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Chapter 3

Randomized sparsification in NP-hard
norms

Massive matrices are ubiquitous in modern data processing. Classical dense matrix algorithms

are poorly suited to such problems because their running times scale superlinearly with the size

of the matrix. When the dataset is sparse, one prefers to use sparse matrix algorithms, whose

running times depend more on the sparsity of the matrix than on the size of the matrix. Of

course, in many applications the matrix is not sparse. Accordingly, one may wonder whether it is

possible to approximate a computation on a large dense matrix with a related computation on a

sparse approximant to the matrix.

Let ‖ · ‖ be a norm on matrices. Here is one way to frame this challenge mathematically:

Given a matrix A, how can one efficiently generate a sparse matrix X for which the approximation

error ‖A−X‖ is small?

The literature has concentrated on the behavior of the approximation error in the spectral

and Frobenius norms; however, these norms are not always the most natural choice. Sometimes

it is more appropriate to consider the matrix as an operator from a finite-dimensional `p space

to a finite-dimensional `q space, and investigate the behavior of the approximation error in the

associated p→ q operator norm. As an example, the problem of graph sparsification is naturally

posed as a question of preserving the so-called cut norm of a matrix associated with the graph.
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The strong equivalency of the cut norm and the∞→1 norm suggests that, for graph-theoretic

applications, it may be fruitful to consider the behavior of the∞→1 norm under sparsification.

In other applications, e.g., the column subset selection algorithm in [Tro09], the∞→2 norm is

the norm of interest.

This chapter investigates the errors incurred by approximating a fixed real matrix with a

random matrix1. Our results apply to any scheme in which the entries of the approximating

matrix are independent and average to the corresponding entries of the fixed matrix. Our main

contribution is a bound on the expected∞→p norm error, which we specialize to the case of the

∞→1 and∞→2 norms. We also use a result of Latała [Lat05] to bound the expected spectral

approximation error, and we establish the subgaussianity of the spectral approximation error.

Our methods are similar to those of Rudelson and Vershynin in [RV07] in that we treat A

as a linear operator between finite-dimensional Banach spaces and use some of the same tools

of probability in Banach spaces. Whereas Rudelson and Vershynin consider the behavior of the

norms of random submatrices of A, we consider the behavior of the norms of matrices formed

by randomly sparsifying (or quantizing) the entries of A. This yields error bounds applicable to

schemes that sparsify or quantize matrices entrywise. Since some graph algorithms depend more

on the number of edges in the graph than the number of vertices, such schemes may be useful

in developing algorithms for handling large graphs. In particular, the algorithm of [BSS09] is

not suitable for sparsifying graphs with a large number of vertices. Part of our motivation for

investigating the∞→1 approximation error is the belief that the equivalence of the cut norm

with the∞→1 norm means that matrix sparsification in the∞→1 norm might be useful for

efficiently constructing optimal sparsifiers for such graphs.

1The content of this chapter is adapted from the technical report [GT11] co-authored with Joel Tropp.
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3.1 Notation

We establish the notation particular to this chapter.

All quantities are real. For 1≤ p ≤∞, the `n
p norm of x ∈ Rn is written as ‖x‖p. Each space

`n
p has an associated dual space `n

p′ , where p′, the conjugate exponent to p, is determined by the

relation p−1+ (p′)−1 = 1. The dual space of `n
1 (respectively, `n

∞) is `n
∞ (respectively, `n

1).

The kth column of the matrix A is denoted by A(k), and the ( j, k)th element is denoted by

a jk. We treat A as an operator from `n
p to `m

q , and the p→ q operator norm of A is written as

‖A‖p→q. The spectral norm, i.e. the 2→ 2 operator norm, is written ‖A‖2 . Recall that given an

operator A : `n
p→ `

m
q , the associated adjoint operator (AT , in the case of a matrix) maps from `m

q′

to `n
p′ . Further, the p→ q and q′→ p′ norms are dual in the sense that

‖A‖p→q =




AT






q′→p′ .

This chapter is concerned primarily with the spectral norm and the∞→1 and∞→2 norms.

The∞→1 and∞→2 norms are not unitarily invariant, so do not have simple interpretations

in terms of singular values; in fact, they are NP-hard to compute for general matrices [Roh00].

We remark that ‖A‖∞→1 = ‖Ax‖1 and ‖A‖∞→2 =




Ay






2 for certain vectors x and y whose

components take values ±1. An additional operator norm, the 2→∞ norm, is of interest: it is

the largest `2 norm achieved by a row of A. In the sequel we also encounter the column norm

‖A‖col =
∑

k
‖A(k)‖2.

The variance of X is written Var X = E(X − EX )2. The expectation taken with respect to

one variable X , with all others fixed, is written EX . The expression X ∼ Y indicates the random
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variables X and Y are identically distributed. Given a random variable X , the symbol X ′ denotes

a random variable independent of X such that X ′ ∼ X . The indicator variable of the event

X > Y is written 1X>Y . The Bernoulli distribution with expectation p is written Bern(p) and the

binomial distribution of n independent trials each with success probability p is written Bin(n, p).

We write X ∼ Bern(p) to indicate X is Bernoulli with mean p.

3.1.0.1 Graph sparsification

Graphs are often represented and fruitfully manipulated in terms of matrices, so the problems

of graph sparsification and matrix sparsification are strongly related. We now introduce the

relevant notation before surveying the literature.

Let G = (V, E,ω) be a weighted simple undirected graph with n vertices, m edges, and

adjacency matrix A given by

a jk =















ω jk ( j, k) ∈ E

0 otherwise

.

Orient the edges of G in an arbitrary manner. Then define the corresponding 2m× n oriented

incidence matrix B in the following manner: b2i−1, j = b2i,k = ωi and b2i−1,k = b2i, j = −ωi if

edge i is oriented from vertex j to vertex k, and all other entries of B are identically zero.

