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Chapter 1

Introduction and contributions

Massive datasets are common: among other places, they arise in data-analysis and machine

learning applications. These datasets are often represented as matrices, so the fundamental

tools of linear algebra are indispensable in their analysis. For instance, modeling and data

analysis methods based on low-rank approximation have become popular because they capture

the low-dimensional structure implicit in massive high-dimensional modern datasets. Low-rank

approximations are also used for their noise-elimination and regularization properties [Han90].

Among many applications, we mention PCA [HTF08], multidimensional scaling [CC00], collabo-

rative filtering [SAJ10], manifold learning [HLMS04], and latent semantic indexing [DDF+90].

The truncated singular value decomposition (SVD) and the rank-revealing QR decomposition

are classical decompositions used to construct low-rank approximants. However, the construction

of both of these decompositions costs O(nω) operations for an n× n matrix [CH92] (where ω

is the exponent for matrix multiplication). For small k and large n, Krylov space methods can

potentially provide truncated SVDs in much less time. In practice, the number of operations

required varies considerably depending upon the specifics of the method and the spectral

properties of the matrix, but since one must perform at least k dense matrix–vector multiplies

(assuming the matrix is unstructured), computing the rank-k truncated SVD using a Krylov

method requires at least Ω(kn2) operations. Further, iterative schemes like Krylov methods
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require multiple passes over the matrix, which may incur high communication costs if the matrix

is stored in a distributed fashion, or if the data has to percolate through a hierarchical memory

architecture [CW09].

Much interest has been expressed in finding o(kn2) low-rank approximation schemes that

offer approximation guarantees comparable with those of the truncated SVD. Randomized

numerical linear algebra (RNLA) refers to a field of research that arose in the early 2000s at the

intersection of several research communities, including the theoretical computer science and

numerical linear algebra communities, in response to the desire for fast, efficient algorithms

for manipulating large matrices. RNLA algorithms for matrix approximation focus on reducing

the number of arithmetic operations and the communications costs of algorithms by judiciously

exploiting randomness. Typically, these algorithms take one of two approaches. The sampling

approach advocates using information obtained by randomly sampling the columns, rows, or

entries of the matrix to form an approximation to the matrix. The random projection approach

randomly mixes the entries of the matrix before employing the sampling approach. The analysis

of both classes of algorithms requires the use of tools from the nonasymptotic theory of random

matrices.

This thesis contributes to both approaches to forming randomized matrix approximants, and

it extends the toolset available to researchers working in the field of RNLA.

• Chapter 2 builds upon the matrix Laplace transform originated by Ahlswede and Winter to

provide eigenvalue analogs of classical exponential tail bounds for all eigenvalues of a sum

of random Hermitian matrices. Such sums arise often in the analysis of RNLA algorithms.

• Chapter 3 develops bounds on the norms of random matrices with independent mean-

zero entries, and it applies these bounds to investigate the performance of randomized
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entry-wise sparsification algorithms.

• Chapter 5 provides guarantees on the quality of low-rank approximations generated using

a class of random projections that exploit fast unitary transformations.

• Chapter 6 concludes by providing a framework for the analysis of a diverse class of low-

rank approximations to positive-semidefinite matrices, as well as empirical evidence of the

efficacy of these approximations over a wide range of matrices. The class of approximations

considered includes both sampling-based approximations as well as projection-based

approximations.

In the remainder of this introductory chapter, we survey the sampling and projection-based

approaches to randomized matrix approximation and the tools currently available to researchers

for the interrogation of the properties of random matrices. We conclude with an overview of the

contributions of this thesis.

1.1 The sampling approach to matrix approximation

Sparse approximants are of interest because they be used in lieu of the original matrix to

reduce the cost of calculations. Randomized sparsified approximations to matrices have found

applications in approximate eigenvector computations [AM01, AHK06, AM07] and semidefinite

optimization algorithms [AHK05, d’A11].

