
Topics in Randomized Numerical Linear Algebra

Thesis by

Alex Gittens

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2013

(Defended May 31, 2013)



ii

c© 2013

Alex Gittens

All Rights Reserved



iii

Acknowledgements

I have been privileged to befriend and work with exceptional individuals.

I owe a debt of thank to Drs. Emmanuel Papadakis and Gordon Johnson of the University of

Houston for helping me get started on my academic path. I consider myself lucky to have had

the guidance of my PhD advisor, Joel Tropp, and remain humbled by his intuitive grasp of the

ideas and tools I have wrestled with throughout my graduate career. In addition to Joel, I am

grateful to the other collaborators I was privileged to work with: Christos Boutsidis, Michael

Mahoney, and Richard Chen. It was a pleasure working with them.

I benefited greatly from interactions with my fellow students; in particular, I thank Catherine

Beni, Chia-Chieh Chu, Derek Leong, Jinghao Huang, and Yamuna Phal for being great office

mates and friends. My dear friend and amateur herpetologist Yekaterina Pavlova I thank for

being her very unique self. Stephen Becker, Michael McCoy, Peter Stobbe, Patrick Sanan, Zhiyi

Li, George Chen, and Yaniv Plan may have provided answers to the odd math question, but I

appreciate them more for the hours of wide-ranging discussions on everything under the sun.

Finally, I thank my family for their support: my mother Mura; my father Erskine; my sister

Lauren; and my grandfather Chesterfield, who was a formative influence on my young mind.



iv

Abstract

This thesis studies three classes of randomized numerical linear algebra algorithms, namely: (i)

randomized matrix sparsification algorithms, (ii) low-rank approximation algorithms that use

randomized unitary transformations, and (iii) low-rank approximation algorithms for positive-

semidefinite (PSD) matrices.

Randomized matrix sparsification algorithms set randomly chosen entries of the input matrix

to zero. When the approximant is substituted for the original matrix in computations, its sparsity

allows one to employ faster sparsity-exploiting algorithms. This thesis contributes bounds on

the approximation error of nonuniform randomized sparsification schemes, measured in the

spectral norm and two NP-hard norms that are of interest in computational graph theory and

subset selection applications.

Low-rank approximations based on randomized unitary transformations have several desir-

able properties: they have low communication costs, are amenable to parallel implementation,

and exploit the existence of fast transform algorithms. This thesis investigates the tradeoff

between the accuracy and cost of generating such approximations. State-of-the-art spectral and

Frobenius-norm error bounds are provided.

The last class of algorithms considered are SPSD “sketching” algorithms. Such sketches can

be computed faster than approximations based on projecting onto mixtures of the columns of

the matrix. The performance of several such sketching schemes is empirically evaluated using a



v

suite of canonical matrices drawn from machine learning and data analysis applications, and a

framework is developed for establishing theoretical error bounds.

In addition to studying these algorithms, this thesis extends the Matrix Laplace Transform

framework to derive Chernoff and Bernstein inequalities that apply to all the eigenvalues of

certain classes of random matrices. These inequalities are used to investigate the behavior of the

singular values of a matrix under random sampling, and to derive convergence rates for each

individual eigenvalue of a sample covariance matrix.
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Chapter 1

Introduction and contributions

Massive datasets are common: among other places, they arise in data-analysis and machine

learning applications. These datasets are often represented as matrices, so the fundamental

tools of linear algebra are indispensable in their analysis. For instance, modeling and data

analysis methods based on low-rank approximation have become popular because they capture

the low-dimensional structure implicit in massive high-dimensional modern datasets. Low-rank

approximations are also used for their noise-elimination and regularization properties [Han90].

Among many applications, we mention PCA [HTF08], multidimensional scaling [CC00], collabo-

rative filtering [SAJ10], manifold learning [HLMS04], and latent semantic indexing [DDF+90].

The truncated singular value decomposition (SVD) and the rank-revealing QR decomposition

are classical decompositions used to construct low-rank approximants. However, the construction

of both of these decompositions costs O(nω) operations for an n× n matrix [CH92] (where ω

is the exponent for matrix multiplication). For small k and large n, Krylov space methods can

potentially provide truncated SVDs in much less time. In practice, the number of operations

required varies considerably depending upon the specifics of the method and the spectral

properties of the matrix, but since one must perform at least k dense matrix–vector multiplies

(assuming the matrix is unstructured), computing the rank-k truncated SVD using a Krylov

method requires at least Ω(kn2) operations. Further, iterative schemes like Krylov methods



2

require multiple passes over the matrix, which may incur high communication costs if the matrix

is stored in a distributed fashion, or if the data has to percolate through a hierarchical memory

architecture [CW09].

Much interest has been expressed in finding o(kn2) low-rank approximation schemes that

offer approximation guarantees comparable with those of the truncated SVD. Randomized

numerical linear algebra (RNLA) refers to a field of research that arose in the early 2000s at the

intersection of several research communities, including the theoretical computer science and

numerical linear algebra communities, in response to the desire for fast, efficient algorithms

for manipulating large matrices. RNLA algorithms for matrix approximation focus on reducing

the number of arithmetic operations and the communications costs of algorithms by judiciously

exploiting randomness. Typically, these algorithms take one of two approaches. The sampling

approach advocates using information obtained by randomly sampling the columns, rows, or

entries of the matrix to form an approximation to the matrix. The random projection approach

randomly mixes the entries of the matrix before employing the sampling approach. The analysis

of both classes of algorithms requires the use of tools from the nonasymptotic theory of random

matrices.

This thesis contributes to both approaches to forming randomized matrix approximants, and

it extends the toolset available to researchers working in the field of RNLA.

• Chapter 2 builds upon the matrix Laplace transform originated by Ahlswede and Winter to

provide eigenvalue analogs of classical exponential tail bounds for all eigenvalues of a sum

of random Hermitian matrices. Such sums arise often in the analysis of RNLA algorithms.

• Chapter 3 develops bounds on the norms of random matrices with independent mean-

zero entries, and it applies these bounds to investigate the performance of randomized
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entry-wise sparsification algorithms.

• Chapter 5 provides guarantees on the quality of low-rank approximations generated using

a class of random projections that exploit fast unitary transformations.

• Chapter 6 concludes by providing a framework for the analysis of a diverse class of low-

rank approximations to positive-semidefinite matrices, as well as empirical evidence of the

efficacy of these approximations over a wide range of matrices. The class of approximations

considered includes both sampling-based approximations as well as projection-based

approximations.

In the remainder of this introductory chapter, we survey the sampling and projection-based

approaches to randomized matrix approximation and the tools currently available to researchers

for the interrogation of the properties of random matrices. We conclude with an overview of the

contributions of this thesis.

1.1 The sampling approach to matrix approximation

Sparse approximants are of interest because they be used in lieu of the original matrix to

reduce the cost of calculations. Randomized sparsified approximations to matrices have found

applications in approximate eigenvector computations [AM01, AHK06, AM07] and semidefinite

optimization algorithms [AHK05, d’A11].

The first randomized element-wise matrix sparsification algorithms are due to Achlioptas

and McSherry [AM01, AM07], who considered schemes in which a matrix is replaced with a

randomized approximant that has far fewer nonzero entries. Their motivation for considering

randomized sparsification was the desire to use the fast algorithms available for computing the

SVDs of large sparse matrices to approximate the SVDs of large dense matrices. In the same
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work, they presented a scheme that randomly quantizes the entries of the matrix to ±maxi j |Ai j|.

Such quantization schemes are of interest because they reduce the cost of storing and working

with the matrix. Note that this quantization scheme requires two passes over the matrix: one to

compute b, then another to quantize. The bounds given in [AM07] for both schemes guarantee

that the spectral norm error of the approximations to a matrix A ∈ Rm×n remain on the order

of
p

max{m, n}maxi j |Ai j| with high probability. If each entry in the matrix is replaced by zero

with probability 1− p, the expected number of nonzeros in the approximant is shown to be at

most p‖A‖2F/maxi j |Ai j|2+4096m log4(n). These bounds are quite weak: the algorithms perform

much better on average.

Arora et al. presented an alternative quantization and sparsification scheme in [AHK06] that

has the advantage of requiring only one pass over the input matrix. The schemes of both Arora et.

al and Achlioptas and McSherry involve entrywise calculations on the matrix being approximated,

and have the property that the entries in the random approximant are independent of each

other. Succeeding works on entry-wise matrix sparsification include [NDT10, DZ11, AKL13];

the algorithms given in these works also produce approximants with independent entries. The

sharpest available bound on randomized element-wise sparsification is satisfied by the algorithm

given in [DZ11]: given an accuracy parameter ε > 0, this algorithm produces an approximant

that satisfies ‖A− Ã‖2 ≤ ε with high probability and has at most 28ε2n log(
p

2n)‖A‖2F nonzero

entries; the approximant can be calculated in one pass. The paper [NDT10] goes beyond matrix

sparsification, addressing randomized element-wise tensor sparsification.

The natural next step after entry-wise sampling is the sampling of entire columns and rows.

An influential portion of the first wave of RNLA algorithms employed such a sampling approach,

in the form of Monte Carlo approximation algorithms. In [FKV98], Frieze, Kannan, and Vempala

introduce the first algorithm of this type for calculating approximate SVDs of large matrices. They
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propose judiciously sampling a submatrix from A and using the SVD of this submatrix to find an

approximation of the top singular spaces of A. The projection of A onto this subspace is then used

as the low-rank approximation. This algorithm of course requires two passes over the matrix.

The original idea in [FKV98] was refined in a series of papers providing increasingly strong

guarantees on the quality of the approximation [DK01, DK03, FKV04, DKM06a, DKM06b].

Rudelson and Vershynin take a different approach to the analysis of the Monte Carlo

methodology for low-rank approximation in [RV07]. They consider A as a linear operator

between finite-dimensional Banach spaces and apply techniques of probability in Banach spaces:

decoupling, symmetrization, Slepian’s lemma for Rademacher random variables, and a law

of large numbers for operator-valued random variables. They show that, if A has numerical

rank close to k, then it is possible to obtain an accurate rank-k approximation to A by sampling

O
�

k log k
�

rows of A. Specifically, if one projects A onto the span of ` = O(ε−4k log k) of its

rows, then the approximant satisfies ‖A− Ã‖2 ≤ ‖A−Ak‖2+ ε‖A‖2 with high probability. Here

Ak denotes the optimal rank-k approximation to A, obtainable as the rank-k truncated SVD of A.

Other researchers forwent the SVD entirely, considering instead alternative column and row-

based matrix decompositions. In one popular class of approximations, the matrix is approximated

with a product CUR, where C and R are respectively small subsets of the columns and rows

of the matrix and U, the coupling matrix, is computed from C and R [DKM06c]. Accordingly,

these schemes are known as CUR decompositions. Nyström extensions, introduced by Williams

and Seeger in [WS01], are a similar class of low-rank approximations to positive-semidefinite

matrices. They can be thought of as CUR decompositions constructed with the additional

constraint that C= RT , to preserve the positive-semidefiniteness of the approximant. Both CUR

and Nyström decompositions can be constructed in one pass over the matrix.

The paper [DMM08] introduced a “subspace sampling” method of sampling the columns and
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rows to form C and R and showed that approximations formed with O(k log k) columns and rows

in this manner achieve Frobenius norm errors close to the optimal rank-k approximation error:

‖A− CUR‖F ≤ (1+ ε)‖A−Ak‖F. The leverage scores of the columns of A are used to generate

the probability distribution used for column sampling: given P, a projection onto the dominant

k-dimensional right singular space of A, the leverage score of the jth column of A is proportional

to (P)ii . The intuition is that the magnitude of the leverage score of a particular column reflects

its influence in determining the dominant k-dimensional singular spaces of A [DM10].

In [MRT06, MRT11], Tygert et al. introduced randomized Interpolative Decompositions (ID)

as an alternative low-rank factorization to the SVD. In IDs, the columns of A are represented

as linear combinations of some small subset of the columns of A. The algorithm of [MRT06]

is accelerated in [WLRT08]. With high probability, it constructs matrices B and Π such that

B consists of k columns sampled from A, some subset of the columns of Π make up the k× k

identity matrix, and ‖A−BΠ‖2 = O(
p

kmn‖A−Ak‖2).

The works of Har-Peled [HP06], and Deshpande et al. [DRVW06] use more intricate ap-

proaches based on column sampling to produce low-rank approximations with relative-error

Frobenius norm guarantees. These algorithms require, respectively, O(k2 log k) and O(k) column

samples.

Boutsidis et al. develop a general framework for analyzing the error of matrix approximation

schemes based on column sampling in [BDMI11], where they establish optimal bounds on the

errors of approximants produced by projecting a matrix onto the span of some subset of its

columns. In particular, they show that there are matrices that cannot be efficiently approximated

in the spectral norm using the sampling paradigm; specifically, given positive integers k ≤ `≤ n,
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they demonstrate the existence of a matrix A such that

‖A− Ã‖2 ≥

 

1+

r

n2+α
`2+α

!

‖A−Ak‖2

when Ã is any approximation obtained by projecting A onto the span of ` of its columns. Because

this bound holds regardless of how the columns are selected, it is clear that, at least in the

spectral norm, the sampling paradigm is not sufficient to obtain near optimal approximation

errors. Stronger spectral norm guarantees can be obtained using the random projection approach

to matrix approximation.

1.2 The random-projection approach to matrix approximation

A wide range of results in RNLA have been inspired by the work of Johnson and Lindenstrauss

in geometric functional analysis, who showed that embeddings into random low-dimensional

spaces can preserve the geometry of point sets. The celebrated Johnson–Lindenstrauss lemma

states that, given n points in a high-dimensional space, a random projection into a space of

dimension Ω(log n) preserves the distance between the points. Such geometry-preserving,

dimension-reducing maps are known as Johnson–Lindenstrauss transforms (JLT).

The work of Papadimitriou et al. in [PRTV00] on the algorithmic application of randomness

to facilitate information retrieval popularized the use of JLTs in RNLA. Unlike sample-based

methods like the CUR decomposition that project the matrix onto the span of a subset of its

columns (and/or rows), random projection methods produce approximations to the matrix by

projecting it onto some subspace of its entire range. The intuition behind these methods is similar

to that behind the power method, or orthogonal iteration: one can approximately capture the

top left singular space of a matrix by applying it to a sufficiently large number of random vectors.
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One then obtains a low-rank approximation of the matrix by projecting it onto this approximate

singular space. Projection-based matrix approximation algorithms require at least two passes

over the matrix: one to form an approximate basis for the top left singular space of the matrix,

and one to project the matrix onto that basis.

In the influential paper [Sar06], Sarlós developed fast approximation algorithms for SVDs,

least squares, and matrix multiplication under the randomized projection paradigm. His algo-

rithms take advantage of Ailon and Chazelle’s work, which establish that certain structured

randomized transformations can be used to quickly compute dimension reductions [AC06]. At

around the same time, Martinsson, Rohklin, and Tygert introduced a randomized projection-

based algorithm for the calculation of approximate SVDs [MRT06, MRT11]. In this algorithm,

to obtain an approximate rank-k SVD of A, one applies k+ p gaussian vectors to A then projects

A onto the resulting subspace. Here, p is a small integer known as the oversampling parameter.

The approximation returned by the algorithm can be written as Ã = PASA, where S is a Gaussian

matrix and the notation PM denotes the projection onto the range of the matrix M. The spectral

norm error of the approximant is guaranteed to be at most
p

max m, n‖A − Ak‖2 with high

probability, and if A is unstructured and dense, the algorithm costs O(mnk) time. Despite the

fact that its runtime is asymptotically the same as those of classical Krylov iteration schemes

(e.g. the Lanczos method), this algorithm is of interest because it requires only two passes over

the matrix. Moreover, the algorithm performs well in the presence of degenerate singular values,

a situation which often causes Lanczos methods to stagnate [MRT11]. Finally, this algorithm is

more readily parallelizable than iterative schemes.

In [WLRT08], inspired by Sarlós’s work in [Sar06], Woolfe et al. observed that the runtime of

the algorithm of [MRT06, MRT11] could be reduced to O(mn log(k)+k4(m+n)) by substituting

a structured random matrix for the Gaussian matrix used in the original algorithm. Specifically,
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they show that if the “sampling matrix” S consists of O(k2) uniformly randomly selected columns

of the product of the discrete Fourier transform matrix and a diagonal matrix of random signs,

then the error guarantees of the algorithm remain unchanged while the worst-case runtime

decreases. Nguyen et al. consider the same approximation in [NDT09], Ã= PASA, and obtain

improved results: if S has O(k log k) columns constructed as in the algorithm of [WLRT08], then

with constant probability ‖A− Ã‖2 ≤
p

m/(k log k)‖A−Ak‖2.

The paper [BDMI11] and the survey article [HMT11] constituted a significant step forward

in the analysis of random projection-based matrix approximation algorithms, because they

provided a framework for the analysis of the Frobenius and spectral norm errors of approximants

of the form PASA using arbitrary sampling matrices S. In [HMT11], this framework is used to

provide guarantees on the errors of approximants of the form Ã= PASA for S Gaussian and for

S consisting of uniformly randomly selected columns of the product of the Walsh–Hadamard

transform matrix and a diagonal matrix of random signs.

1.3 Nonasymptotic random matrix theory

The behavior of RNLA algorithms can often be analyzed in terms of the behavior of a sum

of random matrices. As an example, consider the entry-wise sparsification schemes described

earlier in the chapter: there, the approximants can be considered to be a sum of random matrices,

where each term in the sum contributes one entry to the approximant. In each of the works

cited, the design of the sparsification algorithm was crucially influenced by the particular tool

used to analyze its performance. Achlioptas and McSherry used a concentration inequality due

to Talagrand [AM01, AM07], Arora et al. used scalar Chernoff bounds [AHK06], Drineas et

al. used the non-commutative Khintchine inequalities [NDT10], and Drineas and Zouzias used

matrix Bernstein inequalities [DZ11]. As the tools available to researchers increased in their
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generality, the sparsification algorithms became more sophisticated, and the analysis of their

errors became sharper.

The study of the spectra of random matrices is naturally divided into two subfields: the

nonasymptotic theory, which gives probability bounds that hold for finite-dimensional matrices

but may not be sharp, and the asymptotic theory, which precisely describes the behavior of

certain families of matrices as their dimensions go to infinity. Unfortunately, the strength of

the asymptotic techniques lies in the determination of convergence and the development of

asymptotically sharp bounds, rather than the development of tail bounds which hold at a fixed

dimension. Accordingly, the nonasymptotic theory is of most relevance in RNLA applications.

The sharpest and most comprehensive results available in the nonasymptotic theory concern

the behavior of Gaussian matrices. The amenability of the Gaussian distribution makes it possible

to obtain results such as Szarek’s nonasymptotic analog of the Wigner semicircle theorem for

Gaussian matrices [Sza90] and Chen and Dongarra’s bounds on the condition number of

Gaussian matrices [CD05]. The properties of less well-behaved random matrices can sometimes

be related back to those of Gaussian matrices using probabilistic tools, such as symmetrization;

see, e.g., the derivation of Latała’s bound on the norms of zero-mean random matrices [Lat05].

More generally, bounds on extremal eigenvalues can be obtained from knowledge of the

moments of the entries. For example, the smallest singular value of a square matrix with

i.i.d. zero-mean subgaussian entries is O(n−1/2) with high probability [RV08]. Concentration

of measure results, such as Talagrand’s concentration inequality for product spaces [Tal95],

have also contributed greatly to the nonasymptotic theory. We mention in particular the work

of Achlioptas and McSherry on randomized sparsification of matrices [AM01, AM07], that of

Meckes on the norms of random matrices [Mec04], and that of Alon, Krivelevich and Vu [AKV02]

on the concentration of the largest eigenvalues of random symmetric matrices, all of which are
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applications of Talagrand’s inequality. In cases where geometric information on the distribution

of the random matrices is available, the tools of empirical process theory—such as generic

chaining, also due to Talagrand [Tal05]—can be used to convert this geometric information into

information on the spectra. One natural example of such a case consists of matrices whose rows

are independently drawn from a log-concave distribution [MP06, ALPTJ11].

One of the most general tools in the nonasymptotic theory toolbox is the Noncommutative

Khintchine Inequality (NCKI), which bounds the moments of the norm of a sum of randomly

signed matrices [LPP91]. Despite its power and generality, the NCKI is unwieldy. To use it,

one must reduce the problem to a suitable form by applying symmetrization and decoupling

arguments and exploiting the equivalence between moments and tail bounds. It is often more

convenient to apply the NCKI in the guise of a lemma, due to Rudelson [Rud99], that provides

an analog of the law of large numbers for sums of rank-one matrices. This result has found

many applications, including column-subset selection [RV07] and the fast approximate solution

of least-squares problems [DMMS11]. The NCKI and its corollaries do not always yield sharp

results because parasitic logarithmic factors arise in many settings.

Classical exponential tail bounds for sums of independent random variables can be developed

using the machinery of moment-generating functions (mgfs), by exploiting the fact that the

mgf of a sum of independent random variables is the product of the mgfs of the summands.

Ahlswede and Winter [AW02] extended this technique to produce tail bounds for the eigenvalues

of sums of independent Hermitian random variables. Because matrices are non-commutative,

the matrix mgf of a sum of independent random matrices does not factor nicely as in the

scalar case. The influential work of Ahlswede and Winter, as well as the immediately following

works developing exponential matrix probability inequalities, relied upon trace inequalities

to circument the difficulty of noncommutativity [CM08, Rec11, Oli09, Oli10, Gro11]. Tropp
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showed that these matrix probability inequalities can be sharpened considerably by working

with cumulant generating functions instead of mgfs [Tro12, Tro11c, Tro11a].

Chatterjee established that in the scalar case, powerful concentration inequalities could be

recovered from arguments based on the method of exchangeable pairs [Cha07]. Mackey and

collaborators extended the method of exchangeable pairs to matrix-valued functions [MJC+12].

The resulting bounds are sufficiently sharp to recover the NCKI, and can even be used to

interrogate the behavior of matrix-valued functions of dependent random variables. Most

recently, Paulin et al. have further extended the matrix method of exchangeable pairs to apply

to an even larger class of matrix-valued functions [PMT13].

Despite the diversity of the tools mentioned here, all share a common limitation: they

provide bounds only on the extremal eigenvalues of the relevant classes of random matrices.

1.4 Contributions

We conclude with a summary of the main contributions of this thesis.

1.4.1 Nonasymptotic random matrix theory

The matrix Laplace transform technique pioneered by Ahlswede and Winter, which applies to

sums of independent random matrices [AW02, Tro12], is one of the most generally applicable

techniques in the arsenal of nonasymptotic random matrix theory.

However, the matrix Laplace transform technique yields bounds on only the extremal

eigenvalues of Hermitian random matrices. Chapter 2 describes an extension of the matrix

Laplace transform technique, based upon the variational characterization of the eigenvalues of

Hermitian matrices, for bounding all eigenvalues of sums of independent random Hermitian

matrices. This is the first general purpose tool for bounding interior eigenvalues of such a wide
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class of random matrices.

The minimax Laplace transform introduced in Chapter 2 relates the behavior of the k-th

eigenvalue of a random self-adjoint matrix to the behavior of its compressions to subspaces:

P
�

λk(Y)≥ t
	

≤ inf
θ>0

min
V

�

e−θ t ·E tr exp
�

eθV∗YV
�

�

where the minimization is taken over an appropriate set of matrices V with orthonormal columns.

We show that when one has sufficiently strong semidefinite bounds on the matrix cumulant

generating functions logEeθV∗XiV of the compressions of the summands Xi , the minimax Laplace

transform technique yields exponential probability bounds for all the eigenvalues of Y=
∑

i Xi .

We employ the minimax Laplace transform to produce eigenvalue Chernoff, Bennett, and

Bernstein bounds. As an example of the efficacy of this technique, we use the Chernoff bounds

to find new bounds on the interior eigenvalues of matrices formed by sampling columns from

matrices with orthonormal rows. We also demonstrate that our Bernstein bounds are powerful

enough to recover known estimates on the number of samples needed to accurately estimate

the eigenvalues of the covariance matrix of a Gaussian process by the eigenvalues of the sample

covariance matrix. In the process of doing so, we provide novel results on the convergence rate

of the individual eigenvalues of Gaussian sample covariance matrices.

1.4.2 Matrix sparsification

Chapter 3 analyzes the approximation errors of randomized schemes that approximate a fixed

m× n matrix A with a random matrix X having the properties that the entries of X are inde-

pendent and average to the corresponding entries of A. This investigation was initiated by the

observation that several algorithms for random matrix quantization and sparsification are based
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on approximations that have these properties [AM01, AHK06, AM07]. A generic framework for

the analysis of such approximation schemes is established, and this essentially recapitulates the

known guarantees for the referenced algorithms.

We show that the spectral norm approximation error of such schemes can be controlled in

terms of the variances and fourth moments of the entries of X as follows:

E‖A−X‖2 ≤ C



max
j

�

∑

k

Var(X jk)
�1/2

+max
k

�

∑

j

Var(X jk)
�1/2 �

∑

jk

E(X jk − a jk)
4
�1/4






, (1.4.1)

where C is a universal constant. This expectation bound is obtained by leveraging work done

by Latała on the spectral norm of random matrices with zero mean entries [Lat05]. When the

entries of A are bounded (so that the variances of the entries of X are small), an argument based

on a bounded difference inequality shows that the approximation error does not exceed this

expectation by much.

Inequality (1.4.1) identifies properties desirable in randomized approximation schemes:

namely, that they minimize the maximum column and row norms of the variances of the entries,

as well as the fourth moments of all entries. Thus our results supply guidance in the design of

future approximation schemes. The results also yield comparable analyses of the quantization

and sparsification schemes introduced in [AM01, AM07] and recover error bounds for the

quantization/sparsification scheme proposed by Arora, Hazan, and Kale in [AHK06] that are

comparable to those supplied in [AHK06]. However, for the more recent sparsification schemes

presented in [NDT10, DZ11, AKL13], our results do not provide sparsification guarantees as

strong as those offered in the originating papers.

Chapter 3 also analyzes the performance of randomized matrix approximation schemes as
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measured using non-unitary invariant norms. The literature on randomized matrix approxima-

tion has, with few exceptions, focused on the behavior of the spectral and Frobenius norms.

However, depending on the application, other norms are of more interest; for instance, the

p→ q norms naturally arise when one considers A as a map from `p(Rn) to `q(Rm). Consider, in

particular, the∞→ 1 and∞→ 2 norms, both of which are NP-hard to compute. The∞→ 1

norm has applications in graph theory and combinatorics. The∞→ 2 norm has applications in

numerical linear algebra. In particular, it is a useful tool in the column subset selection problem:

that of, given a matrix A with unit norm columns, choosing a large subset of the columns of A so

that the resulting submatrix has a norm smaller than some fixed constant (larger than one).

In a similar way that sparsification can assist in applications where the spectral norm is

relevant, we believe it can be of assistance in applications such as these where the norm of

interest is a p→ q norm. Our main result is a bound on the expected∞→ p norm of random

matrices whose entries are independent and have mean zero:

E‖Z‖∞→p ≤ 2E









∑

k
εkzk










p
+ 2 max

‖u‖q=1
E
∑

k

�

�

�

∑

j
ε j Z jku j

�

�

� .

Here ε is a vector of i.i.d. random signs, zk is the kth column of Z, and p−1 + q−1 = 1. This

implies the following bounds on the∞→ 1 and∞→ 2 norms:

E‖Z‖∞→1 ≤ 2E(‖Z‖col+




ZT






col) and

E‖Z‖∞→2 ≤ 2E‖Z‖F+ 2min
D
E




ZD−1






2→∞ ,

where the minimization is taken over the set of positive diagonal matrices satisfying Tr(D2) = 1.

The norm ‖Z‖2→∞ is the largest of the Euclidean norms of the rows of the matrix, ‖Z‖F is the

Frobenius norm, and the column norm ‖Z‖col is the sum of the Euclidean norms of the columns
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of the matrix. As in the case of the spectral norm, a bounded differences inequality guarantees

that if the entries of A are bounded, then the errors ‖A−X‖∞→ξ for ξ ∈ {1, 2} concentrate about

these expectations. Thus we have bounds on norms which are NP-hard to compute, in terms

of much simpler quantities. Both these bounds are optimal in the sense that each term in the

bound can be shown to be necessary. In the case of the∞→ 1 norm, a matching lower bound

establishes the sharpness of the bound.

1.4.3 Low-rank approximation using fast unitary transformations

Chapter 5 offers a new analysis of the subsampled randomized Hadamard transform (SRHT)

approach to low-rank approximation. This is a specific instance of a class of low-rank approxima-

tion algorithms based on fast unitary transformations, and the analysis provided applies, mutatis

mutandis, to other low-rank approximation algorithms which use fast unitary transformations.

Let ` > k be a positive integer and let S ∈ Rn×` be a matrix whose columns are random

vectors, then projection methods approximate A with PASA, which has rank at most `. Here,

the notation PM denotes the projection onto the range of M. One can reduce the cost of the

algorithm by using random matrices S whose structure allows for fast multiplication. Specifically,

one can reduce the cost of forming the product AS from O(mn`) to O(mn log`). One choice of a

structured random matrix is the transpose of the subsampled randomized Hadamard transform

(SRHT),

S=
Ç

n

`
·DHT RT .

Here, D is a diagonal matrix whose entries are independent random uniformly distributed signs,

H is a normalized Walsh–Hadamard matrix (a particular kind of orthogonal matrix, each of

whose entries has modulus n−1/2), and R is a matrix that restricts an n-dimensional vector to

a random size ` subset of its coordinates. It is not necessary that H be a normalized Walsh–
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Hadamard matrix; other orthogonal transforms whose entries are on the order of n−1/2 can be

used as well, such as the discrete cosine transform or the discrete Hartley transform.

The previous tightest bound on the spectral-norm error of SRHT-based low-rank approxima-

tions is given in [HMT11], where it is shown that
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2 ≤
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2

with probability at least 1−O(1/k) when ` is at least on the order of k log k. In some situations,

this bound is close to optimal. But when A is rank-deficient or has fast spectral decay, this result

does not reflect the correct behavior. In Chapter 5 we establish that
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with constant failure probability. The factor in front of the optimal error has been reduced at

the cost of the introduction of a Frobenius term. This Frobenius term is small when A has fast

spectral decay. We also find Frobenius-norm error bounds.

1.4.4 Randomized SPSD sketches

Chapter 6 considers the problem of forming a low-rank approximation to a symmetric positive-

semidefinite matrix A ∈ Rn×n using “SPSD sketches.” Let S be a matrix of size n× `, where

`� n. Then the SPSD sketch of A corresponding to S is CW†CT , where

C= AS and W= ST AS.

Sketches formed according to this model have rank at most ` and are also symmetric positive-
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semidefinite. The simplest such SPSD sketches are formed by taking S to contain random

columns sampled uniformly without replacement from the appropriate identity matrix. These

sketches, known as Nyström extensions, are popular in applications where it is expensive or

undesirable to have full access to A : Nyström extensions require only knowledge of ` columns

of A.

The accuracy of SPSD sketches can be increased using the so-called power method, wherein

one takes the sketching matrix to be S = ApS0 for some integer p ≥ 2 and S0 is a sketching

matrix. The corresponding SPSD sketch is ApS0(ST
0 A2p−1S0)†ST

0 Ap.

Chapter 6 establishes a framework for the analysis of SPSD sketches, and supplies spectral,

Frobenius, and trace-norm error bounds for SPSD sketches corresponding to random S sampled

from several distributions. The error bounds obtained are asymptotically smaller than the other

bounds available in the literature for SPSD sketching schemes. Our bounds apply to sketches

constructed using the power method, and we see that the errors of these sketches decrease like

(λk+1(A)/λk(A))p.

In particular, our framework supplies an optimal spectral-norm error bound for Nyström

extensions. Because they are based on uniform column sampling, Nyström extensions perform

best when the information in the top k-dimensional eigenspace is distributed evenly throughout

the columns of A. One way to quantify this idea uses the concept of coherence, taken from the

matrix completion literature [CR09]. Let S be a k-dimensional subspace of Rn. The coherence

of S is

µ(S ) =
n

k
maxi(PS )ii .

The coherence of the dominant k-dimensional eigenspace of A is a measure of how much

comparative influence the individual columns of A have on this subspace: if µ is small, then all
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columns have essentially the same influence; if µ is large, then it is possible that there is a single

column in A which alone determines one of the top k eigenvectors of A.

Talwalkar and Rostamizadeh were the first to use coherence in the analysis of Nyström

extensions. Let A be exactly rank-k and µ denote the coherence of its top k-dimensional

eigenspace. In [TR10], they show that if one samples on the order of µk log(k/δ) columns to

form a Nyström extension, then with probability at least 1−δ the Nyström extension is exactly

A. The framework provided in Chapter 6 allows us to expand this result to apply to matrices

with arbitrary rank. Specifically, we show that when `= O(µk log k), then





A−CW†CT






2 ≤
�

1+
n

`

�





A−Ak







2 .

with constant probability. This bound is shown to be optimal in the worst case.

Low-rank approximations computed using the SPSD sketching model are not guaranteed

to be numerically stable: if W is ill-conditioned, then instabilities may arise in forming the

product CW†CT . A regularization scheme proposed in [WS01] suggests avoiding numerical

ill-conditioning issues by using an SPSD sketch constructed from the matrix A+ ρI, where

ρ > 0 is a regularization parameter. In Chapter 6, we provide the first error analysis of this

regularization scheme, and compare it empirically to another regularization scheme introduced

in [CD11].

Finally, in addition to theoretical results, Chapter 6 provides a detailed suite of empirical

results on the performance of SPSD sketching schemes applied to matrices culled from data

analysis and machine learning applications.
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Chapter 2

Bounds for all eigenvalues of sums of
Hermitian random matrices

2.1 Introduction

The classical tools of nonasymptotic random matrix theory can sometimes give quite sharp

estimates of the extreme eigenvalues of a Hermitian random matrix, but they are not readily

adapted to the study of the interior eigenvalues. This is because, while the extremal eigenvalues

are the maxima and minima of a random process, more delicate and challenging minimax

problems must be solved to obtain the interior eigenvalues.

This chapter introduces a simple method, based upon the variational characterization of

eigenvalues, that parlays bounds on the extreme eigenvalues of sums of random Hermitian

matrices into bounds that apply to all the eigenvalues1. This technique extends the matrix

Laplace transform method detailed in [Tro12]. We combine these ideas to extend several of

the inequalities in [Tro12] to address the fluctuations of interior eigenvalues. Specifically, we

provide eigenvalue analogs of the classical multiplicative Chernoff bounds and Bennett and

Bernstein inequalities.

In this technique, the delicacy of the minimax problems which implicitly define the eigenval-

1The content of this chapter is adapted from the technical report [GT09] co-authored with Joel Tropp.
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ues of Hermitian matrices is encapsulated in terms that reflect the fluctuations of the summands

in the appropriate eigenspaces. In particular, we see that the fluctuations of the kth eigenvalue of

the sum above and below the kth eigenvalue of the expected sum are controlled by two different

quantities. This satisfies intuition: for instance, given samples from a nondegenerate stationary

random process with finite covariance matrix, one expects that the smallest eigenvalue of the

sample covariance matrix is more likely to be an underestimate of the smallest eigenvalue of the

covariance matrix than it is to be an overestimate.

We provide two illustrative applications of our eigenvalue tail bounds: Theorem 2.14

quantifies the behavior of the singular values of matrices obtained by sampling columns from a

short, fat matrix; and Theorem 2.15 quantifies the convergence of the eigenvalues of Wishart

matrices.

2.2 Notation

We defineMn
sa to be the set of Hermitian matrices with dimension n. We often compare Hermitian

matrices using the semidefinite ordering. In this ordering, A is greater than or equal to B, written

A� B or B� A, when A−B is positive semidefinite.

The eigenvalues of a matrix A inMn
sa are arranged in weakly decreasing order: λmax (A) =

λ1(A)≥ λ2(A)≥ · · · ≥ λn(A) = λmin (A) . Likewise, the singular values of a rectangular matrix A

with rank ρ are ordered σmax(A) = σ1(A)≥ σ2(A)≥ · · · ≥ σρ(A) = σmin(A). The spectral norm

of a matrix B is written ‖B‖2 .
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2.3 The Courant–Fisher Theorem

In this chapter, we work over the complex field C. One of our central tools is the variational

characterization of the eigenvalues of a Hermitian matrix given by the Courant–Fischer Theorem.

For integers d and n satisfying 1≤ d ≤ n, the complex Stiefel manifold

Vn
d = {V ∈ C

n×d : V∗V= I}

is the collection of orthonormal bases for the d-dimensional subspaces of Cn, or, equivalently,

the collection of all isometric embeddings of Cd into Cn. Let A be a Hermitian matrix with

dimension n, and let V ∈ Vn
d be an orthonormal basis for a subspace of Cn. Then the matrix

V∗AV can be interpreted as the compression of A to the space spanned by V.

Proposition 2.1 (Courant–Fischer ([HJ85, Theorem 4.2.11])). Let A be a Hermitian matrix with

dimension n. Then

λk(A) = min
V∈Vn

n−k+1

λmax
�

V∗AV
�

and (2.3.1)

λk(A) =max
V∈Vn

k

λmin
�

V∗AV
�

. (2.3.2)

A matrix V− ∈ Vn
k achieves equality in (2.3.2) if and only if its columns span a top k-dimensional

invariant subspace of A. Likewise, a matrix V+ ∈ Vn
n−k+1 achieves equality in (2.3.1) if and only if

its columns span a bottom (n− k+ 1)-dimensional invariant subspace of A.

The ± subscripts in Proposition 2.1 are chosen to reflect the fact that λk(A) is the minimum

eigenvalue of V∗−AV− and the maximum eigenvalue of V∗+AV+. As a consequence of Propo-

sition 2.1, when A is Hermitian, λk(−A) =−λn−k+1(A). This fact allows us to use the same
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techniques we develop for bounding the eigenvalues from above to bound them from below.

2.4 Tail bounds for interior eigenvalues

In this section we develop a generic bound on the tail probabilities of eigenvalues of sums of

independent, random, Hermitian matrices. We establish this bound by supplementing the matrix

Laplace transform methodology of [Tro12] with Proposition 2.1 and a result, due to Lieb and

Seiringer [LS05], on the concavity of a certain trace function on the cone of positive-definite

matrices.

First we observe that the Courant–Fischer Theorem allows us to relate the behavior of the kth

eigenvalue of a matrix to the behavior of the largest eigenvalue of an appropriate compression

of the matrix.

Theorem 2.2. Let Y be a random Hermitian matrix with dimension n, and let k ≤ n be an integer.

Then, for all t ∈ R,

P
�

λk(Y)≥ t
	

≤ inf
θ>0

min
V∈Vn

n−k+1

¦

e−θ t ·E tr eθV∗YV
©

. (2.4.1)

Proof. Let θ be a fixed positive number. Then

P
�

λk(Y)≥ t
	

= P
�

λk(θY)≥ θ t
	

= P
¦

eλk(θY) ≥ eθ t
©

≤ e−θ t ·Eeλk(θY) = e−θ t ·Eexp

¨

min
V∈Vn

n−k+1

λmax
�

θV∗YV
�

«

.

The first identity follows from the positive homogeneity of eigenvalue maps and the second

from the monotonicity of the scalar exponential function. The final two relations are Markov’s
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inequality and (2.3.1).

To continue, we need to bound the expectation. Use monotonicity to interchange the order

of the exponential and the minimum; then apply the spectral mapping theorem to see that

Eexp
�

min
V∈Vn

n−k+1

λmax
�

θV∗YV
�

�

= E min
V∈Vn

n−k+1

λmax
�

exp(θV∗YV)
�

≤ min
V∈Vn

n−k+1

Eλmax
�

exp(θV∗YV)
�

≤ min
V∈Vn

n−k+1

E tr exp(θV∗YV).

The first inequality is Jensen’s. The second inequality follows because the exponential of a

Hermitian matrix is positive definite, so its largest eigenvalue is smaller than its trace.

Combine these observations and take the infimum over all positive θ to complete the

argument.