A cut is a partition of the vertices of G into two blocks: V = S∪S. The cost of a cut is the sum

of the weights of all edges in E which have one vertex in S and one vertex in S. Several problems

relating to cuts are of considerable practical interest. In particular, the MAXCUT problem, to

determine the cut of maximum cost in a graph, is common in computer science applications.

The cuts of maximum cost are exactly those that correspond to the cut-norm of the oriented
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incidence matrix B, which is defined as

‖B‖C = max
I⊂{1,...,2m}, J⊂{1,...,n}

�

�

�

∑

i∈I , j∈J
bi j

�

�

� .

Finding the cut-norm of a general matrix is NP-hard, but in [AN04], the authors offer a

randomized polynomial-time algorithm which finds a submatrix B̃ of B for which |
∑

jk b̃ jk| ≥

0.56‖B‖C. This algorithm thereby gives a feasible means of approximating the MAXCUT value for

arbitrary graphs. A crucial point in the derivation of the algorithm is the fact that for general

matrices the∞→1 operator norm is strongly equivalent with the cut-norm:

‖A‖C ≤ ‖A‖∞→1 ≤ 4‖A‖C ;

in fact, in the particular case of oriented incidence matrices, ‖B‖C = ‖B‖∞→1 .

In his thesis [Kar95] and the sequence of papers [Kar94a, Kar94b, Kar96], Karger introduces

the idea of random sampling to increase the efficiency of calculations with graphs, with a focus

on cuts. In [Kar96], he shows that by picking each edge of the graph with a probability inversely

proportional to the density of edges in a neighborhood of that edge, one can construct a sparsifier,

i.e., a graph with the same vertex set and significantly fewer edges that preserves the value of

each cut to within a factor of (1± ε).

In [SS08], Spielman and Srivastava improve upon this sampling scheme, instead keeping

an edge with probability proportional to its effective resistance—a measure of how likely it is

to appear in a random spanning tree of the graph. They provide an algorithm which produces

a sparsifier with O
�

(n log n)/ε2
�

edges, where n is the number of vertices in the graph. They

obtain this result by reducing the problem to the behavior of projection matrices ΠG and ΠG′

associated with the original graph and the sparsifier, and then appealing to a spectral-norm
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concentration result.

The log n factor in [SS08] seems to be an unavoidable consequence of using spectral-norm

concentration. In [BSS09], Batson et al. prove that the log n factor is not intrinsic: they establish

that every graph has a sparsifier that has Ω(n) edges. The existence proof is constructive and

provides a deterministic algorithm for constructing such sparsifiers in O(n3m) time, where m is

the number of edges in the original graph.

3.2 Preliminaries

Bounded differences inequalities are useful tools for establishing measure concentration for

functions of independent random variables that are insensitive to changes in a single argument.

In this chapter, we use a bounded differences inequality to show that the norms of the random

matrices that we encounter exhibit measure concentration.

Before stating the inequality of interest to us, we establish some notation. Let g : Rn→ R be

a measurable function of n random variables. Let X1, . . . , Xn be independent random variables,

and write W = g(X1, . . . , Xn). Let Wi denote the random variable obtained by replacing the ith

argument of g with an independent copy: Wi = g(X1, . . . , X ′i , . . . , Xn).

The following bounded differences inequality states that if g is insensitive to changes of a

single argument, then W does not deviate much from its mean.

Lemma 3.1 ([BLM03, Corollary 3]). Let W and {Wi} be random variables defined as above.

Assume that there exists a positive number C such that, almost surely,

∑n

i=1
(W −Wi)

21W>Wi
≤ C .
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Then, for all t > 0,

P {W > EW + t} ≤ e−t2/(4C).

Rademacher random variables take the values ±1 with equal probability. Rademacher

vectors are vectors of i.i.d. Rademacher random variables. We make use of Rademacher variables

in this chapter to simplify our analyses through the technique of Rademacher symmetrization.

Essentially, given a random variable Z , Rademacher symmetrization allows us to estimate the

behavior of Z in terms of that of the random variable Zsym = ε(Z− Z ′), where Z ′ is an i.i.d. copy

of Z and ε is a Rademacher random variable that is independent of the pair (Z , Z ′). The variable

Zsym is often easier to manipulate than Z , since it is guaranteed to be symmetric (i.e., Zsym and

−Zsym are identically distributed); in particular, EZsym = 0. The following basic symmetrization

result is drawn from [vW96, Lemma 2.3.1 et seq.].

Lemma 3.2. Let Z1, . . . , Zn, Z ′1, . . . , Z ′n be independent random variables satisfying Zi ∼ Z ′i , and let

ε be a Rademacher vector. Let F be a family of functions such that

sup
f ∈F

∑n

k=1
( f (Zk)− f (Z ′k))

is measurable. Then

E sup
f ∈F

∑n

k=1
( f (Zk)− f (Z ′k)) = E sup

f ∈F

∑n

k=1
εk( f (Zk)− f (Z ′k)).

Since we work with finite-dimensional probability models and linear functions, measurability

concerns can be ignored in our applications of Lemma 3.2.
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While Lemma 3.2 allows us to replace certain random processes with Rademacher processes,

Talagrand’s Rademacher comparison theorem [LT91, Theorem 4.12 et seq.] shows that certain

complicated Rademacher processes are bounded by simpler Rademacher processes. Together,

these two results often allow us to reduce the analysis of complicated random processes to the

analysis of simpler Rademacher processes.

Lemma 3.3. Fix finite-dimensional vectors z1, . . . ,zn and let ε be a Rademacher vector. Then

E max
‖u‖q=1

∑n

k=1
εk|〈zk,u〉| ≤ E max

‖u‖q=1

∑n

k=1
εk〈zk,u〉.

