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Chapter 4

Preliminaries for the investigation of
low-rank approximation algorithms

This chapter consolidates probabilistic and linear algebraic tools used in Chapters 5 and 6. We

also establish two lemmas of independent interest: the first, Lemma 4.3, is an exponential tail

bound on the Frobenius-norm error incurred when approximating the product of two matrices

using randomized column and row sampling without replacement; the second, Lemma 4.9, is a

deterministic bound on the forward errors of column-based low-rank approximations.

4.1 Probabilistic tools

In this section, we review several tools that are used to deal with random matrices and more

generally, random processes.

4.1.1 Concentration of convex functions of Rademacher variables

Rademacher random variables take the values±1 with equal probability. Rademacher vectors are

vectors of i.i.d. Rademacher random variables. Rademacher vectors often play a crucial role in

the construction of dimension reduction maps, an area where the strong measure concentration

properties of Rademacher sums are often exploited. The following result states a large-deviation
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property of convex Lipschitz functions of Rademacher vectors: namely, these functions tend to

be not much larger than their expectations.

Lemma 4.1 (A large deviation result for convex Lipschitz functions of Rademacher random

variables [Corollary 1.3 ff. in [Led96]] ). Suppose f : Rn→ R is a convex function that satisfies

the Lipschitz bound

| f (x)− f (y)| ≤ L




x− y






2 for all x,y.

Let ε ∈ Rn be a Rademacher vector. For all t ≥ 0,

P
�

f (ε)≥ E
�

f (ε)
�

+ Lt
	

≤ e−t2/8.

4.1.2 Chernoff bounds for sums of random matrices sampled without replace-

ment

Classical Chernoff bounds provide tail bounds for sums of nonnegative random variables. Their

matrix analogs provide tail bounds on the eigenvalues and singular values of sums of positive-

semidefinite random matrices. Matrix Chernoff bounds are particularly useful for analyzing

algorithms involving randomized column-sampling. Most matrix Chernoff bounds available in

the literature require the summands to be independent. Indeed, the Chernoff bounds developed

in Chapter 2 bound the eigenvalues of a sum of independent random Hermitian matrices.

However, occasionally one desires Chernoff bounds that do not require the summands to be

independent. The following Chernoff bounds are useful in the case where the summands are

drawn without replacement from a set of bounded random matrices.

Lemma 4.2 (Matrix Chernoff Bounds, Theorem 2.2 in [Tro11b]). Let X be a finite set of
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positive-semidefinite matrices with dimension k, and suppose that

max
X∈X

λmax (X)≤ B.

Sample {X1, . . . ,X`} uniformly at random from X without replacement. Compute

µmax = ` ·λ1(EX1) and µmin = ` ·λk(EX1).

Then

P
§

λ1

�

∑

j
X j

�

≥ (1+ ν)µmax

ª

≤ k ·
�

eν

(1+ ν)1+ν

�µmax/B

for ν ≥ 0, and

P
§

λk

�

∑

j
X j

�

≤ (1− ν)µmin

ª

≤ k ·
�

e−ν

(1− ν)1−ν

�µmin/B

for ν ∈ [0, 1).

We also use the following standard simplification of the lower Chernoff bound, which holds

under the setup of Lemma 4.2:

P
§

λk

�

∑

j
X j

�

≤ εµmin

ª

≤ k · e−(1−ε)
2µmin/(2B) for ε ∈ [0,1]. (4.1.1)

4.1.3 Frobenius-norm error bounds for matrix multiplication

We now establish a tail bound on the Frobenius-norm error of a simple approximate matrix mul-

tiplication scheme based upon randomized column and row sampling. This simple approximate

multiplication scheme is a staple in randomized numerical linear algebra, and variants have

been analyzed multiple times [DK01, DKM06a, Sar06]. The result derived here differs in that it

applies to the sampling without replacement model, and it provides bounds on the error that

hold with high probability, rather than simply an estimate of the expected error.
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Lemma 4.3 (Matrix Multiplication). Let X ∈ Rm×n and Y ∈ Rn×p. Fix ` ≤ n. Select uniformly

at random and without replacement ` columns from X and the corresponding rows from Y and

multiply the selected columns and rows with
p

n/`. Let X̂ ∈ Rm×` and Ŷ ∈ R`×p contain the scaled

columns and rows, respectively. Choose

σ2 ≥
4n

`

∑n

i=1
‖X(i)‖22‖Y

(i)‖22 and B ≥
2n

`
max

i
‖X(i)‖2‖Y(i)‖2.