In most cases it is prohibitively difficult to compute the quantity E tr eθV∗YV exactly. The

main contribution of [Tro12] is a bound on this quantity, when V= I, in terms of the cumulant

generating functions of the summands. The main tool in the proof is a classical result due to

Lieb [Lie73, Thm. 6] that establishes the concavity of the function

A 7−→ tr exp
�

H+ log(A)
�

(2.4.2)

on the positive-definite cone, where H is Hermitian.

We are interested in the case where V 6= I and the matrix Y in Theorem 2.2 can be expressed

as a sum of independent random matrices. In this case, we use the following result to develop

the right-hand side of the Laplace transform bound (2.4.1).

Theorem 2.3. Consider a finite sequence {X j} of independent, random, Hermitian matrices with
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dimension n and a sequence {A j} of fixed Hermitian matrices with dimension n that satisfy the

relations

EeX j � eA j . (2.4.3)

Let V ∈ Vn
k be an isometric embedding of Ck into Cn for some k ≤ n. Then

E tr exp
§

∑

j
V∗X jV

ª

≤ tr exp
§

∑

j
V∗A jV

ª

. (2.4.4)

In particular,

E tr exp
§

∑

j
X j

ª

≤ tr exp
§

∑

j
A j

ª

. (2.4.5)

Theorem 2.3 is an extension of Lemma 3.4 of [Tro12], which establishes the special

case (2.4.5). The proof depends upon a result due to Lieb and Seiringer [LS05, Thm. 3]

that extends Lieb’s earlier result (2.4.2) by showing that the functional remains concave when

the log(A) term is compressed.

Proposition 2.4 (Lieb–Seiringer 2005). Let H be a Hermitian matrix with dimension k. Let

V ∈ Vn
k be an isometric embedding of Ck into Cn for some k ≤ n. Then the function

A 7−→ tr exp
�

H+V∗(logA)V
�

is concave on the cone of positive-definite matrices inMn
sa.

Proof of Theorem 2.3. First, note that (2.4.3) and the operator monotonicity of the matrix loga-

rithm yield the following inequality for each k:

logEeXk � Ak. (2.4.6)
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Let Ek denote expectation conditioned on the first k summands, X1 through Xk. Then

E tr exp







∑

j≤`
V∗X jV






= EE1 · · ·E`−1 tr exp







∑

j≤`−1

V∗X jV+V∗
�

logeX`
�

V







≤ EE1 · · ·E`−2 tr exp







∑

j≤`−1

V∗X jV+V∗
�

logEeX`
�

V







≤ EE1 · · ·E`−2 tr exp







∑

j≤`−1

V∗X jV+V∗
�

logeA`
�

V







= EE1 · · ·E`−2 tr exp







∑

j≤`−1

V∗X jV+V∗A`V






.

The first inequality follows from Proposition 2.4 and Jensen’s inequality, and the second depends

on (2.4.6) and the monotonicity of the trace exponential. Iterate this argument to complete the

proof.

Our main result follows from combining Theorem 2.2 and Theorem 2.3.

Theorem 2.5 (Minimax Laplace Transform). Consider a finite sequence {X j} of independent,

random, Hermitian matrices with dimension n, and let k ≤ n be an integer.

(i) Let {A j} be a sequence of Hermitian matrices that satisfy the semidefinite relations

EeθX j � eg(θ)A j

where g : (0,∞)→ [0,∞). Then, for all t ∈ R,

P
§

λk

�

∑

j
X j

�

≥ t
ª

≤ inf
θ>0

min
V∈Vn

n−k+1

�

e−θ t · tr exp
§

g(θ)
∑

j
V∗A jV

ª

�

.
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(ii) Let {A j : Vn
n−k+1→M

n
sa} be a sequence of functions that satisfy the semidefinite relations

EeθV∗X jV � eg(θ)A j(V)

for all V ∈ Vn
n−k+1, where g : (0,∞)→ [0,∞). Then, for all t ∈ R,

P
§

λk

�

∑

j
X j

�

≥ t
ª

≤ inf
θ>0

min
V∈Vn

n−k+1

�

e−θ t · tr exp
§

g(θ)
∑

j
A j(V)

ª

�

.

The first bound in Theorem 2.5 requires less detailed information on how compression

affects the summands but correspondingly does not give as sharp results as the second. For

most cases we consider, we use the second inequality because it is straightforward to obtain

semidefinite bounds for the compressed summands. The exception occurs in the proof of the

subexponential Bernstein inequality (Theorem 2.12 in Section 2.6); here we use the first bound,

because in this case there are no nontrivial semidefinite bounds for the compressed summands.

In the following two sections, we use the minimax Laplace transform method to derive

Chernoff and Bernstein inequalities for the interior eigenvalues of a sum of independent random

matrices. Tail bounds for the eigenvalues of matrix Rademacher and Gaussian series, eigenvalue

Hoeffding, and matrix martingale eigenvalue tail bounds can all be derived in a similar manner;

see [Tro12] for the details of the arguments leading to such tail bounds for the maximum

eigenvalue.
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2.5 Chernoff bounds

Classical Chernoff bounds establish that the tails of a sum of independent nonnegative random

variables decay subexponentially. [Tro12] develops Chernoff bounds for the maximum and

minimum eigenvalues of a sum of independent positive semidefinite matrices. We extend this

analysis to study the interior eigenvalues.

Intuitively, the eigenvalue tail bounds should depend on how concentrated the summands

are; e.g., the maximum eigenvalue of a sum of operators whose ranges are aligned is likely

to vary more than that of a sum of operators whose ranges are orthogonal. To measure how

much a finite sequence of random summands {X j} concentrates in a given subspace, we define a

function Ψ :
⋃

1≤k≤nV
n
k → R that satisfies

max j λmax

�

V∗X jV
�

≤Ψ(V) almost surely for each V ∈
⋃

1≤k≤n

Vn
k. (2.5.1)

The sequence {X j} associated with Ψ will always be clear from context. We have the following

result.

Theorem 2.6 (Eigenvalue Chernoff Bounds). Consider a finite sequence {X j} of independent,

random, positive-semidefinite matrices with dimension n. Given an integer k ≤ n, define

µk = λk

�

∑

j
EX j

�

,

and let V+ ∈ Vn
n−k+1 and V− ∈ Vn

k be isometric embeddings that satisfy

µk = λmax

�

∑

j
V∗+(EX j)V+

�

= λmin

�

∑

j
V∗−(EX j)V−

�

.
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Then

P
§

λk

�

∑

j
X j

�

≥ (1+δ)µk

ª

≤ (n− k+ 1) ·
�

eδ

(1+δ)1+δ

�µk/Ψ(V+)

for δ > 0, and

P
§

λk

�

∑

j
X j

�

≤ (1−δ)µk

ª

≤ k ·
�

e−δ

(1−δ)1−δ

�µk/Ψ(V−)

for δ ∈ [0, 1),

where Ψ is a function that satisfies (2.5.1).

Theorem 2.6 tells us how the tails of the kth eigenvalue are controlled by the variation

of the random summands in the top and bottom invariant subspaces of
∑

j EX j . Up to the

dimensional factors k and n− k+ 1, the eigenvalues exhibit binomial-type tails. When k = 1

(respectively, k = n) Theorem 2.6 controls the probability that the largest eigenvalue of the sum

is small (respectively, the probability that the smallest eigenvalue of the sum is large), thereby

complementing the one-sided Chernoff bounds of [Tro12].

Remark 2.7. The results in Theorem 2.6 have the following standard simplifications:

P
§

λk

�

∑

j
X j

�

≥ tµk

ª

≤ (n− k+ 1) ·
�e

t

�tµk/Ψ(V+)
for t ≥ e, and

P
§

λk

�

∑

j
X j

�

≤ tµk

ª

≤ k · e−(1−t)2µk/(2Ψ(V−)) for t ∈ [0, 1].

Remark 2.8. If it is difficult to estimate Ψ(V+) or Ψ(V−) and the summands are uniformly

bounded, one can resort to the weaker estimates

Ψ(V+)≤ max
V∈Vn

n−k+1

max j





V∗X jV




=max j





X j





 and

Ψ(V−)≤max
V∈Vn

k

max j





V∗X jV




=max j





X j





 .

Theorem 2.6 follows from Theorem 2.5 using an appropriate bound on the matrix moment-
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generating functions. The following lemma is due to Ahlswede and Winter [AW02]; see

also [Tro12, Lem. 5.8].

Lemma 2.9. Suppose that X is a random positive-semidefinite matrix that satisfies λmax (X)≤ 1.

Then

EeθX � exp
�

(eθ − 1)(EX)
�

for θ ∈ R.

Proof of Theorem 2.6, upper bound. We consider the case where Ψ(V+) = 1; the general case

follows by homogeneity. Define

A j(V+) = V∗+(EX j)V+ and g(θ) = eθ − 1.

Theorem 2.5(ii) and Lemma 2.9 imply that

P
§

λk

�

∑

j
X j

�

≥ (1+δ)µk

ª

≤ inf
θ>0

e−θ(1+δ)µk · tr exp
§

g(θ)
∑

j
V∗+(EX j)V+

ª

.

Bound the trace by the maximum eigenvalue, taking into account the reduced dimension of the

summands:

tr exp
§

g(θ)
∑

j
V∗+(EX j)V+

ª

≤ (n− k+ 1) ·λmax

�

exp
§

g(θ)
∑

j
V∗+(EX j)V+

ª�

= (n− k+ 1) · exp
§

g(θ) ·λmax

�

∑

j
V∗+(EX j)V+

�ª

.

The equality follows from the spectral mapping theorem. Identify the quantity µk; then combine
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the last two inequalities to obtain

P
§

λk

�

∑

j
X j

�

≥ (1+δ)µk

ª

≤ (n− k+ 1) · inf
θ>0

e[g(θ)−θ(1+δ)]µk .

The right-hand side is minimized when θ = log(1 + δ), which gives the desired upper tail

bound.

Proof of Theorem 2.6, lower bound. As before, we consider the case where Ψ(V−) = 1. Clearly,

P
§

λk

�

∑

j
X j

�

≤ (1−δ)µk

ª

= P
§

λn−k+1

�

∑

j
−X j

�

≥−(1−δ)µk

ª

. (2.5.2)

Apply Lemma 2.9 to see that, for θ > 0,

Eeθ(−V∗−X jV−) = Ee(−θ)V
∗
−X jV− � exp

�

g(θ) ·V∗−(−EX j)V−
�

,

where g(θ) = 1− e−θ . Theorem 2.5(ii) thus implies that the latter probability in (2.5.2) is

bounded by

inf
θ>0

eθ(1−δ)µk · tr exp
�

g(θ)
∑

j
V∗−(−EX j)V−

�

.

Using reasoning analogous to that in the proof of the upper bound, we justify the first of the

following inequalities:

tr exp
�

g(θ)
∑

j
V∗−(−EX j)V−

�

≤ k · exp
§

λmax

�

g(θ)
∑

j
V∗−(−EX j)V−

�ª

= k · exp
§

−g(θ) ·λmin

�

∑

j
V∗−(EX j)V−

�ª

= k · exp
�

−g(θ)µk
	

.
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The remaining equalities follow from the fact that −g(θ)< 0 and the definition of µk.

This argument establishes the bound

P
§

λk

�

∑

j
X j

�

≤ (1−δ)µk

ª

≤ k · inf
θ>0

e[θ(1−δ)−g(θ)]µk .

The right-hand side is minimized when θ = − log(1− δ), which gives the desired lower tail

bound.

2.6 Bennett and Bernstein inequalities

The classical Bennett and Bernstein inequalities use the variance or knowledge of the moments

of the summands to control the probability that a sum of independent random variables deviates

from its mean. In [Tro12], matrix Bennett and Bernstein inequalities are developed for the

extreme eigenvalues of Hermitian random matrix sums. We establish that the interior eigenvalues

satisfy analogous inequalities.

As in the derivation of the Chernoff inequalities of Section 2.5, we need a measure of

how concentrated the random summands are in a given subspace. Recall that the function

Ψ :
⋃

1≤k≤nV
n
k → R satisfies

max j λmax

�

V∗X jV
�

≤Ψ(V) almost surely for each V ∈
⋃

1≤k≤n

Vn
k. (2.6.1)

The sequence {X j} associated with Ψ will always be clear from context.

Theorem 2.10 (Eigenvalue Bennett Inequality). Consider a finite sequence {X j} of independent,

random, Hermitian matrices with dimension n, all of which have zero mean. Given an integer
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k ≤ n, define

σ2
k = λk

�

∑

j
E(X2

j )
�

.

Choose V+ ∈ Vn
n−k+1 to satisfy

σ2
k = λmax

�

∑

j
V∗+E(X

2
j )V+

�

.

Then, for all t ≥ 0,

P
§

λk

�

∑

j
X j

�

≥ t
ª

≤ (n− k+ 1) · exp

¨

−
σ2

k

Ψ(V+)2
· h
�

Ψ(V+)t

σ2
k

�«

(i)

≤ (n− k+ 1) · exp

¨

−t2/2

σ2
k +Ψ(V+)t/3

«

(ii)

≤















(n− k+ 1) · exp
n

−3
8

t2/σ2
k

o

for t ≤ σ2
k/Ψ(V+)

(n− k+ 1) · exp
n

−3
8

t/Ψ(V+)
o

for t ≥ σ2
k/Ψ(V+),

(iii)

where the function h(u) = (1+ u) log(1+ u)− u for u≥ 0. The function Ψ satisfies (2.6.1) above.

Results (i) and (ii) are, respectively, matrix analogs of the classical Bennett and Bernstein

inequalities. As in the scalar case, the Bennett inequality reflects a Poisson-type decay in the tails

of the eigenvalues. The Bernstein inequality states that small deviations from the eigenvalues of

the expected matrix are roughly normally distributed while larger deviations are subexponential.

The split Bernstein inequalities (iii) make explicit the division between these two regimes.

As stated, Theorem 2.10 controls the probability that the eigenvalues of a sum are large.

Using the identity

λk

�

−
∑

j

X j

�

=−λn−k+1

�

∑

j

X j

�

,

Theorem 2.10 can also be applied to control the probability that eigenvalues of a sum are small.
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To prove Theorem 2.10, we use the following lemma (Lemma 6.7 in [Tro12]) to control the

moment-generating function of a random matrix with bounded maximum eigenvalue.

Lemma 2.11. Let X be a random Hermitian matrix satisfying EX = 0 and λmax (X) ≤ 1 almost

surely. Then

EeθX � exp((eθ − θ − 1) ·E(X2)) for θ > 0.

Proof of Theorem 2.10. Using homogeneity, we assume without loss that Ψ(V+) = 1. This implies

that λmax

�

X j

�

≤ 1 almost surely for all the summands. By Lemma 2.11,

EeθX j � exp
�

g(θ) ·E(X2
j )
�

,

with g(θ) = eθ − θ − 1.

Theorem 2.5(i) then implies

P
§

λk

�

∑

j
X j

�

≥ t
ª

≤ inf
θ>0

e−θ t · tr exp
�

g(θ)
∑

j
V∗+E(X

2
j )V+

�

≤ (n− k+ 1) · inf
θ>0

e−θ t ·λmax

�

exp
§

g(θ)
∑

j
V∗+E(X

2
j )V+

ª�

= (n− k+ 1) · inf
θ>0

e−θ t · exp
§

g(θ) ·λmax

�

∑

j
V∗+E(X

2
j )V+

�ª

.

The maximum eigenvalue in this expression equals σ2
k, thus

P
§

λk

�

∑

j
X j

�

≥ t
ª

≤ (n− k+ 1) · inf
θ>0

eg(θ)σ2
k−θ t .

The Bennett inequality (i) follows by substituting θ = log(1+ t/σ2
k) into the right-hand side

and simplifying.
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The Bernstein inequality (ii) is a consequence of (i) and the fact that

h(u)≥
u2/2

1+ u/3
for u≥ 0,

which can be established by comparing derivatives.

The subgaussian and subexponential portions of the split Bernstein inequalities (iii) are

verified through algebraic comparisons on the relevant intervals.

Occasionally, as in the application in Section 2.8 to the problem of covariance matrix

estimation, one desires a Bernstein-type tail bound that applies to summands that do not have

bounded maximum eigenvalues. In this case, if the moments of the summands satisfy sufficiently

strong growth restrictions, one can extend classical scalar arguments to obtain results such as

the following Bernstein bound for subexponential matrices.

Theorem 2.12 (Eigenvalue Bernstein Inequality for Subexponential Matrices). Consider a finite

sequence {X j} of independent, random, Hermitian matrices with dimension n, all of which satisfy

the subexponential moment growth condition

E(Xm
j )�

m!

2
Bm−2Σ2

j for m= 2,3, 4, . . . ,

where B is a positive constant and Σ2
j are positive-semidefinite matrices. Given an integer k ≤ n, set

µk = λk

�

∑

j
EX j

�

.

Choose V+ ∈ Vn
n−k+1 that satisfies

µk = λmax

�

∑

j
V∗+(EX j)V+

�

,
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and define

σ2
k = λmax

�

∑

j
V∗+Σ

2
j V+

�

.

Then, for any t ≥ 0,

P
§

λk

�

∑

j
X j

�

≥ µk + t
ª

≤ (n− k+ 1) · exp

¨

−
t2/2

σ2
k + Bt

«

(i)

≤















(n− k+ 1) · exp
n

−1
4

t2/σ2
k

o

for t ≤ σ2
k/B

(n− k+ 1) · exp
n

−1
4

t/B
o

for t ≥ σ2
k/B.

(ii)

This result is an extension of [Tro12, Theorem 6.2], which, in turn, generalizes a classical

scalar argument [DG98].

As with the other matrix inequalities, Theorem 2.12 follows from an application of The-

orem 2.5 and appropriate semidefinite bounds on the moment-generating functions of the

summands. Thus, the key to the proof lies in exploiting the moment growth conditions of

the summands to majorize their moment-generating functions. The following lemma, a trivial

extension of Lemma 6.8 in [Tro12], provides what we need.

Lemma 2.13. Let X be a random Hermitian matrix satisfying the subexponential moment growth

conditions

E(Xm)�
m!

2
Σ2 for m= 2, 3,4, . . . .

Then, for any θ in [0,1),

Eexp(θX)� exp

�

θEX+
θ2

2(1− θ)
Σ2

�

.
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Proof of Theorem 2.12. We note that X j satisfies the growth condition

E(Xm
j )�

m!

2
Bm−2Σ2

j for m≥ 2

if and only if the scaled matrix X j/B satisfies

E
�X j

B

�m

�
m!

2
·
Σ2

j

B2 for m≥ 2.

Thus, by rescaling, it suffices to consider the case B = 1.

By Lemma 2.13, the moment-generating functions of the summands satisfy

Eexp(θX j)� exp
�

θEX j + g(θ)Σ2
j

�

,

where g(θ) = θ2/(2− 2θ). Now we apply Theorem 2.5(i):

P
§

λk

�

∑

j
X j

�

≥ µk + t
ª

≤ inf
θ∈[0,1)

e−θ(µk+t) · tr exp
�

θ
∑

j
V∗+(EX j)V++ g(θ)

∑

j
V∗+Σ

2
j V+

�

≤ inf
θ∈[0,1)

(n− k+ 1) · exp
n

− θ(µk + t) + θ ·λmax

�

∑

j
V∗+(EX j)V+

�

+ g(θ) ·λmax

�

∑

j
V∗+Σ

2
j V+

�
o

= inf
θ∈[0,1)

(n− k+ 1) · exp
�

−θ t + g(θ)σ2
k

�

.

To achieve the final simplification, we identified µk and σ2
k. Now, select θ = t/(t +σ2

k). Then

simplication gives the Bernstein inequality (i).

Algebraic comparisons on the relevant intervals yield the split Bernstein inequalities (ii).
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2.7 An application to column subsampling

As an application of our Chernoff bounds, we examine how sampling columns from a matrix

with orthonormal rows affects the spectrum. This question has applications in numerical linear

algebra and compressed sensing. The special cases of the maximum and minimum eigenvalues

have been studied in the literature [Tro08, RV07]. The limiting spectral distributions of matrices

formed by sampling columns from similarly structured matrices have also been studied: the

results of [GH08] apply to matrices formed by sampling columns from any fixed orthogonal

matrix, and [Far10] studies matrices formed by sampling columns and rows from the discrete

Fourier transform matrix.

Let U be an n× r matrix with orthonormal rows. We model the sampling operation using a

random diagonal matrix D whose entries are independent Bern(p) random variables. Then the

random matrix

bU= UD (2.7.1)

can be interpreted as a random column submatrix of U with an average of pr nonzero columns.

Our goal is to study the behavior of the spectrum of bU.

Recall that the decay of the Chernoff tail bounds is influenced by the variation of the random

summands when compressed to invariant subspaces of the expected sum, as measured by Ψ(V).

In this application, the choice of invariant subspace is arbitrary, so we choose that which gives

the smallest variations and hence the fastest decay. This gives rise to a coherence-like quantity

associated with the matrix U : Recall that the jth column of U is written u j . Consider the



39

following coherence-like quantity associated with U :

τk = min
V∈Vn

k

max j





V∗u j







2
for k = 1, . . . , n. (2.7.2)

There does not seem to be a simple expression for τk. However, by choosing V∗ to be the

restriction to an appropriate k-dimensional coordinate subspace, we see that τk always satisfies

τk ≤ min
|I |≤k

max j

∑

i∈I

u2
i j .

The following theorem shows that the behavior of σk(bU), the kth singular value of bU, can be

explained in terms of τk.

Theorem 2.14 (Column Subsampling of Matrices with Orthonormal Rows). Let U be an n× r

matrix with orthonormal rows, and let p be a sampling probability. Define the sampled matrix bU

according to (2.7.1), and the numbers {τk} according to (2.7.2). Then, for each k = 1, . . . , n,

P
n

σk(bU)≥
p

(1+δ)p
o

≤ (n− k+ 1) ·
�

eδ

(1+δ)1+δ

�p/τn−k+1

for δ > 0, and

P
n

σk(bU)≤
p

(1−δ)p
o

≤ k ·
�

e−δ

(1−δ)1−δ

�p/τk

for δ ∈ [0, 1).

Proof. Observe, using (2.7.1), that

σk(bU)
2 = λk(UD2U∗) = λk







∑

j

d ju ju
∗
j






,

where u j is the jth column of U and d j ∼ Bern(p). Compute

µk = λk

�

∑

j
Ed ju ju

∗
j

�

= p ·λk(UU∗) = p ·λk(I) = p.
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It follows that, for any V ∈ Vn
n−k+1,

λmax

�

∑

j
V∗(Ed ju ju

∗
j )V
�

= p ·λmax
�

V∗V
�

= p = µk,

so the choice of V+ ∈ Vn
n−k+1 is arbitrary. Similarly, the choice of V− ∈ Vn

k is arbitrary. We select

V+ to be an isometric embedding that achieves τn−k+1 and V− to be an isometric embedding

that achieves τk. Accordingly,

Ψ(V+) =max j ‖V∗+u ju
∗
j V+‖=max j ‖V∗+u j‖2 = τn−k+1, and

Ψ(V−) =max j ‖V∗−u ju
∗
j V−‖=max j ‖V∗−u j‖2 = τk.

Theorem 2.6 delivers the upper bound

P
n

σk(Û)≥
p

(1+δ)p
o

= P







λk







∑

j

d ju ju
∗
j






≥ (1+δ)p







≤ (n− k+ 1) ·
�

eδ

(1+δ)1+δ

�p/τn−k+1

for δ > 0, and the lower bound

P
n

σk(Û)≤
p

(1−δ)p
o

= P







λk







∑

j

d ju ju
∗
j






≤ (1−δ)p







≤ k ·
�

e−δ

(1−δ)1−δ

�p/τk

for δ ∈ [0, 1).

To illustrate the discriminatory power of these bounds, let U be an n× n2 matrix consisting

of n rows of the n2× n2 Fourier matrix and choose p = (log n)/n so that, on average, sampling
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Figure 2.1: SPECTRUM OF A RANDOM SUBMATRIX OF A UNITARY DFT MATRIX. The matrix U is a
102×104 submatrix of the unitary DFT matrix with dimension 104, and the sampling probability
p = 10−4 log(104). The kth vertical bar, calculated using Theorem 2.14, describes an interval
containing the median value of the kth singular value of the sampled matrix bU. The black circles
denote the empirical medians of the singular values of bU, calculated from 500 trials. The gray
circles represent the singular values of EbU.

reduces the aspect ratio from n to log n. For n = 100, we determine upper and lower bounds for

the median value of σk(bU) by numerically finding the value of δ where the probability bounds

in Theorem 2.14 equal one-half. Figure 2.1 plots the empirical median value along with the

computed interval. We see that these ranges reflect the behavior of the singular values more

faithfully than the simple estimates σk(EbU) = p.

2.8 Covariance estimation

We conclude with an extended example that illustrates how this circle of ideas allows one

to answer interesting statistical questions. Specifically, we investigate the convergence of the

individual eigenvalues of sample covariance matrices. Our results establish conditions under

which the eigenvalues can be recovered to relative precision, and furthermore reflect the

difference in the probabilities of the kth eigenvalue of the sample covariance matrix over- or

underestimating that of the covariance matrix.
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Covariance estimation is a basic and ubiquitious problem that arises in signal processing,

graphical modeling, machine learning, and genomics, among other areas. Let {η j}nj=1 ⊂ R
p be

i.i.d. samples drawn from some distribution with zero mean and covariance matrix C. Define the

sample covariance matrix

bCn =
1

n

n
∑

j=1

η jη
∗
j .

An important challenge is to determine how many samples are needed to ensure that the

empirical covariance estimator has a fixed relative accuracy in the spectral norm. That is, given

a fixed ε, how large must n be so that






bCn−C







2 ≤ ε ‖C‖2? (2.8.1)

This estimation problem has been studied extensively. It is now known that for distributions

with a finite second moment, Ω(p log p) samples suffice [Rud99], and for log-concave distri-

butions, Ω(p) samples suffice [ALPTJ11]. More broadly, Vershynin [Ver11b] conjectures that,

for distributions with finite fourth moment, Ω(p) samples suffice; he establishes this result to

within iterated log factors. In [SV], Srivastava and Vershynin establish that Ω(p) samples suffice

for distributions which have finite 2+ ε moments, for some ε > 0, and satisfy an additional

regularity condition.

Inequality (2.8.1) ensures that the difference between the kth eigenvalues of bCn and C

is small, but it requires O
�

p
�

samples to obtain estimates of even a few of the eigenvalues.

Specifically, letting κ` = λ1(C)/λ`(C), we see that O(ε−2κ2
`p) samples are required to obtain

relative error estimates of the largest ` eigenvalues of C using the results of [ALPTJ11, Ver11b,

SV]. However, it is reasonable to expect that when the spectrum of C exhibits decay and `� p,

far fewer than O(p) samples should suffice to ensure relative error recovery of the largest `
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eigenvalues.

In fact, Vershynin shows this is the case when the random vector is subgaussian: in [Ver11a],

he defines the effective rank of C to be r =
�
∑p

i=1λi(C)
�

/λ1(C) and uses r to provide bounds

of the form (2.8.1). It follow from his arguments that, with high probability, the largest `

eigenvalues of C are estimated to relative precision when n = O(ε−2rκ2
` log p) samples are taken.

Clearly this result is most of interest when the effective rank is small: e.g. when r is O(1), we see

that O(ε−2κ2
` log p) samples suffice to give relative error accuracy in the largest ` eigenvalues

of C. Note, however, that this result does not supply the rates of convergence of the individual

eigenvalues, and it requires the effective rank to be small. To the best of the author’s knowledge,

there are no nonasymptotic estimates of the relative errors of individual eigenvalues that do not

require the assumption that C has low effective rank.

In this section, we derive a relative approximation bound for each eigenvalue of C. For

simplicity, we assume the samples are drawn from a N (0,C) distribution where C is full-rank,

but we expect that the arguments can be extended to cover other subgaussian distributions.

Theorem 2.15. Assume that C ∈Mp
sa is positive definite. Let {η j}nj=1 ⊂ R

p be i.i.d. samples drawn

from a N (0,C) distribution. Define

bCn =
1

n

∑n

j=1
η jη

∗
j .

Write λk for the kth eigenvalue of C, and write λ̂k for the kth eigenvalue of bCn. Then for k = 1, . . . , p,

P
¦

λ̂k ≥ λk + t
©

≤ (p− k+ 1) · exp

�

−nt2

32λk
∑p

i=k λi

�

for t ≤ 4nλk,
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and

P
¦

λ̂k ≤ λk − t
©

≤ k · exp

 

−3nt2

8λ1
�

λ1+
∑k

i=1λi
�

!

for t ≤ n
�

λ1+
k
∑

i=1

λi
�

.

The following corollary provides an answer to our question about relative error estimates.

Corollary 2.16. Let λk and λ̂k be as in Theorem 2.15. Then

P
¦

λ̂k ≥ (1+ ε)λk

©

≤ (p− k+ 1) · exp







−cnε2

∑p
i=k

λi

λk






for ε ≤ 4n,

and

P
¦

λ̂k ≤ (1− ε)λk

©

≤ k · exp







−cnε2

λ1

λk

�
∑k

i=1
λi

λk

�






for ε ∈ (0,1],

where the constant c is at least 1/32.

The first bound in Corollary 2.16 tells us how many samples are needed to ensure that λ̂k

does not overestimate λk. Likewise, the second bound tells us how many samples ensure that λ̂k

does not underestimate λk.

Corollary 2.16 suggests that the relationship of λ̂k to λk is determined by the spectrum of

C in the following manner. When the eigenvalues below λk are small compared with λk, the

quantity
p
∑

i=k

λi/λk

is small (viz., it is no larger than p− k+ 1), and so λ̂k is not likely to overestimate λk. Similarly,
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when the eigenvalues above λk are comparable with λk, the quantity

λ1

λk

 

k
∑

i=1

λi/λk

!

is small (viz., it is no larger than k ·κ2
k), and so λ̂k is not likely to underestimate λk.

Remark 2.17. The results in Theorem 2.15 and Corollary 2.16 also apply when C is rank-deficient:

simply replace each occurence of the dimension p in the bounds with rank(C).

Indeed, assume that C is rank-deficient and take its truncated eigenvalue decomposition to

be C= UΛU∗. If η j ∼N (0,C), then η j lies in the span of C. It follows that λ̂k = λk = 0 for all

k > rank(C). When k ≤ rank(C), we observe that

λk(C) = λk(Λ) and λk







∑

j

η jη
∗
j






= λk







∑

j

ξ jξ
∗
j






,

where ξ j = U∗η j is distributed N (0,Λ). Thus,

�

�

�

�

�

�

λk







∑

j

η jη
∗
j






−λk(C)

�

�

�

�

�

�

=

�

�

�

�

�

�

λk







∑

j

ξ jξ
∗
j






−λk(Λ)

�

�

�

�

�

�

.

Consequently, the problem of estimating the eigenvalues of C to relative error using the samples

{η j} is equivalent to that of estimating the eigenvalues of the full-rank covariance matrix Λ to

relative error using the samples {ξ j}.

It is reasonable to expect that one should be able to use Corollary 2.16 to recover Vershynin’s

result in [Ver11a] for Wishart matrices: that Ω(ε−2rκ2
` log p) samples suffice to estimate the

eigenvalues of the covariance matrix of a Gaussian random variable to within a relative precision

of 1± ε. Indeed, this result follows from Corollary 2.16 and a simple union bound argument.

Corollary 2.18. Assume C is positive semidefinite. Let {η j}nj=1 ⊂ R
p be i.i.d. samples drawn from
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a N (0,C) distribution. If n= Ω(ε−2rκ2
` log p), then with high probability

|λk(bCn)−λk(C)| ≤ ελk(C) for k = 1, . . . ,`.

Proof. From Corollary 2.16, we see that

P
¦

λk(bCn)≤ (1− ε)λk

©

≤ p−β when n≥ 32ε−2
�

λ1

λk

∑

i≤k

λi

λk

�

(log k+ β log p).

Recall that κk = λ1(C)/λk(C) and r =
�
∑p

i=1λi(C)
�

/λ1(C), so

�

λ1

λk

∑

i≤k

λi

λk

�

≤ κ2
kr.

Clearly, taking n = Ω(ε−2rκ2
` log p) samples ensures that, with high probability, each of the top `

eigenvalues of the sample covariance matrix satisfies λk(bCn)> (1− ε)λk.

Likewise,

P
¦

λk(bCn)≥ (1− ε)λk

©

≤ p−β when n≥ 32ε−2
�

∑

i≥k

λi

λk

�

(log(p− k+ 1) + β log p)

and

∑

i≥k

λi

λk
=
λ1

λk

�
∑

i≥k λi

�

λ1
≤ κk

�
∑p

i=1λi

�

λ1
= κkr,

so we see that taking n= Ω(ε−2rκ` log p) samples ensures that, with high probability, each of

the top ` eigenvalues of the sample covariance matrix satisfies λk(bCn)< (1+ ε)λk.

Combining these two results, we conclude that n = Ω(ε−2rκ2
` log p) ensures that the top

` eigenvalues of C are estimated to within relative precision 1 ± ε with probability at least
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1− 2`p−β .

2.8.1 Proof of Theorem 2.15

We now prove Theorem 2.15. This result requires a number of supporting lemmas; we defer

their proofs until after a discussion of extensions to Theorem 2.15.

We study the error |λk(bCn)−λk(C)|. To apply the methods developed in this chapter, we pass

to a question about the eigenvalues of a difference of two matrices. The first lemma accomplishes

this goal by compressing both the population covariance matrix and the sample covariance

matrix to a fixed invariant subspace of the population covariance matrix.

Lemma 2.19. Let X be a random Hermitian matrix with dimension p, and let A be a fixed

Hermitian matrix with dimension p. Choose W+ ∈ V
p
p−k+1 and W− ∈ V

p
k for which

λk(A) = λmax

�

W∗+AW+
�

= λmin

�

W∗−AW−
�

.

Then, for all t > 0,

P
�

λk(X)≥ λk(A) + t
	

≤ P
¦

λmax

�

W∗+XW+
�

≥ λk(A) + t
©

(2.8.2)

and

P
�

λk(X)≤ λk(A)− t
	

≤ P
¦

λmax

�

W∗−(A−X)W−
�

≥ t
©

. (2.8.3)

We apply this result with A = C and X = bCn. The first estimate (2.8.2) and the second

estimate (2.8.3) are handled using different arguments. The second estimate is easier because
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the maximum eigenvalue of the matrix C− bCn is bounded. Indeed,

λmax

�

W∗+(C− bCn)W+
�

≤ λmax

�

W∗+CW+
�

.

Thus, we may use Theorem 2.10 to complete the second estimate. The next lemma gives the

matrix variances that we need to apply this theorem.

Lemma 2.20. Let ξ∼N (0,G). Then

E(ξξ∗−G)2 = G2+ tr(G) ·G.

The first inequality (2.8.2) is harder because bCn is unbounded. In this case, we may apply

Theorem 2.12. To use this theorem, we need the following moment growth estimate for rank-one

Wishart matrices.

Lemma 2.21. Let ξ∼N (0,G). Then for any integer m≥ 2,

E
�

ξξ∗
�m � 2mm!(trG)m−1 ·G.

With these preliminaries addressed, we prove Theorem 2.15.

Proof of lower estimate in Theorem 2.15. First we consider the probability that λ̂k underesti-

mates λk. Let W− ∈ V
p
k satisfy

λk(C) = λmin

�

W∗−CW−
�

.
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Then Lemma 2.19 implies

P
¦

λk(bCn)≤ λk(C)− t
©

≤ P
¦

λmax

�

W∗−(C− bCn)W−
�

≥ t
©

= P
§

λmax

�

∑

j
W∗−(C−η jη

∗
j )W−

�

≥ nt
ª

.

The factor n comes from the normalization of the sample covariance matrix. Each term in the

sum is zero mean and bounded above by W∗−CW− in the semidefinite order, so Theorem 2.10

applies. As we desire a bound on the maximum eigenvalue of the sum, we take V+ = I when we

invoke Theorem 2.10. Then

σ2
1 = λmax

�

∑

j
E
h

W∗−(C−η jη
∗
j )W−

i2
�

= nλmax

�

E
�

W∗−(C−η1η
∗
1)W−

�2
�

.

The covariance matrix of η1 is C, so that of W∗−η1 is W∗−CW−. It follows from Lemma 2.20 that

E
�

W∗−(C−η1η
∗
1)W−

�2
= (W∗−CW−)

2+ tr(W∗−CW−) ·W∗−CW−.

Observe that W∗−CW− is the restriction of C to its top k-dimensional invariant subspace, so

σ2
1 = nλmax

�

E
�

W∗−(C−η1η
∗
1)W−

�2
�

= nλ1(C)

 

λ1(C) +
k
∑

i=1

λi(C)

!

and we can take Ψ(V+) = λmax (C) .

The subgaussian branch of the split Bernstein inequality of Theorem 2.10 shows that

P
§

λmax

�

∑

j
W∗−(C−η jη

∗
j )W−

�

≥ nt
ª

≤ k · exp

 

−3nt2

8λ1(C)
�

λ1(C) +
∑k

i=1λi(C)
�

!

when t ≤ n
�

λ1(C) +
∑k

i=1λi(C)
�

. This inequality provides the desired bound on the probability
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that λk(bCn) underestimates λk(C).

Proof of upper estimate in Theorem 2.15. Now we consider the probability that λ̂k overestimates

λk. Let W+ ∈ V
p
p−k+1 satisfy

λk(C) = λmax

�

W∗+CW+
�

.

Then Lemma 2.19 implies

P
¦

λk(bCn)≥ λk(C) + t
©

≤ P
¦

λmax

�

W∗+bCnW+
�

≥ λk(C) + t
©

= P
§

λmax

�

∑

j
W∗+(η jη

∗
j )W+

�

≥ nλk(C) + nt
ª

. (2.8.4)

The factor n comes from the normalization of the sample covariance matrix.

The covariance matrix of η j is C, so that of W∗+η j is W∗+CW+. Apply Lemma 2.21 to verify

that W∗+η j satisfies the subexponential moment growth bound required by Theorem 2.12 with

B = 2 tr(W∗+CW+) and Σ2
j = 8 tr(W∗+CW) ·W∗+CW+.

In fact, W∗+CW+ is the compression of C to the invariant subspace corresponding with its bottom

p− k+ 1 eigenvalues, so

B = 2
∑p

i=k
λi(C) and λmax

�

Σ2
j

�

= 8λk(C)
∑p

i=k
λi(C).

We are concerned with the maximum eigenvalue of the sum in (2.8.4), so we take V+ = I in the
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statement of Theorem 2.12 to find that

σ2
1 = λmax

�

∑

j
Σ2

j

�

= nλmax

�

Σ2
1

�

= 8nλk(C)
∑p

i=k
λi(C) and

µ1 = λmax







∑

j

W∗+E(η jη
∗
j )W+






= nλmax

�

W∗+CW+
�

= nλk(C).

It follows from the subgaussian branch of the split Bernstein inequality of Theorem 2.12 that

P
§

λk

�

∑

j
W∗+(η jη

∗
j )W+

�

≥ nλk(C) + nt
ª

≤ (p− k+ 1) · exp

�

−nt2

32λk(C)
∑p

i=k λi(C)

�

when t ≤ 4nλk(C). This provides the desired bound on the probability that λk(bCn) overestimates

λk(C).

2.8.2 Extensions of Theorem 2.15

Results analogous to Theorem 2.15 can be established for other distributions. If the distribution

is bounded, the possibility that λ̂k deviates above or below λk can be controlled using the

Bernstein inequality of Theorem 2.10. If the distribution is unbounded but has matrix moments

that satisfy a sufficiently nice growth condition, the probability that λ̂k deviates below λk can be

controlled with the Bernstein inequality of Theorem 2.10 and the probability that it deviates

above λk can be bounded using a Bernstein inequality analogous to that in Theorem 2.12.

We established Theorem 2.15 using this technique to demonstrate the simplicity of the

Laplace transform machinery. However, the results of [ALPTJ11] on the convergence of empirical

covariance matrices of isotropic log-concave random vectors lead to tighter bounds on the

probability that λ̂k overestimates λk. There does not seem to be an analogous reduction for

handling the probability that λ̂k is an underestimate.
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To see the relevance of the results in [ALPTJ11], first observe the following consequence of

the subadditivity of the maximum eigenvalue mapping:

λmax

�

W∗+(X−A)W+
�

≥ λmax

�

W∗+XW+
�

−λmax

�

W∗+AW+
�

= λmax

�

W∗+XW+
�

−λk(A).

