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Chapter 2

Bounds for all eigenvalues of sums of
Hermitian random matrices

2.1 Introduction

The classical tools of nonasymptotic random matrix theory can sometimes give quite sharp

estimates of the extreme eigenvalues of a Hermitian random matrix, but they are not readily

adapted to the study of the interior eigenvalues. This is because, while the extremal eigenvalues

are the maxima and minima of a random process, more delicate and challenging minimax

problems must be solved to obtain the interior eigenvalues.

This chapter introduces a simple method, based upon the variational characterization of

eigenvalues, that parlays bounds on the extreme eigenvalues of sums of random Hermitian

matrices into bounds that apply to all the eigenvalues1. This technique extends the matrix

Laplace transform method detailed in [Tro12]. We combine these ideas to extend several of

the inequalities in [Tro12] to address the fluctuations of interior eigenvalues. Specifically, we

provide eigenvalue analogs of the classical multiplicative Chernoff bounds and Bennett and

Bernstein inequalities.

In this technique, the delicacy of the minimax problems which implicitly define the eigenval-

1The content of this chapter is adapted from the technical report [GT09] co-authored with Joel Tropp.
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ues of Hermitian matrices is encapsulated in terms that reflect the fluctuations of the summands

in the appropriate eigenspaces. In particular, we see that the fluctuations of the kth eigenvalue of

the sum above and below the kth eigenvalue of the expected sum are controlled by two different

quantities. This satisfies intuition: for instance, given samples from a nondegenerate stationary

random process with finite covariance matrix, one expects that the smallest eigenvalue of the

sample covariance matrix is more likely to be an underestimate of the smallest eigenvalue of the

covariance matrix than it is to be an overestimate.

We provide two illustrative applications of our eigenvalue tail bounds: Theorem 2.14

quantifies the behavior of the singular values of matrices obtained by sampling columns from a

short, fat matrix; and Theorem 2.15 quantifies the convergence of the eigenvalues of Wishart

matrices.

2.2 Notation

We defineMn
sa to be the set of Hermitian matrices with dimension n. We often compare Hermitian

matrices using the semidefinite ordering. In this ordering, A is greater than or equal to B, written

A� B or B� A, when A−B is positive semidefinite.

The eigenvalues of a matrix A inMn
sa are arranged in weakly decreasing order: λmax (A) =

λ1(A)≥ λ2(A)≥ · · · ≥ λn(A) = λmin (A) . Likewise, the singular values of a rectangular matrix A

with rank ρ are ordered σmax(A) = σ1(A)≥ σ2(A)≥ · · · ≥ σρ(A) = σmin(A). The spectral norm

of a matrix B is written ‖B‖2 .
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2.3 The Courant–Fisher Theorem

In this chapter, we work over the complex field C. One of our central tools is the variational

characterization of the eigenvalues of a Hermitian matrix given by the Courant–Fischer Theorem.

For integers d and n satisfying 1≤ d ≤ n, the complex Stiefel manifold

Vn
d = {V ∈ C

n×d : V∗V= I}

is the collection of orthonormal bases for the d-dimensional subspaces of Cn, or, equivalently,

the collection of all isometric embeddings of Cd into Cn. Let A be a Hermitian matrix with

dimension n, and let V ∈ Vn
d be an orthonormal basis for a subspace of Cn. Then the matrix

V∗AV can be interpreted as the compression of A to the space spanned by V.

Proposition 2.1 (Courant–Fischer ([HJ85, Theorem 4.2.11])). Let A be a Hermitian matrix with

dimension n. Then

λk(A) = min
V∈Vn

n−k+1

λmax
�

V∗AV
�

and (2.3.1)

λk(A) =max
V∈Vn

k

λmin
�

V∗AV
�

. (2.3.2)

A matrix V− ∈ Vn
k achieves equality in (2.3.2) if and only if its columns span a top k-dimensional

invariant subspace of A. Likewise, a matrix V+ ∈ Vn
n−k+1 achieves equality in (2.3.1) if and only if

its columns span a bottom (n− k+ 1)-dimensional invariant subspace of A.

The ± subscripts in Proposition 2.1 are chosen to reflect the fact that λk(A) is the minimum

eigenvalue of V∗−AV− and the maximum eigenvalue of V∗+AV+. As a consequence of Propo-

sition 2.1, when A is Hermitian, λk(−A) =−λn−k+1(A). This fact allows us to use the same
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techniques we develop for bounding the eigenvalues from above to bound them from below.

2.4 Tail bounds for interior eigenvalues

In this section we develop a generic bound on the tail probabilities of eigenvalues of sums of

independent, random, Hermitian matrices. We establish this bound by supplementing the matrix

Laplace transform methodology of [Tro12] with Proposition 2.1 and a result, due to Lieb and

Seiringer [LS05], on the concavity of a certain trace function on the cone of positive-definite

matrices.

First we observe that the Courant–Fischer Theorem allows us to relate the behavior of the kth

eigenvalue of a matrix to the behavior of the largest eigenvalue of an appropriate compression

of the matrix.

Theorem 2.2. Let Y be a random Hermitian matrix with dimension n, and let k ≤ n be an integer.

Then, for all t ∈ R,

P
�

λk(Y)≥ t
	

≤ inf
θ>0

min
V∈Vn

n−k+1

¦

e−θ t ·E tr eθV∗YV
©

. (2.4.1)

Proof. Let θ be a fixed positive number. Then

P
�

λk(Y)≥ t
	

= P
�

λk(θY)≥ θ t
	

= P
¦

eλk(θY) ≥ eθ t
©

≤ e−θ t ·Eeλk(θY) = e−θ t ·Eexp

¨

min
V∈Vn

n−k+1

λmax
�

θV∗YV
�

«

.

The first identity follows from the positive homogeneity of eigenvalue maps and the second

from the monotonicity of the scalar exponential function. The final two relations are Markov’s
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inequality and (2.3.1).

To continue, we need to bound the expectation. Use monotonicity to interchange the order

of the exponential and the minimum; then apply the spectral mapping theorem to see that

Eexp
�

min
V∈Vn

n−k+1

λmax
�

θV∗YV
�

�

= E min
V∈Vn

n−k+1

λmax
�

exp(θV∗YV)
�

≤ min
V∈Vn

n−k+1

Eλmax
�

exp(θV∗YV)
�

≤ min
V∈Vn

n−k+1

E tr exp(θV∗YV).

The first inequality is Jensen’s. The second inequality follows because the exponential of a

Hermitian matrix is positive definite, so its largest eigenvalue is smaller than its trace.

Combine these observations and take the infimum over all positive θ to complete the

argument.

In most cases it is prohibitively difficult to compute the quantity E tr eθV∗YV exactly. The

main contribution of [Tro12] is a bound on this quantity, when V= I, in terms of the cumulant

generating functions of the summands. The main tool in the proof is a classical result due to

Lieb [Lie73, Thm. 6] that establishes the concavity of the function

A 7−→ tr exp
�

H+ log(A)
�

(2.4.2)

on the positive-definite cone, where H is Hermitian.

