×n is a subset of ` rows from the n× n identity matrix, where the rows are chosen

uniformly at random and without replacement.

The choice of S as an SRHT matrix is particularly practical because the highly structured

nature of S can be exploited to reduce the time of computing AS from O(mn`) to O(mn log2 `).

Lemma 5.3 (Fast Matrix–Vector Multiplication, Theorem 2.1 in [AL08]). Given x ∈ Rn and

` < n, one can construct Θ ∈ R`×n and compute Θx in at most 2n log2(`+ 1)) operations.

Beyond the SRHT. The SRHT is defined only when the matrix dimension is a power of two. An

alternative option is to use other structured orthonormal randomized transforms such as the real

Fourier transform (DFT), the discrete cosine transform (DCT) or the discrete Hartley transform

(DHT) [WLRT08, NDT09, RT08, AMT10], whose entries are on the order of n−1/2. None of

these transforms place restrictions on the size of the matrix being approximated. With minimal

effort, the results of this chapter can be extended to encompass these transforms. Specifically,

the statements of Lemma 5.5 and Lemma 5.8 in this chapter would need to be modified slightly

to account for the difference in the transform; essentially, the constants present in the statements

of the Lemmas would change. These two lemmas isolate the effects of the particular choice of
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S from the remainder of the arguments used in this chapter, so the changes would propagate,

mutatis mutandis, throughout the remaining results in this chapter.

We note, further, that Algorithms 5.1 and 5.2 can be modified to use Y= (AAT )pAS, where

p ≥ 1 is an integer, as an approximate basis for the top left singular space of A. Approximations

to Ak generated using this choice of Y are more accurate than those generated using our choice

of AS, but one loses the speed conferred by taking S to be an SRHT matrix: after the first

multiplication AS, all the matrix multiplications required to form Y are dense and unstructured.

Outline. In Section 5.2, we present a portion of our results on the quality of SRHT low-

rank approximations and compare them to prior results in the literature. Section 5.3 presents

new results on the application of SRHTs to general matrices and the approximation of matrix

multiplication using SRHTs under the Frobenius norm. Section 5.4 contains the statements and

proofs of our main results. We conclude the chapter with an experimental evaluation of the

SRHT low-rank approximation algorithms in Section 5.5.

5.2 Low-rank matrix approximation using SRHTs

Using an SRHT matrix (see Definition 5.2), one can quickly construct low-rank approximations of

a given matrix A using Algorithms 5.1 and 5.2. Our main results, Theorems 5.13 and 5.14, given

in Section 5.4, respectively provide theoretical guarantees on the spectral and Frobenius-norm

residual and forward errors of these approximations. To facilitate the comparison of our results

with prior work, we highlight our residual error guarantees for Algorithm 5.1.

Theorem 5.4. Assume n is a power of 2. Let A ∈ Rm×n have rank ρ and fix an integer k satisfying

2 ≤ k < ρ. Let 0 < ε < 1/3 be an accuracy parameter, 0 < δ < 1 be a failure probability, and
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where the notation Avg(·) indicates the average of a quantity over all the entries of A.

Their choice of p jk, in particular the insertion of the (8 log n)4/n factor, is an artifact of their

method of proof. Instead, we consider a scheme which compares the magnitudes of a jk and b to

determine p jk. Introduce the quantity R=maxa jk 6=0 b/|a jk| to measure the spread of the entries

in A, and take

X jk ∼















a jk

p jk
Bern(p jk), where p jk =

pa2
jk

pa2
jk+b2 , a jk 6= 0

0, a jk = 0.

With this scheme, Var(X jk) = 0 when a jk = 0, otherwise Var(X jk) = b2/p. Likewise, E(X jk −

a jk)4 = 0 if a jk = 0, otherwise

E(X jk − a jk)
4 ≤ Var(X jk)



X jk − a jk





2
∞ =

b2

p
max

(

|a jk|, |a jk|

 

pa2
jk + b2

pa2
jk

− 1

!)2

≤
b4

p2 R2,

so

E‖A−X‖ ≤ C

 

b

r

n

p
+ b

r

m

p
+ b

r

R

p
4pmn

!

≤ C(2+
p

R)b

r

n

p
.

Applying Corollary 3.16, we find that the error satisfies

P
¨

‖A−X‖> C(2+
p

R)b

r

n

p
(ε+ 1)

«

≤ e−ε
2C2(2+

p
R)2pn/16,

with probability at least 1− exp(−C2(2+
p

R)2pn/16),

‖A−X‖ ≤ 2C(2+
p

R)b

r

n

p
.

Thus, Theorem 3.14 and Achlioptas and McSherry’s scheme-specific analysis yield results of the

same order in n and p. As before, we see that our bound holds with higher probability and over
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a larger range of n. Furthermore, since the expected number of nonzero entries in X satisfies

∑

jk
p jk =

∑

jk

pa2
jk

pa2
jk + b2

≤ pnm×Avg
�

�a jk

b

�2�

,

we have established a smaller limit on the expected number of nonzero entries.

3.6.1.3 A scheme which simultaneously sparsifies and quantizes

Finally, we use Theorem 3.15 to estimate the error of the scheme from [AHK06] which simulta-

neously quantizes and sparsifies. Fix δ > 0 and consider

X jk =















sgn(a jk)
δp
n

Bern
�

|a jk|
p

n

δ

�

, |a jk| ≤
δp
n

a jk, otherwise.

Then Var(X jk) = 0 if |a jk| ≥ δ/
p

n, otherwise

Var(X jk) = |a jk|3
p

n

δ
− 2a2

jk + |a jk|
δ
p

n
≤
δ2

n
.

The fourth moment term is zero when |a jk| ≥ δ/
p

n, and when |a jk|< δ/
p

n,

E(X jk − a jk)
4 = |a jk|5

p
n

δ
− 4a4

jk + 6|a jk|3
δ
p

n
− 4a2

jk

δ2

n
+ |a jk|

�

δ
p

n

�3

≤ 8
δ4

n2 .

This gives the estimates

E‖A−X‖ ≤ C
�

p
n
δ
p

n
+
p

m
δ
p

n
+ 2

δ
p

n
4pmn

�

≤ 4Cδ
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and

P
�

‖A−X‖> 4Cδ(γ+ 1)
	

≤ e−γ
2C2n.

Taking γ= 1, we see that with probability at least 1− exp(−C2n),

‖A−X‖ ≤ 8Cδ.

Let S =
∑

j,k |A jk|, then appealing to Lemma 1 in [AHK06], we find that X has O
�p

nS
γ

�

nonzero

entries with probability at least 1− exp
�

−Ω
�p

nS
γ

��

.

Arora, Hazan, and Kale establish that this scheme guarantees ‖A−X‖= O(δ) with proba-

bility at least 1− exp(−Ω(n)), so we see that our general bound recovers a bound of the same

order.

3.7 Comparison with later bounds

The papers [NDT10, DZ11, AKL13], written after the results in this chapter were obtained,

present alternative schemes for sparsification and quantization.

The scheme presented in [NDT10] sparsifies a matrix by zeroing out all sufficiently small

entries of A, keeping all sufficiently large entries, and randomly sampling the remaining entries of

the matrix with a probability depending on their magnitudes. More precisely, given a parameter

s > 0, it generates an approximation whose entries are distributed as

X jk =































0, a2
jk ≤ (log2(n)/n)‖A‖2F/s

a jk a2
jk ≥ ‖A‖

2
F/s

(a jk/p jk)Bern(p jk), otherwise, where p jk = sa2
jk/‖A‖

2
F.
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The analysis offered guarantees that if s = Ω(ε−2n log3 n), then with probability at least 1− n−1,

‖A− X‖2 ≤ ε and, in expectation, X has less than 2s nonzero entries. It is not clear whether

or not this scheme can be analyzed using Theorem 3.14. It is straightforward to establish that

Var(X jk)≤ ε2/(n log3 n) for this scheme, but obtaining a sufficiently small upper bound on the

fourth moment E(X jk − a jk)4 is challenging. In particular, the estimate

E(X jk − a jk)
4 ≤ Var(X jk)‖X jk − a jk‖∞

gives an upper bound on the order of εa2
jkn/ log5 n, which is sufficient only to establish a much

weaker guarantee on the error E‖A−X‖2 than the guarantee given in [NDT10].

The scheme introduced in [DZ11] first zeroes out all entries of A ∈ Rn×n of sufficiently small

magnitude, then samples elements from A in s i.i.d. trials with replacement. The elements are

selected with probabilities proportional to their squared magnitudes. Thus, the approximant can

be written in the form

X=
1

s

∑s

t=1

a jt kt

p jt kt

e jt e
T
kt

,

where ( jt , kt) is the index of the element of A selected in the tth trial, p jk = a2
jk/‖A‖

2
F is the

probability that the entry a jk is selected, and e j denotes the jth standard basis vector in n.

Clearly X has at most s nonzero entries. Let s = Ω(ε−2n log(n)‖A‖2F). Then the authors show

that, with probability at least 1− n−1, the error of the approximation satisfies ‖A−X‖2 ≤ ε. This

scheme is not easily analyzable using our Theorem 3.14. Since the approximant X is a sum of

rank-one matrices, it is most natural to analyze its approximation error using tail bounds for

sums of independent random matrices. Indeed, the authors of [DZ11] use a matrix Bernstein

inequality to provide their results.

Finally, the scheme presented in [AKL13] computes an approximation of the same form as
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the scheme introduced in [DZ11], but samples entries of A with probabilities proportional their

absolute values. That is,

X=
1

s

∑s

t=1

a jt kt

p jt kt

e jt e
T
kt

,

where p jk = |a jk|/
∑

pq |apq|. Again, this scheme is not amenable to analysis using Theorem 3.14.

Recall that A(k) denotes the kth row of A. The authors establish that, when

s = Ω
�

ε−2 log(n/δ)
�

∑

jk
|A jk|

�

max
k
‖A(k)‖1

�

,

the error bound ‖A−X‖2 ≤ ε is satisfied with probability at least 1−δ. The approximant X has,

in expectation, at most 2s nonzero entries.

Comparing the extents to which we were able to reproduce the guarantees of the spar-

sification schemes introduced in [AM01, AHK06, AM07, NDT10, DZ11, AKL13], we see that

Theorem 3.14 sometimes can recover competitive guarantees on the approximation errors of

element-wise sparsification schemes in which X jk is directly related to a jk through a simple

expression. When X is more naturally represented as a sum of rank-1 matrices, Theorem 3.14 is

not easily applicable.
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Chapter 4

Preliminaries for the investigation of
low-rank approximation algorithms

This chapter consolidates probabilistic and linear algebraic tools used in Chapters 5 and 6. We

also establish two lemmas of independent interest: the first, Lemma 4.3, is an exponential tail

bound on the Frobenius-norm error incurred when approximating the product of two matrices

using randomized column and row sampling without replacement; the second, Lemma 4.9, is a

deterministic bound on the forward errors of column-based low-rank approximations.

4.1 Probabilistic tools

In this section, we review several tools that are used to deal with random matrices and more

generally, random processes.

4.1.1 Concentration of convex functions of Rademacher variables

Rademacher random variables take the values±1 with equal probability. Rademacher vectors are

vectors of i.i.d. Rademacher random variables. Rademacher vectors often play a crucial role in

the construction of dimension reduction maps, an area where the strong measure concentration

properties of Rademacher sums are often exploited. The following result states a large-deviation
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property of convex Lipschitz functions of Rademacher vectors: namely, these functions tend to

be not much larger than their expectations.

Lemma 4.1 (A large deviation result for convex Lipschitz functions of Rademacher random

variables [Corollary 1.3 ff. in [Led96]] ). Suppose f : Rn→ R is a convex function that satisfies

the Lipschitz bound

| f (x)− f (y)| ≤ L


x− y




2 for all x,y.

Let ε ∈ Rn be a Rademacher vector. For all t ≥ 0,

P
�

f (ε)≥ E
�

f (ε)
�

+ Lt
	

≤ e−t2/8.

4.1.2 Chernoff bounds for sums of random matrices sampled without replace-

ment

Classical Chernoff bounds provide tail bounds for sums of nonnegative random variables. Their

matrix analogs provide tail bounds on the eigenvalues and singular values of sums of positive-

semidefinite random matrices. Matrix Chernoff bounds are particularly useful for analyzing

algorithms involving randomized column-sampling. Most matrix Chernoff bounds available in

the literature require the summands to be independent. Indeed, the Chernoff bounds developed

in Chapter 2 bound the eigenvalues of a sum of independent random Hermitian matrices.

However, occasionally one desires Chernoff bounds that do not require the summands to be

independent. The following Chernoff bounds are useful in the case where the summands are

drawn without replacement from a set of bounded random matrices.

Lemma 4.2 (Matrix Chernoff Bounds, Theorem 2.2 in [Tro11b]). Let X be a finite set of
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positive-semidefinite matrices with dimension k, and suppose that

max
X∈X

λmax (X)≤ B.

Sample {X1, . . . ,X`} uniformly at random from X without replacement. Compute

µmax = ` ·λ1(EX1) and µmin = ` ·λk(EX1).

Then

P
§

λ1

�

∑

j
X j

�

≥ (1+ ν)µmax

ª

≤ k ·
�

eν

(1+ ν)1+ν

�µmax/B

for ν ≥ 0, and

P
§

λk

�

∑

j
X j

�

≤ (1− ν)µmin

ª

≤ k ·
�

e−ν

(1− ν)1−ν

�µmin/B

for ν ∈ [0, 1).

We also use the following standard simplification of the lower Chernoff bound, which holds

under the setup of Lemma 4.2:

P
§

λk

�

∑

j
X j

�

≤ εµmin

ª

≤ k · e−(1−ε)
2µmin/(2B) for ε ∈ [0,1]. (4.1.1)

4.1.3 Frobenius-norm error bounds for matrix multiplication

We now establish a tail bound on the Frobenius-norm error of a simple approximate matrix mul-

tiplication scheme based upon randomized column and row sampling. This simple approximate

multiplication scheme is a staple in randomized numerical linear algebra, and variants have

been analyzed multiple times [DK01, DKM06a, Sar06]. The result derived here differs in that it

applies to the sampling without replacement model, and it provides bounds on the error that

hold with high probability, rather than simply an estimate of the expected error.
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Lemma 4.3 (Matrix Multiplication). Let X ∈ Rm×n and Y ∈ Rn×p. Fix ` ≤ n. Select uniformly

at random and without replacement ` columns from X and the corresponding rows from Y and

multiply the selected columns and rows with
p

n/`. Let X̂ ∈ Rm×` and Ŷ ∈ R`×p contain the scaled

columns and rows, respectively. Choose

σ2 ≥
4n

`

∑n

i=1
‖X(i)‖22‖Y

(i)‖22 and B ≥
2n

`
max

i
‖X(i)‖2‖Y(i)‖2.