Lemma 3.3 involves Rademacher sums, i.e. sums of the form
∑

k εk xk where ε is a Rademacher

vector and x is a fixed vector. One of the most basic tools for understanding Rademacher sums is

the Khintchine inequality [Sza76], which gives information on the moments of a Rademacher

sum; in particular, it tells us the expected value of the sum is equivalent with the `2 norm of the

vector x.

Lemma 3.4 (Khintchine Inequality). Let x be a real vector, and let ε be a Rademacher vector. Then

1
p

2
‖x‖2 ≤ E

�

�

�

∑

k
εk xk

�

�

�≤ ‖x‖2 .

In its more general form, which we do not use in this thesis, the Khintchine inequality implies

that Rademacher sums are subguassian random variables.
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3.3 The∞→p norm of a random matrix

We are interested in schemes that approximate a given matrix A by means of a random matrix X

in such a way that the entries of X are independent and EX = A. It follows that the error matrix

Z= A−X has independent, zero-mean entries. Ultimately we aim to construct X so that it has

the property that, with high probability, many of its entries are identically zero, but this property

does not play a role at this stage of the analysis.

In this section, we derive a bound on the expected value of the∞→ p norm of a random

matrix with independent, zero-mean entries. We also study the tails of this error. In the next

two sections, we use the results of this section to reach more detailed conclusions on the∞→1

and∞→2 norms of Z.

3.3.1 The expected∞→p norm

The main tools used to derive the bound on the expected norm of Z are Lemma 3.2, a result on

the Rademacher symmetrization of random processes, and Lemma 3.3, Talagrand’s Rademacher

comparison theorem.

We now state and prove the bound on the expected norm of Z.

Theorem 3.5. Let Z be a random matrix with independent, zero-mean entries and let ε be a

Rademacher vector independent of Z. Then

E‖Z‖∞→p ≤ 2E









∑

k
εkZ(k)










p
+ 2 max

‖u‖q=1
E
∑

k

�

�

�

∑

j
ε j Z jku j

�

�

�

where q is the conjugate exponent of p.
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Proof of Theorem 3.5. By duality,

E‖Z‖∞→p = E




ZT






q→1 = E max
‖u‖q=1

∑

k
|〈Z(k),u〉|.

Center the terms in the sum and apply subadditivity of the maximum to get

E‖Z‖∞→p ≤ E max
‖u‖q=1

∑

k
(|〈Z(k),u〉| −E′|〈Z′(k),u〉|) + max

‖u‖q=1
E
∑

k
|〈Z(k),u〉|

= F + S.

(3.3.1)

Begin with the first term on the right-hand side of (3.3.1). Use Jensen’s inequality to draw

the expectation outside of the maximum:

F ≤ E max
‖u‖q=1

∑

k
(|〈Z(k),u〉| − |〈Z′(k),u〉|).

Now apply Lemma 3.2 to symmetrize the random variable:

F ≤ E max
‖u‖q=1

∑

k
εk(|〈Z(k),u〉| − |〈Z′(k),u〉|).

By the subadditivity of the maximum,

F ≤ E
�

max
‖u‖q=1

∑

k
εk|〈Z(k),u〉|+ max

‖u‖q=1

∑

k
−εk|〈Z(k),u〉|

�

= 2E max
‖u‖q=1

∑

k
εk|〈Z(k),u〉|,

where we have invoked the fact that −εk has the Rademacher distribution. Apply Lemma 3.3 to

get the final estimate of F :

F ≤ 2E max
‖u‖q=1

∑

k
εk〈Z(k),u〉= 2E max

‖u‖q=1

D
∑

k
εkZ(k),u

E

= 2E









∑

k
εkZ(k)










p
.
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Now consider the last term on the right-hand side of (3.3.1). Use Jensen’s inequality to

prepare for symmetrization:

S = max
‖u‖q=1

E
∑

k

�

�

�

∑

j
Z jku j

�

�

�= max
‖u‖q=1

E
∑

k

�

�

�

∑

j
(Z jk −E′Z ′jk)u j

�

�

�

≤ max
‖u‖q=1

∑

k
E
�

�

�

∑

j
(Z jk − Z ′jk)u j

�

�

� .

Apply Lemma 3.2 to the expectation of the inner sum to see

S ≤ max
‖u‖q=1

∑

k
E
�

�

�

∑

j
ε j(Z jk − Z ′jk)u j

�

�

� .

The triangle inequality gives us the final expression:

S ≤ max
‖u‖q=1

2E
∑

k

�

�

�

∑

j
ε j Z jku j

�

�

� .

Introduce the bounds for F and S into (3.3.1) to complete the proof.

3.3.2 A tail bound for the∞→p norm

We now develop a deviation bound for the∞→p approximation error. The argument is based

on Lemma 3.1, a bounded differences inequality.

To apply Lemma 3.1, we let Z = A − X be our error matrix, W = ‖Z‖∞→p, and W jk =





Z jk






∞→p, where Z jk is a matrix obtained by replacing a jk − X jk with an identically distributed

variable a jk − X ′jk while keeping all other variables fixed. The ∞→ p norms are sufficiently

insensitive to each entry of the matrix that Lemma 3.1 gives us a useful deviation bound.

Theorem 3.6. Fix an m× n matrix A, and let X be a random matrix with independent entries for
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which EX = A. Assume
�

�X jk

�

�≤ D
2

almost surely for all j, k. Then, for all t > 0,

P
¦

‖A−X‖∞→p > E‖A−X‖∞→p + t
©

≤ e−t2/(4D2nms)

where s =max{0,1− 2/q} and q is the conjugate exponent to p.