We are interested in the case where V 6= I and the matrix Y in Theorem 2.2 can be expressed

as a sum of independent random matrices. In this case, we use the following result to develop

the right-hand side of the Laplace transform bound (2.4.1).

Theorem 2.3. Consider a finite sequence {X j} of independent, random, Hermitian matrices with
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dimension n and a sequence {A j} of fixed Hermitian matrices with dimension n that satisfy the

relations

EeX j � eA j . (2.4.3)

Let V ∈ Vn
k be an isometric embedding of Ck into Cn for some k ≤ n. Then

E tr exp
§

∑

j
V∗X jV

ª

≤ tr exp
§

∑

j
V∗A jV

ª

. (2.4.4)

In particular,

E tr exp
§

∑

j
X j

ª

≤ tr exp
§

∑

j
A j

ª

. (2.4.5)

Theorem 2.3 is an extension of Lemma 3.4 of [Tro12], which establishes the special

case (2.4.5). The proof depends upon a result due to Lieb and Seiringer [LS05, Thm. 3]

that extends Lieb’s earlier result (2.4.2) by showing that the functional remains concave when

the log(A) term is compressed.

Proposition 2.4 (Lieb–Seiringer 2005). Let H be a Hermitian matrix with dimension k. Let

V ∈ Vn
k be an isometric embedding of Ck into Cn for some k ≤ n. Then the function

A 7−→ tr exp
�

H+V∗(logA)V
�

is concave on the cone of positive-definite matrices inMn
sa.

Proof of Theorem 2.3. First, note that (2.4.3) and the operator monotonicity of the matrix loga-

rithm yield the following inequality for each k:

logEeXk � Ak. (2.4.6)
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Let Ek denote expectation conditioned on the first k summands, X1 through Xk. Then

E tr exp







∑

j≤`
V∗X jV






= EE1 · · ·E`−1 tr exp







∑

j≤`−1

V∗X jV+V∗
�

logeX`
�

V







≤ EE1 · · ·E`−2 tr exp







∑

j≤`−1

V∗X jV+V∗
�

logEeX`
�

V







≤ EE1 · · ·E`−2 tr exp







∑

j≤`−1

V∗X jV+V∗
�

logeA`
�

V







= EE1 · · ·E`−2 tr exp







∑

j≤`−1

V∗X jV+V∗A`V






.

The first inequality follows from Proposition 2.4 and Jensen’s inequality, and the second depends

on (2.4.6) and the monotonicity of the trace exponential. Iterate this argument to complete the

proof.

Our main result follows from combining Theorem 2.2 and Theorem 2.3.

Theorem 2.5 (Minimax Laplace Transform). Consider a finite sequence {X j} of independent,

random, Hermitian matrices with dimension n, and let k ≤ n be an integer.

(i) Let {A j} be a sequence of Hermitian matrices that satisfy the semidefinite relations

EeθX j � eg(θ)A j

where g : (0,∞)→ [0,∞). Then, for all t ∈ R,

P
§

λk

�

∑

j
X j

�

≥ t
ª

≤ inf
θ>0

min
V∈Vn

n−k+1

�

e−θ t · tr exp
§

g(θ)
∑

j
V∗A jV

ª

�

.
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(ii) Let {A j : Vn
n−k+1→M

n
sa} be a sequence of functions that satisfy the semidefinite relations

EeθV∗X jV � eg(θ)A j(V)

for all V ∈ Vn
n−k+1, where g : (0,∞)→ [0,∞). Then, for all t ∈ R,

P
§

λk

�

∑

j
X j

�

≥ t
ª

≤ inf
θ>0

min
V∈Vn

n−k+1

�

e−θ t · tr exp
§

g(θ)
∑

j
A j(V)

ª

�

.

The first bound in Theorem 2.5 requires less detailed information on how compression

affects the summands but correspondingly does not give as sharp results as the second. For

most cases we consider, we use the second inequality because it is straightforward to obtain

semidefinite bounds for the compressed summands. The exception occurs in the proof of the

subexponential Bernstein inequality (Theorem 2.12 in Section 2.6); here we use the first bound,

because in this case there are no nontrivial semidefinite bounds for the compressed summands.

In the following two sections, we use the minimax Laplace transform method to derive

Chernoff and Bernstein inequalities for the interior eigenvalues of a sum of independent random

matrices. Tail bounds for the eigenvalues of matrix Rademacher and Gaussian series, eigenvalue

Hoeffding, and matrix martingale eigenvalue tail bounds can all be derived in a similar manner;

see [Tro12] for the details of the arguments leading to such tail bounds for the maximum

eigenvalue.
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2.5 Chernoff bounds

Classical Chernoff bounds establish that the tails of a sum of independent nonnegative random

variables decay subexponentially. [Tro12] develops Chernoff bounds for the maximum and

minimum eigenvalues of a sum of independent positive semidefinite matrices. We extend this

analysis to study the interior eigenvalues.

Intuitively, the eigenvalue tail bounds should depend on how concentrated the summands

are; e.g., the maximum eigenvalue of a sum of operators whose ranges are aligned is likely

to vary more than that of a sum of operators whose ranges are orthogonal. To measure how

much a finite sequence of random summands {X j} concentrates in a given subspace, we define a

function Ψ :
⋃

1≤k≤nV
n
k → R that satisfies

max j λmax

�

V∗X jV
�

≤Ψ(V) almost surely for each V ∈
⋃

1≤k≤n

Vn
k. (2.5.1)

The sequence {X j} associated with Ψ will always be clear from context. We have the following

result.

Theorem 2.6 (Eigenvalue Chernoff Bounds). Consider a finite sequence {X j} of independent,

random, positive-semidefinite matrices with dimension n. Given an integer k ≤ n, define

µk = λk

�

∑

j
EX j

�

,

and let V+ ∈ Vn
n−k+1 and V− ∈ Vn

k be isometric embeddings that satisfy

µk = λmax

�

∑

j
V∗+(EX j)V+

�

= λmin

�

∑

j
V∗−(EX j)V−

�

.
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Then

P
§

λk

�

∑

j
X j

�

≥ (1+δ)µk

ª

≤ (n− k+ 1) ·
�

eδ

(1+δ)1+δ

�µk/Ψ(V+)

for δ > 0, and

P
§

λk

�

∑

j
X j

�

≤ (1−δ)µk

ª

≤ k ·
�

e−δ

(1−δ)1−δ

�µk/Ψ(V−)

for δ ∈ [0, 1),

where Ψ is a function that satisfies (2.5.1).

Theorem 2.6 tells us how the tails of the kth eigenvalue are controlled by the variation

of the random summands in the top and bottom invariant subspaces of
∑

j EX j . Up to the

dimensional factors k and n− k+ 1, the eigenvalues exhibit binomial-type tails. When k = 1

(respectively, k = n) Theorem 2.6 controls the probability that the largest eigenvalue of the sum

is small (respectively, the probability that the smallest eigenvalue of the sum is large), thereby

complementing the one-sided Chernoff bounds of [Tro12].