Then if 0≤ t ≤ σ2/B,

P
¦



X̂Ŷ−XY






F ≥ t +σ
©

≤ exp

�

−
t2

4σ2

�

.

To prove Lemma 4.3, we use the following vector Bernstein inequality for sampling without

replacement in Banach spaces; this result follows directly from a similar inequality for sampling

with replacement established by Gross in [Gro11]. Again, vector Bernstein inequalities have

been derived by multiple authors [LT91, BLM03, Rec11, Tro12, CP11, Gro11]; the value of this

specific result is that it applies to the sampling without replacement model.

Lemma 4.4. Let V be a collection of n vectors in a Hilbert space with norm ‖·‖2 . Choose V1, . . . ,V`

from V uniformly at random without replacement. Choose V′1, . . . ,V′` from V uniformly at random

with replacement. Let

µ= E









∑`

i=1
(V′i −EV

′
i)









2

and set

σ2 ≥ 4`E




V′1






2
2 and B ≥ 2 max

V∈V
‖V‖2 .
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If 0≤ t ≤ σ2/B, then

P
§








∑`

i=1
Vi − `EV1










2
≥ µ+ t

ª

≤ exp

�

−
t2

4σ2

�

.

Proof. We proceed by developing a bound on the moment generating function (mgf) of










∑`

i=1
Vi − `EV1










2
−µ.

This mgf is controlled by the mgf of a similar sum where the vectors are sampled with replace-

ment. That is, for λ≥ 0,

Eexp
�

λ ·









∑`

i=1
Vi − `EV1










2
−λµ

�

≤ Eexp
�

λ ·









∑`

i=1
V′i − `EV1










2
−λµ

�

. (4.1.2)

This follows from a classical observation due to Hoeffding [Hoe63] that for any convex real-

valued function g,

Eg
�

∑`

i=1
Vi

�

≤ Eg
�

∑`

i=1
V′i

�

.

The paper [GN10] provides an alternate exposition of this fact. Specifically, take g(V) =

exp
�

λ




V− `EV1







2−λµ
�

to obtain the inequality of mgfs asserted in (4.1.2).

In the proof of Theorem 12 in [Gro11], Gross establishes that any random variable Z whose

mgf is less than the righthand side of (4.1.2) satisfies a tail inequality of the form

P
�

Z ≥ µ+ t
	

≤ exp

�

−
t2

4s2

�

(4.1.3)

when t ≤ s2/M , where

s2 ≥
∑`

i=1
E




V′i −EV
′
1







2
2
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and




V′i −EV
′
1







2 ≤ M almost surely for all i = 1, . . . ,`. To apply this result, note that for all

i = 1, . . . ,`,





V′i −EV
′
1







2 ≤ 2max
V∈V
‖V‖2 = B.

Take V′′1 to be an i.i.d. copy of V′1 and observe that, by Jensen’s inequality,

∑`

i=1
E




V′i −EV
′
1







2
2 = `E





V′1−EV
′
1







2
2

≤ `E




V′1−V′′1






2
2 ≤ `E(





V′1






2+




V′′1






2)
2

≤ 2`E




V′1






2
2+




V′′1






2
2

= 4`E




V′1






2
2 ≤ σ

2.

The bound given in the statement of Lemma 4.4 when we take s2 = σ2 and M = B in (4.1.3).