The first randomized element-wise matrix sparsification algorithms are due to Achlioptas

and McSherry [AM01, AM07], who considered schemes in which a matrix is replaced with a

randomized approximant that has far fewer nonzero entries. Their motivation for considering

randomized sparsification was the desire to use the fast algorithms available for computing the

SVDs of large sparse matrices to approximate the SVDs of large dense matrices. In the same
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work, they presented a scheme that randomly quantizes the entries of the matrix to ±maxi j |Ai j|.

Such quantization schemes are of interest because they reduce the cost of storing and working

with the matrix. Note that this quantization scheme requires two passes over the matrix: one to

compute b, then another to quantize. The bounds given in [AM07] for both schemes guarantee

that the spectral norm error of the approximations to a matrix A ∈ Rm×n remain on the order

of
p

max{m, n}maxi j |Ai j| with high probability. If each entry in the matrix is replaced by zero

with probability 1− p, the expected number of nonzeros in the approximant is shown to be at

most p‖A‖2F/maxi j |Ai j|2+4096m log4(n). These bounds are quite weak: the algorithms perform

much better on average.

Arora et al. presented an alternative quantization and sparsification scheme in [AHK06] that

has the advantage of requiring only one pass over the input matrix. The schemes of both Arora et.

al and Achlioptas and McSherry involve entrywise calculations on the matrix being approximated,

and have the property that the entries in the random approximant are independent of each

other. Succeeding works on entry-wise matrix sparsification include [NDT10, DZ11, AKL13];

the algorithms given in these works also produce approximants with independent entries. The

sharpest available bound on randomized element-wise sparsification is satisfied by the algorithm

given in [DZ11]: given an accuracy parameter ε > 0, this algorithm produces an approximant

that satisfies ‖A− Ã‖2 ≤ ε with high probability and has at most 28ε2n log(
p

2n)‖A‖2F nonzero

entries; the approximant can be calculated in one pass. The paper [NDT10] goes beyond matrix

sparsification, addressing randomized element-wise tensor sparsification.

The natural next step after entry-wise sampling is the sampling of entire columns and rows.

An influential portion of the first wave of RNLA algorithms employed such a sampling approach,

in the form of Monte Carlo approximation algorithms. In [FKV98], Frieze, Kannan, and Vempala

introduce the first algorithm of this type for calculating approximate SVDs of large matrices. They
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propose judiciously sampling a submatrix from A and using the SVD of this submatrix to find an

approximation of the top singular spaces of A. The projection of A onto this subspace is then used

as the low-rank approximation. This algorithm of course requires two passes over the matrix.

The original idea in [FKV98] was refined in a series of papers providing increasingly strong

guarantees on the quality of the approximation [DK01, DK03, FKV04, DKM06a, DKM06b].

Rudelson and Vershynin take a different approach to the analysis of the Monte Carlo

methodology for low-rank approximation in [RV07]. They consider A as a linear operator

between finite-dimensional Banach spaces and apply techniques of probability in Banach spaces:

decoupling, symmetrization, Slepian’s lemma for Rademacher random variables, and a law

of large numbers for operator-valued random variables. They show that, if A has numerical

rank close to k, then it is possible to obtain an accurate rank-k approximation to A by sampling

O
�

k log k
�

rows of A. Specifically, if one projects A onto the span of ` = O(ε−4k log k) of its

rows, then the approximant satisfies ‖A− Ã‖2 ≤ ‖A−Ak‖2+ ε‖A‖2 with high probability. Here

Ak denotes the optimal rank-k approximation to A, obtainable as the rank-k truncated SVD of A.

Other researchers forwent the SVD entirely, considering instead alternative column and row-

based matrix decompositions. In one popular class of approximations, the matrix is approximated

with a product CUR, where C and R are respectively small subsets of the columns and rows

of the matrix and U, the coupling matrix, is computed from C and R [DKM06c]. Accordingly,

these schemes are known as CUR decompositions. Nyström extensions, introduced by Williams

and Seeger in [WS01], are a similar class of low-rank approximations to positive-semidefinite

matrices. They can be thought of as CUR decompositions constructed with the additional

constraint that C= RT , to preserve the positive-semidefiniteness of the approximant. Both CUR

and Nyström decompositions can be constructed in one pass over the matrix.