Remark 2.7. The results in Theorem 2.6 have the following standard simplifications:

P
§

λk

�

∑

j
X j

�

≥ tµk

ª

≤ (n− k+ 1) ·
�e

t

�tµk/Ψ(V+)
for t ≥ e, and

P
§

λk

�

∑

j
X j

�

≤ tµk

ª

≤ k · e−(1−t)2µk/(2Ψ(V−)) for t ∈ [0, 1].

Remark 2.8. If it is difficult to estimate Ψ(V+) or Ψ(V−) and the summands are uniformly

bounded, one can resort to the weaker estimates

Ψ(V+)≤ max
V∈Vn

n−k+1

max j





V∗X jV




=max j





X j





 and

Ψ(V−)≤max
V∈Vn

k

max j





V∗X jV




=max j





X j





 .

Theorem 2.6 follows from Theorem 2.5 using an appropriate bound on the matrix moment-
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generating functions. The following lemma is due to Ahlswede and Winter [AW02]; see

also [Tro12, Lem. 5.8].

Lemma 2.9. Suppose that X is a random positive-semidefinite matrix that satisfies λmax (X)≤ 1.

Then

EeθX � exp
�

(eθ − 1)(EX)
�

for θ ∈ R.

Proof of Theorem 2.6, upper bound. We consider the case where Ψ(V+) = 1; the general case

follows by homogeneity. Define

A j(V+) = V∗+(EX j)V+ and g(θ) = eθ − 1.

Theorem 2.5(ii) and Lemma 2.9 imply that

P
§

λk

�

∑

j
X j

�

≥ (1+δ)µk

ª

≤ inf
θ>0

e−θ(1+δ)µk · tr exp
§

g(θ)
∑

j
V∗+(EX j)V+

ª

.

Bound the trace by the maximum eigenvalue, taking into account the reduced dimension of the

summands:

tr exp
§

g(θ)
∑

j
V∗+(EX j)V+

ª

≤ (n− k+ 1) ·λmax

�

exp
§

g(θ)
∑

j
V∗+(EX j)V+

ª�

= (n− k+ 1) · exp
§

g(θ) ·λmax

�

∑

j
V∗+(EX j)V+

�ª

.

The equality follows from the spectral mapping theorem. Identify the quantity µk; then combine
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the last two inequalities to obtain

P
§

λk

�

∑

j
X j

�

≥ (1+δ)µk

ª

≤ (n− k+ 1) · inf
θ>0

e[g(θ)−θ(1+δ)]µk .

The right-hand side is minimized when θ = log(1 + δ), which gives the desired upper tail

bound.

Proof of Theorem 2.6, lower bound. As before, we consider the case where Ψ(V−) = 1. Clearly,

P
§

λk

�

∑

j
X j

�

≤ (1−δ)µk

ª

= P
§

λn−k+1

�

∑

j
−X j

�

≥−(1−δ)µk

ª

. (2.5.2)

Apply Lemma 2.9 to see that, for θ > 0,

Eeθ(−V∗−X jV−) = Ee(−θ)V
∗
−X jV− � exp

�

g(θ) ·V∗−(−EX j)V−
�

,

where g(θ) = 1− e−θ . Theorem 2.5(ii) thus implies that the latter probability in (2.5.2) is

bounded by

inf
θ>0

eθ(1−δ)µk · tr exp
�

g(θ)
∑

j
V∗−(−EX j)V−

�

.

Using reasoning analogous to that in the proof of the upper bound, we justify the first of the

following inequalities:

tr exp
�

g(θ)
∑

j
V∗−(−EX j)V−

�

≤ k · exp
§

λmax

�

g(θ)
∑

j
V∗−(−EX j)V−

�ª

= k · exp
§

−g(θ) ·λmin

�

∑

j
V∗−(EX j)V−

�ª

= k · exp
�

−g(θ)µk
	

.
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The remaining equalities follow from the fact that −g(θ)< 0 and the definition of µk.

This argument establishes the bound

P
§

λk

�

∑

j
X j

�

≤ (1−δ)µk

ª

≤ k · inf
θ>0

e[θ(1−δ)−g(θ)]µk .

The right-hand side is minimized when θ = − log(1− δ), which gives the desired lower tail

bound.

2.6 Bennett and Bernstein inequalities

The classical Bennett and Bernstein inequalities use the variance or knowledge of the moments

of the summands to control the probability that a sum of independent random variables deviates

from its mean. In [Tro12], matrix Bennett and Bernstein inequalities are developed for the

extreme eigenvalues of Hermitian random matrix sums. We establish that the interior eigenvalues

satisfy analogous inequalities.

As in the derivation of the Chernoff inequalities of Section 2.5, we need a measure of

how concentrated the random summands are in a given subspace. Recall that the function

Ψ :
⋃

1≤k≤nV
n
k → R satisfies

max j λmax

�

V∗X jV
�

≤Ψ(V) almost surely for each V ∈
⋃

1≤k≤n

Vn
k. (2.6.1)

The sequence {X j} associated with Ψ will always be clear from context.

Theorem 2.10 (Eigenvalue Bennett Inequality). Consider a finite sequence {X j} of independent,

random, Hermitian matrices with dimension n, all of which have zero mean. Given an integer
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k ≤ n, define

σ2
k = λk

�

∑

j
E(X2

j )
�

.

Choose V+ ∈ Vn
n−k+1 to satisfy

σ2
k = λmax

�

∑

j
V∗+E(X

2
j )V+

�

.

Then, for all t ≥ 0,

P
§

λk

�

∑

j
X j

�

≥ t
ª

≤ (n− k+ 1) · exp

¨

−
σ2

k

Ψ(V+)2
· h
�

Ψ(V+)t

σ2
k

�«

(i)

≤ (n− k+ 1) · exp

¨

−t2/2

σ2
k +Ψ(V+)t/3

«

(ii)

≤















(n− k+ 1) · exp
n

−3
8

t2/σ2
k

o

for t ≤ σ2
k/Ψ(V+)

(n− k+ 1) · exp
n

−3
8

t/Ψ(V+)
o

for t ≥ σ2
k/Ψ(V+),

(iii)

where the function h(u) = (1+ u) log(1+ u)− u for u≥ 0. The function Ψ satisfies (2.6.1) above.

Results (i) and (ii) are, respectively, matrix analogs of the classical Bennett and Bernstein

inequalities. As in the scalar case, the Bennett inequality reflects a Poisson-type decay in the tails

of the eigenvalues. The Bernstein inequality states that small deviations from the eigenvalues of

the expected matrix are roughly normally distributed while larger deviations are subexponential.

The split Bernstein inequalities (iii) make explicit the division between these two regimes.

As stated, Theorem 2.10 controls the probability that the eigenvalues of a sum are large.

Using the identity

λk

�

−
∑

j

X j

�

=−λn−k+1

�

∑

j

X j

�

,

Theorem 2.10 can also be applied to control the probability that eigenvalues of a sum are small.
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To prove Theorem 2.10, we use the following lemma (Lemma 6.7 in [Tro12]) to control the

moment-generating function of a random matrix with bounded maximum eigenvalue.