Then if 0≤ t ≤ σ2/B,

P
¦

X̂Ŷ−XY




F ≥ t +σ
©

≤ exp

�

−
t2

4σ2

�

.

To prove Lemma 4.3, we use the following vector Bernstein inequality for sampling without

replacement in Banach spaces; this result follows directly from a similar inequality for sampling

with replacement established by Gross in [Gro11]. Again, vector Bernstein inequalities have

been derived by multiple authors [LT91, BLM03, Rec11, Tro12, CP11, Gro11]; the value of this

specific result is that it applies to the sampling without replacement model.

Lemma 4.4. Let V be a collection of n vectors in a Hilbert space with norm ‖·‖2 . Choose V1, . . . ,V`

from V uniformly at random without replacement. Choose V′1, . . . ,V′` from V uniformly at random

with replacement. Let

µ= E






∑`

i=1
(V′i −EV

′
i)






2

and set

σ2 ≥ 4`E


V′1




2
2 and B ≥ 2 max

V∈V
‖V‖2 .
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If 0≤ t ≤ σ2/B, then

P
§





∑`

i=1
Vi − `EV1







2
≥ µ+ t

ª

≤ exp

�

−
t2

4σ2

�

.

Proof. We proceed by developing a bound on the moment generating function (mgf) of







∑`

i=1
Vi − `EV1







2
−µ.

This mgf is controlled by the mgf of a similar sum where the vectors are sampled with replace-

ment. That is, for λ≥ 0,

Eexp
�

λ ·






∑`

i=1
Vi − `EV1







2
−λµ

�

≤ Eexp
�

λ ·






∑`

i=1
V′i − `EV1







2
−λµ

�

. (4.1.2)

This follows from a classical observation due to Hoeffding [Hoe63] that for any convex real-

valued function g,

Eg
�

∑`

i=1
Vi

�

≤ Eg
�

∑`

i=1
V′i

�

.

The paper [GN10] provides an alternate exposition of this fact. Specifically, take g(V) =

exp
�

λ


V− `EV1





2−λµ
�

to obtain the inequality of mgfs asserted in (4.1.2).

In the proof of Theorem 12 in [Gro11], Gross establishes that any random variable Z whose

mgf is less than the righthand side of (4.1.2) satisfies a tail inequality of the form

P
�

Z ≥ µ+ t
	

≤ exp

�

−
t2

4s2

�

(4.1.3)

when t ≤ s2/M , where

s2 ≥
∑`

i=1
E


V′i −EV
′
1





2
2
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and


V′i −EV
′
1





2 ≤ M almost surely for all i = 1, . . . ,`. To apply this result, note that for all

i = 1, . . . ,`,



V′i −EV
′
1





2 ≤ 2max
V∈V
‖V‖2 = B.

Take V′′1 to be an i.i.d. copy of V′1 and observe that, by Jensen’s inequality,

∑`

i=1
E


V′i −EV
′
1





2
2 = `E



V′1−EV
′
1





2
2

≤ `E


V′1−V′′1




2
2 ≤ `E(



V′1




2+


V′′1




2)
2

≤ 2`E


V′1




2
2+


V′′1




2
2

= 4`E


V′1




2
2 ≤ σ

2.

The bound given in the statement of Lemma 4.4 when we take s2 = σ2 and M = B in (4.1.3).

With this Bernstein bound in hand, we proceed to the proof of Lemma 4.3. Let vec : Rm×n→

Rmn denote the operation of vectorization, which stacks the columns of a matrix A ∈ Rm×n to

form the vector vec(A).

Proof of Lemma 4.3. Let V be the collection of vectorized rank-one products of columns of

p

n/` ·X and rows of
p

n/` · Y. That is, take

V =
�

n

`
vec(X(i)Y

(i))
�n

i=1
.

Sample V1, . . . ,V` uniformly at random from V without replacement, and observe that EVi =

`−1vec(XY). With this notation,



X̂Ŷ−XY




F ∼






∑`

i=1
(Vi −EVi)







2
,
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where ∼ refers to identical distributions. Therefore any probabilistic bound developed for the

right-hand side quantity holds for the left-hand side quantity. The conclusion of the lemma

follows when we apply Lemma 4.4 to bound the right-hand side quantity.

We calculate the variance-like term in Lemma 4.4,

4`E


V1





2
2 = 4`

1

n

n
∑

i=1

n2

`2 ‖X(i)‖
2
2‖Y

(i)‖22 = 4
n

`

n
∑

i=1

‖X(i)‖22‖Y
(i)‖22 ≤ σ

2.

Now we consider the expectation

µ= E






∑`

i=1
(V′i −EV

′
i)






2
.

In doing so, we will use the notation E [C |A, B, . . .] to denote the conditional expectation of

a random variable C with respect to the random variables A, B, . . . . Recall that a Rademacher

vector is a random vector whose entries are independent and take the values ±1 with equal

probability. Let ε be a Rademacher vector of length ` and sample V′1, . . . ,V′` and V′′1 , . . . ,V′′`

uniformly at random from V with replacement. Now µ can be bounded as follows:

µ = E






∑`

i=1
(V′i −EV

′
i)






2

≤ E
�





∑`

i=1
(V′i −V′′i )







2

�

� {V′i}, {V
′′
i }
�

= E
�





∑`

i=1
εi(V

′
i −V′′i )







2

�

� {V′i}, {V
′′
i },ε

�

≤ 2E
�





∑`

i=1
εiV
′
i







2

�

� {V′i},ε
�

≤ 2

r

E
�







∑`

i=1
εiV
′
i







2

2

�

� {V′i},ε
�

= 2

Ç

E
�

E
�

∑`

i, j=1
εiε jV

′
i
T V′j |ε

�

�

� {V′i}
�

= 2
q

E
∑`

i=1



V′i




2
2.
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The first inequality is Jensen’s, and the following equality holds because the components of the

sequence {V′i−V′′i } are symmetric and independent. The next two manipulations are the triangle

inequality and Jensen’s inequality. This stage of the estimate is concluded by conditioning and

using the orthogonality of the Rademacher variables. Next, the triangle inequality and the fact

that E


V′1




2
2 = E



V1





2
2 allow us to further simplify the estimate of µ :

µ≤ 2
q

E
∑`

i=1



V′i




2
2 = 2

q

`E


V1





2
2 ≤ σ.

We also calculate the quantity

2 max
V∈V
‖V‖2 =

2n

`
max

i
‖X(i)‖2‖Y(i)‖2 ≤ B.

The tail bound given in the statement of the lemma follows from applying Lemma 4.4 with our

estimates for B, σ2, and µ.

4.2 Linear Algebra notation and results

In subsequent chapters, we use the following partitioned compact SVD to state results for

rectangular matrices A with rank(A) = ρ :

A= UΣVT =

�

k ρ−k

U1 U2

�











k ρ−k

Σ1

Σ2





















VT
1

VT
2











. (4.2.1)

Here, Σ1 contains the k largest singular values of A and the columns of U1 and V1 respec-

tively span top k-dimensional left and right singular spaces of A. The matrix Ak = U1Σ1VT
1 is

the optimal rank-k approximation to A, and Aρ−k = A− Ak = U2Σ2VT
2 . The Moore-Penrose
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pseudoinverse of A is denoted by A†.

When A is a positive-semidefinite matrix, U = V and (4.2.1) becomes the following parti-

tioned eigenvalue decomposition:

A= UΣUT =

�

k ρ−k

U1 U2

�











k ρ−k

Σ1

Σ2





















UT
1

UT
2











. (4.2.2)

The eigenvalues of an n× n symmetric matrix A are ordered λ1(A)≥ · · · ≥ λn(A).

The orthoprojector onto the column space of a matrix A is written PA and satisfies

PA = AA† = A(AT A)†AT .

Let S be a k-dimensional subspace of Rn and PS denote the projection onto S . Then the

coherence of S is

µ(S ) =
n

k
maxi(PS )ii .

The coherence of a matrix U ∈ Rn×k with orthonormal columns is the coherence of the subspace

S which it spans:

µ(U) := µ(S ) =
n

k
maxi(PS )ii =

n

k
maxi(UUT )ii .

The kth column of the matrix A is denoted by A(k); the jth row is denoted by A( j). The vector

ei is the ith element of the standard Euclidean basis (whose dimensionality will be clear from

the context).

We often compare SPSD matrices using the semidefinite ordering. In this ordering, A is

greater than or equal to B, written A � B or B � A, when A− B is positive semidefinite. Each

SPSD matrix A has a unique square root A1/2 that is also SPSD, has the same eigenspaces as
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A, and satisfies A =
�

A1/2�2. The eigenvalues of an SPSD matrix A are arranged in weakly

decreasing order: λmax (A) = λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) = λmin (A) . Likewise, the singular

values of a rectangular matrix A with rank ρ are ordered σmax(A) = σ1(A) ≥ σ2(A) ≥ · · · ≥

σρ(A) = σmin(A). The spectral norm of a matrix B is written ‖B‖2 ; its Frobenius norm and trace

are written ‖B‖F and Tr (B) , respectively. The notation ‖ · ‖ξ indicates that an expression holds

for both ξ= 2 and ξ= F.

4.2.1 Column-based low-rank approximation

The remainder of this thesis concerns low-rank matrix approximation algorithms: Chapter 5

provides bounds on the approximation errors of low-rank approximations that are formed using

fast orthonormal transformations, and Chapter 6 provides bounds on the approximation errors

of a class of low-rank approximations to SPSD matrices.

Both of these low-rank approximation schemes are amenable to interpretation as schemes

wherein a matrix is projected onto a subspace spanned by some linear combination of its columns.

The problem of providing a general framework for studying the error of these projection schemes

is well studied [BMD09, HMT11, BDMI11]. The authors of these works have provided a set of so-

called structural results: deterministic bounds on the spectral and Frobenius-norm approximation

errors incurred by these projection schemes. Structural results allow us to relate the errors of

low-rank approximations formed using projection schemes to the optimal errors ‖A−Ak‖ξ for

ξ= 2, F.

Before stating the specific structural results that are used in the sequel, we review the

necessary background material on low-rank matrix approximations that are restricted to lie

within a particular subspace.
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4.2.1.1 Matrix Pythagoras and generalized least-squares regression

Lemma 4.5 is the analog of Pythagoras’ theorem in the matrix setting. A proof of this lemma can

be found in [BDMI11]. Lemma 4.6 is an immediate corollary that generalizes the Eckart–Young

theorem.

Lemma 4.5. If XYT = 0 or XT Y= 0, then

‖X+ Y‖2F = ‖X‖
2
F + ‖Y‖

2
F

and

max{‖X‖22 ,‖Y‖22} ≤ ‖X+ Y‖22 ≤ ‖X‖
2
2+ ‖Y‖

2
2 .

Lemma 4.6. Given A ∈ Rm×n and C ∈ Rm×`, for all X ∈ R`×n

‖A− PCA‖2ξ ≤ ‖A−CX‖2ξ

for both ξ= 2 and ξ= F.

Proof. Write

A−CX= (I− PC)A+ (PCA−CX)

and observe that

((I− PC)A)
T (PCA−CX) = 0,

so by Lemma 4.5,

‖A−CX‖2ξ ≥ ‖(I− PC)A‖2ξ.
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4.2.1.2 Low-rank approximations restricted to subspaces

Given A ∈ Rm×n; a target rank k < n; another matrix Y ∈ Rm×`, where ` > k; and a choice of

norm ξ (ξ = 2 or ξ = F), we use the notation ΠξY,k(A) to refer to the matrix that lies in the

column span of Y, has rank k or less, and minimizes the ξ-norm error in approximating A. More

concisely, ΠξY,k(A) = YXξ, where

Xξ = arg min
X∈R`×n:rank(X)≤k

‖A− YX‖2ξ.

The approximation ΠF
Y,k(A) can be computed using the following three-step procedure:

1: Orthonormalize the columns of Y to construct a matrix Q ∈ Rm×`.

2: Compute Xopt = argminX∈R`×n, rank(X)≤k



QT A−X




F .

3: Compute and return ΠF
Y,k(A) = QXopt ∈ Rm×n.

There does not seem to be a similarly efficient algorithm for computing Π2
Y,k(A).

The following result, which appeared as Lemma 18 in [BDMI11], both verifies the claim that

this algorithm computes ΠF
Y,k(A) and shows that ΠF

Y,k(A) is a constant factor approximation to

Π2
Y,k(A).

Lemma 4.7. [Lemma 18 in [BDMI11]] Given A ∈ Rm×n, Y ∈ Rm×`, and an integer k ≤ `, the

matrix QXopt ∈ Rm×n described above satisfies ΠF
Y,k(A) = QXopt, can be computed in O(mn`+(m+

n)`2) time, and satisfies




A−ΠF
Y,k(A)







2

2
≤ 2




A−Π2
Y,k(A)







2

2
.
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4.2.2 Structural results for low-rank approximation

The following result, which appears as Lemma 7 in [BMD09], provides an upper bound on the

residual error of the low-rank matrix approximation obtained via projections onto subspaces.

The paper [HMT11] also supplies an equivalent result.

Lemma 4.8. [Lemma 7 in [BMD09]] Let A ∈ Rm×n have rank ρ. Fix k satisfying 0 ≤ k ≤ ρ.

Given a matrix S ∈ Rn×`, with `≥ k, construct Y = AS. If VT
1 S has full row-rank, then, for ξ = 2, F,

‖A− PYA‖2ξ ≤ ‖A−Π
ξ
Y,k(A)‖

2
ξ ≤ ‖A−Ak‖2ξ+ ‖Σ2VT

2 S(VT
1 S)†‖2ξ. (4.2.3)

In addition to this bound on the residual error, we use the following novel structural bound

on the forward errors of low-rank approximants.

Lemma 4.9. Let A ∈ Rm×n have rank ρ. Fix k satisfying 0 ≤ k ≤ ρ. Given a matrix S ∈ Rn×`,

where `≥ k, construct Y= AS. If VT
1 S has full row-rank, then, for ξ= 2,F,

‖Ak − PYA‖2ξ ≤ ‖A−Ak‖2ξ+ ‖Σ2VT
2 S(VT

1 S)†‖2ξ. (4.2.4)

Proof. Observe that

(Ak − PYAk)
T (PYAρ−k) = 0,

so Lemma 4.5 implies that

‖Ak − PYA‖2ξ = ‖Ak − PYAk − PYAρ−k‖2ξ ≤ ‖Ak − PYAk‖2ξ+ ‖Aρ−k‖2ξ.
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Applying Lemma 4.6 with X= (VT
1 S)†VT

1 , we see that

‖Ak − PYA‖2ξ ≤ ‖Ak − Y(VT
1 S)†VT

1 ‖
2
ξ+ ‖Aρ−k‖2ξ

= ‖Ak −AkS(VT
1 S)†VT

1 +Aρ−kS(VT
1 S)†VT

1 ‖
2
ξ+ ‖Aρ−k‖2ξ

= ‖Ak −U1Σ1VT
1 S(VT

1 S)†VT
1 +Aρ−kS(VT

1 S)†VT
1 ‖

2
ξ+ ‖Aρ−k‖2ξ.