The paper [DMM08] introduced a “subspace sampling” method of sampling the columns and
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rows to form C and R and showed that approximations formed with O(k log k) columns and rows

in this manner achieve Frobenius norm errors close to the optimal rank-k approximation error:

‖A− CUR‖F ≤ (1+ ε)‖A−Ak‖F. The leverage scores of the columns of A are used to generate

the probability distribution used for column sampling: given P, a projection onto the dominant

k-dimensional right singular space of A, the leverage score of the jth column of A is proportional

to (P)ii . The intuition is that the magnitude of the leverage score of a particular column reflects

its influence in determining the dominant k-dimensional singular spaces of A [DM10].

In [MRT06, MRT11], Tygert et al. introduced randomized Interpolative Decompositions (ID)

as an alternative low-rank factorization to the SVD. In IDs, the columns of A are represented

as linear combinations of some small subset of the columns of A. The algorithm of [MRT06]

is accelerated in [WLRT08]. With high probability, it constructs matrices B and Π such that

B consists of k columns sampled from A, some subset of the columns of Π make up the k× k

identity matrix, and ‖A−BΠ‖2 = O(
p

kmn‖A−Ak‖2).

The works of Har-Peled [HP06], and Deshpande et al. [DRVW06] use more intricate ap-

proaches based on column sampling to produce low-rank approximations with relative-error

Frobenius norm guarantees. These algorithms require, respectively, O(k2 log k) and O(k) column

samples.

Boutsidis et al. develop a general framework for analyzing the error of matrix approximation

schemes based on column sampling in [BDMI11], where they establish optimal bounds on the

errors of approximants produced by projecting a matrix onto the span of some subset of its

columns. In particular, they show that there are matrices that cannot be efficiently approximated

in the spectral norm using the sampling paradigm; specifically, given positive integers k ≤ `≤ n,
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they demonstrate the existence of a matrix A such that

‖A− Ã‖2 ≥

 

1+

r

n2+α
`2+α

!

‖A−Ak‖2

when Ã is any approximation obtained by projecting A onto the span of ` of its columns. Because

this bound holds regardless of how the columns are selected, it is clear that, at least in the

spectral norm, the sampling paradigm is not sufficient to obtain near optimal approximation

errors. Stronger spectral norm guarantees can be obtained using the random projection approach

to matrix approximation.

1.2 The random-projection approach to matrix approximation

A wide range of results in RNLA have been inspired by the work of Johnson and Lindenstrauss

in geometric functional analysis, who showed that embeddings into random low-dimensional

spaces can preserve the geometry of point sets. The celebrated Johnson–Lindenstrauss lemma

states that, given n points in a high-dimensional space, a random projection into a space of

dimension Ω(log n) preserves the distance between the points. Such geometry-preserving,

dimension-reducing maps are known as Johnson–Lindenstrauss transforms (JLT).

The work of Papadimitriou et al. in [PRTV00] on the algorithmic application of randomness

to facilitate information retrieval popularized the use of JLTs in RNLA. Unlike sample-based

methods like the CUR decomposition that project the matrix onto the span of a subset of its

columns (and/or rows), random projection methods produce approximations to the matrix by

projecting it onto some subspace of its entire range. The intuition behind these methods is similar

to that behind the power method, or orthogonal iteration: one can approximately capture the

top left singular space of a matrix by applying it to a sufficiently large number of random vectors.
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One then obtains a low-rank approximation of the matrix by projecting it onto this approximate

singular space. Projection-based matrix approximation algorithms require at least two passes

over the matrix: one to form an approximate basis for the top left singular space of the matrix,

and one to project the matrix onto that basis.