Lemma 2.11. Let X be a random Hermitian matrix satisfying EX = 0 and λmax (X) ≤ 1 almost

surely. Then

EeθX � exp((eθ − θ − 1) ·E(X2)) for θ > 0.

Proof of Theorem 2.10. Using homogeneity, we assume without loss that Ψ(V+) = 1. This implies

that λmax

�

X j

�

≤ 1 almost surely for all the summands. By Lemma 2.11,

EeθX j � exp
�

g(θ) ·E(X2
j )
�

,

with g(θ) = eθ − θ − 1.

Theorem 2.5(i) then implies

P
§

λk

�

∑

j
X j

�

≥ t
ª

≤ inf
θ>0

e−θ t · tr exp
�

g(θ)
∑

j
V∗+E(X

2
j )V+

�

≤ (n− k+ 1) · inf
θ>0

e−θ t ·λmax

�

exp
§

g(θ)
∑

j
V∗+E(X

2
j )V+

ª�

= (n− k+ 1) · inf
θ>0

e−θ t · exp
§

g(θ) ·λmax

�

∑

j
V∗+E(X

2
j )V+

�ª

.

The maximum eigenvalue in this expression equals σ2
k, thus

P
§

λk

�

∑

j
X j

�

≥ t
ª

≤ (n− k+ 1) · inf
θ>0

eg(θ)σ2
k−θ t .

The Bennett inequality (i) follows by substituting θ = log(1+ t/σ2
k) into the right-hand side

and simplifying.
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The Bernstein inequality (ii) is a consequence of (i) and the fact that

h(u)≥
u2/2

1+ u/3
for u≥ 0,

which can be established by comparing derivatives.

The subgaussian and subexponential portions of the split Bernstein inequalities (iii) are

verified through algebraic comparisons on the relevant intervals.

Occasionally, as in the application in Section 2.8 to the problem of covariance matrix

estimation, one desires a Bernstein-type tail bound that applies to summands that do not have

bounded maximum eigenvalues. In this case, if the moments of the summands satisfy sufficiently

strong growth restrictions, one can extend classical scalar arguments to obtain results such as

the following Bernstein bound for subexponential matrices.

Theorem 2.12 (Eigenvalue Bernstein Inequality for Subexponential Matrices). Consider a finite

sequence {X j} of independent, random, Hermitian matrices with dimension n, all of which satisfy

the subexponential moment growth condition

E(Xm
j )�

m!

2
Bm−2Σ2

j for m= 2,3, 4, . . . ,

where B is a positive constant and Σ2
j are positive-semidefinite matrices. Given an integer k ≤ n, set

µk = λk

�

∑

j
EX j

�

.

Choose V+ ∈ Vn
n−k+1 that satisfies

µk = λmax

�

∑

j
V∗+(EX j)V+

�

,
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and define

σ2
k = λmax

�

∑

j
V∗+Σ

2
j V+

�

.

Then, for any t ≥ 0,

P
§

λk

�

∑

j
X j

�

≥ µk + t
ª

≤ (n− k+ 1) · exp

¨

−
t2/2

σ2
k + Bt

«

(i)

≤















(n− k+ 1) · exp
n

−1
4

t2/σ2
k

o

for t ≤ σ2
k/B

(n− k+ 1) · exp
n

−1
4

t/B
o

for t ≥ σ2
k/B.

(ii)

This result is an extension of [Tro12, Theorem 6.2], which, in turn, generalizes a classical

scalar argument [DG98].

As with the other matrix inequalities, Theorem 2.12 follows from an application of The-

orem 2.5 and appropriate semidefinite bounds on the moment-generating functions of the

summands. Thus, the key to the proof lies in exploiting the moment growth conditions of

the summands to majorize their moment-generating functions. The following lemma, a trivial

extension of Lemma 6.8 in [Tro12], provides what we need.

Lemma 2.13. Let X be a random Hermitian matrix satisfying the subexponential moment growth

conditions

E(Xm)�
m!

2
Σ2 for m= 2, 3,4, . . . .

Then, for any θ in [0,1),

Eexp(θX)� exp

�

θEX+
θ2

2(1− θ)
Σ2

�

.
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Proof of Theorem 2.12. We note that X j satisfies the growth condition

E(Xm
j )�

m!

2
Bm−2Σ2

j for m≥ 2

if and only if the scaled matrix X j/B satisfies

E
�X j

B

�m

�
m!

2
·
Σ2

j

B2 for m≥ 2.

Thus, by rescaling, it suffices to consider the case B = 1.

By Lemma 2.13, the moment-generating functions of the summands satisfy

Eexp(θX j)� exp
�

θEX j + g(θ)Σ2
j

�

,

where g(θ) = θ2/(2− 2θ). Now we apply Theorem 2.5(i):

P
§

λk

�

∑

j
X j

�

≥ µk + t
ª

≤ inf
θ∈[0,1)

e−θ(µk+t) · tr exp
�

θ
∑

j
V∗+(EX j)V++ g(θ)

∑

j
V∗+Σ

2
j V+

�

≤ inf
θ∈[0,1)

(n− k+ 1) · exp
n

− θ(µk + t) + θ ·λmax

�

∑

j
V∗+(EX j)V+

�

+ g(θ) ·λmax

�

∑

j
V∗+Σ

2
j V+

�
o

= inf
θ∈[0,1)

(n− k+ 1) · exp
�

−θ t + g(θ)σ2
k

�

.

To achieve the final simplification, we identified µk and σ2
k. Now, select θ = t/(t +σ2

k). Then

simplication gives the Bernstein inequality (i).

Algebraic comparisons on the relevant intervals yield the split Bernstein inequalities (ii).
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2.7 An application to column subsampling

As an application of our Chernoff bounds, we examine how sampling columns from a matrix

with orthonormal rows affects the spectrum. This question has applications in numerical linear

algebra and compressed sensing. The special cases of the maximum and minimum eigenvalues

have been studied in the literature [Tro08, RV07]. The limiting spectral distributions of matrices

formed by sampling columns from similarly structured matrices have also been studied: the

results of [GH08] apply to matrices formed by sampling columns from any fixed orthogonal

matrix, and [Far10] studies matrices formed by sampling columns and rows from the discrete

Fourier transform matrix.

Let U be an n× r matrix with orthonormal rows. We model the sampling operation using a

random diagonal matrix D whose entries are independent Bern(p) random variables. Then the

random matrix

bU= UD (2.7.1)

can be interpreted as a random column submatrix of U with an average of pr nonzero columns.

Our goal is to study the behavior of the spectrum of bU.

Recall that the decay of the Chernoff tail bounds is influenced by the variation of the random

summands when compressed to invariant subspaces of the expected sum, as measured by Ψ(V).