Proof. Let q be the conjugate exponent of p, and choose u,v such that W = uT Zv and ‖u‖q = 1

and ‖v‖∞ = 1. Then

(W −W jk)1W>W jk ≤ uT
�

Z− Z jk
�

v1W>W jk = (X ′jk − X jk)u j vk 1W>W jk ≤ D|u j vk|.

This implies

∑

j,k
(W −W jk)21W>W jk ≤ D2

∑

j,k
|u j vk|2 ≤ nD2 ‖u‖22 ,

so we can apply Lemma 3.1 if we have an estimate for ‖u‖22. We have the bounds ‖u‖2 ≤ ‖u‖q

for q ∈ [1, 2] and ‖u‖2 ≤ m1/2−1/q ‖u‖q for q ∈ [2,∞]. Therefore,

∑

j,k
(W −W jk)21W>W jk ≤ D2















nm1−2/q, q ∈ [2,∞]

n, q ∈ [1,2].

It follows from Lemma 3.1 that

P
¦

‖A−X‖∞→p > E‖A−X‖∞→p + t
©

= P {W > EW + t} ≤ e−t2/(4D2nms)

where s =max
�

0,1− 2/q
	

.

It is often convenient to measure deviations on the scale of the mean. Taking t = δE‖A−X‖∞→p

in Theorem 3.6 gives the following result.
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Corollary 3.7. Under the conditions of Theorem 3.6, for all δ > 0,

P
¦

‖A−X‖∞→p > (1+δ)E‖A−X‖∞→p

©

≤ e−δ
2(E‖A−X‖∞→p)2/(4D2nms).

3.4 Approximation in the∞→1 norm

In this section, we develop the∞→1 error bound as a consequence of Theorem 3.5. We then

prove that one form of the error bound is optimal, and we describe an example of its application

to matrix sparsification.

3.4.1 The expected∞→1 norm

To derive the∞→1 error bound, we first apply Theorem 3.5 with p = 1.

Theorem 3.8. Suppose that Z is a random matrix with independent, zero-mean entries. Then

E‖Z‖∞→1 ≤ 2E(‖Z‖col+




ZT






col).

Proof. Apply Theorem 3.5 to get

E‖Z‖∞→1 ≤ 2E









∑

k
εkZ(k)










1
+ 2 max

‖u‖∞=1
E
∑

k

�

�

�

∑

j
ε j Z jku j

�

�

�

= F + S.

(3.4.1)
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Use Hölder’s inequality to bound the first term in (3.4.1) with a sum of squares:

F = 2E
∑

j

�

�

�

∑

k
εkZ jk

�

�

�= 2EZ

∑

j
Eε
�

�

�

∑

k
εkZ jk

�

�

�

≤ 2EZ

∑

j

�

Eε
�

�

�

∑

k
εkZ jk

�

�

�

2
�1/2

.

The inner expectation can be computed exactly by expanding the square and using the indepen-

dence of the Rademacher variables:

F ≤ 2E
∑

j

�
∑

k
Z2

jk

�1/2
= 2E





ZT






col .

We treat the second term in the same manner. Use Hölder’s inequality to replace the sum

with a sum of squares and invoke the independence of the Rademacher variables to eliminate

cross terms:

S ≤ 2 max
‖u‖∞=1

EZ

∑

k

�

Eε
�

�

�

∑

j
ε j Z jku j

�

�

�

2
�1/2

= 2 max
‖u‖∞=1

E
∑

k

�

∑

j
Z2

jku2
j

�1/2
.

Since ‖u‖∞ = 1, it follows that u2
j ≤ 1 for all j, and

S ≤ 2E
∑

k

�

∑

j
Z2

jk

�1/2
= 2E‖Z‖col .

Introduce these estimates for F and S into (3.4.1) to complete the proof.

Taking Z= A−X in Theorem 3.8, we find

E‖A−X‖∞→1 ≤ 2E
�

∑

k

�

∑

j
(a jk − X jk)

2
�1/2

+
∑

j

�
∑

k
(a jk − X jk)

2
�1/2

�

.
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A simple application of Jensen’s inequality gives an error bound in terms of the variances of

the entries of X.

Corollary 3.9. Fix the matrix A, and let X be a random matrix with independent entries for which

EX jk = a jk. Then

E‖A−X‖∞→1 ≤ 2

�

∑

k

�

∑

j
Var(X jk)

�1/2
+
∑

j

�
∑

k
Var(X jk)

�1/2
�

.

3.4.2 Optimality

A simple estimate using the Khintchine inequality shows that the bound on the expected value

of the∞→1 norm given in Theorem 3.8 is in fact optimal up to constants.

Corollary 3.10. Suppose that Z is a random matrix with independent, zero-mean entries. Then

1

2
p

2
E(‖Z‖col+





ZT






col)≤ E‖Z‖∞→1 ≤ 2E(‖Z‖col+




ZT






col).

Proof. First we establish the inequality

‖Z‖col ≤
p

2‖Z‖∞→1 (3.4.2)

as a consequence of the Khintchine inequality, Lemma 3.4. Indeed, since

‖Z‖col =
∑

j





Z( j)






2
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and the Khintchine inequality gives the estimate





Z( j)






2 ≤
p

2E
�

�

�

∑

i
εi Zi j

�

�

� ,

we see that

‖Z‖col ≤
p

2E
∑

j

�

�

�

∑

i
εi Zi j

�

�

�

=
p

2E




ZTε






1 ≤
p

2 sup
‖x‖∞=1





ZT x






1

=
p

2




ZT






∞→1 =
p

2‖Z‖∞→1 .

Since the∞→1 norms of Z and ZT are equal, it also follows that





ZT






col ≤
p

2




ZT






∞→1 =
p

2‖Z‖∞→1 .

The lower bound on E‖Z‖∞→1 is now a consequence of (3.4.2),

1

2
p

2
E(‖Z‖col+





ZT






col)≤ E‖Z‖∞→1 ,

while the upper bound is given by Theorem 3.8.