In the influential paper [Sar06], Sarlós developed fast approximation algorithms for SVDs,

least squares, and matrix multiplication under the randomized projection paradigm. His algo-

rithms take advantage of Ailon and Chazelle’s work, which establish that certain structured

randomized transformations can be used to quickly compute dimension reductions [AC06]. At

around the same time, Martinsson, Rohklin, and Tygert introduced a randomized projection-

based algorithm for the calculation of approximate SVDs [MRT06, MRT11]. In this algorithm,

to obtain an approximate rank-k SVD of A, one applies k+ p gaussian vectors to A then projects

A onto the resulting subspace. Here, p is a small integer known as the oversampling parameter.

The approximation returned by the algorithm can be written as Ã = PASA, where S is a Gaussian

matrix and the notation PM denotes the projection onto the range of the matrix M. The spectral

norm error of the approximant is guaranteed to be at most
p

max m, n‖A − Ak‖2 with high

probability, and if A is unstructured and dense, the algorithm costs O(mnk) time. Despite the

fact that its runtime is asymptotically the same as those of classical Krylov iteration schemes

(e.g. the Lanczos method), this algorithm is of interest because it requires only two passes over

the matrix. Moreover, the algorithm performs well in the presence of degenerate singular values,

a situation which often causes Lanczos methods to stagnate [MRT11]. Finally, this algorithm is

more readily parallelizable than iterative schemes.

In [WLRT08], inspired by Sarlós’s work in [Sar06], Woolfe et al. observed that the runtime of

the algorithm of [MRT06, MRT11] could be reduced to O(mn log(k)+k4(m+n)) by substituting

a structured random matrix for the Gaussian matrix used in the original algorithm. Specifically,
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they show that if the “sampling matrix” S consists of O(k2) uniformly randomly selected columns

of the product of the discrete Fourier transform matrix and a diagonal matrix of random signs,

then the error guarantees of the algorithm remain unchanged while the worst-case runtime

decreases. Nguyen et al. consider the same approximation in [NDT09], Ã= PASA, and obtain

improved results: if S has O(k log k) columns constructed as in the algorithm of [WLRT08], then

with constant probability ‖A− Ã‖2 ≤
p

m/(k log k)‖A−Ak‖2.

The paper [BDMI11] and the survey article [HMT11] constituted a significant step forward

in the analysis of random projection-based matrix approximation algorithms, because they

provided a framework for the analysis of the Frobenius and spectral norm errors of approximants

of the form PASA using arbitrary sampling matrices S. In [HMT11], this framework is used to

provide guarantees on the errors of approximants of the form Ã= PASA for S Gaussian and for

S consisting of uniformly randomly selected columns of the product of the Walsh–Hadamard

transform matrix and a diagonal matrix of random signs.

1.3 Nonasymptotic random matrix theory

The behavior of RNLA algorithms can often be analyzed in terms of the behavior of a sum

of random matrices. As an example, consider the entry-wise sparsification schemes described

earlier in the chapter: there, the approximants can be considered to be a sum of random matrices,

where each term in the sum contributes one entry to the approximant. In each of the works

cited, the design of the sparsification algorithm was crucially influenced by the particular tool

used to analyze its performance. Achlioptas and McSherry used a concentration inequality due

to Talagrand [AM01, AM07], Arora et al. used scalar Chernoff bounds [AHK06], Drineas et

al. used the non-commutative Khintchine inequalities [NDT10], and Drineas and Zouzias used

matrix Bernstein inequalities [DZ11]. As the tools available to researchers increased in their
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generality, the sparsification algorithms became more sophisticated, and the analysis of their

errors became sharper.

The study of the spectra of random matrices is naturally divided into two subfields: the

nonasymptotic theory, which gives probability bounds that hold for finite-dimensional matrices

but may not be sharp, and the asymptotic theory, which precisely describes the behavior of

certain families of matrices as their dimensions go to infinity. Unfortunately, the strength of

the asymptotic techniques lies in the determination of convergence and the development of

asymptotically sharp bounds, rather than the development of tail bounds which hold at a fixed

dimension. Accordingly, the nonasymptotic theory is of most relevance in RNLA applications.