In this application, the choice of invariant subspace is arbitrary, so we choose that which gives

the smallest variations and hence the fastest decay. This gives rise to a coherence-like quantity

associated with the matrix U : Recall that the jth column of U is written u j . Consider the
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following coherence-like quantity associated with U :

τk = min
V∈Vn

k

max j





V∗u j







2
for k = 1, . . . , n. (2.7.2)

There does not seem to be a simple expression for τk. However, by choosing V∗ to be the

restriction to an appropriate k-dimensional coordinate subspace, we see that τk always satisfies

τk ≤ min
|I |≤k

max j

∑

i∈I

u2
i j .

The following theorem shows that the behavior of σk(bU), the kth singular value of bU, can be

explained in terms of τk.

Theorem 2.14 (Column Subsampling of Matrices with Orthonormal Rows). Let U be an n× r

matrix with orthonormal rows, and let p be a sampling probability. Define the sampled matrix bU

according to (2.7.1), and the numbers {τk} according to (2.7.2). Then, for each k = 1, . . . , n,

P
n

σk(bU)≥
p

(1+δ)p
o

≤ (n− k+ 1) ·
�

eδ

(1+δ)1+δ

�p/τn−k+1

for δ > 0, and

P
n

σk(bU)≤
p

(1−δ)p
o

≤ k ·
�

e−δ

(1−δ)1−δ

�p/τk

for δ ∈ [0, 1).

Proof. Observe, using (2.7.1), that

σk(bU)
2 = λk(UD2U∗) = λk







∑

j

d ju ju
∗
j






,

where u j is the jth column of U and d j ∼ Bern(p). Compute

µk = λk

�

∑

j
Ed ju ju

∗
j

�

= p ·λk(UU∗) = p ·λk(I) = p.
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It follows that, for any V ∈ Vn
n−k+1,

λmax

�

∑

j
V∗(Ed ju ju

∗
j )V
�

= p ·λmax
�

V∗V
�

= p = µk,

so the choice of V+ ∈ Vn
n−k+1 is arbitrary. Similarly, the choice of V− ∈ Vn

k is arbitrary. We select

V+ to be an isometric embedding that achieves τn−k+1 and V− to be an isometric embedding

that achieves τk. Accordingly,

Ψ(V+) =max j ‖V∗+u ju
∗
j V+‖=max j ‖V∗+u j‖2 = τn−k+1, and

Ψ(V−) =max j ‖V∗−u ju
∗
j V−‖=max j ‖V∗−u j‖2 = τk.

Theorem 2.6 delivers the upper bound

P
n

σk(Û)≥
p

(1+δ)p
o

= P







λk







∑

j

d ju ju
∗
j






≥ (1+δ)p







≤ (n− k+ 1) ·
�

eδ

(1+δ)1+δ

�p/τn−k+1

for δ > 0, and the lower bound

P
n

σk(Û)≤
p

(1−δ)p
o

= P







λk







∑

j

d ju ju
∗
j






≤ (1−δ)p







≤ k ·
�

e−δ

(1−δ)1−δ

�p/τk

for δ ∈ [0, 1).

To illustrate the discriminatory power of these bounds, let U be an n× n2 matrix consisting

of n rows of the n2× n2 Fourier matrix and choose p = (log n)/n so that, on average, sampling
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Figure 2.1: SPECTRUM OF A RANDOM SUBMATRIX OF A UNITARY DFT MATRIX. The matrix U is a
102×104 submatrix of the unitary DFT matrix with dimension 104, and the sampling probability
p = 10−4 log(104). The kth vertical bar, calculated using Theorem 2.14, describes an interval
containing the median value of the kth singular value of the sampled matrix bU. The black circles
denote the empirical medians of the singular values of bU, calculated from 500 trials. The gray
circles represent the singular values of EbU.

reduces the aspect ratio from n to log n. For n = 100, we determine upper and lower bounds for

the median value of σk(bU) by numerically finding the value of δ where the probability bounds

in Theorem 2.14 equal one-half. Figure 2.1 plots the empirical median value along with the

computed interval. We see that these ranges reflect the behavior of the singular values more

faithfully than the simple estimates σk(EbU) = p.

2.8 Covariance estimation

We conclude with an extended example that illustrates how this circle of ideas allows one

to answer interesting statistical questions. Specifically, we investigate the convergence of the

individual eigenvalues of sample covariance matrices. Our results establish conditions under

which the eigenvalues can be recovered to relative precision, and furthermore reflect the

difference in the probabilities of the kth eigenvalue of the sample covariance matrix over- or

underestimating that of the covariance matrix.
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Covariance estimation is a basic and ubiquitious problem that arises in signal processing,

graphical modeling, machine learning, and genomics, among other areas. Let {η j}nj=1 ⊂ R
p be

i.i.d. samples drawn from some distribution with zero mean and covariance matrix C. Define the

sample covariance matrix

bCn =
1

n

n
∑

j=1

η jη
∗
j .

An important challenge is to determine how many samples are needed to ensure that the

empirical covariance estimator has a fixed relative accuracy in the spectral norm. That is, given

a fixed ε, how large must n be so that






bCn−C







2 ≤ ε ‖C‖2? (2.8.1)

This estimation problem has been studied extensively. It is now known that for distributions

with a finite second moment, Ω(p log p) samples suffice [Rud99], and for log-concave distri-

butions, Ω(p) samples suffice [ALPTJ11]. More broadly, Vershynin [Ver11b] conjectures that,

for distributions with finite fourth moment, Ω(p) samples suffice; he establishes this result to

within iterated log factors. In [SV], Srivastava and Vershynin establish that Ω(p) samples suffice

for distributions which have finite 2+ ε moments, for some ε > 0, and satisfy an additional

regularity condition.

Inequality (2.8.1) ensures that the difference between the kth eigenvalues of bCn and C

is small, but it requires O
�

p
�

samples to obtain estimates of even a few of the eigenvalues.

Specifically, letting κ` = λ1(C)/λ`(C), we see that O(ε−2κ2
`p) samples are required to obtain

relative error estimates of the largest ` eigenvalues of C using the results of [ALPTJ11, Ver11b,

SV]. However, it is reasonable to expect that when the spectrum of C exhibits decay and `� p,

far fewer than O(p) samples should suffice to ensure relative error recovery of the largest `
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eigenvalues.

In fact, Vershynin shows this is the case when the random vector is subgaussian: in [Ver11a],

he defines the effective rank of C to be r =
�
∑p

i=1λi(C)
�

/λ1(C) and uses r to provide bounds

of the form (2.8.1). It follow from his arguments that, with high probability, the largest `

eigenvalues of C are estimated to relative precision when n = O(ε−2rκ2
` log p) samples are taken.

Clearly this result is most of interest when the effective rank is small: e.g. when r is O(1), we see

that O(ε−2κ2
` log p) samples suffice to give relative error accuracy in the largest ` eigenvalues

of C. Note, however, that this result does not supply the rates of convergence of the individual

eigenvalues, and it requires the effective rank to be small. To the best of the author’s knowledge,

there are no nonasymptotic estimates of the relative errors of individual eigenvalues that do not

require the assumption that C has low effective rank.