With this Bernstein bound in hand, we proceed to the proof of Lemma 4.3. Let vec : Rm×n→

Rmn denote the operation of vectorization, which stacks the columns of a matrix A ∈ Rm×n to

form the vector vec(A).

Proof of Lemma 4.3. Let V be the collection of vectorized rank-one products of columns of

p

n/` ·X and rows of
p

n/` · Y. That is, take

V =
�

n

`
vec(X(i)Y

(i))
�n

i=1
.

Sample V1, . . . ,V` uniformly at random from V without replacement, and observe that EVi =

`−1vec(XY). With this notation,





X̂Ŷ−XY






F ∼









∑`

i=1
(Vi −EVi)










2
,
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where ∼ refers to identical distributions. Therefore any probabilistic bound developed for the

right-hand side quantity holds for the left-hand side quantity. The conclusion of the lemma

follows when we apply Lemma 4.4 to bound the right-hand side quantity.

We calculate the variance-like term in Lemma 4.4,

4`E




V1







2
2 = 4`

1

n

n
∑

i=1

n2

`2 ‖X(i)‖
2
2‖Y

(i)‖22 = 4
n

`

n
∑

i=1

‖X(i)‖22‖Y
(i)‖22 ≤ σ

2.

Now we consider the expectation

µ= E









∑`

i=1
(V′i −EV

′
i)









2
.

In doing so, we will use the notation E [C |A, B, . . .] to denote the conditional expectation of

a random variable C with respect to the random variables A, B, . . . . Recall that a Rademacher

vector is a random vector whose entries are independent and take the values ±1 with equal

probability. Let ε be a Rademacher vector of length ` and sample V′1, . . . ,V′` and V′′1 , . . . ,V′′`

uniformly at random from V with replacement. Now µ can be bounded as follows:

µ = E









∑`

i=1
(V′i −EV

′
i)









2

≤ E
�








∑`

i=1
(V′i −V′′i )










2

�

� {V′i}, {V
′′
i }
�

= E
�








∑`

i=1
εi(V

′
i −V′′i )










2

�

� {V′i}, {V
′′
i },ε

�

≤ 2E
�








∑`

i=1
εiV
′
i










2

�

� {V′i},ε
�

≤ 2

r

E
�










∑`

i=1
εiV
′
i










2

2

�

� {V′i},ε
�

= 2

Ç

E
�

E
�

∑`

i, j=1
εiε jV

′
i
T V′j |ε

�

�

� {V′i}
�

= 2
q

E
∑`

i=1





V′i






2
2.
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The first inequality is Jensen’s, and the following equality holds because the components of the

sequence {V′i−V′′i } are symmetric and independent. The next two manipulations are the triangle

inequality and Jensen’s inequality. This stage of the estimate is concluded by conditioning and

using the orthogonality of the Rademacher variables. Next, the triangle inequality and the fact

that E




V′1






2
2 = E





V1







2
2 allow us to further simplify the estimate of µ :

µ≤ 2
q

E
∑`

i=1





V′i






2
2 = 2

q

`E




V1







2
2 ≤ σ.

We also calculate the quantity

2 max
V∈V
‖V‖2 =

2n

`
max

i
‖X(i)‖2‖Y(i)‖2 ≤ B.

The tail bound given in the statement of the lemma follows from applying Lemma 4.4 with our

estimates for B, σ2, and µ.

4.2 Linear Algebra notation and results

In subsequent chapters, we use the following partitioned compact SVD to state results for

rectangular matrices A with rank(A) = ρ :

A= UΣVT =

�

k ρ−k

U1 U2

�











k ρ−k

Σ1

Σ2





















VT
1

VT
2











. (4.2.1)

Here, Σ1 contains the k largest singular values of A and the columns of U1 and V1 respec-

tively span top k-dimensional left and right singular spaces of A. The matrix Ak = U1Σ1VT
1 is

the optimal rank-k approximation to A, and Aρ−k = A− Ak = U2Σ2VT
2 . The Moore-Penrose
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pseudoinverse of A is denoted by A†.