The sharpest and most comprehensive results available in the nonasymptotic theory concern

the behavior of Gaussian matrices. The amenability of the Gaussian distribution makes it possible

to obtain results such as Szarek’s nonasymptotic analog of the Wigner semicircle theorem for

Gaussian matrices [Sza90] and Chen and Dongarra’s bounds on the condition number of

Gaussian matrices [CD05]. The properties of less well-behaved random matrices can sometimes

be related back to those of Gaussian matrices using probabilistic tools, such as symmetrization;

see, e.g., the derivation of Latała’s bound on the norms of zero-mean random matrices [Lat05].

More generally, bounds on extremal eigenvalues can be obtained from knowledge of the

moments of the entries. For example, the smallest singular value of a square matrix with

i.i.d. zero-mean subgaussian entries is O(n−1/2) with high probability [RV08]. Concentration

of measure results, such as Talagrand’s concentration inequality for product spaces [Tal95],

have also contributed greatly to the nonasymptotic theory. We mention in particular the work

of Achlioptas and McSherry on randomized sparsification of matrices [AM01, AM07], that of

Meckes on the norms of random matrices [Mec04], and that of Alon, Krivelevich and Vu [AKV02]

on the concentration of the largest eigenvalues of random symmetric matrices, all of which are
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applications of Talagrand’s inequality. In cases where geometric information on the distribution

of the random matrices is available, the tools of empirical process theory—such as generic

chaining, also due to Talagrand [Tal05]—can be used to convert this geometric information into

information on the spectra. One natural example of such a case consists of matrices whose rows

are independently drawn from a log-concave distribution [MP06, ALPTJ11].

One of the most general tools in the nonasymptotic theory toolbox is the Noncommutative

Khintchine Inequality (NCKI), which bounds the moments of the norm of a sum of randomly

signed matrices [LPP91]. Despite its power and generality, the NCKI is unwieldy. To use it,

one must reduce the problem to a suitable form by applying symmetrization and decoupling

arguments and exploiting the equivalence between moments and tail bounds. It is often more

convenient to apply the NCKI in the guise of a lemma, due to Rudelson [Rud99], that provides

an analog of the law of large numbers for sums of rank-one matrices. This result has found

many applications, including column-subset selection [RV07] and the fast approximate solution

of least-squares problems [DMMS11]. The NCKI and its corollaries do not always yield sharp

results because parasitic logarithmic factors arise in many settings.

Classical exponential tail bounds for sums of independent random variables can be developed

using the machinery of moment-generating functions (mgfs), by exploiting the fact that the

mgf of a sum of independent random variables is the product of the mgfs of the summands.

Ahlswede and Winter [AW02] extended this technique to produce tail bounds for the eigenvalues

of sums of independent Hermitian random variables. Because matrices are non-commutative,

the matrix mgf of a sum of independent random matrices does not factor nicely as in the

scalar case. The influential work of Ahlswede and Winter, as well as the immediately following

works developing exponential matrix probability inequalities, relied upon trace inequalities

to circument the difficulty of noncommutativity [CM08, Rec11, Oli09, Oli10, Gro11]. Tropp
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showed that these matrix probability inequalities can be sharpened considerably by working

with cumulant generating functions instead of mgfs [Tro12, Tro11c, Tro11a].

Chatterjee established that in the scalar case, powerful concentration inequalities could be

recovered from arguments based on the method of exchangeable pairs [Cha07]. Mackey and

collaborators extended the method of exchangeable pairs to matrix-valued functions [MJC+12].

The resulting bounds are sufficiently sharp to recover the NCKI, and can even be used to

interrogate the behavior of matrix-valued functions of dependent random variables. Most

recently, Paulin et al. have further extended the matrix method of exchangeable pairs to apply

to an even larger class of matrix-valued functions [PMT13].

Despite the diversity of the tools mentioned here, all share a common limitation: they

provide bounds only on the extremal eigenvalues of the relevant classes of random matrices.

1.4 Contributions

We conclude with a summary of the main contributions of this thesis.