In conjunction with (2.8.2), this gives us the following control on the probability that λk(X)

overestimates λk(A) :

P
�

λk(X)≥ λk(A) + t
	

≤ P
¦

λmax

�

W∗+(X−A)W+
�

≥ t
©

.

In our application, X is the empirical covariance matrix and A is the actual covariance matrix.

The spectral norm dominates the maximum eigenvalue, so

P
¦

λk(bCn)≥ λk(C) + t
©

≤ P
¦

λmax

�

W∗+(bCn−C)W+
�

≥ t
©

≤ P
¦

‖W∗+(bCn−C)W+‖ ≥ t
©

= P
¦

‖W∗+bCnW+− S2‖ ≥ t
©

,

where S is the square root of W∗+CW+. Now factor out S2 and identify λk(C) = ‖S2‖ to obtain

P
¦

λk(bC)≥ λk(C) + t
©

≤ P
¦

‖S−1W∗+bCnW+S−1− I‖‖S2‖ ≥ t
©

= P
¦

‖S−1W∗+bCnW+S−1− I‖ ≥ t/λk(C)
©

.

Note that if η is drawn from aN (0,C) distribution, then the covariance matrix of the transformed
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sample S−1W∗+η is the identity:

E
�

S−1W∗+ηη
∗W+S−1

�

= S−1W∗+CW+S−1 = I.

Thus S−1W∗+bCnW+S−1 is the empirical covariance matrix of a standard Gaussian vector in

Rp−k+1. By Theorem 1 of [ALPTJ11], it follows that λ̂k is unlikely to overestimate λk in relative

error when the number n of samples is Ω(p− k+ 1).

Similarly, for more general distributions, the bounds on the probability of λ̂k exceeding λk

can be tightened beyond those suggested in Theorem 2.15 by using the results in [ALPTJ11] or

[Ver11b].

Finally, we note that the techniques developed in the proof of Theorem 2.15 can be used to

investigate the spectrum of the error matrices bCn−C.

2.8.3 Proofs of the supporting lemmas

We now establish the lemmas used in the proof of Theorem 2.15.

Proof of Lemma 2.19. The probability that λk(X) overestimates λk(A) is controlled with the

sequence of inequalities

P
�

λk(X)≥ λk(A) + t
	

= P

(

inf
W∈Vp

p−k+1

λmax
�

W∗XW
�

≥ λk(A) + t

)

≤ P
¦

λmax

�

W∗+XW+
�

≥ λk(A) + t
©

.

We use a related approach to study the probability that λk(X) underestimates λk(A). Our



54

choice of W− implies that

λp−k+1(−A) =−λk(A) =−λmin

�

W∗−AW−
�

= λmax

�

W∗−(−A)W−
�

.

It follows that

P
�

λk(X)≤ λk(A)− t
	

= P
¦

λp−k+1(−X)≥ λp−k+1(−A) + t
©

= P

(

inf
W∈Vp

k

λmax
�

W∗(−X)W
�

≥ λmax

�

W∗−(−A)W−
�

+ t

)

≤ P
¦

λmax

�

W∗−(−X)W−
�

−λmax

�

W∗−(−A)W−
�

≥ t
©

≤ P
¦

λmax

�

W∗−(A−X)W−
�

≥ t
©

.

The final inequality follows from the subadditivity of the maximum eigenvalue mapping.

Proof of Lemma 2.20. We begin by taking S to be the positive-semidefinite square root of G.

Let S= UΛU∗ be the eigenvalue decomposition of S, and let γ be a N (0, Ip) random variable.

Recalling that G is the covariance matrix of ξ, we see that ξ and UΛγ are identically distributed.

Thus,

E(ξξ∗−G)2 = E(UΛγγ∗ΛU∗−UΛ2U∗)2

= UΛE(γγ∗Λ2γγ∗)ΛU∗−G2. (2.8.5)

Consider the (i, j) entry of the matrix being averaged:

E(γγ∗Λ2γγ∗)i j =
∑

k

E(γiγ jγ
2
k)λ

2
k.



55

The (i, j) entry of this matrix is zero because the entries of γ are independent and symmetric.

Furthermore, the (i, i) entry satisfies

E(γγ∗Λ2γγ∗)ii = E(γ4
i )λ

2
i +
∑

k 6=i

E(γ2
k)λ

2
k = 2λ2

i + tr(Λ2).

We have shown

E(γγ∗Λ2γγ∗) = 2Λ2+ tr(G) · I.

This equality and (2.8.5) imply the desired result.

Proof of Lemma 2.21. Factor the covariance matrix of ξ as G = UΛU∗ where U is orthogonal

and Λ = diag(λ1, . . . ,λp) is the matrix of eigenvalues of G. Let γ be a N (0, Ip) random variable.

Then ξ and UΛ1/2γ are identically distributed, so

E(ξξ∗)m = E
�

(ξ∗ξ)m−1ξξ∗
�

= E
�

(γ∗Λγ)m−1UΛ1/2γγ∗Λ1/2U∗
�

= UΛ1/2E
�

(γ∗Λγ)m−1γγ∗
�

Λ1/2U∗. (2.8.6)

Consider the (i, j) entry of the bracketed matrix in (2.8.6):

E
�

(γ∗Λγ)m−1γiγ j

�

= E
�

�
∑p

`=1
λ`γ

2
`

�m−1
γiγ j

�

. (2.8.7)

From this expression, and the independence and symmetry of the Gaussian variables {γi}, we

see that this matrix is diagonal.

To bound the diagonal entries, use a multinomial expansion to further develop the sum in
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(2.8.7) for the (i, i) entry:

E
�

(γ∗Λγ)m−1γ2
i

�

=
∑

`1+···+`p=m−1

�

m− 1

`1, . . . ,`p

�

λ
`1
1 · · ·λ

`p
p E
h

γ
2`1
1 · · ·γ

2`p
p γ2

i

i

.

Now we use the generalized AM–GM inequality to replace the expectation of the product of

Gaussians with the 2mth moment of a single standard Gaussian g. Denote the Lr norm of a

random variable X by

‖X‖Lr
= (E|X |r)1/r .

Since `1, . . . ,`p are nonnegative integers summing to m− 1, the generalized AM-GM inequality

justifies the first of the following inequalities:

Eγ2`1
1 · · ·γ

2`p
p γ2

i ≤ E
�

`1|γ1|+ · · ·+ `p|γp|+ |γi|
m

�2m

=



















1

m






|γi|+

p
∑

j=1

` j|γ j|

























2m

L2m

≤







1

m











γi







L2m
+

p
∑

j=1

` j





γ j







L2m













2m

=

�

1+ `1+ . . .+ `p

m

�2m




g






2m
L2m
= E(g2m).

The second inequality is the triangle inequality for Lr norms. Now we reverse the multinomial

expansion to see that the diagonal terms satisfy the inequality

E
�

(γ∗Λγ)m−1γ2
i

�

≤
∑

`1+···+`p=m−1

�

m− 1

`1, . . . ,`p

�

λ
`1
1 · · ·λ

`p
p E(g2m)

= (λ1+ . . .+λp)
m−1E(g2m) = tr(G)m−1E(g2m). (2.8.8)
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Estimate E(g2m) using the fact that Γ(x) is increasing for x ≥ 1 :

E
�

g2m
�

=
2m

p
π
Γ(m+ 1/2)<

2m

p
π
Γ(m+ 1) =

2m

p
π

m! for m≥ 1.

Combine this result with (2.8.8) to see that

E
�

(γ∗Λγ)m−1γγ∗
�

�
2m

p
π

m! tr(G)m−1 · I.

Complete the proof by using this estimate in (2.8.6).
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Chapter 3

Randomized sparsification in NP-hard
norms

Massive matrices are ubiquitous in modern data processing. Classical dense matrix algorithms

are poorly suited to such problems because their running times scale superlinearly with the size

of the matrix. When the dataset is sparse, one prefers to use sparse matrix algorithms, whose

running times depend more on the sparsity of the matrix than on the size of the matrix. Of

course, in many applications the matrix is not sparse. Accordingly, one may wonder whether it is

possible to approximate a computation on a large dense matrix with a related computation on a

sparse approximant to the matrix.

Let ‖ · ‖ be a norm on matrices. Here is one way to frame this challenge mathematically:

Given a matrix A, how can one efficiently generate a sparse matrix X for which the approximation

error ‖A−X‖ is small?

The literature has concentrated on the behavior of the approximation error in the spectral

and Frobenius norms; however, these norms are not always the most natural choice. Sometimes

it is more appropriate to consider the matrix as an operator from a finite-dimensional `p space

to a finite-dimensional `q space, and investigate the behavior of the approximation error in the

associated p→ q operator norm. As an example, the problem of graph sparsification is naturally

posed as a question of preserving the so-called cut norm of a matrix associated with the graph.
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The strong equivalency of the cut norm and the∞→1 norm suggests that, for graph-theoretic

applications, it may be fruitful to consider the behavior of the∞→1 norm under sparsification.

In other applications, e.g., the column subset selection algorithm in [Tro09], the∞→2 norm is

the norm of interest.

This chapter investigates the errors incurred by approximating a fixed real matrix with a

random matrix1. Our results apply to any scheme in which the entries of the approximating

matrix are independent and average to the corresponding entries of the fixed matrix. Our main

contribution is a bound on the expected∞→p norm error, which we specialize to the case of the

∞→1 and∞→2 norms. We also use a result of Latała [Lat05] to bound the expected spectral

approximation error, and we establish the subgaussianity of the spectral approximation error.

Our methods are similar to those of Rudelson and Vershynin in [RV07] in that we treat A

as a linear operator between finite-dimensional Banach spaces and use some of the same tools

of probability in Banach spaces. Whereas Rudelson and Vershynin consider the behavior of the

norms of random submatrices of A, we consider the behavior of the norms of matrices formed

by randomly sparsifying (or quantizing) the entries of A. This yields error bounds applicable to

schemes that sparsify or quantize matrices entrywise. Since some graph algorithms depend more

on the number of edges in the graph than the number of vertices, such schemes may be useful

in developing algorithms for handling large graphs. In particular, the algorithm of [BSS09] is

not suitable for sparsifying graphs with a large number of vertices. Part of our motivation for

investigating the∞→1 approximation error is the belief that the equivalence of the cut norm

with the∞→1 norm means that matrix sparsification in the∞→1 norm might be useful for

efficiently constructing optimal sparsifiers for such graphs.

1The content of this chapter is adapted from the technical report [GT11] co-authored with Joel Tropp.
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3.1 Notation

We establish the notation particular to this chapter.

All quantities are real. For 1≤ p ≤∞, the `n
p norm of x ∈ Rn is written as ‖x‖p. Each space

`n
p has an associated dual space `n

p′ , where p′, the conjugate exponent to p, is determined by the

relation p−1+ (p′)−1 = 1. The dual space of `n
1 (respectively, `n

∞) is `n
∞ (respectively, `n

1).

The kth column of the matrix A is denoted by A(k), and the ( j, k)th element is denoted by

a jk. We treat A as an operator from `n
p to `m

q , and the p→ q operator norm of A is written as

‖A‖p→q. The spectral norm, i.e. the 2→ 2 operator norm, is written ‖A‖2 . Recall that given an

operator A : `n
p→ `

m
q , the associated adjoint operator (AT , in the case of a matrix) maps from `m

q′

to `n
p′ . Further, the p→ q and q′→ p′ norms are dual in the sense that

‖A‖p→q =




AT






q′→p′ .

This chapter is concerned primarily with the spectral norm and the∞→1 and∞→2 norms.

The∞→1 and∞→2 norms are not unitarily invariant, so do not have simple interpretations

in terms of singular values; in fact, they are NP-hard to compute for general matrices [Roh00].

We remark that ‖A‖∞→1 = ‖Ax‖1 and ‖A‖∞→2 =




Ay






2 for certain vectors x and y whose

components take values ±1. An additional operator norm, the 2→∞ norm, is of interest: it is

the largest `2 norm achieved by a row of A. In the sequel we also encounter the column norm

‖A‖col =
∑

k
‖A(k)‖2.

The variance of X is written Var X = E(X − EX )2. The expectation taken with respect to

one variable X , with all others fixed, is written EX . The expression X ∼ Y indicates the random
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variables X and Y are identically distributed. Given a random variable X , the symbol X ′ denotes

a random variable independent of X such that X ′ ∼ X . The indicator variable of the event

X > Y is written 1X>Y . The Bernoulli distribution with expectation p is written Bern(p) and the

binomial distribution of n independent trials each with success probability p is written Bin(n, p).

We write X ∼ Bern(p) to indicate X is Bernoulli with mean p.

3.1.0.1 Graph sparsification

Graphs are often represented and fruitfully manipulated in terms of matrices, so the problems

of graph sparsification and matrix sparsification are strongly related. We now introduce the

relevant notation before surveying the literature.

Let G = (V, E,ω) be a weighted simple undirected graph with n vertices, m edges, and

adjacency matrix A given by

a jk =















ω jk ( j, k) ∈ E

0 otherwise

.

Orient the edges of G in an arbitrary manner. Then define the corresponding 2m× n oriented

incidence matrix B in the following manner: b2i−1, j = b2i,k = ωi and b2i−1,k = b2i, j = −ωi if

edge i is oriented from vertex j to vertex k, and all other entries of B are identically zero.

A cut is a partition of the vertices of G into two blocks: V = S∪S. The cost of a cut is the sum

of the weights of all edges in E which have one vertex in S and one vertex in S. Several problems

relating to cuts are of considerable practical interest. In particular, the MAXCUT problem, to

determine the cut of maximum cost in a graph, is common in computer science applications.

The cuts of maximum cost are exactly those that correspond to the cut-norm of the oriented
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incidence matrix B, which is defined as

‖B‖C = max
I⊂{1,...,2m}, J⊂{1,...,n}

�

�

�

∑

i∈I , j∈J
bi j

�

�

� .

Finding the cut-norm of a general matrix is NP-hard, but in [AN04], the authors offer a

randomized polynomial-time algorithm which finds a submatrix B̃ of B for which |
∑

jk b̃ jk| ≥

0.56‖B‖C. This algorithm thereby gives a feasible means of approximating the MAXCUT value for

arbitrary graphs. A crucial point in the derivation of the algorithm is the fact that for general

matrices the∞→1 operator norm is strongly equivalent with the cut-norm:

‖A‖C ≤ ‖A‖∞→1 ≤ 4‖A‖C ;

in fact, in the particular case of oriented incidence matrices, ‖B‖C = ‖B‖∞→1 .

In his thesis [Kar95] and the sequence of papers [Kar94a, Kar94b, Kar96], Karger introduces

the idea of random sampling to increase the efficiency of calculations with graphs, with a focus

on cuts. In [Kar96], he shows that by picking each edge of the graph with a probability inversely

proportional to the density of edges in a neighborhood of that edge, one can construct a sparsifier,

i.e., a graph with the same vertex set and significantly fewer edges that preserves the value of

each cut to within a factor of (1± ε).

In [SS08], Spielman and Srivastava improve upon this sampling scheme, instead keeping

an edge with probability proportional to its effective resistance—a measure of how likely it is

to appear in a random spanning tree of the graph. They provide an algorithm which produces

a sparsifier with O
�

(n log n)/ε2
�

edges, where n is the number of vertices in the graph. They

obtain this result by reducing the problem to the behavior of projection matrices ΠG and ΠG′

associated with the original graph and the sparsifier, and then appealing to a spectral-norm
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concentration result.

The log n factor in [SS08] seems to be an unavoidable consequence of using spectral-norm

concentration. In [BSS09], Batson et al. prove that the log n factor is not intrinsic: they establish

that every graph has a sparsifier that has Ω(n) edges. The existence proof is constructive and

provides a deterministic algorithm for constructing such sparsifiers in O(n3m) time, where m is

the number of edges in the original graph.

3.2 Preliminaries

Bounded differences inequalities are useful tools for establishing measure concentration for

functions of independent random variables that are insensitive to changes in a single argument.

In this chapter, we use a bounded differences inequality to show that the norms of the random

matrices that we encounter exhibit measure concentration.

Before stating the inequality of interest to us, we establish some notation. Let g : Rn→ R be

a measurable function of n random variables. Let X1, . . . , Xn be independent random variables,

and write W = g(X1, . . . , Xn). Let Wi denote the random variable obtained by replacing the ith

argument of g with an independent copy: Wi = g(X1, . . . , X ′i , . . . , Xn).

The following bounded differences inequality states that if g is insensitive to changes of a

single argument, then W does not deviate much from its mean.

Lemma 3.1 ([BLM03, Corollary 3]). Let W and {Wi} be random variables defined as above.

Assume that there exists a positive number C such that, almost surely,

∑n

i=1
(W −Wi)

21W>Wi
≤ C .
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Then, for all t > 0,

P {W > EW + t} ≤ e−t2/(4C).

Rademacher random variables take the values ±1 with equal probability. Rademacher

vectors are vectors of i.i.d. Rademacher random variables. We make use of Rademacher variables

in this chapter to simplify our analyses through the technique of Rademacher symmetrization.

Essentially, given a random variable Z , Rademacher symmetrization allows us to estimate the

behavior of Z in terms of that of the random variable Zsym = ε(Z− Z ′), where Z ′ is an i.i.d. copy

of Z and ε is a Rademacher random variable that is independent of the pair (Z , Z ′). The variable

Zsym is often easier to manipulate than Z , since it is guaranteed to be symmetric (i.e., Zsym and

−Zsym are identically distributed); in particular, EZsym = 0. The following basic symmetrization

result is drawn from [vW96, Lemma 2.3.1 et seq.].

Lemma 3.2. Let Z1, . . . , Zn, Z ′1, . . . , Z ′n be independent random variables satisfying Zi ∼ Z ′i , and let

ε be a Rademacher vector. Let F be a family of functions such that

sup
f ∈F

∑n

k=1
( f (Zk)− f (Z ′k))

is measurable. Then

E sup
f ∈F

∑n

k=1
( f (Zk)− f (Z ′k)) = E sup

f ∈F

∑n

k=1
εk( f (Zk)− f (Z ′k)).

Since we work with finite-dimensional probability models and linear functions, measurability

concerns can be ignored in our applications of Lemma 3.2.
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While Lemma 3.2 allows us to replace certain random processes with Rademacher processes,

Talagrand’s Rademacher comparison theorem [LT91, Theorem 4.12 et seq.] shows that certain

complicated Rademacher processes are bounded by simpler Rademacher processes. Together,

these two results often allow us to reduce the analysis of complicated random processes to the

analysis of simpler Rademacher processes.

Lemma 3.3. Fix finite-dimensional vectors z1, . . . ,zn and let ε be a Rademacher vector. Then

E max
‖u‖q=1

∑n

k=1
εk|〈zk,u〉| ≤ E max

‖u‖q=1

∑n

k=1
εk〈zk,u〉.

Lemma 3.3 involves Rademacher sums, i.e. sums of the form
∑

k εk xk where ε is a Rademacher

vector and x is a fixed vector. One of the most basic tools for understanding Rademacher sums is

the Khintchine inequality [Sza76], which gives information on the moments of a Rademacher

sum; in particular, it tells us the expected value of the sum is equivalent with the `2 norm of the

vector x.

Lemma 3.4 (Khintchine Inequality). Let x be a real vector, and let ε be a Rademacher vector. Then

1
p

2
‖x‖2 ≤ E

�

�

�

∑

k
εk xk

�

�

�≤ ‖x‖2 .

In its more general form, which we do not use in this thesis, the Khintchine inequality implies

that Rademacher sums are subguassian random variables.
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3.3 The∞→p norm of a random matrix

We are interested in schemes that approximate a given matrix A by means of a random matrix X

in such a way that the entries of X are independent and EX = A. It follows that the error matrix

Z= A−X has independent, zero-mean entries. Ultimately we aim to construct X so that it has

the property that, with high probability, many of its entries are identically zero, but this property

does not play a role at this stage of the analysis.

In this section, we derive a bound on the expected value of the∞→ p norm of a random

matrix with independent, zero-mean entries. We also study the tails of this error. In the next

two sections, we use the results of this section to reach more detailed conclusions on the∞→1

and∞→2 norms of Z.

3.3.1 The expected∞→p norm

The main tools used to derive the bound on the expected norm of Z are Lemma 3.2, a result on

the Rademacher symmetrization of random processes, and Lemma 3.3, Talagrand’s Rademacher

comparison theorem.

We now state and prove the bound on the expected norm of Z.

Theorem 3.5. Let Z be a random matrix with independent, zero-mean entries and let ε be a

Rademacher vector independent of Z. Then

E‖Z‖∞→p ≤ 2E









∑

k
εkZ(k)










p
+ 2 max

‖u‖q=1
E
∑

k

�

�

�

∑

j
ε j Z jku j

�

�

�

where q is the conjugate exponent of p.
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Proof of Theorem 3.5. By duality,

E‖Z‖∞→p = E




ZT






q→1 = E max
‖u‖q=1

∑

k
|〈Z(k),u〉|.

Center the terms in the sum and apply subadditivity of the maximum to get

E‖Z‖∞→p ≤ E max
‖u‖q=1

∑

k
(|〈Z(k),u〉| −E′|〈Z′(k),u〉|) + max

‖u‖q=1
E
∑

k
|〈Z(k),u〉|

= F + S.

(3.3.1)

Begin with the first term on the right-hand side of (3.3.1). Use Jensen’s inequality to draw

the expectation outside of the maximum:

F ≤ E max
‖u‖q=1

∑

k
(|〈Z(k),u〉| − |〈Z′(k),u〉|).

Now apply Lemma 3.2 to symmetrize the random variable:

F ≤ E max
‖u‖q=1

∑

k
εk(|〈Z(k),u〉| − |〈Z′(k),u〉|).

By the subadditivity of the maximum,

F ≤ E
�

max
‖u‖q=1

∑

k
εk|〈Z(k),u〉|+ max

‖u‖q=1

∑

k
−εk|〈Z(k),u〉|

�

= 2E max
‖u‖q=1

∑

k
εk|〈Z(k),u〉|,

where we have invoked the fact that −εk has the Rademacher distribution. Apply Lemma 3.3 to

get the final estimate of F :

F ≤ 2E max
‖u‖q=1

∑

k
εk〈Z(k),u〉= 2E max

‖u‖q=1

D
∑

k
εkZ(k),u

E

= 2E









∑

k
εkZ(k)










p
.
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Now consider the last term on the right-hand side of (3.3.1). Use Jensen’s inequality to

prepare for symmetrization:

S = max
‖u‖q=1

E
∑

k

�

�

�

∑

j
Z jku j

�

�

�= max
‖u‖q=1

E
∑

k

�

�

�

∑

j
(Z jk −E′Z ′jk)u j

�

�

�

≤ max
‖u‖q=1

∑

k
E
�

�

�

∑

j
(Z jk − Z ′jk)u j

�

�

� .

Apply Lemma 3.2 to the expectation of the inner sum to see

S ≤ max
‖u‖q=1

∑

k
E
�

�

�

∑

j
ε j(Z jk − Z ′jk)u j

�

�

� .

The triangle inequality gives us the final expression:

S ≤ max
‖u‖q=1

2E
∑

k

�

�

�

∑

j
ε j Z jku j

�

�

� .

Introduce the bounds for F and S into (3.3.1) to complete the proof.

3.3.2 A tail bound for the∞→p norm

We now develop a deviation bound for the∞→p approximation error. The argument is based

on Lemma 3.1, a bounded differences inequality.

To apply Lemma 3.1, we let Z = A − X be our error matrix, W = ‖Z‖∞→p, and W jk =





Z jk






∞→p, where Z jk is a matrix obtained by replacing a jk − X jk with an identically distributed

variable a jk − X ′jk while keeping all other variables fixed. The ∞→ p norms are sufficiently

insensitive to each entry of the matrix that Lemma 3.1 gives us a useful deviation bound.

Theorem 3.6. Fix an m× n matrix A, and let X be a random matrix with independent entries for
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which EX = A. Assume
�

�X jk

�

�≤ D
2

almost surely for all j, k. Then, for all t > 0,

P
¦

‖A−X‖∞→p > E‖A−X‖∞→p + t
©

≤ e−t2/(4D2nms)

where s =max{0,1− 2/q} and q is the conjugate exponent to p.

Proof. Let q be the conjugate exponent of p, and choose u,v such that W = uT Zv and ‖u‖q = 1

and ‖v‖∞ = 1. Then

(W −W jk)1W>W jk ≤ uT
�

Z− Z jk
�

v1W>W jk = (X ′jk − X jk)u j vk 1W>W jk ≤ D|u j vk|.

This implies

∑

j,k
(W −W jk)21W>W jk ≤ D2

∑

j,k
|u j vk|2 ≤ nD2 ‖u‖22 ,

so we can apply Lemma 3.1 if we have an estimate for ‖u‖22. We have the bounds ‖u‖2 ≤ ‖u‖q

for q ∈ [1, 2] and ‖u‖2 ≤ m1/2−1/q ‖u‖q for q ∈ [2,∞]. Therefore,

∑

j,k
(W −W jk)21W>W jk ≤ D2















nm1−2/q, q ∈ [2,∞]

n, q ∈ [1,2].

It follows from Lemma 3.1 that

P
¦

‖A−X‖∞→p > E‖A−X‖∞→p + t
©

= P {W > EW + t} ≤ e−t2/(4D2nms)

where s =max
�

0,1− 2/q
	

.

It is often convenient to measure deviations on the scale of the mean. Taking t = δE‖A−X‖∞→p

in Theorem 3.6 gives the following result.
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Corollary 3.7. Under the conditions of Theorem 3.6, for all δ > 0,

P
¦

‖A−X‖∞→p > (1+δ)E‖A−X‖∞→p

©

≤ e−δ
2(E‖A−X‖∞→p)2/(4D2nms).

3.4 Approximation in the∞→1 norm

In this section, we develop the∞→1 error bound as a consequence of Theorem 3.5. We then

prove that one form of the error bound is optimal, and we describe an example of its application

to matrix sparsification.

3.4.1 The expected∞→1 norm

To derive the∞→1 error bound, we first apply Theorem 3.5 with p = 1.

Theorem 3.8. Suppose that Z is a random matrix with independent, zero-mean entries. Then

E‖Z‖∞→1 ≤ 2E(‖Z‖col+




ZT






col).

Proof. Apply Theorem 3.5 to get

E‖Z‖∞→1 ≤ 2E









∑

k
εkZ(k)










1
+ 2 max

‖u‖∞=1
E
∑

k

�

�

�

∑

j
ε j Z jku j

�

�

�

= F + S.

(3.4.1)
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Use Hölder’s inequality to bound the first term in (3.4.1) with a sum of squares:

F = 2E
∑

j

�

�

�

∑

k
εkZ jk

�

�

�= 2EZ

∑

j
Eε
�

�

�

∑

k
εkZ jk

�

�

�

≤ 2EZ

∑

j

�

Eε
�

�

�

∑

k
εkZ jk

�

�

�

2
�1/2

.

The inner expectation can be computed exactly by expanding the square and using the indepen-

dence of the Rademacher variables:

F ≤ 2E
∑

j

�
∑

k
Z2

jk

�1/2
= 2E





ZT






col .

We treat the second term in the same manner. Use Hölder’s inequality to replace the sum

with a sum of squares and invoke the independence of the Rademacher variables to eliminate

cross terms:

S ≤ 2 max
‖u‖∞=1

EZ

∑

k

�

Eε
�

�

�

∑

j
ε j Z jku j

�

�

�

2
�1/2

= 2 max
‖u‖∞=1

E
∑

k

�

∑

j
Z2

jku2
j

�1/2
.

Since ‖u‖∞ = 1, it follows that u2
j ≤ 1 for all j, and

S ≤ 2E
∑

k

�

∑

j
Z2

jk

�1/2
= 2E‖Z‖col .

Introduce these estimates for F and S into (3.4.1) to complete the proof.

Taking Z= A−X in Theorem 3.8, we find

E‖A−X‖∞→1 ≤ 2E
�

∑

k

�

∑

j
(a jk − X jk)

2
�1/2

+
∑

j

�
∑

k
(a jk − X jk)

2
�1/2

�

.
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A simple application of Jensen’s inequality gives an error bound in terms of the variances of

the entries of X.

Corollary 3.9. Fix the matrix A, and let X be a random matrix with independent entries for which

EX jk = a jk. Then

E‖A−X‖∞→1 ≤ 2

�

∑

k

�

∑

j
Var(X jk)

�1/2
+
∑

j

�
∑

k
Var(X jk)

�1/2
�

.

3.4.2 Optimality

A simple estimate using the Khintchine inequality shows that the bound on the expected value

of the∞→1 norm given in Theorem 3.8 is in fact optimal up to constants.

Corollary 3.10. Suppose that Z is a random matrix with independent, zero-mean entries. Then

1

2
p

2
E(‖Z‖col+





ZT






col)≤ E‖Z‖∞→1 ≤ 2E(‖Z‖col+




ZT






col).

Proof. First we establish the inequality

‖Z‖col ≤
p

2‖Z‖∞→1 (3.4.2)

as a consequence of the Khintchine inequality, Lemma 3.4. Indeed, since

‖Z‖col =
∑

j





Z( j)






2
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and the Khintchine inequality gives the estimate





Z( j)






2 ≤
p

2E
�

�

�

∑

i
εi Zi j

�

�

� ,

we see that

‖Z‖col ≤
p

2E
∑

j

�

�

�

∑

i
εi Zi j

�

�

�

=
p

2E




ZTε






1 ≤
p

2 sup
‖x‖∞=1





ZT x






1

=
p

2




ZT






∞→1 =
p

2‖Z‖∞→1 .

Since the∞→1 norms of Z and ZT are equal, it also follows that





ZT






col ≤
p

2




ZT






∞→1 =
p

2‖Z‖∞→1 .

The lower bound on E‖Z‖∞→1 is now a consequence of (3.4.2),

1

2
p

2
E(‖Z‖col+





ZT






col)≤ E‖Z‖∞→1 ,

while the upper bound is given by Theorem 3.8.

Remark 3.11. Using standard arguments, one can establish that the deterministic bounds

1

2
p

2

�

‖Z‖col+




ZT






col

�

≤ ‖Z‖∞→1 ≤
p

n

2

�

‖Z‖col+




ZT






col

�

hold for any square n× n matrix Z. Corollary 3.10 is a refinement of this equivalence relation

that holds when Z is a random, zero-mean matrix. In particular, the corollary tells us that when
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we assume this model for Z, the equivalence relation does not depend on the dimensions of Z,

and thus if what we care about is the expected∞→1 norm of Z, we can work with the expected

column norm of Z without losing any sharpness.

3.4.3 An example application

In this section we provide an example illustrating the application of Corollary 3.9 to matrix

sparsification.

From Corollary 3.9 we infer that a good scheme for sparsifying a matrix A while minimizing

the expected relative ∞→1 error is one which drastically increases the sparsity of X while

keeping the relative error

∑

k

�

∑

j Var(X jk)
�1/2

+
∑

j

�

∑

k Var(X jk)
�1/2

‖A‖∞→1

small. Once a sparsification scheme is chosen, the hardest part of estimating this quantity

is probably estimating the ∞→1 norm of A. The example shows, for a simple family of

approximation schemes, what kind of sparsification results can be obtained using Corollary 3.9

when we have a very good handle on this quantity.

Consider the case where A is an n×n matrix whose entries all lie within an interval bounded

away from zero; for definiteness, take them to be positive. Let γ be a desired bound on the

expected relative∞→1 norm error. We choose the randomization strategy X jk ∼
a jk

p
Bern(p)

and ask how small can p be without violating our bound on the expected error.

In this case,

‖A‖∞→1 =
∑

j,k
a jk = O(n2),
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and Var(X jk) =
a2

jk

p
− a2

jk. Consequently, the first term in Corollary 3.9 satisfies

∑

k

�

∑

j
Var(X jk)

�1/2
=
∑

k

�

1

p





ak







2
2−




ak







2
2

�1/2

=
�

1− p

p

�1/2

‖A‖col

= O

�

�

1− p

p

�1/2

n
p

n

�

and likewise the second term satisfies

∑

j

�
∑

k
Var(X jk)

�1/2
= O

�

�

1− p

p

�1/2

n
p

n

�

.

Therefore the relative∞→1 norm error satisfies

∑

k

�

∑

j Var(X jk)
�1/2

+
∑

j

�

∑

k Var(X jk)
�1/2

‖A‖∞→1
= O

�

�

1− p

pn

�1/2
�

.

It follows that E‖A−X‖∞→1 < γ for p on the order of (1+ nγ2)−1 or larger. The expected

number of nonzero entries in X is pn2, so for matrices with this structure, we can sparsify with a

relative∞→1 norm error smaller than γ while reducing the number of expected nonzero entries

to as few as O( n2

1+nγ2 ) = O( n
γ2 ). Intuitively, this sparsification result is optimal in the dimension:

it seems we must keep on average at least one entry per row and column if we are to faithfully

approximate A.

3.5 Approximation in the∞→2 norm

In this section, we develop the ∞→2 error bound stated in the introduction, establish the

optimality of a related bound, and provide examples of its application to matrix sparsification.

To derive the error bound, we first specialize Theorem 3.5 to the case of p = 2.
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Theorem 3.12. Suppose that Z is a random matrix with independent, zero-mean entries. Then

E‖Z‖∞→2 ≤ 2E‖Z‖F+ 2min
D
E




ZD−1






2→∞

where D is a positive diagonal matrix that satisfies Tr(D2) = 1.

Proof. Apply Theorem 3.5 to get

E‖Z‖∞→2 ≤ 2E









∑

k
εkZ(k)










2
+ 2 max

‖u‖2=1
E
∑

k

�

�

�

∑

j
ε j Z jku j

�

�

�

=: F + S.

(3.5.1)

Expand the first term, and use Jensen’s inequality to move the expectation with respect to the

Rademacher variables inside the square root:

F = 2E
�

∑

j

�

�

�

∑

k
εkZ jk

�

�

�

2
�1/2

≤ 2EZ

�

∑

j
Eε
�

�

�

∑

k
εkZ jk

�

�

�

2
�1/2

.

The independence of the Rademacher variables implies that the cross terms cancel, so

F ≤ 2E
�

∑

j

∑

k
Z2

jk

�1/2
= 2E‖Z‖F .

We use the Cauchy–Schwarz inequality to replace the `1 norm with an `2 norm in the second

term of (3.5.1). A direct application would introduce a possibly suboptimal factor of
p

n (where

n is the number of columns in Z), so instead we choose dk > 0 such that
∑

k d2
k = 1 and use the

corresponding weighted `2 norm:

S = 2 max
‖u‖2=1

E
∑

k

�

�

�

∑

j ε j Z jku j

�

�

�

dk
dk ≤ 2 max

‖u‖2=1
E









∑

k

�

�

�

∑

j ε j Z jku j

�

�

�

2

d2
k









1/2

.
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Move the expectation with respect to the Rademacher variables inside the square root and

observe that the cross terms cancel:

S ≤ 2 max
‖u‖2=1

EZ









∑

k

Eε
�

�

�

∑

j ε j Z jku j

�

�

�

2

d2
k









1/2

= 2 max
‖u‖2=1

E

 

∑

j,k

Z2
jku2

j

d2
k

!1/2

.

Use Jensen’s inequality to pass the maximum through the expectation, and note that if ‖u‖2 = 1

then the vector formed by elementwise squaring u lies on the `1 unit ball, thus

S ≤ 2E

 

max
‖u‖1=1

∑

j
u j ·

 

∑

k

(Z jk/dk)
2

!!1/2

.

Clearly this maximum is achieved when u is chosen so u j = 1 at an index j for which
∑

k(Z jk/dk)2

is maximal and u j = 0 otherwise. Consequently, the maximum is the largest of the `2 norms

of the rows of ZD−1, where D = diag(d1, . . . , dn). Recall that this quantity is, by definition,

‖ZD−1‖2→∞. Therefore S ≤ 2E‖ZD−1‖2→∞. The theorem follows by optimizing our choice of D

and introducing our estimates for F and S into (3.5.1).

Taking Z= A−X in Theorem 3.12, we have

E‖A−X‖∞→2 ≤ 2E
�

∑

j,k
(X jk − a jk)

2
�1/2

+ 2min
D
Emax

j

�

∑

k

(X jk − a jk)2

d2
k

�1/2

. (3.5.2)

We now derive a bound which depends only on the variances of the X jk.

Corollary 3.13. Fix the m× n matrix A and let X be a random matrix with independent entries so

that EX = A. Then

E‖A−X‖∞→2 ≤ 2
�

∑

j,k
Var(X jk)

�1/2
+ 2
p

m min
D

max
j

�

∑

k

Var(X jk)

d2
k

�1/2
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where D is a positive diagonal matrix with Tr(D2) = 1.

Proof. Let F and S denote, respectively, the first and second term of (3.5.2). An application of

Jensen’s inequality shows that F ≤ 2
�

∑

j,k Var(X jk)
�1/2

. A second application shows that

S ≤ 2min
D

�

Emax
j

∑

k

(X jk − a jk)2

d2
k

�1/2

.

Bound the maximum with a sum:

S ≤ 2min
D

�

∑

j
E
∑

k

(X jk − a jk)2

d2
k

�1/2

.

The sum is controlled by a multiple of its largest term, so

S ≤ 2
p

m min
D

�

max
j

∑

k

Var(X jk)

d2
k

�1/2

,

where m is the number of rows of A.

3.5.1 Optimality

We now show that Theorem 3.12 gives an optimal bound, in the sense that each of its terms

is necessary. In the following, we reserve the letter D for a positive diagonal matrix with

Tr(D2) = 1.

First, we establish the necessity of the Frobenius term by identifying a class of random

matrices whose∞→2 norms are larger than their weighted 2→∞ norms but comparable to their

Frobenius norms. Let Z be a random m×
p

m matrix such that the entries in the first column of Z

are equally likely to be positive or negative ones, and all other entries are zero. With this choice,

E‖Z‖∞→2 = E‖Z‖F =
p

m. Meanwhile, E‖ZD−1‖2→∞ = d−1
11 , so minDE‖ZD−1‖2→∞ = 1, which
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is much smaller than E‖Z‖∞→2. Clearly, the Frobenius term is necessary.

Similarly, to establish the necessity of the weighted 2→∞ norm term, we consider a class

of matrices whose∞→2 norms are larger than their Frobenius norms but comparable to their

weighted 2→∞ norms. Consider a
p

n× n matrix Z whose entries are all equally likely to be

positive or negative ones. It is a simple task to confirm that E‖Z‖∞→2 ≥ n and E‖Z‖F = n3/4; it

follows that the weighted 2→∞ norm term is necessary. In fact,

min
D
E




ZD−1






2→∞ =min
D
E max

j=1,...,
p

n

 

∑n

k=1

Z2
jk

d2
kk

!1/2

=min
D

�

∑n

k=1

1

d2
kk

�1/2

= n,

so we see that E‖Z‖∞→2 and the weighted 2→∞ norm term are comparable.

3.5.2 An example application

From Theorem 3.12 we infer that a good scheme for sparsifying a matrix A while minimizing

the expected relative∞→2 norm error is one which drastically increases the sparsity of X while

keeping the relative error

E‖Z‖F+minDE




ZD−1






2→∞
‖A‖∞→2

small, where Z= A−X.

As before, consider the case where A is an n× n matrix all of whose entries are positive and

in an interval bounded away from zero. Let γ be a desired bound on the expected relative∞→2

norm error. We choose the randomization strategy X jk ∼
a jk

p
Bern(p) and ask how much can

we sparsify while respecting our bound on the relative error. That is, how small can p be? We

appeal to Theorem 3.12. In this case,

‖A‖∞→2 =
�

∑

j

∑

k
a2

jk + 2
∑

j

∑

`<m
a j`a jm

�
1
2
= O

�

�

n2+ n2(n− 1)
�

1
2

�

.
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By Jensen’s inequality,

E‖Z‖F ≤ E‖A‖F+E‖X‖F ≤
�

1+
1
p

p

�

‖A‖F = O

�

n

�

1+
1
p

p

��

.