Since VT
1 S has full row rank, (VT

1 S)(VT
1 S)† = Ik. Recall that Ak = U1Σ1VT

1 and Aρ−k = U2Σ2VT
2 .

Consequently, the above inequality reduces neatly to the desired inequality

‖Ak − PYA‖2ξ ≤ ‖Ak −U1Σ1VT
1 +Aρ−kS(VT

1 S)†VT
1 ‖

2
ξ+ ‖Aρ−k‖2ξ

= ‖Aρ−kS(VT
1 S)†VT

1 ‖
2
ξ+ ‖Aρ−k‖2ξ

= ‖A−Ak‖2ξ+ ‖Σ2VT
2 S(VT

1 S)†‖2ξ.

4.2.2.1 A geometric interpretation of the sampling interaction matrix

Let Ω1 = VT
1 S and Ω2 = VT

2 S denote the interaction of the sampling matrix S with the top and

bottom right-singular spaces of A. It is evident from Lemmas 4.8 and 4.9 that the quality of the

low-rank approximations depend upon the norm of the sampling interaction matrix

VT
2 S(VT

1 S)† = Ω2Ω
†
1.

The smaller the spectral norm of the Ω2Ω
†
1 the more effective S is as a sampling matrix. To give

the sampling interaction matrix a geometric interpretation, we first recall the definition of the
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sine between the range spaces of two matrices M1 and M2 :

sin2(M1,M2) = ‖(I− PM1
)PM2

‖2.

Note that this quantity is not symmetric: it measures how well the range of M1 captures that of

M2 [GV96, Chapter 12].

Lemma 4.10. Fix A ∈ Rm×n, a target rank k, and S ∈ Rn×` where ` > k. Assume S has orthonor-

mal columns. Define

Ω1 = VT
1 S and Ω2 = VT

2 S.

Then, if Ω1 has full row-rank,

‖Ω2Ω
†
1‖2 = tan2(S,V1).

Proof. Since V1 and S have orthonormal columns, we see that

sin2(S,V1) =


(I− SST )V1VT
1





2
2

=


VT
1 (I− SST )V1





2

=


I−VT
1 SST V1





2

= 1−λk(V
T
1 SST V1)

= 1−‖Ω†
1‖
−2.

The second to last equality holds because VT
1 S has k rows and we assumed it has full row-rank.

Accordingly,

tan2(S,V1) =
sin2(S,V1)

1− sin2(S,V1)
= ‖Ω†

1‖
2
2− 1.
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Now observe that

‖Ω2Ω
†
1‖

2
2 =


(ST V1)
†ST V2VT

2 S(VT
1 S)†





2

=


(ST V1)
†(I− ST V1VT

1 S)(VT
1 S)†





2

=


(ST V1)
†




2
2− 1

= tan2(S,V1).

The second to last equality holds because of the fact that, for any matrix M,



M†(I−MMT )(MT )†




2 =


M†




2
2− 1;

this identity can be established with a routine SVD argument.

Thus, when S has orthonormal columns and VT
1 S has full row-rank, ‖Ω2Ω

†
1‖2 is the tangent

of the largest angle between the range of S and the top right singular space spanned by V1. If

VT
1 S does not have full row-rank, then our derivation above shows that sin2(S,V1) = 1, meaning

that there is a vector in the eigenspace spanned by V1 which has no component in the space

spanned by the sketching matrix S.

We note that tan(S,V1) also arises in the classical bounds on the convergence of the orthogo-

nal iteration algorithm for approximating the top k-dimensional singular spaces of a matrix (see,

e.g. [GV96, Theorem 8.2.2]).
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Chapter 5

Low-rank approximation with
subsampled unitary transformations

5.1 Introduction

In this chapter, we analyze the theoretical performance of a randomized low-rank approximation

algorithm introduced in [WLRT08] and analyzed in [WLRT08, HMT11, NDT09]. Our analysis

often provides sharper approximation bounds than those in [WLRT08, HMT11, NDT09]. We

provide bounds on the residual and forward errors of this approximation algorithm in the spectral

and Frobenius norms, and provide experimental evidence that this low-rank approximation

algorithm performs as well as a more expensive low-rank approximation algorithm based upon

projections onto uniformly distributed random subspaces1. Further, we provide approximation

bounds for a variant of the algorithm that returns approximations with even lower rank.

The setting is as follows: fix A ∈ Rm×n and a target rank k ≤min{m, n}. We would like to

approximate A with a matrix X that has rank close to k, and we would like ‖A−X‖ξ to be within

a small multiplicative factor of the smallest error achievable when approximating Ak with a

rank-k matrix, for ξ= 2, F.

It is well-known that the rank-k matrix Ak that minimizes both the Frobenius and the

1The content of this chapter is adapted from the article [GB12] co-authored with Christos Boutsidis.
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spectral-norm approximation errors can be calculated using the singular value decomposition

(SVD) in O(mn min{m, n}) arithmetic operations, using classical so-called direct algorithms such

as QR iteration or Jacobi iteration [GV96]. Computing the full SVD is expensive when A is a

large matrix. In this case, it is often more efficient to use iterative projection methods (e.g. Krylov

subspace methods) to obtain approximations to Ak. It is difficult to state a precise guarantee

for the number of arithmetic operations carried out by Krylov methods, but one iteration of a

Krylov method requires Ω(mnk) operations (assuming A has no special structure which can be

exploited to speed up the computation of matrix–vector products). To obtain even an accurate

rank-1 approximation requires O(log n) iterations [KW92]. Thus, an optimistic estimate for the

number of operations required to compute approximate rank-k truncated SVDs using a Krylov

method is Ω(mnk log n).

Our discussion thus far has concerned only the arithmetic cost of computing truncated SVDs,

but an equally or more important issue is that of the communication costs: bandwidth costs

(proportional to the amount of times storage is accessed) and latency costs (proportional to

the cost of transferring the information over a network or through the levels of a hierarchical

memory system) [BDHS11]. If the algorithm is to be parallelized, then the complexity of the

required information interchange must also be taken into account.

The randomized algorithms considered in this chapter, Algorithms 5.1 and 5.2, are of

interest because they yield low-rank approximations after Ω(mnk max{log n, log k}) arithmetic

operations and have low communication costs. In particular, each element of A is accessed

only twice, and the algorithms are simple enough that they are amenable to straightforward

parallelization. The guarantees provided are probabilistic, and allow one to trade off between the

operation count of the algorithms and the accuracy and failure probabilities of the algorithms.

Both of the algorithms considered in this chapter are based on the intuition that, when
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Algorithm 5.1: Randomized approximate truncated SVD
Input: an m× n matrix A and an n× ` matrix S, where ` is an integer in [1, n].
Output: matrices Ũ, Σ̃, Ṽ constituting the SVD of PASA= ŨΣ̃ṼT .

1: Let Y= AS.
2: Compute the QR decomposition Y= QR.
3: Compute the SVD of QT A=WΣ̃ṼT .
4: Set Ũ= QW.

Algorithm 5.2: Rank-k randomized approximate truncated SVD
Input: an m× n matrix A, integers ` and k that satisfy ` > k and k ∈ [1, n], and an n× ` matrix

S.
Output: matrices Ũ, Σ̃, Ṽ constituting the SVD of ΠF

AS,k(A) = ŨΣ̃ṼT .

1: Let Y= AS.
2: Compute the QR decomposition Y= QR.
3: Compute the rank-k truncated SVD of QT A to obtain (QT A)k =WΣ̃ṼT .
4: Set Ũ= QW.

S ∈ Rn×` is randomly selected and ` is sufficiently larger than k, the range of the matrix AS

“captures” the top k-dimensional left singular space of A. When this phenomenon occurs, the

low-rank matrix formed by projecting A onto the range of AS should be almost as accurate an

approximation of A as is the optimal approximation Ak :

‖A− PASA‖ξ ≈ ‖A−Ak‖ξ for ξ= 2,F.

Algorithm 5.1 computes exactly this approximation, PASA. Note that this approximation may have

rank up to `, which may be much larger than k. Algorithm 5.2 instead returns the approximation

ΠF
AS,k(A), which is guaranteed to have rank at most k.

Unlike classical iterative methods for approximating the trucated SVD, which use as many

iterations as necessary to satisfy some convergence condition, Algorithms 5.1 and 5.2 use only

one matrix–matrix product AS to generate an approximate basis for the top left singular space

of A. Accordingly, the quality of approximations obtained using either of these algorithms is
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more dependent on the properties of A itself and the sampling matrix S than is the quality

of approximations derived from classical iterative methods. Thus it is important to supply

theoretical guarantees on the errors of the algorithms that identify which properties of A affect

the quality of the approximations, as well as to carry to empirical studies investigating the

influence of the choice of S.

Recent years have produced a large body of research on designing random sampling matrices

S. Some proposals for S include: (i) every entry of S takes the values +1,−1 with equal

probability [CW09, MZ11]; (ii) the entries of S are i.i.d. Gaussian random variables with zero

mean and unit variance [HMT11]; (iii) the columns of S are chosen independently from the

columns of the m×m identity matrix with probabilities that are proportional to the Euclidean

length of the columns of A [FKV98, DKM06b]; and (iv) S is designed carefully such that AS can

be computed in at most O(nnz(A)) arithmetic operations, where nnz(A) denotes the number of

non-zero entries in A [CW12].

In this chapter we take S to be a subsampled randomized Hadamard transform (SRHT)

matrix, i.e. S comprises a subset of the columns of a randomized Hadamard matrix (see

Definitions 5.1 and 5.2 below). This choice for S was introduced in [AC06].

Definition 5.1 (Normalized Walsh–Hadamard Matrix). Fix an integer n= 2p, for p = 1, 2, 3, ....

The (non-normalized) n× n matrix of the Hadamard-Walsh transform is defined recursively as,

Hn =











Hn/2 Hn/2

Hn/2 −Hn/2











, with H2 =











+1 +1

+1 −1











.

The n× n normalized matrix of the Walsh–Hadamard transform is equal to H= n−
1
2 Hn ∈ Rn×n.

Definition 5.2 (Subsampled Randomized Hadamard Transform (SRHT) matrix). Fix integers `
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and n= 2p with ` < n and p = 1,2, 3, .... An SRHT matrix is an `× n matrix of the form

Θ=
Ç

n

`
·RHD;

• D ∈ Rn×n is a random diagonal matrix whose entries are independent random signs, i.e.

random variables uniformly distributed on {±1}.

• H ∈ Rn×n is a normalized Walsh–Hadamard matrix.

• R ∈ R`×n is a subset of ` rows from the n× n identity matrix, where the rows are chosen

uniformly at random and without replacement.

The choice of S as an SRHT matrix is particularly practical because the highly structured

nature of S can be exploited to reduce the time of computing AS from O(mn`) to O(mn log2 `).

Lemma 5.3 (Fast Matrix–Vector Multiplication, Theorem 2.1 in [AL08]). Given x ∈ Rn and

` < n, one can construct Θ ∈ R`×n and compute Θx in at most 2n log2(`+ 1)) operations.

Beyond the SRHT. The SRHT is defined only when the matrix dimension is a power of two. An

alternative option is to use other structured orthonormal randomized transforms such as the real

Fourier transform (DFT), the discrete cosine transform (DCT) or the discrete Hartley transform

(DHT) [WLRT08, NDT09, RT08, AMT10], whose entries are on the order of n−1/2. None of

these transforms place restrictions on the size of the matrix being approximated. With minimal

effort, the results of this chapter can be extended to encompass these transforms. Specifically,

the statements of Lemma 5.5 and Lemma 5.8 in this chapter would need to be modified slightly

to account for the difference in the transform; essentially, the constants present in the statements

of the Lemmas would change. These two lemmas isolate the effects of the particular choice of
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rank at most k, while the bounds in Theorem 5.4 are for approximations using Algorithm 5.2,

which may result in an approximation with a rank larger than k. However, the comparisons

above also hold, as stated, for approximations Ã generated using Algorithm 5.2, as can be

verified directly from Theorems 5.13 and 5.14.

Halko et al. [HMT11]. Halko et al. [HMT11] consider the performance of Algorithm 5.1

when S=ΘT is an SRHT matrix, and conclude that if ` satisfies

4
�

p

k+
p

8 log(kn)
�2

log(k)≤ `≤ n, (5.2.2)

then, for both ξ= 2, F,

‖A− Ã‖ξ ≤
�

1+
p

7n/`
�

· ‖A−Ak‖ξ,

with probability at least 1− O(1/k). Our Frobenius-norm bound is always tighter than the

Frobenius-norm bound given here. To compare the spectral-norm bounds, note that our spectral-

norm bound is on the order of

max

(r

log(ρ/δ) log(n/δ)
`

·


A−Ak





2 ,

r

log(ρ/δ)
`

·


A−Ak





F

)

. (5.2.3)

If the residual spectrum A (the set of singular values smaller than σk(A)) is constant, or more

generally decays slowly, then the spectral-norm result in [HMT11] is perhaps optimal. But when

A is rank-deficient or the singular values of A decay fast, the spectral-norm bound in Theorem 5.4

is more useful. Specifically, if



A−Ak





F�
r

n

log(ρ/δ)
·


A−Ak





2 ,



115

then when ` is chosen according to Theorem 5.4, the quantity in (5.2.3) is much smaller than

p

7n/` ·


A−Ak





2 .

We were able to obtain this improved bound by using the results in Section 5.3.1, which

allow one to take into account decay in the spectrum of A. Finally, notice that our theorem

makes explicit the intuition that the probability of failure can be driven to zero independently of

the target rank k by increasing `.

Two alternative approximate SVD algorithms. Instead of an SRHT matrix, one can take S

in Algorithms 5.1 and 5.2 to be a matrix of i.i.d. standard Gaussian random variables. One gains

theoretically and often empirically better worse-case tradeoffs between the number of samples

taken, the failure probability, and the error guarantees. The SRHT algorithms are still faster,

since a matrix multiplication with a Gaussian matrix requires O(mn`) time (assuming A is dense

and unstructured). One can also take S to be a matrix of i.i.d. random signs (±1 with equal

probability). In many ways, this is analogous to the Gaussian algorithm: in both cases S is a

matrix of i.i.d. subgaussian random variables. Consequently, we expect this algorithm to have

the same advantages and disadvantages relative to the SRHT algorithm. We now compare the

best available performance bounds for these schemes to our SRHT performance bounds.