In this section, we derive a relative approximation bound for each eigenvalue of C. For

simplicity, we assume the samples are drawn from a N (0,C) distribution where C is full-rank,

but we expect that the arguments can be extended to cover other subgaussian distributions.

Theorem 2.15. Assume that C ∈Mp
sa is positive definite. Let {η j}nj=1 ⊂ R

p be i.i.d. samples drawn

from a N (0,C) distribution. Define

bCn =
1

n

∑n

j=1
η jη

∗
j .

Write λk for the kth eigenvalue of C, and write λ̂k for the kth eigenvalue of bCn. Then for k = 1, . . . , p,

P
¦

λ̂k ≥ λk + t
©

≤ (p− k+ 1) · exp

�

−nt2

32λk
∑p

i=k λi

�

for t ≤ 4nλk,



44

and

P
¦

λ̂k ≤ λk − t
©

≤ k · exp

 

−3nt2

8λ1
�

λ1+
∑k

i=1λi
�

!

for t ≤ n
�

λ1+
k
∑

i=1

λi
�

.

The following corollary provides an answer to our question about relative error estimates.

Corollary 2.16. Let λk and λ̂k be as in Theorem 2.15. Then

P
¦

λ̂k ≥ (1+ ε)λk

©

≤ (p− k+ 1) · exp







−cnε2

∑p
i=k

λi

λk






for ε ≤ 4n,

and

P
¦

λ̂k ≤ (1− ε)λk

©

≤ k · exp







−cnε2

λ1

λk

�
∑k

i=1
λi

λk

�






for ε ∈ (0,1],

where the constant c is at least 1/32.

The first bound in Corollary 2.16 tells us how many samples are needed to ensure that λ̂k

does not overestimate λk. Likewise, the second bound tells us how many samples ensure that λ̂k

does not underestimate λk.

Corollary 2.16 suggests that the relationship of λ̂k to λk is determined by the spectrum of

C in the following manner. When the eigenvalues below λk are small compared with λk, the

quantity
p
∑

i=k

λi/λk

is small (viz., it is no larger than p− k+ 1), and so λ̂k is not likely to overestimate λk. Similarly,
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when the eigenvalues above λk are comparable with λk, the quantity

λ1

λk

 

k
∑

i=1

λi/λk

!

is small (viz., it is no larger than k ·κ2
k), and so λ̂k is not likely to underestimate λk.

Remark 2.17. The results in Theorem 2.15 and Corollary 2.16 also apply when C is rank-deficient:

simply replace each occurence of the dimension p in the bounds with rank(C).

Indeed, assume that C is rank-deficient and take its truncated eigenvalue decomposition to

be C= UΛU∗. If η j ∼N (0,C), then η j lies in the span of C. It follows that λ̂k = λk = 0 for all

k > rank(C). When k ≤ rank(C), we observe that

λk(C) = λk(Λ) and λk







∑

j

η jη
∗
j






= λk







∑

j

ξ jξ
∗
j






,

where ξ j = U∗η j is distributed N (0,Λ). Thus,

�

�

�

�

�

�

λk







∑

j

η jη
∗
j






−λk(C)

�

�

�

�

�

�

=

�

�

�

�

�

�

λk







∑

j

ξ jξ
∗
j






−λk(Λ)

�

�

�

�

�

�

.

Consequently, the problem of estimating the eigenvalues of C to relative error using the samples

{η j} is equivalent to that of estimating the eigenvalues of the full-rank covariance matrix Λ to

relative error using the samples {ξ j}.

It is reasonable to expect that one should be able to use Corollary 2.16 to recover Vershynin’s

result in [Ver11a] for Wishart matrices: that Ω(ε−2rκ2
` log p) samples suffice to estimate the

eigenvalues of the covariance matrix of a Gaussian random variable to within a relative precision

of 1± ε. Indeed, this result follows from Corollary 2.16 and a simple union bound argument.

Corollary 2.18. Assume C is positive semidefinite. Let {η j}nj=1 ⊂ R
p be i.i.d. samples drawn from
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a N (0,C) distribution. If n= Ω(ε−2rκ2
` log p), then with high probability

|λk(bCn)−λk(C)| ≤ ελk(C) for k = 1, . . . ,`.

Proof. From Corollary 2.16, we see that

P
¦

λk(bCn)≤ (1− ε)λk

©

≤ p−β when n≥ 32ε−2
�

λ1

λk

∑

i≤k

λi

λk

�

(log k+ β log p).

Recall that κk = λ1(C)/λk(C) and r =
�
∑p

i=1λi(C)
�

/λ1(C), so

�

λ1

λk

∑

i≤k

λi

λk

�

≤ κ2
kr.

Clearly, taking n = Ω(ε−2rκ2
` log p) samples ensures that, with high probability, each of the top `

eigenvalues of the sample covariance matrix satisfies λk(bCn)> (1− ε)λk.

Likewise,

P
¦

λk(bCn)≥ (1− ε)λk

©

≤ p−β when n≥ 32ε−2
�

∑

i≥k

λi

λk

�

(log(p− k+ 1) + β log p)

and

∑

i≥k

λi

λk
=
λ1

λk

�
∑

i≥k λi

�

λ1
≤ κk

�
∑p

i=1λi

�

λ1
= κkr,

so we see that taking n= Ω(ε−2rκ` log p) samples ensures that, with high probability, each of

the top ` eigenvalues of the sample covariance matrix satisfies λk(bCn)< (1+ ε)λk.

Combining these two results, we conclude that n = Ω(ε−2rκ2
` log p) ensures that the top

` eigenvalues of C are estimated to within relative precision 1 ± ε with probability at least
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1− 2`p−β .

2.8.1 Proof of Theorem 2.15

We now prove Theorem 2.15. This result requires a number of supporting lemmas; we defer

their proofs until after a discussion of extensions to Theorem 2.15.

We study the error |λk(bCn)−λk(C)|. To apply the methods developed in this chapter, we pass

to a question about the eigenvalues of a difference of two matrices. The first lemma accomplishes

this goal by compressing both the population covariance matrix and the sample covariance

matrix to a fixed invariant subspace of the population covariance matrix.

Lemma 2.19. Let X be a random Hermitian matrix with dimension p, and let A be a fixed

Hermitian matrix with dimension p. Choose W+ ∈ V
p
p−k+1 and W− ∈ V

p
k for which

λk(A) = λmax

�

W∗+AW+
�

= λmin

�

W∗−AW−
�

.

Then, for all t > 0,

P
�

λk(X)≥ λk(A) + t
	

≤ P
¦

λmax

�

W∗+XW+
�

≥ λk(A) + t
©

(2.8.2)

and

P
�

λk(X)≤ λk(A)− t
	

≤ P
¦

λmax

�

W∗−(A−X)W−
�

≥ t
©

. (2.8.3)

We apply this result with A = C and X = bCn. The first estimate (2.8.2) and the second

estimate (2.8.3) are handled using different arguments. The second estimate is easier because
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the maximum eigenvalue of the matrix C− bCn is bounded. Indeed,

λmax

�

W∗+(C− bCn)W+
�

≤ λmax

�

W∗+CW+
�

.