We bound the other term in the numerator, also using Jensen’s inequality:

min
D
E




ZD−1






2→∞ ≤
p

nE‖Z‖2→∞ ≤
p

n

�

1+
1
p

p

�

‖A‖2→∞ = O

�

n

�

1+
1
p

p

��

to get

E‖Z‖F+minDE




ZD−1






2→∞
‖A‖∞→2

= O

�

1
p

n
+

1
p

pn

�

= O

�

1
p

pn

�

We conclude that, for this class of matrices and this family of sparsification schemes, we can

reduce the number of expected nonzero terms to O
�

n
γ2

�

while maintaining an expected∞→2

norm relative error of γ.

3.6 A spectral error bound

In this section we establish a bound on E‖A−X‖ as an immediate consequence of Latała’s result

[Lat05]. We then derive a deviation inequality for the spectral approximation error using a

log-Sobolev inequality from [BLM03], and use it to compare our results to those of Achlioptas

and McSherry [AM07] and Arora, Hazan, and Kale [AHK06].

Theorem 3.14. Suppose A is a fixed matrix, and let X be a random matrix with independent entries

for which EX= A. Then

E‖A−X‖ ≤ C

�

max
j

�
∑

k
Var(X jk)

�1/2
+max

k

�

∑

j
Var(X jk)

�1/2
+
�

∑

jk
E(X jk − a jk)

4
�1/4

�
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where C is a universal constant.

In [Lat05], Latała considered the spectral norm of random matrices with independent,

zero-mean entries, and he showed that, for any such matrix Z,

E‖Z‖ ≤ C

�

max
j

�
∑

k
EZ2

jk

�1/2
+max

k

�

∑

j
EZ2

jk

�1/2
+
�

∑

jk
EZ4

jk

�1/4
�

,

where C is some universal constant. Unfortunately, no estimate for C is available. Theorem 3.14

follows from Latała’s result, by taking Z= A−X.

The bounded differences argument from Section 3.3 establishes the correct (subgaussian)

tail behavior of E‖A−X‖.

Theorem 3.15. Fix the matrix A, and let X be a random matrix with independent entries for which

EX = A. Assume
�

�X jk

�

�≤ D/2 almost surely for all j, k. Then, for all t > 0,

P {‖A−X‖> E‖A−X‖+ t} ≤ e−t2/(4D2).

Proof. The proof is exactly that of Theorem 3.6, except now u and v are both in the `2 unit

sphere.

We find it convenient to measure deviations on the scale of the mean.

Corollary 3.16. Under the conditions of Theorem 3.15, for all δ > 0,

P {‖A−X‖> (1+δ)E‖A−X‖} ≤ e−δ
2(E‖A−X‖)2/(4D2).
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3.6.1 Comparison with previous results

To demonstrate the applicability of our bound on the spectral norm error, we consider the

sparsification and quantization schemes used by Achlioptas and McSherry [AM07], and the

quantization scheme proposed by Arora, Hazan, and Kale [AHK06]. We show that our spectral

norm error bound and the associated concentration result give results of the same order, with

less effort. Throughout these comparisons, we take A to be a m× n matrix, with m< n, and we

define b =max jk |a jk|.

3.6.1.1 A matrix quantization scheme

First we consider the scheme proposed by Achlioptas and McSherry for quantization of the

matrix entries:

X jk =















b with probability 1
2
+

a jk

2b

−b with probability 1
2
− a jk

2b

.

With this choice Var(X jk) = b2− a2
jk ≤ b2, and E(X jk − a jk)4 = b2− 3a4+ 2a2 b2 ≤ 3b4, so the

expected spectral error satisfies

E‖A−X‖ ≤ C(
p

nb+
p

mb+ b 4p3mn)≤ 4Cb
p

n.

Applying Corollary 3.16, we find that the error satisfies

P
¦

‖A−X‖> 4Cb
p

n(1+δ)
©

≤ e−δ
2C2n.
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In particular, with probability at least 1− exp(−C2n),

‖A−X‖ ≤ 8Cb
p

n.

Achlioptas and McSherry proved that for n≥ n0, where n0 is on the order of 109, with probability

at least 1− exp(−19(log n)4),

‖A−X‖< 4b
p

n.

Thus, Theorem 3.15 provides a bound of the same order in n which holds with higher probability

and over a larger range of n.

3.6.1.2 A nonuniform sparsification scheme

Next we consider an analog to the nonuniform sparsification scheme proposed in the same paper.

Fix a number p in the range (0,1) and sparsify entries with probabilities proportional to their

magnitudes:

X jk ∼
a jk

p jk
Bern(p jk), where p jk =max







p
�a jk

b

�2
,

r

p
�a jk

b

�2
×
(8 log n)4

n







.

Achlioptas and McSherry determine that, with probability at least 1− exp(−19(log n)4),

‖A−X‖< 4b
p

n/p.

Further, the expected number of nonzero entries in X is less than

pmn×Avg[(a jk/b)2] +m(8 log n)4, (3.6.1)
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where the notation Avg(·) indicates the average of a quantity over all the entries of A.

Their choice of p jk, in particular the insertion of the (8 log n)4/n factor, is an artifact of their

method of proof. Instead, we consider a scheme which compares the magnitudes of a jk and b to

determine p jk. Introduce the quantity R=maxa jk 6=0 b/|a jk| to measure the spread of the entries

in A, and take

X jk ∼















a jk

p jk
Bern(p jk), where p jk =

pa2
jk

pa2
jk+b2 , a jk 6= 0

0, a jk = 0.

With this scheme, Var(X jk) = 0 when a jk = 0, otherwise Var(X jk) = b2/p. Likewise, E(X jk −

a jk)4 = 0 if a jk = 0, otherwise

E(X jk − a jk)
4 ≤ Var(X jk)





X jk − a jk







2
∞ =

b2

p
max

(

|a jk|, |a jk|

 

pa2
jk + b2

pa2
jk

− 1

!)2

≤
b4

p2 R2,

so

E‖A−X‖ ≤ C

 

b

r

n

p
+ b

r

m

p
+ b

r

R

p
4pmn

!

≤ C(2+
p

R)b

r

n

p
.

Applying Corollary 3.16, we find that the error satisfies

P
¨

‖A−X‖> C(2+
p

R)b

r

n

p
(ε+ 1)

«

≤ e−ε
2C2(2+

p
R)2pn/16,

with probability at least 1− exp(−C2(2+
p

R)2pn/16),

‖A−X‖ ≤ 2C(2+
p

R)b

r

n

p
.

Thus, Theorem 3.14 and Achlioptas and McSherry’s scheme-specific analysis yield results of the

same order in n and p. As before, we see that our bound holds with higher probability and over
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a larger range of n. Furthermore, since the expected number of nonzero entries in X satisfies

∑

jk
p jk =

∑

jk

pa2
jk

pa2
jk + b2

≤ pnm×Avg
�

�a jk

b

�2�

,

we have established a smaller limit on the expected number of nonzero entries.

3.6.1.3 A scheme which simultaneously sparsifies and quantizes

Finally, we use Theorem 3.15 to estimate the error of the scheme from [AHK06] which simulta-

neously quantizes and sparsifies. Fix δ > 0 and consider

X jk =















sgn(a jk)
δp
n

Bern
�

|a jk|
p

n

δ

�

, |a jk| ≤
δp
n

a jk, otherwise.

Then Var(X jk) = 0 if |a jk| ≥ δ/
p

n, otherwise

Var(X jk) = |a jk|3
p

n

δ
− 2a2

jk + |a jk|
δ
p

n
≤
δ2

n
.

The fourth moment term is zero when |a jk| ≥ δ/
p

n, and when |a jk|< δ/
p

n,

E(X jk − a jk)
4 = |a jk|5

p
n

δ
− 4a4

jk + 6|a jk|3
δ
p

n
− 4a2

jk

δ2

n
+ |a jk|

�

δ
p

n

�3

≤ 8
δ4

n2 .

This gives the estimates

E‖A−X‖ ≤ C
�

p
n
δ
p

n
+
p

m
δ
p

n
+ 2

δ
p

n
4pmn

�

≤ 4Cδ
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and

P
�

‖A−X‖> 4Cδ(γ+ 1)
	

≤ e−γ
2C2n.

Taking γ= 1, we see that with probability at least 1− exp(−C2n),

‖A−X‖ ≤ 8Cδ.

Let S =
∑

j,k |A jk|, then appealing to Lemma 1 in [AHK06], we find that X has O
�p

nS
γ

�

nonzero

entries with probability at least 1− exp
�

−Ω
�p

nS
γ

��

.

Arora, Hazan, and Kale establish that this scheme guarantees ‖A−X‖= O(δ) with proba-

bility at least 1− exp(−Ω(n)), so we see that our general bound recovers a bound of the same

order.

3.7 Comparison with later bounds

The papers [NDT10, DZ11, AKL13], written after the results in this chapter were obtained,

present alternative schemes for sparsification and quantization.

The scheme presented in [NDT10] sparsifies a matrix by zeroing out all sufficiently small

entries of A, keeping all sufficiently large entries, and randomly sampling the remaining entries of

the matrix with a probability depending on their magnitudes. More precisely, given a parameter

s > 0, it generates an approximation whose entries are distributed as

X jk =































0, a2
jk ≤ (log2(n)/n)‖A‖2F/s

a jk a2
jk ≥ ‖A‖

2
F/s

(a jk/p jk)Bern(p jk), otherwise, where p jk = sa2
jk/‖A‖

2
F.
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The analysis offered guarantees that if s = Ω(ε−2n log3 n), then with probability at least 1− n−1,

‖A− X‖2 ≤ ε and, in expectation, X has less than 2s nonzero entries. It is not clear whether

or not this scheme can be analyzed using Theorem 3.14. It is straightforward to establish that

Var(X jk)≤ ε2/(n log3 n) for this scheme, but obtaining a sufficiently small upper bound on the

fourth moment E(X jk − a jk)4 is challenging. In particular, the estimate

E(X jk − a jk)
4 ≤ Var(X jk)‖X jk − a jk‖∞

gives an upper bound on the order of εa2
jkn/ log5 n, which is sufficient only to establish a much

weaker guarantee on the error E‖A−X‖2 than the guarantee given in [NDT10].

The scheme introduced in [DZ11] first zeroes out all entries of A ∈ Rn×n of sufficiently small

magnitude, then samples elements from A in s i.i.d. trials with replacement. The elements are

selected with probabilities proportional to their squared magnitudes. Thus, the approximant can

be written in the form

X=
1

s

∑s

t=1

a jt kt

p jt kt

e jt e
T
kt

,

where ( jt , kt) is the index of the element of A selected in the tth trial, p jk = a2
jk/‖A‖

2
F is the

probability that the entry a jk is selected, and e j denotes the jth standard basis vector in n.

Clearly X has at most s nonzero entries. Let s = Ω(ε−2n log(n)‖A‖2F). Then the authors show

that, with probability at least 1− n−1, the error of the approximation satisfies ‖A−X‖2 ≤ ε. This

scheme is not easily analyzable using our Theorem 3.14. Since the approximant X is a sum of

rank-one matrices, it is most natural to analyze its approximation error using tail bounds for

sums of independent random matrices. Indeed, the authors of [DZ11] use a matrix Bernstein

inequality to provide their results.

Finally, the scheme presented in [AKL13] computes an approximation of the same form as
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the scheme introduced in [DZ11], but samples entries of A with probabilities proportional their

absolute values. That is,

X=
1

s

∑s

t=1

a jt kt

p jt kt

e jt e
T
kt

,

where p jk = |a jk|/
∑

pq |apq|. Again, this scheme is not amenable to analysis using Theorem 3.14.

Recall that A(k) denotes the kth row of A. The authors establish that, when

s = Ω
�

ε−2 log(n/δ)
�

∑

jk
|A jk|

�

max
k
‖A(k)‖1

�

,

the error bound ‖A−X‖2 ≤ ε is satisfied with probability at least 1−δ. The approximant X has,

in expectation, at most 2s nonzero entries.

Comparing the extents to which we were able to reproduce the guarantees of the spar-

sification schemes introduced in [AM01, AHK06, AM07, NDT10, DZ11, AKL13], we see that

Theorem 3.14 sometimes can recover competitive guarantees on the approximation errors of

element-wise sparsification schemes in which X jk is directly related to a jk through a simple

expression. When X is more naturally represented as a sum of rank-1 matrices, Theorem 3.14 is

not easily applicable.
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Chapter 4

Preliminaries for the investigation of
low-rank approximation algorithms

This chapter consolidates probabilistic and linear algebraic tools used in Chapters 5 and 6. We

also establish two lemmas of independent interest: the first, Lemma 4.3, is an exponential tail

bound on the Frobenius-norm error incurred when approximating the product of two matrices

using randomized column and row sampling without replacement; the second, Lemma 4.9, is a

deterministic bound on the forward errors of column-based low-rank approximations.

4.1 Probabilistic tools

In this section, we review several tools that are used to deal with random matrices and more

generally, random processes.

4.1.1 Concentration of convex functions of Rademacher variables

Rademacher random variables take the values±1 with equal probability. Rademacher vectors are

vectors of i.i.d. Rademacher random variables. Rademacher vectors often play a crucial role in

the construction of dimension reduction maps, an area where the strong measure concentration

properties of Rademacher sums are often exploited. The following result states a large-deviation
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property of convex Lipschitz functions of Rademacher vectors: namely, these functions tend to

be not much larger than their expectations.

Lemma 4.1 (A large deviation result for convex Lipschitz functions of Rademacher random

variables [Corollary 1.3 ff. in [Led96]] ). Suppose f : Rn→ R is a convex function that satisfies

the Lipschitz bound

| f (x)− f (y)| ≤ L




x− y






2 for all x,y.

Let ε ∈ Rn be a Rademacher vector. For all t ≥ 0,

P
�

f (ε)≥ E
�

f (ε)
�

+ Lt
	

≤ e−t2/8.

4.1.2 Chernoff bounds for sums of random matrices sampled without replace-

ment

Classical Chernoff bounds provide tail bounds for sums of nonnegative random variables. Their

matrix analogs provide tail bounds on the eigenvalues and singular values of sums of positive-

semidefinite random matrices. Matrix Chernoff bounds are particularly useful for analyzing

algorithms involving randomized column-sampling. Most matrix Chernoff bounds available in

the literature require the summands to be independent. Indeed, the Chernoff bounds developed

in Chapter 2 bound the eigenvalues of a sum of independent random Hermitian matrices.

However, occasionally one desires Chernoff bounds that do not require the summands to be

independent. The following Chernoff bounds are useful in the case where the summands are

drawn without replacement from a set of bounded random matrices.

Lemma 4.2 (Matrix Chernoff Bounds, Theorem 2.2 in [Tro11b]). Let X be a finite set of
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positive-semidefinite matrices with dimension k, and suppose that

max
X∈X

λmax (X)≤ B.

Sample {X1, . . . ,X`} uniformly at random from X without replacement. Compute

µmax = ` ·λ1(EX1) and µmin = ` ·λk(EX1).

Then

P
§

λ1

�

∑

j
X j

�

≥ (1+ ν)µmax

ª

≤ k ·
�

eν

(1+ ν)1+ν

�µmax/B

for ν ≥ 0, and

P
§

λk

�

∑

j
X j

�

≤ (1− ν)µmin

ª

≤ k ·
�

e−ν

(1− ν)1−ν

�µmin/B

for ν ∈ [0, 1).

We also use the following standard simplification of the lower Chernoff bound, which holds

under the setup of Lemma 4.2:

P
§

λk

�

∑

j
X j

�

≤ εµmin

ª

≤ k · e−(1−ε)
2µmin/(2B) for ε ∈ [0,1]. (4.1.1)

4.1.3 Frobenius-norm error bounds for matrix multiplication

We now establish a tail bound on the Frobenius-norm error of a simple approximate matrix mul-

tiplication scheme based upon randomized column and row sampling. This simple approximate

multiplication scheme is a staple in randomized numerical linear algebra, and variants have

been analyzed multiple times [DK01, DKM06a, Sar06]. The result derived here differs in that it

applies to the sampling without replacement model, and it provides bounds on the error that

hold with high probability, rather than simply an estimate of the expected error.
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Lemma 4.3 (Matrix Multiplication). Let X ∈ Rm×n and Y ∈ Rn×p. Fix ` ≤ n. Select uniformly

at random and without replacement ` columns from X and the corresponding rows from Y and

multiply the selected columns and rows with
p

n/`. Let X̂ ∈ Rm×` and Ŷ ∈ R`×p contain the scaled

columns and rows, respectively. Choose

σ2 ≥
4n

`

∑n

i=1
‖X(i)‖22‖Y

(i)‖22 and B ≥
2n

`
max

i
‖X(i)‖2‖Y(i)‖2.

Then if 0≤ t ≤ σ2/B,

P
¦



X̂Ŷ−XY






F ≥ t +σ
©

≤ exp

�

−
t2

4σ2

�

.

To prove Lemma 4.3, we use the following vector Bernstein inequality for sampling without

replacement in Banach spaces; this result follows directly from a similar inequality for sampling

with replacement established by Gross in [Gro11]. Again, vector Bernstein inequalities have

been derived by multiple authors [LT91, BLM03, Rec11, Tro12, CP11, Gro11]; the value of this

specific result is that it applies to the sampling without replacement model.

Lemma 4.4. Let V be a collection of n vectors in a Hilbert space with norm ‖·‖2 . Choose V1, . . . ,V`

from V uniformly at random without replacement. Choose V′1, . . . ,V′` from V uniformly at random

with replacement. Let

µ= E









∑`

i=1
(V′i −EV

′
i)









2

and set

σ2 ≥ 4`E




V′1






2
2 and B ≥ 2 max

V∈V
‖V‖2 .



93

If 0≤ t ≤ σ2/B, then

P
§








∑`

i=1
Vi − `EV1










2
≥ µ+ t

ª

≤ exp

�

−
t2

4σ2

�

.

Proof. We proceed by developing a bound on the moment generating function (mgf) of










∑`

i=1
Vi − `EV1










2
−µ.

This mgf is controlled by the mgf of a similar sum where the vectors are sampled with replace-

ment. That is, for λ≥ 0,

Eexp
�

λ ·









∑`

i=1
Vi − `EV1










2
−λµ

�

≤ Eexp
�

λ ·









∑`

i=1
V′i − `EV1










2
−λµ

�

. (4.1.2)

This follows from a classical observation due to Hoeffding [Hoe63] that for any convex real-

valued function g,

Eg
�

∑`

i=1
Vi

�

≤ Eg
�

∑`

i=1
V′i

�

.

The paper [GN10] provides an alternate exposition of this fact. Specifically, take g(V) =

exp
�

λ




V− `EV1







2−λµ
�

to obtain the inequality of mgfs asserted in (4.1.2).

In the proof of Theorem 12 in [Gro11], Gross establishes that any random variable Z whose

mgf is less than the righthand side of (4.1.2) satisfies a tail inequality of the form

P
�

Z ≥ µ+ t
	

≤ exp

�

−
t2

4s2

�

(4.1.3)

when t ≤ s2/M , where

s2 ≥
∑`

i=1
E




V′i −EV
′
1







2
2
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and




V′i −EV
′
1







2 ≤ M almost surely for all i = 1, . . . ,`. To apply this result, note that for all

i = 1, . . . ,`,





V′i −EV
′
1







2 ≤ 2max
V∈V
‖V‖2 = B.

Take V′′1 to be an i.i.d. copy of V′1 and observe that, by Jensen’s inequality,

∑`

i=1
E




V′i −EV
′
1







2
2 = `E





V′1−EV
′
1







2
2

≤ `E




V′1−V′′1






2
2 ≤ `E(





V′1






2+




V′′1






2)
2

≤ 2`E




V′1






2
2+




V′′1






2
2

= 4`E




V′1






2
2 ≤ σ

2.

The bound given in the statement of Lemma 4.4 when we take s2 = σ2 and M = B in (4.1.3).

With this Bernstein bound in hand, we proceed to the proof of Lemma 4.3. Let vec : Rm×n→

Rmn denote the operation of vectorization, which stacks the columns of a matrix A ∈ Rm×n to

form the vector vec(A).

Proof of Lemma 4.3. Let V be the collection of vectorized rank-one products of columns of

p

n/` ·X and rows of
p

n/` · Y. That is, take

V =
�

n

`
vec(X(i)Y

(i))
�n

i=1
.

Sample V1, . . . ,V` uniformly at random from V without replacement, and observe that EVi =

`−1vec(XY). With this notation,





X̂Ŷ−XY






F ∼









∑`

i=1
(Vi −EVi)










2
,
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where ∼ refers to identical distributions. Therefore any probabilistic bound developed for the

right-hand side quantity holds for the left-hand side quantity. The conclusion of the lemma

follows when we apply Lemma 4.4 to bound the right-hand side quantity.

We calculate the variance-like term in Lemma 4.4,

4`E




V1







2
2 = 4`

1

n

n
∑

i=1

n2

`2 ‖X(i)‖
2
2‖Y

(i)‖22 = 4
n

`

n
∑

i=1

‖X(i)‖22‖Y
(i)‖22 ≤ σ

2.

Now we consider the expectation

µ= E









∑`

i=1
(V′i −EV

′
i)









2
.

In doing so, we will use the notation E [C |A, B, . . .] to denote the conditional expectation of

a random variable C with respect to the random variables A, B, . . . . Recall that a Rademacher

vector is a random vector whose entries are independent and take the values ±1 with equal

probability. Let ε be a Rademacher vector of length ` and sample V′1, . . . ,V′` and V′′1 , . . . ,V′′`

uniformly at random from V with replacement. Now µ can be bounded as follows:

µ = E









∑`

i=1
(V′i −EV

′
i)









2

≤ E
�








∑`

i=1
(V′i −V′′i )










2

�

� {V′i}, {V
′′
i }
�

= E
�








∑`

i=1
εi(V

′
i −V′′i )










2

�

� {V′i}, {V
′′
i },ε

�

≤ 2E
�








∑`

i=1
εiV
′
i










2

�

� {V′i},ε
�

≤ 2

r

E
�










∑`

i=1
εiV
′
i










2

2

�

� {V′i},ε
�

= 2

Ç

E
�

E
�

∑`

i, j=1
εiε jV

′
i
T V′j |ε

�

�

� {V′i}
�

= 2
q

E
∑`

i=1





V′i






2
2.
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The first inequality is Jensen’s, and the following equality holds because the components of the

sequence {V′i−V′′i } are symmetric and independent. The next two manipulations are the triangle

inequality and Jensen’s inequality. This stage of the estimate is concluded by conditioning and

using the orthogonality of the Rademacher variables. Next, the triangle inequality and the fact

that E




V′1






2
2 = E





V1







2
2 allow us to further simplify the estimate of µ :

µ≤ 2
q

E
∑`

i=1





V′i






2
2 = 2

q

`E




V1







2
2 ≤ σ.

We also calculate the quantity

2 max
V∈V
‖V‖2 =

2n

`
max

i
‖X(i)‖2‖Y(i)‖2 ≤ B.

The tail bound given in the statement of the lemma follows from applying Lemma 4.4 with our

estimates for B, σ2, and µ.

4.2 Linear Algebra notation and results

In subsequent chapters, we use the following partitioned compact SVD to state results for

rectangular matrices A with rank(A) = ρ :

A= UΣVT =

�

k ρ−k

U1 U2

�











k ρ−k

Σ1

Σ2





















VT
1

VT
2











. (4.2.1)

Here, Σ1 contains the k largest singular values of A and the columns of U1 and V1 respec-

tively span top k-dimensional left and right singular spaces of A. The matrix Ak = U1Σ1VT
1 is

the optimal rank-k approximation to A, and Aρ−k = A− Ak = U2Σ2VT
2 . The Moore-Penrose



97

pseudoinverse of A is denoted by A†.

When A is a positive-semidefinite matrix, U = V and (4.2.1) becomes the following parti-

tioned eigenvalue decomposition:

A= UΣUT =

�

k ρ−k

U1 U2

�











k ρ−k

Σ1

Σ2





















UT
1

UT
2











. (4.2.2)

The eigenvalues of an n× n symmetric matrix A are ordered λ1(A)≥ · · · ≥ λn(A).

The orthoprojector onto the column space of a matrix A is written PA and satisfies

PA = AA† = A(AT A)†AT .

Let S be a k-dimensional subspace of Rn and PS denote the projection onto S . Then the

coherence of S is

µ(S ) =
n

k
maxi(PS )ii .

The coherence of a matrix U ∈ Rn×k with orthonormal columns is the coherence of the subspace

S which it spans:

µ(U) := µ(S ) =
n

k
maxi(PS )ii =

n

k
maxi(UUT )ii .

The kth column of the matrix A is denoted by A(k); the jth row is denoted by A( j). The vector

ei is the ith element of the standard Euclidean basis (whose dimensionality will be clear from

the context).

We often compare SPSD matrices using the semidefinite ordering. In this ordering, A is

greater than or equal to B, written A � B or B � A, when A− B is positive semidefinite. Each

SPSD matrix A has a unique square root A1/2 that is also SPSD, has the same eigenspaces as
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A, and satisfies A =
�

A1/2�2. The eigenvalues of an SPSD matrix A are arranged in weakly

decreasing order: λmax (A) = λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) = λmin (A) . Likewise, the singular

values of a rectangular matrix A with rank ρ are ordered σmax(A) = σ1(A) ≥ σ2(A) ≥ · · · ≥

σρ(A) = σmin(A). The spectral norm of a matrix B is written ‖B‖2 ; its Frobenius norm and trace

are written ‖B‖F and Tr (B) , respectively. The notation ‖ · ‖ξ indicates that an expression holds

for both ξ= 2 and ξ= F.

4.2.1 Column-based low-rank approximation

The remainder of this thesis concerns low-rank matrix approximation algorithms: Chapter 5

provides bounds on the approximation errors of low-rank approximations that are formed using

fast orthonormal transformations, and Chapter 6 provides bounds on the approximation errors

of a class of low-rank approximations to SPSD matrices.

Both of these low-rank approximation schemes are amenable to interpretation as schemes

wherein a matrix is projected onto a subspace spanned by some linear combination of its columns.

The problem of providing a general framework for studying the error of these projection schemes

is well studied [BMD09, HMT11, BDMI11]. The authors of these works have provided a set of so-

called structural results: deterministic bounds on the spectral and Frobenius-norm approximation

errors incurred by these projection schemes. Structural results allow us to relate the errors of

low-rank approximations formed using projection schemes to the optimal errors ‖A−Ak‖ξ for

ξ= 2, F.

Before stating the specific structural results that are used in the sequel, we review the

necessary background material on low-rank matrix approximations that are restricted to lie

within a particular subspace.
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4.2.1.1 Matrix Pythagoras and generalized least-squares regression

Lemma 4.5 is the analog of Pythagoras’ theorem in the matrix setting. A proof of this lemma can

be found in [BDMI11]. Lemma 4.6 is an immediate corollary that generalizes the Eckart–Young

theorem.

Lemma 4.5. If XYT = 0 or XT Y= 0, then

‖X+ Y‖2F = ‖X‖
2
F + ‖Y‖

2
F

and

max{‖X‖22 ,‖Y‖22} ≤ ‖X+ Y‖22 ≤ ‖X‖
2
2+ ‖Y‖

2
2 .

Lemma 4.6. Given A ∈ Rm×n and C ∈ Rm×`, for all X ∈ R`×n

‖A− PCA‖2ξ ≤ ‖A−CX‖2ξ

for both ξ= 2 and ξ= F.

Proof. Write

A−CX= (I− PC)A+ (PCA−CX)

and observe that

((I− PC)A)
T (PCA−CX) = 0,

so by Lemma 4.5,

‖A−CX‖2ξ ≥ ‖(I− PC)A‖2ξ.
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4.2.1.2 Low-rank approximations restricted to subspaces

Given A ∈ Rm×n; a target rank k < n; another matrix Y ∈ Rm×`, where ` > k; and a choice of

norm ξ (ξ = 2 or ξ = F), we use the notation ΠξY,k(A) to refer to the matrix that lies in the

column span of Y, has rank k or less, and minimizes the ξ-norm error in approximating A. More

concisely, ΠξY,k(A) = YXξ, where

Xξ = arg min
X∈R`×n:rank(X)≤k

‖A− YX‖2ξ.

The approximation ΠF
Y,k(A) can be computed using the following three-step procedure:

1: Orthonormalize the columns of Y to construct a matrix Q ∈ Rm×`.

2: Compute Xopt = argminX∈R`×n, rank(X)≤k





QT A−X






F .

3: Compute and return ΠF
Y,k(A) = QXopt ∈ Rm×n.

There does not seem to be a similarly efficient algorithm for computing Π2
Y,k(A).

The following result, which appeared as Lemma 18 in [BDMI11], both verifies the claim that

this algorithm computes ΠF
Y,k(A) and shows that ΠF

Y,k(A) is a constant factor approximation to

Π2
Y,k(A).

Lemma 4.7. [Lemma 18 in [BDMI11]] Given A ∈ Rm×n, Y ∈ Rm×`, and an integer k ≤ `, the

matrix QXopt ∈ Rm×n described above satisfies ΠF
Y,k(A) = QXopt, can be computed in O(mn`+(m+

n)`2) time, and satisfies







A−ΠF
Y,k(A)










2

2
≤ 2







A−Π2
Y,k(A)










2

2
.
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4.2.2 Structural results for low-rank approximation

The following result, which appears as Lemma 7 in [BMD09], provides an upper bound on the

residual error of the low-rank matrix approximation obtained via projections onto subspaces.

The paper [HMT11] also supplies an equivalent result.

Lemma 4.8. [Lemma 7 in [BMD09]] Let A ∈ Rm×n have rank ρ. Fix k satisfying 0 ≤ k ≤ ρ.

Given a matrix S ∈ Rn×`, with `≥ k, construct Y = AS. If VT
1 S has full row-rank, then, for ξ = 2, F,

‖A− PYA‖2ξ ≤ ‖A−Π
ξ
Y,k(A)‖

2
ξ ≤ ‖A−Ak‖2ξ+ ‖Σ2VT

2 S(VT
1 S)†‖2ξ. (4.2.3)

In addition to this bound on the residual error, we use the following novel structural bound

on the forward errors of low-rank approximants.

Lemma 4.9. Let A ∈ Rm×n have rank ρ. Fix k satisfying 0 ≤ k ≤ ρ. Given a matrix S ∈ Rn×`,

where `≥ k, construct Y= AS. If VT
1 S has full row-rank, then, for ξ= 2,F,

‖Ak − PYA‖2ξ ≤ ‖A−Ak‖2ξ+ ‖Σ2VT
2 S(VT

1 S)†‖2ξ. (4.2.4)

Proof. Observe that

(Ak − PYAk)
T (PYAρ−k) = 0,

so Lemma 4.5 implies that

‖Ak − PYA‖2ξ = ‖Ak − PYAk − PYAρ−k‖2ξ ≤ ‖Ak − PYAk‖2ξ+ ‖Aρ−k‖2ξ.
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Applying Lemma 4.6 with X= (VT
1 S)†VT

1 , we see that

‖Ak − PYA‖2ξ ≤ ‖Ak − Y(VT
1 S)†VT

1 ‖
2
ξ+ ‖Aρ−k‖2ξ

= ‖Ak −AkS(VT
1 S)†VT

1 +Aρ−kS(VT
1 S)†VT

1 ‖
2
ξ+ ‖Aρ−k‖2ξ

= ‖Ak −U1Σ1VT
1 S(VT

1 S)†VT
1 +Aρ−kS(VT

1 S)†VT
1 ‖

2
ξ+ ‖Aρ−k‖2ξ.

Since VT
1 S has full row rank, (VT

1 S)(VT
1 S)† = Ik. Recall that Ak = U1Σ1VT

1 and Aρ−k = U2Σ2VT
2 .

Consequently, the above inequality reduces neatly to the desired inequality

‖Ak − PYA‖2ξ ≤ ‖Ak −U1Σ1VT
1 +Aρ−kS(VT

1 S)†VT
1 ‖

2
ξ+ ‖Aρ−k‖2ξ

= ‖Aρ−kS(VT
1 S)†VT

1 ‖
2
ξ+ ‖Aρ−k‖2ξ

= ‖A−Ak‖2ξ+ ‖Σ2VT
2 S(VT

1 S)†‖2ξ.

4.2.2.1 A geometric interpretation of the sampling interaction matrix

Let Ω1 = VT
1 S and Ω2 = VT

2 S denote the interaction of the sampling matrix S with the top and

bottom right-singular spaces of A. It is evident from Lemmas 4.8 and 4.9 that the quality of the

low-rank approximations depend upon the norm of the sampling interaction matrix

VT
2 S(VT

1 S)† = Ω2Ω
†
1.

The smaller the spectral norm of the Ω2Ω
†
1 the more effective S is as a sampling matrix. To give

the sampling interaction matrix a geometric interpretation, we first recall the definition of the



103

sine between the range spaces of two matrices M1 and M2 :

sin2(M1,M2) = ‖(I− PM1
)PM2

‖2.

Note that this quantity is not symmetric: it measures how well the range of M1 captures that of

M2 [GV96, Chapter 12].

Lemma 4.10. Fix A ∈ Rm×n, a target rank k, and S ∈ Rn×` where ` > k. Assume S has orthonor-

mal columns. Define

Ω1 = VT
1 S and Ω2 = VT

2 S.

Then, if Ω1 has full row-rank,

‖Ω2Ω
†
1‖2 = tan2(S,V1).

Proof. Since V1 and S have orthonormal columns, we see that

sin2(S,V1) =




(I− SST )V1VT
1







2
2

=




VT
1 (I− SST )V1







2

=




I−VT
1 SST V1







2

= 1−λk(V
T
1 SST V1)

= 1−‖Ω†
1‖
−2.

The second to last equality holds because VT
1 S has k rows and we assumed it has full row-rank.

Accordingly,

tan2(S,V1) =
sin2(S,V1)

1− sin2(S,V1)
= ‖Ω†

1‖
2
2− 1.
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Now observe that

‖Ω2Ω
†
1‖

2
2 =




(ST V1)
†ST V2VT

2 S(VT
1 S)†







2

=




(ST V1)
†(I− ST V1VT

1 S)(VT
1 S)†







2

=




(ST V1)
†






2
2− 1

= tan2(S,V1).

The second to last equality holds because of the fact that, for any matrix M,





M†(I−MMT )(MT )†






2 =




M†






2
2− 1;

this identity can be established with a routine SVD argument.

Thus, when S has orthonormal columns and VT
1 S has full row-rank, ‖Ω2Ω

†
1‖2 is the tangent

of the largest angle between the range of S and the top right singular space spanned by V1. If

VT
1 S does not have full row-rank, then our derivation above shows that sin2(S,V1) = 1, meaning

that there is a vector in the eigenspace spanned by V1 which has no component in the space

spanned by the sketching matrix S.

We note that tan(S,V1) also arises in the classical bounds on the convergence of the orthogo-

nal iteration algorithm for approximating the top k-dimensional singular spaces of a matrix (see,

e.g. [GV96, Theorem 8.2.2]).
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Chapter 5

Low-rank approximation with
subsampled unitary transformations

5.1 Introduction

In this chapter, we analyze the theoretical performance of a randomized low-rank approximation

algorithm introduced in [WLRT08] and analyzed in [WLRT08, HMT11, NDT09]. Our analysis

often provides sharper approximation bounds than those in [WLRT08, HMT11, NDT09]. We

provide bounds on the residual and forward errors of this approximation algorithm in the spectral

and Frobenius norms, and provide experimental evidence that this low-rank approximation

algorithm performs as well as a more expensive low-rank approximation algorithm based upon

projections onto uniformly distributed random subspaces1. Further, we provide approximation

bounds for a variant of the algorithm that returns approximations with even lower rank.

The setting is as follows: fix A ∈ Rm×n and a target rank k ≤min{m, n}. We would like to

approximate A with a matrix X that has rank close to k, and we would like ‖A−X‖ξ to be within

a small multiplicative factor of the smallest error achievable when approximating Ak with a

rank-k matrix, for ξ= 2, F.

It is well-known that the rank-k matrix Ak that minimizes both the Frobenius and the

1The content of this chapter is adapted from the article [GB12] co-authored with Christos Boutsidis.
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spectral-norm approximation errors can be calculated using the singular value decomposition

(SVD) in O(mn min{m, n}) arithmetic operations, using classical so-called direct algorithms such

as QR iteration or Jacobi iteration [GV96]. Computing the full SVD is expensive when A is a

large matrix. In this case, it is often more efficient to use iterative projection methods (e.g. Krylov

subspace methods) to obtain approximations to Ak. It is difficult to state a precise guarantee

for the number of arithmetic operations carried out by Krylov methods, but one iteration of a

Krylov method requires Ω(mnk) operations (assuming A has no special structure which can be

exploited to speed up the computation of matrix–vector products). To obtain even an accurate

rank-1 approximation requires O(log n) iterations [KW92]. Thus, an optimistic estimate for the

number of operations required to compute approximate rank-k truncated SVDs using a Krylov

method is Ω(mnk log n).

Our discussion thus far has concerned only the arithmetic cost of computing truncated SVDs,

but an equally or more important issue is that of the communication costs: bandwidth costs

(proportional to the amount of times storage is accessed) and latency costs (proportional to

the cost of transferring the information over a network or through the levels of a hierarchical

memory system) [BDHS11]. If the algorithm is to be parallelized, then the complexity of the

required information interchange must also be taken into account.

The randomized algorithms considered in this chapter, Algorithms 5.1 and 5.2, are of

interest because they yield low-rank approximations after Ω(mnk max{log n, log k}) arithmetic

operations and have low communication costs. In particular, each element of A is accessed

only twice, and the algorithms are simple enough that they are amenable to straightforward

parallelization. The guarantees provided are probabilistic, and allow one to trade off between the

operation count of the algorithms and the accuracy and failure probabilities of the algorithms.

Both of the algorithms considered in this chapter are based on the intuition that, when
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Algorithm 5.1: Randomized approximate truncated SVD
Input: an m× n matrix A and an n× ` matrix S, where ` is an integer in [1, n].
Output: matrices Ũ, Σ̃, Ṽ constituting the SVD of PASA= ŨΣ̃ṼT .

1: Let Y= AS.
2: Compute the QR decomposition Y= QR.
3: Compute the SVD of QT A=WΣ̃ṼT .
4: Set Ũ= QW.

Algorithm 5.2: Rank-k randomized approximate truncated SVD
Input: an m× n matrix A, integers ` and k that satisfy ` > k and k ∈ [1, n], and an n× ` matrix

S.
Output: matrices Ũ, Σ̃, Ṽ constituting the SVD of ΠF

AS,k(A) = ŨΣ̃ṼT .

1: Let Y= AS.
2: Compute the QR decomposition Y= QR.
3: Compute the rank-k truncated SVD of QT A to obtain (QT A)k =WΣ̃ṼT .
4: Set Ũ= QW.

S ∈ Rn×` is randomly selected and ` is sufficiently larger than k, the range of the matrix AS

“captures” the top k-dimensional left singular space of A. When this phenomenon occurs, the

low-rank matrix formed by projecting A onto the range of AS should be almost as accurate an

approximation of A as is the optimal approximation Ak :

‖A− PASA‖ξ ≈ ‖A−Ak‖ξ for ξ= 2,F.

Algorithm 5.1 computes exactly this approximation, PASA. Note that this approximation may have

rank up to `, which may be much larger than k. Algorithm 5.2 instead returns the approximation

ΠF
AS,k(A), which is guaranteed to have rank at most k.

Unlike classical iterative methods for approximating the trucated SVD, which use as many

iterations as necessary to satisfy some convergence condition, Algorithms 5.1 and 5.2 use only

one matrix–matrix product AS to generate an approximate basis for the top left singular space

of A. Accordingly, the quality of approximations obtained using either of these algorithms is
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more dependent on the properties of A itself and the sampling matrix S than is the quality

of approximations derived from classical iterative methods. Thus it is important to supply

theoretical guarantees on the errors of the algorithms that identify which properties of A affect

the quality of the approximations, as well as to carry to empirical studies investigating the

influence of the choice of S.