We use the notion of the stable rank of a matrix,

sr (A) = ‖A‖2F /‖A‖
2
2 ,

to capture the decay of the singular values of A. As can be seen by considering a matrix with a

flat singular spectrum, in general the stable rank is no smaller than the rank.

When ` > k + 4, Theorem 10.7 and Corollary 10.9 in [HMT11] imply that, when using
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Gaussian sampling in Algorithm 5.1, with probability at least 1− 2 · 32−(`−k)− e
−(`−k+1)

2 ,



A− Ã




F ≤
�

1+ 32

p
3k+ e

p
`

p
`− k+ 1

�

·


A−Ak





F

and with probability at least 1− 3e−(`−k),



A− Ã




2 ≤

 

1+ 16

r

1+
k

`− k

!

·


A−Ak





2+
8
p
`

`− k+ 1
·


A−Ak





F .

Comparing to the guarantees of Theorem 5.4 we see that the two bounds just stated suggest

that with the same number of samples, Gaussian low-rank approximations outperform SRHT-

based low-rank approximations. In particular, the spectral-norm bound guarantees that if

sr
�

A−Ak
�

≤ k, that is,


A−Ak





F ≤
p

k


A−Ak





2 , then the Gaussian version of Algorithm 5.1

requires O(k/ε2) samples to return a 17+ ε constant factor spectral-norm error approximation

with high probability. Similarly, the Frobenius-norm bound guarantees that the same number

of samples returns a 1+ 32ε constant factor Frobenius-norm error approximation with high

probability. Neither the spectral nor Frobenius bounds given in Theorem 5.4 for SRHT-based

low-rank approximations apply for this few samples.

The paper [MZ11] does not consider the Frobenius-norm error of the random sign low-rank

approximation algorithm, but Remark 4 in [MZ11] shows that when `= O(k/ε4 log(1/δ)), for

0< δ < 1, and sr
�

A−Ak
�

≤ k, Algorithm 5.1 ensures that with probability at least 1−δ,



A− Ã




2 ≤ (1+ ε)


A−Ak





2 .

To compare our results with those stated in [HMT11, MZ11] we assume that k� log(n/δ)

so that ` > k log k suffices for Theorem 5.4 to apply. Then, in order to acquire a 4+ ε relative
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error bound from Theorem 5.4, it suffices that

`≥ C′ε−2k log(ρ/δ) and sr
�

A−Ak
�

≤ C′k,

where C′ is an explicit constant no larger than 6.

We see, therefore, that the Gaussian and random sign approximation versions of Algo-

rithm 5.1 return 17+ ε and 1+ ε relative spectral error approximations, respectively, when ` is

on the order of k and the relatively weak spectral decay condition sr
�

A−Ak
�

≤ k is satisfied,

while our bound for the SRHT version of Algorithm 5.1 requires ` > k log(ρ/δ) and the spectral

decay condition

sr
�

A−Ak
�

≤ C′k

to ensure a 6+ ε relative spectral error approximation. We note that the SRHT algorithm can be

used to obtain relative spectral error approximations of matrices with arbitrary stable rank at

the cost of increasing `; the same is of course true for the Gaussian and random sign algorithms.

The bounds for the SRHT, Gaussian, and random sign low-rank approximation algorithms

differ in two significant ways. First, there are logarithmic factors in the spectral-norm error

bound for the SRHT algorithm that are absent from the corresponding bounds for the Gaussian

and random sign algorithms. Second, the spectral-norm bound for the SRHT algorithm applies

only when ` > k log(ρ/δ), while the corresponding bounds for the Gaussian and random sign

algorithms apply when ` is on the order of k. These disparities may reflect a fundamental

tradeoff between the structure and randomness of the sampling matrix S. Assuming A is dense

and unstructured, the highly structured nature of SRHT matrices makes it possible to calculate

AS much faster than when Gaussian or random sign sampling matrices are used, but this moves

us away from the very nice isotropic randomness present in the Gaussian S and the similarly nice
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properties of a matrix of i.i.d subgaussian random variables, thus resulting in slacker bounds

which require more samples.

5.3 Matrix computations with SRHT matrices

An important ingredient in analyzing the performance of Algorithms 5.1 and 5.2 is understanding

how an SRHT changes the spectrum of a matrix after postmultiplication: given a matrix A and

an SRHT matrix Θ, how are the singular values of A and AΘT related?

To be more precise, Lemma 4.8 suggests that one path towards establishing the efficacy of

SRHT-based low-rank approximations lies in understanding how the SRHT perturbs the singular

values of matrices. To see this, we repeat the statement of the lemma here. Let A ∈ Rm×n have

rank ρ and recall the following partitioning of its SVD:

A= UΣVT =

�

k ρ−k

U1 U2

�











k ρ−k

Σ1

Σ2





















VT
1

VT
2











. (5.3.1)

Fix k satisfying 0 ≤ k ≤ ρ. Given a matrix S ∈ Rn×`, with ` ≥ k, Lemma 4.8 states that if VT
1 S

has full row-rank, then for ξ= 2, F,

‖A− PASA‖2ξ ≤ ‖A−Ak‖2ξ+ ‖Σ2VT
2 S
�

VT
1 S
�†
‖2ξ.

Note that PASA is exactly the low-rank approximation of A returned by Algorithm 5.1.

Now take S=ΘT to be an SRHT matrix and observe that if the product Σ2VT
2Θ

T
�

VT
1Θ

T
�†

has small norm, then the residual error of the approximant PAΘT A is small. The norm of this



119

product is small when the norm of the perturbed matrix
�

VT
1Θ

T
�†

is small, because

‖Σ2VT
2Θ

T (VT
1Θ

T )†‖2ξ ≤ ‖Σ2‖2ξ‖V
T
2Θ

T‖22


(VT
1Θ

T )†




2
2. (5.3.2)

The matrix (VT
1Θ

T )† has small norm precisely when the singular values of VT
1Θ

T are close to

those of V1. This strategy is developed in [HMT11] to supply bounds for the SRHT low-rank

approximation algorithm, and relies upon knowledge of how multiplication with SRHT matrices

perturbs the singular values of matrices with orthonormal rows.

The main contribution of this chapter is the realization that one can take advantage of the

decay in the singular values of A encoded in Σ2 to obtain sharper results. In view of the fact that

‖Σ2VT
2Θ

T (VT
1Θ

T )†‖2ξ ≤ ‖Σ2VT
2Θ

T‖2ξ


(VT
1Θ

T )†




2
2 , (5.3.3)

we can additionally consider the behavior of the singular values of Σ2VT
2Θ

T . It is clear that

(5.3.3) provides a tighter bound than (5.3.2): for example, when ξ= F,

‖Σ2VT
2Θ

T‖2F ≤ ‖Σ2‖2F‖V
T
2Θ

T‖22,

and the quantity on the left-hand side is potentially much smaller than that on the right-hand

side.

In the remainder of this section, we refer to matrices with more columns than rows as “fat”;

similarly, we refer to matrices with more rows than columns as “tall.”
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C ≥ 1 be any specified constant. If Θ ∈ R`×n is an SRHT matrix and ` satisfies

6C2ε−1
�

p

k+
p

8 log(n/δ)
�2

log(k/δ)≤ `≤ n, (5.2.1)

then the approximation Ã generated by Algorithm 5.1 with S=ΘT satisfies



A− PAΘT A




F ≤ (1+ 11ε)


A−Ak





F

with probability at least 1−δC2 log(k/δ)/4− 7δ, and



A− PAΘT A




2 ≤

 

4+

r

3 log(n/δ) log(ρ/δ)
`

!

·


A−Ak





2+

r

3 log(ρ/δ)
`

·


A−Ak





F

with probability at least 1− 5δ.

The Frobenius-norm bound in this theorem is slightly stronger than the best bound appearing

in prior efforts [NDT09]. The spectral-norm bound on the residual error is often much smaller

than the bounds presented in prior work and sheds light on an open question mentioned

in [NDT09] and [HMT11]. We do not, however, claim that the error bounds provided are the

tightest possible. Certainly the specific constants (11,4, etc.) in the error estimates are not

optimized.

We now present a detailed comparison of the guarantees given in Theorem 5.4 with those

available in the existing literature.

5.2.1 Detailed comparison with prior work

The subsampled randomized Fourier transform (SRFT). The algorithm in Section 5.2 of

[WLRT08], which was the first to use the idea of employing subsampled randomized orthogonal
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transforms to compute low-rank approximations to matrices, provides a spectral-norm error

bound but replaces the SRHT with an SRFT, i.e. the matrix H of Definition 5.2 is replaced

by a matrix where the (p, q)th entry is Hpq = e−2πi(p−1)(q−1)/n, where i =
p
−1, i.e. H is the

unnormalized discrete Fourier transform. Woolfe et al. [WLRT08, Equation 190] argue that, for

any α > 1, β > 1, if

`≥ α2β (α− 1)−1 (2k)2,

then with probability at least 1− 3/β (ω=max{m, n}),



A− ŨkΣ̃kṼT
k





2 ≤ 2
�p

2α− 1+ 1
�

·
�p

αω+ 1+
p
αω
�

·


A−Ak





2 .

Here, Ũk ∈ Rm×k contains orthonormal columns, as does Ṽk ∈ Rn×k, while Σ̃k ∈ Rk×k is

diagonal with nonegative entries. These matrices can be computed deterministically from AΘT

in O
�

k2(m+ n) + k`2 log`
�

time. Also, computing Y= AΘT takes O
�

mn log`
�

time.

The analysis of [WLRT08] applies when ` = Ω(k2), while the spectral-norm guarantee of

Theorem 5.4 applies for potentially much smaller values of `= Ω(max{k log k, log(n) log k}).

Nguyen et al. [NDT09]. An analysis of the Frobenius-norm error of an SRHT-based low-rank

matrix approximation algorithm appeared in Nguyen et al. [NDT09]. Let δ be a probability

parameter with 0< δ < 1 and ε be an accuracy parameter with 0< ε < 1. Then, Nguyen et al.

show that in order to get a rank-k matrix Ãk satisfying



A− Ãk





F ≤ (1+ ε) ·


A−Ak





F

and



A− Ãk





2 ≤
�

2+
p

2n/`
�

·


A−Ak





2
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with probability of success at least 1− 5δ, one requires

`= Ω
�

ε−1 max{k,
p

k log(2n/δ)} ·max{log k, log(3/δ)}
�

.

Theorem 5.4 gives a tighter spectral-norm error bound when


A−Ak





F � (n/ log(ρ/δ))1/2 ·


A−Ak





2 . It also provides an equivalent Frobenius-norm error bound with a comparable failure

probability for a smaller number of samples. Specifically, if

`≥ 528ε−1[
p

k+
p

8 log(8n/δ)]2 log(8k/δ)

= Ω
�

ε−1 max{k, log(n/δ)} ·max{log k, log(1/δ)}
�

,

then the Frobenius-norm bound in Theorem 5.4 ensures that, with probability at least 1− 8δ,

the approximation satisfies


A− Ã




F ≤ (1+ ε) ·


A−Ak





F .

In [HMT11] and [NDT09], the authors left as a subject for future research the explanation

of a curious experimental phenomenon: when the singular values decay according to power

laws, the SRHT low-rank approximation algorithm empirically achieves relative-error spectral

norm approximations. Our spectral norm result provides an explanation of this phenomenon:

when the singular values of A decay fast enough, as in power law decay, one has


A−Ak





F =

Θ(1) ·


A−Ak





2. In this case, when ` is chosen to satisfy

24ε−1
�

p

k+
p

8 log(n/δ)
�2

log(k/δ) log(n/δ)≤ `≤ n

our spectral-norm bound assures us that


A− Ã




2 ≤ O (1) ·


A−Ak





2 with probability of at

least 1− 8δ, thus predicting the observed empirical behavior of the algorithm.

The approximation scheme addressed in [NDT09] generates low-rank approximations with
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rank at most k, while the bounds in Theorem 5.4 are for approximations using Algorithm 5.2,

which may result in an approximation with a rank larger than k. However, the comparisons

above also hold, as stated, for approximations Ã generated using Algorithm 5.2, as can be

verified directly from Theorems 5.13 and 5.14.

Halko et al. [HMT11]. Halko et al. [HMT11] consider the performance of Algorithm 5.1

when S=ΘT is an SRHT matrix, and conclude that if ` satisfies

4
�

p

k+
p

8 log(kn)
�2

log(k)≤ `≤ n, (5.2.2)

then, for both ξ= 2, F,

‖A− Ã‖ξ ≤
�

1+
p

7n/`
�

· ‖A−Ak‖ξ,

with probability at least 1− O(1/k). Our Frobenius-norm bound is always tighter than the

Frobenius-norm bound given here. To compare the spectral-norm bounds, note that our spectral-

norm bound is on the order of

max

(r

log(ρ/δ) log(n/δ)
`

·


A−Ak





2 ,

r

log(ρ/δ)
`

·


A−Ak





F

)

. (5.2.3)

If the residual spectrum A (the set of singular values smaller than σk(A)) is constant, or more

generally decays slowly, then the spectral-norm result in [HMT11] is perhaps optimal. But when

A is rank-deficient or the singular values of A decay fast, the spectral-norm bound in Theorem 5.4

is more useful. Specifically, if



A−Ak





F�
r

n

log(ρ/δ)
·


A−Ak





2 ,
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then when ` is chosen according to Theorem 5.4, the quantity in (5.2.3) is much smaller than

p

7n/` ·


A−Ak





2 .

We were able to obtain this improved bound by using the results in Section 5.3.1, which

allow one to take into account decay in the spectrum of A. Finally, notice that our theorem

makes explicit the intuition that the probability of failure can be driven to zero independently of

the target rank k by increasing `.

Two alternative approximate SVD algorithms. Instead of an SRHT matrix, one can take S

in Algorithms 5.1 and 5.2 to be a matrix of i.i.d. standard Gaussian random variables. One gains

theoretically and often empirically better worse-case tradeoffs between the number of samples

taken, the failure probability, and the error guarantees. The SRHT algorithms are still faster,

since a matrix multiplication with a Gaussian matrix requires O(mn`) time (assuming A is dense

and unstructured). One can also take S to be a matrix of i.i.d. random signs (±1 with equal

probability). In many ways, this is analogous to the Gaussian algorithm: in both cases S is a

matrix of i.i.d. subgaussian random variables. Consequently, we expect this algorithm to have

the same advantages and disadvantages relative to the SRHT algorithm. We now compare the

best available performance bounds for these schemes to our SRHT performance bounds.

We use the notion of the stable rank of a matrix,

sr (A) = ‖A‖2F /‖A‖
2
2 ,

to capture the decay of the singular values of A. As can be seen by considering a matrix with a

flat singular spectrum, in general the stable rank is no smaller than the rank.