Remark 3.11. Using standard arguments, one can establish that the deterministic bounds

1

2
p

2

�

‖Z‖col+




ZT






col

�

≤ ‖Z‖∞→1 ≤
p

n

2

�

‖Z‖col+




ZT






col

�

hold for any square n× n matrix Z. Corollary 3.10 is a refinement of this equivalence relation

that holds when Z is a random, zero-mean matrix. In particular, the corollary tells us that when
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we assume this model for Z, the equivalence relation does not depend on the dimensions of Z,

and thus if what we care about is the expected∞→1 norm of Z, we can work with the expected

column norm of Z without losing any sharpness.

3.4.3 An example application

In this section we provide an example illustrating the application of Corollary 3.9 to matrix

sparsification.

From Corollary 3.9 we infer that a good scheme for sparsifying a matrix A while minimizing

the expected relative ∞→1 error is one which drastically increases the sparsity of X while

keeping the relative error

∑

k

�

∑

j Var(X jk)
�1/2

+
∑

j

�

∑

k Var(X jk)
�1/2

‖A‖∞→1

small. Once a sparsification scheme is chosen, the hardest part of estimating this quantity

is probably estimating the ∞→1 norm of A. The example shows, for a simple family of

approximation schemes, what kind of sparsification results can be obtained using Corollary 3.9

when we have a very good handle on this quantity.

Consider the case where A is an n×n matrix whose entries all lie within an interval bounded

away from zero; for definiteness, take them to be positive. Let γ be a desired bound on the

expected relative∞→1 norm error. We choose the randomization strategy X jk ∼
a jk

p
Bern(p)

and ask how small can p be without violating our bound on the expected error.

In this case,

‖A‖∞→1 =
∑

j,k
a jk = O(n2),
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and Var(X jk) =
a2

jk

p
− a2

jk. Consequently, the first term in Corollary 3.9 satisfies

∑

k

�

∑

j
Var(X jk)

�1/2
=
∑

k

�

1

p





ak







2
2−




ak







2
2

�1/2

=
�

1− p

p

�1/2

‖A‖col

= O

�

�

1− p

p

�1/2

n
p

n

�

and likewise the second term satisfies

∑

j

�
∑

k
Var(X jk)

�1/2
= O

�

�

1− p

p

�1/2

n
p

n

�

.

Therefore the relative∞→1 norm error satisfies

∑

k

�

∑

j Var(X jk)
�1/2

+
∑

j

�

∑

k Var(X jk)
�1/2

‖A‖∞→1
= O

�

�

1− p

pn

�1/2
�

.

It follows that E‖A−X‖∞→1 < γ for p on the order of (1+ nγ2)−1 or larger. The expected

number of nonzero entries in X is pn2, so for matrices with this structure, we can sparsify with a

relative∞→1 norm error smaller than γ while reducing the number of expected nonzero entries

to as few as O( n2

1+nγ2 ) = O( n
γ2 ). Intuitively, this sparsification result is optimal in the dimension:

it seems we must keep on average at least one entry per row and column if we are to faithfully

approximate A.

3.5 Approximation in the∞→2 norm

In this section, we develop the ∞→2 error bound stated in the introduction, establish the

optimality of a related bound, and provide examples of its application to matrix sparsification.

To derive the error bound, we first specialize Theorem 3.5 to the case of p = 2.
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Theorem 3.12. Suppose that Z is a random matrix with independent, zero-mean entries. Then

E‖Z‖∞→2 ≤ 2E‖Z‖F+ 2min
D
E




ZD−1






2→∞

where D is a positive diagonal matrix that satisfies Tr(D2) = 1.

Proof. Apply Theorem 3.5 to get

E‖Z‖∞→2 ≤ 2E









∑

k
εkZ(k)










2
+ 2 max

‖u‖2=1
E
∑

k

�

�

�

∑

j
ε j Z jku j

�

�

�

=: F + S.

(3.5.1)

Expand the first term, and use Jensen’s inequality to move the expectation with respect to the

Rademacher variables inside the square root:

F = 2E
�

∑

j

�

�

�

∑

k
εkZ jk

�

�

�

2
�1/2

≤ 2EZ

�

∑

j
Eε
�

�

�

∑

k
εkZ jk

�

�

�

2
�1/2

.

The independence of the Rademacher variables implies that the cross terms cancel, so

F ≤ 2E
�

∑

j

∑

k
Z2

jk

�1/2
= 2E‖Z‖F .

We use the Cauchy–Schwarz inequality to replace the `1 norm with an `2 norm in the second

term of (3.5.1). A direct application would introduce a possibly suboptimal factor of
p

n (where

n is the number of columns in Z), so instead we choose dk > 0 such that
∑

k d2
k = 1 and use the

corresponding weighted `2 norm:

S = 2 max
‖u‖2=1

E
∑

k

�

�

�

∑

j ε j Z jku j

�

�

�

dk
dk ≤ 2 max

‖u‖2=1
E









∑

k

�

�

�

∑

j ε j Z jku j

�

�

�

2

d2
k









1/2

.
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Move the expectation with respect to the Rademacher variables inside the square root and

observe that the cross terms cancel:

S ≤ 2 max
‖u‖2=1

EZ









∑

k

Eε
�

�

�

∑

j ε j Z jku j

�

�

�

2

d2
k









1/2

= 2 max
‖u‖2=1

E

 

∑

j,k

Z2
jku2

j

d2
k

!1/2

.

Use Jensen’s inequality to pass the maximum through the expectation, and note that if ‖u‖2 = 1

then the vector formed by elementwise squaring u lies on the `1 unit ball, thus

S ≤ 2E

 

max
‖u‖1=1

∑

j
u j ·

 

∑

k

(Z jk/dk)
2

!!1/2

.