Recent years have produced a large body of research on designing random sampling matrices

S. Some proposals for S include: (i) every entry of S takes the values +1,−1 with equal

probability [CW09, MZ11]; (ii) the entries of S are i.i.d. Gaussian random variables with zero

mean and unit variance [HMT11]; (iii) the columns of S are chosen independently from the

columns of the m×m identity matrix with probabilities that are proportional to the Euclidean

length of the columns of A [FKV98, DKM06b]; and (iv) S is designed carefully such that AS can

be computed in at most O(nnz(A)) arithmetic operations, where nnz(A) denotes the number of

non-zero entries in A [CW12].

In this chapter we take S to be a subsampled randomized Hadamard transform (SRHT)

matrix, i.e. S comprises a subset of the columns of a randomized Hadamard matrix (see

Definitions 5.1 and 5.2 below). This choice for S was introduced in [AC06].

Definition 5.1 (Normalized Walsh–Hadamard Matrix). Fix an integer n= 2p, for p = 1, 2, 3, ....

The (non-normalized) n× n matrix of the Hadamard-Walsh transform is defined recursively as,

Hn =











Hn/2 Hn/2

Hn/2 −Hn/2











, with H2 =











+1 +1

+1 −1











.

The n× n normalized matrix of the Walsh–Hadamard transform is equal to H= n−
1
2 Hn ∈ Rn×n.

Definition 5.2 (Subsampled Randomized Hadamard Transform (SRHT) matrix). Fix integers `
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and n= 2p with ` < n and p = 1,2, 3, .... An SRHT matrix is an `× n matrix of the form

Θ=
Ç

n

`
·RHD;

• D ∈ Rn×n is a random diagonal matrix whose entries are independent random signs, i.e.

random variables uniformly distributed on {±1}.

• H ∈ Rn×n is a normalized Walsh–Hadamard matrix.

• R ∈ R`×n is a subset of ` rows from the n× n identity matrix, where the rows are chosen

uniformly at random and without replacement.

The choice of S as an SRHT matrix is particularly practical because the highly structured

nature of S can be exploited to reduce the time of computing AS from O(mn`) to O(mn log2 `).

Lemma 5.3 (Fast Matrix–Vector Multiplication, Theorem 2.1 in [AL08]). Given x ∈ Rn and

` < n, one can construct Θ ∈ R`×n and compute Θx in at most 2n log2(`+ 1)) operations.

Beyond the SRHT. The SRHT is defined only when the matrix dimension is a power of two. An

alternative option is to use other structured orthonormal randomized transforms such as the real

Fourier transform (DFT), the discrete cosine transform (DCT) or the discrete Hartley transform

(DHT) [WLRT08, NDT09, RT08, AMT10], whose entries are on the order of n−1/2. None of

these transforms place restrictions on the size of the matrix being approximated. With minimal

effort, the results of this chapter can be extended to encompass these transforms. Specifically,

the statements of Lemma 5.5 and Lemma 5.8 in this chapter would need to be modified slightly

to account for the difference in the transform; essentially, the constants present in the statements

of the Lemmas would change. These two lemmas isolate the effects of the particular choice of
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S from the remainder of the arguments used in this chapter, so the changes would propagate,

mutatis mutandis, throughout the remaining results in this chapter.

We note, further, that Algorithms 5.1 and 5.2 can be modified to use Y= (AAT )pAS, where

p ≥ 1 is an integer, as an approximate basis for the top left singular space of A. Approximations

to Ak generated using this choice of Y are more accurate than those generated using our choice

of AS, but one loses the speed conferred by taking S to be an SRHT matrix: after the first

multiplication AS, all the matrix multiplications required to form Y are dense and unstructured.

Outline. In Section 5.2, we present a portion of our results on the quality of SRHT low-

rank approximations and compare them to prior results in the literature. Section 5.3 presents

new results on the application of SRHTs to general matrices and the approximation of matrix

multiplication using SRHTs under the Frobenius norm. Section 5.4 contains the statements and

proofs of our main results. We conclude the chapter with an experimental evaluation of the

SRHT low-rank approximation algorithms in Section 5.5.

5.2 Low-rank matrix approximation using SRHTs

Using an SRHT matrix (see Definition 5.2), one can quickly construct low-rank approximations of

a given matrix A using Algorithms 5.1 and 5.2. Our main results, Theorems 5.13 and 5.14, given

in Section 5.4, respectively provide theoretical guarantees on the spectral and Frobenius-norm

residual and forward errors of these approximations. To facilitate the comparison of our results

with prior work, we highlight our residual error guarantees for Algorithm 5.1.

Theorem 5.4. Assume n is a power of 2. Let A ∈ Rm×n have rank ρ and fix an integer k satisfying

2 ≤ k < ρ. Let 0 < ε < 1/3 be an accuracy parameter, 0 < δ < 1 be a failure probability, and
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C ≥ 1 be any specified constant. If Θ ∈ R`×n is an SRHT matrix and ` satisfies

6C2ε−1
�

p

k+
p

8 log(n/δ)
�2

log(k/δ)≤ `≤ n, (5.2.1)

then the approximation Ã generated by Algorithm 5.1 with S=ΘT satisfies





A− PAΘT A






F ≤ (1+ 11ε)




A−Ak







F

with probability at least 1−δC2 log(k/δ)/4− 7δ, and





A− PAΘT A






2 ≤

 

4+

r

3 log(n/δ) log(ρ/δ)
`

!

·




A−Ak







2+

r

3 log(ρ/δ)
`

·




A−Ak







F

with probability at least 1− 5δ.

The Frobenius-norm bound in this theorem is slightly stronger than the best bound appearing

in prior efforts [NDT09]. The spectral-norm bound on the residual error is often much smaller

than the bounds presented in prior work and sheds light on an open question mentioned

in [NDT09] and [HMT11]. We do not, however, claim that the error bounds provided are the

tightest possible. Certainly the specific constants (11,4, etc.) in the error estimates are not

optimized.

We now present a detailed comparison of the guarantees given in Theorem 5.4 with those

available in the existing literature.

5.2.1 Detailed comparison with prior work

The subsampled randomized Fourier transform (SRFT). The algorithm in Section 5.2 of

[WLRT08], which was the first to use the idea of employing subsampled randomized orthogonal
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transforms to compute low-rank approximations to matrices, provides a spectral-norm error

bound but replaces the SRHT with an SRFT, i.e. the matrix H of Definition 5.2 is replaced

by a matrix where the (p, q)th entry is Hpq = e−2πi(p−1)(q−1)/n, where i =
p
−1, i.e. H is the

unnormalized discrete Fourier transform. Woolfe et al. [WLRT08, Equation 190] argue that, for

any α > 1, β > 1, if

`≥ α2β (α− 1)−1 (2k)2,

then with probability at least 1− 3/β (ω=max{m, n}),





A− ŨkΣ̃kṼT
k







2 ≤ 2
�p

2α− 1+ 1
�

·
�p

αω+ 1+
p
αω
�

·




A−Ak







2 .

Here, Ũk ∈ Rm×k contains orthonormal columns, as does Ṽk ∈ Rn×k, while Σ̃k ∈ Rk×k is

diagonal with nonegative entries. These matrices can be computed deterministically from AΘT

in O
�

k2(m+ n) + k`2 log`
�

time. Also, computing Y= AΘT takes O
�

mn log`
�

time.

The analysis of [WLRT08] applies when ` = Ω(k2), while the spectral-norm guarantee of

Theorem 5.4 applies for potentially much smaller values of `= Ω(max{k log k, log(n) log k}).

Nguyen et al. [NDT09]. An analysis of the Frobenius-norm error of an SRHT-based low-rank

matrix approximation algorithm appeared in Nguyen et al. [NDT09]. Let δ be a probability

parameter with 0< δ < 1 and ε be an accuracy parameter with 0< ε < 1. Then, Nguyen et al.

show that in order to get a rank-k matrix Ãk satisfying





A− Ãk







F ≤ (1+ ε) ·




A−Ak







F

and





A− Ãk







2 ≤
�

2+
p

2n/`
�

·




A−Ak







2
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with probability of success at least 1− 5δ, one requires

`= Ω
�

ε−1 max{k,
p

k log(2n/δ)} ·max{log k, log(3/δ)}
�

.

Theorem 5.4 gives a tighter spectral-norm error bound when




A−Ak







F � (n/ log(ρ/δ))1/2 ·




A−Ak







2 . It also provides an equivalent Frobenius-norm error bound with a comparable failure

probability for a smaller number of samples. Specifically, if

`≥ 528ε−1[
p

k+
p

8 log(8n/δ)]2 log(8k/δ)

= Ω
�

ε−1 max{k, log(n/δ)} ·max{log k, log(1/δ)}
�

,

then the Frobenius-norm bound in Theorem 5.4 ensures that, with probability at least 1− 8δ,

the approximation satisfies




A− Ã






F ≤ (1+ ε) ·




A−Ak







F .

In [HMT11] and [NDT09], the authors left as a subject for future research the explanation

of a curious experimental phenomenon: when the singular values decay according to power

laws, the SRHT low-rank approximation algorithm empirically achieves relative-error spectral

norm approximations. Our spectral norm result provides an explanation of this phenomenon:

when the singular values of A decay fast enough, as in power law decay, one has




A−Ak







F =

Θ(1) ·




A−Ak







2. In this case, when ` is chosen to satisfy

24ε−1
�

p

k+
p

8 log(n/δ)
�2

log(k/δ) log(n/δ)≤ `≤ n

our spectral-norm bound assures us that




A− Ã






2 ≤ O (1) ·




A−Ak







2 with probability of at

least 1− 8δ, thus predicting the observed empirical behavior of the algorithm.

The approximation scheme addressed in [NDT09] generates low-rank approximations with
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rank at most k, while the bounds in Theorem 5.4 are for approximations using Algorithm 5.2,

which may result in an approximation with a rank larger than k. However, the comparisons

above also hold, as stated, for approximations Ã generated using Algorithm 5.2, as can be

verified directly from Theorems 5.13 and 5.14.

Halko et al. [HMT11]. Halko et al. [HMT11] consider the performance of Algorithm 5.1

when S=ΘT is an SRHT matrix, and conclude that if ` satisfies

4
�

p

k+
p

8 log(kn)
�2

log(k)≤ `≤ n, (5.2.2)

then, for both ξ= 2, F,

‖A− Ã‖ξ ≤
�

1+
p

7n/`
�

· ‖A−Ak‖ξ,

with probability at least 1− O(1/k). Our Frobenius-norm bound is always tighter than the

Frobenius-norm bound given here. To compare the spectral-norm bounds, note that our spectral-

norm bound is on the order of

max

(r

log(ρ/δ) log(n/δ)
`

·




A−Ak







2 ,

r

log(ρ/δ)
`

·




A−Ak







F

)

. (5.2.3)

If the residual spectrum A (the set of singular values smaller than σk(A)) is constant, or more

generally decays slowly, then the spectral-norm result in [HMT11] is perhaps optimal. But when

A is rank-deficient or the singular values of A decay fast, the spectral-norm bound in Theorem 5.4

is more useful. Specifically, if





A−Ak







F�
r

n

log(ρ/δ)
·




A−Ak







2 ,
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then when ` is chosen according to Theorem 5.4, the quantity in (5.2.3) is much smaller than

p

7n/` ·




A−Ak







2 .

We were able to obtain this improved bound by using the results in Section 5.3.1, which

allow one to take into account decay in the spectrum of A. Finally, notice that our theorem

makes explicit the intuition that the probability of failure can be driven to zero independently of

the target rank k by increasing `.

Two alternative approximate SVD algorithms. Instead of an SRHT matrix, one can take S

in Algorithms 5.1 and 5.2 to be a matrix of i.i.d. standard Gaussian random variables. One gains

theoretically and often empirically better worse-case tradeoffs between the number of samples

taken, the failure probability, and the error guarantees. The SRHT algorithms are still faster,

since a matrix multiplication with a Gaussian matrix requires O(mn`) time (assuming A is dense

and unstructured). One can also take S to be a matrix of i.i.d. random signs (±1 with equal

probability). In many ways, this is analogous to the Gaussian algorithm: in both cases S is a

matrix of i.i.d. subgaussian random variables. Consequently, we expect this algorithm to have

the same advantages and disadvantages relative to the SRHT algorithm. We now compare the

best available performance bounds for these schemes to our SRHT performance bounds.

We use the notion of the stable rank of a matrix,

sr (A) = ‖A‖2F /‖A‖
2
2 ,

to capture the decay of the singular values of A. As can be seen by considering a matrix with a

flat singular spectrum, in general the stable rank is no smaller than the rank.

When ` > k + 4, Theorem 10.7 and Corollary 10.9 in [HMT11] imply that, when using
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Gaussian sampling in Algorithm 5.1, with probability at least 1− 2 · 32−(`−k)− e
−(`−k+1)

2 ,





A− Ã






F ≤
�

1+ 32

p
3k+ e

p
`

p
`− k+ 1

�

·




A−Ak







F

and with probability at least 1− 3e−(`−k),





A− Ã






2 ≤

 

1+ 16

r

1+
k

`− k

!

·




A−Ak







2+
8
p
`

`− k+ 1
·




A−Ak







F .

Comparing to the guarantees of Theorem 5.4 we see that the two bounds just stated suggest

that with the same number of samples, Gaussian low-rank approximations outperform SRHT-

based low-rank approximations. In particular, the spectral-norm bound guarantees that if

sr
�

A−Ak
�

≤ k, that is,




A−Ak







F ≤
p

k




A−Ak







2 , then the Gaussian version of Algorithm 5.1

requires O(k/ε2) samples to return a 17+ ε constant factor spectral-norm error approximation

with high probability. Similarly, the Frobenius-norm bound guarantees that the same number

of samples returns a 1+ 32ε constant factor Frobenius-norm error approximation with high

probability. Neither the spectral nor Frobenius bounds given in Theorem 5.4 for SRHT-based

low-rank approximations apply for this few samples.

The paper [MZ11] does not consider the Frobenius-norm error of the random sign low-rank

approximation algorithm, but Remark 4 in [MZ11] shows that when `= O(k/ε4 log(1/δ)), for

0< δ < 1, and sr
�

A−Ak
�

≤ k, Algorithm 5.1 ensures that with probability at least 1−δ,





A− Ã






2 ≤ (1+ ε)




A−Ak







2 .

To compare our results with those stated in [HMT11, MZ11] we assume that k� log(n/δ)

so that ` > k log k suffices for Theorem 5.4 to apply. Then, in order to acquire a 4+ ε relative
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error bound from Theorem 5.4, it suffices that

`≥ C′ε−2k log(ρ/δ) and sr
�

A−Ak
�

≤ C′k,

where C′ is an explicit constant no larger than 6.

We see, therefore, that the Gaussian and random sign approximation versions of Algo-

rithm 5.1 return 17+ ε and 1+ ε relative spectral error approximations, respectively, when ` is

on the order of k and the relatively weak spectral decay condition sr
�

A−Ak
�

≤ k is satisfied,

while our bound for the SRHT version of Algorithm 5.1 requires ` > k log(ρ/δ) and the spectral

decay condition

sr
�

A−Ak
�

≤ C′k

to ensure a 6+ ε relative spectral error approximation. We note that the SRHT algorithm can be

used to obtain relative spectral error approximations of matrices with arbitrary stable rank at

the cost of increasing `; the same is of course true for the Gaussian and random sign algorithms.

The bounds for the SRHT, Gaussian, and random sign low-rank approximation algorithms

differ in two significant ways. First, there are logarithmic factors in the spectral-norm error

bound for the SRHT algorithm that are absent from the corresponding bounds for the Gaussian

and random sign algorithms. Second, the spectral-norm bound for the SRHT algorithm applies

only when ` > k log(ρ/δ), while the corresponding bounds for the Gaussian and random sign

algorithms apply when ` is on the order of k. These disparities may reflect a fundamental

tradeoff between the structure and randomness of the sampling matrix S. Assuming A is dense

and unstructured, the highly structured nature of SRHT matrices makes it possible to calculate

AS much faster than when Gaussian or random sign sampling matrices are used, but this moves

us away from the very nice isotropic randomness present in the Gaussian S and the similarly nice



118

properties of a matrix of i.i.d subgaussian random variables, thus resulting in slacker bounds

which require more samples.

5.3 Matrix computations with SRHT matrices

An important ingredient in analyzing the performance of Algorithms 5.1 and 5.2 is understanding

how an SRHT changes the spectrum of a matrix after postmultiplication: given a matrix A and

an SRHT matrix Θ, how are the singular values of A and AΘT related?

To be more precise, Lemma 4.8 suggests that one path towards establishing the efficacy of

SRHT-based low-rank approximations lies in understanding how the SRHT perturbs the singular

values of matrices. To see this, we repeat the statement of the lemma here. Let A ∈ Rm×n have

rank ρ and recall the following partitioning of its SVD:

A= UΣVT =

�

k ρ−k

U1 U2

�











k ρ−k

Σ1

Σ2





















VT
1

VT
2











. (5.3.1)

Fix k satisfying 0 ≤ k ≤ ρ. Given a matrix S ∈ Rn×`, with ` ≥ k, Lemma 4.8 states that if VT
1 S

has full row-rank, then for ξ= 2, F,

‖A− PASA‖2ξ ≤ ‖A−Ak‖2ξ+ ‖Σ2VT
2 S
�

VT
1 S
�†
‖2ξ.

Note that PASA is exactly the low-rank approximation of A returned by Algorithm 5.1.

Now take S=ΘT to be an SRHT matrix and observe that if the product Σ2VT
2Θ

T
�

VT
1Θ

T
�†

has small norm, then the residual error of the approximant PAΘT A is small. The norm of this
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product is small when the norm of the perturbed matrix
�

VT
1Θ

T
�†

is small, because

‖Σ2VT
2Θ

T (VT
1Θ

T )†‖2ξ ≤ ‖Σ2‖2ξ‖V
T
2Θ

T‖22




(VT
1Θ

T )†






2
2. (5.3.2)

The matrix (VT
1Θ

T )† has small norm precisely when the singular values of VT
1Θ

T are close to

those of V1. This strategy is developed in [HMT11] to supply bounds for the SRHT low-rank

approximation algorithm, and relies upon knowledge of how multiplication with SRHT matrices

perturbs the singular values of matrices with orthonormal rows.

The main contribution of this chapter is the realization that one can take advantage of the

decay in the singular values of A encoded in Σ2 to obtain sharper results. In view of the fact that

‖Σ2VT
2Θ

T (VT
1Θ

T )†‖2ξ ≤ ‖Σ2VT
2Θ

T‖2ξ




(VT
1Θ

T )†






2
2 , (5.3.3)

we can additionally consider the behavior of the singular values of Σ2VT
2Θ

T . It is clear that

(5.3.3) provides a tighter bound than (5.3.2): for example, when ξ= F,

‖Σ2VT
2Θ

T‖2F ≤ ‖Σ2‖2F‖V
T
2Θ

T‖22,

and the quantity on the left-hand side is potentially much smaller than that on the right-hand

side.

In the remainder of this section, we refer to matrices with more columns than rows as “fat”;

similarly, we refer to matrices with more rows than columns as “tall.”
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5.3.1 SRHTs applied to orthonormal matrices

In this subsection, we collect known results on how the singular values of a matrix with

orthonormal rows are affected by postmultiplication by an SRHT matrix. These results will be

used to control the quantity




(VT
1Θ

T )†






2
2 in (5.3.3).

It has recently been shown by Tropp [Tro11b] that, if the SRHT matrix is of sufficiently large

dimensions, post-multiplying a fat matrix with orthonormal rows by an SRHT matrix preserves

the singular values of the orthonormal matrix, with high probability, up to a small multiplicative

factor. The following lemma is essentially a reparametrization of Theorem 3.1 in [Tro11b], but

we include a full proof for completeness.

Lemma 5.5 (The SRHT preserves geometry). Assume n is a power of 2. Let VT ∈ Rk×n have

orthonormal rows. Choose parameters 0 < ε < 1/3 and 0 < δ < 1. Construct an SRHT matrix

Θ ∈ R`×n with ` satisfying

6ε−1
�

p

k+
p

8 log(n/δ)
�2

log(k/δ)≤ `≤ n. (5.3.4)

Then, with probability at least 1− 3δ, for all i = 1, ..., k,

p

1−
p
ε≤ σi(V

TΘT )≤
p

1+
p
ε

and





(VTΘT )†− (VTΘT )T






2 ≤ 1.54
p
ε.

By the definition of an SRHT matrix, VTΘT =
p

n/` · (RHDV)T . Tropp [Tro11b] argues that

the above lemma follows from a more fundamental fact: if V has orthonormal columns, then
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the rows of the product HDV all have roughly the same norm. That is, premultiplication by HD

equalizes the row norms of an orthonormal matrix. See also [AC06].

Lemma 5.6 (Row norms, Lemma 3.3 in [Tro11b]). Assume n is a power of 2. Let V ∈ Rn×k

have orthonormal columns; let H ∈ Rn×n be a normalized Hadamard matrix; and let D ∈ Rn×n

be a diagonal matrix of independent Rademacher random variables. Choose a failure probability

0< δ < 1. Then, with probability at least 1−δ,

maxi=1,...,n








(HDV)(i)









2
≤

r

k

n
+

r

8 log(n/δ)
n

.

Recall that (HDV)(i) denotes the ith row of the matrix HDV ∈ Rn×k.

To prove Lemma 5.5 we need one more result on uniform random sampling (without

replacement) of rows from thin matrices with orthonormal columns. The following lemma is a

reparameterization of Lemma 3.4 of [Tro11b].

Lemma 5.7 (Uniform sampling without replacement from an orthonormal matrix). Let W ∈

Rn×k have orthonormal columns. Let 0 < ε < 1 and 0 < δ < 1. Let M := n ·maxi=1,...,n





W(i)






2
2.

Let ` be an integer such that

6ε−2M log(k/δ)≤ `≤ n . (5.3.5)

Let R ∈ R`×n be a matrix which consists of a subset of ` rows from In where the rows are chosen

uniformly at random and without replacement. Then, with probability at least 1− 2δ, for i ∈ [k]:

r

`

n
·
p

1− ε≤ σi(RW)≤
p

1+ ε ·

r

`

n
.

Proof. Apply Lemma 3.4 of [Tro11b] with the following choice of parameters: ` = αM log(k/δ),

α = 6/ε2, and δtropp = η = ε. Here, `, α, M , k, η are the variables named in Lemma 3.4
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of [Tro11b], and δtropp plays the role of an error parameter named δ in Lemma 3.4 of [Tro11b].

The variables ε and δ are from our Lemma. The choice of ` proportional to log(k/δ) rather than

proportional to log(k), as in the original statement of Lemma 3.4, is what results in a probability

proportional to δ instead of k; this can easily be seen by tracing the modified choice of ` through

the proof of Lemma 3.4.

Proof of Lemma 5.5. To obtain the bounds on the singular values, we combine Lemmas 5.6

and 5.7. More specifically, apply Lemma 5.7 with W = HDV and use the bound for M from

Lemma 5.6. Then, the bound on ` in (5.3.5), the bound on the singular values in Lemma 5.7,

and a union bound together establish that, with probability at least 1− 3δ,

r

`

n
·
p

1− ε≤ σi(RHDV)≤
p

1+ ε ·

r

`

n
for all i ∈ [k].

Now, multiply this inequality with
p

n/` and recall the definition Θ=
p

n/` ·RHD to obtain

p

1− ε≤ σi(ΘV)≤
p

1+ ε for all i ∈ [k]. (5.3.6)

Replacing ε with
p
ε and using the bound on ` given in (5.3.4) concludes the proof of the

first inequality in Lemma 5.5.

The second bound in the lemma follows from the first bound after a simple algebraic

manipulation. Let X = VTΘT ∈ Rk×` have SVD X = UXΣXVT
X where ΣX ∈ Rk×k is invertible, then





(VTΘT )†− (VTΘT )T






2 =




VXΣ
−1
X UT

X −VXΣXUT
X







2 =




VX(Σ
−1
X −ΣX)U

T
X







2 =




Σ−1
X −ΣX







2 ,

by unitary invariance of the spectral norm. Let Y= Σ−1
X −ΣX ∈ Rk×k. Then, for all i = 1, . . . , k,
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Yii = (1−σ2
i (X))/σi(X). We conclude the proof with the series of estimates

‖Y‖2 =max1≤i≤k

�

�Yii

�

�=max1≤i≤k

�

�

�

�

�

1−σ2
i (X)

σi(X)

�

�

�

�

�

=max

(�

�1−σ2
1(X)

�

�

σ1(X)
,

�

�1−σ2
k(X)

�

�

σk(X)

)

≤
p
ε

p

1−
p
ε
≤ 1.54

p
ε.

The second to last inequality follows from the lower bound in (5.3.6).

5.3.2 SRHTs applied to general matrices

Recall our observation that the inequality

‖Σ2VT
2Θ

T (VT
1Θ

T )†‖2ξ ≤ ‖Σ2VT
2Θ

T‖2ξ




(VT
1Θ

T )†






2
2 , (5.3.7)

together with Lemma 4.8, allows us to bound the errors of SRHT-based low-rank approximations.

In the previous subsection, we collected the results necessary to bound the term




(VT
1Θ

T )†






2
2 .

In this subsection, we present new results on the perturbative effects of SRHT multiplication.

These allow us to bound the quantities ‖Σ2VT
2Θ

T‖2ξ.

Our main tool is a generalization of Lemma 5.6 that states that the maximum column norm

of a matrix to which an SRHT has been applied is, with high probability, not much larger than

the root mean square of the column norms of the original matrix.

Lemma 5.8 (SRHT equalization of column norms). Suppose that A is a matrix with n columns,

where n is a power of 2. Let H ∈ Rn×n be a normalized Walsh–Hadamard matrix, and D ∈ Rn×n a
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diagonal matrix of Rademacher random variables. Then for every t ≥ 0,

P
�

max j=1,...,n ‖(ADHT )( j)‖2 ≤
1
p

n
‖A‖F+

t
p

n
‖A‖2

�

≥ 1− n · e−t2/8.

Recall that (ADHT )( j) denotes the jth column of ADHT .

Proof. Our proof of Lemma 5.8 is essentially that of Lemma 5.6 in [Tro11b], with attention paid

to the fact that A is no longer assumed to have orthonormal columns.

Lemma 5.8 follows immediately from the observation that the norm of any one column of

ADHT is a convex Lipschitz function of a Rademacher vector. Consider the norm of the jth

column of ADHT as a function of ε, where D= diag (ε) :

f j(ε) = ‖ADHT e j‖=




Adiag(ε)h j







2 =




Adiag(h j)ε






2 ,

where h j denotes the jth column of HT . Evidently f j is convex. Furthermore,

| f j(x)− f j(y)| ≤




Adiag(h j) (x− y)






2 ≤ ‖A‖2




diag(h j)






2





x− y






2 =
1
p

n
‖A‖2





x− y






2 ,

where we used the triangle inequality and the fact that




diag(h j)






2 = ‖h j‖∞ = n−1/2. Thus f j is

convex and Lipschitz with Lipschitz constant of at most n−1/2 ‖A‖2 .

We calculate

E
�

f j(ε)
�

≤ E
�

f j(ε)
2
�1/2

=
�

Tr
�

Adiag(h j)E
�

εε∗
�

diag(h j)A
T
��1/2

=
�

Tr
�

1

n
AAT

��1/2

=
1
p

n
‖A‖F .
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It now follows from Lemma 4.1 that, for all j = 1,2, . . . , n, the norm of the jth column of

ADHT satisfies the tail bound

P
�





ADHT e j







2 ≥
1
p

n
‖A‖F+

t
p

n
‖A‖2

�

≤ e−t2/8.

Taking a union bound over all columns of ADHT , we conclude that

P
�

max j=1,...,n





(ADHT )( j)






2 ≥
1
p

n
‖A‖F+

t
p

n
‖A‖2

�

≤ n · e−t2/8.

Our next lemma shows that the SRHT does not substantially increase the spectral norm of a

matrix.

Lemma 5.9 (SRHT-based subsampling in the spectral norm). Let A ∈ Rm×n have rank ρ, and

assume that n is a power of 2. For some r < n, let Θ ∈ R`×n be an SRHT matrix. Fix a failure

probability 0< δ < 1. Then,

P
�





AΘT






2
2 ≤ 5‖A‖22+

log(ρ/δ)
`

�

‖A‖F+
p

8 log(n/δ)‖A‖2
�2
�

≥ 1− 2δ.

To establish Lemma 5.9, we use the upper Chernoff bound for sums of matrices stated in

Lemma 4.2.

Proof of Lemma 5.9. Write the SVD of A as UΣVT , where Σ ∈ Rρ×ρ, and observe that the

spectral norm of AΘT is the same as that of
p

n/` ·ΣVTΘT .

We control the norm of ΣVTΘT by considering the maximum singular value of its Gram

matrix. Define M = ΣVT DHT , so that ΣVTΘT =
p

n/` ·MRT , and let G be the ρ × ρ Gram
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matrix of MRT :

G=MRT (MRT )T .

Evidently

λmax (G) =
`

n





ΣVTΘT






2
2 . (5.3.8)

Recall that M( j) denotes the jth column of M. If we denote by C the random set of r

coordinates to which R restricts, then

G=
∑

j∈C
M( j)M

T
( j).

Thus G is a sum of r random matrices X1, . . . ,Xr sampled without replacement from the set

X = {M( j)MT
( j) : j = 1,2, . . . , n}. There are two sources of randomness in G: the subsampling

matrix R and the Rademacher random variables on the diagonal of D.

Set

B =
1

n

�

‖Σ‖F+
p

8 log(n/δ)‖Σ‖2
�2

and let E be the event

max j=1,...,n ‖M( j)‖22 ≤ B.

By Lemma 5.8, E occurs with probability at least 1−δ. When E holds, for all j = 1,2, . . . , n,

λmax

�

M( j)M
T
( j)

�

= ‖M( j)‖22 ≤ B,

so G is a sum of random positive-semidefinite matrices each of whose norms is bounded by

B. Note that the event E is entirely determined by the random matrix D; in particular E is

independent of R.
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Conditioning on E, the randomness in R allows us to use the upper matrix Chernoff bound

of Lemma 4.2 to control the maximum eigenvalue of G. We observe that

µmax = ` ·λmax
�

E
�

X1
��

=
`

n
λmax

�

∑n

j=1
M( j)M

T
( j)

�

=
`

n
‖Σ‖22 .

Take the parameter ν in Lemma 4.2 to be

ν = 4+
B

µmax
log(ρ/δ)

to obtain the relation

P
�

λmax (G)≥ 5µmax+ B log(ρ/δ) | E
	

≤ (ρ− k) · e[δ−(1+ν) log(1+ν)](µmax/B)

≤ ρ · e(1−(5/4) log 5)δ(µmax/B)

≤ ρ · e(−(5/4) log5−1) log(ρ/δ) < δ. (5.3.9)

The second inequality holds because ν ≥ 4 implies that (1+ ν) log(1+ ν)≥ ν · (5/4) log 5.

We have conditioned on E, the event that the squared norms of the columns of M are all

smaller than B. Thus, substituting the values of B and µmax into (5.3.9), we find that

P
�

λmax (G)≥
`

n

�

5‖Σ‖22+
log(ρ/δ)

`

�

‖Σ‖F+
p

8 log(n/δ)‖Σ‖2
�2
��

≤ 2δ.

Use equation (5.3.8) to wrap up.

Similarly, the SRHT is unlikely to substantially increase the Frobenius norm of a matrix.

Lemma 5.10 (SRHT-based subsampling in the Frobenius norm). Assume n is a power of 2. Let

A ∈ Rm×n, and let Θ ∈ R`×n be an SRHT matrix for some ` < n. Fix a failure probability 0< δ < 1.
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Then, for any η≥ 0,

P
n





AΘT






2
F ≤ (1+η)‖A‖

2
F

o

≥ 1−
�

eη

(1+η)1+η

�`/
�

1+
p

8 log(n/δ)
�2

−δ.

Proof. Let c j = (n/`) ·




(ADHT )( j)






2
2 denote the squared norm of the jth column of

p

n/` ·

ADHT . Then, since right multiplication by RT samples columns uniformly at random without

replacement,





AΘT






2
F =

n

`





ADHT RT






2
F =
∑`

i=1
X i (5.3.10)

where the random variables X i are chosen randomly without replacement from the set {c j}nj=1.

There are two independent sources of randomness in this sum: the choice of summands, which

is determined by R, and the magnitudes of the {c j}, which are determined by D.

To bound this sum, we first condition on the event E that each c j is bounded by a quantity B

which depends only on the random matrix D. Then

P
§

∑`

i=1
X i ≥ (1+η)

∑`

i=1
EX i

ª

≤ P
§

∑`

i=1
X i ≥ (1+η)

∑`

i=1
EX i | E

ª

+ P (Ec) .

To select B, we observe that Lemma 5.8 implies that with probability 1−δ, the entries of D are

such that

max j c j ≤
n

`
·

1

n
(‖A‖F+

p

8 log(n/δ)‖A‖2)2 ≤
1

`
(1+

p

8 log(n/δ))2 ‖A‖2F .

Accordingly, we take

B =
1

`
(1+

p

8 log(n/δ))2 ‖A‖2F ,
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thereby arriving at the bound

P
§

∑`

i=1
X i ≥ (1+η)

∑`

i=1
EX i

ª

≤ P
§

∑`

i=1
X i ≥ (1+η)

∑`

i=1
EX i | E

ª

+δ. (5.3.11)

After conditioning on D, we observe that the randomness remaining on the right-hand side

of (5.3.11) is due to the choice of the summands X i , which is determined by R. We address this

randomness by applying a scalar Chernoff bound (Lemma 4.2 with k = 1). To do so, we need

µmax, the expected value of the sum; this is an elementary calculation:

EX1 = n−1
∑n

j=1
c j =

1

`
‖A‖2F ,

so µmax = `EX1 = ‖A‖
2
F .

Applying Lemma 4.2 conditioned on E, we conclude that

P
n





AΘT






2
F ≥ (1+η)‖A‖

2
F | E

o

≤
�

eη

(1+η)1+η

�`/(1+
p

8 log(n/δ))2

+δ

for η≥ 0.

Finally, we prove a novel result on approximate matrix multiplication involving SRHT matrices.

Lemma 5.11 (SRHT for approximate matrix multiplication). Assume n is a power of 2. Let

A ∈ Rm×n and B ∈ Rn×p. For some ` < n, let Θ ∈ R`×n be an SRHT matrix. Fix a failure probability

0< δ < 1. Assume R satisfies 0≤ R≤
p
`/(1+

p

8 log(n/δ)). Then,

P











AΘTΘB−AB






F ≤ 2(R+ 1)
‖A‖F ‖B‖F+

p

8 log(n/δ)‖A‖F ‖B‖2p
`







≥ 1− e−R2/4− 2δ.
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Remark 5.12. Recall that the stable rank sr (A) = ‖A‖2F /‖A‖
2
2 reflects the decay of the spectrum

of the matrix A. The event under consideration in Lemma 5.11 can be rewritten as a bound on

the relative error of the approximation AΘTΘB to the product AB :





AΘTΘB−AB






F

‖AB‖F
≤
‖A‖F ‖B‖F
‖AB‖F

·
R+ 2
p
`
·



1+

p

8 log(n/δ)

sr (B)



 .

In this form, we see that the relative error is controlled by the deterministic condition number

for the matrix multiplication problem as well as the stable rank of B and the number of column

samples `. Since the roles of A and B in this bound can be interchanged, in fact we have the

bound




AΘTΘB−AB






F

‖AB‖F
≤
‖A‖F ‖B‖F
‖AB‖F

·
R+ 2
p
`
·



1+

p

8 log(n/δ)

max(sr (B) , sr (A))



 .

To prove the lemma, we use Lemma 4.3, our result for approximate matrix multiplication

via uniform sampling (without replacement) of the columns and the rows of the two matrices

involved in the product. Lemma 5.11 is simply a specific application of this generic result. We

mention that Lemma 3.2.8 in [Dri02] gives a similar result for approximate matrix multiplication

which, however, gives a bound on the expected value of the error term, while our Lemma 5.11

gives a comparable bound that holds with high probability.

Proof of Lemma 5.11. Let X= ADHT and Y= HDB and form X̂ and Ŷ according to Lemma 4.3.

Then, XY= AB and





AΘTΘB−AB






F =




X̂Ŷ−XY






F .

To apply Lemma 4.3, we first condition on the event that the SRHT equalizes the column norms
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of our matrices. Namely, we observe that, from Lemma 5.8, with probability at least 1− 2δ,

maxi ‖X(i)‖2 ≤
1
p

n
(‖A‖F+

p

8 log(n/δ)‖A‖2), and (5.3.12)

maxi ‖Y(i)‖2 ≤
1
p

n
(‖B‖F+

p

8 log(n/δ)‖B‖2).

We choose the parameters σ and B in Lemma 4.3. Set

σ2 =
4

`
(‖B‖F+

p

8 log(n/δ)‖B‖2)2 ‖A‖
2
F . (5.3.13)

In view of (5.3.12),

σ2 = 4
n

`
·
(‖Y‖F+

p

8 log(n/δ)‖Y‖2)2

n
‖X‖2F ≥ 4

n

`

∑n

i=1
‖X(i)‖22‖Y

(i)‖22

so this choice of σ satisfies the inequality condition of Lemma 4.3. Next we choose

B =
2

`
(‖A‖F+

p

8 log(n/δ)‖A‖2)(‖B‖F+
p

8 log(n/δ)‖B‖2).

Again, because of (5.3.12), B satisfies the requirement B ≥ 2n
`

maxi ‖X(i)‖2‖Y(i)‖2.

For simplicity, abbreviate γ= 8 log(n/δ). With these choices for σ2 and B,

σ2

B
=

2‖A‖2F (‖B‖F+
p
γ‖B‖2)2

(‖A‖F+
p
γ‖A‖2)(‖B‖F+

p
γ‖B‖2)

≥
2‖A‖2F (‖B‖F+

p
γ‖B‖2)2

(‖A‖F+
p
γ‖A‖F)(‖B‖F+

p
γ‖B‖2)

=
2‖A‖F (‖B‖F+

p
γ‖B‖2)

1+pγ
.
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Now, referring to (5.3.13), identify the numerator as
p
`σ to see that

σ2

B
≥

p
`σ

1+
p

8 log(n/δ)
.

Apply Lemma 4.3 to see that, when (5.3.12) holds and 0≤ Rσ ≤ σ2/B,

P
¦



AΘTΘB−AB






F ≥ (R+ 1)σ
©

≤ exp

�

−
R2

4

�

.

From our lower bound on σ2/B, we know that the condition Rσ ≤ σ2/B is satisfied when

R≤
p

`/(1+
p

8 log(n/δ)).

We established above that (5.3.12) holds with probability at least 1− 2δ. From these two facts,

it follows that when 0≤ R≤
p
`/(1+

p

8 log(n/δ)),

P
¦



AΘTΘB−AB






F ≥ (R+ 1)σ
©

≤ exp

�

−
R2

4

�

+ 2δ.

The tail bound given in the statement of Lemma 5.11 follows when we substitute our estimate

of σ.

5.4 Proof of the quality of approximation guarantees

With the necessary preliminaries in hand, we now proceed to the proof of our main results:

bounds on the spectral and Frobenius-norm residual and forward errors of low-rank approxima-

tions generated using Algorithms 5.1 and 5.2 with SRHT sampling matrices. We note that prior

works have provided only residual error bounds [WLRT08, HMT11, NDT09].
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Our first result bounds the spectral-norm errors.

Theorem 5.13. Assume n is a power of 2. Let A ∈ Rm×n have rank ρ and fix an integer k satisfying

2 ≤ k < ρ. Let 0 < ε < 1/3 be an accuracy parameter, 0 < δ < 1 be a failure probability, and

C ≥ 1 be any specified constant. If Θ ∈ R`×n is an SRHT matrix and ` satisfies

6C2ε−1
�

p

k+
p

8 log(n/δ)
�2

log(k/δ)≤ `≤ n, (5.4.1)

then the approximation PAΘT A generated by Algorithm 5.1 with S=ΘT satisfies the residual error

bound





A− PAΘT A






2 ≤

 

4+

r

3 log(n/δ) log(ρ/δ)
`

!

·




A−Ak







2+

r

3 log(ρ/δ)
`

·




A−Ak







F (i)

and the forward error bound





Ak − PAΘT A






2 ≤

 

4+

r

3 log(n/δ) log(ρ/δ)
`

!