When ` > k + 4, Theorem 10.7 and Corollary 10.9 in [HMT11] imply that, when using
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Gaussian sampling in Algorithm 5.1, with probability at least 1− 2 · 32−(`−k)− e
−(`−k+1)

2 ,



A− Ã




F ≤
�

1+ 32

p
3k+ e

p
`

p
`− k+ 1

�

·


A−Ak





F

and with probability at least 1− 3e−(`−k),



A− Ã




2 ≤

 

1+ 16

r

1+
k

`− k

!

·


A−Ak





2+
8
p
`

`− k+ 1
·


A−Ak





F .

Comparing to the guarantees of Theorem 5.4 we see that the two bounds just stated suggest

that with the same number of samples, Gaussian low-rank approximations outperform SRHT-

based low-rank approximations. In particular, the spectral-norm bound guarantees that if

sr
�

A−Ak
�

≤ k, that is,


A−Ak





F ≤
p

k


A−Ak





2 , then the Gaussian version of Algorithm 5.1

requires O(k/ε2) samples to return a 17+ ε constant factor spectral-norm error approximation

with high probability. Similarly, the Frobenius-norm bound guarantees that the same number

of samples returns a 1+ 32ε constant factor Frobenius-norm error approximation with high

probability. Neither the spectral nor Frobenius bounds given in Theorem 5.4 for SRHT-based

low-rank approximations apply for this few samples.

The paper [MZ11] does not consider the Frobenius-norm error of the random sign low-rank

approximation algorithm, but Remark 4 in [MZ11] shows that when `= O(k/ε4 log(1/δ)), for

0< δ < 1, and sr
�

A−Ak
�

≤ k, Algorithm 5.1 ensures that with probability at least 1−δ,



A− Ã




2 ≤ (1+ ε)


A−Ak





2 .

To compare our results with those stated in [HMT11, MZ11] we assume that k� log(n/δ)

so that ` > k log k suffices for Theorem 5.4 to apply. Then, in order to acquire a 4+ ε relative
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error bound from Theorem 5.4, it suffices that

`≥ C′ε−2k log(ρ/δ) and sr
�

A−Ak
�

≤ C′k,

where C′ is an explicit constant no larger than 6.

We see, therefore, that the Gaussian and random sign approximation versions of Algo-

rithm 5.1 return 17+ ε and 1+ ε relative spectral error approximations, respectively, when ` is

on the order of k and the relatively weak spectral decay condition sr
�

A−Ak
�

≤ k is satisfied,

while our bound for the SRHT version of Algorithm 5.1 requires ` > k log(ρ/δ) and the spectral

decay condition

sr
�

A−Ak
�

≤ C′k

to ensure a 6+ ε relative spectral error approximation. We note that the SRHT algorithm can be

used to obtain relative spectral error approximations of matrices with arbitrary stable rank at

the cost of increasing `; the same is of course true for the Gaussian and random sign algorithms.

The bounds for the SRHT, Gaussian, and random sign low-rank approximation algorithms

differ in two significant ways. First, there are logarithmic factors in the spectral-norm error

bound for the SRHT algorithm that are absent from the corresponding bounds for the Gaussian

and random sign algorithms. Second, the spectral-norm bound for the SRHT algorithm applies

only when ` > k log(ρ/δ), while the corresponding bounds for the Gaussian and random sign

algorithms apply when ` is on the order of k. These disparities may reflect a fundamental

tradeoff between the structure and randomness of the sampling matrix S. Assuming A is dense

and unstructured, the highly structured nature of SRHT matrices makes it possible to calculate

AS much faster than when Gaussian or random sign sampling matrices are used, but this moves

us away from the very nice isotropic randomness present in the Gaussian S and the similarly nice
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properties of a matrix of i.i.d subgaussian random variables, thus resulting in slacker bounds

which require more samples.

5.3 Matrix computations with SRHT matrices

An important ingredient in analyzing the performance of Algorithms 5.1 and 5.2 is understanding

how an SRHT changes the spectrum of a matrix after postmultiplication: given a matrix A and

an SRHT matrix Θ, how are the singular values of A and AΘT related?

To be more precise, Lemma 4.8 suggests that one path towards establishing the efficacy of

SRHT-based low-rank approximations lies in understanding how the SRHT perturbs the singular

values of matrices. To see this, we repeat the statement of the lemma here. Let A ∈ Rm×n have

rank ρ and recall the following partitioning of its SVD:

A= UΣVT =

�

k ρ−k

U1 U2

�











k ρ−k

Σ1

Σ2





















VT
1

VT
2











. (5.3.1)

Fix k satisfying 0 ≤ k ≤ ρ. Given a matrix S ∈ Rn×`, with ` ≥ k, Lemma 4.8 states that if VT
1 S

has full row-rank, then for ξ= 2, F,

‖A− PASA‖2ξ ≤ ‖A−Ak‖2ξ+ ‖Σ2VT
2 S
�

VT
1 S
�†
‖2ξ.

Note that PASA is exactly the low-rank approximation of A returned by Algorithm 5.1.

Now take S=ΘT to be an SRHT matrix and observe that if the product Σ2VT
2Θ

T
�

VT
1Θ

T
�†

has small norm, then the residual error of the approximant PAΘT A is small. The norm of this
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product is small when the norm of the perturbed matrix
�

VT
1Θ

T
�†

is small, because

‖Σ2VT
2Θ

T (VT
1Θ

T )†‖2ξ ≤ ‖Σ2‖2ξ‖V
T
2Θ

T‖22


(VT
1Θ

T )†




2
2. (5.3.2)

The matrix (VT
1Θ

T )† has small norm precisely when the singular values of VT
1Θ

T are close to

those of V1. This strategy is developed in [HMT11] to supply bounds for the SRHT low-rank

approximation algorithm, and relies upon knowledge of how multiplication with SRHT matrices

perturbs the singular values of matrices with orthonormal rows.

The main contribution of this chapter is the realization that one can take advantage of the

decay in the singular values of A encoded in Σ2 to obtain sharper results. In view of the fact that

‖Σ2VT
2Θ

T (VT
1Θ

T )†‖2ξ ≤ ‖Σ2VT
2Θ

T‖2ξ


(VT
1Θ

T )†




2
2 , (5.3.3)

we can additionally consider the behavior of the singular values of Σ2VT
2Θ

T . It is clear that

(5.3.3) provides a tighter bound than (5.3.2): for example, when ξ= F,

‖Σ2VT
2Θ

T‖2F ≤ ‖Σ2‖2F‖V
T
2Θ

T‖22,

and the quantity on the left-hand side is potentially much smaller than that on the right-hand

side.

In the remainder of this section, we refer to matrices with more columns than rows as “fat”;

similarly, we refer to matrices with more rows than columns as “tall.”
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5.3.1 SRHTs applied to orthonormal matrices

In this subsection, we collect known results on how the singular values of a matrix with

orthonormal rows are affected by postmultiplication by an SRHT matrix. These results will be

used to control the quantity


(VT
1Θ

T )†




2
2 in (5.3.3).

It has recently been shown by Tropp [Tro11b] that, if the SRHT matrix is of sufficiently large

dimensions, post-multiplying a fat matrix with orthonormal rows by an SRHT matrix preserves

the singular values of the orthonormal matrix, with high probability, up to a small multiplicative

factor. The following lemma is essentially a reparametrization of Theorem 3.1 in [Tro11b], but

we include a full proof for completeness.

Lemma 5.5 (The SRHT preserves geometry). Assume n is a power of 2. Let VT ∈ Rk×n have

orthonormal rows. Choose parameters 0 < ε < 1/3 and 0 < δ < 1. Construct an SRHT matrix

Θ ∈ R`×n with ` satisfying

6ε−1
�

p

k+
p

8 log(n/δ)
�2

log(k/δ)≤ `≤ n. (5.3.4)

Then, with probability at least 1− 3δ, for all i = 1, ..., k,

p

1−
p
ε≤ σi(V

TΘT )≤
p

1+
p
ε

and



(VTΘT )†− (VTΘT )T




2 ≤ 1.54
p
ε.

By the definition of an SRHT matrix, VTΘT =
p

n/` · (RHDV)T . Tropp [Tro11b] argues that

the above lemma follows from a more fundamental fact: if V has orthonormal columns, then
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the rows of the product HDV all have roughly the same norm. That is, premultiplication by HD

equalizes the row norms of an orthonormal matrix. See also [AC06].

Lemma 5.6 (Row norms, Lemma 3.3 in [Tro11b]). Assume n is a power of 2. Let V ∈ Rn×k

have orthonormal columns; let H ∈ Rn×n be a normalized Hadamard matrix; and let D ∈ Rn×n

be a diagonal matrix of independent Rademacher random variables. Choose a failure probability

0< δ < 1. Then, with probability at least 1−δ,

maxi=1,...,n





(HDV)(i)






2
≤

r

k

n
+

r

8 log(n/δ)
n

.

Recall that (HDV)(i) denotes the ith row of the matrix HDV ∈ Rn×k.

To prove Lemma 5.5 we need one more result on uniform random sampling (without

replacement) of rows from thin matrices with orthonormal columns. The following lemma is a

reparameterization of Lemma 3.4 of [Tro11b].

Lemma 5.7 (Uniform sampling without replacement from an orthonormal matrix). Let W ∈

Rn×k have orthonormal columns. Let 0 < ε < 1 and 0 < δ < 1. Let M := n ·maxi=1,...,n



W(i)




2
2.

Let ` be an integer such that

6ε−2M log(k/δ)≤ `≤ n . (5.3.5)

Let R ∈ R`×n be a matrix which consists of a subset of ` rows from In where the rows are chosen

uniformly at random and without replacement. Then, with probability at least 1− 2δ, for i ∈ [k]:

r

`

n
·
p

1− ε≤ σi(RW)≤
p

1+ ε ·

r

`

n
.

Proof. Apply Lemma 3.4 of [Tro11b] with the following choice of parameters: ` = αM log(k/δ),

α = 6/ε2, and δtropp = η = ε. Here, `, α, M , k, η are the variables named in Lemma 3.4
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of [Tro11b], and δtropp plays the role of an error parameter named δ in Lemma 3.4 of [Tro11b].

The variables ε and δ are from our Lemma. The choice of ` proportional to log(k/δ) rather than

proportional to log(k), as in the original statement of Lemma 3.4, is what results in a probability

proportional to δ instead of k; this can easily be seen by tracing the modified choice of ` through

the proof of Lemma 3.4.

Proof of Lemma 5.5. To obtain the bounds on the singular values, we combine Lemmas 5.6

and 5.7. More specifically, apply Lemma 5.7 with W = HDV and use the bound for M from

Lemma 5.6. Then, the bound on ` in (5.3.5), the bound on the singular values in Lemma 5.7,

and a union bound together establish that, with probability at least 1− 3δ,

r

`

n
·
p

1− ε≤ σi(RHDV)≤
p

1+ ε ·

r

`

n
for all i ∈ [k].

Now, multiply this inequality with
p

n/` and recall the definition Θ=
p

n/` ·RHD to obtain

p

1− ε≤ σi(ΘV)≤
p

1+ ε for all i ∈ [k]. (5.3.6)

Replacing ε with
p
ε and using the bound on ` given in (5.3.4) concludes the proof of the

first inequality in Lemma 5.5.

The second bound in the lemma follows from the first bound after a simple algebraic

manipulation. Let X = VTΘT ∈ Rk×` have SVD X = UXΣXVT
X where ΣX ∈ Rk×k is invertible, then



(VTΘT )†− (VTΘT )T




2 =


VXΣ
−1
X UT

X −VXΣXUT
X





2 =


VX(Σ
−1
X −ΣX)U

T
X





2 =


Σ−1
X −ΣX





2 ,

by unitary invariance of the spectral norm. Let Y= Σ−1
X −ΣX ∈ Rk×k. Then, for all i = 1, . . . , k,
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Yii = (1−σ2
i (X))/σi(X). We conclude the proof with the series of estimates

‖Y‖2 =max1≤i≤k

�

�Yii

�

�=max1≤i≤k

�

�

�

�

�

1−σ2
i (X)

σi(X)

�

�

�

�

�

=max

(�

�1−σ2
1(X)

�

�

σ1(X)
,

�

�1−σ2
k(X)

�

�

σk(X)

)

≤
p
ε

p

1−
p
ε
≤ 1.54

p
ε.

The second to last inequality follows from the lower bound in (5.3.6).

5.3.2 SRHTs applied to general matrices

Recall our observation that the inequality

‖Σ2VT
2Θ

T (VT
1Θ

T )†‖2ξ ≤ ‖Σ2VT
2Θ

T‖2ξ


(VT
1Θ

T )†




2
2 , (5.3.7)

together with Lemma 4.8, allows us to bound the errors of SRHT-based low-rank approximations.

In the previous subsection, we collected the results necessary to bound the term


(VT
1Θ

T )†




2
2 .

In this subsection, we present new results on the perturbative effects of SRHT multiplication.

These allow us to bound the quantities ‖Σ2VT
2Θ

T‖2ξ.

Our main tool is a generalization of Lemma 5.6 that states that the maximum column norm

of a matrix to which an SRHT has been applied is, with high probability, not much larger than

the root mean square of the column norms of the original matrix.

Lemma 5.8 (SRHT equalization of column norms). Suppose that A is a matrix with n columns,

where n is a power of 2. Let H ∈ Rn×n be a normalized Walsh–Hadamard matrix, and D ∈ Rn×n a
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diagonal matrix of Rademacher random variables. Then for every t ≥ 0,

P
�

max j=1,...,n ‖(ADHT )( j)‖2 ≤
1
p

n
‖A‖F+

t
p

n
‖A‖2

�

≥ 1− n · e−t2/8.

Recall that (ADHT )( j) denotes the jth column of ADHT .

Proof. Our proof of Lemma 5.8 is essentially that of Lemma 5.6 in [Tro11b], with attention paid

to the fact that A is no longer assumed to have orthonormal columns.

Lemma 5.8 follows immediately from the observation that the norm of any one column of

ADHT is a convex Lipschitz function of a Rademacher vector. Consider the norm of the jth

column of ADHT as a function of ε, where D= diag (ε) :

f j(ε) = ‖ADHT e j‖=


Adiag(ε)h j





2 =


Adiag(h j)ε




2 ,

where h j denotes the jth column of HT . Evidently f j is convex. Furthermore,

| f j(x)− f j(y)| ≤


Adiag(h j) (x− y)




2 ≤ ‖A‖2


diag(h j)




2



x− y




2 =
1
p

n
‖A‖2



x− y




2 ,

where we used the triangle inequality and the fact that


diag(h j)




2 = ‖h j‖∞ = n−1/2. Thus f j is

convex and Lipschitz with Lipschitz constant of at most n−1/2 ‖A‖2 .