Thus, we may use Theorem 2.10 to complete the second estimate. The next lemma gives the

matrix variances that we need to apply this theorem.

Lemma 2.20. Let ξ∼N (0,G). Then

E(ξξ∗−G)2 = G2+ tr(G) ·G.

The first inequality (2.8.2) is harder because bCn is unbounded. In this case, we may apply

Theorem 2.12. To use this theorem, we need the following moment growth estimate for rank-one

Wishart matrices.

Lemma 2.21. Let ξ∼N (0,G). Then for any integer m≥ 2,

E
�

ξξ∗
�m � 2mm!(trG)m−1 ·G.

With these preliminaries addressed, we prove Theorem 2.15.

Proof of lower estimate in Theorem 2.15. First we consider the probability that λ̂k underesti-

mates λk. Let W− ∈ V
p
k satisfy

λk(C) = λmin

�

W∗−CW−
�

.
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Then Lemma 2.19 implies

P
¦

λk(bCn)≤ λk(C)− t
©

≤ P
¦

λmax

�

W∗−(C− bCn)W−
�

≥ t
©

= P
§

λmax

�

∑

j
W∗−(C−η jη

∗
j )W−

�

≥ nt
ª

.

The factor n comes from the normalization of the sample covariance matrix. Each term in the

sum is zero mean and bounded above by W∗−CW− in the semidefinite order, so Theorem 2.10

applies. As we desire a bound on the maximum eigenvalue of the sum, we take V+ = I when we

invoke Theorem 2.10. Then

σ2
1 = λmax

�

∑

j
E
h

W∗−(C−η jη
∗
j )W−

i2
�

= nλmax

�

E
�

W∗−(C−η1η
∗
1)W−

�2
�

.

The covariance matrix of η1 is C, so that of W∗−η1 is W∗−CW−. It follows from Lemma 2.20 that

E
�

W∗−(C−η1η
∗
1)W−

�2
= (W∗−CW−)

2+ tr(W∗−CW−) ·W∗−CW−.

Observe that W∗−CW− is the restriction of C to its top k-dimensional invariant subspace, so

σ2
1 = nλmax

�

E
�

W∗−(C−η1η
∗
1)W−

�2
�

= nλ1(C)

 

λ1(C) +
k
∑

i=1

λi(C)

!

and we can take Ψ(V+) = λmax (C) .

The subgaussian branch of the split Bernstein inequality of Theorem 2.10 shows that

P
§

λmax

�

∑

j
W∗−(C−η jη

∗
j )W−

�

≥ nt
ª

≤ k · exp

 

−3nt2

8λ1(C)
�

λ1(C) +
∑k

i=1λi(C)
�

!

when t ≤ n
�

λ1(C) +
∑k

i=1λi(C)
�

. This inequality provides the desired bound on the probability
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that λk(bCn) underestimates λk(C).

Proof of upper estimate in Theorem 2.15. Now we consider the probability that λ̂k overestimates

λk. Let W+ ∈ V
p
p−k+1 satisfy

λk(C) = λmax

�

W∗+CW+
�

.

Then Lemma 2.19 implies

P
¦

λk(bCn)≥ λk(C) + t
©

≤ P
¦

λmax

�

W∗+bCnW+
�

≥ λk(C) + t
©

= P
§

λmax

�

∑

j
W∗+(η jη

∗
j )W+

�

≥ nλk(C) + nt
ª

. (2.8.4)

The factor n comes from the normalization of the sample covariance matrix.

The covariance matrix of η j is C, so that of W∗+η j is W∗+CW+. Apply Lemma 2.21 to verify

that W∗+η j satisfies the subexponential moment growth bound required by Theorem 2.12 with

B = 2 tr(W∗+CW+) and Σ2
j = 8 tr(W∗+CW) ·W∗+CW+.

In fact, W∗+CW+ is the compression of C to the invariant subspace corresponding with its bottom

p− k+ 1 eigenvalues, so

B = 2
∑p

i=k
λi(C) and λmax

�

Σ2
j

�

= 8λk(C)
∑p

i=k
λi(C).

We are concerned with the maximum eigenvalue of the sum in (2.8.4), so we take V+ = I in the
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statement of Theorem 2.12 to find that

σ2
1 = λmax

�

∑

j
Σ2

j

�

= nλmax

�

Σ2
1

�

= 8nλk(C)
∑p

i=k
λi(C) and

µ1 = λmax







∑

j

W∗+E(η jη
∗
j )W+






= nλmax

�

W∗+CW+
�

= nλk(C).

It follows from the subgaussian branch of the split Bernstein inequality of Theorem 2.12 that

P
§

λk

�

∑

j
W∗+(η jη

∗
j )W+

�

≥ nλk(C) + nt
ª

≤ (p− k+ 1) · exp

�

−nt2

32λk(C)
∑p

i=k λi(C)

�

when t ≤ 4nλk(C). This provides the desired bound on the probability that λk(bCn) overestimates

λk(C).

2.8.2 Extensions of Theorem 2.15

Results analogous to Theorem 2.15 can be established for other distributions. If the distribution

is bounded, the possibility that λ̂k deviates above or below λk can be controlled using the

Bernstein inequality of Theorem 2.10. If the distribution is unbounded but has matrix moments

that satisfy a sufficiently nice growth condition, the probability that λ̂k deviates below λk can be

controlled with the Bernstein inequality of Theorem 2.10 and the probability that it deviates

above λk can be bounded using a Bernstein inequality analogous to that in Theorem 2.12.

We established Theorem 2.15 using this technique to demonstrate the simplicity of the

Laplace transform machinery. However, the results of [ALPTJ11] on the convergence of empirical

covariance matrices of isotropic log-concave random vectors lead to tighter bounds on the

probability that λ̂k overestimates λk. There does not seem to be an analogous reduction for

handling the probability that λ̂k is an underestimate.
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To see the relevance of the results in [ALPTJ11], first observe the following consequence of

the subadditivity of the maximum eigenvalue mapping:

λmax

�

W∗+(X−A)W+
�

≥ λmax

�

W∗+XW+
�

−λmax

�

W∗+AW+
�

= λmax

�

W∗+XW+
�

−λk(A).

In conjunction with (2.8.2), this gives us the following control on the probability that λk(X)

overestimates λk(A) :

P
�

λk(X)≥ λk(A) + t
	

≤ P
¦

λmax

�

W∗+(X−A)W+
�

≥ t
©

.

In our application, X is the empirical covariance matrix and A is the actual covariance matrix.