Clearly this maximum is achieved when u is chosen so u j = 1 at an index j for which
∑

k(Z jk/dk)2

is maximal and u j = 0 otherwise. Consequently, the maximum is the largest of the `2 norms

of the rows of ZD−1, where D = diag(d1, . . . , dn). Recall that this quantity is, by definition,

‖ZD−1‖2→∞. Therefore S ≤ 2E‖ZD−1‖2→∞. The theorem follows by optimizing our choice of D

and introducing our estimates for F and S into (3.5.1).

Taking Z= A−X in Theorem 3.12, we have

E‖A−X‖∞→2 ≤ 2E
�

∑

j,k
(X jk − a jk)

2
�1/2

+ 2min
D
Emax

j

�

∑

k

(X jk − a jk)2

d2
k

�1/2

. (3.5.2)

We now derive a bound which depends only on the variances of the X jk.

Corollary 3.13. Fix the m× n matrix A and let X be a random matrix with independent entries so

that EX = A. Then

E‖A−X‖∞→2 ≤ 2
�

∑

j,k
Var(X jk)

�1/2
+ 2
p

m min
D

max
j

�

∑

k

Var(X jk)

d2
k

�1/2
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where D is a positive diagonal matrix with Tr(D2) = 1.

Proof. Let F and S denote, respectively, the first and second term of (3.5.2). An application of

Jensen’s inequality shows that F ≤ 2
�

∑

j,k Var(X jk)
�1/2

. A second application shows that

S ≤ 2min
D

�

Emax
j

∑

k

(X jk − a jk)2

d2
k

�1/2

.

Bound the maximum with a sum:

S ≤ 2min
D

�

∑

j
E
∑

k

(X jk − a jk)2

d2
k

�1/2

.

The sum is controlled by a multiple of its largest term, so

S ≤ 2
p

m min
D

�

max
j

∑

k

Var(X jk)

d2
k

�1/2

,

where m is the number of rows of A.

3.5.1 Optimality

We now show that Theorem 3.12 gives an optimal bound, in the sense that each of its terms

is necessary. In the following, we reserve the letter D for a positive diagonal matrix with

Tr(D2) = 1.

First, we establish the necessity of the Frobenius term by identifying a class of random

matrices whose∞→2 norms are larger than their weighted 2→∞ norms but comparable to their

Frobenius norms. Let Z be a random m×
p

m matrix such that the entries in the first column of Z

are equally likely to be positive or negative ones, and all other entries are zero. With this choice,

E‖Z‖∞→2 = E‖Z‖F =
p

m. Meanwhile, E‖ZD−1‖2→∞ = d−1
11 , so minDE‖ZD−1‖2→∞ = 1, which
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is much smaller than E‖Z‖∞→2. Clearly, the Frobenius term is necessary.

Similarly, to establish the necessity of the weighted 2→∞ norm term, we consider a class

of matrices whose∞→2 norms are larger than their Frobenius norms but comparable to their

weighted 2→∞ norms. Consider a
p

n× n matrix Z whose entries are all equally likely to be

positive or negative ones. It is a simple task to confirm that E‖Z‖∞→2 ≥ n and E‖Z‖F = n3/4; it

follows that the weighted 2→∞ norm term is necessary. In fact,

min
D
E




ZD−1






2→∞ =min
D
E max

j=1,...,
p

n

 

∑n

k=1

Z2
jk

d2
kk

!1/2

=min
D

�

∑n

k=1

1

d2
kk

�1/2

= n,

so we see that E‖Z‖∞→2 and the weighted 2→∞ norm term are comparable.

3.5.2 An example application

From Theorem 3.12 we infer that a good scheme for sparsifying a matrix A while minimizing

the expected relative∞→2 norm error is one which drastically increases the sparsity of X while

keeping the relative error

E‖Z‖F+minDE




ZD−1






2→∞
‖A‖∞→2

small, where Z= A−X.

As before, consider the case where A is an n× n matrix all of whose entries are positive and

in an interval bounded away from zero. Let γ be a desired bound on the expected relative∞→2

norm error. We choose the randomization strategy X jk ∼
a jk

p
Bern(p) and ask how much can

we sparsify while respecting our bound on the relative error. That is, how small can p be? We

appeal to Theorem 3.12. In this case,

‖A‖∞→2 =
�

∑

j

∑

k
a2

jk + 2
∑

j

∑

`<m
a j`a jm

�
1
2
= O

�

�

n2+ n2(n− 1)
�

1
2

�

.
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By Jensen’s inequality,

E‖Z‖F ≤ E‖A‖F+E‖X‖F ≤
�

1+
1
p

p

�

‖A‖F = O

�

n

�

1+
1
p

p

��

.

We bound the other term in the numerator, also using Jensen’s inequality:

min
D
E




ZD−1






2→∞ ≤
p

nE‖Z‖2→∞ ≤
p

n

�

1+
1
p

p

�

‖A‖2→∞ = O

�

n

�

1+
1
p

p

��

to get

E‖Z‖F+minDE




ZD−1






2→∞
‖A‖∞→2

= O

�

1
p

n
+

1
p

pn

�

= O

�

1
p

pn

�

We conclude that, for this class of matrices and this family of sparsification schemes, we can

reduce the number of expected nonzero terms to O
�

n
γ2

�

while maintaining an expected∞→2

norm relative error of γ.

3.6 A spectral error bound

In this section we establish a bound on E‖A−X‖ as an immediate consequence of Latała’s result

[Lat05]. We then derive a deviation inequality for the spectral approximation error using a

log-Sobolev inequality from [BLM03], and use it to compare our results to those of Achlioptas

and McSherry [AM07] and Arora, Hazan, and Kale [AHK06].