1.4.1 Nonasymptotic random matrix theory

The matrix Laplace transform technique pioneered by Ahlswede and Winter, which applies to

sums of independent random matrices [AW02, Tro12], is one of the most generally applicable

techniques in the arsenal of nonasymptotic random matrix theory.

However, the matrix Laplace transform technique yields bounds on only the extremal

eigenvalues of Hermitian random matrices. Chapter 2 describes an extension of the matrix

Laplace transform technique, based upon the variational characterization of the eigenvalues of

Hermitian matrices, for bounding all eigenvalues of sums of independent random Hermitian

matrices. This is the first general purpose tool for bounding interior eigenvalues of such a wide
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class of random matrices.

The minimax Laplace transform introduced in Chapter 2 relates the behavior of the k-th

eigenvalue of a random self-adjoint matrix to the behavior of its compressions to subspaces:

P
�

λk(Y)≥ t
	

≤ inf
θ>0

min
V

�

e−θ t ·E tr exp
�

eθV∗YV
�

�

where the minimization is taken over an appropriate set of matrices V with orthonormal columns.

We show that when one has sufficiently strong semidefinite bounds on the matrix cumulant

generating functions logEeθV∗XiV of the compressions of the summands Xi , the minimax Laplace

transform technique yields exponential probability bounds for all the eigenvalues of Y=
∑

i Xi .

We employ the minimax Laplace transform to produce eigenvalue Chernoff, Bennett, and

Bernstein bounds. As an example of the efficacy of this technique, we use the Chernoff bounds

to find new bounds on the interior eigenvalues of matrices formed by sampling columns from

matrices with orthonormal rows. We also demonstrate that our Bernstein bounds are powerful

enough to recover known estimates on the number of samples needed to accurately estimate

the eigenvalues of the covariance matrix of a Gaussian process by the eigenvalues of the sample

covariance matrix. In the process of doing so, we provide novel results on the convergence rate

of the individual eigenvalues of Gaussian sample covariance matrices.

1.4.2 Matrix sparsification

Chapter 3 analyzes the approximation errors of randomized schemes that approximate a fixed

m× n matrix A with a random matrix X having the properties that the entries of X are inde-

pendent and average to the corresponding entries of A. This investigation was initiated by the

observation that several algorithms for random matrix quantization and sparsification are based
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on approximations that have these properties [AM01, AHK06, AM07]. A generic framework for

the analysis of such approximation schemes is established, and this essentially recapitulates the

known guarantees for the referenced algorithms.

We show that the spectral norm approximation error of such schemes can be controlled in

terms of the variances and fourth moments of the entries of X as follows:

E‖A−X‖2 ≤ C



max
j

�

∑

k

Var(X jk)
�1/2

+max
k

�

∑

j

Var(X jk)
�1/2 �

∑

jk

E(X jk − a jk)
4
�1/4






, (1.4.1)

where C is a universal constant. This expectation bound is obtained by leveraging work done

by Latała on the spectral norm of random matrices with zero mean entries [Lat05]. When the

entries of A are bounded (so that the variances of the entries of X are small), an argument based

on a bounded difference inequality shows that the approximation error does not exceed this

expectation by much.

Inequality (1.4.1) identifies properties desirable in randomized approximation schemes:

namely, that they minimize the maximum column and row norms of the variances of the entries,

as well as the fourth moments of all entries. Thus our results supply guidance in the design of

future approximation schemes. The results also yield comparable analyses of the quantization

and sparsification schemes introduced in [AM01, AM07] and recover error bounds for the

quantization/sparsification scheme proposed by Arora, Hazan, and Kale in [AHK06] that are

comparable to those supplied in [AHK06]. However, for the more recent sparsification schemes

presented in [NDT10, DZ11, AKL13], our results do not provide sparsification guarantees as

strong as those offered in the originating papers.

Chapter 3 also analyzes the performance of randomized matrix approximation schemes as
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measured using non-unitary invariant norms. The literature on randomized matrix approxima-

tion has, with few exceptions, focused on the behavior of the spectral and Frobenius norms.