We calculate

E
�

f j(ε)
�

≤ E
�

f j(ε)
2
�1/2

=
�

Tr
�

Adiag(h j)E
�

εε∗
�

diag(h j)A
T
��1/2

=
�

Tr
�

1

n
AAT

��1/2

=
1
p

n
‖A‖F .
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It now follows from Lemma 4.1 that, for all j = 1,2, . . . , n, the norm of the jth column of

ADHT satisfies the tail bound

P
�



ADHT e j





2 ≥
1
p

n
‖A‖F+

t
p

n
‖A‖2

�

≤ e−t2/8.

Taking a union bound over all columns of ADHT , we conclude that

P
�

max j=1,...,n



(ADHT )( j)




2 ≥
1
p

n
‖A‖F+

t
p

n
‖A‖2

�

≤ n · e−t2/8.

Our next lemma shows that the SRHT does not substantially increase the spectral norm of a

matrix.

Lemma 5.9 (SRHT-based subsampling in the spectral norm). Let A ∈ Rm×n have rank ρ, and

assume that n is a power of 2. For some r < n, let Θ ∈ R`×n be an SRHT matrix. Fix a failure

probability 0< δ < 1. Then,

P
�



AΘT




2
2 ≤ 5‖A‖22+

log(ρ/δ)
`

�

‖A‖F+
p

8 log(n/δ)‖A‖2
�2
�

≥ 1− 2δ.

To establish Lemma 5.9, we use the upper Chernoff bound for sums of matrices stated in

Lemma 4.2.

Proof of Lemma 5.9. Write the SVD of A as UΣVT , where Σ ∈ Rρ×ρ, and observe that the

spectral norm of AΘT is the same as that of
p

n/` ·ΣVTΘT .

We control the norm of ΣVTΘT by considering the maximum singular value of its Gram

matrix. Define M = ΣVT DHT , so that ΣVTΘT =
p

n/` ·MRT , and let G be the ρ × ρ Gram
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matrix of MRT :

G=MRT (MRT )T .

Evidently

λmax (G) =
`

n



ΣVTΘT




2
2 . (5.3.8)

Recall that M( j) denotes the jth column of M. If we denote by C the random set of r

coordinates to which R restricts, then

G=
∑

j∈C
M( j)M

T
( j).

Thus G is a sum of r random matrices X1, . . . ,Xr sampled without replacement from the set

X = {M( j)MT
( j) : j = 1,2, . . . , n}. There are two sources of randomness in G: the subsampling

matrix R and the Rademacher random variables on the diagonal of D.

Set

B =
1

n

�

‖Σ‖F+
p

8 log(n/δ)‖Σ‖2
�2

and let E be the event

max j=1,...,n ‖M( j)‖22 ≤ B.

By Lemma 5.8, E occurs with probability at least 1−δ. When E holds, for all j = 1,2, . . . , n,

λmax

�

M( j)M
T
( j)

�

= ‖M( j)‖22 ≤ B,

so G is a sum of random positive-semidefinite matrices each of whose norms is bounded by

B. Note that the event E is entirely determined by the random matrix D; in particular E is

independent of R.
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Conditioning on E, the randomness in R allows us to use the upper matrix Chernoff bound

of Lemma 4.2 to control the maximum eigenvalue of G. We observe that

µmax = ` ·λmax
�

E
�

X1
��

=
`

n
λmax

�

∑n

j=1
M( j)M

T
( j)

�

=
`

n
‖Σ‖22 .

Take the parameter ν in Lemma 4.2 to be

ν = 4+
B

µmax
log(ρ/δ)

to obtain the relation

P
�

λmax (G)≥ 5µmax+ B log(ρ/δ) | E
	

≤ (ρ− k) · e[δ−(1+ν) log(1+ν)](µmax/B)

≤ ρ · e(1−(5/4) log 5)δ(µmax/B)

≤ ρ · e(−(5/4) log5−1) log(ρ/δ) < δ. (5.3.9)

The second inequality holds because ν ≥ 4 implies that (1+ ν) log(1+ ν)≥ ν · (5/4) log 5.

We have conditioned on E, the event that the squared norms of the columns of M are all

smaller than B. Thus, substituting the values of B and µmax into (5.3.9), we find that

P
�

λmax (G)≥
`

n

�

5‖Σ‖22+
log(ρ/δ)

`

�

‖Σ‖F+
p

8 log(n/δ)‖Σ‖2
�2
��

≤ 2δ.

Use equation (5.3.8) to wrap up.

Similarly, the SRHT is unlikely to substantially increase the Frobenius norm of a matrix.

Lemma 5.10 (SRHT-based subsampling in the Frobenius norm). Assume n is a power of 2. Let

A ∈ Rm×n, and let Θ ∈ R`×n be an SRHT matrix for some ` < n. Fix a failure probability 0< δ < 1.
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Then, for any η≥ 0,

P
n



AΘT




2
F ≤ (1+η)‖A‖

2
F

o

≥ 1−
�

eη

(1+η)1+η

�`/
�

1+
p

8 log(n/δ)
�2

−δ.

Proof. Let c j = (n/`) ·


(ADHT )( j)




2
2 denote the squared norm of the jth column of

p

n/` ·

ADHT . Then, since right multiplication by RT samples columns uniformly at random without

replacement,



AΘT




2
F =

n

`



ADHT RT




2
F =
∑`

i=1
X i (5.3.10)

where the random variables X i are chosen randomly without replacement from the set {c j}nj=1.

There are two independent sources of randomness in this sum: the choice of summands, which

is determined by R, and the magnitudes of the {c j}, which are determined by D.

To bound this sum, we first condition on the event E that each c j is bounded by a quantity B

which depends only on the random matrix D. Then

P
§

∑`

i=1
X i ≥ (1+η)

∑`

i=1
EX i

ª

≤ P
§

∑`

i=1
X i ≥ (1+η)

∑`

i=1
EX i | E

ª

+ P (Ec) .

To select B, we observe that Lemma 5.8 implies that with probability 1−δ, the entries of D are

such that

max j c j ≤
n

`
·

1

n
(‖A‖F+

p

8 log(n/δ)‖A‖2)2 ≤
1

`
(1+

p

8 log(n/δ))2 ‖A‖2F .

Accordingly, we take

B =
1

`
(1+

p

8 log(n/δ))2 ‖A‖2F ,
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thereby arriving at the bound

P
§

∑`

i=1
X i ≥ (1+η)

∑`

i=1
EX i

ª

≤ P
§

∑`

i=1
X i ≥ (1+η)

∑`

i=1
EX i | E

ª

+δ. (5.3.11)

After conditioning on D, we observe that the randomness remaining on the right-hand side

of (5.3.11) is due to the choice of the summands X i , which is determined by R. We address this

randomness by applying a scalar Chernoff bound (Lemma 4.2 with k = 1). To do so, we need

µmax, the expected value of the sum; this is an elementary calculation:

EX1 = n−1
∑n

j=1
c j =

1

`
‖A‖2F ,

so µmax = `EX1 = ‖A‖
2
F .

Applying Lemma 4.2 conditioned on E, we conclude that

P
n



AΘT




2
F ≥ (1+η)‖A‖

2
F | E

o

≤
�

eη

(1+η)1+η

�`/(1+
p

8 log(n/δ))2

+δ

for η≥ 0.

Finally, we prove a novel result on approximate matrix multiplication involving SRHT matrices.

Lemma 5.11 (SRHT for approximate matrix multiplication). Assume n is a power of 2. Let

A ∈ Rm×n and B ∈ Rn×p. For some ` < n, let Θ ∈ R`×n be an SRHT matrix. Fix a failure probability

0< δ < 1. Assume R satisfies 0≤ R≤
p
`/(1+

p

8 log(n/δ)). Then,

P









AΘTΘB−AB




F ≤ 2(R+ 1)
‖A‖F ‖B‖F+

p

8 log(n/δ)‖A‖F ‖B‖2p
`







≥ 1− e−R2/4− 2δ.
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Remark 5.12. Recall that the stable rank sr (A) = ‖A‖2F /‖A‖
2
2 reflects the decay of the spectrum

of the matrix A. The event under consideration in Lemma 5.11 can be rewritten as a bound on

the relative error of the approximation AΘTΘB to the product AB :



AΘTΘB−AB




F

‖AB‖F
≤
‖A‖F ‖B‖F
‖AB‖F

·
R+ 2
p
`
·



1+

p

8 log(n/δ)

sr (B)



 .

In this form, we see that the relative error is controlled by the deterministic condition number

for the matrix multiplication problem as well as the stable rank of B and the number of column

samples `. Since the roles of A and B in this bound can be interchanged, in fact we have the

bound


AΘTΘB−AB




F

‖AB‖F
≤
‖A‖F ‖B‖F
‖AB‖F

·
R+ 2
p
`
·



1+

p

8 log(n/δ)

max(sr (B) , sr (A))



 .

To prove the lemma, we use Lemma 4.3, our result for approximate matrix multiplication

via uniform sampling (without replacement) of the columns and the rows of the two matrices

involved in the product. Lemma 5.11 is simply a specific application of this generic result. We

mention that Lemma 3.2.8 in [Dri02] gives a similar result for approximate matrix multiplication

which, however, gives a bound on the expected value of the error term, while our Lemma 5.11

gives a comparable bound that holds with high probability.

Proof of Lemma 5.11. Let X= ADHT and Y= HDB and form X̂ and Ŷ according to Lemma 4.3.

Then, XY= AB and



AΘTΘB−AB




F =


X̂Ŷ−XY




F .

To apply Lemma 4.3, we first condition on the event that the SRHT equalizes the column norms
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of our matrices. Namely, we observe that, from Lemma 5.8, with probability at least 1− 2δ,

maxi ‖X(i)‖2 ≤
1
p

n
(‖A‖F+

p

8 log(n/δ)‖A‖2), and (5.3.12)

maxi ‖Y(i)‖2 ≤
1
p

n
(‖B‖F+

p

8 log(n/δ)‖B‖2).

We choose the parameters σ and B in Lemma 4.3. Set

σ2 =
4

`
(‖B‖F+

p

8 log(n/δ)‖B‖2)2 ‖A‖
2
F . (5.3.13)

In view of (5.3.12),

σ2 = 4
n

`
·
(‖Y‖F+

p

8 log(n/δ)‖Y‖2)2

n
‖X‖2F ≥ 4

n

`

∑n

i=1
‖X(i)‖22‖Y

(i)‖22

so this choice of σ satisfies the inequality condition of Lemma 4.3. Next we choose

B =
2

`
(‖A‖F+

p

8 log(n/δ)‖A‖2)(‖B‖F+
p

8 log(n/δ)‖B‖2).

Again, because of (5.3.12), B satisfies the requirement B ≥ 2n
`

maxi ‖X(i)‖2‖Y(i)‖2.

For simplicity, abbreviate γ= 8 log(n/δ). With these choices for σ2 and B,

σ2

B
=

2‖A‖2F (‖B‖F+
p
γ‖B‖2)2

(‖A‖F+
p
γ‖A‖2)(‖B‖F+

p
γ‖B‖2)

≥
2‖A‖2F (‖B‖F+

p
γ‖B‖2)2

(‖A‖F+
p
γ‖A‖F)(‖B‖F+

p
γ‖B‖2)

=
2‖A‖F (‖B‖F+

p
γ‖B‖2)

1+pγ
.
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Now, referring to (5.3.13), identify the numerator as
p
`σ to see that

σ2

B
≥

p
`σ

1+
p

8 log(n/δ)
.

Apply Lemma 4.3 to see that, when (5.3.12) holds and 0≤ Rσ ≤ σ2/B,

P
¦

AΘTΘB−AB




F ≥ (R+ 1)σ
©

≤ exp

�

−
R2

4

�

.

From our lower bound on σ2/B, we know that the condition Rσ ≤ σ2/B is satisfied when

R≤
p

`/(1+
p

8 log(n/δ)).

We established above that (5.3.12) holds with probability at least 1− 2δ. From these two facts,

it follows that when 0≤ R≤
p
`/(1+

p

8 log(n/δ)),

P
¦

AΘTΘB−AB




F ≥ (R+ 1)σ
©

≤ exp

�

−
R2

4

�

+ 2δ.

The tail bound given in the statement of Lemma 5.11 follows when we substitute our estimate

of σ.

5.4 Proof of the quality of approximation guarantees

With the necessary preliminaries in hand, we now proceed to the proof of our main results:

bounds on the spectral and Frobenius-norm residual and forward errors of low-rank approxima-

tions generated using Algorithms 5.1 and 5.2 with SRHT sampling matrices. We note that prior

works have provided only residual error bounds [WLRT08, HMT11, NDT09].
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Our first result bounds the spectral-norm errors.

Theorem 5.13. Assume n is a power of 2. Let A ∈ Rm×n have rank ρ and fix an integer k satisfying

2 ≤ k < ρ. Let 0 < ε < 1/3 be an accuracy parameter, 0 < δ < 1 be a failure probability, and

C ≥ 1 be any specified constant. If Θ ∈ R`×n is an SRHT matrix and ` satisfies

6C2ε−1
�

p

k+
p

8 log(n/δ)
�2

log(k/δ)≤ `≤ n, (5.4.1)

then the approximation PAΘT A generated by Algorithm 5.1 with S=ΘT satisfies the residual error

bound



A− PAΘT A




2 ≤

 

4+

r

3 log(n/δ) log(ρ/δ)
`

!

·


A−Ak





2+

r

3 log(ρ/δ)
`

·


A−Ak





F (i)

and the forward error bound



Ak − PAΘT A




2 ≤

 

4+

r

3 log(n/δ) log(ρ/δ)
`

!

·


A−Ak





2+

r

3 log(ρ/δ)
`

·


A−Ak





F (ii)

simultaneously, with probability at least 1− 5δ.

Likewise, the approximation ΠF
AS,k(A) generated by Algorithm 5.2 with S = ΘT satisfies the

residual error bound





A−ΠF
AS,k(A)







2
≤

 

6+

r

6 log(n/δ) log(ρ/δ)
`

!

·


A−Ak





2+

r

6 log(ρ/δ)
`

·


A−Ak





F

(iii)
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and the forward error bound





Ak −ΠF
AS,k(A)







2
≤

 

7+

r

6 log(n/δ) log(ρ/δ)
`

!

·


A−Ak





2+

r

6 log(ρ/δ)
`

·


A−Ak





F

(iv)

simultaneously, with probability at least 1− 5δ.