·




A−Ak







2+

r

3 log(ρ/δ)
`

·




A−Ak







F (ii)

simultaneously, with probability at least 1− 5δ.

Likewise, the approximation ΠF
AS,k(A) generated by Algorithm 5.2 with S = ΘT satisfies the

residual error bound








A−ΠF
AS,k(A)










2
≤

 

6+

r

6 log(n/δ) log(ρ/δ)
`

!

·




A−Ak







2+

r

6 log(ρ/δ)
`

·




A−Ak







F

(iii)
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and the forward error bound








Ak −ΠF
AS,k(A)










2
≤

 

7+

r

6 log(n/δ) log(ρ/δ)
`

!

·




A−Ak







2+

r

6 log(ρ/δ)
`

·




A−Ak







F

(iv)

simultaneously, with probability at least 1− 5δ.

Proof. First we derive the residual error bounds. Lemma 5.5 implies that, when ` satisfies (5.4.1),





(VT
1Θ

T )†






2
2 ≤ (1−

p
ε)−1

with probability at least 1− 3δ. Consequently, VT
1Θ

T has full row-rank and Lemma 4.8 with

S = ΘT ∈ Rn×` and ξ = 2 applies with the same probability, yielding a bound on the residual

error of the approximation PASA:
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2
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2
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1Θ
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2
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T
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≤




A−Ak







2
2+ (1−

p
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2
2 . (5.4.2)

We now provide an upper bound for the quantity

Z =




A−Ak







2
2+ (1−

p
ε)−1





Σ2VT
2Θ

T






2
2 .

After applying Lemma 5.9 to estimate the term




Σ2VT
2Θ

T






2
2 , we see that the estimate
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·
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2
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holds with probability at least 1−5δ. Our assumption that ε < 1/3 ensures that (1−
p
ε)−1 < 3,

so

Z ≤ 16 ·




A−Ak







2
2+

3 log(ρ/δ)
`

�





A−Ak







F+
p

8 log(n/δ)




A−Ak







2

�2
. (5.4.3)

Introduce this estimate for Z into (5.4.2), use the subadditivity of the square-root function, and

rearrange the spectral and Frobenius norm terms to arrive at Eqn. (i) in the theorem:
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2 ≤
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r

3 log(n/δ) log(ρ/δ)
`

!

·
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r

3 log(ρ/δ)
`

·




A−Ak







F .

We now establish the residual error bound for the approximation ΠF
AS,k(A). We begin by

recalling that Lemma 4.7 states that

‖A−ΠF
AS,k(A)‖

2
2 ≤ 2‖A−Π2

AS,k(A)‖
2
2.

Lemma 4.8 can be used to bound the right-hand side quantity:

2‖A−Π2
AS,k(A)‖

2
2 ≤ 2





A−Ak







2
2+ 2‖Σ2VT

2Θ
T (VT

1Θ
T )†‖22.

We have already encountered the right-hand side of this expression, without the factor of two,

in (5.4.2). It follows that

‖A−ΠF
AS,k(A)‖

2
2 ≤ 2Z .

Introduce our earlier estimate for Z , given in (5.4.3), into this inequality; apply the submulti-



136

plicativity of the square-root function; and rearrange terms to obtain Eqn. (iii) in the theorem:
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F .

Once again, this bound holds with probability at least 1− 5δ.

The forward error bounds follow in a similar manner. To establish Eqn. (ii) in the theorem,

observe that Lemma 4.9 gives the bound





Ak − PAΘT A






2
2 ≤




A−Ak







2
2+ ‖Σ2VT

2Θ
T (VT

1Θ
T )†‖22.

Once again, we observe that we encountered the right-hand side of this expression in (5.4.2),

where we argued that it is bounded by Z , so





Ak − PAΘT A






2
2 ≤ Z .

Introduce into this inequality the estimate for Z given in (5.4.3), apply the submultiplicativity of

the square-root function, and rearrange terms to obtain Eqn. (ii) in the theorem:
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To establish Eqn. (iv) in the theorem, observe that

‖Ak −ΠF
AS,k(A)‖2 ≤ ‖Ak +Aρ−k −ΠF

AS,k(A) +Aρ−k‖2

≤ ‖A−ΠF
AS,k(A)‖2+ ‖Aρ−k‖2

= ‖A−ΠF
AS,k(A)‖2+ ‖A−Aρ−k‖2.
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The first term on the right-hand side of this inequality is simply the forward error of the

approximation ΠF
AS,k(A). Introduce our bound on this error, given by Eqn. (iii) of the theorem,

into this inequality to obtain the desired bound:

‖Ak −ΠF
AS,k(A)‖2 ≤

 

7+

r

6 log(n/δ) log(ρ/δ)
`

!

·




A−Ak







2+

r

6 log(ρ/δ)
`

·




A−Ak







F .

This bound holds with probability at least 1− 5δ.

Our second result bounds the Frobenius-norm errors of the SRHT-based low-rank approxima-

tion algorithms.

Theorem 5.14. Assume n is a power of 2. Let A ∈ Rm×n have rank ρ and fix an integer k satisfying

2 ≤ k < ρ. Let 0 < ε < 1/3 be an accuracy parameter, 0 < δ < 1 be a failure probability, and

C ≥ 1 be any specified constant. If Θ ∈ R`×n is an SRHT matrix and ` satisfies

6C2ε−1
�

p

k+
p

8 log(n/δ)
�2

log(k/δ)≤ `≤ n, (5.4.4)

then the approximation PAΘT A generated by Algorithm 5.1 with S=ΘT satisfies the residual error

bound





A− PAΘT A






F ≤ (1+ 11ε) ·




A−Ak







F (i)

and the forward error bound





Ak − PAΘT A






F ≤ (1+ 11ε) ·




A−Ak







F (ii)

simultaneously, with probability at least 1−δC2 log(k/δ)/4− 7δ.
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Likewise, the approximation ΠF
AS,k(A) generated by Algorithm 5.2 with S = ΘT satisfies the

residual error bound








A−ΠF
AS,k(A)










F
≤ (1+ 11ε) ·





A−Ak







F (iii)

and the forward error bound








Ak −ΠF
AS,k(A)










F
≤ (2+ 11ε) ·





A−Ak







F (iv)

simultaneously, with probability at least 1−δC2 log(k/δ)/4− 7δ.

Proof. We first establish the residual error bounds. Because ` satisfies (5.4.4), Lemma 5.5

implies that with probability at least 1− 3δ,

rank(VT
1Θ

T ) = k;

so, Lemma 4.8 applies with the same probability, yielding





A− PAΘT A
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A−ΠF
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A−Ak







2
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Σ2VT
2Θ

T (VT
1Θ

T )†






2
F . (5.4.5)

We complete the estimate by bounding the second term in the right hand side of the above
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inequality. Justifications appear below.

S :=




Σ2VT
2Θ

T (VT
1Θ
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�

· (2.38ε) (5.4.7)

≤ 22ε ·




Σ2







2
F . (5.4.8)

In (5.4.6) we used the fact that ‖X+ Y‖2F ≤ 2‖X‖2F + 2‖Y‖2F for any two matrices X and Y. The

first estimate in (5.4.7) is justified by an application of Lemma 5.11 on SRHT-based approximate

matrix multiplication; the second estimate is an application of Lemma 5.10, which predicts the

effect that postmultiplication by an SRHT matrix has upon the Frobenius norm of a matrix; and

the third estimate is an application of Lemma 5.5, which predicts the effect of postmultiplication

by an SRHT matrix on the singular values of a matrix with orthonormal rows. We postpone

a detailed discussion of the calculations involved in these estimations until after we have

established the residual error bounds.

Combining (5.4.5) with the bound on S, we obtain





A− PASA






2
F ≤ ‖A−Π

F
AS,k(A)‖

2
F ≤ (1+ 22ε) ·
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2
F . (5.4.9)

Since 1+ 2x ≤ (1+ x)2 when x is positive, it follows that
p

1+ 2x ≤ 1+ x when x is positive.

In particular,
p

1+ 22ε≤ 1+ 11ε. Introduce this observation into (5.4.9) to conclude that





A− PASA






F ≤ ‖A−Π
F
AS,k(A)‖F ≤ (1+ 11ε) ·





A−Ak







F .
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Thus we have established Eqns. (i) and (iii) in the theorem.

We now supply the details of the manipulations in (5.4.7). To justify the first estimate, notice

that VT
2 V1 = 0. Next use Lemma 5.11 with R= C

p

log(k/δ). From the lower bound (5.4.4) on

`, we have that

p
`

1+
p

8 log(n/δ)
≥
p

6ε−1 ·

p
k+
p

8 log(n/δ)

1+
p

8 log(n/δ)
· C
p

log(k/δ)> R> 0,

so this choice of R satisfies the requirements of Lemma 5.11. Apply Lemma 5.11 to obtain
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Recall that R= C
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log(k/δ). Use the lower bound (5.4.4) on ` to justify the estimate
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This estimate implies that
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Since C > 1 and k ≥ 2, a simple numerical bound allows us to state that, more simply,

P
n





Σ2VT
2Θ

TΘV1







2
F ≤ 4ε





Σ2VT
2







2
F

o

≥ 1−δC2 log(k/δ)/4− 2δ.
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This bound on




Σ2VT
2Θ

TΘV1







2
F is used to estimate the first term in (5.4.7). The remaining

estimates in (5.4.7) follow from applying Lemma 5.5 (keeping in mind the lower bound (5.4.4)

on `) to obtain

P
n
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2
2 ≤ 2.38ε
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≥ 1− 3δ.

and Lemma 5.10 with η= 7/4 to obtain
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We have the estimate
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so in fact
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8 log(n/δ))2 −δ

≥ 1− e−6C2ε−1 log(k/δ)−δ

≥ 1− e− log(k/δ)−δ

≥ 1− 2δ.

Adding up the failure probabilities of the three estimates used in (5.4.7), we conclude that the

bound on S given in (5.4.8) holds with probability at least 1−δC2 log(k/δ)/4− 7δ. Thus Eqns. (i)

and (iii) hold with this probability.

Next we establish the forward error bounds. Lemma 4.9 with S=ΘT ∈ Rn×` gives





Ak − PASA






2
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2
F +
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T (VT
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T )†






2
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Identify the second term on the right-hand side as S and introduce the estimate for S given

in (5.4.8) to see that





Ak − PASA






2
F ≤




A−Ak







2
F + 22ε ·





A−Ak







2
F = (1+ 22ε) ·





A−Ak







2
F .

This bound holds with probability at least 1−δC2 log(k/δ)/4− 7δ. Taking the square-roots of both

sides and using the fact that
p

1+ 22ε≤ 1+ 22ε gives Eqn. (iii).

Finally, we prove Eqn. (iv):





Ak −ΠF
AΘT ,k(A)







F =




A−Ak − (A−ΠF
AΘT ,k(A))







F

≤




A−Ak







F+




A−ΠF
AΘT ,k(A)







F ≤ (2+ 11ε)




A−Ak







F ,

where the first inequality follows by the triangle inequality and the second follows from Eqn. (ii)

in the theorem. This bound holds with probability at least 1−δC2 log(k/δ)/4− 7δ.

5.5 Experiments

In this section, we experimentally investigate the tightness of the residual and forward error

bounds provided in Theorems 5.13 and 5.14 for the spectral and Frobenius-norm approximation

errors of SRHT low-rank approximations of the forms PAΘT A and ΠF
AΘT ,k

(A). Additionally, we

experimentally verify that the SRHT algorithms are not significantly less accurate than the

Gaussian low-rank approximation algorithms.
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5.5.1 The test matrices

Let n= 1024, and consider the following three test matrices:

1. Matrix A ∈ R(n+1)×n is given by

A= [100e1+ e2, 100e1+ e3, . . . , 100e1+ en+1],

where ei ∈ Rn+1 are the standard basis vectors.

2. Matrix B ∈ Rn×n is diagonal with entries (B)ii = 100(1− (i− 1)/n).

3. Matrix C ∈ Rn×n has the same singular values as B, but its singular spaces are sampled

from the uniform measure on the set of orthogonal matrices. More precisely, C = UBVT ,

where G = UΣVT is the SVD of an n× n matrix whose entries are standard Gaussian random

variables.

These three matrices exhibit properties that, judging from the bounds in Theorems 5.13

and 5.14, could challenge the SRHT approximation algorithm. Matrix A is approximately rank

one—there is a large spectral gap after the first singular value—but the residual spectrum is flat,

so for k ≥ 1, the




A−Ak







F terms in the spectral norm bounds of Theorem 5.13 are quite large

compared to the




A−Ak







2 terms. Matrices B and C both have slowly decaying spectrums, so

one again has a large Frobenius term present in the spectral norm error bound.

Matrices B and C were chosen to have the same singular values but different singular spaces

to reveal any effect that the structure of the singular spaces of the matrix has on the quality

of SRHT approximations. The coherence of their right singular spaces provides a summary

of the relevant difference in the singular spaces of B and C. Recall that the coherence of a
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k-dimensional subspace S is defined as

µ(S ) =
n

k
max

i
Pii ,

where P is the projection onto S ; the coherence of S is always between 1 and n/k [CR09]. It

is clear that all the right singular spaces of B are maximally coherent, and it is known that with

high probability the dominant right k-dimensional singular space of C is quite incoherent, with

coherence on the order of k log n [CR09].

To gain an intuition for the potential significance of this difference in coherence, consider

a randomized column sampling approach to forming low-rank approximants; that is, consider

approximating Mk with a matrix PYM where Y comprises randomly sampled columns of M. It is

known that such approximations are quite inaccurate unless the dominant k-dimensional right

singular space of M is incoherent (see, e.g., Chapter 6 or [TR10]). One could interpret SRHT

approximation algorithms as consisting of a rotation of the right singular spaces of M by multi-

plying from the right with DHT followed by forming a column sample-based approximation. The

rotation lowers the coherence of the right singular spaces and thereby increases the probability

of obtaining an accurate low-rank approximation. One expects that if M has highly coherent

right singular spaces then the right singular spaces of MDHT will be less coherent. Thus we

compare the performance of the SRHT approximations on B, which has maximally coherent

right singular spaces, to their performance on C, which has almost maximally incoherent right

singular spaces.
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Figure 5.1: RESIDUAL ERRORS OF LOW-RANK APPROXIMATION ALGORITHMS. Relative spectral and
Frobenius-norm residual errors of the SRHT and Gaussian low-rank approximation algorithms
(‖M− PMSM‖ξ/‖M−Mk‖ξ and ‖M−ΠF

MS,k(M)‖ξ/‖M−Mk‖ξ for ξ = 2,F) as a function of the
target rank k for the three matrices M= A,B,C. Each point is the average error observed over
30 trials. In each trial, `= d2k log ne column samples were used.
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5.5.2 Empirical comparison of the SRHT and Gaussian algorithms

Figure 5.1 depicts the relative residual errors of the Gaussian and SRHT algorithms for ap-

proximations generated using Algorithms 5.1 and 5.2: PMSM and ΠF
MS,k(M), which we shall

hereafter refer to respectively as the non-rank-restricted and rank-restricted approximations.

Here the matrix M is used to refer interchangeably to A,B, and C. The relative residual errors

(‖M−PMSM‖ξ/‖M−Mk‖ξ and ‖M−ΠF
MS,k(M)‖ξ/‖M−Mk‖ξ for ξ = 2,F) shown in this figure

for each value of k were obtained by taking the average of the relative residual errors observed

over 30 trials of low-rank approximations, each formed using `= d2k log ne samples.

With the exception of the residual spectral errors on A, which range from between two and

nine times the size of the optimal rank-k spectral residual error for k < 20, we see that the

residual errors for all three matrices are less than 1.1 times the residual error of Mk, if not

significantly smaller. Specifically, the relative residual errors of the restricted-rank approximations

remain less than 1.1 over the entire range of k while the relative residual errors of the non-rank-

restricted approximations actually decrease as k increases. Note that, because ` > k, the relative

errors of the non-rank-restricted approximations are often smaller than 1, while those of the

restricted-rank approximations are never smaller than 1.

Since the matrices B and C have the same singular values, but the singular spaces of C are

less coherent, the difference in the residual errors of the approximations of B and C is evidence

that the spectral-norm accuracy of the SRHT approximations is increased on less coherent

datasets; the same is true for the Frobenius norm accuracy to a lesser extent. The Gaussian

approximations seem insensitive to the level of coherence. Only on the highly coherent matrix

B do we see a notable decrease in the residual errors when Gaussian sampling is used rather

than an SRHT; however, even in this case the residual errors of the SRHT approximations are
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comparable with that of Bk. In all, Figure 5.1 suggests that the gain in computational efficiency

provided by the SRHT does not come at the cost of a significant loss in accuracy and that taking

`= d2k log ne samples suffices to obtain approximations with small residual errors relative to

those of the optimal rank-k approximations. Up to the specific value of the constant, this latter

observation coincides with the conclusions of Theorems 5.13 and 5.14.

Figure 5.2 depicts the relative forward errors of the Gaussian and SRHT algorithms (‖Mk −

PMSM‖ξ/‖M−Mk‖ξ and ‖Mk−ΠF
MS,k(M)‖ξ/‖M−Mk‖ξ for ξ = 2,F) for the non-rank-restricted

and rank-restricted approximations. The error shown for each k is the average relative forward

error observed over 30 trials of low-rank approximations each formed using `= d2k log ne sam-

ples. We observe that the forward errors of both algorithms for both choices of sampling matrices

are on the scale of the norm of Mk. By looking at the relative spectral-norm forward errors we

see that in this norm, perhaps contrary to intuition, the rank-restricted approximation does not

provide a more accurate approximation to Mk than does the non-rank-restricted approximation.

However the rank-restricted approximation clearly provides a more accurate approximation to

Mk than the non-rank-restricted approximation in the Frobenius norm. A rather unexpected

observation is that the rank-restricted approximations are more accurate in the spectral norm

for highly coherent matrices (B) than they are for matrices which are almost minimally coherent

(C). Overall, Figure 5.2 suggests that the SRHT low-rank approximation algorithms provide

accurate approximations to Mk when ` is in the regime suggested by Theorems 5.13 and 5.14.

5.5.3 Empirical evaluation of our error bounds

Figures 5.1 and 5.2 show that when ` = d2k log ne samples are taken, the SRHT low-rank

approximation algorithms both provide approximations to M that are within a factor of 1+ ε

as accurate in the Frobenius norm as Mk, as Theorem 5.14 suggests should be the case. More
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Figure 5.2: FORWARD ERRORS OF LOW-RANK APPROXIMATION ALGORITHMS. The relative spectral and
Frobenius-norm forward errors of the SRHT and Gaussian low-rank approximation algorithms
(‖Mk−PMSM‖ξ/‖M−Mk‖ξ and ‖Mk−ΠF

MS,k(M)‖ξ/‖M−Mk‖ξ for ξ = 2, F) as a function of the
target rank k for the three matrices M = A,B,C. Each point is the average of the errors observed
over 30 trials. In each trial, `= d2k log ne column samples were used.
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Figure 5.3: THE NUMBER OF COLUMN SAMPLES REQUIRED FOR RELATIVE ERROR FROBENIUS-NORM

APPROXIMATIONS. The value of ` empirically necessary to ensure that, with probability at
least one-half, approximations generated by the SRHT algorithms satisfy
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precisely, Theorem 5.14 assures us that 528ε−1[
p

k+
p

8 log(8n/δ)]2 log(8k/δ) column samples

are sufficient to ensure that, with at least probability 1 − δ, PMΘT M and ΠF
MΘT ,k

(M) have

Frobenius norm residual and forward error within 1+ ε of that of Mk. The factor 528 can

certainly be reduced by optimizing the numerical constants given in Theorem 5.14. But what

is the smallest ` that ensures the Frobenius norm residual error bounds




M− PMΘT M






F ≤

(1+ ε)




M−Mk







F and







M−ΠF
MΘT ,k

(M)









F
≤ (1+ ε)





M−Mk







F are satisfied with some fixed

probability? To investigate, in Figure 5.3 we plot the values of ` determined empirically to

be sufficient to obtain (1+ ε) Frobenius norm residual errors relative to the optimal rank-k

approximation; we fix the failure probability δ = 1/2 and vary ε. Specifically, the ` plotted for

each k is the smallest number of samples for which




M− PMΘT M






F ≤ (1+ ε)




M−Mk







F or







M−ΠF
MΘT ,k

(M)









F
≤ (1+ ε)





M−Mk







F in at least 15 out of 30 trials.

It is clear that, for fixed k and ε, the number of samples ` required to form a non-rank-

restricted approximation to M with 1+ ε relative residual error is smaller than the ` required

to form a rank-restricted approximation with 1+ ε relative residual error. Note that for small

values of k, the ` necessary for relative residual error to be achieved is actually smaller than

k for all three datasets. This is a reflection of the fact that when k1 < k2 are small, the ratio





M−Mk2







F /




M−Mk1







F is very close to one. Outside of the initial flat regions, the empirically

determined value of r seems to grow linearly with k; this matches with the observation of Woolfe

et al. that taking `= k+ 8 suffices to consistently form accurate low-rank approximations using

the SRFT scheme, which is very similar to the SRHT scheme [WLRT08]. We also note that this

matches with Theorem 5.14, which predicts that the necessary ` grows at most linearly with k

with a slope like log n.

Finally, Theorem 5.13 does not guarantee that 1+ε spectral-norm relative residual errors can

be achieved. Instead, it provides bounds on the spectral-norm residual errors achieved in terms of
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M−Mk







2 and




M−Mk







F that are guaranteed to hold when ` is sufficiently large. In Figure 5.4

we compare the spectral-norm residual error guarantees of Theorem 5.13 to what is achieved in

practice. To do so, we take the optimistic viewpoint that the constants in Theorem 5.13 can be

optimized to unity. Under this view, if more columns than `2 = ε−1[
p

k+
p

log(n/δ)]2 log(k/δ)

are used to construct the SRHT approximations, then the spectral-norm residual error is no

larger than

b2 =

 

1+

r

log(n/δ) log(ρ/δ)
`

!

·




M−Mk







2+

r

log(ρ/δ)
`

·




M−Mk







F ,

where ρ is the rank of M, with probability greater than 1−δ. Our comparison consists of using

`2 samples to construct the SRHT approximations and then comparing the predicted upper

bound on the spectral-norm residual error, b2, to the empirically observed spectral-norm residual

errors. Figure 5.4 shows, for several values of k, the upper bound b2 and the observed relative

spectral-norm residual errors, with precision parameter ε= 1/2 and failure parameter δ = 1/2.

For each value of k, the empirical spectral-norm residual error plotted is the average of the

errors over 30 trials of low-rank approximations. Note from Figure 5.4 that with this choice

of `, the spectral-norm residual errors of the rank-restricted and non-rank-restricted SRHT

approximations are essentially the same.

Judging from Figures 5.3 and 5.4, even when we assume the constants present can be

optimized away, the bounds given in Theorems 5.13 and 5.14 are pessimistic: it seems that in

fact approximations with Frobenius-norm residual error within 1+ ε of the error of the optimal

rank-k approximation can be obtained with ` linear in k, and the spectral-norm residual errors

are smaller than the supplied upper bounds. Thus there is still room for improvement in our

understanding of the SRHT low-rank approximation algorithm, but as explained in Section 5.2.1,
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Figure 5.4: EMPIRICAL VERSUS PREDICTED SPECTRAL-NORM RESIDUAL ERRORS OF LOW-RANK APPROXIMA-
TIONS. The empirical spectral-norm residual errors relative to those of the optimal rank-k approx-
imants (





M− PMΘT M






2 /‖M−Mk‖2 and ‖M−ΠF
MΘT ,k

(M)‖2/‖M−Mk‖2) plotted alongside the

same ratio for the bounds given in Theorem 5.13, when `= d2[
p

k+
p

log(2n)]2 log(2k)e (for
M= A,B,C). On the scale shown, the errors of the two SRHT-based approximation algorithms
are essentially identical.

ignoring constants, the bounds of Theorem 5.13 are often tighter than those obtained in earlier

works.

To bring perspective to this discussion, consider that even if one limits consideration to

deterministic algorithms, the known error bounds for the Gu–Eisenstat rank-revealing QR—a

popular and widely used algorithm for low-rank approximation—are quite pessimistic and

do not reflect the excellent accuracy that is seen in practice [GE96]. Regardless, we do not

advocate using these approximation schemes for applications in which highly accurate low-rank

approximations are needed. Rather, Theorems 5.13 and 5.14 and our numerical experiments

suggest that they are appropriate in situations where one is willing to trade some accuracy for a

gain in computational efficiency.
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Chapter 6

Theoretical and empirical aspects of
SPSD sketches

6.1 Introduction

In this chapter we consider the accuracy of randomized low-rank approximations of symmetric

positive-semidefinite matrices conforming to the following general model1.

SPSD Sketching Model. Let A be an n× n SPSD matrix, and let S be matrix of size n× `,

where `� n. Form

C= AS and W= ST AS.

We call CW†CT the SPSD sketch of A associated with the sketching matrix S. Note that this sketch

is also SPSD, and has rank at most `.

These sketches can be computed quickly, and as we see in Section 6.9, are accurate low-rank

approximations for several classes of matrices that arise in machine learning and data analysis

applications. This model subsumes both projection-based sketches (here, S mixes the columns

and rows of A), and sampling-based sketches (here, S selects columns and rows of A).

1The content of this chapter is redacted from the technical report [Git11] and the technical report [GM13a]
coauthored with Michael Mahoney. A preliminary version of some of these results appear in the conference
paper [GM13b], also coauthored with Michael Mahoney.
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The computation of an SPSD sketch requires only one pass over A, because the matrix

C = AS uniquely determines the sketch. One should contrast this to the natural extension of the

low-rank approximations considered in Chapter 5, namely PASAPAS, which requires two passes

over A : one to construct a basis for the range of AS, and one to project A onto this basis.

In addition to one-pass sketches, low-rank approximations formed using the so-called power

method [HMT11] fit the SPSD sketching model. For such sketches, C = AqS0 and W = ST
0 A2q−1S0

for some integer q ≥ 2 and sketching matrix S0. To see that these models fit the SPSD sketching

model, simply consider the sketching matrix to be S = Aq−1S0. The approximation errors of these

sketches decrease as p increases. The two-pass sketch is particularly of interest: we relate it to

a low-rank approximation proposed in [HMT11]. As well, we show empirically that two-pass

SPSD sketches are empirically significantly more accurate than the projection-based low-rank

approximant PASAPAS.

When S comprises columns selected uniformly at random without replacement from the

n×n identity matrix, the resulting SPSD sketch is called a Nyström extension. To form a Nyström

extension, one needs only to be able to sample columns from A. Further, the cost of forming

the factored form of a Nyström extension is Ω(`3 + n`), linear in the size of A! For these two

reasons, Nyström extensions are attractive in settings where it is costly or unreasonable to access

all the elements of A. However, as we see in this chapter, the use of Nyström extensions is only

theoretically justified when the top k-dimensional eigenspace of A has low coherence. Recall

from Chapter 4 that the coherence of this eigenspace is defined as

µ= max
i=1,...,n

n

k





(PU1
)ii






2
2,

where U1 is a basis for the eigenspace. This dependence on the coherence is not simply a
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theoretical consideration: it is empirically observable. This motivates looking at the wider class

of SPSD sketches, where, depending on the choice of S, potentially all the columns of the matrix

contribute to the approximation.

This chapter presents theoretical and empirical results for different choices of S. Empirically,

we find that the Nyström extension performs well in practice, but not as well as sketches that

mix the columns of A before sampling or sketches that sample the columns according to a

specific importance sampling distribution. Our theoretical bounds bear out this comparison, and

are asymptotically superior to the bounds present in the literature for low-rank approximation

schemes which fit into our SPSD sketching model. However, a large gap still remains between

our bounds and the observed errors of SPSD sketches.

We develop a framework for the analysis of SPSD sketches that parallels the framework

Lemma 4.8 provides for the analysis of projection-based low-rank approximations. Applied to

Nyström extensions, our framework exposes a natural connection between Nyström extensions

and the column subset selection problem that leads to an optimal worse-case bound for the

spectral error of Nyström extensions. This is the first truly relative-error spectral norm bound

available for Nyström extensions; the contemporaneous work [CD11] independently establishes

this same bound in the broader context of CUR decompositions. More generally, we provide

theoretical worst-case bounds for several sketches based on random column sampling and

random projections. These bounds apply to both one-pass and multiple-pass sketches. In the

case of multiple-pass sketches, we find that the errors of the sketches decrease proportionally to

λk+1(A)/λk(A) with each additional pass.

In general, the process of computing SPSD sketches is not numerically stable: if W is ill-

conditioned, then instabilities may arise in solving the linear system W†CT . This is of particular

concern with Nyström extensions, since the particular submatrix of A selected may be quite
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ill-conditioned. With other sketching schemes, the fact that W is formed as a mixture of

the columns of A tends to provide implicit protection against W being poorly conditioned.

The seminal paper on the use of Nyström extensions for low-rank approximation, [WS01],

suggested regularizing Nyström extensions to avoid ill-conditioning. This algorithm can be used

to regularize the computation of any SPSD sketch; we provide the first error bounds for these

regularized sketches. Another regularization scheme is introduced in [CD11]. We compare the

empirical performance of these two regularization schemes.

We supplement our theoretical results with a collection of empirical results intended to

illustrate the performance of the considered SPSD sketches on matrices that arise in machine

learning applications. We also provide empirical results for the rank-restricted sketches obtained

by replacing W with Wk in the definition of an SPSD sketch. That is, we also consider sketches of

the form CW†
kCT . These sketches do not fit into our SPSD sketching model, but are the natural

way to ensure that the rank of the low-rank approximation does not exceed the target rank k.

Further, since Wk has a smaller condition number than W, the rank-restricted sketches can be

computed more stably than the non-rank-restricted sketches.

6.1.1 Outline

In Section 6.2, we introduce the specific randomized SPSD sketches analyzed in this chapter

and summarize the spectral, Frobenius, and trace-norm error bounds for the one-pass variants

of these sketches. In Section 6.3, we compare our results with prior work on SPSD sketches,

in particular Nyström extensions. In Section 6.4 we prove the deterministic error bounds that

form the basis of our analyses. In Sections 6.5 and 6.6 we apply the deterministic bounds to the

Nyström extension and several randomized mixture-based sketches. In Section 6.7, we recall

two algorithms for computing regularized SPSD sketches; a novel error analysis is presented for
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one of these algorithms. In Section 6.8 we provide experimental evidence of the efficacy of the

two algorithms for computing regularized SPSD sketches. We provide a set of empirical results

on the application of SPSD sketches to matrices drawn from data analysis and machine-learning

applications in Section 6.9. Finally, we conclude in Section 6.10 with an empirical comparison

of two-pass SPSD sketches with the low-rank approximation PASAPAS. In the same section, we

show that a certain low-rank approximation introduced in [HMT11] is in fact a two-pass SPSD

sketch.

6.2 Deterministic bounds on the errors of SPSD sketches

Recall the following partitioning of the eigenvalue decomposition of A, which we use to state

our results:

A=

�

k n−k

U1 U2

�











k n−k

Σ1

Σ2





















UT
1

UT
2











. (6.2.1)

The matrix [U1 U2] is orthogonal, Σ1 contains the k largest eigenvalues of A, and the columns

of U1 and U2 respectively span a top k-dimensional eigenspace of A and the corresponding

bottom (n− k)-dimensional eigenspace of A. The interaction of the sketching matrix S with the

eigenspaces spanned by U1 and U2 is captured by the matrices

Ω1 = UT
1 S, Ω2 = UT

2 S. (6.2.2)

We now introduce the randomized sketching procedures considered in this chapter and

summarize the bounds obtained on the spectral, Frobenius, and trace-norm approximation errors

of each of these sketches. Our results bound the additional error of SPSD sketches. That is,

they bound the amount by which the approximation errors of the SPSD sketches exceed the
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approximation errors of Ak, the optimal rank-k low-rank approximation.

Nyström extensions These sketches are formed by sampling columns from A uniformly at

random, without replacement. The sketching matrix S comprises a set of columns sampled

uniformly at random without replacement from the identity matrix.

Empirically, as we see in Section 6.9, Nyström extensions have surprisingly low error

across a range of matrices with diverse properties. This is perhaps surprising, given that

the column-sampling process does not take into consideration any properties of A other

than its size.

Fix parameters ε and δ in (0,1). Theorem 6.9 finds that when `≥ 2µε−2k log(k/δ), the

approximation errors of Nyström extensions satisfy

‖A−CW†CT‖2 ≤
�

1+
n

(1− ε)`

�

‖A−Ak‖2,

‖A−CW†CT‖F ≤ ‖A−Ak‖F+
� p

2

δ
p

1− ε
+

1

(1− ε)δ2

�

Tr
�

A−Ak
�

, and

Tr
�

A−CW†CT
�

≤
�

1+
1

δ2(1− ε)

�

Tr
�

A−Ak
�

simultaneously, with probability at least 1− 4δ.

Leverage-based sketches Similarly to Nyström extensions, these sketches are formed by sam-

pling columns from A. However, the columns are sampled, with replacement, according to

a nonuniform distribution based on their statistical leverage scores filtered through the top

k-dimensional eigenspace of A. Recall that U1 ∈ Rn×k is a basis for the top k-dimensional

eigenspace of A. The leverage score of the jth column of A is defined as the squared
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Euclidean norm of the jth row of U1 :

` j = ‖(U1)
( j)‖22.

Since U1 has orthonormal columns, the leverage scores of the columns of A sum to k, so

the quantities

p j =
1

k
‖(U1)

( j)‖22

define a nonuniform probability distribution over the columns of A. This distribution is

used in the construction of leverage-based sketches.

Previous work has established that the leverage scores reflect the nonuniformity properties

of the top k-dimensional eigenspace of A [DM10]. The fact that the resulting sketch is

expressed in terms of columns from the matrix rather than mixtures of columns, as in

the case with truncated SVDs or mixture-based sketches, means that in data analysis

applications, leverage-based sketches often lead to models with superior interpretabil-

ity [PZB+07, DM09, Mah11, YMS+13].

The tradeoff for this interpretability is that it is expensive to compute the exact leverage

score distribution. However, the leverage scores can be approximated in roughly the time

it takes to apply a random projection to A [DMIMW12]. The error bounds we provide

allow for sampling from approximate leverage score distributions.

The sketching matrix S associated with leverage-based sketches is factored into the product

of a column selection matrix and a rescaling matrix, S = RD. Here R ∈ Rn×` samples

columns of A according to the exact or approximate leverage score distribution, that is,

Ri j = 1 if and only if the ith column of A is the jth column selected; and D ∈ R`×` is a
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diagonal matrix satisfying D j j = 1/
p

`p j .

In Section 6.9, we see that when ` is small, i.e. when ` ≈ k, leverage-based sketches

consistently have the lowest error of all non-rank-restricted sketches considered. The

errors of the restricted-rank leverage-based sketches are also usually lower, for all values

of `, than the errors of any other restricted-rank sketches considered. Both these facts

match with the intuition that the leverage scores capture the nonuniformity properties of

A that are relevant to forming an accurate rank-k approximation by sampling columns.

Fix parameters ε and δ in (0, 1). Theorem 6.12 guarantees that if `≥ 3200ε−2k log(4k/δ),

then leverage-based sketches satisfy

‖A−CW†CT‖2 ≤ ‖A−Ak‖2+ ε2 Tr
�

A−Ak
�

,

‖A−CW†CT‖F ≤ ‖A−Ak‖F+ (
p

2ε+ ε2)Tr
�

A−Ak
�

, and

Tr
�

A−CW†CT
�

≤ (1+ ε2)Tr
�

A−Ak
�

simultaneously, with probability at least 1− 6δ− 0.6.

SRFT-based sketches These sketches are formed by mixing the columns of A using a subsam-

pled fast transformation. Here S =
p

n/`DFR, where D is a diagonal matrix of Rademacher

random variables, F is the normalized real Fourier transform matrix, and R restricts to

` columns. Of course, one could consider a slew of similar sketches where the Fourier

transform is replaced with another unitary transform associated with a fast algorithm.

Fix parameters ε and δ in (0,1). Theorem 6.16 implies that when

`≥ 24ε−1[
p

k+
p

8 log(8n/δ)]2 log(8k/δ),
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the approximation errors of SRFT-based sketches satisfy

‖A−CW†CT‖2 ≤
�

1+
1

1−
p
ε

�

5+
16 log(n/δ)2

`

��

‖A−Ak‖2

+
2 log(n/δ)
(1−

p
ε)`

Tr
�

A−Ak
�

,

‖A−CW†CT‖F ≤ ‖A−Ak‖F+ 29
p
εTr
�

A−Ak
�

, and

Tr
�

A−CW†CT
�

≤ (1+ 22ε)Tr
�

A−Ak
�

simultaneously, with probability at least 1− 2δ.

Gaussian sketches These sketches are formed by sampling with an n×`matrix of i.i.d. Gaussian

entries. As we see in Section 6.9, for large `, when the ranks of the sketches are not

restricted, Gaussian sketches usually have the lowest error of all sketches considered in

this chapter.

Fix an accuracy parameter ε ∈ (0, 1] and choose `≥ (1+ ε2)k. Theorem 6.17 implies the

following:

‖A−CW†CT‖2 ≤ (1+ 963ε2)‖A−Ak‖2+ 219
ε2

k
Tr
�

A−Ak
�

,

‖A−CW†CT‖F ≤ ‖A−Ak‖F+
�

11ε+ 544ε2
�
p

‖A−Ak‖2 Tr
�

A−Ak
�

+ 815ε2‖A−Ak‖2+ 91
ε
p

k
Tr
�

A−Ak
�

, and

Tr
�

A−CW†CT
�

≤ (1+ 45ε2)Tr
�

A−Ak
�

+ 874ε2 log(k)
k
‖A−Ak‖2

simultaneously, with probability at least 1− 2k−1− 4e−k/ε2
.
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6.3 Comparison with prior work

Our bounds on the errors of the sketches just introduced are summarized in Table 6.1. They

exhibit a common structure: for the spectral and Frobenius norms, we see that the additional

error is on a larger scale than the optimal error, and the trace-norm bounds all guarantee

relative error approximations. This follows from, as detailed in Section 6.4, the fact that

the SPSD sketching procedure can be understood as forming column-sample/projection-based

approximations to the square root of A, then squaring this approximation to obtain the resulting

approximation to A. The squaring process results in potentially large additional errors in the

case of the spectral and Frobenius norms. Whether or not the additional errors are large in

practice depends upon the properties of the matrix and the form of stochasticity used in the

sampling process. For instance, from our bounds it is clear that Gaussian-based SPSD sketches

are expected to have a lower additional error in the spectral norm than any of the other sketches

considered.

We also see, in the case of Nyström extensions, a necessary dependence on the coherence

of the input matrix, since columns are sampled uniformly at random. However, we also see

that the scales of the additional error of the Frobenius and trace-norm bounds are substantially

improved over those in prior results. The large additional error in the spectral-norm error

bound is necessary in the worst case (Section 6.8). The additional spectral-norm errors of the

sketching methods which use more information about the matrix, namely the leverage-based,

Fourier-based, and Gaussian-based sketches, are on a substantially smaller scale.
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source ` (column samples) Spectral error Frobenius error Trace error
Prior works

[DM05] column sampling Ω(ε−4k) opt2 + ε
∑n

i= A2
ii optF + ε

∑n
i=1 A2

ii –
[BW09] Nyström Ω(1) – – (n− `)/n Tr (A)
[TR10] Nyström Ω(µr r log r) 0 0 0
[KMT12] Nyström Ω(1) opt2 + n/

p
`‖A‖2 optF + n(k/`)1/4 ‖A‖2 –

This work
Nyström, Thm. 6.9 Ω((1− ε)−2µkk log k) opt2(1+ n/(ε`)) optF + ε

−1opttr opttr(1+ ε
−1)

Leverage-based,
Thm. 6.12

Ω(ε−2k log k) opt2 + ε
2opttr optF + εopttr (1+ ε2)opttr

SRFT-based, Thm. 6.16 Ω(ε−1k log n) (1−
p
ε)−1(1+ k−1 log n)opt2 + εopttr/((1−

p
ε)k) optF +

p
εopttr (1+ ε)opttr

Gaussian-based,
Thm. 6.17

Ω(ε−1k) (1+ ε2)opt2 + (ε
2/k)opttr optF + εopttr (1+ ε2)opttr

Table 6.1: ASYMPTOTIC COMPARISON OF OUR BOUNDS ON SPSD SKETCHES WITH PRIOR WORK. Here, ` is the number of column samples sufficient for
the stated bounds to hold, µd indicates the coherence of the top d-dimensional eigenspace, optξ with ξ ∈ {2,F, tr} is the smallest ξ-norm error
possible when approximating A with a rank-k matrix, r = rank(A), and k is the target rank. The sketch analyzed in [DM05] samples columns
with probabilities proportional to their Euclidean norms. All bounds hold with constant probability.
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6.4 Proof of the deterministic error bounds

In this section, we develop deterministic spectral, Frobenius, and trace norm error bounds for

SPSD sketches. Along the way, we establish a connection between the accuracy of SPSD sketches

and the performance of randomized column subset selection.