However, depending on the application, other norms are of more interest; for instance, the

p→ q norms naturally arise when one considers A as a map from `p(Rn) to `q(Rm). Consider, in

particular, the∞→ 1 and∞→ 2 norms, both of which are NP-hard to compute. The∞→ 1

norm has applications in graph theory and combinatorics. The∞→ 2 norm has applications in

numerical linear algebra. In particular, it is a useful tool in the column subset selection problem:

that of, given a matrix A with unit norm columns, choosing a large subset of the columns of A so

that the resulting submatrix has a norm smaller than some fixed constant (larger than one).

In a similar way that sparsification can assist in applications where the spectral norm is

relevant, we believe it can be of assistance in applications such as these where the norm of

interest is a p→ q norm. Our main result is a bound on the expected∞→ p norm of random

matrices whose entries are independent and have mean zero:

E‖Z‖∞→p ≤ 2E









∑

k
εkzk










p
+ 2 max

‖u‖q=1
E
∑

k

�

�

�

∑

j
ε j Z jku j

�

�

� .

Here ε is a vector of i.i.d. random signs, zk is the kth column of Z, and p−1 + q−1 = 1. This

implies the following bounds on the∞→ 1 and∞→ 2 norms:

E‖Z‖∞→1 ≤ 2E(‖Z‖col+




ZT






col) and

E‖Z‖∞→2 ≤ 2E‖Z‖F+ 2min
D
E




ZD−1






2→∞ ,

where the minimization is taken over the set of positive diagonal matrices satisfying Tr(D2) = 1.

The norm ‖Z‖2→∞ is the largest of the Euclidean norms of the rows of the matrix, ‖Z‖F is the

Frobenius norm, and the column norm ‖Z‖col is the sum of the Euclidean norms of the columns
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of the matrix. As in the case of the spectral norm, a bounded differences inequality guarantees

that if the entries of A are bounded, then the errors ‖A−X‖∞→ξ for ξ ∈ {1, 2} concentrate about

these expectations. Thus we have bounds on norms which are NP-hard to compute, in terms

of much simpler quantities. Both these bounds are optimal in the sense that each term in the

bound can be shown to be necessary. In the case of the∞→ 1 norm, a matching lower bound

establishes the sharpness of the bound.

1.4.3 Low-rank approximation using fast unitary transformations

Chapter 5 offers a new analysis of the subsampled randomized Hadamard transform (SRHT)

approach to low-rank approximation. This is a specific instance of a class of low-rank approxima-

tion algorithms based on fast unitary transformations, and the analysis provided applies, mutatis

mutandis, to other low-rank approximation algorithms which use fast unitary transformations.

Let ` > k be a positive integer and let S ∈ Rn×` be a matrix whose columns are random

vectors, then projection methods approximate A with PASA, which has rank at most `. Here,

the notation PM denotes the projection onto the range of M. One can reduce the cost of the

algorithm by using random matrices S whose structure allows for fast multiplication. Specifically,

one can reduce the cost of forming the product AS from O(mn`) to O(mn log`). One choice of a

structured random matrix is the transpose of the subsampled randomized Hadamard transform

(SRHT),

S=
Ç

n

`
·DHT RT .

Here, D is a diagonal matrix whose entries are independent random uniformly distributed signs,

H is a normalized Walsh–Hadamard matrix (a particular kind of orthogonal matrix, each of

whose entries has modulus n−1/2), and R is a matrix that restricts an n-dimensional vector to

a random size ` subset of its coordinates. It is not necessary that H be a normalized Walsh–
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Hadamard matrix; other orthogonal transforms whose entries are on the order of n−1/2 can be

used as well, such as the discrete cosine transform or the discrete Hartley transform.