Proof. First we derive the residual error bounds. Lemma 5.5 implies that, when ` satisfies (5.4.1),



(VT
1Θ

T )†




2
2 ≤ (1−

p
ε)−1

with probability at least 1− 3δ. Consequently, VT
1Θ

T has full row-rank and Lemma 4.8 with

S = ΘT ∈ Rn×` and ξ = 2 applies with the same probability, yielding a bound on the residual

error of the approximation PASA:



A− PAΘT A




2
2 ≤


A−Ak





2
2+ ‖Σ2VT

2Θ
T (VT

1Θ
T )†‖22

≤


A−Ak





2
2+ ‖Σ2VT

2Θ
T‖22‖(V

T
1Θ

T )†‖22

≤


A−Ak





2
2+ (1−

p
ε)−1



Σ2VT
2Θ

T




2
2 . (5.4.2)

We now provide an upper bound for the quantity

Z =


A−Ak





2
2+ (1−

p
ε)−1



Σ2VT
2Θ

T




2
2 .

After applying Lemma 5.9 to estimate the term


Σ2VT
2Θ

T




2
2 , we see that the estimate

Z ≤
�

1+
5

1−
p
ε

�

·


A−Ak





2
2+

log(ρ/δ)
(1−

p
ε)`

�



A−Ak





F+
p

8 log(n/δ)


A−Ak





2

�2
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holds with probability at least 1−5δ. Our assumption that ε < 1/3 ensures that (1−
p
ε)−1 < 3,

so

Z ≤ 16 ·


A−Ak





2
2+

3 log(ρ/δ)
`

�



A−Ak





F+
p

8 log(n/δ)


A−Ak





2

�2
. (5.4.3)

Introduce this estimate for Z into (5.4.2), use the subadditivity of the square-root function, and

rearrange the spectral and Frobenius norm terms to arrive at Eqn. (i) in the theorem:



A− PAΘTA




2 ≤

 

4+

r

3 log(n/δ) log(ρ/δ)
`

!

·


A−Ak





2+

r

3 log(ρ/δ)
`

·


A−Ak





F .

We now establish the residual error bound for the approximation ΠF
AS,k(A). We begin by

recalling that Lemma 4.7 states that

‖A−ΠF
AS,k(A)‖

2
2 ≤ 2‖A−Π2

AS,k(A)‖
2
2.

Lemma 4.8 can be used to bound the right-hand side quantity:

2‖A−Π2
AS,k(A)‖

2
2 ≤ 2



A−Ak





2
2+ 2‖Σ2VT

2Θ
T (VT

1Θ
T )†‖22.

We have already encountered the right-hand side of this expression, without the factor of two,

in (5.4.2). It follows that

‖A−ΠF
AS,k(A)‖

2
2 ≤ 2Z .

Introduce our earlier estimate for Z , given in (5.4.3), into this inequality; apply the submulti-
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plicativity of the square-root function; and rearrange terms to obtain Eqn. (iii) in the theorem:





A−ΠF
AS,k(A)







2
≤

 

6+

r

6 log(n/δ) log(ρ/δ)
`

!

·


A−Ak





2+

r

6 log(ρ/δ)
`

·


A−Ak





F .

Once again, this bound holds with probability at least 1− 5δ.

The forward error bounds follow in a similar manner. To establish Eqn. (ii) in the theorem,

observe that Lemma 4.9 gives the bound



Ak − PAΘT A




2
2 ≤


A−Ak





2
2+ ‖Σ2VT

2Θ
T (VT

1Θ
T )†‖22.

Once again, we observe that we encountered the right-hand side of this expression in (5.4.2),

where we argued that it is bounded by Z , so



Ak − PAΘT A




2
2 ≤ Z .

Introduce into this inequality the estimate for Z given in (5.4.3), apply the submultiplicativity of

the square-root function, and rearrange terms to obtain Eqn. (ii) in the theorem:



Ak − PAΘT A




2
2 ≤

 

4+

r

3 log(n/δ) log(ρ/δ)
`

!

·


A−Ak





2+

r

3 log(ρ/δ)
`

·


A−Ak





F .

To establish Eqn. (iv) in the theorem, observe that

‖Ak −ΠF
AS,k(A)‖2 ≤ ‖Ak +Aρ−k −ΠF

AS,k(A) +Aρ−k‖2

≤ ‖A−ΠF
AS,k(A)‖2+ ‖Aρ−k‖2

= ‖A−ΠF
AS,k(A)‖2+ ‖A−Aρ−k‖2.
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The first term on the right-hand side of this inequality is simply the forward error of the

approximation ΠF
AS,k(A). Introduce our bound on this error, given by Eqn. (iii) of the theorem,

into this inequality to obtain the desired bound:

‖Ak −ΠF
AS,k(A)‖2 ≤

 

7+

r

6 log(n/δ) log(ρ/δ)
`

!

·


A−Ak





2+

r

6 log(ρ/δ)
`

·


A−Ak





F .

This bound holds with probability at least 1− 5δ.

Our second result bounds the Frobenius-norm errors of the SRHT-based low-rank approxima-

tion algorithms.

Theorem 5.14. Assume n is a power of 2. Let A ∈ Rm×n have rank ρ and fix an integer k satisfying

2 ≤ k < ρ. Let 0 < ε < 1/3 be an accuracy parameter, 0 < δ < 1 be a failure probability, and

C ≥ 1 be any specified constant. If Θ ∈ R`×n is an SRHT matrix and ` satisfies

6C2ε−1
�

p

k+
p

8 log(n/δ)
�2

log(k/δ)≤ `≤ n, (5.4.4)

then the approximation PAΘT A generated by Algorithm 5.1 with S=ΘT satisfies the residual error

bound



A− PAΘT A




F ≤ (1+ 11ε) ·


A−Ak





F (i)

and the forward error bound



Ak − PAΘT A




F ≤ (1+ 11ε) ·


A−Ak





F (ii)

simultaneously, with probability at least 1−δC2 log(k/δ)/4− 7δ.
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Likewise, the approximation ΠF
AS,k(A) generated by Algorithm 5.2 with S = ΘT satisfies the

residual error bound





A−ΠF
AS,k(A)







F
≤ (1+ 11ε) ·



A−Ak





F (iii)

and the forward error bound





Ak −ΠF
AS,k(A)







F
≤ (2+ 11ε) ·



A−Ak





F (iv)

simultaneously, with probability at least 1−δC2 log(k/δ)/4− 7δ.

Proof. We first establish the residual error bounds. Because ` satisfies (5.4.4), Lemma 5.5

implies that with probability at least 1− 3δ,

rank(VT
1Θ

T ) = k;

so, Lemma 4.8 applies with the same probability, yielding



A− PAΘT A




2
F ≤


A−ΠF
AΘT ,k(A)





2
F ≤


A−Ak





2
F +


Σ2VT
2Θ

T (VT
1Θ

T )†




2
F . (5.4.5)

We complete the estimate by bounding the second term in the right hand side of the above
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inequality. Justifications appear below.

S :=


Σ2VT
2Θ

T (VT
1Θ

T )†




2
F

≤ 2


Σ2VT
2Θ

TΘV1





2
F + 2



Σ2VT
2Θ

T ((VT
1Θ

T )†− (VT
1Θ

T )T )




2
F (5.4.6)

≤ 2


Σ2VT
2Θ

TΘV1





2
F + 2



Σ2VT
2Θ

T




2
F



(VT
1Θ

T )†− (VT
1Θ

T )T




2
2

≤ 8ε ·


Σ2VT
2





2
F + 2 ·

�

11

4



Σ2VT
2





2
F

�

· (2.38ε) (5.4.7)

≤ 22ε ·


Σ2





2
F . (5.4.8)

In (5.4.6) we used the fact that ‖X+ Y‖2F ≤ 2‖X‖2F + 2‖Y‖2F for any two matrices X and Y. The

first estimate in (5.4.7) is justified by an application of Lemma 5.11 on SRHT-based approximate

matrix multiplication; the second estimate is an application of Lemma 5.10, which predicts the

effect that postmultiplication by an SRHT matrix has upon the Frobenius norm of a matrix; and

the third estimate is an application of Lemma 5.5, which predicts the effect of postmultiplication

by an SRHT matrix on the singular values of a matrix with orthonormal rows. We postpone

a detailed discussion of the calculations involved in these estimations until after we have

established the residual error bounds.

Combining (5.4.5) with the bound on S, we obtain



A− PASA




2
F ≤ ‖A−Π

F
AS,k(A)‖

2
F ≤ (1+ 22ε) ·



A−Ak





2
F . (5.4.9)

Since 1+ 2x ≤ (1+ x)2 when x is positive, it follows that
p

1+ 2x ≤ 1+ x when x is positive.

In particular,
p

1+ 22ε≤ 1+ 11ε. Introduce this observation into (5.4.9) to conclude that



A− PASA




F ≤ ‖A−Π
F
AS,k(A)‖F ≤ (1+ 11ε) ·



A−Ak





F .
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Thus we have established Eqns. (i) and (iii) in the theorem.

We now supply the details of the manipulations in (5.4.7). To justify the first estimate, notice

that VT
2 V1 = 0. Next use Lemma 5.11 with R= C

p

log(k/δ). From the lower bound (5.4.4) on

`, we have that

p
`

1+
p

8 log(n/δ)
≥
p

6ε−1 ·

p
k+
p

8 log(n/δ)

1+
p

8 log(n/δ)
· C
p

log(k/δ)> R> 0,

so this choice of R satisfies the requirements of Lemma 5.11. Apply Lemma 5.11 to obtain

P









Σ2VT
2Θ

TΘV1





2
F ≤ 4(R+ 1)2

(
p

k+
p

8 log(n/δ))2

`



Σ2VT
2





2
F







≥ 1− e−R2/4− 2δ.

Recall that R= C
p

log(k/δ). Use the lower bound (5.4.4) on ` to justify the estimate

4(R+ 1)2
�
p

k+
p

8 log(n/δ)
�2

`
≤ 4(R+ 1)2

�
p

k+
p

8 log(n/δ)
�2

6C2ε−1�
p

k+
p

8 log(n/δ)
�2 log(k/δ)

=
2ε

3
·
(C
p

log(k/δ) + 1)2

C2 log(k/δ)

≤
2ε

3



1+
1

C
p

log(k/δ)





2

.

This estimate implies that

P









Σ2VT
2Θ

TΘV1





2
F ≤

2ε

3



1+
1

C
p

log(k/δ)





2


Σ2VT
2





2
F







≥ 1−δC2 log(k/δ)/4− 2δ.

Since C > 1 and k ≥ 2, a simple numerical bound allows us to state that, more simply,

P
n



Σ2VT
2Θ

TΘV1





2
F ≤ 4ε



Σ2VT
2





2
F

o

≥ 1−δC2 log(k/δ)/4− 2δ.
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This bound on


Σ2VT
2Θ

TΘV1





2
F is used to estimate the first term in (5.4.7). The remaining

estimates in (5.4.7) follow from applying Lemma 5.5 (keeping in mind the lower bound (5.4.4)

on `) to obtain

P
n



(VT
1Θ

T )†− (VT
1Θ

T )T




2
2 ≤ 2.38ε

o

≥ 1− 3δ.

and Lemma 5.10 with η= 7/4 to obtain

P
�



Σ2VT
2Θ

T




2
F ≤

11

4



Σ2VT
2





2
F

�

≥ 1−
�

e7/4

(1+ 7/4)1+7/4

�`/(1+
p

8 log(n/δ))2

−δ.

We have the estimate

e7/4

(1+ 7/4)1+7/4
<

1

e
,

so in fact

P
�



Σ2VT
2Θ

T




2
F ≤

11

4



Σ2VT
2





2
F

�

≥ 1− e−`/(1+
p

8 log(n/δ))2 −δ

≥ 1− e−6C2ε−1 log(k/δ)−δ

≥ 1− e− log(k/δ)−δ

≥ 1− 2δ.

Adding up the failure probabilities of the three estimates used in (5.4.7), we conclude that the

bound on S given in (5.4.8) holds with probability at least 1−δC2 log(k/δ)/4− 7δ. Thus Eqns. (i)

and (iii) hold with this probability.

Next we establish the forward error bounds. Lemma 4.9 with S=ΘT ∈ Rn×` gives



Ak − PASA




2
F ≤


A−Ak





2
F +


Σ2VT
2Θ

T (VT
1Θ

T )†




2
F .
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Identify the second term on the right-hand side as S and introduce the estimate for S given

in (5.4.8) to see that



Ak − PASA




2
F ≤


A−Ak





2
F + 22ε ·



A−Ak





2
F = (1+ 22ε) ·



A−Ak





2
F .

This bound holds with probability at least 1−δC2 log(k/δ)/4− 7δ. Taking the square-roots of both

sides and using the fact that
p

1+ 22ε≤ 1+ 22ε gives Eqn. (iii).

Finally, we prove Eqn. (iv):



Ak −ΠF
AΘT ,k(A)





F =


A−Ak − (A−ΠF
AΘT ,k(A))





F

≤


A−Ak





F+


A−ΠF
AΘT ,k(A)





F ≤ (2+ 11ε)


A−Ak





F ,

where the first inequality follows by the triangle inequality and the second follows from Eqn. (ii)

in the theorem. This bound holds with probability at least 1−δC2 log(k/δ)/4− 7δ.

5.5 Experiments

In this section, we experimentally investigate the tightness of the residual and forward error

bounds provided in Theorems 5.13 and 5.14 for the spectral and Frobenius-norm approximation

errors of SRHT low-rank approximations of the forms PAΘT A and ΠF
AΘT ,k

(A). Additionally, we

experimentally verify that the SRHT algorithms are not significantly less accurate than the

Gaussian low-rank approximation algorithms.
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5.5.1 The test matrices

Let n= 1024, and consider the following three test matrices:

1. Matrix A ∈ R(n+1)×n is given by

A= [100e1+ e2, 100e1+ e3, . . . , 100e1+ en+1],

where ei ∈ Rn+1 are the standard basis vectors.

2. Matrix B ∈ Rn×n is diagonal with entries (B)ii = 100(1− (i− 1)/n).

3. Matrix C ∈ Rn×n has the same singular values as B, but its singular spaces are sampled

from the uniform measure on the set of orthogonal matrices. More precisely, C = UBVT ,

where G = UΣVT is the SVD of an n× n matrix whose entries are standard Gaussian random

variables.

These three matrices exhibit properties that, judging from the bounds in Theorems 5.13

and 5.14, could challenge the SRHT approximation algorithm. Matrix A is approximately rank

one—there is a large spectral gap after the first singular value—but the residual spectrum is flat,

so for k ≥ 1, the


A−Ak





F terms in the spectral norm bounds of Theorem 5.13 are quite large

compared to the


A−Ak





2 terms. Matrices B and C both have slowly decaying spectrums, so

one again has a large Frobenius term present in the spectral norm error bound.

Matrices B and C were chosen to have the same singular values but different singular spaces

to reveal any effect that the structure of the singular spaces of the matrix has on the quality

of SRHT approximations. The coherence of their right singular spaces provides a summary

of the relevant difference in the singular spaces of B and C. Recall that the coherence of a
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k-dimensional subspace S is defined as

µ(S ) =
n

k
max

i
Pii ,

where P is the projection onto S ; the coherence of S is always between 1 and n/k [CR09]. It

is clear that all the right singular spaces of B are maximally coherent, and it is known that with

high probability the dominant right k-dimensional singular space of C is quite incoherent, with

coherence on the order of k log n [CR09].