When A is a positive-semidefinite matrix, U = V and (4.2.1) becomes the following parti-

tioned eigenvalue decomposition:

A= UΣUT =

�

k ρ−k

U1 U2

�











k ρ−k

Σ1

Σ2





















UT
1

UT
2











. (4.2.2)

The eigenvalues of an n× n symmetric matrix A are ordered λ1(A)≥ · · · ≥ λn(A).

The orthoprojector onto the column space of a matrix A is written PA and satisfies

PA = AA† = A(AT A)†AT .

Let S be a k-dimensional subspace of Rn and PS denote the projection onto S . Then the

coherence of S is

µ(S ) =
n

k
maxi(PS )ii .

The coherence of a matrix U ∈ Rn×k with orthonormal columns is the coherence of the subspace

S which it spans:

µ(U) := µ(S ) =
n

k
maxi(PS )ii =

n

k
maxi(UUT )ii .

The kth column of the matrix A is denoted by A(k); the jth row is denoted by A( j). The vector

ei is the ith element of the standard Euclidean basis (whose dimensionality will be clear from

the context).

We often compare SPSD matrices using the semidefinite ordering. In this ordering, A is

greater than or equal to B, written A � B or B � A, when A− B is positive semidefinite. Each

SPSD matrix A has a unique square root A1/2 that is also SPSD, has the same eigenspaces as
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A, and satisfies A =
�

A1/2�2. The eigenvalues of an SPSD matrix A are arranged in weakly

decreasing order: λmax (A) = λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) = λmin (A) . Likewise, the singular

values of a rectangular matrix A with rank ρ are ordered σmax(A) = σ1(A) ≥ σ2(A) ≥ · · · ≥

σρ(A) = σmin(A). The spectral norm of a matrix B is written ‖B‖2 ; its Frobenius norm and trace

are written ‖B‖F and Tr (B) , respectively. The notation ‖ · ‖ξ indicates that an expression holds

for both ξ= 2 and ξ= F.

4.2.1 Column-based low-rank approximation

The remainder of this thesis concerns low-rank matrix approximation algorithms: Chapter 5

provides bounds on the approximation errors of low-rank approximations that are formed using

fast orthonormal transformations, and Chapter 6 provides bounds on the approximation errors

of a class of low-rank approximations to SPSD matrices.

Both of these low-rank approximation schemes are amenable to interpretation as schemes

wherein a matrix is projected onto a subspace spanned by some linear combination of its columns.

The problem of providing a general framework for studying the error of these projection schemes

is well studied [BMD09, HMT11, BDMI11]. The authors of these works have provided a set of so-

called structural results: deterministic bounds on the spectral and Frobenius-norm approximation

errors incurred by these projection schemes. Structural results allow us to relate the errors of

low-rank approximations formed using projection schemes to the optimal errors ‖A−Ak‖ξ for

ξ= 2, F.

Before stating the specific structural results that are used in the sequel, we review the

necessary background material on low-rank matrix approximations that are restricted to lie

within a particular subspace.
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4.2.1.1 Matrix Pythagoras and generalized least-squares regression

Lemma 4.5 is the analog of Pythagoras’ theorem in the matrix setting. A proof of this lemma can

be found in [BDMI11]. Lemma 4.6 is an immediate corollary that generalizes the Eckart–Young

theorem.

Lemma 4.5. If XYT = 0 or XT Y= 0, then

‖X+ Y‖2F = ‖X‖
2
F + ‖Y‖

2
F

and

max{‖X‖22 ,‖Y‖22} ≤ ‖X+ Y‖22 ≤ ‖X‖
2
2+ ‖Y‖

2
2 .

Lemma 4.6. Given A ∈ Rm×n and C ∈ Rm×`, for all X ∈ R`×n

‖A− PCA‖2ξ ≤ ‖A−CX‖2ξ

for both ξ= 2 and ξ= F.