Our results are based on the observation that approximations which satisfy our SPSD

sketching model can be written in terms of a projection onto a subspace of the range of the

square root of the matrix being approximated.

Lemma 6.1. Let A be an SPSD matrix and S be a conformal sketching matrix. Then when C = AS

and W= ST AS, the corresponding SPSD sketch satisfies

CW†CT = A1/2PA1/2SA1/2.

Proof. The orthoprojector onto the range of any matrix X satisfies PX = X(XT X)†XT . It follows

that

CW†CT = AS(ST AS)†ST A

= A1/2[A1/2S(ST A1/2A1/2S)†ST A1/2]A1/2

= A1/2PA1/2SA1/2.
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6.4.1 Spectral-norm bounds

Our first theorem bounds the spectral-norm error of multiple-pass SPSD sketches.

Theorem 6.2. Let A be an SPSD matrix of size n, and let S be an n× ` matrix. Fix an integer

p ≥ 1. Partition A as in (6.2.1) and define Ω1 and Ω2 as in (6.2.2).

Assume Ω1 has full row-rank. Then when C = ApS and W = ST A2p−1S, the corresponding

SPSD sketch satisfies

‖A−CW†CT‖2 = ‖
�

I− PAp−1/2S
�

A1/2‖22 ≤




Σ2







2+ ‖Σ
p−1/2
2 Ω2Ω

†
1‖

2/(2p−1)
2 . (6.4.1)

If Ω1 has full row-rank and, additionally, rank(A)< k, then in fact

A= CW†CT .

Remark 6.3. We emphasize that the first relation in (6.4.1) is an equality. This equality holds

when A1/2 is replaced with any generalized Cholesky factorization of A: by appropriately

modifying the proof of Theorem 6.2, it can be seen that if ΠAΠT = BT B where Π is a permutation

matrix, then

‖A−CW†CT‖2 = ‖(I− PB(BT B)p−1ΠS)B‖22

as well. We take Π= I and B= A1/2 in this chapter, but other factorizations may be of interest.

Remark 6.4. Given a matrix M, the goal of column subset selection is to choose a small but

informative subset C of the columns of M. Informativity can be defined in many ways; in our

context, C is informative if, after approximating M with the matrix obtained by projecting
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M onto the span of C, the residual (I− PC)M is small in the spectral norm. In randomized

column subset selection, the columns C are chosen randomly, either uniformly or according

to some data-dependent distribution. Column subset selection has important applications in

statistical data analysis and has been investigated by both the numerical linear algebra and the

theoretical computer science communities. For an introduction to the column subset selection

literature biased towards approaches involving randomization, we refer the interested reader to

the surveys [Mah12, Mah11].

To see the connection of SPSD sketching to the column subset selection problem, model the

column sampling operation as follows: let S be a random matrix with ` columns, each of which

has exactly one nonzero element. Then right multiplication by S selects ` columns from A. The

distribution of S reflects the type of randomized column sampling being performed. In the case

of the Nyström extension, S is distributed as the first ` columns of a matrix sampled uniformly

at random from the set of all permutation matrices.

Let p = 1, then (6.4.1) states that

‖A−CW†CT‖2 = ‖(I− PA1/2S)A‖
2
2.

That is, the spectral-norm error of a Nyström extension is exactly the square of the spectral-norm

error in approximating A1/2 with a projection onto its corresponding columns. Thus, the problem

of constructing high-quality Nyström extensions of A is equivalent to the randomized column

subset selection problem for A1/2.

To establish Theorem 6.2, we use the following bound on the error incurred by projecting a

matrix onto a random subspace of its range (an immediate corollary of [HMT11, Theorems 9.1

and 9.2]). This result is similar to Lemma 4.8, but is better adapted to investigating multiple-pass
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sketches, and it provides a guarantee of exact recovery when M is sufficiently low-rank.

Lemma 6.5. Let M be an SPSD matrix of size n, and let q ≥ 0 be an integer. Fix integers k and `

satisfying 1≤ k ≤ `≤ n.

Let U1 and U2 be matrices with orthonormal columns spanning, respectively, a top k-dimensional

eigenspace of M and the corresponding bottom (n− k)-dimensional eigenspace of M. Let Σ1 and

Σ2 be the diagonal matrices of eigenvalues corresponding, respectively, to the top k-dimensional

eigenspace of M and the bottom (n− k)-dimensional eigenspace of M.

Given a matrix S of size n × `, define Ω1 = UT
1 S and Ω2 = UT

2 S. Assume that Ω1 has full

row-rank. Then

‖(I− PM2q+1S)M‖22 ≤ ‖Σ2‖22+




Σ2q+1
2 Ω2Ω

†
1







2/(2q+1)
2 .

If Ω1 has full row-rank and, additionally, Σ1 is singular, then

M= PM2q+1SM.

Proof of Theorem 6.2. Define a sketching matrix S′ = Ap−1S, then

C= AS′ and W= (S′)T AS′.

Apply Lemma 6.1 with the sketching matrix S′ to see that

CW†CT = A1/2PA1/2(Ap−1S)A
1/2 = A1/2PAp−1/2SA1/2.
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It follows that the spectral error of the Nyström extension satisfies

‖A−CW†CT‖2 = ‖A1/2(I− PAp−1/2S)A
1/2‖2 = ‖A1/2(I− PAp−1/2S)

2A1/2‖2

= ‖(I− PAp−1/2S)A
1/2‖22 = ‖(I− P(A1/2)2p−1S)A

1/2‖22

= ‖(I− P(A1/2)2(p−1)+1S)A
1/2‖22.

The second equality holds because orthogonal projections are idempotent. The third follows

from the fact that ‖MMT‖2 = ‖M‖22 for any matrix M. Partition A as in (6.2.1). Equation (6.4.1)

and the following assertion hold by Lemma 6.5 with M= A1/2 and q = p− 1.

6.4.2 Frobenius-norm bounds

Next, we prove a bound on the Frobenius norm of the residual error of SPSD sketches. The proof

parallels that for the spectral-norm bound, in that we use the connection between SPSD sketches

and column-based approximations to A1/2, but the analysis is more involved. The starting point

of our proof is the perturbation argument used in the proof of [HMT11, Theorem 9.1], which

was in turn inspired by Stewart’s work on the perturbation of projections [Ste77].

Theorem 6.6. Let A be an SPSD matrix of size n, and let S be an n× ` matrix. Fix an integer

p ≥ 1. Partition A as in (6.2.1) and let Ω1 and Ω2 be as defined in (6.2.2). Define

γ=
λk+1(A)
λk(A)

.

Assume Ω1 has full row-rank. Then when C = ApS and W = ST A2p−1S, the corresponding

SPSD sketch satisfies

‖A−CW†CT‖F ≤ ‖Σ2‖F+ γp−1‖Σ1/2
2 Ω2Ω

†
1‖2 ·

�
p

2Tr
�

Σ2
�

+ γp−1‖Σ1/2
2 Ω2Ω

†
1‖F
�

.
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If Ω1 has full row-rank and, additionally, rank(A)< k, then in fact

A= CW†CT .

Proof. First, we observe that if rank(A) < k and Ω1 has full row-rank, then by Theorem 6.2,

A= CW†CT .

To establish the claimed inequality, apply Lemma 6.1 with the sketching matrix Ap−1S to see

that

CW†CT = A1/2PAp−1/2SA1/2.

From this it follows that

‖A−CW†CT‖F = ‖A1/2(I− PAp−1/2S)A
1/2‖F.

To bound the quantity on the right-hand side, we first recall the fact [HMT11, Proposition 8.4]

that for an arbitrary matrix M, when U is a unitary matrix, PUM = UPMUT . Then we use the

unitary invariance of the Frobenius norm to obtain

E =







A1/2(I− PAp−1/2S)A
1/2









F
=







Σ1/2(I− PΣp−1/2UT S)Σ
1/2









F
.

Then we take

Z= Σp−1/2Ω2Ω
†
1Σ
−(p−1/2)
1 =











I

F











, (6.4.2)

where I ∈ Rk×k and F ∈ Rn−k×k is given by F = Σp−1/2
2 Ω2Ω

†
1Σ
−(p−1/2)
1 . The last equality in 6.4.2



170

holds because of our assumption that Ω1 has full row-rank. Since the range of Z is contained in

the range of Σp−1/2UT S,

E ≤







Σ1/2(I− PZ)Σ
1/2









F
.

By construction, Z has full column rank, thus Z(ZT Z)−1/2 is an orthonormal basis for the span of

Z, and

I− PZ = I− Z(ZT Z)−1ZT = I−











I

F











(I+ FT F)−1

�

I FT

�

=











I− (I+ FT F)−1 −(I+ FT F)−1FT

−F(I+ FT F)−1 I− F(I+ FT F)−1FT











. (6.4.3)

This implies that

E2 ≤

























Σ1/2











I− (I+ FT F)−1 −(I+ FT F)−1FT

−F(I+ FT F)−1 I− F(I+ FT F)−1FT











Σ1/2

























2

F

=







Σ1/2
1

�

I− (I+ FT F)−1�Σ1/2
1










2

F
+ 2







Σ1/2
1 (I+ FT F)−1FTΣ1/2

2










2

F

+







Σ1/2
2

�

I− F(I+ FT F)−1FT�Σ1/2
2










2

F

= T1+ T2+ T3.

(6.4.4)

Next, we provide bounds for T1, T2, and T3. Using the fact that 0 � I− F(I+ FT F)−1FT � I

(easily seen with an SVD), we can bound T3 with

T3 ≤




Σ2







2
F .

Likewise, the fact that I− (I+ FT F)−1 � FT F (easily seen with an SVD) implies that we can



171

bound T1 with

T1 ≤







Σ1/2
1 FT FΣ1/2

1










2

F
≤







FΣ1/2
1










2

2








FΣ1/2
1










2

F

=







Σp−1/2
2 Ω2Ω

†
1Σ
−(p−1)
1










2

2








Σp−1/2
2 Ω2Ω

†
1Σ
−(p−1)
1










2

F

≤







Σp−1
2










4

2








Σ−(p−1)
1










4

2








Σ1/2
2 Ω2Ω

†
1










2

2








Σ1/2
2 Ω2Ω

†
1










2

F

= (




Σ2







2





Σ−1
1







2)
4(p−1)








Σ1/2
2 Ω2Ω

†
1










2

2








Σ1/2
2 Ω2Ω

†
1










2

F

=
�

λk+1(A)
λk(A)

�4(p−1) 





Σ1/2
2 Ω2Ω

†
1










2

2








Σ1/2
2 Ω2Ω

†
1










2

F

= γ4(p−1)







Σ1/2
2 Ω2Ω

†
1










2

2








Σ1/2
2 Ω2Ω

†
1










2

F
.

We proceed to bound T2 by using the estimate

T2 ≤ 2







Σ1/2
1 (I+ FT F)−1FT










2

2








Σ1/2
2










2

F
. (6.4.5)

To develop the spectral norm term, observe that for any SPSD matrix M with eigenvalue

decomposition M= VDVT ,

(I+M)−1M(I+M)−1 = (VVT +VDVT )−1VDVT (VVT +VDVT )−1

= V(I+D)−1D(I+D)−1VT

� VDVT =M.
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It follows that








Σ1/2
1 (I+ FT F)−1FT










2

2
=







Σ1/2
1 (I+ FT F)−1FT F(I+ FT F)−1Σ1/2

1










2

≤







Σ1/2
1 FT FΣ1/2

1










2
=







FΣ1/2
1










2

2

=







Σp−1/2
2 Ω2Ω

†
1Σ
−(p−1)
1










2

2

≤







Σp−1
2










2

2








Σ−(p−1)
1










2

2








Σ1/2
2 Ω2Ω

†
1










2

2

=
�

λk+1(A)
λk(A)

�2(p−1) 





Σ1/2
2 Ω2Ω

†
1










2

2
.

Identifying γ and using this estimate in (6.4.5), we conclude that

T2 ≤ 2γ2(p−1)







Σ1/2
2 Ω2Ω

†
1










2

2








Σ1/2
2










2

F
.

Combining our estimates for T1, T2, and T3 in (6.4.4) gives

E2 =







A1/2 �I− PAp−1/2S
�

A1/2









2

F

≤




Σ2







2
F + γ

2(p−1)







Σ1/2
2 Ω2Ω

†
1










2

2
·
�

2







Σ1/2
2










2

F
+ γ2(p−1)








Σ1/2
2 Ω2Ω

†
1










2

F

�

.

Establish the claimed bound by applying the subadditivity of the square-root function:

E ≤




Σ2







F+ γ
p−1







Σ1/2
2 Ω2Ω

†
1










2
·
�

p

2Tr
�

Σ2
�

+ γp−1







Σ1/2
2 Ω2Ω

†
1










F

�

.

Remark. The quality of approximation guarantee provided by Theorem 6.6 depends on two

quantities, ‖Σ1/2
2 Ω2Ω

†
1‖2 and ‖Σ1/2

2 Ω2Ω
†
1‖F, that depend in two slightly different ways on how

the eigenstructure of A interacts with the sketching matrix. As we see in Sections 6.5 and 6.6,



173

the extent to which we can bound each of these for different sketching procedures is slightly

different.

6.4.3 Trace-norm bounds

Finally, we prove a bound on the trace norm of the residual error of SPSD sketches. The proof

method is analogous to that for the spectral and Frobenius norm bounds.

Theorem 6.7. Let A be an SPSD matrix of size n, and let S be an n× ` matrix. Fix an integer

p ≥ 1. Partition A as in (6.2.1), and let Ω1 and Ω2 be as defined in (6.2.2). Define

γ=
λk+1(A)
λk(A)

.

Assume Ω1 has full row-rank. Then when C = ApS and W = ST A2p−1S, the corresponding

SPSD sketch satisfies

Tr
�

A−CW†CT
�

≤ Tr
�

Σ2
�

+ γ2(p−1)




Σ1/2
2 Ω2Ω

†
1







2
F.

If Ω1 has full row-rank and, additionally, rank(A)< k, then in fact

A= CW†CT .

Proof. First, we observe that if rank(A) < k and Ω1 has full row-rank, then by Theorem 6.2,

A= CW†CT .
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Now observe that

Tr
�

A−CW†CT
�

= Tr
�

A−CW†CT
�

= Tr
�

Σ1/2 �I− PΣp−1/2S
�

Σ1/2
�

≤ Tr
�

Σ1/2(I− PZ)Σ
1/2
�

,

where Z is defined in (6.4.2). The expression for I− PZ given in (6.4.3) implies that

Tr
�

Σ1/2(I− PZ)Σ
1/2
�

= Tr
�

Σ1/2
1 (I− (I+ FT F)−1)Σ1/2

1

�

+Tr
�

Σ1/2
2 (I− F(I+ FT F)−1FT )Σ1/2

2

�

.

Recall the estimate I− (I+FT F)−1 � FT F and the basic estimate I−F(I+FT F)−1FT � I. Together

these imply that

Tr
�

Σ1/2(I− PZ)Σ
1/2
�

≤ Tr
�

Σ1/2
1 FT FΣ1/2

1

�

+ Tr
�

Σ2
�

= Tr
�

Σ2
�

+







Σp−1/2
2 Ω2Ω

†
1Σ
−(p−1)
1










2

F

≤ Tr
�

Σ2
�

+







Σp−1
2










2

2








Σ−(p−1)
1










2

2








Σ1/2
2 Ω2Ω

†
1










2

F

= Tr
�

Σ2
�

+ γ2(p−1)







Σ1/2
2 Ω2Ω

†
1










2

F
.

The first equality follows from substituting the definition of F and identifying the squared

Frobenius norm. The last equality follows from identifying γ. We have established the claimed

bound.
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6.5 Error bounds for Nyström extensions

In this section, we use the structural results from Section 6.4 to bound the approximation errors

of Nyström extensions. To obtain our results, we use Theorems 6.2, 6.6, and 6.7 in conjunction

with the estimate of ‖Ω†
1‖

2
2 provided by the following lemma.

Lemma 6.8. Let U be an n× k matrix with orthonormal columns. Take µ to be the coherence of U.

Select ε ∈ (0,1) and a nonzero failure probability δ. Let S be a random matrix distributed as the

first ` columns of a uniformly random permutation matrix of size n, where

`≥
2µ

(1− ε)2
k log

k

δ
.

Then with probability exceeding 1−δ, the matrix UT S has full row rank and satisfies





(UT S)†






2
2 ≤

n

εl
.

Proof of Lemma 6.8. Note that UT S has full row rank if λk(UT SST U)> 0. Furthermore,





(UT S)†






2
2 = λ

−1
k (U

T SST U).

Thus to obtain both conclusions of the lemma, it is sufficient to verify that

λk(U
T SST U)≥

ε`

n

when ` is as stated.
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We apply the lower Chernoff bound given as (4.1.1) to bound the probability that this

inequality is not satisfied. Let ui denote the ith column of UT and X = {uiu
T
i }i=1,...,n. Then

λk(U
T SST U) = λk

�

∑`

i=1
Xi

�

,

where the Xi are chosen uniformly at random, without replacement, from X . Clearly

B =max
i
‖ui‖2 =

k

n
µ and µmin = ` ·λk(EX1) =

`

n
λk(U

T U) =
`

n
.

The Chernoff bound yields

P
�

λk

�

UT SST U
�

≤ ε
`

n

�

≤ k · e−(1−ε)
2`/(2kµ).

We require enough samples that

λk(U
T SST U)≥ ε

`

n

with probability greater than 1−δ, so we set

k · e−(1−ε)
2`/(2kµ) ≤ δ

and solve for `, finding

`≥
2µ

(1− ε)2
k log

k

δ
.

Thus, for values of ` satisfying this inequality, we achieve the stated spectral error bound

and ensure that UT S has full row rank.
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Theorem 6.9 establishes that the error incurred by the simple Nyström extension process is

small when an appropriate number of columns is sampled. Specifically, if the number of columns

sampled is proportional to the coherence of the top eigenspace of the matrix, and grows with

the desired target rank as k log k, then the bounds provided in the theorem hold.

Note that the theorem provides two spectral norm error bounds. The first is a relative-

error bound which compares the spectral norm error with the smallest error achievable when

approximating A with a rank-k matrix. It does not use any information about the spectrum of

A other than the value of the (k+ 1)st eigenvalue. The second bound uses information about

the entire tail of the spectrum of A. If the spectrum of A decays fast, the second bound is much

tighter than the first. If the spectrum of A is flat, then the first bound is tighter.

Theorem 6.9. Let A be an SPSD matrix of size n, and p ≥ 1 be an integer. Given an integer k ≤ n,

partition A as in (6.2.1). Let µ denote the coherence of U1. Fix a failure probability δ ∈ (0, 1) and

accuracy factor ε ∈ (0,1). If S comprises

`≥ 2µε−2k log(k/δ)

columns of the identity matrix, sampled uniformly at random without replacement, and C= ApS

and W= ST A2p−1S, then the corresponding SPSD sketch satisfies
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simultaneously, with probability at least 1− 4δ.

If, additionally, k ≥ rank(A), then

A= CW†CT

with probability exceeding 1−δ.

Remark 6.10. Theorem 6.9, like the main result of [TR10], promises exact recovery with

probability at least 1−δ when A is exactly rank k and has small coherence, with a sample of

O(k log(k/δ)) columns. Unlike the result in [TR10], Theorem 6.9 is applicable in the case that

A is full-rank but has a sufficiently fastly decaying spectrum.

Remark 6.11. Let p = 1. The first spectral-norm error bound in Theorem 6.9 simplifies to





A−CW†CT






2 ≤
�

1+
n

(1− ε)`

�





A−Ak







2 .

The multiplicative factor in this relative error bound is optimal in terms of its dependence

on n and `. This fact follows from the connection between Nyström extensions and the column

subset selection problem.

Indeed, [BDMI11] establishes the following lower bound for the column subset selection

problem: for any α > 0 there exist matrices Mα such that for any k ≥ 1 and any `≥ 1, the error

of approximating Mα with PDMα, where D may be any subset of ` columns of Mα, satisfies





Mα− PDMα







2 ≥

r

n+α2

`+α2 ·




Mα− (Mα)k






2 ,

where (Mα)k is the rank-k matrix that best approximates Mα in the spectral norm. We get a

lower bound on the error of the Nyström extension by taking Aα =MT
αMα : it follows from the

remark following Theorem 6.2 that for any k ≥ 1 and ` ≥ 1, any Nyström extension formed
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using C= AαS consisting of ` columns sampled from Aα satisfies





Aα−CW†CT






2 ≥
n+α2

`+α2 ·λk+1(Aα).

Proof of Theorem 6.9. The sketching matrix S is formed by taking the first ` columns of a uni-

formly sampled random permutation matrix. Recall that Ω1 = UT
1 S and Ω2 = UT

2 S. By Lemma 6.8,

Ω1 has full row-rank with probability at least 1−δ, so the bounds in Theorems 6.2, 6.6, and 6.7

are applicable. In particular, if k > rank(A) then A= CW†CT .

First we use Theorems 6.2 and 6.7 to develop the first spectral-norm error bound and the

trace-norm error bound. To apply these theorems, we need estimates of the quantities
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Applying Lemma 6.8, we see that ‖Ω†
1‖

2
2 ≤ n/((1− ε)`) with probability exceeding 1− δ.

Observe that
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Likewise,
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These estimates hold simultaneously with probability at least 1−δ.

To further develop (6.5.2), observe that since S selects ` columns uniformly at random,

E
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2 S
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F
=
∑`

i=1
E‖xi‖2,
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where the summands xi are distributed uniformly at random over the columns of Σ1/2
2 UT

2 . The

summands all have the same expectation:

E‖xi‖2 =
1

n

∑n

j=1
‖(Σ2UT

2 )( j)‖
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1

n
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Consequently,
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so by Jensen’s inequality
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Now applying Markov’s inequality to (6.5.2), we see that
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with probability at least 1− 2δ. Clearly one can similarly show that
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with probability at least 1− 2δ.

Thus far, we have established that Ω1 has full row-rank and the estimates
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hold simultaneously with probability at least 1− 2δ.

These estimates used in Theorems 6.2 and 6.7 yield the trace-norm error bound and the first

spectral-norm error bound.

To develop the second spectral-norm error bound, observe that by (6.5.3), we also have the

estimate







Σp−1/2
2 Ω2Ω

†
1










2

2
≤







Σp−1/2
2 Ω2Ω

†
1










2

F
≤

1

δ2(1− ε)
Tr
�

Σ2p−1
2

�

which holds with probability at least 1−2δ. This estimate used in Theorem 6.2 yields the second

spectral-norm bound.

To develop the Frobenius-norm bound, observe that Theorem 6.6 can be weakened to the

assertion that, when Ω1 has full row-rank, the estimate
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holds. Recall that with probability at least 1− 2δ, the estimate (6.5.5) holds and Ω1 has full

row-rank. Insert the estimate (6.5.5) into (6.5.6) to establish the claimed Frobenius-norm error

bound.

6.6 Error bounds for random mixture-based SPSD sketches

In this section, we apply Theorems 6.2, 6.6, and 6.7 to bound the reconstruction errors for

several random mixture-based sketches that conform to our SPSD sketching model. In particular,

we consider the following schemes, corresponding to different choices of the sketching matrix:

• sketches formed by sampling columns according to an importance sampling distribution
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that depends on the statistical leverage scores (in Section 6.6.1);

• sketches formed from mixtures of the columns formed using subsampled randomized

Fourier transformations (in Section 6.6.2); and

• sketches formed from Gaussian mixtures of the columns (in Section 6.6.3).

6.6.1 Sampling with leverage-based importance sampling probabilities

We first consider a Nyström-like scheme that approximates A using column sampling. Specifically,

we consider sketches where the columns of A are sampled with replacement according to a

nonuniform probability distribution determined by the (exact or approximate) statistical leverage

scores of A relative to the best rank-k approximation to A. Previous work has highlighted the fact

that the leverage scores reflect the nonuniformity properties of the top k-dimensional eigenspace

of A [PZB+07, DM09, Mah11, YMS+13]. Thus it is reasonable to expect that sketches formed in

this manner should better approximate A than Nyström extensions.

Fix β in (0, 1]. A probability distribution on the columns of A is considered to be β-close to

the leverage score distribution if it satisfies

p j ≥
β

k





(U1) j






2
2 for j = 1, . . . , n and

∑n

j=1
p j = 1.

Our bounds apply to probability distributions that are β -close to the leverage score distribution.

The sketching matrices associated with a fixed β -close leverage-based probability distribution

are factored into the product of two random matrices, S = RD. Here R ∈ Rn×` is a column

selection matrix that samples columns of A according to the given distribution. That is, Ri j = 1 if

and only if the ith column of A is the jth column selected. The matrix D is a diagonal rescaling

matrix with entries satisfying D j j = 1/
p

`pi if and only if Ri j = 1. We have the following bounds
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on the error of approximations formed using these sketching matrices.

Theorem 6.12. Let A be an SPSD matrix of size n, and let p ≥ 1 be an integer. Given an

integer k ≤ n, partition A as in (6.2.1). Let S be a sketching matrix of size n× ` corresponding

to a leverage-based probability distribution derived from the top k-dimensional eigenspace of A,

satisfying

p j ≥
β

k





(U1) j






2
2 for j = 1, . . . , n and

∑n

j=1
p j = 1.

for some β ∈ (0, 1]. Fix a failure probability δ ∈ (0, 1] and approximation factor ε ∈ (0, 1], and let

γ=
λk+1(A)
λk(A)

.

If `≥ 3200(βε2)−1k log(4k/(βδ)), then, when C= ApS and W= ST A2p−1S, the correspond-

ing low-rank SPSD approximation satisfies
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, (6.6.3)

simultaneously, with probability at least 1− 6δ− 0.6.

Proof. Recall that Ω1 = UT
1 S and Ω2 = UT

2 S. To apply our deterministic error bounds, we need

estimates for the quantities








Σp−1/2
2 Ω2Ω

†
1










2/(2p−1)

F
,







Σ1/2
2 Ω2Ω

†
1










2
, and








Σ1/2
2 Ω2Ω

†
1










F
.

In [MTJ12, proof of Proposition 22] it is shown that if ` satisfies the given bound and the
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samples are drawn from an approximate subspace probability distribution, then for any SPSD

diagonal matrix D,

‖DΩ2Ω
†
1‖F ≤ ε‖D‖F

with probability at least 1− 2δ− 0.2; further, Ω1 has full row-rank when this estimate holds.

Thus, the estimates
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each hold, individually, with probability at least 1− 2δ− 0.2. Taking p = 1 in this last estimate,

we see that







Σ1/2
2 Ω2Ω

†
1










2
≤ ε
p

Tr
�

A−Ak
�

also holds with probability at least 1− 2δ− 0.2. Thus these three estimates hold and Ω1 has full

row-rank, simultaneously, with probability at least 1− 6δ− 0.6. These three estimates used in

Theorems 6.2, 6.6, and 6.7 yield the bounds given in the statement of the theorem.

Remark 6.13. The additive scale factors for the spectral and Frobenius norm bounds are much

improved relative to the prior results of [DM05]. At root, this is because the leverage score
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importance sampling probabilities expose the structure of the data, e.g., which columns to

select so that Ω1 has full row rank, in a more refined way than the sampling probabilities used

in [DM05].

Remark 6.14. These improvements come at additional computational expense, but leverage-

based sampling probabilities of the form used by Theorem 6.12 can sometimes be computed

faster than the time needed to compute the basis U1. In [DMIMW12], for example, it is shown

that the leverage scores of A can be approximated; the cost of this computation is determined by

the time required to perform a random projection-based low-rank approximation to the matrix.

Remark 6.15. Not surprisingly, constant factors such as 3200 (as well as other similarly large

factors below) and a failure probability bounded away from zero are artifacts of the analy-

sis; the empirical behavior of this sampling method is much better. This has been observed

previously [DMM08, DM09] and is seen in the experimental results presented in this chapter.

6.6.2 Random projections with subsampled randomized Fourier transforms

We now consider sketches in which the columns of A are randomly mixed using a subsampled

randomized Fourier transform before sampling. That is, S=
p

n/`DFR, where D is a diagonal

matrix of Rademacher random variables, F is the normalized Fourier transform matrix, and R

restricts to ` columns. We prove the following bounds on the errors of approximations formed

using such sketching matrices.

Theorem 6.16. Let A be an SPSD matrix of size n, and let p ≥ 1 be an integer. Given an integer

k satisfying 4 ≤ k ≤ n, partition A as in (6.2.1). Let S =
p

n/`DFR be a sketching matrix of

size n × `, where D is a diagonal matrix of Rademacher random variables, F is a normalized

Fourier matrix of size n× n, and R restricts to ` columns. Fix a failure probability δ ∈ (0,1) and
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approximation factor ε ∈ (0,1), and define

γ=
λk+1(A)
λk(A)

.

If `≥ 24ε−1[
p

k+
p

8 log(8n/δ)]2 log(8k/δ), then, when C= ApS and W= ST A2p−1S, the

corresponding low-rank SPSD approximation satisfies
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simultaneously, with probability at least 1− 2δ.

Proof. Recall that Ω1 = UT
1 S and Ω2 = UT

2 S.

In Chapter 5 (cf. the proof of Theorem 5.13), it is shown that for this choice of S and number

of samples `,
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and
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each hold, individually, with probability at least 1−δ. When either estimate holds, Ω1 has full

row-rank. These estimates used in Theorems 6.2 and 6.7 yield the stated bounds for the spectral

and trace-norm errors.

The Frobenius-norm bound follows from the same estimates and a simplification of the

bound stated in Theorem 6.6:
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The stated failure probability comes from the fact that the two estimates used hold simultaneously

with probability at least 1− 2δ.

Remark. Suppressing the dependence on δ and ε, the spectral norm bound ensures that when

p = 1, k = Ω(log n) and `= Ω(k log k), then
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This should be compared to the guarantee established in Theorem 6.17 below for Gaussian-based

SPSD sketches constructed using just `= O(k):
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Theorem 6.16 guarantees that errors on this order can be achieved by SRFT sketches if one

increases the number of samples by a logarithm factor in the dimension: specifically, such

a bound is achieved when k = Ω(log n) and ` = Ω(k log k log n). The difference between the

number of samples necessary for Fourier-based sketches and Gaussian-based sketches is reflective

of the difference in our understanding of the relevant random projections: the geometry of

any k-dimensional subspace is preserved under projection onto the span of `= O(k) Gaussian

random vectors [HMT11], but the sharpest analysis available suggests that to preserve the

geometry of such a subspace under projection onto the span of ` SRFT vectors, ` must satisfy

`= Ω(max{k, log n} log k) [Tro11b]. We note, however, that in practice the Fourier-based and

Gaussian-based SPSD sketches have similar reconstruction errors.

6.6.3 Random projections with i.i.d. Gaussian random matrices

The final class of SPSD sketches we consider are mixture-based sketches in which the columns

of A are randomly mixed using Gaussian random variables before sampling. That is, the entries

of the sketching matrix S ∈ Rn×` are i.i.d. standard Gaussian random variables. We consider the

case where the number of column samples is comparable to and only slightly larger than the

desired rank, i.e., `= O(k).

Theorem 6.17. Let A be an SPSD matrix of size n, and let p ≥ 1 be an integer. Given an integer k

satisfying 4< k ≤ n, partition A as in (6.2.1). Let S ∈ Rn×` be a sketching matrix of i.i.d standard

Gaussians. Define

γ=
λk+1(A)
λk(A)

.

Assume ` = (1 + ε−2)k, where ε ∈ (0,1]. Then, when C = ApS and W = ST A2p−1S, the
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corresponding low-rank SPSD approximation satisfies
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simultaneously, with probability at least 1− 2k−1− 4e−k/ε2
.

Proof. As before, this result is established by bounding the quantities involved in the deterministic

error bounds of Theorems 6.2, 6.6, and 6.7. Recall that Ω1 = UT
1 S and Ω2 = UT

2 S. We need to

develop bounds on the quantities
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The following deviation bounds, established in [HMT11, Section 10], are useful in that

regard: if D is a diagonal matrix, `= k+ s with s > 4 and u, t ≥ 1, then
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Define s = kε−2, so that `= k+ s. Estimate the terms in (6.6.5) with
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with the same probability. Likewise,
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with the same probability.

These estimates used in Theorems 6.2 and 6.7 yield the stated spectral and trace-norm
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bounds. To obtain the corresponding Frobenius-norm bound, define the quantities

F1 =
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12e2+ 16e4 log k

k

�

ε2, F3 = 3e2ε2,

F2 = 4e4ε
2

k
, F4 = 8e4 log k

k
ε2

for notational convenience. By Theorem 6.6 and our estimates for the quantities
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(6.6.6)

The following estimates hold for the coefficients in this inequality:
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The Frobenius norm bound follows from using these estimates in (6.6.6) and grouping terms
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appropriately:





A−CW†CT






F ≤




Σ2







F+



γp−1ε

 

5+ 6

r

log k

k

!

+ γ2p−2ε2



45+ 190

r

log k

k
+ 309

p

log k

k









Æ





Σ2







2 Tr
�

Σ2
�

+

�

21γp−1 εp
k
+ 70γ2p−2 ε

2

p
k

�

Tr
�

Σ2
�

+ γ2p−2ε2

 

197

r

log k

k
+ 618

log k

k

!





Σ2







2 .

Remark 6.18. The way we have parameterized these bounds for Gaussian-based projections

makes explicit the dependence on various parameters, but obscures the structural simplicity of

these bounds. In particular, since ‖·‖2 ≤ ‖·‖F ≤ Tr (·), note that the Frobenius norm bounds are

upper bounded by a term that depends on the Frobenius norm of A−Ak and a term that depends

on the trace norm of A−Ak; and that, similarly, the trace norm bounds are upper bounded by

a multiplicative factor times the optimal rank-k approximation error. This factor can be set to

1+ ν with ν arbitrarily small.

6.7 Stable algorithms for computing regularized SPSD sketches

The error bounds we have provided for SPSD sketches assume that the calculations are carried

out in exact arithmetic. In reality, since the formation of SPSD sketches requires the computation

of a linear system, i.e. the computation of W†CT , a direct application of the SPSD sketching

procedure may not produce a result that is close to a valid SPSD approximation. Specifically, if

W is ill-conditioned, the product W†CT may not be computed accurately.
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Algorithm 6.1: SPSD sketch, regularized via additive perturbation [WS01]
Input: an n× n SPSD matrix A; a regularization parameter ρ > 0; and an n× ` sketching

matrix S.
Output: an n× ` matrix Cρ; an `× ` SPSD matrix Wρ; and the sketch Ã= CρW†

ρCT
ρ .

1: Let Aρ = A+ρI.
2: Form the matrix Cρ = AρS.
3: Form the matrix Wρ = ST Cρ.
4: Compute Y=W†

ρCT
ρ .

5: Form the matrix Ã= CρY.
6: Return Cρ, Wρ, and Ã.

In the seminal paper [WS01], the authors propose Algorithm 6.1, an algorithm for computing

regularized SPSD sketches. Algorithm 6.1 returns the SPSD sketch of the matrix Aρ = A+ρI,

where ρ > 0 is a regularization parameter. Note that Aρ and A have the same eigenvectors, so

the eigenvectors of the sketch returned by Algorithm 6.1 approximate those of A. This suggests

that the sketch returned by Algorithm 6.1 may be relevant in applications where the goal is to

approximate the eigenvectors of A with those of an SPSD sketch [FBCM04, FNL+09, BF12]. In

this section, we provide the first theoretical analysis of Algorithm 6.2.

The paper [CD11] investigates the performance of the column and row sampling-based CUR

decomposition, an approximate matrix decomposition for rectangular matrices that is analogous

to the Nyström extension. The results apply immediately to the Nyström extension, because

Nyström extensions are simply CUR decompositions of SPSD matrices, where the columns and

rows sampled are constrained to be the same. In particular, [CD11] introduces an algorithm for

computing CUR decompositions stably; in the context of SPSD sketches, this algorithm becomes

Algorithm 6.2. Algorithm 6.2 replaces W with a regularized matrix Wρ in which all eigenvalues

of W smaller than the regularization parameter ρ are set to zero. We compare Algorithms 6.1

and 6.2 empirically in Section 6.8.

We begin our analysis of Algorithm 6.1 by observing that the product W†
ρCT
ρ can be computed
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Algorithm 6.2: SPSD sketch, regularized via a truncated eigendecomposition [CD11,
Algorithm 1]

Input: an n× n SPSD matrix A; a regularization parameter ρ > 0; and an n× ` sketching
matrix S.

Output: an n× ` matrix C; an `× ` SPSD matrix Wρ; and the SPSD sketch Ã= CW†
ρCT .

1: Form the matrix C= AS.
2: Form the matrix W= ST C.
3: Compute the SVD of W. Set all components with eigenvalues smaller than ρ to zero to

obtain Wρ.
4: Compute Y=W†

ρCT .
5: Form the matrix Ã= CY.
6: Return C, Wρ, and Ã.

stably if the two-norm condition number

κ2(Wρ) = ‖Wρ‖2‖W†
ρ‖2 =

λ1(Wρ)

λmin(Wρ)

is small [GV96]. Here, λmin(Wρ) denotes the smallest nonzero eigenvalue of Wρ. It follows

that Algorithm 6.1 will stably compute a regularized SPSD sketch when κ2(Wρ) is small. The

following lemma relates κ2(Wρ) to the regularization parameter ρ and the sketching matrix S.

Lemma 6.19. Let A be an SPSD matrix of size n, and let S ∈ Rn×` be a sketching matrix. Fix a

regularization parameter ρ > 0. The two-norm condition number of the matrix Wρ returned by

Algorithm 6.1 satisfies

κ2(Wρ)≤
�

λ1(A)
ρ
+ 1
�

κ2(S)
2.

Proof. Observe that, because Aρ = A+ ρI is full rank, rank(A1/2
ρ S) = rank(S). It follows that

rank(ST AρS) = rank(ST S). Let r denote this common rank. Then, because Aρ = A+ρI � ρI,
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we have

λmin(Wρ) = λmin(S
T AρS) = λr(S

T AρS)≥ λr(ρST S)

= λmin(ρST S) = ρ‖S†‖−2
2 .

Similarly, from the observation that Aρ = A+ρI� (λ1(A) +ρ)I, we argue

λ1(Wρ) = λ1(S
T AρS)≤ (λ1(A) +ρ)‖S‖22.

We reach the claimed bound on κ2(Wρ) by combining these estimates of λmin(Wρ) and

λ1(Wρ):

κ2(W) =
λ1(Wρ)

λmin(Wρ)
≤ ρ−1(λ1(A) +ρ)‖S‖22‖S

†‖22 =
�

λ1(A)
ρ
+ 1
�

κ2(S)
2.

Remark 6.20. Let σ1(·) and σmin(·) denote, respectively, the largest singular value and the

smallest nonzero singular value of their arguments. Then

κ2(Wρ) =
λ1(ST AρS)

λmin(ST AρS)
=
σ1(ST A1/2

ρ )
2

σmin(ST A1/2
ρ )2

,

so good bounds on σ1(ST A1/2
ρ ) and σmin(ST A1/2

ρ ) would lead to a sharper estimate of κ2(Wρ)

than the one stated in Lemma 6.19. Such bounds could be developed for the sketches considered

in this chapter.