The spectral norm dominates the maximum eigenvalue, so

P
¦

λk(bCn)≥ λk(C) + t
©

≤ P
¦

λmax

�

W∗+(bCn−C)W+
�

≥ t
©

≤ P
¦

‖W∗+(bCn−C)W+‖ ≥ t
©

= P
¦

‖W∗+bCnW+− S2‖ ≥ t
©

,

where S is the square root of W∗+CW+. Now factor out S2 and identify λk(C) = ‖S2‖ to obtain

P
¦

λk(bC)≥ λk(C) + t
©

≤ P
¦

‖S−1W∗+bCnW+S−1− I‖‖S2‖ ≥ t
©

= P
¦

‖S−1W∗+bCnW+S−1− I‖ ≥ t/λk(C)
©

.

Note that if η is drawn from aN (0,C) distribution, then the covariance matrix of the transformed
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sample S−1W∗+η is the identity:

E
�

S−1W∗+ηη
∗W+S−1

�

= S−1W∗+CW+S−1 = I.

Thus S−1W∗+bCnW+S−1 is the empirical covariance matrix of a standard Gaussian vector in

Rp−k+1. By Theorem 1 of [ALPTJ11], it follows that λ̂k is unlikely to overestimate λk in relative

error when the number n of samples is Ω(p− k+ 1).

Similarly, for more general distributions, the bounds on the probability of λ̂k exceeding λk

can be tightened beyond those suggested in Theorem 2.15 by using the results in [ALPTJ11] or

[Ver11b].

Finally, we note that the techniques developed in the proof of Theorem 2.15 can be used to

investigate the spectrum of the error matrices bCn−C.

2.8.3 Proofs of the supporting lemmas

We now establish the lemmas used in the proof of Theorem 2.15.

Proof of Lemma 2.19. The probability that λk(X) overestimates λk(A) is controlled with the

sequence of inequalities

P
�

λk(X)≥ λk(A) + t
	

= P

(

inf
W∈Vp

p−k+1

λmax
�

W∗XW
�

≥ λk(A) + t

)

≤ P
¦

λmax

�

W∗+XW+
�

≥ λk(A) + t
©

.

We use a related approach to study the probability that λk(X) underestimates λk(A). Our
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choice of W− implies that

λp−k+1(−A) =−λk(A) =−λmin

�

W∗−AW−
�

= λmax

�

W∗−(−A)W−
�

.

It follows that

P
�

λk(X)≤ λk(A)− t
	

= P
¦

λp−k+1(−X)≥ λp−k+1(−A) + t
©

= P

(

inf
W∈Vp

k

λmax
�

W∗(−X)W
�

≥ λmax

�

W∗−(−A)W−
�

+ t

)

≤ P
¦

λmax

�

W∗−(−X)W−
�

−λmax

�

W∗−(−A)W−
�

≥ t
©

≤ P
¦

λmax

�

W∗−(A−X)W−
�

≥ t
©

.

The final inequality follows from the subadditivity of the maximum eigenvalue mapping.

Proof of Lemma 2.20. We begin by taking S to be the positive-semidefinite square root of G.

Let S= UΛU∗ be the eigenvalue decomposition of S, and let γ be a N (0, Ip) random variable.

Recalling that G is the covariance matrix of ξ, we see that ξ and UΛγ are identically distributed.

Thus,

E(ξξ∗−G)2 = E(UΛγγ∗ΛU∗−UΛ2U∗)2

= UΛE(γγ∗Λ2γγ∗)ΛU∗−G2. (2.8.5)

Consider the (i, j) entry of the matrix being averaged:

E(γγ∗Λ2γγ∗)i j =
∑

k

E(γiγ jγ
2
k)λ

2
k.
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The (i, j) entry of this matrix is zero because the entries of γ are independent and symmetric.

Furthermore, the (i, i) entry satisfies

E(γγ∗Λ2γγ∗)ii = E(γ4
i )λ

2
i +
∑

k 6=i

E(γ2
k)λ

2
k = 2λ2

i + tr(Λ2).

We have shown

E(γγ∗Λ2γγ∗) = 2Λ2+ tr(G) · I.

This equality and (2.8.5) imply the desired result.

Proof of Lemma 2.21. Factor the covariance matrix of ξ as G = UΛU∗ where U is orthogonal

and Λ = diag(λ1, . . . ,λp) is the matrix of eigenvalues of G. Let γ be a N (0, Ip) random variable.

Then ξ and UΛ1/2γ are identically distributed, so

E(ξξ∗)m = E
�

(ξ∗ξ)m−1ξξ∗
�

= E
�

(γ∗Λγ)m−1UΛ1/2γγ∗Λ1/2U∗
�

= UΛ1/2E
�

(γ∗Λγ)m−1γγ∗
�

Λ1/2U∗. (2.8.6)

Consider the (i, j) entry of the bracketed matrix in (2.8.6):

E
�

(γ∗Λγ)m−1γiγ j

�

= E
�

�
∑p

`=1
λ`γ

2
`

�m−1
γiγ j

�

. (2.8.7)

From this expression, and the independence and symmetry of the Gaussian variables {γi}, we

see that this matrix is diagonal.

To bound the diagonal entries, use a multinomial expansion to further develop the sum in
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(2.8.7) for the (i, i) entry:

E
�

(γ∗Λγ)m−1γ2
i

�

=
∑

`1+···+`p=m−1

�

m− 1

`1, . . . ,`p

�

λ
`1
1 · · ·λ

`p
p E
h

γ
2`1
1 · · ·γ

2`p
p γ2

i

i

.

Now we use the generalized AM–GM inequality to replace the expectation of the product of

Gaussians with the 2mth moment of a single standard Gaussian g. Denote the Lr norm of a

random variable X by

‖X‖Lr
= (E|X |r)1/r .

Since `1, . . . ,`p are nonnegative integers summing to m− 1, the generalized AM-GM inequality

justifies the first of the following inequalities:

Eγ2`1
1 · · ·γ

2`p
p γ2

i ≤ E
�

`1|γ1|+ · · ·+ `p|γp|+ |γi|
m

�2m

=



















1

m






|γi|+

p
∑

j=1

` j|γ j|

























2m

L2m

≤







1

m











γi







L2m
+

p
∑

j=1

` j





γ j







L2m













2m

=

�

1+ `1+ . . .+ `p

m

�2m




g






2m
L2m
= E(g2m).

The second inequality is the triangle inequality for Lr norms. Now we reverse the multinomial

expansion to see that the diagonal terms satisfy the inequality

E
�

(γ∗Λγ)m−1γ2
i

�

≤
∑

`1+···+`p=m−1

�

m− 1

`1, . . . ,`p

�

λ
`1
1 · · ·λ

`p
p E(g2m)

= (λ1+ . . .+λp)
m−1E(g2m) = tr(G)m−1E(g2m). (2.8.8)
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Estimate E(g2m) using the fact that Γ(x) is increasing for x ≥ 1 :

E
�

g2m
�

=
2m

p
π
Γ(m+ 1/2)<

2m

p
π
Γ(m+ 1) =

2m

p
π

m! for m≥ 1.

Combine this result with (2.8.8) to see that

E
�

(γ∗Λγ)m−1γγ∗
�

�
2m

p
π

m! tr(G)m−1 · I.

Complete the proof by using this estimate in (2.8.6).