Proof. Write

A−CX= (I− PC)A+ (PCA−CX)

and observe that

((I− PC)A)
T (PCA−CX) = 0,

so by Lemma 4.5,

‖A−CX‖2ξ ≥ ‖(I− PC)A‖2ξ.
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4.2.1.2 Low-rank approximations restricted to subspaces

Given A ∈ Rm×n; a target rank k < n; another matrix Y ∈ Rm×`, where ` > k; and a choice of

norm ξ (ξ = 2 or ξ = F), we use the notation ΠξY,k(A) to refer to the matrix that lies in the

column span of Y, has rank k or less, and minimizes the ξ-norm error in approximating A. More

concisely, ΠξY,k(A) = YXξ, where

Xξ = arg min
X∈R`×n:rank(X)≤k

‖A− YX‖2ξ.

The approximation ΠF
Y,k(A) can be computed using the following three-step procedure:

1: Orthonormalize the columns of Y to construct a matrix Q ∈ Rm×`.

2: Compute Xopt = argminX∈R`×n, rank(X)≤k





QT A−X






F .

3: Compute and return ΠF
Y,k(A) = QXopt ∈ Rm×n.

There does not seem to be a similarly efficient algorithm for computing Π2
Y,k(A).

The following result, which appeared as Lemma 18 in [BDMI11], both verifies the claim that

this algorithm computes ΠF
Y,k(A) and shows that ΠF

Y,k(A) is a constant factor approximation to

Π2
Y,k(A).

Lemma 4.7. [Lemma 18 in [BDMI11]] Given A ∈ Rm×n, Y ∈ Rm×`, and an integer k ≤ `, the

matrix QXopt ∈ Rm×n described above satisfies ΠF
Y,k(A) = QXopt, can be computed in O(mn`+(m+

n)`2) time, and satisfies







A−ΠF
Y,k(A)










2

2
≤ 2







A−Π2
Y,k(A)










2

2
.
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4.2.2 Structural results for low-rank approximation

The following result, which appears as Lemma 7 in [BMD09], provides an upper bound on the

residual error of the low-rank matrix approximation obtained via projections onto subspaces.

The paper [HMT11] also supplies an equivalent result.

Lemma 4.8. [Lemma 7 in [BMD09]] Let A ∈ Rm×n have rank ρ. Fix k satisfying 0 ≤ k ≤ ρ.

Given a matrix S ∈ Rn×`, with `≥ k, construct Y = AS. If VT
1 S has full row-rank, then, for ξ = 2, F,

‖A− PYA‖2ξ ≤ ‖A−Π
ξ
Y,k(A)‖

2
ξ ≤ ‖A−Ak‖2ξ+ ‖Σ2VT

2 S(VT
1 S)†‖2ξ. (4.2.3)

In addition to this bound on the residual error, we use the following novel structural bound

on the forward errors of low-rank approximants.

Lemma 4.9. Let A ∈ Rm×n have rank ρ. Fix k satisfying 0 ≤ k ≤ ρ. Given a matrix S ∈ Rn×`,

where `≥ k, construct Y= AS. If VT
1 S has full row-rank, then, for ξ= 2,F,

‖Ak − PYA‖2ξ ≤ ‖A−Ak‖2ξ+ ‖Σ2VT
2 S(VT

1 S)†‖2ξ. (4.2.4)

Proof. Observe that

(Ak − PYAk)
T (PYAρ−k) = 0,

so Lemma 4.5 implies that

‖Ak − PYA‖2ξ = ‖Ak − PYAk − PYAρ−k‖2ξ ≤ ‖Ak − PYAk‖2ξ+ ‖Aρ−k‖2ξ.
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Applying Lemma 4.6 with X= (VT
1 S)†VT

1 , we see that

‖Ak − PYA‖2ξ ≤ ‖Ak − Y(VT
1 S)†VT

1 ‖
2
ξ+ ‖Aρ−k‖2ξ

= ‖Ak −AkS(VT
1 S)†VT

1 +Aρ−kS(VT
1 S)†VT

1 ‖
2
ξ+ ‖Aρ−k‖2ξ

= ‖Ak −U1Σ1VT
1 S(VT

1 S)†VT
1 +Aρ−kS(VT

1 S)†VT
1 ‖

2
ξ+ ‖Aρ−k‖2ξ.