To gain an intuition for the potential significance of this difference in coherence, consider

a randomized column sampling approach to forming low-rank approximants; that is, consider

approximating Mk with a matrix PYM where Y comprises randomly sampled columns of M. It is

known that such approximations are quite inaccurate unless the dominant k-dimensional right

singular space of M is incoherent (see, e.g., Chapter 6 or [TR10]). One could interpret SRHT

approximation algorithms as consisting of a rotation of the right singular spaces of M by multi-

plying from the right with DHT followed by forming a column sample-based approximation. The

rotation lowers the coherence of the right singular spaces and thereby increases the probability

of obtaining an accurate low-rank approximation. One expects that if M has highly coherent

right singular spaces then the right singular spaces of MDHT will be less coherent. Thus we

compare the performance of the SRHT approximations on B, which has maximally coherent

right singular spaces, to their performance on C, which has almost maximally incoherent right

singular spaces.
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Figure 5.1: RESIDUAL ERRORS OF LOW-RANK APPROXIMATION ALGORITHMS. Relative spectral and
Frobenius-norm residual errors of the SRHT and Gaussian low-rank approximation algorithms
(‖M− PMSM‖ξ/‖M−Mk‖ξ and ‖M−ΠF

MS,k(M)‖ξ/‖M−Mk‖ξ for ξ = 2,F) as a function of the
target rank k for the three matrices M= A,B,C. Each point is the average error observed over
30 trials. In each trial, `= d2k log ne column samples were used.
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5.5.2 Empirical comparison of the SRHT and Gaussian algorithms

Figure 5.1 depicts the relative residual errors of the Gaussian and SRHT algorithms for ap-

proximations generated using Algorithms 5.1 and 5.2: PMSM and ΠF
MS,k(M), which we shall

hereafter refer to respectively as the non-rank-restricted and rank-restricted approximations.

Here the matrix M is used to refer interchangeably to A,B, and C. The relative residual errors

(‖M−PMSM‖ξ/‖M−Mk‖ξ and ‖M−ΠF
MS,k(M)‖ξ/‖M−Mk‖ξ for ξ = 2,F) shown in this figure

for each value of k were obtained by taking the average of the relative residual errors observed

over 30 trials of low-rank approximations, each formed using `= d2k log ne samples.

With the exception of the residual spectral errors on A, which range from between two and

nine times the size of the optimal rank-k spectral residual error for k < 20, we see that the

residual errors for all three matrices are less than 1.1 times the residual error of Mk, if not

significantly smaller. Specifically, the relative residual errors of the restricted-rank approximations

remain less than 1.1 over the entire range of k while the relative residual errors of the non-rank-

restricted approximations actually decrease as k increases. Note that, because ` > k, the relative

errors of the non-rank-restricted approximations are often smaller than 1, while those of the

restricted-rank approximations are never smaller than 1.

Since the matrices B and C have the same singular values, but the singular spaces of C are

less coherent, the difference in the residual errors of the approximations of B and C is evidence

that the spectral-norm accuracy of the SRHT approximations is increased on less coherent

datasets; the same is true for the Frobenius norm accuracy to a lesser extent. The Gaussian

approximations seem insensitive to the level of coherence. Only on the highly coherent matrix

B do we see a notable decrease in the residual errors when Gaussian sampling is used rather

than an SRHT; however, even in this case the residual errors of the SRHT approximations are
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comparable with that of Bk. In all, Figure 5.1 suggests that the gain in computational efficiency

provided by the SRHT does not come at the cost of a significant loss in accuracy and that taking

`= d2k log ne samples suffices to obtain approximations with small residual errors relative to

those of the optimal rank-k approximations. Up to the specific value of the constant, this latter

observation coincides with the conclusions of Theorems 5.13 and 5.14.

Figure 5.2 depicts the relative forward errors of the Gaussian and SRHT algorithms (‖Mk −

PMSM‖ξ/‖M−Mk‖ξ and ‖Mk−ΠF
MS,k(M)‖ξ/‖M−Mk‖ξ for ξ = 2,F) for the non-rank-restricted

and rank-restricted approximations. The error shown for each k is the average relative forward

error observed over 30 trials of low-rank approximations each formed using `= d2k log ne sam-

ples. We observe that the forward errors of both algorithms for both choices of sampling matrices

are on the scale of the norm of Mk. By looking at the relative spectral-norm forward errors we

see that in this norm, perhaps contrary to intuition, the rank-restricted approximation does not

provide a more accurate approximation to Mk than does the non-rank-restricted approximation.

However the rank-restricted approximation clearly provides a more accurate approximation to

Mk than the non-rank-restricted approximation in the Frobenius norm. A rather unexpected

observation is that the rank-restricted approximations are more accurate in the spectral norm

for highly coherent matrices (B) than they are for matrices which are almost minimally coherent

(C). Overall, Figure 5.2 suggests that the SRHT low-rank approximation algorithms provide

accurate approximations to Mk when ` is in the regime suggested by Theorems 5.13 and 5.14.

5.5.3 Empirical evaluation of our error bounds

Figures 5.1 and 5.2 show that when ` = d2k log ne samples are taken, the SRHT low-rank

approximation algorithms both provide approximations to M that are within a factor of 1+ ε

as accurate in the Frobenius norm as Mk, as Theorem 5.14 suggests should be the case. More



148

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

k (target rank)

re
la

tiv
e 

er
ro

r

Relative forward spectral errors for A

 

 
‖Ak − PASA‖2/‖Ak‖2, Gaussian
‖Ak − PASA‖2/‖Ak‖2, SRHT
‖Ak −Π

F
AS,k(A)‖2/‖Ak‖2, Gaussian

‖Ak −Π
F
AS,k(A)‖2/‖Ak‖2, SRHT

0 10 20 30 40 50 60 70 80
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

k (target rank)

re
la

tiv
e 

er
ro

r

Relative forward Frobenius errors for A

 

 
‖Ak − PASA‖F /‖Ak‖F , Gaussian
‖Ak − PASA‖F /‖Ak‖F , SRHT
‖Ak −Π

F
AS,k(A)‖F/‖Ak‖F , Gaussian

‖Ak −Π
F
AS,k(A)‖F/‖Ak‖F , SRHT

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

k (target rank)

re
la

tiv
e 

er
ro

r

Relative forward spectral errors for B

 

 

‖Bk − PBSB‖2/‖Bk‖2, Gaussian
‖Bk − PBSB‖2/‖Bk‖2, SRHT
‖Bk −Π

F
BS,k (B)‖2/‖Bk‖2, Gaussian

‖Bk −Π
F
BS,k (B)‖2/‖Bk‖2, SRHT

0 10 20 30 40 50 60 70 80
0

0.005

0.01

0.015

0.02

0.025

k (target rank)

re
la

tiv
e 

er
ro

r

Relative forward Frobenius errors for B

 

 
‖Bk − PBSB‖F/‖Bk‖F , Gaussian
‖Bk − PBSB‖F/‖Bk‖F , SRHT
‖Bk −Π

F
BS,k (B)‖F /‖Bk‖F , Gaussian

‖Bk −Π
F
BS,k (B)‖F /‖Bk‖F , SRHT

0 10 20 30 40 50 60 70 80
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

k (target rank)

re
la

tiv
e 

er
ro

r

Relative forward spectral errors for C

 

 

‖Ck − PCSC‖2/‖Ck‖2, Gaussian
‖Ck − PCSC‖2/‖Ck‖2, SRHT
‖Ck −Π

F
CS,k (C)‖2/‖Ck‖2, Gaussian

‖Ck −Π
F
CS,k (C)‖2/‖Ck‖2, SRHT

0 10 20 30 40 50 60 70 80
0

0.005

0.01

0.015

0.02

0.025

k (target rank)

re
la

tiv
e 

er
ro

r

Relative forward Frobenius errors for C

 

 
‖Ck − PCSC‖F/‖Ck‖F , Gaussian
‖Ck − PCSC‖F/‖Ck‖F , SRHT
‖Ck −Π

F
CS,k (C)‖F/‖Ck‖F , Gaussian

‖Ck −Π
F
CS,k (C)‖F/‖Ck‖F , SRHT

Figure 5.2: FORWARD ERRORS OF LOW-RANK APPROXIMATION ALGORITHMS. The relative spectral and
Frobenius-norm forward errors of the SRHT and Gaussian low-rank approximation algorithms
(‖Mk−PMSM‖ξ/‖M−Mk‖ξ and ‖Mk−ΠF

MS,k(M)‖ξ/‖M−Mk‖ξ for ξ = 2, F) as a function of the
target rank k for the three matrices M = A,B,C. Each point is the average of the errors observed
over 30 trials. In each trial, `= d2k log ne column samples were used.
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Figure 5.3: THE NUMBER OF COLUMN SAMPLES REQUIRED FOR RELATIVE ERROR FROBENIUS-NORM

APPROXIMATIONS. The value of ` empirically necessary to ensure that, with probability at
least one-half, approximations generated by the SRHT algorithms satisfy



M− PMΘT M




F ≤

(1+ ε)


M−Mk





F and




M−ΠF
MΘT ,k

(M)






F
≤ (1+ ε)



M−Mk





F (for M= A,B,C).
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precisely, Theorem 5.14 assures us that 528ε−1[
p

k+
p

8 log(8n/δ)]2 log(8k/δ) column samples

are sufficient to ensure that, with at least probability 1 − δ, PMΘT M and ΠF
MΘT ,k

(M) have

Frobenius norm residual and forward error within 1+ ε of that of Mk. The factor 528 can

certainly be reduced by optimizing the numerical constants given in Theorem 5.14. But what

is the smallest ` that ensures the Frobenius norm residual error bounds


M− PMΘT M




F ≤

(1+ ε)


M−Mk





F and




M−ΠF
MΘT ,k

(M)






F
≤ (1+ ε)



M−Mk





F are satisfied with some fixed

probability? To investigate, in Figure 5.3 we plot the values of ` determined empirically to

be sufficient to obtain (1+ ε) Frobenius norm residual errors relative to the optimal rank-k

approximation; we fix the failure probability δ = 1/2 and vary ε. Specifically, the ` plotted for

each k is the smallest number of samples for which


M− PMΘT M




F ≤ (1+ ε)


M−Mk





F or




M−ΠF
MΘT ,k

(M)






F
≤ (1+ ε)



M−Mk





F in at least 15 out of 30 trials.

It is clear that, for fixed k and ε, the number of samples ` required to form a non-rank-

restricted approximation to M with 1+ ε relative residual error is smaller than the ` required

to form a rank-restricted approximation with 1+ ε relative residual error. Note that for small

values of k, the ` necessary for relative residual error to be achieved is actually smaller than

k for all three datasets. This is a reflection of the fact that when k1 < k2 are small, the ratio



M−Mk2





F /


M−Mk1





F is very close to one. Outside of the initial flat regions, the empirically

determined value of r seems to grow linearly with k; this matches with the observation of Woolfe

et al. that taking `= k+ 8 suffices to consistently form accurate low-rank approximations using

the SRFT scheme, which is very similar to the SRHT scheme [WLRT08]. We also note that this

matches with Theorem 5.14, which predicts that the necessary ` grows at most linearly with k

with a slope like log n.

Finally, Theorem 5.13 does not guarantee that 1+ε spectral-norm relative residual errors can

be achieved. Instead, it provides bounds on the spectral-norm residual errors achieved in terms of



151


M−Mk





2 and


M−Mk





F that are guaranteed to hold when ` is sufficiently large. In Figure 5.4

we compare the spectral-norm residual error guarantees of Theorem 5.13 to what is achieved in

practice. To do so, we take the optimistic viewpoint that the constants in Theorem 5.13 can be

optimized to unity. Under this view, if more columns than `2 = ε−1[
p

k+
p

log(n/δ)]2 log(k/δ)

are used to construct the SRHT approximations, then the spectral-norm residual error is no

larger than

b2 =

 

1+

r

log(n/δ) log(ρ/δ)
`

!

·


M−Mk





2+

r

log(ρ/δ)
`

·


M−Mk





F ,

where ρ is the rank of M, with probability greater than 1−δ. Our comparison consists of using

`2 samples to construct the SRHT approximations and then comparing the predicted upper

bound on the spectral-norm residual error, b2, to the empirically observed spectral-norm residual

errors. Figure 5.4 shows, for several values of k, the upper bound b2 and the observed relative

spectral-norm residual errors, with precision parameter ε= 1/2 and failure parameter δ = 1/2.

For each value of k, the empirical spectral-norm residual error plotted is the average of the

errors over 30 trials of low-rank approximations. Note from Figure 5.4 that with this choice

of `, the spectral-norm residual errors of the rank-restricted and non-rank-restricted SRHT

approximations are essentially the same.

Judging from Figures 5.3 and 5.4, even when we assume the constants present can be

optimized away, the bounds given in Theorems 5.13 and 5.14 are pessimistic: it seems that in

fact approximations with Frobenius-norm residual error within 1+ ε of the error of the optimal

rank-k approximation can be obtained with ` linear in k, and the spectral-norm residual errors

are smaller than the supplied upper bounds. Thus there is still room for improvement in our

understanding of the SRHT low-rank approximation algorithm, but as explained in Section 5.2.1,
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Figure 5.4: EMPIRICAL VERSUS PREDICTED SPECTRAL-NORM RESIDUAL ERRORS OF LOW-RANK APPROXIMA-
TIONS. The empirical spectral-norm residual errors relative to those of the optimal rank-k approx-
imants (



M− PMΘT M




2 /‖M−Mk‖2 and ‖M−ΠF
MΘT ,k

(M)‖2/‖M−Mk‖2) plotted alongside the

same ratio for the bounds given in Theorem 5.13, when `= d2[
p

k+
p

log(2n)]2 log(2k)e (for
M= A,B,C). On the scale shown, the errors of the two SRHT-based approximation algorithms
are essentially identical.

ignoring constants, the bounds of Theorem 5.13 are often tighter than those obtained in earlier

works.

To bring perspective to this discussion, consider that even if one limits consideration to

deterministic algorithms, the known error bounds for the Gu–Eisenstat rank-revealing QR—a

popular and widely used algorithm for low-rank approximation—are quite pessimistic and

do not reflect the excellent accuracy that is seen in practice [GE96]. Regardless, we do not

advocate using these approximation schemes for applications in which highly accurate low-rank

approximations are needed. Rather, Theorems 5.13 and 5.14 and our numerical experiments

suggest that they are appropriate in situations where one is willing to trade some accuracy for a

gain in computational efficiency.