The previous tightest bound on the spectral-norm error of SRHT-based low-rank approxima-

tions is given in [HMT11], where it is shown that





A− PASA






2 ≤
�

1+

Ç

7n

`

�





A−Ak







2

with probability at least 1−O(1/k) when ` is at least on the order of k log k. In some situations,

this bound is close to optimal. But when A is rank-deficient or has fast spectral decay, this result

does not reflect the correct behavior. In Chapter 5 we establish that
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F

with constant failure probability. The factor in front of the optimal error has been reduced at

the cost of the introduction of a Frobenius term. This Frobenius term is small when A has fast

spectral decay. We also find Frobenius-norm error bounds.

1.4.4 Randomized SPSD sketches

Chapter 6 considers the problem of forming a low-rank approximation to a symmetric positive-

semidefinite matrix A ∈ Rn×n using “SPSD sketches.” Let S be a matrix of size n× `, where

`� n. Then the SPSD sketch of A corresponding to S is CW†CT , where

C= AS and W= ST AS.

Sketches formed according to this model have rank at most ` and are also symmetric positive-
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semidefinite. The simplest such SPSD sketches are formed by taking S to contain random

columns sampled uniformly without replacement from the appropriate identity matrix. These

sketches, known as Nyström extensions, are popular in applications where it is expensive or

undesirable to have full access to A : Nyström extensions require only knowledge of ` columns

of A.

The accuracy of SPSD sketches can be increased using the so-called power method, wherein

one takes the sketching matrix to be S = ApS0 for some integer p ≥ 2 and S0 is a sketching

matrix. The corresponding SPSD sketch is ApS0(ST
0 A2p−1S0)†ST

0 Ap.

Chapter 6 establishes a framework for the analysis of SPSD sketches, and supplies spectral,

Frobenius, and trace-norm error bounds for SPSD sketches corresponding to random S sampled

from several distributions. The error bounds obtained are asymptotically smaller than the other

bounds available in the literature for SPSD sketching schemes. Our bounds apply to sketches

constructed using the power method, and we see that the errors of these sketches decrease like

(λk+1(A)/λk(A))p.

In particular, our framework supplies an optimal spectral-norm error bound for Nyström

extensions. Because they are based on uniform column sampling, Nyström extensions perform

best when the information in the top k-dimensional eigenspace is distributed evenly throughout

the columns of A. One way to quantify this idea uses the concept of coherence, taken from the

matrix completion literature [CR09]. Let S be a k-dimensional subspace of Rn. The coherence

of S is

µ(S ) =
n

k
maxi(PS )ii .

The coherence of the dominant k-dimensional eigenspace of A is a measure of how much

comparative influence the individual columns of A have on this subspace: if µ is small, then all
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columns have essentially the same influence; if µ is large, then it is possible that there is a single

column in A which alone determines one of the top k eigenvectors of A.

Talwalkar and Rostamizadeh were the first to use coherence in the analysis of Nyström

extensions. Let A be exactly rank-k and µ denote the coherence of its top k-dimensional

eigenspace. In [TR10], they show that if one samples on the order of µk log(k/δ) columns to

form a Nyström extension, then with probability at least 1−δ the Nyström extension is exactly

A. The framework provided in Chapter 6 allows us to expand this result to apply to matrices

with arbitrary rank. Specifically, we show that when `= O(µk log k), then





A−CW†CT






2 ≤
�

1+
n

`

�





A−Ak







2 .

with constant probability. This bound is shown to be optimal in the worst case.

Low-rank approximations computed using the SPSD sketching model are not guaranteed

to be numerically stable: if W is ill-conditioned, then instabilities may arise in forming the

product CW†CT . A regularization scheme proposed in [WS01] suggests avoiding numerical

ill-conditioning issues by using an SPSD sketch constructed from the matrix A+ ρI, where

ρ > 0 is a regularization parameter. In Chapter 6, we provide the first error analysis of this

regularization scheme, and compare it empirically to another regularization scheme introduced

in [CD11].

Finally, in addition to theoretical results, Chapter 6 provides a detailed suite of empirical

results on the performance of SPSD sketching schemes applied to matrices culled from data

analysis and machine learning applications.