Since VT
1 S has full row rank, (VT

1 S)(VT
1 S)† = Ik. Recall that Ak = U1Σ1VT

1 and Aρ−k = U2Σ2VT
2 .

Consequently, the above inequality reduces neatly to the desired inequality

‖Ak − PYA‖2ξ ≤ ‖Ak −U1Σ1VT
1 +Aρ−kS(VT

1 S)†VT
1 ‖

2
ξ+ ‖Aρ−k‖2ξ

= ‖Aρ−kS(VT
1 S)†VT

1 ‖
2
ξ+ ‖Aρ−k‖2ξ

= ‖A−Ak‖2ξ+ ‖Σ2VT
2 S(VT

1 S)†‖2ξ.

4.2.2.1 A geometric interpretation of the sampling interaction matrix

Let Ω1 = VT
1 S and Ω2 = VT

2 S denote the interaction of the sampling matrix S with the top and

bottom right-singular spaces of A. It is evident from Lemmas 4.8 and 4.9 that the quality of the

low-rank approximations depend upon the norm of the sampling interaction matrix

VT
2 S(VT

1 S)† = Ω2Ω
†
1.

The smaller the spectral norm of the Ω2Ω
†
1 the more effective S is as a sampling matrix. To give

the sampling interaction matrix a geometric interpretation, we first recall the definition of the
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sine between the range spaces of two matrices M1 and M2 :

sin2(M1,M2) = ‖(I− PM1
)PM2

‖2.

Note that this quantity is not symmetric: it measures how well the range of M1 captures that of

M2 [GV96, Chapter 12].

Lemma 4.10. Fix A ∈ Rm×n, a target rank k, and S ∈ Rn×` where ` > k. Assume S has orthonor-

mal columns. Define

Ω1 = VT
1 S and Ω2 = VT

2 S.

Then, if Ω1 has full row-rank,

‖Ω2Ω
†
1‖2 = tan2(S,V1).

Proof. Since V1 and S have orthonormal columns, we see that

sin2(S,V1) =




(I− SST )V1VT
1







2
2

=




VT
1 (I− SST )V1







2

=




I−VT
1 SST V1







2

= 1−λk(V
T
1 SST V1)

= 1−‖Ω†
1‖
−2.

The second to last equality holds because VT
1 S has k rows and we assumed it has full row-rank.

Accordingly,

tan2(S,V1) =
sin2(S,V1)

1− sin2(S,V1)
= ‖Ω†

1‖
2
2− 1.
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Now observe that

‖Ω2Ω
†
1‖

2
2 =




(ST V1)
†ST V2VT

2 S(VT
1 S)†







2

=




(ST V1)
†(I− ST V1VT

1 S)(VT
1 S)†







2

=




(ST V1)
†






2
2− 1

= tan2(S,V1).

The second to last equality holds because of the fact that, for any matrix M,





M†(I−MMT )(MT )†






2 =




M†






2
2− 1;

this identity can be established with a routine SVD argument.

Thus, when S has orthonormal columns and VT
1 S has full row-rank, ‖Ω2Ω

†
1‖2 is the tangent

of the largest angle between the range of S and the top right singular space spanned by V1. If

VT
1 S does not have full row-rank, then our derivation above shows that sin2(S,V1) = 1, meaning

that there is a vector in the eigenspace spanned by V1 which has no component in the space

spanned by the sketching matrix S.

We note that tan(S,V1) also arises in the classical bounds on the convergence of the orthogo-

nal iteration algorithm for approximating the top k-dimensional singular spaces of a matrix (see,

e.g. [GV96, Theorem 8.2.2]).