Theorem 3.14. Suppose A is a fixed matrix, and let X be a random matrix with independent entries

for which EX= A. Then

E‖A−X‖ ≤ C

�

max
j

�
∑

k
Var(X jk)

�1/2
+max

k

�

∑

j
Var(X jk)

�1/2
+
�

∑

jk
E(X jk − a jk)

4
�1/4

�
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where C is a universal constant.

In [Lat05], Latała considered the spectral norm of random matrices with independent,

zero-mean entries, and he showed that, for any such matrix Z,

E‖Z‖ ≤ C

�

max
j

�
∑

k
EZ2

jk

�1/2
+max

k

�

∑

j
EZ2

jk

�1/2
+
�

∑

jk
EZ4

jk

�1/4
�

,

where C is some universal constant. Unfortunately, no estimate for C is available. Theorem 3.14

follows from Latała’s result, by taking Z= A−X.

The bounded differences argument from Section 3.3 establishes the correct (subgaussian)

tail behavior of E‖A−X‖.

Theorem 3.15. Fix the matrix A, and let X be a random matrix with independent entries for which

EX = A. Assume
�

�X jk

�

�≤ D/2 almost surely for all j, k. Then, for all t > 0,

P {‖A−X‖> E‖A−X‖+ t} ≤ e−t2/(4D2).

Proof. The proof is exactly that of Theorem 3.6, except now u and v are both in the `2 unit

sphere.

We find it convenient to measure deviations on the scale of the mean.

Corollary 3.16. Under the conditions of Theorem 3.15, for all δ > 0,

P {‖A−X‖> (1+δ)E‖A−X‖} ≤ e−δ
2(E‖A−X‖)2/(4D2).
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3.6.1 Comparison with previous results

To demonstrate the applicability of our bound on the spectral norm error, we consider the

sparsification and quantization schemes used by Achlioptas and McSherry [AM07], and the

quantization scheme proposed by Arora, Hazan, and Kale [AHK06]. We show that our spectral

norm error bound and the associated concentration result give results of the same order, with

less effort. Throughout these comparisons, we take A to be a m× n matrix, with m< n, and we

define b =max jk |a jk|.

3.6.1.1 A matrix quantization scheme

First we consider the scheme proposed by Achlioptas and McSherry for quantization of the

matrix entries:

X jk =















b with probability 1
2
+

a jk

2b

−b with probability 1
2
− a jk

2b

.

With this choice Var(X jk) = b2− a2
jk ≤ b2, and E(X jk − a jk)4 = b2− 3a4+ 2a2 b2 ≤ 3b4, so the

expected spectral error satisfies

E‖A−X‖ ≤ C(
p

nb+
p

mb+ b 4p3mn)≤ 4Cb
p

n.

Applying Corollary 3.16, we find that the error satisfies

P
¦

‖A−X‖> 4Cb
p

n(1+δ)
©

≤ e−δ
2C2n.
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In particular, with probability at least 1− exp(−C2n),

‖A−X‖ ≤ 8Cb
p

n.

Achlioptas and McSherry proved that for n≥ n0, where n0 is on the order of 109, with probability

at least 1− exp(−19(log n)4),

‖A−X‖< 4b
p

n.

Thus, Theorem 3.15 provides a bound of the same order in n which holds with higher probability

and over a larger range of n.

3.6.1.2 A nonuniform sparsification scheme

Next we consider an analog to the nonuniform sparsification scheme proposed in the same paper.

Fix a number p in the range (0,1) and sparsify entries with probabilities proportional to their

magnitudes:

X jk ∼
a jk

p jk
Bern(p jk), where p jk =max







p
�a jk

b

�2
,

r

p
�a jk

b

�2
×
(8 log n)4

n







.

Achlioptas and McSherry determine that, with probability at least 1− exp(−19(log n)4),

‖A−X‖< 4b
p

n/p.

Further, the expected number of nonzero entries in X is less than

pmn×Avg[(a jk/b)2] +m(8 log n)4, (3.6.1)
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where the notation Avg(·) indicates the average of a quantity over all the entries of A.

Their choice of p jk, in particular the insertion of the (8 log n)4/n factor, is an artifact of their

method of proof. Instead, we consider a scheme which compares the magnitudes of a jk and b to

determine p jk. Introduce the quantity R=maxa jk 6=0 b/|a jk| to measure the spread of the entries

in A, and take

X jk ∼















a jk

p jk
Bern(p jk), where p jk =

pa2
jk

pa2
jk+b2 , a jk 6= 0

0, a jk = 0.

With this scheme, Var(X jk) = 0 when a jk = 0, otherwise Var(X jk) = b2/p. Likewise, E(X jk −

a jk)4 = 0 if a jk = 0, otherwise

E(X jk − a jk)
4 ≤ Var(X jk)





X jk − a jk







2
∞ =

b2

p
max

(

|a jk|, |a jk|

 

pa2
jk + b2

pa2
jk

− 1

!)2

≤
b4

p2 R2,

so

E‖A−X‖ ≤ C

 

b

r

n

p
+ b

r

m

p
+ b

r

R

p
4pmn

!

≤ C(2+
p

R)b

r

n

p
.

Applying Corollary 3.16, we find that the error satisfies

P
¨

‖A−X‖> C(2+
p

R)b

r

n

p
(ε+ 1)

«

≤ e−ε
2C2(2+

p
R)2pn/16,

with probability at least 1− exp(−C2(2+
p

R)2pn/16),

‖A−X‖ ≤ 2C(2+
p

R)b

r

n

p
.

Thus, Theorem 3.14 and Achlioptas and McSherry’s scheme-specific analysis yield results of the

same order in n and p. As before, we see that our bound holds with higher probability and over
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a larger range of n. Furthermore, since the expected number of nonzero entries in X satisfies

∑

jk
p jk =

∑

jk

pa2
jk

pa2
jk + b2

≤ pnm×Avg
�

�a jk

b

�2�

,

we have established a smaller limit on the expected number of nonzero entries.