Lemma 6.19 shows that the condition number of Wρ is small when the sketching matrix has

small condition number, and when the regularization parameter is large. However, it is clear
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that taking ρ too large will result in a sketch which does a poor job of approximating A. The

following lemma quantifies this observation.

Lemma 6.21. Let A be an SPSD matrix of size n, and let S ∈ Rn×` be a sketching matrix. Fix a

regularization parameter ρ > 0. Let Aρ = A+ρI, Cρ = AρS, and Wρ = ST AρS. Then the SPSD

sketch Ã returned by Algorithm 6.1 satisfies





A− Ã






2 ≤







Aρ −CρW†
ρCT
ρ










2
+ρ,





A− Ã






F ≤







Aρ −CρW†
ρCT
ρ










F
+
p

nρ, and

Tr
�

A− Ã
�

≤ Tr
�

Aρ −CρW†
ρCT
ρ

�

+ nρ.

This lemma relates the errors of the regularized sketch of A to the error of an SPSD sketch of

A+ρI. Therefore, given a particular sketching model, this lemma can be used in conjunction with

the results of Sections 6.5 and 6.6 to predict the errors of the regularized sketch. Concurrently,

Lemma 6.19 can be used to quantify the stability of the sketch.

Proof. Recall that Ã= CρW†
ρCT
ρ . By the triangle inequality,

‖A− Ã‖ξ ≤ ‖A−Aρ‖ξ+ ‖Aρ −CρW†
ρCT
ρ‖ξ = ‖Aρ −CρW†

ρCT
ρ‖ξ+ρ‖I‖ξ.

Calculate ‖I‖ξ to reach the stated error bounds.
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6.8 Computational investigations of the spectral-norm bound for

Nyström extensions

In this section we demonstrate the tightness of the relative-error spectral-norm bound pro-

vided for the Nyström extension in Theorem 6.9 and compare Algorithms 6.1 and 6.2 for the

computation of regularized Nyström extensions.

6.8.1 Optimality

In the first experiment, we use a matrix introduced in [BDMI11] to demonstrate the worst-case

optimality of the dependence on n and ` in the relative-error spectral-norm bound provided in

Theorem 6.9. Let A ∈ R1000×1000 be defined by

A=MT M where M= [e2+ e1, e3+ e1, · · · , e1001+ e1
]; (6.8.1)

here ei denotes the ith standard basis vector in R1001. By construction λmin (A) = 1, so Nyström

extensions of A are always stably computable.

Figure 6.1 plots the ratio of the spectral-norm error of the Nyström extensions to the optimal

rank-10 approximation error, as a function of the number of column samples `. The ratio n/` is

provided for comparison. To capture the worst-case behavior of the Nyström extension, each

point in the plot is the worst ratio observed in 60 trials. It is clear that the n/` term present in

the error bound is necessary.
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Figure 6.1: EMPIRICAL DEMONSTRATION OF THE OPTIMALITY OF THEOREM 6.9. The empirical
spectral-norm error of Nyström extensions of A, the matrix defined in (6.8.1), relative to the
spectral-norm error of the optimal rank-10 approximation of A. Each point is the worst relative
error observed in 60 trials. The ratio n/` is plotted; this is the dependence on n and ` of the
bound given in Theorem 6.9.

6.8.2 Dependence on coherence

In the following experiments, we use 500× 500 matrices A with eigendecompositions of the

form

A= [U1 U2
]
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(6.8.2)

where U1 is a 500×10 matrix with orthonormal columns and specified coherence and the matrix

U2 is chosen so that [U1 U2
] is an orthogonal matrix. The 20 largest eigenvalues of A range

logarithmically from 10 to 10−3, and the remaining eigenvalues are identically 10−15. Routines
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from the kappaSQ Matlab package introduced in [IW12] are used to generate U1 with specified

coherences. For each value of coherence, we consider two types of matrices U1 achieving this

coherence: dense U1, in which many rows of U1 are nonzero, and sparse U1, in which many

rows of U1 are zero. Dense U1 are generated using the mtxGenMethod1 routine, and sparse U1

are generated using the mtxGenMethod3 routine.

We compare the accuracies of regularized Nyström extensions constructed using Algo-

rithm 6.1, to those of regularized Nyström extensions constructed using Algorithm 6.2. In

Figure 6.2 we plot the ratio of the approximation errors of the two regularized Nyström exten-

sions to the approximation error of the optimal rank-10 approximant, as the coherence and

sparsity of U1 vary. The regularization parameter ρ is assigned the value λ11(A).

Both algorithms perform as suggested by Theorem 6.9: as the coherence of the top k-

dimensional eigenspace increases, the number of samples needed to obtain a small relative error

increases. Additionally, Figure 6.2 shows that the structure of the eigenvectors is as important

as the coherence of the eigenspace: when the eigenvectors are dense, the number of samples

needed to obtain a small relative error is much less sensitive to the coherence than when the

eigenvectors are sparse. That is, for a fixed coherence and number of column samples, the

Nyström extensions give lower errors when the eigenvectors are dense than they do when the

eigenvectors are sparse.

Dependence on the regularization parameter

Both algorithms require the choice of a regularization parameter ρ. In Figure 6.3, we observe

the effect of the regularization parameter ρ on the errors of the Nyström extensions. Here the
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(b) Relative spectral-norm errors of Algorithm 6.2

Figure 6.2: SPECTRAL-NORM ERRORS OF REGULARIZED NYSTRÖM EXTENSIONS AS COHERENCE VARIES.
The relative spectral-norm errors of Nyström extensions of A, the matrix defined in (6.8.2),
generated using Algorithms 6.1 and 6.2, as a function of the coherence of the dominant 10-
dimensional eigenspace. The errors are measured relative to the error of the optimal rank-10
approximation, and averaged over 60 runs for each value of `. The eigenvectors spanning the
dominant eigenspace of the matrices used in the experiments on the left-hand side are dense,
and the corresponding eigenvectors of the matrices used in the experiments on the right-hand
side are sparse. The coherences range from the minimum possible, 1, to the maximum of 50.

matrix A is again a 500× 500 matrix with eigendecomposition

A= [U1 U2
]
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where U1 is a 500× 20 matrix with orthonormal columns and U2 is chosen so that [U1 U2
] is

an orthogonal matrix. The 40 dominant eigenvalues of A range logarithmically from 1 to 10−10

and all remaining eigenvalues are identically 10−10. The mtxGenMethod1 routine is used to

construct U1 with coherence 1.

Figure 6.3 shows the ratios of the spectral-norm errors of the Nyström extension and the

regularized extensions computed by Algorithms 6.1 and 6.2 to the optimal rank-20 approximation

error. The number of columns used to form the extensions is fixed at ` = 200, and the

regularization parameter is varied from the minimum possible value of 1 to the maximum

possible value of 50. We see that both regularization algorithms exhibit the same behavior: for

large values of ρ, they have higher error than the Nyström extension; as ρ decreases, their errors

become orders of magnitude smaller than that of the Nyström extension, and as ρ continues

to decrease, their errors once again approach that of the Nyström extension. This behavior

highlights the importance of choosing an appropriate regularization parameter: if ρ is too

small then there is no benefit gained from the regularization, and if it is too large then the

regularization has a deliterious effect. We also observe that Algorithm 6.2 can be orders of

magnitude more accurate than Algorithm 6.1.

6.9 Empirical aspects of SPSD low-rank approximation

In this section, we examine the empirical performance of the SPSD sketches for which theoretical

bounds were provided in Sections 6.5 and 6.6, on a diverse set of SPSD matrices.
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Figure 6.3: SPECTRAL-NORM ERROR OF REGULARIZED NYSTRÖM EXTENSIONS AS REGULARIZATION

PARAMETER VARIES. For the matrix A defined in (6.8.3), the spectral-norm errors of the Nyström
extension and the extensions generated using Algorithms 6.1 and 6.2, as a function of the
regularization parameter ρ. The errors are averaged over 60 runs for each value of ρ and plotted
relative to the optimal spectral-norm rank-10 approximation error.

6.9.1 Test matrices

Table 6.2 provides summary statistics for the test matrices used in our computational experiments.

In order to illustrate the strengths and weaknesses of encountered in machine learning and data

analysis applications, we drawn our test matrices from the following classes of matrices:

• normalized Laplacians of very sparse graphs drawn from “informatics graph” applications;

• dense matrices corresponding to linear kernels from machine learning applications;

• dense matrices constructed from a Gaussian radial basis function kernel (RBFK); and
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Name Description n d %nnz

Laplacian kernels
HEP arXiv High Energy Physics collaboration graph 9877 NA 0.06
GR arXiv General Relativity collaboration graph 5242 NA 0.12
Enron subgraph of the Enron email graph 10000 NA 0.22
Gnutella Gnutella peer to peer network on Aug. 6, 2002 8717 NA 0.09

Linear kernels
Dexter bag of words 2000 20000 83.8
Protein derived feature matrix for S. cerevisiae 6621 357 99.7
SNPs DNA microarray data from cancer patients 5520 43 100
Gisette images of handwritten digits 6000 5000 100

Dense RBF kernels
AbaloneD physical measurements of abalones 4177 8 100
WineD chemical measurements of wine 4898 12 100

Sparse RBF kernels
AbaloneS physical measurements of abalones 4177 8 82.9/48.1
WineS chemical measurements of wine 4898 12 11.1/88.0

Table 6.2: INFORMATION ON THE SPSD MATRICES USED IN OUR EMPIRICAL EVALUATIONS. The ma-
trices used in our empirical evaluation ([LKF07], [KY04], [GGBHD05], [GSP+06], [NWL+02],
[Cor96], [BL13]). Here, n is the number of data points, and d is the number of features in the
input space before kernelization. For Laplacian “kernels,” n is the number of nodes in the graph
(and thus there is no d since the graph is “given” rather than “constructed”). The %nnz for the
Sparse RBF kernels depends on the σ parameter; see Table 6.3.

• sparse RBFK matrices constructed using Gaussian radial basis functions, truncated to be

nonzero only for nearest neighbors.

We briefly review the construction of normalized graph Laplacians, linear kernel matrices,

RBFK matrices, and sparse RBFK matrices.

Given a graph with weighted adjacency matrix W, its normalized graph Laplacian is

A= I−D−1/2WD−1/2,

where D is the diagonal matrix of weighted degrees of the nodes of the graph, i.e., Dii =
∑

j 6=i Wi j .
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The remaining classes of matrices are constructed using a set of data points x1, . . . ,xn ∈ Rd .

The linear kernel matrix A corresponding to those points is given by

Ai j = 〈xi ,xk〉.

A Gaussian RBFK matrix Aσ corresponding to these same points is given by

Aσi j = exp
�−





xi − x j







2
2

σ2

�

,

where σ, a nonnegative number, determines the scale of the kernel. Informally, σ defines the

“size scale” over which pairs of points xi and x j “see” each other. Typically σ is determined by

a global cross-validation criterion, as Aσ is generated for some specific machine learning task.

Thus, one may have no a priori knowledge of the behavior of the spectrum or leverage scores of

Aσ as σ is varied. Accordingly, we consider Gaussian RBFK matrices with different values of σ.

Finally, given the same data points, one can construct sparse Gaussian RBFK matrices using the

formula

A(σ,ν ,C)
i j =





 

1−





xi − x j







2

C

!ν



+

· exp
�−





xi − x j







2
2

σ2

�

,

where [x]+ =max{0, x}. When ν is larger than (d + 1)/2, this matrix is positive semidefinite;

and as the cutoff point C decreases this matrix becomes more sparse [Gen02]. For simplicity, in

our experiments we fix ν = d(d+1)/2e and C = 3σ and we vary σ. As with the effect of varying

σ, the effect of varying the sparsity parameter C is not obvious a priori. The parameter C is

typically chosen according to a global criterion to ensure good performance at a specific machine

learning task, without consideration for its effect on the spectrum or leverage scores of A(σ,ν ,C)
i j .
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Name %nnz
l

‖A‖2
F

‖A‖2
2

m

k λk+1

λk
100‖

A−Ak‖F

‖A‖F

kth-largest
leverage score

HEP 0.06 3078 20 0.998 7.8 0.261
HEP 0.06 3078 60 0.998 13.2 0.278
GR 0.12 1679 20 0.999 10.5 0.286
GR 0.12 1679 60 1 17.9 0.289
Enron 0.22 2588 20 0.997 7.77 0.492
Enron 0.22 2588 60 0.999 12.0 0.298
Gnutella 0.09 2757 20 1 8.1 0.381
Gnutella 0.09 2757 60 0.999 13.7 0.340

Dexter 83.8 176 8 0.963 14.5 0.067
Protein 99.7 24 10 0.987 42.6 0.008
SNPs 100 3 5 0.928 85.5 0.002
Gisette 100 4 12 0.90 90.1 0.005

AbaloneD (dense, σ = .15) 100 41 20 0.992 42.1 0.087
AbaloneD (dense, σ = 1) 100 4 20 0.935 97.8 0.012
WineD (dense, σ = 1) 100 31 20 0.99 43.1 0.107
WineD (dense, σ = 2.1) 100 3 20 0.936 94.8 0.009

AbaloneS (sparse, σ = .15) 82.9 400 20 0.989 15.4 0.232
AbaloneS (sparse, σ = 1) 48.1 5 20 0.982 90.6 0.017
WineS (sparse, σ = 1) 11.1 116 20 0.995 29.5 0.200
WineS (sparse, σ = 2.1) 88.0 39 20 0.992 41.6 0.098

Table 6.3: STATISTICS OF OUR TEST MATRICES. Summary statistics for the matrices from Table 6.2
used in our computational experiments.

To illustrate the diverse range of properties exhibited by these four classes of matrices,

consider Table 6.3. Several observations are particularly relevant to our discussion below.

• All of the Laplacian kernels drawn from informatics graph applications are extremely

sparse in terms of number of nonzeros, and tend to have very slow spectral decay, as

illustrated both by the quantity
�

‖A‖2F /‖A‖
2
2

�

(this is the stable rank, a numerically stable

(under)estimate of the rank of A also utilized in Chaper 5) as well as by the relatively small

fraction of the Frobenius norm that is captured by the best rank-k approximation to A. For

the Laplacian kernels we considered two values of the rank parameter k that were chosen

(somewhat) arbitrarily; many of the results we report continue to hold qualitatively if k is

chosen to be (say) an order of magnitude larger.

• Both the linear kernels and the dense RBF kernels are much denser and are much more
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well-approximated by moderate to very low-rank matrices. In addition, both the linear

kernels and the dense RBF kernels have statistical leverage scores that are much more

uniform—there are several ways to illustrate this, none of them perfect, and here, we

illustrate this by considering the kth largest leverage score. For the linear kernels and the

dense RBF kernels, this quantity is one to two orders of magnitude smaller than for the

Laplacian kernels.

• For the dense RBF kernels, we consider two values of the σ parameter, again chosen

(somewhat) arbitrarily. For both AbaloneD and WineD, we see that decreasing σ from

1 to 0.15, i.e., letting data points “see” fewer nearby points, has two important effects:

first, it results in matrices that are much less well-approximated by low-rank matrices; and

second, it results in matrices that have much more heterogeneous leverage scores. For

example, for AbaloneD, the fraction of the Frobenius norm that is captured decreases from

97.8 to 42.1 and the kth largest leverage score increases from 0.012 to 0.087.

• For the sparse RBF kernels, there are a range of sparsities, ranging from above the sparsity

of the sparsest linear kernel, but all are denser than the Laplacian kernels. Changing the

σ parameter has the same effect (although it is even more pronounced) for sparse RBF

kernels as it has for dense RBF kernels. In addition, “sparsifying” a dense RBF kernel also

has the effect of making the matrix less well approximated by a low-rank matrix and of

making the leverage scores more nonuniform. For example, for AbaloneD with σ = 1

(respectively, σ = 0.15), the fraction of the Frobenius norm that is captured decreases

from 97.8 (respectively, 42.1) to 90.6 (respectively, 15.4), and the kth largest leverage

score increases from 0.012 (respectively, 0.087) to 0.017 (respectively, 0.232).
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As we see below, when we consider the RBF kernels as the width parameter and sparsity are

varied, we observe a range of intermediate cases between the extremes of linear kernels and

Laplacian kernels.

6.9.2 A comparison of empirical errors with the theoretical error bounds

Table 6.4 illustrates the gap between the theoretical results currently available in the literature,

the bounds derived in this chapter, and what is observed in practice: it depicts the ratio between

the error bounds summarized in Table 6.1 and the average errors observed over 10 trials of SPSD

sketching. The error bound from [TR10] is not considered in the table, as it does not apply at

the number of samples ` used in the experiments.

Several trends can be identified; among them, we note that the bounds provided in this

chapter for Gaussian-based sketches come quite close to capturing the errors seen in practice,

and the Frobenius and trace-norm error guarantees of the leverage-based and Fourier-based

sketches tend to more closely reflect the empirical behavior than the error guarantees provided

in prior work for Nyström sketches. Overall, the trace-norm error bounds are quite accurate. On

the other hand, prior bounds are sometimes more informative in the case of the spectral norm

(with the notable exception of the Gaussian sketches). Several important points can be gleaned

from these observations.

First, the accuracy of the Gaussian error bounds suggests that the main theoretical contri-

bution of this work, the deterministic structural results given as Theorems 6.2, 6.6, and 6.7,

captures the underlying behavior of the SPSD sketching process. This supports our belief that

our deterministic framework provides a foundation for truly informative error bounds. Second,

it is clear that the analysis of the stochastic elements of the SPSD sketching process is much

sharper in the Gaussian case than in the leverage-score, Fourier, and Nyström cases. We expect
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that, at least in the case of leverage and Fourier-based sketches, the stochastic analysis can

and will be sharpened to produce error guarantees almost as informative as the ones we have

provided for Gaussian-based sketches.

source, sketch pred./obs.
spec. error

pred./obs.
Frob. error

pred./obs.
trace error

Enron, k = 60
[BW09], Nyström – – 2.0
[KMT12], Nyström 331.2 77.7 –
Thm 6.12, leverage-based 12888 21 1.2
Thm 6.16, Fourier-based 201.0 42.7 1.6
Thm 6.17, Gaussian-based 10.1 5.6 1.2
Thm 6.9, Nyström 9.4 385.2 5.4

Protein, k = 10
[BW09], Nyström – – 3.6
[KMT12], Nyström 33.4 20.5 –
Thm 6.12, leverage-based 42.5 6.9 2.0
Thm 6.16, Fourier-based 297.5 21.7 3.1
Thm 6.17, Gaussian-based 3.8 3.3 1.8
Thm 6.9, Nyström 86.3 91.3 8

AbaloneD, σ = .15, k = 20
[BW09], Nyström – – 2.0
[KMT12], Nyström 62.9 46.7 –
Thm 6.12, leverage-based 235.3 14.6 1.3
Thm 6.16, Fourier-based 139.4 36.9 1.7
Thm 6.17, Gaussian-based 5.2 4.7 1.1
Thm 6.9, Nyström 12.9 228.3 5.1

WineS, σ = 1, k = 20
[BW09], Nyström – – 2.1
[KMT12], Nyström 72.8 44.2 –
Thm 6.12, leverage-based 244.9 13.4 1.2
Thm 6.16, Fourier-based 186.7 36.8 1.7
Thm 6.17, Gaussian-based 6.6 4.7 1.2
Thm 6.9, Nyström 13.7 222.6 5.1

Table 6.4: COMPARISON OF EMPIRICAL ERRORS OF SPSD SKETCHES WITH PREDICTED ERRORS. We
compare the empirically observed approximation errors to the guarantees provided in this and
other works, for several matrices. Each approximation was formed using `= 6k log k samples.
To evaluate the error guarantees, δ = 1/2 was taken and all constants present in the statements
of the bounds were replaced with ones. The observed errors were taken to be the average
errors over 10 runs of the approximation algorithms. The matrices, described in Table 6.2, are
representative of several classes of matrices prevalent in machine learning applications.
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6.9.3 Reconstruction accuracy of sampling and projection-based sketches

Here, we describe the performances of the various SPSD sketches in terms of reconstruction

accuracy on the matrices described in Section 6.9.1. Recall that the sketches considered are

Nyström extensions, leverage-based sketches, and sketches formed using Gaussian and SRFT

mixtures of columns.

We describe general observations we have made about each class of matrices in turn, and

then we summarize our observations. We present results for both the rank-restricted and

non-rank-restricted sketches. That is, we plot the errors

‖A−CW†CT‖ξ/‖A−Ak‖ξ (6.9.1)

for the non-rank-restricted sketches, and the errors

‖A−CW†
kCT‖ξ/‖A−Ak‖ξ (6.9.2)

for the rank-restricted sketches.

6.9.3.1 Graph Laplacians

Figures 6.4–6.7 show the reconstruction error results for sampling and mixture methods applied

to several normalized graph Laplacians. Figures 6.4 and 6.6 show GR and HEP, each for two

values of the rank parameter. The remaining two show Enron and Gnutella, again each for two

values of the rank parameter. The first two figures show the ratios of the spectral, Frobenius,

and trace-norm approximation errors of non-rank-restricted sketches to the optimal rank-k

approximation errors, as a function of the number of column samples `. The remaining two
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Figure 6.4: RELATIVE ERRORS OF NON-RANK-RESTRICTED SPSD SKETCHES OF THE GR AND HEP
LAPLACIAN MATRICES. The relative spectral, Frobenius, and trace-norm errors (6.9.1) of several
non-rank-restricted SPSD sketches, as a function of the number of columns samples `, for the
GR and HEP Laplacian matrices, with two choices of the rank parameter k.
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Figure 6.5: RELATIVE ERRORS OF NON-RANK-RESTRICTED SPSD SKETCHES OF THE ENRON AND GNUTELLA

LAPLACIAN MATRICES. The relative spectral, Frobenius, and trace-norm errors (6.9.1) of several
non-rank-restricted SPSD sketches, as a function of the number of columns samples `, for the
Enron and Gnutella Laplacian matrices, with two choices of the rank parameter k.
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Figure 6.6: RELATIVE ERRORS OF RANK-RESTRICTED SPSD SKETCHES OF THE GR AND HEP LAPLACIAN

MATRICES. The relative spectral, Frobenius, and trace-norm errors (6.9.2) of several rank-
restricted SPSD sketches, as a function of the number of columns samples `, for the GR and HEP
Laplacian matrices, with two choices of the rank parameter k.
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50 100 150 200
1.365

1.37

1.375

1.38

1.385

1.39

` (column samples)

‖A−CW
†
kC

T‖2/‖A −Ak‖2

 

 

nystrom
srft
gaussian
levscore

50 100 150 200
1.002

1.0025

1.003

1.0035

1.004

1.0045

` (column samples)

‖A−CW
†
kC

T‖F/‖A−Ak‖F

50 100 150 200
1.0022

1.0024

1.0026

1.0028

1.003

1.0032

1.0034

1.0036

` (column samples)

‖A−CW
†
kC

T‖?/‖A −Ak‖?

(b) Enron, k = 60
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(c) Gnutella, k = 20
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Figure 6.7: RELATIVE ERRORS OF RANK-RESTRICTED SPSD SKETCHES OF THE ENRON AND GNUTELLA

LAPLACIAN MATRICES. The relative spectral, Frobenius, and trace-norm errors (6.9.2) of several
rank-restricted SPSD sketches, as a function of the number of columns samples `, for the Enron
and Gnutella Laplacian matrices, with two choices of the rank parameter k.
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similarly show the errors of the rank-restricted sketches.

These and subsequent figures contain a lot of information, some of which is peculiar to the

given matrices and some of which is more general. In light of subsequent discussion, several

observations are worth making about the results presented in these figures.

• All of the SPSD sketches provide quite accurate approximations even with only k column

samples (or in the case of the Gaussian and SRFT mixtures, with only k linear combinations

of vectors). Upon examination, this is partly due to the extreme sparsity and extremely

slow spectral decay of these matrices which means, as shown in Table 6.2, that only a

small fraction of the (spectral or Frobenius or trace) mass is captured by the optimal rank

20 or 60 approximation. Thus although an SPSD sketch constructed from 20 or 60 vectors

also only captures a small portion of the mass of the matrix, the relative error is small.

• The scale of the vertical axes is different between different figures and subfigures. This

is to highlight properties within a given plot, but it can hide several things. In particular,

note that the scale for the spectral norm is generally larger than for the Frobenius norm,

which is generally larger than for the trace norm, consistent with the size of those norms;

and that the scale is larger for higher-rank approximations, e.g. compare GR k = 20

with GR k = 60, also consistent with the larger amount of mass captured by higher-rank

approximations.

• Both the non-rank-restricted and rank-restricted results are the same for `= k. For ` > k,

the non-rank-restricted errors tend to decrease (or at least not increase, as for GR and

HEP the spectral norm error is flat as a function of `), which is intuitive. While the

rank-restricted errors also tend to decrease for ` > k, the decrease is much less (since

the rank-restricted plots are bounded below by unity) and the behavior is much more
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complicated as a function of increasing `.

• The horizontal axes range from k to 9k for the k = 20 plots and to 3k for the k = 60 plots.

As a practical matter, choosing ` between k and (say) 2k or 3k is probably of greatest

interest. In this regime, there is an interesting tradeoff for the non-rank-restricted plots:

for moderately large values of ` in this regime, the error for leverage-based sampling is

moderately better than for uniform sampling or random mixtures, while if one chooses `

to be much larger then the improvements from leverage-based sampling saturate and the

uniform sampling and random mixture methods are better. This is most obvious in the

Frobenius-norm plots, although it is also seen in the trace norm plots, and it suggests that

some combination of leverage-based sampling and uniform sampling might be best.

• For the rank-restricted plots, in some cases, e.g., with GR and HEP, the errors for leverage-

based sampling are much better than for the other methods and quickly improve with

increasing ` until they saturate; while in other cases, e.g., with Enron and Gnutella, the

errors for leverage-based sampling improve quickly and then degrade with increasing

`. Upon examination, the former phenomenon is similar to what was observed in the

non-rank-restricted case and is due to the strong “bias” provided by the leverage score

importance sampling distribution to the top part of the spectrum, allowing the sampling

process to focus very quickly on the low-rank part of the input matrix. (In some cases,

this is due to the fact that the heterogeneity of the leverage score importance sampling

distribution means that one is likely to choose the same high leverage columns multiple

times, rather than increasing the accuracy of the extension by adding new columns whose

leverage scores are lower.) The latter phenomenon of degrading error quality as ` is

increased is more complex and seems to be due to some sort of “overfitting” caused by
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this strong bias and by choosing many more than k columns.

• The behavior of the approximations with respect to the spectral norm is quite different

from the behavior in the Frobenius and trace norms. In the latter, as the number of

samples ` increases, the errors tend to decrease, although in an erratic manner for some

of the rank-restricted plots; while for the former, the errors tend to be much flatter as a

function of increasing ` for at least the Gaussian, SRFT, and uniformly column sampled

(i.e., Nyström) sketches.

All in all, there seems to be quite complicated behavior for low-rank sketches for these Laplacian

matrices. Several of these observations can also be made for subsequent figures; but in some

other cases the (very sparse and not very low rank) structural properties of the data are primarily

responsible.

6.9.3.2 Linear kernels

Figures 6.8 and 6.9 show the reconstruction error results for sampling and mixture methods

applied to several linear kernels. The matrices (Dexter, Protein, SNPs, and Gisette) are all quite

low-rank and have fairly uniform leverage scores. Several observations are worth making about

the results presented in these figures.

• All of the methods perform quite similarly for the non-rank-restricted case: all have errors

that decrease smoothly with increasing `, and in this case there is little advantage to

using methods other than uniform sampling (since they perform similarly and are more

expensive). Also, since the ranks are so low and the leverage scores are so uniform, the

leverage score extension is no longer significantly distinguished by its tendency to saturate

quickly.



217

0 20 40 60 80 100
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

` (column samples)

‖A −CW
†
C

T‖2/‖A −Ak‖2

 

 

nystrom
srft
gaussian
levscore

0 20 40 60 80 100
0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

` (column samples)

‖A −CW
†
C

T‖F/‖A−Ak‖F

0 20 40 60 80 100
0.95

0.96

0.97

0.98

0.99

1

1.01

` (column samples)

‖A−CW
†
C

T‖?/‖A −Ak‖?

(a) Dexter, k = 8
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(b) Protein, k = 10
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(c) SNPs, k = 5
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Figure 6.8: RELATIVE ERRORS OF NON-RANK-RESTRICTED SPSD SKETCHES OF THE LINEAR KERNEL

MATRICES. The relative spectral, Frobenius, and trace-norm errors (6.9.1) of several non-rank-
restricted SPSD sketches, as a function of the number of columns samples `, for the linear kernel
matrices.
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(a) Dexter, k = 8
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(b) Protein, k = 10
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(c) SNPs, k = 5
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Figure 6.9: RELATIVE ERRORS OF RANK-RESTRICTED SPSD SKETCHES OF THE LINEAR KERNEL MATRICES.
The relative spectral, Frobenius, and trace-norm errors (6.9.2) of several rank-restricted SPSD
sketches, as a function of the number of columns samples `, for the linear kernel matrices.



219

• The scale of the vertical axes is much larger than for the Laplacian matrices, mostly since

the matrices are much better approximated by low-rank matrices, although the scale

decreases as one goes from spectral to Frobenius to trace reconstruction error, as before.

• For SNPs and Gisette, the rank-restricted reconstruction results are very similar for all

four methods, with a smooth decrease in error as ` is increased, although interestingly

using leverage scores is slightly worse for Gisette. For Dexter and Protein, the situation

is more complicated: using the SRFT always leads to smooth decrease as ` is increased,

and uniform sampling generally behaves the same way also; Gaussian mixtures behave

this way for Protein, but for Dexter Gaussian mixtures are noticably worse than SRFT and

uniform sampling; and, except for very small values of `, leverage-based sampling is worse

still and gets noticably worse as ` is increased. Even this poor behavior of leverage score

sampling on the linear kernels is notably worse than for the rank-restricted Laplacians,

where there was a range of moderately small ` where leverage score sampling was much

superior to other methods.

These linear kernels (and also to some extent the dense RBF kernels below that have larger

σ parameter) are examples of relatively “nice” machine learning matrices that are similar to

matrices where uniform sampling has been shown to perform well previously [TKR08, KMT09a,

KMT09b, KMT12]; and for these matrices our empirical results agree with these prior works.

6.9.3.3 Dense and sparse RBF kernels

Figures 6.10–6.13 present the reconstruction error results for sampling and mixture methods

applied to several dense RBF and sparse RBF kernels. Several observations are worth making

about the results presented in these figures.
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(b) AbaloneD, σ = 1, k = 20
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(c) WineD, σ = 1, k = 20
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Figure 6.10: RELATIVE ERRORS OF NON-RANK-RESTRICTED SPSD SKETCHES OF THE DENSE RBFK
MATRICES. The relative spectral, Frobenius, and trace-norm errors (6.9.1) of several non-rank-
restricted SPSD sketches, as a function of the number of columns samples `, for the dense RBFK
matrices.
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(a) AbaloneD, σ = .15, k = 20
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(b) AbaloneD, σ = 1, k = 20
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(c) WineD, σ = 1, k = 20
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Figure 6.11: RELATIVE ERRORS OF RANK-RESTRICTED SPSD SKETCHES OF THE DENSE RBFK MATRICES.
The relative spectral, Frobenius, and trace-norm errors (6.9.2) of several rank-restricted SPSD
sketches, as a function of the number of columns samples `, for the dense RBFK matrices.
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(b) AbaloneS, σ = 1, k = 20
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Figure 6.12: RELATIVE ERRORS OF NON-RANK-RESTRICTED SPSD SKETCHES OF THE SPARSE RBFK
MATRICES. The relative spectral, Frobenius, and trace-norm errors (6.9.1) of several non-rank-
restricted SPSD sketches, as a function of the number of columns samples `, for the sparse RBFK
matrices.
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(b) AbaloneS, σ = 1, k = 20
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(c) WineS, σ = 1, k = 20
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Figure 6.13: RELATIVE ERRORS OF RANK-RESTRICTED SPSD SKETCHES OF THE SPARSE RBFK MATRICES.
The relative spectral, Frobenius, and trace-norm errors (6.9.2) of several rank-restricted SPSD
sketches, as a function of the number of columns samples `, for the sparse RBFK matrices.
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• For the non-rank-restricted results, all of the methods have errors that decrease with

increasing `. In particular, for larger values of σ and for denser matrices, the decrease is

somewhat more regular, and the four methods tend to perform similarly. For larger values

of σ and sparser matrices, leverage score sampling is somewhat better. This parallels

what we observed with the linear kernels, except that here the leverage score sampling is

somewhat better for all values of `.

• For the non-rank-restricted results for the smaller values of σ, leverage score sampling

tends to be much better than uniform sampling and mixture-based methods. For the

sparse matrices, however, this effect saturates. We again observe (especially when σ is

smaller in AbaloneS and WineS) the tradeoff we observed previously with the Laplacian

matrices: leverage score sampling is better when ` is moderately larger than k, while

uniform sampling and random mixtures are better when ` is much larger than k.

• For the rank-restricted results, we see that when σ is large, all of the results tend to

perform similarly. (The exception to this is WineS, for which leverage score sampling starts

out much better than other methods and then gets worse as ` is increased.) On the other

hand, when σ is small, the results are more complex. Leverage score sampling is typically

much better than other methods, although the results are quite choppy as a function of `,

and in some cases the effect diminishes as ` is increased.

Recall from Table 6.3 that for smaller values of σ and for sparser kernels, the SPSD matrices

are less well-approximated by low-rank matrices, and they have more heterogeneous leverage

scores. Thus, they are more similar to the Laplacian matrices than the linear kernel matrices;

and this suggests (as we have observed) that leverage score sampling should perform better

than uniform column sampling and mixture-based schemes in these two cases. In particular,
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nowhere do we see that leverage score sampling performs much worse than other methods, as

we saw with the rank-restricted linear kernel results.

6.9.3.4 Summary of comparison of sampling and mixture-based SPSD Sketches

Several summary observations can be made about sampling versus mixture-based SPSD sketches

for the matrices we have considered.

• Linear kernels and to a lesser extent dense RBF kernels with larger σ parameter have

relatively low rank and relatively uniform leverage scores, and in these cases uniform

sampling does quite well. These matrices correspond most closely with those that have

been studied previously in the machine learning literature, and for these matrices our

results are in agreement with that prior work.

• Sparsifying RBF kernels and/or choosing a smaller σ parameter tends to make these

kernels worse approximated by low-rank matrices and to have more heterogeneous

leverage scores. In general, these two properties need not be directly related: the spectrum

is a property of eigenvalues, while the leverage scores are determined by the eigenvectors.

However, in the matrices we examined they are related, in that matrices with more slowly

decaying spectra also often have more heterogeneous leverage scores.

• For dense RBF kernels with smaller σ and sparse RBF kernels, leverage score sampling

tends to do much better than other methods. Interestingly, the sparse RBF kernels have

many properties of very sparse Laplacian kernels corresponding to relatively unstructured

informatics graphs.

• Reconstruction quality under leverage score sampling saturates, as a function of choosing

more samples `; this is seen both for non-rank-restricted and rank-restricted situations.
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As a consequence, there is often a transition between leverage score sampling or other

methods being better as ` increases.

• Although they are potentially ill-conditioned, non-rank-restricted approximations behave

better in terms of reconstruction quality. Rank-constrained approximations tend to have

much more complicated behavior as a function of increasing the number of samples `,

including choppier and non-monotonic behavior. This is particularly severe for leverage

score sampling, but it occurs with other methods. Other forms of regularization might be

appropriate.

In general, all of the sampling and mixture-based sketches we considered perform much better

on the SPSD matrices we considered than both the previous worst-case bounds (e.g., [DM05,

KMT12]) and the bounds derived in this chapter would suggest. Even the worst results corre-

spond to single-digit approximation factors in relative scale.

6.10 A comparison with projection-based low-rank approximations

Finally, we consider the performance of two projection-based SPSD sketches proposed in [HMT11].

Recall from Chapter 5 that these low-rank approximations are constructed by forming an ap-

proximate basis Q for the top k-dimensional eigenspace of A and then restricting A to that

eigenspace.

Given a sampling matrix S, form the matrix Y = AS and take the QR decomposition of

Y to obtain Q, a matrix with orthonormal columns. The first projection-based approximant

mentioned in [HMT11], which we eponymously refer to as the pinched approximant, is simply A
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pinched to the space spanned by Q :

PASAPAS = Q(QT AQT )Q.

Note that this approximant requires two passes over A. The second approximant, which we refer

to as the prolonged approximant, is

AQ(QT AQ)†QT A.

The computation of a prolonged approximant also requires two passes over A.

It is clear that the prolonged approximant can be constructed using our SPSD sketching

model by taking Q as the sketching matrix. In fact, a stronger statement can be made. Recall,

from Lemma 6.1, that for any sketching matrix X, when C= AX and W= XT AX,

CW†CT = A1/2PA1/2XA1/2.

By considering the two choices X = AS and X = Q, we see that in fact the prolonged approximant

is exactly the two-pass SPSD sketch:

AQ(QT AQ)†AQ= A1/2PA1/2QA1/2

= A1/2PA1/2(AS)A
1/2

= A2S(ST A3S)†ST A2.

It follows that the bounds we provide in Section 6.4 on the performance of multi-pass sketches

pertain also to prolonged approximants. In particular, the additional errors of these approximants
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are expected to be at least a factor of λk+1(A)/λk(A) smaller than the additional errors of one-

pass sketches.

In Figure 6.14, we compare the empirical performances of several of the SPSD sketches

considered earlier with pinched and prolonged approximants constructed using the same matrix

S. Specifically, we plot the errors of pinched and prolonged approximants for choices of sketching

matrices corresponding to uniform column sampling, gaussian column mixtures, and SRFT-based

column mixtures, along with the errors of one-pass SPSD sketches constructed using the same

choices of S. In the interest of brevity, we provide results only for a subset of the matrices listed

in Table 6.2 and consider only the nonfixed-rank variants of the sketches.

Some trends are clear from Figure 6.14.

• In the spectral norm, the prolonged approximants are considerably more accurate than

the pinched approximants and one-pass sketches for all the matrices considered. Without

exception, the prolonged Gaussian and SRFT column-mixture approximants are the most

accurate in the spectral norm, of all the schemes considered. Only in the case of the Dexter

linear kernel is the prolonged uniformly column-sampled approximant nearly as accurate

in the spectral norm as the prolonged Gaussian and SRFT approximants. To a lesser extent,

the prolonged approximants are also more accurate in the Frobenius and trace norms

than the other schemes considered. The increased Frobenius and trace norm accuracy

is particularly notable for the two RBF kernel matrices; again, the prolonged Gaussian

and SRFT approximants are considerably more accurate than the prolonged uniformly

column-sampled approximants.

• After the prolonged approximants, the pinched Gaussian and SRFT column-mixture

approximants have the smallest spectral, Frobenius, and trace-norm errors. Again however,
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we see that the pinched uniformly column-sampled approximants are considerably less

accurate than the pinched Gaussian and SRFT column-mixture approximants. Particularly

in the spectral and Frobenius norms, the pinched uniformly column-sampled approximants

are not any more accurate than the uniformly column-sampled sketches.

It is evident that the benefits of pinched and prolonged approximants are most dramatic when

the spectral norm is the error metric, and that Nyström extensions do not benefit as much from

multiple passes as do other sketching schemes.

It is also evident that the pinched approximants often yield a much slighter increase in

accuracy over the one-pass sketches than do the prolonged approximants. Recall that the

prolonged approximants are simply two-pass sketches. Our investigations point to the conclusion

that two-pass sketches are significantly more accurate than the projection-based low-rank

approximations that also require two passes over A. Of course, one should temper this comparison

with the knowledge that projection-based low-rank approximations, unlike SPSD sketches, are

stably computable.
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Figure 6.14: COMPARISON OF PROJECTION-BASED LOW-RANK APPROXIMATIONS WITH ONE-PASS SPSD
SKETCHES. The relative spectral, Frobenius, and trace-norm errors (6.9.1) of several non-rank-
restricted SPSD sketches, including the pinched and prolonged low-rank approximants, as a
function of the number of columns samples `, for several matrices from Table 6.2.
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