3.6.1.3 A scheme which simultaneously sparsifies and quantizes

Finally, we use Theorem 3.15 to estimate the error of the scheme from [AHK06] which simulta-

neously quantizes and sparsifies. Fix δ > 0 and consider

X jk =















sgn(a jk)
δp
n

Bern
�

|a jk|
p

n

δ

�

, |a jk| ≤
δp
n

a jk, otherwise.

Then Var(X jk) = 0 if |a jk| ≥ δ/
p

n, otherwise

Var(X jk) = |a jk|3
p

n

δ
− 2a2

jk + |a jk|
δ
p

n
≤
δ2

n
.

The fourth moment term is zero when |a jk| ≥ δ/
p

n, and when |a jk|< δ/
p

n,

E(X jk − a jk)
4 = |a jk|5

p
n

δ
− 4a4

jk + 6|a jk|3
δ
p

n
− 4a2

jk

δ2

n
+ |a jk|

�

δ
p

n

�3

≤ 8
δ4

n2 .

This gives the estimates

E‖A−X‖ ≤ C
�

p
n
δ
p

n
+
p

m
δ
p

n
+ 2

δ
p

n
4pmn

�

≤ 4Cδ
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and

P
�

‖A−X‖> 4Cδ(γ+ 1)
	

≤ e−γ
2C2n.

Taking γ= 1, we see that with probability at least 1− exp(−C2n),

‖A−X‖ ≤ 8Cδ.

Let S =
∑

j,k |A jk|, then appealing to Lemma 1 in [AHK06], we find that X has O
�p

nS
γ

�

nonzero

entries with probability at least 1− exp
�

−Ω
�p

nS
γ

��

.

Arora, Hazan, and Kale establish that this scheme guarantees ‖A−X‖= O(δ) with proba-

bility at least 1− exp(−Ω(n)), so we see that our general bound recovers a bound of the same

order.

3.7 Comparison with later bounds

The papers [NDT10, DZ11, AKL13], written after the results in this chapter were obtained,

present alternative schemes for sparsification and quantization.

The scheme presented in [NDT10] sparsifies a matrix by zeroing out all sufficiently small

entries of A, keeping all sufficiently large entries, and randomly sampling the remaining entries of

the matrix with a probability depending on their magnitudes. More precisely, given a parameter

s > 0, it generates an approximation whose entries are distributed as

X jk =































0, a2
jk ≤ (log2(n)/n)‖A‖2F/s

a jk a2
jk ≥ ‖A‖

2
F/s

(a jk/p jk)Bern(p jk), otherwise, where p jk = sa2
jk/‖A‖

2
F.
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The analysis offered guarantees that if s = Ω(ε−2n log3 n), then with probability at least 1− n−1,

‖A− X‖2 ≤ ε and, in expectation, X has less than 2s nonzero entries. It is not clear whether

or not this scheme can be analyzed using Theorem 3.14. It is straightforward to establish that

Var(X jk)≤ ε2/(n log3 n) for this scheme, but obtaining a sufficiently small upper bound on the

fourth moment E(X jk − a jk)4 is challenging. In particular, the estimate

E(X jk − a jk)
4 ≤ Var(X jk)‖X jk − a jk‖∞

gives an upper bound on the order of εa2
jkn/ log5 n, which is sufficient only to establish a much

weaker guarantee on the error E‖A−X‖2 than the guarantee given in [NDT10].

The scheme introduced in [DZ11] first zeroes out all entries of A ∈ Rn×n of sufficiently small

magnitude, then samples elements from A in s i.i.d. trials with replacement. The elements are

selected with probabilities proportional to their squared magnitudes. Thus, the approximant can

be written in the form

X=
1

s

∑s

t=1

a jt kt

p jt kt

e jt e
T
kt

,

where ( jt , kt) is the index of the element of A selected in the tth trial, p jk = a2
jk/‖A‖

2
F is the

probability that the entry a jk is selected, and e j denotes the jth standard basis vector in n.

Clearly X has at most s nonzero entries. Let s = Ω(ε−2n log(n)‖A‖2F). Then the authors show

that, with probability at least 1− n−1, the error of the approximation satisfies ‖A−X‖2 ≤ ε. This

scheme is not easily analyzable using our Theorem 3.14. Since the approximant X is a sum of

rank-one matrices, it is most natural to analyze its approximation error using tail bounds for

sums of independent random matrices. Indeed, the authors of [DZ11] use a matrix Bernstein

inequality to provide their results.

Finally, the scheme presented in [AKL13] computes an approximation of the same form as
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the scheme introduced in [DZ11], but samples entries of A with probabilities proportional their

absolute values. That is,

X=
1

s

∑s

t=1

a jt kt

p jt kt

e jt e
T
kt

,

where p jk = |a jk|/
∑

pq |apq|. Again, this scheme is not amenable to analysis using Theorem 3.14.

Recall that A(k) denotes the kth row of A. The authors establish that, when

s = Ω
�

ε−2 log(n/δ)
�

∑

jk
|A jk|

�

max
k
‖A(k)‖1

�

,

the error bound ‖A−X‖2 ≤ ε is satisfied with probability at least 1−δ. The approximant X has,

in expectation, at most 2s nonzero entries.

Comparing the extents to which we were able to reproduce the guarantees of the spar-

sification schemes introduced in [AM01, AHK06, AM07, NDT10, DZ11, AKL13], we see that

Theorem 3.14 sometimes can recover competitive guarantees on the approximation errors of

element-wise sparsification schemes in which X jk is directly related to a jk through a simple

expression. When X is more naturally represented as a sum of rank-1 matrices, Theorem 3.14 is

not easily applicable.


